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Abstract 

 
Mobile robots have become increasingly common in recent years due to their ability to 

perform tasks in a variety of environments. These robots can be used in various applications such 

as transportation, surveillance, exploration, and many others. 

In this project, our goal is to design and build a mobile robot with two wheels capable of 

navigating indoor environments. The robot is designed to be compact, lightweight, and agile, 

with the ability to move in any direction. The mechanical structure of the robot consists of two 

wheels, each driven by a separate motor, and a free-spinning wheel for stability. Additionally, the 

robot is equipped with sensors to enable it to navigate and interact with its environment. 

The robot's software was developed using a combination of programming languages, 

including Python and C++. ROS (Robot Operating System) was also utilized, incorporating 

software modules for control, path tracking, obstacle detection and avoidance, as well as image 

processing. The project presented several challenges, including selecting suitable components 

and integrating various hardware and software modules. However, through the design, 

construction, and testing of the robot, we gained valuable experience in the field of robotics and 

learned important lessons that can be applied to future projects. 

Overall, the mobile robot we built showcases the significant potential of robots in various 

aspects of life and highlights the importance of interdisciplinary collaboration in the 

development of complex systems. 

 

Keywords: mobile robots, tracking, obstacle detection and avoidance, image processing. 
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 ملخص ال

 
مجموعة  في  المهام  أداء  على  قدرتها  بسبب  الأخيرة  السنوات  في  متزايد  بشكل  شائعة  المتنقلة  الروبوتات  أصبحت 

 متنوعة من البيئات. يمكن استخدام هذه الروبوتات في تطبيقات مختلفة مثل النقل والمراقبة والاستكشاف وغيرها الكثير.  

 في هذا المشروع، هدفنا هو تصميم وبناء روبوت متنقل يحتوي على عجلتين وقادر على التنقل في البيئات الداخلية.

الهيكل   يتكون  اتجاه.  أي  في  الحركة  على  القدرة  مع  ومتحرك،  الوزن  وخفيف  الحجم  صغير  ليكون  الروبوت  تصميم  تم 

الميكانيكي للروبوت من عجلتين، يتحرك كل منهما بواسطة محرك منفصل، وعجلة دوران حرة للثبات. كما تم تجهيز الروبوت  

 بمستشعرات لتمكينه من التنقل والتفاعل مع بيئته.

البرمجة   لغتي  باستخدام مزيج من  الروبوت  برمجيات  الى نظام  .Cو ++  Pythonتم تطوير  تشمل    ،ROSاضافة 

التحديات، قدم المشروع عدداً من   معالجة الصور.إضافة الى  وكشف العوائق وتجنبها    تتبع المساروحدات البرمجيات التحكم و

التصميم  عملية  خلال  من  ذلك،  ومع  المختلفة.  والبرمجيات  الأجهزة  وحدات  وتكامل  المناسبة  المكونات  اختيار  ذلك  في  بما 

المشاريع   في  الروبوتات وتعلم دروس مهمة يمكن تطبيقها  في مجال  قيمة  اكتساب خبرة  تمكنا من  الروبوت،  والبناء واختبار 

  المستقبلية.

الإمكان ببنائه  قمنا  الذي  المتنقل  الروبوت  يظهر  عام،  مختلفةيبشكل  تطبيقات  في  للروبوتات  الكبيرة  نواحي   ات  من 

 ويسلط الضوء على أهمية التعاون المشترك بين التخصصات المختلفة في تطوير الأنظمة المعقدة.  الحياة

 

 .معالجة الصور، كشف العوائق وتجنبها، رالروبوتات المتنقلة، تتبع المسا كلمات مفتاحية:
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General Introduction 
 

 

Mobile robotics is a rapidly evolving field that focuses on the development of robots 

capable of autonomous movement. These robots, equipped with a mobile base, combine 

various disciplines such as control engineering, mechanics, computer science, and 

electronics. They are designed to navigate and perform tasks in diverse environments. 

Among the different types of mobile robots, wheeled robots are the most widely studied and 

utilized. Their simplicity and versatility make them suitable for a wide range of applications, 

including autonomous systems and robotics research. 

The concept of mobile robotics encompasses two primary operating modes: teleoperation and 

autonomy. Teleoperated robots are controlled remotely, with commands transmitted through a 

control interface such as a keyboard or joystick. On the other hand, autonomous robots 

possess the ability to perceive their surroundings, make decisions, and navigate their 

environment without direct human intervention. 

A key challenge in mobile robotics is ensuring the robot's ability to follow predefined 

trajectories while avoiding both fixed and mobile obstacles. This includes scenarios where 

multiple robots operate in the same environment, requiring coordination and collision 

avoidance mechanisms. Achieving autonomy in mobile robots has therefore become a major 

research focus, driven by the need for advanced navigation capabilities and the ability to 

adapt to dynamic environments. 

In this project, we specifically concentrate on autonomous mobile robots. The main objective 

is to develop and implement control algorithms that enable trajectory tracking and obstacle 

avoidance. The study includes scenarios involving both fixed and mobile obstacles, with a 

particular emphasis on interactions between multiple robots within the same workspace. Two 

robots (“Bimo_1” and “Bimo_2”) were employed for experimentation. 

The remainder of this thesis is structured as follows: 

Chapter 1 provides a general overview of mobile robotics, including definitions and modeling 

approaches. 

Chapter 2 introduces nonlinear predictive control and ROS control as viable control strategies 

for mobile robots. 

Chapter 3 presents the results obtained from simulations and experiments conducted during 

the project. 

Finally, the conclusion summarizes the findings and offers insights for future research 

directions. 
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Chapter I 

General information on mobile robotics 

definition and modeling 
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I.1 Introduction: 

Mobile robotics is a field of robotics that involves the design, construction, and 

operation of robots that are capable of movement in a variety of environments. These robots 

can be used for a wide range of applications, from exploring space and underwater 

environments to assisting with manufacturing and logistics operations in warehouses. 

Mobile robots are typically equipped with a variety of sensors, such as cameras, lidar, and 

ultrasound sensors, to help them navigate their environment and detect obstacles. They also 

often have onboard processors and algorithms that allow them to make decisions and perform 

tasks autonomously, without the need for human intervention. 

Some common examples of mobile robots include unmanned aerial vehicles (UAVs), 

autonomous cars, and delivery robots. Mobile robots are also used in a variety of other 

industries, such as agriculture, healthcare, and security. With advances in technology and 

artificial intelligence, the field of mobile robotics is constantly evolving, and is expected to 

play an increasingly important role in many aspects of modern society. 

I.2 Model of the robots: 

In this section, we will present the model considered for each agent of the network of 

robots and the basics on consensus theory that are used in the control law’s design: 

I.2.1 Unicycle mobile robots: 

These are robots powered by two independently driven fixed wheels. A caster wheel is 

located on the axis connecting the two driven wheels to provide stability (Fig. I.1). 

 

 

 

 

 

 

 

 

 

 

Fig. I.1: Unicycle mobile robot geometry 
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I.2.2 Tricycle mobile robots: 

This robot is powered by a single centrally mounted and always steerable wheel. It is 

driven and controlled by two fixed non-motorized wheels located at the rear on the same axis 

(Fig. I.2). 

 

 

 

 

 

 

 

 

 

Fig. I.2: Tricycle mobile robot geometry 

 

I.2.3 Omnidirectional mobile robots: 

The omnidirectional robot is equipped with a set of three steerable off-centered 

wheels or with three wheels placed at the vertices of an equilateral triangle (Fig. I.3). 

 

 

 

 

 

 

 

 

 

Fig. I.3: Omnidirectional mobile robot geometry 
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I.3 Navigation and localization: 

I.3.1 Navigation: 

The navigation problem consists of determining a directed path towards a goal. The 

representation of the environment based on sensory information is essential for this purpose. 

To perform autonomous navigation tasks, a mobile robot must possess a number of 

functionalities. It needs to localize itself within its environment, determine its position 

relative to fixed and moving obstacles present in the environment, and be able to avoid them. 

I.3.2 Localization: 

Localization is necessary for the navigation of a mobile robot. The robot must have 

the ability to localize itself within its environment by estimating its position and orientation 

relative to a fixed reference point. 

Localization approaches can be divided into two main classes: 

• Relative Localization: The use of sensors allows determining the position of the robot 

at any given moment, given its initial position. The most common method is 

odometry, which involves using optical encoders mounted on the motor axes to 

measure wheel rotations. 

• Absolute Localization: It is based on a global understanding of the environment. This 

can be achieved through technologies such as GPS (Global Positioning System), 

cameras, or rangefinders. 

I.3.3 Path planning: 

Path planning involves determining how a robot will move and maneuver in a 

workspace. This problem involves calculating a collision-free path between a starting 

position and a destination position. An obstacle can be either static with respect to a fixed 

reference frame or dynamic (mobile) with respect to a fixed reference frame [1]. 

Path planning can be divided into two classes: 

• Local Path Planning: It is performed while the robot is in motion, using data from 

local sensors. In this case, the robot has the ability to generate its path in response to 

changes in the environment. 

• Global Path Planning: It is applicable when the environment (obstacles, etc.) is static 

and known. The trajectory is pre-determined, and the planning algorithm produces a 

complete path from the starting point to the destination point. 
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I.4 Modeling of the unicycle mobile robot: 

Among the various types of mobile robots, the unicycle robot has been chosen for 

practical tests or simulations. This robot is simple and widely used. In the following, we 

briefly present the kinematic model of this robot. 

Let  𝑅 = (𝑂, 𝑥,⃗⃗ �⃗� ) be an arbitrary fixed frame, and R′ = (𝑂′, 𝑥′,⃗⃗  ⃗ 𝑦′⃗⃗  ) be a mobile frame 

attached to the robot, where 𝑂' represents the center of gravity of the mobile robot (Fig. I.4), 

typically the center of the axis of the drive wheels. This defines a position vector of the robot 

𝑞: 

                                                            𝑞 = (
𝑥
𝑦
𝜃
)                                                                           (1.1) 

 

 

 

 

 

 

 

 

 

 

Fig. I.4: Illustration of the parameters 

 

Generally, for the kinematic control of mobile robots, a velocity control model is commonly 

used. 

In this case, there are no complex geometric or inertial parameters to identify. The calculation 

of the control is therefore simpler. The following assumptions are generally accepted: 

• The mobile robot behaves like a rigid vehicle moving in a horizontal plane. 

• The wheels are assumed to be rigid and roll without slipping on the ground. 

• The contact of the wheel with the ground is reduced to a point, not a surface. 

The instantaneous center of rotation (ICR) of the robot is a point with zero velocity, where it 

can rotate instantaneously. It is located on the axis of rotation of the wheels. 
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Let's consider: 

• 𝜔: The rotational velocity of the robot around the ICR (Instantaneous Center of 

Rotation). 

• 𝑣r and 𝑣𝑙: Respectively, the velocities of the right and left wheels. 

It is often important to relate the robot's pose to the control of its wheels. Generally, it is 

preferred to express this control using two other velocities: 𝜃 (angular velocity) and 𝑣 

(longitudinal velocity). The relationships between these velocities are as follows: 

 

                                                   𝑣 =
(𝑣𝑟+𝑣𝑙)

2
                                                        (1.2) 

                                                                        𝜔 = 𝜃                                                                               (1.3) 

 

Relating the derivative of the pose to the control 𝑉 = (𝑣 𝜔)T is straightforward. A simple 

geometric consideration yield: 

 

                                                                    �̇� = 𝑣 cos 𝜃                                                                         (1.4) 

                                                                     𝑦̇ = 𝑣 sin 𝜃                                                                         (1.5) 

                                                                         �̇� = 𝜔                                                                              (1.6) 

 

This is the kinematic model of the mobile robot. 
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Chapter II 

Predictive control and ROS 
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II.1 The predictive control: 

II.1.1 Introduction: 

The predictive control refers to a control strategy or technique that utilizes predictive 

models to anticipate future system behavior and make control decisions accordingly. It 

involves predicting the future states or outputs of a system based on current and past 

information, and then using this prediction to optimize control actions and achieve desired 

performance. The predictive control is commonly used in various fields such as process 

control, robotics, and autonomous systems. 

II.1.2 Basic principle of predictive control: 

 The basic principle of predictive control refers to the fundamental concept underlying 

the predictive control strategy. It involves using a predictive model of the system dynamics to 

predict future behavior and optimize control actions. The principle can be summarized as 

follows: 

• Prediction: A mathematical model of the system is used to predict the future states or 

outputs based on the current and past information. This model takes into account the 

system dynamics, constraints, and disturbances. 

• Optimization: An optimization algorithm is employed to determine the optimal 

control actions that will minimize a specified objective function. The objective 

function typically includes criteria such as tracking desired setpoints, minimizing 

control effort, and satisfying constraints. 

• Receding Horizon: The control actions are calculated over a finite time horizon, but 

only the first control action is implemented. As time progresses, the horizon is shifted, 

and the process is repeated, allowing for adaptive and dynamic control. 

By continuously updating the prediction and optimizing the control actions, predictive control 

aims to achieve optimal performance while accounting for system constraints and 

disturbances. This principle forms the basis for the design and implementation of predictive 

control algorithms in various applications. 

II.1.3 Nonlinear predictive control: 

II.1.3.1 The general problem of NMPC: 

Consider a nonlinear system described by the following discrete state model: 

                                                      𝑥(k + 1) = f(x(k), u(k))                                                      (2.1) 

 

With : 

• x(k) ∈ 𝑅𝑛 : System status. 

• u(k) ∈ 𝑅𝑚 : Inputs. 

The function 𝑓 is assumed to be continuous. 
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Constraints can be imposed on the states and/or the control inputs. These constraints are 

expressed in the following form: 

                                                               u(k) ∈ 𝒰                                                                (2.2) 

                                                               x(k) ∈ 𝒳                                                                (2.3) 

 

Where: 

• 𝒰 : is a convex compact set. 

• 𝒳 : is convex and closed. 

• With:  f(0,0) = 0 . 

The optimization problem associated with nonlinear predictive control is then given by: 

                                                           min
𝒰

𝐽𝑁 (𝑥, 𝑘, 𝒰)                                                          (2.4) 

 

The most common form of the cost function is: 

                             𝐽𝑁(𝑥, 𝑘, 𝒰) = 𝐹(𝑥(𝑘 + 𝑁)) + ∑ 𝐿(𝑥(𝑖), 𝑢(𝑖))𝑘+𝑁−1
𝑖=𝑘                              (2.5) 

 

With : 

• N : Prediction horizon (which is equal to the input horizon). 

• 𝐹 = 𝑥(𝑘 + 𝑁) : Cost on the final state 𝑥(𝑘 + 𝑁). 

Similar to the linear case, the solution provides a sequence of control inputs, and only the first 

element of the sequence is applied to the system. 

II.1.3.2 Solution methods: 

As mentioned above, the optimization problem of nonlinear predictive control is 

generally non-convex. The classical method for solving this type of problem is the Sequential 

Quadratic Programming (SQP) algorithm, which is an extension of the active set method in 

quadratic programming. Some authors have proposed various methods for efficiently solving 

this problem. These include the multiple shooting method, the approach based on nonlinear 

least squares, and the use of fast metaheuristic algorithms such as Particle Swarm 

Optimization (PSO). 

In this work, we employ the PSO algorithm for online optimization problem solving. The 

details of this algorithm are described in Appendix C. 
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II.2 ROS (Robot Operating System): 

In this chapter we present secondly, the development of a mobile robot with obstacle 

avoidance capabilities using ROS (Robot Operating System). The robot is built with a 

Raspberry Pi as the main control unit and integrates a LiDAR sensor and a camera for 

perception and obstacle detection, the description of the mobile robot is in the Appendix D. 

ROS enables seamless integration and control of the robot's hardware and software 

components, facilitating autonomous navigation while avoiding obstacles. 

II.2.1 Description: 

ROS stands for Robot Operating System. It is an open-source framework and 

middleware widely used in the field of robotics for developing and controlling robots. ROS 

provides a collection of software libraries and tools that help developers create robot 

applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. II.1: ROS Humble 

Here are some key features and concepts related to ROS: 

Nodes: ROS applications are composed of multiple nodes, which are independent processes 

that communicate with each other by passing messages. 

Messages: Nodes communicate with each other by exchanging messages. Messages are data 

structures used to represent information such as sensor readings, motor commands, and other 

robot-related data. 

Topics: Nodes can publish messages to topics or subscribe to receive messages. Topics act as 

message buses, allowing multiple nodes to communicate with each other indirectly. 
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Services: Services provide a request-response mechanism in ROS. A node can offer a service, 

and other nodes can send requests to that service and receive a response. 

Actions: Actions extend the functionality of services by enabling long-running tasks with 

feedback. They are useful for executing complex actions that require ongoing communication 

between nodes. 

Packages: ROS code is organized into packages, which are self-contained units that contain 

libraries, executables, configuration files, and other resources. 

Launch files: ROS provides launch files that allow you to start multiple nodes with 

predefined parameters and configurations in a single command. 

Visualization: ROS provides various visualization tools, such as RViz and Gazebo for 

visualizing robot models, sensor data, and other information in a graphical interface. 

Community: ROS has a large and active community of developers who contribute to its 

development and provide support through forums, mailing lists, and other channels. 

ROS supports multiple programming languages, including C++, Python, and more. It is 

widely used in research, academia, and industry for developing robotic systems and has a vast 

ecosystem of packages and libraries that can be leveraged to accelerate development. 

II.2.2 Visualization tools: 

ROS provides several visualization tools that can be used to visualize various aspects 

of robotic systems and data. Here are some popular ROS visualization tools: 

• RViz:  

RViz (ROS Visualization) is a 3D visualization tool in ROS. It allows you to visualize robot 

models, sensor data, and other information in a 3D scene. RViz supports the visualization of 

robot models, sensor data (such as laser scans and point clouds), TF (transform) frames, and 

interactive markers. RViz is highly customizable and can be configured to display specific 

robot components or data according to your needs. 

• Gazebo:  

Gazebo is a powerful robotics simulator that integrates well with ROS. It provides a 3D 

graphical environment where you can simulate robots, sensors, and their interactions. Gazebo 

allows you to visualize and interact with simulated robots, and it provides tools for 

visualizing sensor data, environment models, and robot behavior. Gazebo's visualization 

capabilities can be used alongside other ROS tools for a comprehensive understanding of 

your robotic system. 

These are just a few examples of ROS visualization tools available in the ROS ecosystem. 

ROS has a rich collection of visualization packages and tools that can be utilized based on the 

specific visualization needs. The selection of tools depends on the type of data that 

visualized, the level of interactivity required, and the specific aspects of the robotic system 

that analyze and understand. 
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Chapter III 

Simulation and experimental outcomes 
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III.1 Introduction: 

In this chapter, we provide the simulation findings and experimental results for 

trajectory tracking with avoidance of stationary and mobile obstacles. 

The robots (“Bimo_1” and “Bimo_2”) employed in the study are detailed in Appendix A and 

D. 

The model for both robots aligns with the description provided in Chapter 1, which we 

reiterate below: 

                                                             �̇� = 𝑣 cos 𝜃                                                               

                                                              𝑦̇ = 𝑣 sin 𝜃                                                                

                                                                  �̇� = 𝜔                                                                   (3.1) 

With: 

                                                     𝑣 =
(𝑣𝑟+𝑣𝑙)

2
                                                      (3.2) 

 

The two control signals are the speeds of the left wheels 𝑣l and the right wheels 𝑣r. These 

commands must satisfy the following constraints: 

 

                                                   𝑣𝑟  ∈ [−0.5; +0.5](𝑚/𝑠)                                                   (3.3) 

                                                   𝑣𝑙  ∈ [−0.5; +0.5](𝑚/𝑠)                                                   (3.4) 

 

In this project, we consider two objectives: 

• The objective of this project is to achieve trajectory tracking for the Bimo_1 of a 

mobile robot. 

• Additionally, the goal is to ensure trajectory tracking for the Bimo_2 of a mobile 

robot operating in the environment, while effectively avoiding any fixe or moving 

obstacles present, and send a live topic of the robot environment to the user interface. 

The robot’s localization is achieved using a vertically positioned camera placed above the 

robot, which captures top-down images of the robot along with an ArUco marker placed on it 

(Bimo_1). The specifics of the localization system are provided in Appendix B. 

We apply the control algorithm nonlinear predictive control with constraints. 
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III.2 Nonlinear predictive control: 

III.2.1 Controller synthesis: 

The prediction model used is the robot's kinematic model. 

The cost function to minimize is in the following form: 

 

                 𝐽 =  ∑ ((𝑥(𝑡 + 𝑘) − 𝑥𝑟(𝑡 + 𝑘))2 +  (𝑦(𝑡 + 𝑘) − 𝑦𝑟(𝑡 + 𝑘))2)
𝑁𝑝

𝑘=0                     (3.5) 

 

The controller parameters: 

 The selection of controller parameters must ensure both algorithm convergence and 

computational efficiency in command calculations: 

• Prediction horizon: Np = 5 

• Control horizon: Nu = 1 

 

Regarding the Particle Swarm Optimization (PSO) algorithm: 

• Number of particles: 15 

• Number of iterations: 30 

 

III.2.2 Implementation results: 

The autonomous mobile robot must exhibit efficient obstacle avoidance capabilities. 

The approach for calculating new commands involves introducing additional constraints on 

the distance between the mobile robot and the obstacle, ensuring that the robot does not 

approach the obstacle within a close range (𝑑≤ 0.02 𝑚). 

 

 III.2.2.1 Trajectory tracking with fixed obstacle avoidance: 

Simulation: 

The minimum allowable distance (𝑑) between the robot and the obstacle: 

 

                                                                   d = 0.02                                                              (3.6) 
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Figures (Fig. III.1) and (Fig. III.2) depict the trajectory tracking of a lemniscate path by the 

mobile robot with the avoidance of many fixed obstacles. The figures illustrate the commands 

for the left and right wheel speeds, as well as the angular velocity. The trajectory tracking is 

performed flawlessly without any errors, and the commands exhibit smooth transitions. 

When the robot approaches an obstacle, a sudden change in the speed of one of the wheels is 

observed, depending on the orientation of the robot. 

Fig. III.1: Simulation of trajectory tracking NMPC with avoidance of fixed obstacles 

 

Fig. III.2: Simulation of NMPC for control of wheel commands and angular velocity (robot) 
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Experimentation: 

We keep the same parameters used in the simulation. The sampling period is set to 

100ms, which meets the requirements for command calculation and the Shannon theorem. 

The two figures (Fig. III.3) and (Fig. III.4) represent, respectively, the trajectory tracking of 

the mobile robot following a lemniscate path, the velocities of the left and right drive wheels, 

as well as the angular velocity. 

The trajectory tracking was almost perfect, except for small errors observed during turns, 

which are considered acceptable. The commands are not smooth. 

 

Fig. III.3: NMPC Trajectory Tracking Experimentation of the Robot 

 

Fig. III.4: NMPC Experimentation of Wheel Motor Commands and Angular Velocity (robot) 
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III.3 ROS control: 

Because of the unavailability of essential electronic components required to finish the 

project in the Algerian market, we conducted a simulation of the robot within the ROS 

integrated environment and achieved the results illustrated below. 

The assembly and arrangement of all the robot's components are detailed in Appendix D. 

III.3.1 Simulation with Gazebo: 

To create a realistic simulation environment, we designed a model of a house for the 

robot's presence. Additionally, we modeled the robot and its accessories, including the 

LiDAR sensor and camera, as depicted in the following image: 

 

Fig. III.5: The structure of the robot 

 

Fig. III.6: 3D simulation of the robot in a house 
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III.3.2 Visualization with RViz: 

To make a 3D visualization we use RViz, is tool commonly used with the Robot 

Operating System (ROS) for simulating and debugging robotic applications. It allows us to 

visualize various data related to a robot's sensors, movement, and the environment in a 3D 

environment. 

 

Fig. III.7: 3D visualization of the robot and the sensor scans 

Alternatively, we use ROS tools for mapping and navigation with the SLAM toolbox and 

Nav2. 

 

Fig. III.8: 3D visualization of the mapping and navigation 
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General conclusion 

 
In this end-of-study project, our main focus has been on achieving effective trajectory 

tracking while avoiding both fixed and moving obstacles. This is a critical challenge in the 

field of mobile robotics, as it involves navigating environments with a mix of stationary and 

moving objects, such as humans or other robots. The primary goal is to prevent any 

potentially dangerous collisions. 

Nonlinear Model Predictive Control (NMPC) emerged as a suitable choice due to its 

predictive capabilities and adaptability to multivariable systems. However, a significant 

challenge was the computational time required, which we addressed by incorporating the 

Particle Swarm Optimization (PSO) algorithm. This optimization technique effectively 

reduced the computation time, particularly for shorter prediction horizons, and yielded highly 

satisfactory results. 

The utilization of the Robot Operating System (ROS) in the development of mobile robots 

represents a significant advancement in the field of robotics. ROS provides a versatile and 

comprehensive framework that facilitates the creation of highly capable and adaptable robotic 

systems. 

Mobile robots equipped with ROS have the potential to revolutionize various industries, from 

manufacturing and logistics to healthcare and exploration. They can enhance efficiency, 

safety, and precision in a multitude of applications, contributing to advancements in 

automation, surveillance, inspection, and more. 

As a potential avenue for future exploration, we propose combining Bimo_1 with Bimo_2. 

This integration would allow us to leverage the respective advantages of both approaches and 

potentially enhance overall control performance. 
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Appendix A 

Description of the mobile robot and 

accessories 

A.1 Description of the system: 

The robot consists of a fiberglass chassis with a circular shape, equipped with a caster 

wheel to ensure the balance of the robot, and two independent drive wheels powered by DC 

motors (Fig.  A.5). The motors are powered by two lithium batteries (Fig. A.6) through an 

L298N motor driver (Fig. A.4). These two wheels allow the robot to move forward, 

backward, and turn left or right. 

A suspended camera is employed to provide localization and obstacle detection for the robot. 

The acquired images are analyzed and processed using Python and the OpenCV library. The 

processing tasks, as well as the computation of control signals, are performed on a computer 

system equipped with an Intel® Core i5 processor operating at 3.4 GHz and 8GB of RAM. 

The control signals are transmitted to the robot using the NRF24L01 radio transceiver 

module. 

A.2 The accessories: 

A.2.1 Arduino: 

Two types of Arduino boards were used in the project. An Arduino UNO board (Fig. 

A.1) was employed to receive commands from the computer through a serial port and 

transmit them via the NRF24L01 module. These commands were then received by another 

Arduino RF-Nano board (Fig. A.2) mounted on the robot. The Arduino RF-Nano board 

decoded the commands and forwarded them to the L298N motor driver for execution. 

The Arduino UNO board, with its versatile capabilities and built-in USB interface, served as 

the main communication interface between the computer and the robot. It received the 

commands from the computer through the serial port, allowing for easy and reliable data 

transfer. 

A.2.2 The NRF24L01 transceiver module: 

The NRF24L01 is a wireless transceiver module that provides both transmission and 

reception capabilities. It operates in the 2.4 GHz frequency range and uses the Nordic 

Semiconductor's Enhanced Shock Burst™ protocol for efficient data transfer. 

The NRF24L01 module(Fig. A.3), a wireless transceiver, was connected to the Arduino UNO 

board. It enabled wireless communication between the computer and the robot, providing a 

convenient way to send commands without the need for physical connections. 

On the robot side, the Arduino RF-Nano board received the commands transmitted by the 

Arduino UNO board via the NRF24L01 module. The Arduino RF-Nano board acted as the 
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control unit for the robot, decoding the received commands and sending appropriate signals 

to the L298N motor driver. 

A.2.3 The L298N motor drive: 

The L298N (Fig. A.4) is a dual H-bridge motor controller that can be easily controlled 

using TTL (Transistor-Transistor Logic) signals from Arduino RF-Nano. It is designed to 

control the speed and direction of two DC motors simultaneously. 

The L298N module has several input pins that can be connected to Arduino RF-Nano digital 

output pins to control the motor operation. These input pins include two enable pins for 

enabling or disabling the motor outputs, and four control pins for setting the motor direction 

and speed. 

By appropriately setting the input signals, the L298N module can control the rotation 

direction of each motor (forward or reverse) as well as adjust the motor speed using Pulse 

Width Modulation (PWM) signals. This allows for precise control over the movement of the 

motors. 

A.2.4 The motors: 

The Pololu N20 gearmotor (Fig. A.5) is a miniature high-power DC motor with a 12V 

operating voltage. It features long-life carbon brushes and a metal gearbox with a gear ratio 

of 51.45:1. The motor has a compact size with dimensions of 10 × 12 mm, and the output 

shaft of the gearbox is in a D-shape, measuring 9 mm in length and 3 mm in diameter. 

Here are the key specifications of the Pololu N20 gearmotor: 

• No-load speed: 625 RPM at 100 mA. 

• Stall torque: 1.1 kg-cm. 

• Stall current: 0.8 A. 

 

           Fig. A.1: Arduino UNO                                            Fig. A.2: Arduino RF-Nano  
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  Fig. A.3: The NRF24L01 transceiver module                      Fig. A.4: The L298N motor drive 

 

 

     Fig. A.5: The Pololu N20 gearmotor                                   Fig. A.6: Lithium batteries 
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Appendix B 

The localization system 

B.1 The robot localization: 

The identification of the robot's position and orientation is achieved through the use of 

a vertically positioned camera placed above the robot. This camera captures top-view images 

of the robot and a marker called ArUco is placed on the robot for identification (Fig. B.1). 

 

Fig. B.1: Vision System 

B.1.1 ArUco Marker: 

The ArUco module is based on the ArUco library, an open-source library for square 

fiducial marker detection developed by Rafael Muñoz and Sergio Garrido [7]. 

An ArUco marker is a type of fiducial marker used in computer vision and augmented 

reality applications. It is a square-shaped marker that consists of a black border and an inner 

pattern of binary bits. Each ArUco marker has a unique binary pattern, which allows for its 

identification and tracking.  

The ArUco markers are designed to be easily detectable and recognizable in images or video 

frames. They are typically printed on paper or displayed on a screen. The markers can be of 

different sizes, with larger markers having more bits in their binary pattern, allowing for 

higher precision in detection and tracking. 

The detection of ArUco markers involves image processing techniques such as edge 

detection, contour analysis, and pattern recognition. Once a marker is detected, its position 
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and orientation can be determined relative to the camera or image frame. This information 

can then be used for various purposes, such as object tracking, camera calibration, pose 

estimation, and augmented reality overlay. 

ArUco markers are widely used in robotics, augmented reality applications, camera 

calibration, and computer vision research. They provide a simple and effective way to track 

objects and determine their position and orientation in a visual environment. 

Moments are used to calculate the center of gravity, and these coordinates represent 

the pixel position of the robot (x, y). 

Fig. B.2: Calculate the center of gravity 

After detecting the centroid (Fig. B.2), the next step is to calculate the real-world position of 

the robot using the relationship between the actual distance and the pixel distance, which is 

given by the following equation: 

 

                                                          𝐷𝑟𝑒𝑎𝑙 = 𝐷𝑝𝑖𝑥𝑒𝑙 ×
𝐻

𝐹
                                                     (B.1) 
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With: 

• 𝐹: The focal length of the camera. 

• 𝐻: The height of the camera relative to the ground. 

 

The camera is fixed during the experiment (H = constant), and the focal length depends on 

the camera, so it is constant. This allows us to rewrite the previous equation as follows: 

 

                                                       𝐷𝑟𝑒𝑎𝑙 = 𝐷𝑝𝑖𝑥𝑒𝑙 × 𝑓𝑎𝑐𝑡𝑜𝑟                                              (B.2) 

 

The actual distance between one corner of the marker and the next corner is known (𝐷𝑟𝑒𝑎𝑙 =

9.1𝑐𝑚), and the distance in pixels (𝐷𝑝𝑖𝑥𝑒𝑙) is calculable (using the Pythagorean theorem). 

 

                                             𝐷𝑝𝑖𝑥𝑒𝑙 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                       (B.3) 

 

With: 

• 𝑥1 𝑎𝑛𝑑 𝑦1: Coordinates of the first corner. 

• 𝑥2 𝑎𝑛𝑑 𝑦2: Coordinates of the second corner. 

Using these results, we can calculate the value of the constant 𝑓𝑎𝑐𝑡𝑜𝑟, which provides us 

with a real estimation of the robot's displacement. 

The atan2 function with two arguments (sin(θ), cos(θ)) is used to calculate the orientation of 

the robot. 

Either: 𝑥 = cos(𝜃) and 𝑦 = sin(𝜃) 

The 𝑎𝑡𝑎𝑛2 function is defined as follows: 

 

          𝑎𝑡𝑎𝑛2 =  

{
 
 
 
 

 
 
 
 arctan (

𝑦

𝑥
)          𝑖𝑓 𝑥 > 0,

                     arctan (
𝑦

𝑥
) + 𝜋  𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0,

                    arctan (
𝑦

𝑥
) − 𝜋 𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 < 0,

                    +
𝜋

2
                    𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 > 0,

                    −
𝜋

2
                    𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 > 0,

                    𝑖𝑛𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒       𝑖𝑓    𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0

                                  (B.4) 
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B.2 Obstacle detection: 

To detect the fixed obstacle (Fig. B.4), we apply several image processing functions 

based on color. 

Firstly, we start by using a Gaussian filter to reduce noise (Fig. B.5). 

 

Fig. B.3: Image acquired from the camera                   Fig. B.4: Image after applying the         

                                                                                                          Gaussian filter   

Next, instead of using the usual RGB color space, we will use the HSV color space, which 

has the desirable property that allows us to identify a specific color. The next step is to extract 

our specific color from the resulting image using a mask. 

 

 Fig. B.5: The image in the HSV color space                    Fig. B.6: Extraction of the blue color 
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Once these operations are completed, we use moments to calculate the center of gravity. 

 

Fig. B.7: Final result 
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Appendix C 

Particle Swarm Optimization 
The solution to the optimization problem has a significant influence on the performance 

of our mobile robotics system. The task at hand is to choose powerful algorithms that can find 

high-quality solutions with minimal computational time. Recently, the majority of algorithms 

used to solve these optimization problems are population-based metaheuristics. 

Within this class of algorithms, we find metaheuristics that manipulate a population of solutions. 

We can distinguish genetic algorithms (GA), ant colony optimization (ACO), gravitational search 

algorithm (GSA), and the one that particularly interests us and has been used in our work, which 

is Particle Swarm Optimization (PSO), was introduced in 1995. 

A particle swarm corresponds to a population of simple agents (particles or birds). Each agent is 

considered a solution to the problem, where it has a position, a velocity, and a memory that 

allows it to remember its best performance and the best performance achieved by the entire 

swarm of particles [8]. 

In the search for the global optimum, the movement of a particle is influenced by: 

• The inertia component refers to the current velocity of the particle. 

• The cognitive component refers to the particle's memory of the best solution it has 

encountered so far. 

• The social component refers to the best site collectively reached by the swarm, which is 

typically determined by the best solution achieved by the particle's neighboring particles. 

Fig. C.1: The PSO illustration 
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For a mathematical formalization of the movement of each particle 𝑖, the following equations are 

introduced: 

Velocity update: 

 

                       𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡))                   (C.1) 

 

where: 

• 𝑣𝑖(𝑡 + 1): is the updated velocity of particle 𝑖 at time 𝑡 + 1. 

• 𝑣𝑖(𝑡): is the velocity of particle 𝑖 at time 𝑡. 

• 𝜔: is the inertia weight controlling the influence of the previous velocity. 

• 𝑐1 and 𝑐2: are the cognitive and social acceleration coefficients, respectively. 

• 𝑟1 and 𝑟2: are random numbers between 0 and 1. 

• 𝑝𝑏𝑒𝑠𝑡: is the personal best position of particle 𝑖. 

• 𝑔𝑏𝑒𝑠𝑡: is the global best position. 

• 𝑥𝑖(𝑡): is the current position of particle 𝑖. 

Position update: 

 

                                                       𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1)                                           (C.2) 

 

Where: 

• 𝑥𝑖(𝑡 + 1): is the updated position of particle 𝑖 at time 𝑡 + 1. 

These equations describe how the velocity and position of each particle are updated in each 

iteration of the PSO algorithm, taking into account the personal best position, global best 

position, and random values for exploration and exploitation. 
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Here is the pseudo-code for the Particle Swarm Optimization (PSO) algorithm: 

 

Initialize the population of particles with random positions and velocities 

Initialize the personal best positions 𝑝𝑏𝑒𝑠𝑡 of each particle to their current positions 

Initialize the global best position 𝑔𝑏𝑒𝑠𝑡 to the best position among all particles 

while (stopping criterion is not met) do 

    for each particle do 

        Update the particle's velocity using the PSO equations 

        Update the particle's position based on the new velocity 

        Evaluate the particle's performance using the objective function 

        Update the particle's personal best position if necessary         

 

        if the particle's performance is better than 𝑔𝑏𝑒𝑠𝑡 then 

            Update the global best position to the particle's position 

        end if 

    end for 

end while 

Return the global best position as the optimal solution 

 

This pseudo-code outlines the main steps of the PSO algorithm, including initialization, velocity 

and position updates, performance evaluation, and the update of personal and global best 

positions. The algorithm continues until a stopping criterion is met, such as reaching a maximum 

number of iterations or achieving sufficient convergence. Finally, the global best position is 

returned as the optimal solution to the optimization problem. 
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Appendix D 

Description of the mobile robot 

D.1 Description of the system: 

The robot is composed of several parts, which have been assembled together to give us 

its final form, including: 

D1.1 Control System: 

The mobile robot necessitates a central processing unit to handle data from its array of 

sensors and to facilitate decision-making. In this regard, our choice has fallen upon the 

Raspberry Pi 4 (Figure D.1), which serves as the primary computing brain. Additionally, we 

have established a connection to an Arduino NANO board (Figure D.2), functioning as a 

secondary processing unit. This Arduino board provides valuable feedback concerning wheel 

rotation speed and direction, further enhancing the robot's control capabilities. 

 

 

 

 

 

 

               Fig D.1: Raspberry pi 4                                            Fig D.2: Arduino Nano 

D.1.2 Sensors: 

We have enhanced the robot's capabilities by incorporating a range of sensors that 

enable it to gather information about its surrounding environment. These sensors consist of the 

following: 

 

 

 

 

 

 

                 Fig D.3: RPLIDAR                                                        Fig D.4: Camera  
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D.1.3 Mobility System: 

The mobility system refers to the mechanical components and mechanisms that enable 

a robot to move within its environment. It encompasses various elements that determine how 

the robot can navigate and traverse different terrains. Key components of a typical mobility 

system include: 

Wheels: Wheels are a common choice for robotic mobility. They can come in different 

configurations, such as two-wheel differential drive (Fig D.5), allowing the robot to move 

forward, backward, turn, and change direction. 

Motor Control: The L298N module (Fig D.6) can control two DC motors independently. It 

allows you to control the direction of rotation (forward or backward) and the speed of each 

motor. 

 

 

 

 

 

 

    Fig D.5: Whell connected with motor                                   Fig D.6: The L298N module 

D.1.4 Power Source: 

The mobile robot is battery-powered, and the choice of battery type and capacity 

depends on the robot's intended use and runtime requirements. In our case we chose a 11.1v 

LiPo battery (Fig D.7), with 6500mAh capacity: 

 

 

 

 

 

 

 

 

Fig D.7: LiPo Battery 
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D.2 Robot structure: 

D.2.1 Chassis:  

The robot has a chassis that provides it with a sturdy structure and allows it to support 

various components. The chassis can be made from fiberglass, metal, or plastic, depending on 

the design requirements. 

D.2.2 Assemble the robot parts: 

The corresponding images show how we connected the robot parts: 

 

 

 

 

 

 

 

 

 

Fig D.8: The internal components of the robot 

 

 

 

 

 

 

 

 

 

Fig D.9: The robot's external appearance 
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Fig D.10: The bottom part of the robot 

D.2.2 The power circuit: 

For the power circuit, a 11.1v rechargeable Li-Po battery is employed, connected in 

series with a fuse to safeguard the circuit components against short circuit. A switch controls 

the robot's power on/off functionality, while a voltage regulator steps down the voltage from 

11.1v to 5v, ensuring a consistent power supply to all the components from a single power 

source. 

 

Fig D.11: The power circuits 


