
\^,)\ '4,1A.r\ ',.;ç\t -9r+J\
Republiqùe Algerieùûe Denocmtiqù€ trt popùlâire

ç_J'll êiJlJ JUI l._L'jll ilj,
Miùtstè.ede I'ENeign€ment Supérieù.€r de ls Rech€.che ftiedtifiqùe

,i-j_ç*jr
ç,.r,ll é_:Jl J+:.Jl &L;

UniveNité Elchahide Cheikh rarbi Téb€ssi _ Tébessâ _

Fâculté des Sciencg et de la TechDologie

Déprr(enert dr céDie étetriqùe

MEMOIRE
Pésûté poù l obte.lion du diplôhc d€ Mâst€r Acâdéùique

Dn: Cérie électriqù€

spéci.liré : électronique d'iNtr;meDfatioù

PTT: MÀIFI YOUCEF

Suiet

),6Pré*nté cl sùtûu pulligr{9nçlrr J

MEROUMIA A}DÀLLÀÈI].>:
DJABRI RIÀDII
NEZZARI IIASSAN
MERABTI HALTM

1

Contrôle visuel d,une base mobile pour le
suivi de trajectoire et l'évitement

. Sbstacles

 الجمـهـوريـة الجـزائـريـة الديمـقـراطـية الـشعـبـيـة
People's Democratic Republic of Algeria

 وزارة التـعـليــم العـالي والبحث العلـمـي
Ministry of Higher Education and Scientific Research

-تـبســة-العربـي التبسي جـامعة الشهيد الشيخ

Elchahide Cheikh Larbi Tébessi University – Tébessa –

Faculty of Science and Technology

Department of Electrical Engineering

MEMORY

Presented for obtaining the Academic Master 's degree

In: Electrical engineering

Specialty: instrumentation electronics

By : MAIFI YOUCEF

Subject

Visual control of a mobile base for

trajectory tracking and obstacle

avoidance .

Presented and presented publicly, on 04/07/2023 , before the jury composed of:

MEROUMIA ABDALLAH President

DJABRI RIADH Rapporteur

NEZZARI HASSAN Examiner

MERABTI HALIM Examiner

Promotion: 2022/2023

iii

Abstract

Mobile robots have become increasingly common in recent years due to their ability to

perform tasks in a variety of environments. These robots can be used in various applications such

as transportation, surveillance, exploration, and many others.

In this project, our goal is to design and build a mobile robot with two wheels capable of

navigating indoor environments. The robot is designed to be compact, lightweight, and agile,

with the ability to move in any direction. The mechanical structure of the robot consists of two

wheels, each driven by a separate motor, and a free-spinning wheel for stability. Additionally, the

robot is equipped with sensors to enable it to navigate and interact with its environment.

The robot's software was developed using a combination of programming languages,

including Python and C++. ROS (Robot Operating System) was also utilized, incorporating

software modules for control, path tracking, obstacle detection and avoidance, as well as image

processing. The project presented several challenges, including selecting suitable components

and integrating various hardware and software modules. However, through the design,

construction, and testing of the robot, we gained valuable experience in the field of robotics and

learned important lessons that can be applied to future projects.

Overall, the mobile robot we built showcases the significant potential of robots in various

aspects of life and highlights the importance of interdisciplinary collaboration in the

development of complex systems.

Keywords: mobile robots, tracking, obstacle detection and avoidance, image processing.

iv

 ملخص ال

مجموعة في المهام أداء على قدرتها بسبب الأخيرة السنوات في متزايد بشكل شائعة المتنقلة الروبوتات أصبحت

 متنوعة من البيئات. يمكن استخدام هذه الروبوتات في تطبيقات مختلفة مثل النقل والمراقبة والاستكشاف وغيرها الكثير.

 في هذا المشروع، هدفنا هو تصميم وبناء روبوت متنقل يحتوي على عجلتين وقادر على التنقل في البيئات الداخلية.

الهيكل يتكون اتجاه. أي في الحركة على القدرة مع ومتحرك، الوزن وخفيف الحجم صغير ليكون الروبوت تصميم تم

الميكانيكي للروبوت من عجلتين، يتحرك كل منهما بواسطة محرك منفصل، وعجلة دوران حرة للثبات. كما تم تجهيز الروبوت

 بمستشعرات لتمكينه من التنقل والتفاعل مع بيئته.

البرمجة لغتي باستخدام مزيج من الروبوت برمجيات الى نظام .Cو ++ Pythonتم تطوير تشمل ،ROSاضافة

التحديات، قدم المشروع عدداً من معالجة الصور.إضافة الى وكشف العوائق وتجنبها تتبع المساروحدات البرمجيات التحكم و

التصميم عملية خلال من ذلك، ومع المختلفة. والبرمجيات الأجهزة وحدات وتكامل المناسبة المكونات اختيار ذلك في بما

المشاريع في الروبوتات وتعلم دروس مهمة يمكن تطبيقها في مجال قيمة اكتساب خبرة تمكنا من الروبوت، والبناء واختبار

 المستقبلية.

الإمكان ببنائه قمنا الذي المتنقل الروبوت يظهر عام، مختلفةيبشكل تطبيقات في للروبوتات الكبيرة نواحي ات من

 ويسلط الضوء على أهمية التعاون المشترك بين التخصصات المختلفة في تطوير الأنظمة المعقدة. الحياة

 .معالجة الصور، كشف العوائق وتجنبها، رالروبوتات المتنقلة، تتبع المسا كلمات مفتاحية:

v

Thanks

I would like to express my deep gratitude to Allah for granting me the breath of life, strength,

health, and the intelligence required to complete this work.

Thank you, Professor Nezzari Hassan, for your guidance, knowledge, and support

throughout this project. Your dedication to teaching has been invaluable, and I'm grateful for

the opportunity to learn from you.

Thank you also to Professor Merabti Halim for guiding me remotely and providing me with

the knowledge to complete the project.

Thanks are extended to all those who have taught and guided me throughout my academic

journey until I reached this level.

Last but not least, I want to thank myself for the determination and hard work I've put into

achieving my goals.

vi

Dedication

This thesis is devoted to:

My parents, whose unwavering support, assistance, trust, and motivation have been constants

throughout my life,

My beloved sibling, who has provided unwavering encouragement and moral support,

My dear sisters, for their unswerving support and motivation,

Without all of you, I would have never reached this point,

I extend my heartfelt gratitude for everything you've done for me.

Contents:

Abstract ………………………………………………...……………………………….………. iii

Thanks …………………...…………………………...……………………………….……….… v

Dedication …………………………………………...………………………………………….. vi

List of Figures ……………………………………...…………………………………….…..… vii

General Introduction ……………………………...…………………………………...….……... 1

Chapter I: General information on mobile robotics definition and modeling

 I.1 Introduction: ……………………………...…………………………...……………...…… 3

 I.2 Model of the robots: …………………...…………………………...……………....…...… 3

 I.2.1 Unicycle mobile robots: ………………………………………...…...………….….… 3

 I.2.2 Tricycle mobile robots: …………………………………………...……..………....… 4

 I.2.3 Omnidirectional mobile robots: ………………..……..………...……..…………...… 4

 I.3 Navigation and localization: ………………………..……………...…………………...… 5

 I.3.1 Navigation: ………………………………...…..…………………………………..… 5

 I.3.2 Localization: ……………………………...……..…………………….…………...… 5

 I.3.3 Path planning: ………………………………...………..……………………….….… 5

 I.4 Modeling of the unicycle mobile robot: ………...……………..………………………..... 6

Chapter II: Predictive control and ROS

 II.1 The predictive control: ……………..……...…………………………………………….. 9

 II.1.1 Introduction: …………………..…………………………………………………….. 9

 II.1.2 Basic principle of predictive control: ...…..…………………………………………. 9

 II.1.3 Nonlinear predictive control: ……...………..……………………………….……… 9

 II.2 ROS (Robot Operating System): ...……...…………..…………………………….…..… 11

 II.2.1 Description: …………………………...……………………………………….…… 11

 II.2.2 Visualization tools: ………..……...……………………………………………....… 12

Chapter III: Simulation and experimental outcomes

 III.1 Introduction: ………………………………………………………………...……….…. 14

 III.2 Nonlinear predictive control: ……………………………...………………...……….… 15

 III.2.1 Controller synthesis: ……………………………...………………………...…..…. 15

 III.2.2 Implementation results: …………………………...……………………………..… 15

 III.3 ROS control: ……………………………...……………………………………………. 18

 III.3.1 Simulation with Gazebo: ………………………………………………………….. 18

 III.3.2 Visualization with RViz: …………...………………………………………...……. 19

General conclusion ……………………………...……………………………………………… 20

References ………………………………...………………………………………...………….. 21

Appendix A: Description of the mobile robot and accessories ………….………..…...……..… 22

Appendix B: The localization system ……………………………………………………...…... 25

Appendix C: Particle Swarm Optimization ………………………………………………......... 30

Appendix D: Description of the mobile robot …………………………………………………. 33

vii

List of Figures:

Fig. C.1: Unicycle mobile robot geometry …………………..…………….……………….... 3

Fig. I.2: Tricycle mobile robot geometry ………………………………….………………… 4

Fig. I.3: Omnidirectional mobile robot geometry ……………………………….……...…… 4

Fig. I.4: Illustration of the parameters ………………………………………….…….……… 6

Fig. II.1: ROS Humble ………………………………………………………………..……. 11

Fig. III.1: Simulation of trajectory tracking NMPC with avoidance of fixed obstacles… 16

Fig. III.2: Simulation of NMPC for control of wheel commands and angular velocity

(robot)………………………………………………………………………………………...16

III.3: NMPC Trajectory Tracking Experimentation of the Robot …………….....…….…… 17

Fig. III.4: NMPC Experimentation of Wheel Motor Commands and Angular Velocity (robot)

………………………………………………………………………………………………. 17

Fig. III.5: The structure of the robot …………………………………………...…………… 18

Fig. III.6: 3D simulation of the robot in a house ……………………………………...……. 18

Fig. III.7: 3D visualization of the robot and the sensor scans ………………………...….… 19

Fig. III.8: 3D visualization of the mapping and navigation …………………………...….... 19

Fig. A.1: Arduino UNO …………………………………………………………………….. 23

Fig. A.2: Arduino RF-Nano ………………………………………………………………… 23

Fig. A.3: The NRF24L01 transceiver module …………………………………………….... 24

Fig. A.4: The L298N motor drive ………………………………………………………...… 24

Fig. A.5: The Pololu N20 gearmotor ……………………………………………………..… 24

Fig. A.6: Lithium batteries ……………………………………………………………….… 24

Fig. B.1: Vision System ………………………………………………………………....….. 25

Fig. B.2: Calculate the center of gravity ………………………………………………….... 26

Fig. B.3: Image acquired from the camera …………………………………………...…..… 28

Fig. B.4: Image after applying the Gaussian filter …………………….………………….... 28

Fig. B.5: The image in the HSV color space ……………………………………………….. 28

Fig. B.6: Extraction of the blue color ……………………………………………………..... 28

viii

Fig. B.7: Final result ………………………………………………………………….…..… 29

Fig. C.1: The PSO illustration ……………………………………………………………… 30

Fig D.1: Raspberry pi 4 …………………………………………………………..………… 33

Fig D.2: Arduino Nano …………………………………………………………………..…. 33

Fig D.3: RPLIDAR …………………………………………………………………………. 33

Fig D.4: Camera ……………………………………………………………………...…….. 33

Fig D.5: Whell connected with motor ……………………………………………………… 34

Fig D.6: The L298N module ………………………………………………………..……… 34

Fig D.7: LiPo Battery ………………………………………………………………………. 34

Fig D.8: The internal components of the robot ………………………………………..…… 35

Fig D.9: The robot's external appearance …………………………………………….…….. 35

Fig D.10: The bottom part of the robot ……………………………………………….……. 36

Fig D.11: The power circuits ………………………………………………………….……. 36

1

General Introduction

Mobile robotics is a rapidly evolving field that focuses on the development of robots

capable of autonomous movement. These robots, equipped with a mobile base, combine

various disciplines such as control engineering, mechanics, computer science, and

electronics. They are designed to navigate and perform tasks in diverse environments.

Among the different types of mobile robots, wheeled robots are the most widely studied and

utilized. Their simplicity and versatility make them suitable for a wide range of applications,

including autonomous systems and robotics research.

The concept of mobile robotics encompasses two primary operating modes: teleoperation and

autonomy. Teleoperated robots are controlled remotely, with commands transmitted through a

control interface such as a keyboard or joystick. On the other hand, autonomous robots

possess the ability to perceive their surroundings, make decisions, and navigate their

environment without direct human intervention.

A key challenge in mobile robotics is ensuring the robot's ability to follow predefined

trajectories while avoiding both fixed and mobile obstacles. This includes scenarios where

multiple robots operate in the same environment, requiring coordination and collision

avoidance mechanisms. Achieving autonomy in mobile robots has therefore become a major

research focus, driven by the need for advanced navigation capabilities and the ability to

adapt to dynamic environments.

In this project, we specifically concentrate on autonomous mobile robots. The main objective

is to develop and implement control algorithms that enable trajectory tracking and obstacle

avoidance. The study includes scenarios involving both fixed and mobile obstacles, with a

particular emphasis on interactions between multiple robots within the same workspace. Two

robots (“Bimo_1” and “Bimo_2”) were employed for experimentation.

The remainder of this thesis is structured as follows:

Chapter 1 provides a general overview of mobile robotics, including definitions and modeling

approaches.

Chapter 2 introduces nonlinear predictive control and ROS control as viable control strategies

for mobile robots.

Chapter 3 presents the results obtained from simulations and experiments conducted during

the project.

Finally, the conclusion summarizes the findings and offers insights for future research

directions.

2

Chapter I

General information on mobile robotics

definition and modeling

3

I.1 Introduction:

Mobile robotics is a field of robotics that involves the design, construction, and

operation of robots that are capable of movement in a variety of environments. These robots

can be used for a wide range of applications, from exploring space and underwater

environments to assisting with manufacturing and logistics operations in warehouses.

Mobile robots are typically equipped with a variety of sensors, such as cameras, lidar, and

ultrasound sensors, to help them navigate their environment and detect obstacles. They also

often have onboard processors and algorithms that allow them to make decisions and perform

tasks autonomously, without the need for human intervention.

Some common examples of mobile robots include unmanned aerial vehicles (UAVs),

autonomous cars, and delivery robots. Mobile robots are also used in a variety of other

industries, such as agriculture, healthcare, and security. With advances in technology and

artificial intelligence, the field of mobile robotics is constantly evolving, and is expected to

play an increasingly important role in many aspects of modern society.

I.2 Model of the robots:

In this section, we will present the model considered for each agent of the network of

robots and the basics on consensus theory that are used in the control law’s design:

I.2.1 Unicycle mobile robots:

These are robots powered by two independently driven fixed wheels. A caster wheel is

located on the axis connecting the two driven wheels to provide stability (Fig. I.1).

Fig. I.1: Unicycle mobile robot geometry

4

I.2.2 Tricycle mobile robots:

This robot is powered by a single centrally mounted and always steerable wheel. It is

driven and controlled by two fixed non-motorized wheels located at the rear on the same axis

(Fig. I.2).

Fig. I.2: Tricycle mobile robot geometry

I.2.3 Omnidirectional mobile robots:

The omnidirectional robot is equipped with a set of three steerable off-centered

wheels or with three wheels placed at the vertices of an equilateral triangle (Fig. I.3).

Fig. I.3: Omnidirectional mobile robot geometry

5

I.3 Navigation and localization:

I.3.1 Navigation:

The navigation problem consists of determining a directed path towards a goal. The

representation of the environment based on sensory information is essential for this purpose.

To perform autonomous navigation tasks, a mobile robot must possess a number of

functionalities. It needs to localize itself within its environment, determine its position

relative to fixed and moving obstacles present in the environment, and be able to avoid them.

I.3.2 Localization:

Localization is necessary for the navigation of a mobile robot. The robot must have

the ability to localize itself within its environment by estimating its position and orientation

relative to a fixed reference point.

Localization approaches can be divided into two main classes:

• Relative Localization: The use of sensors allows determining the position of the robot

at any given moment, given its initial position. The most common method is

odometry, which involves using optical encoders mounted on the motor axes to

measure wheel rotations.

• Absolute Localization: It is based on a global understanding of the environment. This

can be achieved through technologies such as GPS (Global Positioning System),

cameras, or rangefinders.

I.3.3 Path planning:

Path planning involves determining how a robot will move and maneuver in a

workspace. This problem involves calculating a collision-free path between a starting

position and a destination position. An obstacle can be either static with respect to a fixed

reference frame or dynamic (mobile) with respect to a fixed reference frame [1].

Path planning can be divided into two classes:

• Local Path Planning: It is performed while the robot is in motion, using data from

local sensors. In this case, the robot has the ability to generate its path in response to

changes in the environment.

• Global Path Planning: It is applicable when the environment (obstacles, etc.) is static

and known. The trajectory is pre-determined, and the planning algorithm produces a

complete path from the starting point to the destination point.

6

I.4 Modeling of the unicycle mobile robot:

Among the various types of mobile robots, the unicycle robot has been chosen for

practical tests or simulations. This robot is simple and widely used. In the following, we

briefly present the kinematic model of this robot.

Let 𝑅 = (𝑂, 𝑥,⃗⃗ �⃗�) be an arbitrary fixed frame, and R′ = (𝑂′, 𝑥′,⃗⃗ ⃗ 𝑦′⃗⃗) be a mobile frame

attached to the robot, where 𝑂' represents the center of gravity of the mobile robot (Fig. I.4),

typically the center of the axis of the drive wheels. This defines a position vector of the robot

𝑞:

 𝑞 = (
𝑥
𝑦
𝜃
) (1.1)

Fig. I.4: Illustration of the parameters

Generally, for the kinematic control of mobile robots, a velocity control model is commonly

used.

In this case, there are no complex geometric or inertial parameters to identify. The calculation

of the control is therefore simpler. The following assumptions are generally accepted:

• The mobile robot behaves like a rigid vehicle moving in a horizontal plane.

• The wheels are assumed to be rigid and roll without slipping on the ground.

• The contact of the wheel with the ground is reduced to a point, not a surface.

The instantaneous center of rotation (ICR) of the robot is a point with zero velocity, where it

can rotate instantaneously. It is located on the axis of rotation of the wheels.

7

Let's consider:

• 𝜔: The rotational velocity of the robot around the ICR (Instantaneous Center of

Rotation).

• 𝑣r and 𝑣𝑙: Respectively, the velocities of the right and left wheels.

It is often important to relate the robot's pose to the control of its wheels. Generally, it is

preferred to express this control using two other velocities: 𝜃 (angular velocity) and 𝑣

(longitudinal velocity). The relationships between these velocities are as follows:

 𝑣 =
(𝑣𝑟+𝑣𝑙)

2
 (1.2)

 𝜔 = 𝜃 (1.3)

Relating the derivative of the pose to the control 𝑉 = (𝑣 𝜔)T is straightforward. A simple

geometric consideration yield:

 �̇� = 𝑣 cos 𝜃 (1.4)

 𝑦̇ = 𝑣 sin 𝜃 (1.5)

 �̇� = 𝜔 (1.6)

This is the kinematic model of the mobile robot.

8

Chapter II

Predictive control and ROS

9

II.1 The predictive control:

II.1.1 Introduction:

The predictive control refers to a control strategy or technique that utilizes predictive

models to anticipate future system behavior and make control decisions accordingly. It

involves predicting the future states or outputs of a system based on current and past

information, and then using this prediction to optimize control actions and achieve desired

performance. The predictive control is commonly used in various fields such as process

control, robotics, and autonomous systems.

II.1.2 Basic principle of predictive control:

 The basic principle of predictive control refers to the fundamental concept underlying

the predictive control strategy. It involves using a predictive model of the system dynamics to

predict future behavior and optimize control actions. The principle can be summarized as

follows:

• Prediction: A mathematical model of the system is used to predict the future states or

outputs based on the current and past information. This model takes into account the

system dynamics, constraints, and disturbances.

• Optimization: An optimization algorithm is employed to determine the optimal

control actions that will minimize a specified objective function. The objective

function typically includes criteria such as tracking desired setpoints, minimizing

control effort, and satisfying constraints.

• Receding Horizon: The control actions are calculated over a finite time horizon, but

only the first control action is implemented. As time progresses, the horizon is shifted,

and the process is repeated, allowing for adaptive and dynamic control.

By continuously updating the prediction and optimizing the control actions, predictive control

aims to achieve optimal performance while accounting for system constraints and

disturbances. This principle forms the basis for the design and implementation of predictive

control algorithms in various applications.

II.1.3 Nonlinear predictive control:

II.1.3.1 The general problem of NMPC:

Consider a nonlinear system described by the following discrete state model:

 𝑥(k + 1) = f(x(k), u(k)) (2.1)

With :

• x(k) ∈ 𝑅𝑛 : System status.

• u(k) ∈ 𝑅𝑚 : Inputs.

The function 𝑓 is assumed to be continuous.

10

Constraints can be imposed on the states and/or the control inputs. These constraints are

expressed in the following form:

 u(k) ∈ 𝒰 (2.2)

 x(k) ∈ 𝒳 (2.3)

Where:

• 𝒰 : is a convex compact set.

• 𝒳 : is convex and closed.

• With: f(0,0) = 0 .

The optimization problem associated with nonlinear predictive control is then given by:

 min
𝒰

𝐽𝑁 (𝑥, 𝑘, 𝒰) (2.4)

The most common form of the cost function is:

 𝐽𝑁(𝑥, 𝑘, 𝒰) = 𝐹(𝑥(𝑘 + 𝑁)) + ∑ 𝐿(𝑥(𝑖), 𝑢(𝑖))𝑘+𝑁−1
𝑖=𝑘 (2.5)

With :

• N : Prediction horizon (which is equal to the input horizon).

• 𝐹 = 𝑥(𝑘 + 𝑁) : Cost on the final state 𝑥(𝑘 + 𝑁).

Similar to the linear case, the solution provides a sequence of control inputs, and only the first

element of the sequence is applied to the system.

II.1.3.2 Solution methods:

As mentioned above, the optimization problem of nonlinear predictive control is

generally non-convex. The classical method for solving this type of problem is the Sequential

Quadratic Programming (SQP) algorithm, which is an extension of the active set method in

quadratic programming. Some authors have proposed various methods for efficiently solving

this problem. These include the multiple shooting method, the approach based on nonlinear

least squares, and the use of fast metaheuristic algorithms such as Particle Swarm

Optimization (PSO).

In this work, we employ the PSO algorithm for online optimization problem solving. The

details of this algorithm are described in Appendix C.

11

II.2 ROS (Robot Operating System):

In this chapter we present secondly, the development of a mobile robot with obstacle

avoidance capabilities using ROS (Robot Operating System). The robot is built with a

Raspberry Pi as the main control unit and integrates a LiDAR sensor and a camera for

perception and obstacle detection, the description of the mobile robot is in the Appendix D.

ROS enables seamless integration and control of the robot's hardware and software

components, facilitating autonomous navigation while avoiding obstacles.

II.2.1 Description:

ROS stands for Robot Operating System. It is an open-source framework and

middleware widely used in the field of robotics for developing and controlling robots. ROS

provides a collection of software libraries and tools that help developers create robot

applications.

Fig. II.1: ROS Humble

Here are some key features and concepts related to ROS:

Nodes: ROS applications are composed of multiple nodes, which are independent processes

that communicate with each other by passing messages.

Messages: Nodes communicate with each other by exchanging messages. Messages are data

structures used to represent information such as sensor readings, motor commands, and other

robot-related data.

Topics: Nodes can publish messages to topics or subscribe to receive messages. Topics act as

message buses, allowing multiple nodes to communicate with each other indirectly.

12

Services: Services provide a request-response mechanism in ROS. A node can offer a service,

and other nodes can send requests to that service and receive a response.

Actions: Actions extend the functionality of services by enabling long-running tasks with

feedback. They are useful for executing complex actions that require ongoing communication

between nodes.

Packages: ROS code is organized into packages, which are self-contained units that contain

libraries, executables, configuration files, and other resources.

Launch files: ROS provides launch files that allow you to start multiple nodes with

predefined parameters and configurations in a single command.

Visualization: ROS provides various visualization tools, such as RViz and Gazebo for

visualizing robot models, sensor data, and other information in a graphical interface.

Community: ROS has a large and active community of developers who contribute to its

development and provide support through forums, mailing lists, and other channels.

ROS supports multiple programming languages, including C++, Python, and more. It is

widely used in research, academia, and industry for developing robotic systems and has a vast

ecosystem of packages and libraries that can be leveraged to accelerate development.

II.2.2 Visualization tools:

ROS provides several visualization tools that can be used to visualize various aspects

of robotic systems and data. Here are some popular ROS visualization tools:

• RViz:

RViz (ROS Visualization) is a 3D visualization tool in ROS. It allows you to visualize robot

models, sensor data, and other information in a 3D scene. RViz supports the visualization of

robot models, sensor data (such as laser scans and point clouds), TF (transform) frames, and

interactive markers. RViz is highly customizable and can be configured to display specific

robot components or data according to your needs.

• Gazebo:

Gazebo is a powerful robotics simulator that integrates well with ROS. It provides a 3D

graphical environment where you can simulate robots, sensors, and their interactions. Gazebo

allows you to visualize and interact with simulated robots, and it provides tools for

visualizing sensor data, environment models, and robot behavior. Gazebo's visualization

capabilities can be used alongside other ROS tools for a comprehensive understanding of

your robotic system.

These are just a few examples of ROS visualization tools available in the ROS ecosystem.

ROS has a rich collection of visualization packages and tools that can be utilized based on the

specific visualization needs. The selection of tools depends on the type of data that

visualized, the level of interactivity required, and the specific aspects of the robotic system

that analyze and understand.

13

Chapter III

Simulation and experimental outcomes

14

III.1 Introduction:

In this chapter, we provide the simulation findings and experimental results for

trajectory tracking with avoidance of stationary and mobile obstacles.

The robots (“Bimo_1” and “Bimo_2”) employed in the study are detailed in Appendix A and

D.

The model for both robots aligns with the description provided in Chapter 1, which we

reiterate below:

 �̇� = 𝑣 cos 𝜃

 𝑦̇ = 𝑣 sin 𝜃

 �̇� = 𝜔 (3.1)

With:

 𝑣 =
(𝑣𝑟+𝑣𝑙)

2
 (3.2)

The two control signals are the speeds of the left wheels 𝑣l and the right wheels 𝑣r. These

commands must satisfy the following constraints:

 𝑣𝑟 ∈ [−0.5; +0.5](𝑚/𝑠) (3.3)

 𝑣𝑙 ∈ [−0.5; +0.5](𝑚/𝑠) (3.4)

In this project, we consider two objectives:

• The objective of this project is to achieve trajectory tracking for the Bimo_1 of a

mobile robot.

• Additionally, the goal is to ensure trajectory tracking for the Bimo_2 of a mobile

robot operating in the environment, while effectively avoiding any fixe or moving

obstacles present, and send a live topic of the robot environment to the user interface.

The robot’s localization is achieved using a vertically positioned camera placed above the

robot, which captures top-down images of the robot along with an ArUco marker placed on it

(Bimo_1). The specifics of the localization system are provided in Appendix B.

We apply the control algorithm nonlinear predictive control with constraints.

15

III.2 Nonlinear predictive control:

III.2.1 Controller synthesis:

The prediction model used is the robot's kinematic model.

The cost function to minimize is in the following form:

 𝐽 = ∑ ((𝑥(𝑡 + 𝑘) − 𝑥𝑟(𝑡 + 𝑘))2 + (𝑦(𝑡 + 𝑘) − 𝑦𝑟(𝑡 + 𝑘))2)
𝑁𝑝

𝑘=0 (3.5)

The controller parameters:

 The selection of controller parameters must ensure both algorithm convergence and

computational efficiency in command calculations:

• Prediction horizon: Np = 5

• Control horizon: Nu = 1

Regarding the Particle Swarm Optimization (PSO) algorithm:

• Number of particles: 15

• Number of iterations: 30

III.2.2 Implementation results:

The autonomous mobile robot must exhibit efficient obstacle avoidance capabilities.

The approach for calculating new commands involves introducing additional constraints on

the distance between the mobile robot and the obstacle, ensuring that the robot does not

approach the obstacle within a close range (𝑑≤ 0.02 𝑚).

 III.2.2.1 Trajectory tracking with fixed obstacle avoidance:

Simulation:

The minimum allowable distance (𝑑) between the robot and the obstacle:

 d = 0.02 (3.6)

16

Figures (Fig. III.1) and (Fig. III.2) depict the trajectory tracking of a lemniscate path by the

mobile robot with the avoidance of many fixed obstacles. The figures illustrate the commands

for the left and right wheel speeds, as well as the angular velocity. The trajectory tracking is

performed flawlessly without any errors, and the commands exhibit smooth transitions.

When the robot approaches an obstacle, a sudden change in the speed of one of the wheels is

observed, depending on the orientation of the robot.

Fig. III.1: Simulation of trajectory tracking NMPC with avoidance of fixed obstacles

Fig. III.2: Simulation of NMPC for control of wheel commands and angular velocity (robot)

17

Experimentation:

We keep the same parameters used in the simulation. The sampling period is set to

100ms, which meets the requirements for command calculation and the Shannon theorem.

The two figures (Fig. III.3) and (Fig. III.4) represent, respectively, the trajectory tracking of

the mobile robot following a lemniscate path, the velocities of the left and right drive wheels,

as well as the angular velocity.

The trajectory tracking was almost perfect, except for small errors observed during turns,

which are considered acceptable. The commands are not smooth.

Fig. III.3: NMPC Trajectory Tracking Experimentation of the Robot

Fig. III.4: NMPC Experimentation of Wheel Motor Commands and Angular Velocity (robot)

18

III.3 ROS control:

Because of the unavailability of essential electronic components required to finish the

project in the Algerian market, we conducted a simulation of the robot within the ROS

integrated environment and achieved the results illustrated below.

The assembly and arrangement of all the robot's components are detailed in Appendix D.

III.3.1 Simulation with Gazebo:

To create a realistic simulation environment, we designed a model of a house for the

robot's presence. Additionally, we modeled the robot and its accessories, including the

LiDAR sensor and camera, as depicted in the following image:

Fig. III.5: The structure of the robot

Fig. III.6: 3D simulation of the robot in a house

19

III.3.2 Visualization with RViz:

To make a 3D visualization we use RViz, is tool commonly used with the Robot

Operating System (ROS) for simulating and debugging robotic applications. It allows us to

visualize various data related to a robot's sensors, movement, and the environment in a 3D

environment.

Fig. III.7: 3D visualization of the robot and the sensor scans

Alternatively, we use ROS tools for mapping and navigation with the SLAM toolbox and

Nav2.

Fig. III.8: 3D visualization of the mapping and navigation

20

General conclusion

In this end-of-study project, our main focus has been on achieving effective trajectory

tracking while avoiding both fixed and moving obstacles. This is a critical challenge in the

field of mobile robotics, as it involves navigating environments with a mix of stationary and

moving objects, such as humans or other robots. The primary goal is to prevent any

potentially dangerous collisions.

Nonlinear Model Predictive Control (NMPC) emerged as a suitable choice due to its

predictive capabilities and adaptability to multivariable systems. However, a significant

challenge was the computational time required, which we addressed by incorporating the

Particle Swarm Optimization (PSO) algorithm. This optimization technique effectively

reduced the computation time, particularly for shorter prediction horizons, and yielded highly

satisfactory results.

The utilization of the Robot Operating System (ROS) in the development of mobile robots

represents a significant advancement in the field of robotics. ROS provides a versatile and

comprehensive framework that facilitates the creation of highly capable and adaptable robotic

systems.

Mobile robots equipped with ROS have the potential to revolutionize various industries, from

manufacturing and logistics to healthcare and exploration. They can enhance efficiency,

safety, and precision in a multitude of applications, contributing to advancements in

automation, surveillance, inspection, and more.

As a potential avenue for future exploration, we propose combining Bimo_1 with Bimo_2.

This integration would allow us to leverage the respective advantages of both approaches and

potentially enhance overall control performance.

21

References

[1] Tzafestas, Spyros G. Introduction to mobile robot control. Elsevier, 2013.

[2] Bayle, Bernard. "Robotique mobile." Ecole Nationale Supérieure de Physique de

Strasbourg, Université Louis Pasteur, France (2008) : 2007-2008.

[3] Zidani, Ghania. Commande Robuste d’un Robot Mobile à Roues. Diss. Université de Batna

2, 2017.

[4] Lefebvre, Olivier. Navigation autonome sans collision pour robots mobiles nonholonomes.

Diss. Institut National Polytechnique de Toulouse-INPT, 2006.

[5] E.F. Camacho, C. Bordons, “Model predictive control”, Ed. Springer-Verlag, London,2004.

[6] H. Merabti, commande prédictive par la théorie des intervalles flous et métaheuristiques,

Thèse Doctorat en Sciences Faculté des sciences de l'ingénieur, Université des frères Mentouri

Constantine, 2015.

[7] Garrido-Jurado, Sergio, et al. "Automatic generation and detection of highly reliable

fiducial markers under occlusion." Pattern Recognition 47.6 (2014): 2280-2292.

[8] El Dor, Abbas. Perfectionnement des algorithmes d'optimisation par essaim particulaire :

applications en segmentation d'images et en électronique. Diss. Université Paris-Est, 2012.

22

Appendix A

Description of the mobile robot and

accessories

A.1 Description of the system:

The robot consists of a fiberglass chassis with a circular shape, equipped with a caster

wheel to ensure the balance of the robot, and two independent drive wheels powered by DC

motors (Fig. A.5). The motors are powered by two lithium batteries (Fig. A.6) through an

L298N motor driver (Fig. A.4). These two wheels allow the robot to move forward,

backward, and turn left or right.

A suspended camera is employed to provide localization and obstacle detection for the robot.

The acquired images are analyzed and processed using Python and the OpenCV library. The

processing tasks, as well as the computation of control signals, are performed on a computer

system equipped with an Intel® Core i5 processor operating at 3.4 GHz and 8GB of RAM.

The control signals are transmitted to the robot using the NRF24L01 radio transceiver

module.

A.2 The accessories:

A.2.1 Arduino:

Two types of Arduino boards were used in the project. An Arduino UNO board (Fig.

A.1) was employed to receive commands from the computer through a serial port and

transmit them via the NRF24L01 module. These commands were then received by another

Arduino RF-Nano board (Fig. A.2) mounted on the robot. The Arduino RF-Nano board

decoded the commands and forwarded them to the L298N motor driver for execution.

The Arduino UNO board, with its versatile capabilities and built-in USB interface, served as

the main communication interface between the computer and the robot. It received the

commands from the computer through the serial port, allowing for easy and reliable data

transfer.

A.2.2 The NRF24L01 transceiver module:

The NRF24L01 is a wireless transceiver module that provides both transmission and

reception capabilities. It operates in the 2.4 GHz frequency range and uses the Nordic

Semiconductor's Enhanced Shock Burst™ protocol for efficient data transfer.

The NRF24L01 module(Fig. A.3), a wireless transceiver, was connected to the Arduino UNO

board. It enabled wireless communication between the computer and the robot, providing a

convenient way to send commands without the need for physical connections.

On the robot side, the Arduino RF-Nano board received the commands transmitted by the

Arduino UNO board via the NRF24L01 module. The Arduino RF-Nano board acted as the

23

control unit for the robot, decoding the received commands and sending appropriate signals

to the L298N motor driver.

A.2.3 The L298N motor drive:

The L298N (Fig. A.4) is a dual H-bridge motor controller that can be easily controlled

using TTL (Transistor-Transistor Logic) signals from Arduino RF-Nano. It is designed to

control the speed and direction of two DC motors simultaneously.

The L298N module has several input pins that can be connected to Arduino RF-Nano digital

output pins to control the motor operation. These input pins include two enable pins for

enabling or disabling the motor outputs, and four control pins for setting the motor direction

and speed.

By appropriately setting the input signals, the L298N module can control the rotation

direction of each motor (forward or reverse) as well as adjust the motor speed using Pulse

Width Modulation (PWM) signals. This allows for precise control over the movement of the

motors.

A.2.4 The motors:

The Pololu N20 gearmotor (Fig. A.5) is a miniature high-power DC motor with a 12V

operating voltage. It features long-life carbon brushes and a metal gearbox with a gear ratio

of 51.45:1. The motor has a compact size with dimensions of 10 × 12 mm, and the output

shaft of the gearbox is in a D-shape, measuring 9 mm in length and 3 mm in diameter.

Here are the key specifications of the Pololu N20 gearmotor:

• No-load speed: 625 RPM at 100 mA.

• Stall torque: 1.1 kg-cm.

• Stall current: 0.8 A.

 Fig. A.1: Arduino UNO Fig. A.2: Arduino RF-Nano

24

 Fig. A.3: The NRF24L01 transceiver module Fig. A.4: The L298N motor drive

 Fig. A.5: The Pololu N20 gearmotor Fig. A.6: Lithium batteries

25

Appendix B

The localization system

B.1 The robot localization:

The identification of the robot's position and orientation is achieved through the use of

a vertically positioned camera placed above the robot. This camera captures top-view images

of the robot and a marker called ArUco is placed on the robot for identification (Fig. B.1).

Fig. B.1: Vision System

B.1.1 ArUco Marker:

The ArUco module is based on the ArUco library, an open-source library for square

fiducial marker detection developed by Rafael Muñoz and Sergio Garrido [7].

An ArUco marker is a type of fiducial marker used in computer vision and augmented

reality applications. It is a square-shaped marker that consists of a black border and an inner

pattern of binary bits. Each ArUco marker has a unique binary pattern, which allows for its

identification and tracking.

The ArUco markers are designed to be easily detectable and recognizable in images or video

frames. They are typically printed on paper or displayed on a screen. The markers can be of

different sizes, with larger markers having more bits in their binary pattern, allowing for

higher precision in detection and tracking.

The detection of ArUco markers involves image processing techniques such as edge

detection, contour analysis, and pattern recognition. Once a marker is detected, its position

26

and orientation can be determined relative to the camera or image frame. This information

can then be used for various purposes, such as object tracking, camera calibration, pose

estimation, and augmented reality overlay.

ArUco markers are widely used in robotics, augmented reality applications, camera

calibration, and computer vision research. They provide a simple and effective way to track

objects and determine their position and orientation in a visual environment.

Moments are used to calculate the center of gravity, and these coordinates represent

the pixel position of the robot (x, y).

Fig. B.2: Calculate the center of gravity

After detecting the centroid (Fig. B.2), the next step is to calculate the real-world position of

the robot using the relationship between the actual distance and the pixel distance, which is

given by the following equation:

 𝐷𝑟𝑒𝑎𝑙 = 𝐷𝑝𝑖𝑥𝑒𝑙 ×
𝐻

𝐹
 (B.1)

27

With:

• 𝐹: The focal length of the camera.

• 𝐻: The height of the camera relative to the ground.

The camera is fixed during the experiment (H = constant), and the focal length depends on

the camera, so it is constant. This allows us to rewrite the previous equation as follows:

 𝐷𝑟𝑒𝑎𝑙 = 𝐷𝑝𝑖𝑥𝑒𝑙 × 𝑓𝑎𝑐𝑡𝑜𝑟 (B.2)

The actual distance between one corner of the marker and the next corner is known (𝐷𝑟𝑒𝑎𝑙 =

9.1𝑐𝑚), and the distance in pixels (𝐷𝑝𝑖𝑥𝑒𝑙) is calculable (using the Pythagorean theorem).

 𝐷𝑝𝑖𝑥𝑒𝑙 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (B.3)

With:

• 𝑥1 𝑎𝑛𝑑 𝑦1: Coordinates of the first corner.

• 𝑥2 𝑎𝑛𝑑 𝑦2: Coordinates of the second corner.

Using these results, we can calculate the value of the constant 𝑓𝑎𝑐𝑡𝑜𝑟, which provides us

with a real estimation of the robot's displacement.

The atan2 function with two arguments (sin(θ), cos(θ)) is used to calculate the orientation of

the robot.

Either: 𝑥 = cos(𝜃) and 𝑦 = sin(𝜃)

The 𝑎𝑡𝑎𝑛2 function is defined as follows:

 𝑎𝑡𝑎𝑛2 =

{

 arctan (

𝑦

𝑥
) 𝑖𝑓 𝑥 > 0,

 arctan (
𝑦

𝑥
) + 𝜋 𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 ≥ 0,

 arctan (
𝑦

𝑥
) − 𝜋 𝑖𝑓 𝑥 < 0 𝑎𝑛𝑑 𝑦 < 0,

 +
𝜋

2
 𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 > 0,

 −
𝜋

2
 𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 > 0,

 𝑖𝑛𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑒 𝑖𝑓 𝑥 = 0 𝑎𝑛𝑑 𝑦 = 0

 (B.4)

28

B.2 Obstacle detection:

To detect the fixed obstacle (Fig. B.4), we apply several image processing functions

based on color.

Firstly, we start by using a Gaussian filter to reduce noise (Fig. B.5).

Fig. B.3: Image acquired from the camera Fig. B.4: Image after applying the

 Gaussian filter

Next, instead of using the usual RGB color space, we will use the HSV color space, which

has the desirable property that allows us to identify a specific color. The next step is to extract

our specific color from the resulting image using a mask.

 Fig. B.5: The image in the HSV color space Fig. B.6: Extraction of the blue color

29

Once these operations are completed, we use moments to calculate the center of gravity.

Fig. B.7: Final result

30

Appendix C

Particle Swarm Optimization
The solution to the optimization problem has a significant influence on the performance

of our mobile robotics system. The task at hand is to choose powerful algorithms that can find

high-quality solutions with minimal computational time. Recently, the majority of algorithms

used to solve these optimization problems are population-based metaheuristics.

Within this class of algorithms, we find metaheuristics that manipulate a population of solutions.

We can distinguish genetic algorithms (GA), ant colony optimization (ACO), gravitational search

algorithm (GSA), and the one that particularly interests us and has been used in our work, which

is Particle Swarm Optimization (PSO), was introduced in 1995.

A particle swarm corresponds to a population of simple agents (particles or birds). Each agent is

considered a solution to the problem, where it has a position, a velocity, and a memory that

allows it to remember its best performance and the best performance achieved by the entire

swarm of particles [8].

In the search for the global optimum, the movement of a particle is influenced by:

• The inertia component refers to the current velocity of the particle.

• The cognitive component refers to the particle's memory of the best solution it has

encountered so far.

• The social component refers to the best site collectively reached by the swarm, which is

typically determined by the best solution achieved by the particle's neighboring particles.

Fig. C.1: The PSO illustration

31

For a mathematical formalization of the movement of each particle 𝑖, the following equations are

introduced:

Velocity update:

 𝑣𝑖(𝑡 + 1) = 𝜔𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥𝑖(𝑡)) (C.1)

where:

• 𝑣𝑖(𝑡 + 1): is the updated velocity of particle 𝑖 at time 𝑡 + 1.

• 𝑣𝑖(𝑡): is the velocity of particle 𝑖 at time 𝑡.

• 𝜔: is the inertia weight controlling the influence of the previous velocity.

• 𝑐1 and 𝑐2: are the cognitive and social acceleration coefficients, respectively.

• 𝑟1 and 𝑟2: are random numbers between 0 and 1.

• 𝑝𝑏𝑒𝑠𝑡: is the personal best position of particle 𝑖.

• 𝑔𝑏𝑒𝑠𝑡: is the global best position.

• 𝑥𝑖(𝑡): is the current position of particle 𝑖.

Position update:

 𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1) (C.2)

Where:

• 𝑥𝑖(𝑡 + 1): is the updated position of particle 𝑖 at time 𝑡 + 1.

These equations describe how the velocity and position of each particle are updated in each

iteration of the PSO algorithm, taking into account the personal best position, global best

position, and random values for exploration and exploitation.

32

Here is the pseudo-code for the Particle Swarm Optimization (PSO) algorithm:

Initialize the population of particles with random positions and velocities

Initialize the personal best positions 𝑝𝑏𝑒𝑠𝑡 of each particle to their current positions

Initialize the global best position 𝑔𝑏𝑒𝑠𝑡 to the best position among all particles

while (stopping criterion is not met) do

 for each particle do

 Update the particle's velocity using the PSO equations

 Update the particle's position based on the new velocity

 Evaluate the particle's performance using the objective function

 Update the particle's personal best position if necessary

 if the particle's performance is better than 𝑔𝑏𝑒𝑠𝑡 then

 Update the global best position to the particle's position

 end if

 end for

end while

Return the global best position as the optimal solution

This pseudo-code outlines the main steps of the PSO algorithm, including initialization, velocity

and position updates, performance evaluation, and the update of personal and global best

positions. The algorithm continues until a stopping criterion is met, such as reaching a maximum

number of iterations or achieving sufficient convergence. Finally, the global best position is

returned as the optimal solution to the optimization problem.

33

Appendix D

Description of the mobile robot

D.1 Description of the system:

The robot is composed of several parts, which have been assembled together to give us

its final form, including:

D1.1 Control System:

The mobile robot necessitates a central processing unit to handle data from its array of

sensors and to facilitate decision-making. In this regard, our choice has fallen upon the

Raspberry Pi 4 (Figure D.1), which serves as the primary computing brain. Additionally, we

have established a connection to an Arduino NANO board (Figure D.2), functioning as a

secondary processing unit. This Arduino board provides valuable feedback concerning wheel

rotation speed and direction, further enhancing the robot's control capabilities.

 Fig D.1: Raspberry pi 4 Fig D.2: Arduino Nano

D.1.2 Sensors:

We have enhanced the robot's capabilities by incorporating a range of sensors that

enable it to gather information about its surrounding environment. These sensors consist of the

following:

 Fig D.3: RPLIDAR Fig D.4: Camera

34

D.1.3 Mobility System:

The mobility system refers to the mechanical components and mechanisms that enable

a robot to move within its environment. It encompasses various elements that determine how

the robot can navigate and traverse different terrains. Key components of a typical mobility

system include:

Wheels: Wheels are a common choice for robotic mobility. They can come in different

configurations, such as two-wheel differential drive (Fig D.5), allowing the robot to move

forward, backward, turn, and change direction.

Motor Control: The L298N module (Fig D.6) can control two DC motors independently. It

allows you to control the direction of rotation (forward or backward) and the speed of each

motor.

 Fig D.5: Whell connected with motor Fig D.6: The L298N module

D.1.4 Power Source:

The mobile robot is battery-powered, and the choice of battery type and capacity

depends on the robot's intended use and runtime requirements. In our case we chose a 11.1v

LiPo battery (Fig D.7), with 6500mAh capacity:

Fig D.7: LiPo Battery

35

D.2 Robot structure:

D.2.1 Chassis:

The robot has a chassis that provides it with a sturdy structure and allows it to support

various components. The chassis can be made from fiberglass, metal, or plastic, depending on

the design requirements.

D.2.2 Assemble the robot parts:

The corresponding images show how we connected the robot parts:

Fig D.8: The internal components of the robot

Fig D.9: The robot's external appearance

36

Fig D.10: The bottom part of the robot

D.2.2 The power circuit:

For the power circuit, a 11.1v rechargeable Li-Po battery is employed, connected in

series with a fuse to safeguard the circuit components against short circuit. A switch controls

the robot's power on/off functionality, while a voltage regulator steps down the voltage from

11.1v to 5v, ensuring a consistent power supply to all the components from a single power

source.

Fig D.11: The power circuits

