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Abstract
In this work we studied the control and the synchronization of the chaotic systems of fractional

order.

We presented a new fractional system which based on the definition of the Caputo derivative

and which displays a chaotic behavior from a specific value of commensurable minimum order,

in which the theoretical and numerical solution representation of this system is given using the

Adams-Bashforth-Moulton algorithm which uses to solve fractional order systems numerically.

Also the full hybrid projective synchronization of state (FSHPS) is studied between the new 3D

chaotic fractional order system and the hyper-chaotic fractional order Lorenz system. The results

show that FSHPS is successfully performed between the two systems, indicating that this method

can be used to synchronize similar chaotic fractional-order systems in other applications.

Keywords : Dynamical system, chaos, fractional order chaotic system, full-state hybrid projective

synchronization, Adams-Bashforth-Moulton algorithm.
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 ملخص
 

 

 .ةنظمة الفوضوية ذات الرتب الكسريللأمزامنة الدرسنا التحكم و ،في هذا العمل

 عندوضوياً فوالذي يعرض سلوكًا  Caputo نظامًا كسرياً جديداً يعتمد على تعريف مشتققدمنا 

لنظام ا، حيث يتم تقديم تمثيل الحل النظري والعددي لهذا ترتيب متناسبلأقل قيمة محددة 

الترتيب التي تستخدم لحل أنظمة  Adams-Bashforth-Moulton باستخدام خوارزمية

بين نظام  (FSHPS) كما تمت دراسة المزامنة الإسقاطية الهجينة الكاملة للحالة .عددياً الكسري

ديد ش كسرينظام لورنز ذو الترتيب ال الفوضوي ثلاثي الأبعاد الجديد و كسريالترتيب ال

 ،ات أخرىمماثلة في تطبيقكسرية هذه الطريقة لمزامنة أنظمة فوضوية يمكن إستخدام  .الفوضى

 تم التحقق من النتائج باستعمال المحاكاة العددية في الماتلاب.

 

سقاطي من الإالفوضى، النظام الكسري الفوضوي، التزا ،النظام الديناميكي الكلمات المفتاحية :

 . Adams-Bashforth- Moultonالهجين الكامل للحالة، خوارزمية
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Résumé
Dans ce travail on a étudié le contrôle et la synchronisation des systèmes chaotiques d’ordre

fractionnaires.

On a présenté un nouveau système fractionnaire qui basé sur la définition de la dérivée de Caputo

et qui affiche un comportement chaotique à partir d’une valeur spécifique d’ordre minimal com-

mensurable, dans lequel la représentation de solution théorique et numérique de ce système est

donnée en utilisant l’algorithme Adams Bashforth Moulton qui utilise pour résoudre numérique-

ment les systèmes d’ordre fractionnaire. Aussi la synchronisation projective hybride complète

de l’état (FSHPS) est étudiée entre le nouveau système chaotique à ordre fractionnaire 3D et le

système de Lorenz hyper-chaotique à ordre fractionnaire. Les résultats montrent que la FSHPS

est réalisée avec succès entre les deux systèmes, ce qui indique que cette méthode peut être

utilisée pour synchroniser des systèmes chaotiques à ordre fractionnaire similaires dans d’autres

applications.

Mots clés : Système dynamique, chaos, système chaotique d’ordre fractionnaire, synchronisation

projective hybride complète de l’état, Adams-Bashforth-Moulton algorithme.
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General Introduction
The work presented in this thesis concerns the study of the control and synchronization of frac-

tional nonlinear continuous chaotic systems in dimension 3 or more.

In classical mechanics, a system that exhibits changes or transformations over time is typically

referred to as a dynamical system, characterized by its ability to change its state or behavior over

time, as captured by the two principles:

- Causal: means that the future of the system relies solely on past or present events.

- Deterministic: that is to say that an "initial condition" given at the "present" instant will corre-

spond to each subsequent instant one and only one possible "future" state. The French mathemati-

cian Laplace formulated the concept of determinism which was the basis of Newtonian mechanics.

Analytical, geometrical, topological, and numerical methods for examining differential equations

and iterated mappings are a broad range of dynamical systems theory. Depending on the type of

state variables involved, dynamical systems can be categorized as either discrete or continuous, in

which a continuous dynamical system means that the variables describing the system can change

at any moment in time, and in a discrete dynamical system, the variables change in discrete or

distinct steps over time.

Chaos is a characteristic exhibited by nonlinear systems, which is characterized by unstable dy-

namical behavior that is bounded, easily influenced by the system’s starting conditions, and in-

cludes unpredictable and recurring movements that are indefinite in nature. Among the systems

whose future is difficult to predict because of their sensitive dependence on very simple changes

in their initial state: is the butterfly effect used by Lorenz, this is often referred to as the butterfly

effect, where even small changes in initial conditions, such as a butterfly flapping its wings, can

lead to significant impacts on atmospheric behavior and cause chaotic dynamics to emerge with

the passage of time. Economics, for example, with evidence of the occurrence of many unex-

pected economic crises, the science of wars by not predicting the results of wars..etc. In fields

such as electrical circuits, mechanical systems, and control systems, engineers have applied dif-

ferent nonlinear analysis techniques to investigate and design nonlinear systems. In particular,

tools for stability analysis of nonlinear systems, with an emphasis on Lyapunov’s method, for the

stability of feedback systems, and nonlinear feedback control tools, including linearization, gain

scheduling, exact feedback linearization, Lyapunov redesign, backstepping, sliding mode control,

and adaptive control [1].

A system that is nonlinear and has a single Lyapunov exponent is classified as chaotic, whereas

a system with multiple positive Lyapunov exponents is known as hyperchaotic. As a result, the

hyperchaotic attractor exhibits motion in several directions, unlike the chaotic attractor, which

10



moves in just one direction.

The synchronization of nonlinear oscillators is a phenomenon that has attracted the attention of

researchers since the observation and description of this phenomenon by Huygens in 1673, in

an example of two coupled mechanical systems. It can be defined as the process of adjusting

the behavior of multiple dynamical systems so that they converge to a common or synchronized

state. This can involve either complete synchronization, where all of the systems reach exactly

the same state, or partial synchronization, where the systems exhibit similar behavior but not

necessarily identical states. Synchronization refers to the coordination of activities or events

to ensure that they occur in a desired order or at the same time. In many domains, such as

engineering, biology, and social systems, synchronization is essential for the proper functioning

and behavior of complex systems.

Since its introduction, chaotic synchronization has been widely investigated by numerous re-

searchers [2], leading to the proposal of various applications for suppressing chaos, monitoring

and controlling dynamical systems, and communication purposes [3]. To achieve chaos synchro-

nization, the objective is to synchronize the slave system variables with the corresponding chaotic

master system variables as time progresses. Many research works have been carried out and

different methods proposed for the synchronization of chaotic systems, these include complete

synchronization [4], lag synchronization [5], anti-synchronization [6], hybrid synchronization

[7], projective synchronization [8], hybrid projective synchronization [9], modified projective

synchronization [10], combination synchronization [11], combination-combination (C-C) syn-

chronization [12], and compound synchronization [13], etc. Pecora and Carroll showed the

possibility of synchronizing chaotic systems using a common pilot signal [14]. The synchroniza-

tion of chaotic systems has been widely applied to cryptography and the secure transmission of

information [15], for this, and in order to be able to decrypt the message, it is first necessary

to synchronize the chaotic systems (the master or the transmitter and the slave or the receiver).

Some techniques that have been applied include nonlinear feedback control [16], time-delay

feedback control [17], delay feedback control [18], adaptive control [19], optimal control [20],

back-stepping design [21], stochastic sampled-data control [22], impulsive control [23], and ac-

tive control [24]. Li and Deng have summarized the theory and techniques of synchronization in

[25].

Due to the importance of fractional order systems (FOSs) in both theoretical study and practical

applications, such systems attract increasing attention, especially with respect to system identi-

fication [26], stability analysis [27], controller synthesis [28], and numerical computing [29],

etc. The advantages of fractional calculus have been shown that the fractional order models of

real systems are regularly more adequate than usually used integer-order models, among these

11



advantages of utilizing real fractional order systems is that they provide more degrees of freedom

in their models, and also incorporate a "memory" characteristic within these models [30].

The fractional-order chaotic system [31] is one of the commonly employed applications of frac-

tional calculus.

The control and synchronization of chaotic systems with fractional-order derivatives have been

the subject of numerous commendable studies [32]. Deng and Li [33] were the first to investi-

gate the potential for achieving synchronization in systems that use fractional-order derivatives

(specifically in the case of the fractional Lü system).

The objective of the first chapter is to provide an introduction to the fundamental concepts related

to continuous nonlinear dynamical systems and the theory of chaos, including their properties

such as attractors, stability notions, and bifurcations. Furthermore, it covers the various math-

ematical techniques employed to analyze chaotic behavior, such as strange attractors, sensitivity

to initial conditions, and Lyapunov exponents.

The second chapter intends to offer an overview of synchronization and its various types and

different methods utilized for controlling systems.

In chapter three, we delve into the topic of fractional-order chaotic systems. Initially, we pro-

vide a succinct overview of fractional order systems, including historical context, definitions,

and fundamental concepts. Subsequently, we present a comprehensive overview of established

fractional-order chaotic systems.

The fourth chapter introduces a new three-dimension chaotic system of fractional order, in which

we demonstrate that the system displays chaotic behavior from a specific value of minimal com-

mensurate order. The system is represented theoretically and numerically using the Adams-

Bashforth-Moulton algorithm. Additionally, this chapter examines FSHP synchronization between

the new system of fractional order and the Lorenz system exhibiting hyper-chaotic behavior with

fractional-order dynamics using this type of synchronization and Lyapunov theory to ensure the

stability of fractional-order systems. At last, numerical simulations are presented as proof of the

efficiency of the suggested controller, using the improved Adams–Bashforth–Moulton algorithm.

12



Chapter 1

General notions on dynamical systems and

chaos

1.1 Introduction

A dynamical system is a mathematical framework used to describe the behavior of a system over

time. It consists of a set of variables that change over time according to a set of rules or equations.

The deterministic evolution of the dynamical system can then be modeled in two distinct ways:

- Discrete evolution, on the other hand, is a type of dynamical system where the state of the

system can only change at specific points in time, and the behavior of the system is described using

difference equations. Discrete dynamical systems are often used in computer science, economics,

and other fields to model systems that change over time in a more "step-by-step" fashion.

- Continuous evolution is a type of dynamical system where the variables change continuously

over time, and the behavior of the system is described using differential equations. Continuous

dynamical systems are often used in physics, engineering, and other fields to model natural and

artificial systems that change over time.

The theoretical study of these continuous models is fundamental because it is particularly use-

ful for modelling complex phenomena that are difficult to study experimentally, such as weather

patterns, population dynamics, and the behavior of complex biological systems. In short, the im-

portance of continuous dynamical systems lies in their ability to provide a quantitative framework

for studying and understanding the behavior of complex systems over time.

This chapter aims to introduce the basic notions concerning continuous nonlinear dynamical

systems and theory of chaos and their properties such as attractors, notions of stability, and

bifurcations, and the various mathematical tools which are used for us to characterize chaotic

behavior, such as strange attractors, sensitivity to initial conditions, and Lyapunov exponents.
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Chapter 1. General notions on dynamical systems and chaos

1.2 Definitions of a dynamical system

Definition 1.1 A dynamical system is a mathematical system that changes and develop over time in

such a way that the system’s present state is determined by its past states, with a direct dependency on

previous time points, it is based on the foundations of decision making, feedback mechanism analysis,

and simulation.

1.2.1 Phase space and Poincaré section

Definition 1.2 (State Space) [34], [35] The state space, also called phase space, refers to the

collection of all possible states of a dynamical system. It can also be defined as an abstract space

in which each variable represents a dimension necessary for the description of the system at a given

time. It can be a vector space, a differential variety or a measurable space, etc. Phase space can be

constructed by the iteration states in the space (xn, xx+1), and the graph shown in the phase space

can be represented by the graph of the 1D function. The intersection of trajectories in phase space is

incompatible with the deterministic character of the system.

the phase space is a purely abstract space that represents all possible states of the system in a mathe-

matical way, which has as many dimensions as parameters in the dynamical system studied. Thus one

could very well imagine finding oneself manipulating a 196-dimensional phase space if the dynamical

system analyzed involved 196 initial conditions (all geometrical difficulties aside...). Nevertheless,

the number of coordinates can be reduced by using a technique developed by Henri Poincare: an

observation plane Σ with dimension d − 1 transforms the continuous trajectory into a succession

of discontinuous crossing points through Σ. This plane is a section of Poincare. In addition to the

reduction in the dimension of the phase space d in d− 1, this method makes it possible to reduce the

number of data to be manipulated by keeping only the points of intersection of the trajectories Γ with

the section Σ (Figure 1.1). The rest of the points of the trajectory being ignored, the dynamics are

thus easier to study.

Figure 1.2 provides a better comprehension of the phase space’s graphical representation. In

Figure 1.2(a), the system eventually reaches an equilibrium state after several oscillations, repre-

sented by loops that converge towards a point in the phase space. Figure 1.2(b) shows a system

that repeats periodically, which corresponds to a cyclic orbit in the phase space. In Figure 1.2(c),

the system has a more complex motion that repeats after three distinct oscillations, referred to as

a cycle of period 3. This results in more intricate loops in the phase space. Finally, Figure 1.2(d)

exhibits chaotic behavior, and its phase space takes on the butterfly-wing shape of the Lorenz

strange attractor.
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Figure 1.1: Poincare section: the phase trajectory Γ intersects the plane Σ.

Figure 1.2: Some examples of phase space.

Definition 1.3 (Orbit) An orbit of a dynamical system is the trajectory of the states travelled from

the initial state x0 in the state space where the system’s behavior is captured. The dynamics of the

system can be observed by its orbits in phase space.

Definition 1.4 (Phase Portrait) The phase portrait is the collection of all trajectories or curves that

represent the possible solutions.
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1.3 Classification of dynamical systems

1.3.1 Continuous and discrete dynamical systems

Depending on the nature of the variables that define the state in dynamical systems, it can be

divided into discrete or continuous systems.

Definition 1.5 (continuous dynamical system [1]) A differential equation can be used to describe

the behavior of most nonlinear continuous-time dynamical systems

ẋ = f(x, t, u), (1.1)

where the state variables denoted by x ∈ U ⊆ Rn embody the dynamical system’s memory of its past,

t ∈ R, and u ∈ V ⊆ Rp denote specified input variables.

Unforced states refer to cases of continuous-time nonlinear dynamical systems where there is no

explicit input variable u influencing the system’s behavior

dx

dt
= f(x, t). (1.2)

An unforced state equation doesn’t always imply that the input to the system is zero. It’s possible that

the input has been defined as a given function of the time equation u = γ(t) , a feedback function of

the state u = γ(t), or both, u = γ(x, t). Substituting u = γ in (1.1) eliminates u and results in an

unforced state equation.

Definition 1.6 (discrete dynamical system) A discrete-time nonlinear dynamical system has its

states only at regularly distributed instants. It can be described by a difference equation or a map

y (i+ 1) = f(y (i) , µ), y (i) ∈ U ⊂ Rn, µ ∈ V ⊂ Rp, i = 0, 1, 2, ... (1.3)

1.3.2 Autonomous and non-autonomous systems

Definition 1.7 (Autonomous system) Systems that are capable of adapting to unforeseen events

during their operation are referred to as "autonomous". The technology of autonomous systems has

the potential to bring about transformational changes, with potential cost and risk reduction benefits,

and an autonomous system, is responsible for more complex tasks, the details of which have been left

to its own initiative out of necessity or a desire to simplify its use.

Definition 1.8 ([36]) If the behavior of the dynamical system (1.1) remains unchanged over time,

it is referred to as an autonomous system, that is

dx

dt
= f(x). (1.4)
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So an autonomous system is not affected by any external input and its behavior solely relies on its

initial conditions.

Autonomous systems exhibit behavior that remains unchanged when the time origin is shifted, as the

state equation’s right-hand side is not affected by changing the time variable from t to τ = t− a. A

non-autonomous system, on the other hand, is referred to as time-varying or non-time-invariant.

Definition 1.9 (Non-autonomous System) Non-autonomous systems are also of great interest,

such that an appropriate controller can change its behavior, and since systems subjected to exter-

nal inputs, including of course periodic inputs, are very common.

From Non-autonomous to Autonomous: A Conversion Process

Every non-autonomous dynamical system can be transformed into an autonomous system by

increasing the phase space dimension by one [37].

Example 1.1 The following system

ẏ1 = y2,

ẏ2 = −g sin y1 + F coswt,
(1.5)

has a phase space of dimension 2 and is considered non-autonomous. By making the substitution t = y3, the

following system can be obtained

ẏ1 = y2,

ẏ2 = −g sin y1 + F coswy3,

ẏ3 = 1,

(1.6)

the dimension of the phase space of this dynamical system is 3 and it is autonomous.

1.3.3 Linear and non-linear systems

Mathematics distinguishes between linear and nonlinear systems, and chaos can only emerge in

the latter. Consequently, the study of chaos or dynamical systems is synonymous with nonlinear

dynamics.

1.3.4 Deterministic and random systems

Definition 1.10 (Deterministic system) A deterministic system can be distinguished from a ran-

dom system in that the former has no randomness involved in its development of future states. Given
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perfect knowledge of the initial conditions and the law of evolution of the system, the future behavior

of all times can be determined. The concept of determinism was formulated by Laplace, a French

mathematician and was the basis of Newtonian mechanics. In engineering, most systems are consid-

ered deterministic, with noise being considered a known random process that adds to the deterministic

system.

Definition 1.11 (Random System) A random system is run to some degree by chance. Given com-

plete information about the dynamics and the initial state, it is impossible to accurately predict the

future evolution of the system (although it may be possible to determine the statistics of the future

evolution, that is, the probability that the system is in particular states at certain times).

1.3.5 Conservative and dissipative systems

Two kinds of dynamical systems are separate, namely, conservative and dissipative.

Definition 1.12 (Conservative system) Frictionless systems, called conservative or Hamiltonian,

have their own interest and usefulness. It is from their study the absence of attractor, the trajectories

evolve on surfaces of constant energy tori of KAM [38]. The volume of a conservative system in phase

space remains constant as the system evolves over time. Therefore, equation (1.4) can be considered

a conservative system only if the divergence of the function f is zero ∇.f = 0.

Example 1.2 ([37]) The system described by

ẏ1 = y2,

ẏ2 = y3
1 − y1,

(1.7)

is considered conservative because the divergence of the function f is equal to zero, i.e. ∇.f = 0 .

Definition 1.13 (Dissipative system) The analysis and synthesis of control laws for linear and

nonlinear dynamical systems are greatly facilitated by the use of dissipative systems. A crucial fea-

ture of these systems is that the total energy stored within them gradually decreases over time. The

presence of an “internal friction” in dissipative systems has as its corollary the existence of an “attrac-

tor”, that is to say of an asymptotic limit (for t → +∞) of the solutions, hence, the system (1.4) is

dissipative if ∇.f < 0 .

Example 1.3 ([37]) For Lorenz system

ẏ1 = α(y2 − y1),

ẏ2 = ρy1 − y2 − y1y3,

ẏ3 = y1y2 − βy3,

(1.8)
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it is a dissipative system, as indicated by the fact that the parameters α, ρ and β are all greater than

zero, and the divergence of the vector field is negative, specifically ∇.f = −α− 1− β < 0.

1.4 Dynamical behavior types

1.4.1 Steady state (equilibrium point)

Steady state of (1.2) is a state x = x∗ in the phase space where the system remains unchanged

for all future time, given that it starts at x∗, it is the simplest deterministic behavior.

The examination of a linear system’s behavior near the equilibrium point x = 0 is significant

since, in several cases, the nonlinear system’s local behavior near an equilibrium point can be

inferred by linearizing the system around that point and analyzing the behavior of the resulting

linear system. The effectiveness of this approach depends on how the different qualitative phase

portraits of a linear system persist under perturbations [36].

1.4.2 Periodic behavior (periodic orbit or limit cycle)

Periodic behavior, also known as oscillation, occurs when a behavior repeats itself after a certain

period of time denoted by T > 0 and continues to do so indefinitely. The undamped pendulum is a

classic example of a system exhibiting periodic behavior in the form of simple harmonic motion,

which will oscillate indefinitely in the absence of disturbances. Another example of periodic

dynamics in the cardiac electrophysiology is the alternation of cardiac action potential duration

(APD), that is, a pathological condition of the heart.

Definition 1.14 A periodic solution of the system ẏ = f(y) is one that repeats itself after a fixed

period of time T > 0, meaning that for all t in the real numbers,

∀t ∈ R, y(t+ T ) = y(t). (1.9)

The set L = {y(t) : t ∈ [0, T ]} is a closed curve in state space and is called a periodic orbit or a limit

cycle.

1.4.3 Quasi-periodic behavior

Quasi-periodicity is characterized by a change in periodic behavior, where the system exhibits a

combination of periodic behaviors that cannot be expressed as a ratio of whole numbers, resulting

in incalculable periods. This behavior is represented by a state space torus.
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Example 1.4 An example is in the solar system (sun-earth-moon-Jupiter) with several different pe-

riods. The moon orbits the earth in a month (30 days), the earth takes one year to complete an orbit

around the sun (365 days), and Jupiter orbits the sun in about 12 years (4380 days).

1.4.4 Random behavior

Random behavior is non-deterministic, even if we knew everything about a system at a given

time in perfect detail, we would still not be able to predict the state at a future time, where this

behavior characterizes by a lack of pattern or predictability. Initial conditions or any other factors

do not influence events that are truly random, they are determined by chance alone.

1.4.5 Chaotic behavior

Chaos is irregular behavior over time, it is neither a fixed point nor a cycle. However, not all

irregular behavior over time is chaotic. This theory is said to be deterministic in the sense that

when the law of evolution is known, the future of the system is perfectly determined once its

initial state is known.

1.5 Chaos

1.5.1 Chaotic system

In a deterministic system that is not chaotic, similar initial conditions lead to similar trajecto-

ries, however, chaotic systems are also deterministic and subject to a law of evolution, but their

evolution is incredibly complex and completely irregular, and this leads to unpredictable long-

term behavior, which is sensitive to initial conditions that evolve in a bounded region, and which

possess an infinity number of dense non-periodic trajectories (see Figure 1.3).

Figure 1.3: Behavior of Chua’s chaotic attractor in 3D view
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Chaotic system characteristics
Chaos theory, as described by Keller [39], is defined as "the qualitative study of the unstable

periodic characteristics of motion in a deterministic dynamical system." Keller acknowledges the

absence of a general definition for a chaotic dynamical system, but identifies three essential prop-

erties: radical sensitivity to initial conditions, the potential for highly disordered behavior, and,

despite this disorder, the system remains deterministic, adhering to laws that fully describe its

motion [40].

We briefly present the characteristics that help to understand the salient points of a chaotic sys-

tem.

1. Initiale conditions sensibility:

The evolution of a chaotic dynamical system is unpredictable with the understanding that

it exhibits an extremely high level of sensitivity to the initial conditions. Thus, two initially

neighboring phase trajectories always diverge from each other, regardless of their initial

proximity. Although we are dealing with deterministic systems, it is impossible to predict

their behavior in the long term. The sensitivity to the initial conditions can be quantified

thanks to the Lyapunov exponents and therefore lends itself well to the study of concrete

examples.

Definition 1.15 Suppose (Y, d′) is a metric space, and A : Y → Y a continuous map. If there

exists a constant such that

∀y ∈ Y, ∀ε > 0,∃x ∈ Y, ∃n ∈ N : d′(y, x) < ε et d′(Am(y), An(x)) > b, (1.10)

then we can say that the topological dynamical system (Y,A) exhibits sensitivity to initial

conditions.

This definition expresses that for any initial condition, there are points as close as we want to

it whose associated orbits will move away from the initial trajectory.

2. Chaotic or strange attractor :

Strange attractors are unique from other phase-space attractors in that one does not know

exactly where on the attractor the system will be. Two points on the attractor that are near

each other at one time will be arbitrarily far apart at later times. The only restriction is that

the state of system remain on the attractor. Strange attractors are also unique in that they

never close on themselves — the motion of the system never repeats (non-periodic). The

motion we are describing on these strange attractors is what we mean by chaotic behavior.
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3. Lyapunov exponents [40]:

We can define the Lyapunov exponent as an aid to characterize solutions, especially those

which are unstable. The evolution of a chaotic flow is difficult to apprehend because the

divergence of the trajectories on the attractor is rapid, this is why we try to estimate or

even measure the speed of divergence or convergence, this speed is called the Lyapunov

exponent .

The Lyapunov exponent is used to measure the degree of stability of a system and to quantify

the sensitivity to the initial conditions of a chaotic system. The phase space dimension is

equivalent to the quantity of Lyapunov exponents and they are usually indexed from largest

to smallest λ1, λ2, λ3, ...

The onset of chaos requires Lyapunov exponents to fulfil three conditions ([41] and [42]):

•The existence of a positive exponent is required to account for the divergence of the

trajectories.

•To account for the folding of the trajectories, the system must possess at least one negative

exponent.

•A chaotic system is dissipative when the summation of its exponents is negative, i.e. it

loses energy.

The value of the largest Lyapunov exponent quantifies the degree of chaos of the system,

but the fact that the three conditions stated above are met is not enough to conclude that a

system is chaotic. It remains essential to compare the results of the Lyapunov exponent cal-

culation with those provided by other nonlinear analysis tools. A method of approximating

Lyapunov exponents is Wolf’s algorithm [43], this algorithm makes it possible to calculate

the Lyapunov exponents from the effective calculation of the divergence of two trajectories

after t time step with respect to the disturbance introduced in parallel, and this within an

attractor.

Attractor Type Sign of Lyapunov’s exponents

Fixed point −,−,−
Periodic limit cycle 0,−,−
Quasi-periodic limit cycle 0, 0,−
Strange attractor +, 0,−

Table 1.1: Characterization of attractors
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Definition 1.16 A system is classified as chaotic if it is nonlinear and has exactly one Lyapunov

exponent, whereas a system with multiple positive Lyapunov exponents is known as hyperchaotic.

Therefore, unlike the chaotic attractor that extends in only one direction, the hyperchaotic attractor

expands in multiple directions.

4. Fractal dimension:

The fractal dimension is employed to describe the "strange attractors" that are characteristic

of chaotic systems.

Unlike regular geometric shapes, which have integer dimensions, chaotic attractors have

non-integer or fractal dimensions, reflecting their intricate and non-repeating pattern that

is self-similar structure at different scales, and the fractal dimension is employed to quantify

the degree of complexity in the attractor.

The fractal dimension of a chaotic system is established by analyzing the behavior of the

system over time and plotting its phase space trajectory. The phase space trajectory is a plot

of the system’s state variables (such as position and velocity) over time, and the shape of

the trajectory can reveal the underlying dynamics of the system.

The fractal dimension of the system’s attractor is then calculated by examining how the

trajectory fills up the phase space as time progresses. If the system’s behavior is chaotic,

the trajectory will cover a complex, non-repeating pattern in the state space, and the fractal

dimension will reflect the degree of intricacy in this pattern.

In summary, the fractal dimension is employed in chaos theory to quantify the complexity of

the patterns that arise in the behavior of chaotic systems, particularly the strange attractors

that characterize their long-term behavior.

1.5.2 Attractors

Definition 1.17 Attractors are points of stable equilibrium, they attract all adjacent trajectories.

Attractors types

1. Equilibrium point attractor

The "equilibrium point" attractor x∗ is a dynamical system’s ordinary differential equation dx
dt

= Ax(t)

solution, which is a point in the trajectory phase space.

The system can exhibit six distinct qualitative phase portraits that correspond to different

types of equilibria:
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Case 1.1 An equilibrium point x∗ is described as a hyperbolic point if the matrix A does not

have a zero or imaginary eigenvalue.

Case 1.2 An equilibrium point x∗ is described as a saddle point if at least one eigenvalue has

negative real part and at least one has positive real part.

Case 1.3 An equilibrium point x∗ is described as a (stable or unstable) node point if all eigen-

values have the same signs (both eigenvalues are negative or positive respectively).

Case 1.4 An equilibrium point x∗ is described as a (stable or unstable) focus or center point

if eigenvalues are complex conjugate pairs (when the real part of the eigenvalues is < 0, > 0 or

= 0 respectively).

2. Periodic orbit (limit cycle) attractor

The "limit cycle" attractor is a closed trajectory in phase space towards which the trajectories

tend. It is, therefore, a periodic solution associated with a periodic behavior of the system.

Limit cycles are a form of periodic motion that can be observed in nonlinear systems within

their phase space. According to [44], these cycles manifest as isolated periodic state tra-

jectories. Limit cycles can either be stable, attracting neighbouring states towards them, or

unstable, repelling neighbouring states instead.

2. Quasi-periodic attractor

The "quasi-periodic" attractor represents the motions resulting from two or more independent

oscillations, and it is represented by a "torus" similar to an object in a state space with a dimension

greater than or equal to three.

4. Strange attractor

The "strange" attractors are much more complex than the others, an attractor associated with

dissipative chaotic systems called strange because of the strangeness of the unpredictable and

infinitely complex behavior at all scales of its structure. We speak of strange attractors when the

fractal dimension is not whole.

Example 1.5 (Strange attractor)

In [45], Ruelle and Takens introduced a type of attractor, the characteristics of this strange attrac-

tor are:
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a. In phase space, the attractor has zero volume.

b. The dimension of the attractor, indicated by D, is a non-integer and is instead a fractal

value, with 2 < D < m, where m indicates the dimension of the phase space.

c. The impact of initial conditions on system behavior: two trajectories of the initially neigh-

boring attractor always end up deviating from each other.

1.5.3 Stability concepts

Stability represents an essential aspect when examining linear and nonlinear dynamical systems.

It is a concept that has given rise to different terminologies which will be briefly recalled in order

to specify in what sense the term stability is used in this thesis.

Studying the Stability of Equilibrium Points

The notion of stability corresponds to the idea of behavior that lasts over time and makes it

possible to formalize the following question: at a point close to a point of equilibrium x what

happens to the solution trajectory? This question is important because in practice the initial

conditions present uncertainties, it would be desirable that two close initial conditions, lead to

close trajectories for any time and even for infinitely long times. A natural way to approach this

question would be to solve the differential equation and examine the behavior of solutions. But

in general, one cannot solve differential equations.

A first approach for the study of these systems consists in seeking the points of equilibrium, that

is to say the stationary solutions not presenting any temporal evolution.

Once the equilibrium points have been determined, examining its stability is crucial, that is to say

how a slight disturbance at these points influences the evolution of the system.

When examining dynamical systems, several types of stability problems arise. We consider the

following dynamical system

ẏ = h(y, t) (1.11)

where h is a nonlinear function.

Local stability (Linear stability) analysis

Definition 1.18 A system (1.11) possesses a stable equilibrium point y∗ if any solutions beginning

in the vicinity of that point remain close by, indicating that the system is resistant to perturbations,

i.e.

∀ε > 0,∃ρ > 0 : ‖y(t1)− ye‖ < ρ =⇒ ‖y(t, y(t1))− ye‖ < ε,∀t ≥ t0. (1.12)
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Definition 1.19 In a system (1.11) , an equilibrium point y∗ is considered asymptotically stable

when all solutions beginning at nearby points not only remain close by but also converge towards the

equilibrium point as time goes to infinity. i.e.

∃ρ > 0 : ‖y(t1)− ye‖ < ρ =⇒ lim
t→∞
‖y(t, y(t1))− ye‖ = 0. (1.13)

Definition 1.20 A system (1.11) with an equilibrium point x∗ is considered to be exponential

stable if
∀ε > 0,∃ρ > 0 : ‖y(t1)− ye‖ < ρ

=⇒ ‖y(t, y(t1))− ye‖ < b ‖y(t1)− ye‖ exp(−ct),∀t ≥ t0.
(1.14)

The previous definitions of stability of an equilibrium point are local, they only concern the orbits

close to a point of equilibrium (‖y − b‖ ≤ η).

Global stability (nonlinear stability) analysis We present here two methods of Lyapunov to

study the stability.

1. Direct method

The direct method is difficult to implement but, on the other hand, it is much more gen-

eral in scope. This concept is rooted in the definition of a specific function, known as the

Lyapunov function and denoted V (x), which is reducing along the trajectories of the system.

Theorem 1.1 (Lyapunov’s function and global stability) Assuming that y∗ is a steady

state of the system (1.11), the condition for the existence of a Lyapunov function V : Rn →
[0,+∞[ of class C1 is satisfied if:

- V (y∗) = 0 and V (y) > 0 for y 6= y∗.

- V decreases along all trajectories (dV
dt
≤ 0).

Then y∗ exhibits stability according to the Lyapunov definition.

Furthermore, if y 6= y∗ , then y∗ demonstrates asymptotic stability based on the Lyapunov

definition.

If we again assume that V tends to infinity when y ∈ Rn tends to infinity (in norm), then

all the trajectories, even those that start far from y∗ , tend to y∗ (we say that y∗ is globally

asymptotically stable), but if (dV
dt
> 0). for y 6= y∗ then y∗ is unstable.

Remark 1.1 There is no general method for determining a Lyapunov function.
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2. Indirect method (Linearization) [36]

The indirect method of Lyapunov, to study the stability around an equilibrium point y∗, consists

in studying the linear system

ẏ = Cy (1.15)

with, the matrix

C = Df(0) =
∂f

∂y
(y)

∣∣∣∣∣∣∣∣y=0 =


∂f1
∂y1

∂f1
∂y2

. . . ∂f1
∂yn

. . . . . . . . . . . .
∂fn
∂y1

∂fn
∂y2

. . . ∂fn
∂yn


y=0

(1.16)

is the Jacobian matrix of f at 0, has all distinct eigenvalues λi, i = 1, 2, . . . , n, then the

solution of (1.15) is

y =
n∑
i=1

cie
λitvi, (1.17)

where vi the eigenvector associated with λi.

When the real parts of the eigenvalues of matrix C, also known as the characteristic ex-

ponents of the equilibrium point 0, are negative, the origin is deemed to be asymptotically

stable.

When the matrix C has eigenvalues with positive real values, the origin is considered un-

stable.

In cases where matrix C has eigenvalues with zero real values, and the remaining eigenval-

ues have negative real values, linearization cannot establish the stability characteristics of

the origin.

1.5.4 Bifurcation

The fundamental aspect of the examination of dynamical systems is the notion of bifurcation, at

specific values of the system’s control parameters that are considered critical, the solution of the

differential equation changes qualitatively: it is said to have a bifurcation [46]. Bifurcation is a

non-linear effect, intimately tied to the phenomenon of multiple solution to non-linear equation.

In this light it is a local theory, dealing with the local fluctuation of solutions to a given problem.

A point of. intersection of two or more solution branches will be called a bifurcation point.

Bifurcation types

In general, all the destabilizations of a system come down to three types of generic bifurcations

(however there are rare special cases) that we will present on three simple one-dimensional cases:
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−→ Node-pass bifurcation (or saddle node).

−→ Fork bifurcation (or pitchfork).

−→ Hopf bifurcation.

Bifurcation diagram
Bifurcation diagram summarizes all the information on the bifurcation and thus makes it possible

to understand how the system evolves.

Feedback
Feedback are modifications made to an element in a system result in alterations to its state. These

changes can then propagate to other interconnected elements, and the impacts may propagate

back to the original element. This phenomenon is known as feedback. Feedback can be catego-

rized into two types:

Definition 1.21 1) Positive or self-reinforcing feedback, which amplifies the current changes in the

system.

2) Negative or self-correcting feedback, which seeks equilibrium by counteracting the changes occur-

ring in the system.

Complex systems are "complex" due to the numerous feedback loops and interactions among the

system’s various components.

1.6 Examples of continuous chaotic systems

Lorenz system
Edward N. Lorenz, a meteorologist and mathematician, developed the Lorenz system while re-

searching thermal fluctuations within an air cell [47]. It was created with the following dynamical

equations [48]
ẏ1 = −α(y2 − y1),

ẏ2 = γy1 − y2 − y1y3,

ẏ3 = y1y2 − δy3,

(1.18)

where y1, y2, and y3 are the state variables, and α, γ, δ are positive parameters. The presence

of limit cycles and sensitivity to initial conditions are characteristic of a Lorenz system, which

demonstrates a pattern of periodic doubling as a parameter is changed in one direction, ultimately

resulting in chaotic behavior. The trajectories of the Lorenz chaotic attractor are represented by

a butterfly or figure-eight shape, as depicted in Figure 1.4 ([48]).
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Figure 1.4: Chaotic attractor for the Lorenz system.

Rössler system
Otto Rössler created the Rössler attractor in 1976 [49], and later, its equations proved useful in

modelling equilibria in chemical reactions

ẏ1 = −(y2 + y3),

ẏ2 = y1 + αy2,

ẏ3 = β + y3(y1 − γ),

(1.19)

where y1, y2, and y3 are the state variables, α, β, and γ are the parameters.

The Rössler chaotic attractor depicted in Figure 1.5 ([48]) displays a single manifold for the

parameter values α = β = 0.2 and γ = 0.5.

Figure 1.5: Chaotic attractor for the Rössler system.

Chua system
In the realm of experimental chaos, Chua’s system stands out as the initial system that was ob-

served in a laboratory setting [50]. Its chaotic behavior has been validated both through com-

puter simulations and rigorous mathematical proofs. A collection of dynamical equations define
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this electric circuit system [48]
ẏ1 = (y2 − ag(y1)),

ẏ2 = y1 − y2 + y3,

ẏ3 = −by2,

(1.20)

here, g represents a function that is piecewise-linear in nature and a and b are bifurcation para-

meters.

g(y) =


n1(y + 1)− n0, y < −1,

n0y , − 1 ≤ y ≤ 1,

n1(y − 1) + n0, y > 1.

(1.21)

Figure 1.6 depicts the behavior of the Chua system.

Figure 1.6: Chaotic attractor for the Chua system.

Van der Pol system
One can describe the autonomous system of the Van der Pol oscillator as follows: [48]

ẋ1 = x2,

ẋ2 = −x1 − ε(x2
1 − 1)x2.

(1.22)

The Van der Pol system’s behavior is depicted in Figure 1.7.

Figure 1.7: Chaotic attractor for the Van der Pol system.

Duffing system
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G. Duffing introduced the Duffing oscillator in 1918 to describe the dynamics of a classical particle

in a double-well potential, a differential equation of a single variable is utilized for this purpose,

known as the Duffing equation [51]. According to [48], if the equation is forced, its most general

form is able to be represented as a system of first-order ordinary differential equations:

ẏ1 = y2.

ẏ2 = y1 − y3
1 − δy2 + γ cos(ωt).

(1.23)

The trajectories of a chaotic Duffing system are illustrated in Figure 1.8.

Figure 1.8: Chaotic attractor for the Duffing system.

Rikitake system
The Rikitake chaotic system is a type of autonomous chaotic system with a quadratic formulation.

that exists in three dimensions. Despite its simplicity, this system has the ability to generate

two-scroll chaotic attractors with a high degree of complexity [48]

ẋ1 = −µx1 + x2x3,

ẋ2 = −µx2 + (x3 − b)x1,

ẋ3 = 1− x1x2,

(1.24)

where we will assume that the parameters b and µ in the equation are nonnegative.

We can observe the Rikitake system’s chaotic attractor in Figure 1.9.

1.7 Conclusion

The focus of this chapter is to provide a concise reminder of continuous nonlinear dynamical

systems and their general properties.
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Figure 1.9: Chaotic attractor for the Rikitake system.
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Chapter 2

Synchronization and some methods of

control

The goal of this chapter is to present an introduction to synchronization and various control

methods.

2.1 Introduction

Controlling and synchronizing chaotic systems present a difficult challenge. Synchronization is

the action of phasing to create simultaneity between several operations, depending on time. His-

torically, it was Chrystiaan Huyghens who discovered this phenomenon in 1673 thanks to two

clocks suspended from an unfixed beam: as he explained in his memoirs “Horologium Oscilla-

torium”, after a certain time the movement of the beam causes the entry into the phase of the

oscillations of the two pendulums.

This phenomenon has been an area of ongoing research since the early days of physics, as refer-

enced in [52].

Synchronization can be studied using a variety of mathematical tools, including differential equa-

tions, graph theory, and control theory. It finds its practical use in various disciplines, including

physics, biology, computer science, and telecommunications, and is an important area of research

in both pure and applied mathematics.

Control methods are used to influence or regulate the behavior of systems or processes, often

with the goal of achieving synchronization.

Efforts in research have been dedicated to solving the problems of controlling and synchronizing

chaos in numerous dynamical systems [53], [54].
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According to recent studies cited in [55]-[59], synchronization is also possible in chaotic frac-

tional order systems.

Numerical simulations are commonly used to study synchronization among fractional order sys-

tems in many literatures, by utilizing stability conditions derived from linear fractional order

systems, as seen in previous works such as [60] and [61]. Additionally, some studies are based

on the Laplace transform theory, as shown in [59] and [62].

2.2 Synchronization theory

2.2.1 General definition of synchronization

Definition 2.1 ([63]) "Synchronous" comes from the Greek words χρ′ovoς "chronos" (time) and

σ′υv "syn" (same/common), which, translated directly, means "sharing the common time" or "occur-

ring in the same time". This term, along with "synchronization" and "synchronized", refers to various

phenomena in natural sciences, engineering, and social life. These phenomena may seem different,

but they often follow universal laws.

Definition 2.2 Synchronization involves the coordination of two or more events or processes so that

they occur simultaneously or in a specific order.

Example 2.1 A real-life example of synchronization is the coordination of traffic signals at a busy

intersection. Traffic lights are synchronized so that they change in a specific sequence, allowing

vehicles to flow smoothly through the intersection without colliding. This synchronization helps to

prevent accidents and reduce traffic congestion.

Example 2.2 The synchronization of heartbeats among members of a choir or audience, where the

rhythm of the music helps to synchronize the heartbeats of individuals, studies have shown that

when people listen to music together, their heartbeats can synchronize with the beat of the music.

This phenomenon is known as "entrainment," and it occurs because the human body is sensitive to

rhythmic stimuli. For example, imagine a group of people attending a concert and listening to the

same piece of music. As the music plays, their heartbeats may begin to synchronize with the beat

of the music, creating a shared physiological response. This synchronization can create a sense of

unity and connectedness among the members of the group, as they experience the music together in

a synchronized way. Similarly, in a choir, members often sing together in a synchronized manner,

following the same tempo and rhythm. As they sing, their breathing patterns and heart rates can

also become synchronized, further enhancing the feeling of unity and cohesion among the group.
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2.2.2 Mathematical definition of synchronization

Definition 2.3 Synchronization is used to understand the sensitivity based on the initial conditions.

It has been proven that synchronizing two or more chaotic systems proves the ability to follow closely

the same movement of these dual systems together.

The concept of synchronization is manifested when two dynamical systems follow an identical

way as a function of time. One of the most popular synchronization configurations is the master-

slave configuration for which a dynamical system, called the slave system, follows the rhythm

and the trajectory imposed by another dynamical system, called the master system. Hence the

following definition :

Definition 2.4 ([64]) A system is considered a slave system:

ẏ1(t) = h1(y1(t)), y1(t) ∈ Rn (2.1)

synchronizes with a master system :

ẏ2(t) = h2(y2(t)), y2(t) ∈ Rn, (2.2)

if for any pair of initial conditions (y1(0), y2(0)),

lim
t→+∞

|y2(t)− y1(t)| = 0. (2.3)

Theorem 2.1 Synchronization between the master system and the slave system occurs only when

the conditional Lyapunov exponents of the slave system have negative values.

2.2.3 Chaos synchronization

Along with the great advances made in chaos theory, the prospects of the use of chaos in various

applications have motivated researchers to investigate the question of the possibility of synchro-

nizing chaos.

Chaos synchronization is the phenomenon in which two or more chaotic systems evolve in such a

way that their trajectories become identical or asymptotically approach each other. This synchro-

nization can be achieved through a suitable coupling between the systems, or through the use of

control techniques [65].

Example 2.3 1. In secure communication systems [66]: One application of chaos synchro-

nization is in secure communication systems, where chaotic signals are utilized for transmit-

ting information in a secure way. A well-known example of this is the Lorenz-based encryption
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scheme, in which two Lorenz chaotic systems are coupled and synchronized to generate a secure

key for encryption.

2. In controlling chaotic systems [67]: Another application of chaos synchronization is in con-

trolling chaotic systems, where a master chaotic system is utilized to control the behavior of a

slave chaotic system. This has been employed, as an illustration, to stabilize the motion of a

chaotic pendulum.

3. In studying complex networks [68]: Chaos synchronization has also been used to study

complex networks, where a network of coupled chaotic systems is used to model a complex

system such as the brain or the climate system. By synchronizing the chaotic systems in the

network, researchers can examine the emergent dynamics of the network and how it responds

to external stimuli.

2.2.4 Different types of synchronization

The types of coupling can be listed as indicated:

1. Unidirectional coupling, to achieve it, two separate subsystems are formed by partitioning

the original system with one subsystem designated as the driver and the other as the fol-

lower. The dynamics of the follower are then forced to mirror those of the driver, without

influencing the behavior of the latter. As such, this configuration is often referred to as

"master-slave." An illustration of this arrangement can be observed in the context of secure

communications.

2. In bidirectional coupling, the behavior of two subsystems mutually influences each other’s

trajectories as they are connected in a certain way. Unlike unidirectional coupling, this

approach involves reciprocal coupling between the subsystems. A prime instance of bidirec-

tional coupling is observed in lasers that feature feedback mechanisms [69].

In this section, in the sense of an extensive bibliographic study, we have collected different types

and patterns of synchronization.

Complete (Full) synchronization

Complete synchronization (CS) refers to the phenomenon in which two or more oscillators evolve

in such a way that their trajectories become identical, both in phase and amplitude. This type

of synchronization is important in various fields of application, including secure communication

systems [70].
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Definition 2.5 We consider a master chaotic system represented by

Ẏ1 = F1(Y1(t)), (2.4)

in which Y1(t) is the state vector of them-dimensional master system, and the slave system represented

by the following formula

Ẏ2 = F2(Y2(t)) + U, (2.5)

in which Y2(t) is the state vector of the k-dimensional slave system, F1 : Rm → Rm, F2 : Rk → Rk

and U = (ui)
k
i=1 ∈ Rk determine the control vector.

The complete synchronization error is defined by

e(t) = Y2(t)− Y1(t) such that lim
t→+∞

‖e(t)‖ = 0. (2.6)

where ‖.‖ the Euclidean norm.

• If F1 = F2, The relationship leads to a state of complete synchronization, where the two systems

evolve in a completely identical way over time.

• If F1 6= F2, it is a non-identical complete synchronization.

So synchronization, also known as CS, occurs when there is a complete coincidence between the

state variables of the two systems that are synchronized.

Example 2.4 Two identical chaotic systems can become completely synchronized if they are coupled

in such a way that their trajectories become identical [70].

Anti-synchronization

Anti-synchronization is a phenomenon that happens when two coupled dynamical systems evolve

in such a way that their states become opposite or out-of-phase. More precisely, it is the process

of adjusting the behavior of two or more dynamical systems so that they evolve in a coordinated

manner, but with their states being opposite or negatively correlated.

Anti-synchronization can be characterized by the property that the coupled systems exhibit an

oscillatory behavior in which their states alternate between being opposite or out-of-phase with

a fixed amplitude. This is in contrast to synchronization, where the difference between the states

oscillates around zero with zero phase shift [71].

Then, the anti-synchronization error is presented by :

e(t) = Y2(t) + Y1(t). (2.7)

2.2. Synchronization theory 37



Chapter 2. Synchronization and some methods of control

Example 2.5 An example of anti-synchronization can be found in two coupled Chua oscillators.

In this case, the two oscillators exhibit opposite dynamics, meaning that their states evolve in an

anti-phase manner [72].

Shifted (delayed) synchrobization

Two non-identical chaotic dynamical systems are said to exhibit shifted synchronization if and

only if time is shifted. Specifically, it means that the synchronized states of the systems are shifted

or delayed with respect to each other by a certain amount of time [73].

Definition 2.6 If the state variables Y2(t) of the chaotic slave system converge to the state variables

Y1(t) of the master system in lagged time, we say that there is delayed synchronization as indicated

by the following relation :

lim
t→+∞

‖Y2(t)− Y1(t− ε)‖ = 0, (or lim
t→+∞

‖Y2(t)− Y1(t+ ε)‖ = 0), ∀Y1(0), (2.8)

where ε is an extremely small positive value

Example 2.6 As for an example of the application of this method, one well-known case is the syn-

chronization of two chaotic systems with a time delay, as described in the paper [74]. In this paper,

the authors show how the dynamics of two coupled chaotic systems can be synchronized using a

feedback control scheme that involves a time delay. Specifically, they demonstrate that the chaotic

trajectories of the two systems can be made to coincide with each other, even when there is a notable

time delay between them. This technique has found applications in a range of fields, including secure

communication and chaos-based cryptography.

Generalized synchronization

Generalized synchronization (GS) is a type of synchronization in which two or more chaotic sys-

tems exhibit similar but not necessarily identical dynamics, meaning that their states evolve in a

synchronized manner but may differ by a scaling factor, a phase shift, or some other transforma-

tion [75].

Definition 2.7 To define the GS, a set of two master-slave systems is represented by{
Ẋ1 = F1(X1(t)),

Ẋ2 = F2(X2(t)) + U.
(2.9)

where X1(t) ∈ Rm, X2(t) ∈ Rk represent the states of the master system and the slave system,

respectively, F1 : Rm → Rm, F2 : Rk → Rk and U = (ui)
k
i=1 ∈ Rk is a controller to be determined.
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If there is a function Ψ : Rm → Rk, such that all the trajectories of the master system and of the slave

system, with the initial conditions x1(0) and x2(0) verify

lim
t→+∞

‖X2(t)−Ψ(X1(t))‖ = 0,∀x1(0), x2(0), (2.10)

then, the above master-slave systems achieve generalized synchronization with respect to the function

Ψ.

Example 2.7 An example of generalized synchronization can be found in a coupled Henon map and

a Lorenz model driven by a Rossler model. The results consistently demonstrate that the proposed

measure successfully detects the direction of coupling, thereby highlighting its superior performance

[76].

Projective synchronization

Projective synchronization (PS) is a type of synchronization in which two or more chaotic systems

exhibit similar but transformed dynamics, meaning that their states evolve in a synchronized

manner but with a nonlinear transformation applied to one or more of the state variables [77].

Definition 2.8 We say that we have PS if the state variables yi(t) of the chaotic slave system Y (t) =

(yi(t))1≤i≤n synchronize with a constant multiple of l state xi(t) of the master chaotic system X(t) =

(xi(t))1≤i≤n so that :

∃αi 6= 0, lim
t→+∞

‖yi(t)− αixi(t)‖ = 0, ∀(x(0), y(0)), i = 1, 2, . . . , n. (2.11)

Remark 2.1 • The case where all αi’s = 1 represents a complete synchronization case.

• A complete anti-synchronization case is represented when all αi’s = −1.

Example 2.8 An example of projective synchronization can be found in two coupled Lorenz oscilla-

tors, where one oscillator is subject to a nonlinear transformation. In this case, the two oscillators

exhibit similar but transformed dynamics, meaning that their states evolve in a synchronized manner

but with a nonlinear transformation applied to one or more of the state variables [78].

Generalized projective synchronization

Generalized projective synchronization (GPS) is a synchronization type that allows a master sys-

tem to synchronize with a response system in a more flexible way, by adding a scaling factor α

to the synchronization error, in other words, that the master and the response system become

proportional.
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Definition 2.9 ([79]) One may examine the chaotic system provided below:{
Ẏ1 = F1(Y1(t)),

Ẏ2 = F2(Y2(t)) + U.
(2.12)

in which Y1(t), Y2(t) ∈ Rm denote the state vectors of the master (or driver) and slave (or response)

systems, respectively. Additionally, F1, F2 : Rm → Rm are vectors fields, and U = (ui)
m
i=1 ∈ Rm is a

vector controller whose values are yet to be determined.

If a constant c 6= 0 exists with the aim that

lim
t→+∞

‖Y1(t)− cY2(t)‖ = 0, (2.13)

then we say that there is a GPS and we call c a scaling factor.

Example 2.9 In reference [80], a straightforward yet effective control approach for achieving gen-

eralized projective synchronization is demonstrated on a unified chaotic system. Results of numerical

simulations indicate the high efficacy of this method, and it can be applied to other chaotic systems

as well.

Full state projective synchronization

Full state projective synchronization (FSPS) refers to a category of synchronization where two

or more chaotic systems synchronize not only their trajectories but also their scaling factors and

bias parameters. In this type of synchronization, the difference between the state variables of the

synchronized systems is proportional to a matrix multiplication of the state variables of one of

the systems. Full state projective synchronization has been thoroughly investigated studied in the

literature due to its potential applications in secure communication and data encryption [81].

Definition 2.10 For the chaotic system (2.12), we say that there is an FSPS, if there is a non zero

constant g, with the aim that

lim
t→+∞

‖Y (t)− gX(t)‖ = 0, (2.14)

that is,

lim
t→+∞

‖yj(t)− gxj(t)‖ = 0, j = 1.m, (2.15)

thus, the FSPS of system (2.12) is achieved.

Example 2.10 The paper [81] addresses the problem of achieving full-state projective synchroniza-

tion in chaotic continuous-time systems. The authors propose a nonlinear observer control approach

to achieve this synchronization, aiming to overcome the challenges posed by chaotic dynamics. The
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article likely discusses the theoretical framework and methodology of the proposed observer control

technique and provides numerical simulations or experimental results demonstrating its effectiveness

in achieving full-state projective synchronization in chaotic systems.

Inverse full state hybrid projective synchronization

Inverse full state hybrid projective synchronization (IFSHPS) is another type of synchronization

between two chaotic systems, in which the drive system is synchronized to the inverse response

system up to a linear transformation. Like FSHPS, IFSHPS also involves both continuous and

discrete feedback controls [82].

Definition 2.11 The master and the slave systems in (2.12) are said to be inverse full state hy-

brid projective synchronized, if there exists a controller U = (uj)1≤j≤k and given real numbers

(γji)1≤j≤m,1≤i≤k, such that the synchronization errors

ej(t) = xj(t)−
k∑
i=1

γjiyi(t), j = 1,m, (2.16)

achieve that the limit of ej(t) approaches 0 as t approaches +∞.
If (γji(t))1≤j≤m,1≤i≤k , are given differentiable functions, then the system (2.12) are supposedly IFSHP

synchronized.

Example 2.11 The article [82] addresses the IFSHP synchronization of the proposed fractional-order

system, potentially exploring different synchronization techniques and their effectiveness in achiev-

ing synchronization. The numerical or analytical results presented in the article may demonstrate

the synchronization behavior of the fractional-order system and provide insights into its potential

applications in real-world scenarios.

Q-S synchronization

Q-S synchronization is considered a generalization of all types of previous synchronizations [83].

Definition 2.12 We say that a master system Y1(t) ∈ Rm and a slave system Y2(t) ∈ Rk are in Q-S

synchronization in dimension d, if there is a controller U = (uj)1≤j≤k and two functions Q : Rm →
Rd, S : Rd → Rk such as synchronization error

e(t) = Q(Y1(t))− S(Y2(t)), (2.17)

verifies limt→+∞ ‖e(t)‖ = 0.
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Example 2.12 In the paper [84], the authors investigate the synchronization behavior of the fractional-

order unified system, in which this article delves into the QS synchronization technique employed,

explaining how it can be applied to achieve synchronization in the fractional-order unified system.

Numerical simulations or analytical results are provided to illustrate the effectiveness of the pro-

posed synchronization approach, shedding light on the dynamics and potential applications of the

synchronized fractional-order unified system.

Phase synchronization

Phase synchronization signifies the phenomenon where the phases of two or more oscillators be-

come locked to each other, while the amplitudes of the oscillators may still differ. This type of

synchronization is important in many natural and engineered systems, such as the synchroniza-

tion of neurons in the brain [76].

Example 2.13 Two pendulum clocks that are hung on the same wall can become phase-synchronized

if they are close enough to each other. In this case, the pendulums will eventually swing in unison,

even if they started with slightly different amplitudes [85].

Anti-phase synchronization

Anti-phase synchronization signifies the phenomenon where the phases of two or more systems

(oscillators) become locked to each other, but the systems (oscillators) are in anti-phase, meaning

that they oscillate in opposite directions. This type of synchronization is important in many

applications, such as the synchronization of the heartbeats of two people [86].

Example 2.14 In the study by Strogatz [86], the researchers investigate the phenomenon of anti-

phase synchronization using the flashing patterns of fireflies. Fireflies are known for their ability

to synchronize their flashing signals, creating mesmerizing light displays in certain regions. The

researchers focus on understanding the specific case of anti-phase synchronization, where the fireflies

flash in alternating patterns. Through field observations and mathematical modelling, Strogatz et al.

demonstrates how fireflies achieve anti-phase synchronization. They reveal that the behavior arises

from the inherent properties of the firefly’s nervous system and their interaction with each other.

The study provides insights into the mechanisms underlying anti-phase synchronization in biological

systems and explores its relevance in fields such as neuroscience and collective behavior.
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Modiefed projective synchronization

Modiefed projective synchronization (MPS) involves the synchronization of the drive and re-

sponse systems to the extent of a scaling factor and a time delay. The scaling factor and time

delay are modified from the usual definitions of projective synchronization. This type of synchro-

nization has been studied in several systems, including the Chua’s circuit and the Rössler system

[87], and Li [88] introduced modified projective synchronization in prior work.

Definition 2.13 MPS is distinguished by a scaling matrix that two systems synchronize in parallel.

For the chaotic systems (2.12), If there is a nonzero constant matrix: β = diag(β1, β2, . . . , βm), so

that

lim
t→+∞

‖Y1(t)− βY2(t)‖ = 0, (2.18)

then we call this synchronization MPS, we refer to β as a “scaling matrix”.

Remark 2.2 Clearly, CS and projective synchronizations can be viewed as particular instances of

MPS where β1 = β2 = . . . = βn = 1 and β1 = β2 = . . . = βn, respectively.

Example 2.15 In the study by G.H. Li [87], the author explores modified projective synchronization

in chaotic systems. The concept of projective synchronization involves driving a response system to

synchronize with a drive system up to a certain transformation. Li introduces modifications to this

synchronization scheme, aiming to achieve enhanced control over the synchronization process. By

applying suitable control techniques and adjusting system parameters, Li demonstrates the successful

achievement of modified projective synchronization in chaotic systems. The study contributes to the

understanding and practical application of synchronization phenomena in chaotic systems, opening

up possibilities for controlling and manipulating chaotic dynamics in various fields, including secure

communication and data encryption.

Function projective synchronization

Function projective synchronization (FPS), as described in [89], involves a scaling function ma-

trix.

Definition 2.14 For the system (2.12), the error term is described by

e(t) = Y1(t)−K(t)Y1(t), (2.19)

where K(t) = (kj(t))
m
j=1 is a continuously differentiable function that is bounded and non-zero for all

t. The synchronization is termed FPS and K(t) is referred to as a "scaling function matrix" when

lim
t→+∞

‖e(t)‖ approaches zero.
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Remark 2.3 FPS is a broader concept than PS, as it permits the synchronization of two master-slave

systems to a scaling function instead of just a constant, as is the case with PS. Employing this function

could enhance the security of communication, because it is obvious that the scale unpredictability of

the function in the FPS method can further improve the communication security.

Example 2.16 The article [90] presents a method for achieving FPS between two different chaotic

systems with indeterminate parameters. The authors derive a control law that uses a linear combi-

nation of the drive and response systems’s state variables to achieve FPS. The control law is designed

to be robust to parameter uncertainties, through simulations of the Lorenz and Chen systems, the

authors illustrate the efficacy of their approach.

Modified function projective synchronization

MFPS is a novel form of synchronization in which the synchronized dynamical states are attuned

to a designated scaling function matrix, as stated in [91].

Equation (2.12) presents the definitions of the drive system and the response system. Subse-

quently, we introduce the error vector e(t), defined as

e(t) = Y1(t)− Γ(t)Y2(t), (2.20)

where e(t) = (e1, e2, . . . em)T , Γ(t) is am-order diagonal matrix, Γ(t) = diag(γ1(t), γ2(t), . . . , γm(t))

and γj(t) is a continuously differentiable function that is bounded and non-zero ∀t.

Definition 2.15 (MFPS) The system (2.12) is considered to be exhibiting MFPS when a scaling func-

tion matrix Γ(t) exists so that lim
t→+∞

‖e(t)‖ approaches zero.

Remark 2.4 MFPS is a broader concept than MPS and FPS, where γ1(t) = γ2(t) = . . . = γn(t) =

γ(t), γ1(t) = γ1, γ2(t) = γ2, . . . , γn(t) = γn, respectively.

Remark 2.5 The lack of predictability of the scaling function matrix in MFP can increase the security

of communications, making it a potential technique for achieving greater security.

Example 2.17 The article [91] proposes a modified method for achieving FPS between chaotic sys-

tems. The authors modify the standard FPS approach by introducing a nonlinear feedback control

term that incorporates a quadratic function of the error for the drive and response systems. The

authors show through simulations that their modified FPS method achieves better synchronization

performance than the standard FPS approach between the Lorenz and Rössler systems.
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Generalized function projective synchronization

Generalized function projective synchronization (GFPS) involves the synchronisation of the drive

and response systems until a scaling function matrix.

To define the GFP synchronization, the error term is presented by:

e(t) = Y2(t)−B(t)Y1(t), (2.21)

where e(t) = (e1, e2, . . . em)T , B(t) = diag(b1(t), b2(t), . . . , bm(t)) is reversible and differentiable

and bj(t) : R+ → R are continuously differentiable functions that is bounded and non-zero ∀t.

Definition 2.16 For the chaotic system (2.12) consisting of a master and slave system, GFPS occurs

when a vector function U(Y1, Y2, t) and a scaling function matrix B(t) of order m exist so that
lim
t→+∞

‖e(t)‖ approaches zero, where the norm ‖.‖ is induced by the matrix norm.

Remark 2.6 • If b1(t) = b2(t) = . . . = bm(t), FPS is achieved.

• If bj(t) = bj, (j = 1,m) where bi ∈ R and non-zero, then GFPS is simplified to GPS.

• If B = αIm where α ∈ R and Im is the identity matrix, the GFPS simplifies to PS.

Example 2.18 The paper [92] presents a new approach to achieve adaptive GFPS of uncertain

chaotic systems. The proposed method uses a sliding mode control technique and an adaptive control

law to synchronize two chaotic systems, one with known parameters and the other with uncertain

parameters. The generalized function projective synchronization ensures that a linear combination

of the synchronization errors for the two systems converges to zero. Numerical simulations of the

Lorenz and Chen chaotic systems are carried out to demonstrate the efficacy of the proposed method.

Hybrid projective synchronization

Hybrid PS was introduced by Manfeng Hu et al [93]. This method allows for the drive and

response systems to synchronize with different scale factors.

To define HPS, the error term is offered as:

e(t) = K(t)Y2(t)− Y1(t), (2.22)

where e(t) = (e1, e2, . . . em)T , K(t) = diag(k1, k2, . . . , km) is a scaling matrix, and kj is a scale

non-zero factor ∀t.

Definition 2.17 If the system (2.12) has a reversible scaling matrixK of orderm such that lim
t→+∞

‖e(t)‖ is

zero, then we say that there is HPS.
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Remark 2.7 It is easy to see that CS, AS, PS and MPS are special cases of HPS:

• If H = I, where I is the unit matrix, then the synchronization is called CS.

• If H = −I, then the synchronization is named AS.

• If H = αI, and α 6= ±1 a constant real different from zero, then the synchronization is called

PS.

• If H = diag(h1, h2, . . . , hn) and h1, h2, . . . , hn are different nonzero constants, then the syn-

chronization is named MPS.

Example 2.19 In the article [93], the authors investigate the hybrid projective synchronization of

two different chaotic complex nonlinear systems. They propose a control method based on projec-

tive synchronization and adaptive control techniques, which allows for the synchronization of two

chaotic systems with different structures and parameters. Numerical simulations are conducted by

the authors to demonstrate the efficacy of their proposed method, with the Lorenz and Chen chaotic

systems used as examples. The results show that the proposed method is able to obtain HPS for the

two chaotic systems with high accuracy and robustness. The authors propose that their method could

be used in cryptography and secure communication systems.

Hybrid function projective synchronization

Zhang and Li [94] developed a novel type of synchronization denoted by HFPS, where both

master and slave systems synchronize until a scaling function matrix.

To define HFPS synchronization, the error term is offered as :

e(t) = Y2(t)−K(t)Y1(t), (2.23)

where e(t) = (e1, e2, . . . em)T , K(t) is a scaling function matrix, K(t) = diag(k1, k2, . . . , km), and

kj(t) is a continuously differentiable function that bounded and non-zero ∀t.

Definition 2.18 The system (2.12) is considered to have a HFPS if a reversible scaling matrix K can

be found so that lim
t→+∞

‖e(t)‖ = 0.

Example 2.20 The paper [94] presents a method for achieving HFPS of chaotic systems with uncer-

tain time-varying parameters. The method uses Fourier series expansion to approximate the unknown

functions, which can effectively reduce the effects of parameter uncertainties. The proposed control

scheme is easy to implement and has good robustness and synchronization accuracy. The efficacy of

the proposed method is demonstrated through numerical simulations.. Overall, the article provides a

useful contribution to the field of synchronization of chaotic systems.
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Full state hybrid projective synchronization

Full state hybrid projective synchronization (FSHPS) is a type of synchronization between two

chaotic systems, where the states of the drive system and response system achieve synchronized

up to a linear transformation. The synchronization is said to be hybrid because it involves both

continuous and discrete feedback controls [95].

Definition 2.19 ([96]) We have two chaotic systems, the master and slave, which are described by

D
αj
t xj (t) = fj (X (t)) , j = 1,m, (2.24)

and the response system can be expressed as

D
αj
t yj (t) =

n∑
i=1

bjiyi (t) + gj (Y (t)) + uj, j = 1, n, (2.25)

with X (t) = (x1, x2, ..., xm)T and Y (t) = (y1, y2, ..., yn)T are the state vectors of the systems (2.24)

and (2.25) respectively, fj : Rm −→ Rm, j = 1,m and gi : Rn −→ Rn, i = 1, n are sets of nonlinear

functions, 0 < αj < 1, D
αj
t is the Caputo fractional derivative of order αj.

The synchronization of the two systems (2.24) and (2.25) is called FSHP if we can find a controller

U = (uj)1≤j≤m and real numbers (cjk)1≤j≤m,1≤k≤n, with the aim that the synchronization errors

ej(t) = yj(t)−
n∑
k=1

cjkxk(t), j = 1,m, (2.26)

match the specification that limt→+∞ ej(t) = 0.

If (cjk)1≤j≤m,1≤k≤n are given differentiable functions, then the master system (2.24) and the slave

system (2.25) are referred to as FSHP synchronized.

Remark 2.8 • FSHP synchronization is a generalization of projective synchronization [97].

• IThe definition of FSHP synchronization covers full synchronization, anti-synchronization, and

projective synchronization by simply assigning the matrix C = (cjk)1≤j≤m,1≤k≤n the values

I,−I and βI (β is a constant), respectively. This relationship can be easily observed.

Example 2.21 In the study by M. Hu, Z. Xu, and R. Zhang [95], the authors investigate full state

hybrid projective synchronization in continuous-time chaotic (hyperchaotic) systems. The concept

of hybrid synchronization combines both complete synchronization and projective synchronization,

allowing for more flexible and versatile control over the synchronization process. Hu, Xu, and

Zhang propose a novel synchronization scheme that achieves full state hybrid projective synchroniza-

tion, where all the state variables of the drive and response systems exhibit synchronized behaviors.
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Through numerical simulations and analysis, they demonstrate the effectiveness of their proposed

scheme in achieving robust synchronization in chaotic and hyperchaotic systems. This research ex-

pands the understanding of synchronization phenomena in complex dynamical systems and offers

potential applications in secure communication, signal processing, and information transmission.

2.3 Control methods for synchronization

The specific mathematical formulation of the control law is dependent on the nature of the sys-

tems being synchronized and the intended performance criteria. This section is devoted to the

presentation of various methods to achieve different kinds of synchronization.

Active controller method
Active control technique is a type of control system create methodology that utilizes feedback

control to obtain the required performance of the system. It involves designing a controller that

actively manipulates the inputs of the system aiming to achieve the required output where it

manipulates the input signal u(t) to achieve the desired output x2(t). The control law is usually

modeled in the form u(t) = F1(x1(t), x2(t)), where x1(t) is the state vector, x2(t) is the output

vector, and F1 is a function that maps these signals to the input signal u(t) [98].

Consider two chaotic systems to be synchronized, master and slave, defined by :

Ẋ1 = F1(X1(t)), (2.27)

Ẋ2 = F2(X2(t)) + U. (2.28)

where X1(t) ∈ Rm, X2(t) ∈ Rm are the states of the master and slave systems, respectively,

F1, F2 : Rm → Rm, and U = (uj)1≤j≤m is a controller to be determined. For the two systems to be

synchronized, the error between the trajectories of the two systems must converge towards zero

when time tends towards infinity. This error is obtained as follows :

ė(t) = Ẋ2(t)− Ẋ1(t) = F2(X2(t))− F1(X1(t)) + U. (2.29)

If we can write the quantity F2(X2(t))− F1(X1(t)) as follows :

F2(X2(t))− F1(X1(t)) = Be(t) +M(X1(t), X2(t)), (2.30)

the error can be expressed as follows :

ė(t) = Be(t) +M(X1(t), X2(t)) + U, (2.31)

where B ∈ Rm×m is a constant matrix and M a nonlinear function.
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The U controller is offered as follows :

U = V −M(X1(t), X2(t)), (2.32)

where V is the active controller defined by :

V = −Λe(t), (2.33)

where Λ is an unknown control matrix. So, we get the following final formula of the error :

ė(t) = (B − Λ)e(t). (2.34)

So the problem of synchronization for the master system (2.27) and the slave system (2.28) is

changed into a zero-stability problem of the system (2.34). Now the following Theorem is an

immediate result of the theory of the stability of continuous linear dynamical systems.

Theorem 2.2 If the eigenvalues of (B − Λ) lie inside the unit disk, the control law (2.32) achieves

global synchronization between the master system (2.27) and the slave system (2.28). Conversely,

global synchronization is not achieved unless the control matrix Λ is chosen to satisfy this condition.

Backstepping method
The Backstepping Method is a type of control system design methodology that is used for non-

linear systems. It involves designing a control law for a system by recursively transforming the

original system into a simpler one until a linear system is obtained [99].

This is done by introducing new state variables and using the Lyapunov stability theory to guar-

antee the stability of the system. The control law is usually designed and calculated such that the

positive Lyapunov function V stabilize the system (V < 0).

Consider that the master system and the slave system are defined in the following way
ẋ1 = g1(x1, x2),

ẋ2 = g2(x1, x2, x3),

.....

ẋm = gm(x1, x2, x3, . . . , xm).

(2.35)

and 
ẏ1 = g1(y1, y2),

ẏ2 = g2(y1, y2, y3),

.....

ẏm = gm(y1, y2, y3, . . . , ym).

(2.36)
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where g1 is a linear function, gi (i = 2,m) are nonlinear functions and u is a controller which

must be chosen appropriately to obtain synchronization between the systems (num syst ẋ) and

(num syst ẏ).

The synchronization error is given as follows
e1 = y1 − x1,

e2 = y2 − x2,

.....

em = ym − xm.

(2.37)

Thus, the dynamics of the error system is written :
ė1 = h1(e1, e2),

ė2 = h2(e1, e2, e3),

.....

ėm = hm(e1, e2, . . . , em) + u.

(2.38)

where h1 is a linear function, hj, j = 2,m are nonlinear functions.

The goal is to calculate a control law u which ensures the convergence of the system ej, j = 2,m

towards the origin using the backstepping algorithm. For this, the error system (numerror) must

be decomposed into subsystems :

e1, (e1, e2), (e1, e2, e3), . . . , (e1, e2, . . . , em),

and for each subsystem, we define a positive Lyapunov function V : Vk(ek, uk, αk), where k is

the order of the subsystem, uk and αk represent, respectively, the control law and the virtual

controller of the subsystem of order k, uk and αk are calculated each time such that : Vk < 0.

Slip mode method
The slip mode method is a control strategy used to regulate the behavior of nonlinear systems.

This approach involves the introduction of a "slip" variable that controls the system’s dynamics by

adjusting the phase difference between two oscillators. The slip variable is designed to maintain

synchronization by constraining the phase difference between the oscillators to remain within a

specified range. The method is particularly effective for systems with uncertain parameters or

disturbances, as it can compensate for these factors and ensure stability. The slip mode method

is a type of sliding mode control, which was previously extensively conducted in the control

literature. For instance, Shtessel et al. [100] provide a detailed treatment of sliding mode control

and its applications to uncertain systems.
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Example 2.22 In the study by Ablay [101], the author investigates the sliding mode control of

uncertain unified chaotic systems. Unified chaotic systems are a class of complex systems that ex-

hibit chaotic behavior, and dealing with their uncertainties is essential for control purposes. Ablay

proposes a sliding mode control approach to effectively stabilize and control these uncertain unified

chaotic systems. The sliding mode control technique ensures robustness against uncertainties and dis-

turbances, allowing for precise tracking of desired trajectories. Through mathematical analysis and

simulations, Ablay demonstrates the effectiveness of the proposed control strategy in achieving stable

and controlled behavior in uncertain unified chaotic systems. This research contributes to the under-

standing of chaos control methods and provides practical insights for the design and implementation

of robust control systems in various applications, including communication systems and secure data

transmission.

Phase reduction
This technique involves approximating the behavior of a high-dimensional oscillator by its dy-

namics in a low-dimensional phase space. By reducing the system to a phase oscillator, one can

analyze the stability and bifurcations of the synchronization manifold and predict the emergence

of different types of synchronization, in the paper [102], Strogatz provides an overview of differ-

ent approaches to analyzing synchronization in populations of coupled oscillators, including the

phase reduction technique.

Example 2.23 This method has the potential to be utilized for study synchronization in a broad

variety of systems, including biological oscillators, electronic circuits, and chemical reactions. Here

is an example of a paper that uses phase reduction to analyze synchronization in various network

topologies [103], in this paper, the authors focus on phase reduction techniques, which provide a

powerful tool for analyzing the behavior of coupled oscillators in both simple and complex networks.

Feedback control
Feedback control is a method of control in which a system or process is monitored, and the output

is fed back into the system to adjust the input and regulate the output. This method is commonly

used in engineering systems, such as control systems for aircraft, vehicles, and robots [104].

Example 2.24 Here’s an example to illustrate feedback control: suppose we want to regulate the

temperature of a room to a specific setpoint. We could use a thermostat as a feedback control mech-

anism. The thermostat measures the room’s temperature and compares it to the desired setpoint.

If the temperature is below the setpoint, the thermostat turns on the heating system to increase the

temperature. If the temperature is above the setpoint, the thermostat turns off the heating system.
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The thermostat continuously adjusts the heating system based on the difference between desired and

actual temperatures.

2.4 Conclusion

We first presented general and mathematical definitions of synchronization and an overview of

chaos synchronization. We then defined several synchronization types of chaotic (hyper-chaotic)

dynamical systems with examples. Finally, we gave control methods to achieve synchronization of

dynamical systems. The study of the integer-order and fractional-order chaotic systems synchro-

nization is a subject that has been treated recently, it gives rise to new synchronization schemes

ensuring security in telecommunications.
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Some chaotic dynamical systems with

fractional orders

3.1 Inroduction

The intricate and unpredictable dynamical behaviors exhibited by chaotic and hyperchaotic sys-

tems are among their most complex properties, this makes fractional order calculus an attractive

area of study for implementing circuits that mimic these systems. Fractional order calculus can

give a more accurate description of various nonlinear phenomena that may be overlooked by

integer order calculus.

Fractional calculus, which involves the use of fractional integrals and derivatives, has been em-

ployed in controlling dynamical systems, particularly when the controlled system or controller is

modeled using fractional differential equations. Despite the fact that the total order of such sys-

tems with fractional derivatives is typically less than three, they can still exhibit chaotic behavior,

including the presence of strange attractors, in their mathematical models.

Chapter three is on fractional-order chaotic systems. It begins with a brief overview of fractional

order systems, covering historical background, definitions, and fundamental concepts. The chap-

ter also includes a comprehensive review of popular fractional-order chaotic systems.

3.1.1 Historical overview

As early as 1695, during the time when classical calculus (i.e. calculus of derivatives and inte-

grals of integer order) was just established by Leibniz and Newton, there was a correspondence

between Leibniz and L’Hôpital where they discussed the interpretation of the derivative of order

one half. This sparked the interest of many renowned mathematicians such as Euler (1738),
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Laplace (1820), Fourier (1822) and Lagrange (1849) to work on similar questions, which ulti-

mately led to the development of fractional calculus as a field of study.

3.1.2 Application of fractional systems

For example, applications of feedback control include the modelling of biological tissues [105]

and neuron systems [106] in medicine, as well as the use of fractional calculus in continuous-time

finance in financial markets [107]. Additionally, the fractional Burgers equation has been intro-

duced as a relevant model for anomalous diffusions, such as diffusion in complex phenomena,

relaxations in viscoelastic mediums, and propagation of acoustic waves in gas-filled tubes (see

[108] and [109]). These concepts have found applications in various fields, including viscoelas-

tic systems, electrochemistry, and biological and economic systems (see [110]-[112]).

3.2 Mathematical background of fractional calculus

Fractional calculus involves generalizing differentiation and integration to non-integer order op-

erators represented as aD
q
t , where q represents the fractional order and a and t are the limits of

the operation. This concept has been extensively studied by mathematicians since the time of

Leibniz and Newton in 1695, leading to the development of a field known as fractional calculus,

as referenced in [113]

aD
q
t =



dq

dtq
, <(q) > 0

1, <(q) = 0
t∫

a

(dτ)−q, <(q) < 0

. (3.1)

It is generally assumed that q ∈ R, however, it is also possible for q to be a complex number, as

noted in [114].

To delve deeper into fractional calculus, we suggest referring to [115] and [116].

3.2.1 Specific functions related to fractional calculation

In this section, we will discuss the Gamma, Beta and Mittag-Leffler functions, which constitute

one of the essential tools in fractional calculus theory.
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The Gamma function

Definition 3.1 The Euler’s Gamma function Γ(w) is defined by

Γ(w) =

∞∫
0

tw−1e−tdt, (Re(w) > 0), (3.2)

where tw−1 = e(w−1) log(t), Γ(1) = 1 and Γ(0+) = +∞. Γ(w) is a monotonic, strictly decreasing

function for 0 < w ≤ 1, and this integral is convergent for w ∈ C, (Re(w) > 0).

Proposition 3.1 The Gamma function exhibits the following properties:

1. ∀w ∈ R∗+ :

Γ(w + 1) = wΓ(w) (3.3)

2. Eular’s Gamma function generalizes the concept of factorial

Γ(m+ 1) = m!, ∀m ∈ N. (3.4)

Proposition 3.2 ([117]) The limit expression can be used to represent the Gamma function as fol-

lows:

Γ(w) = lim
m−→+∞

m!mw

w(w + 1)......(w +m)
. (3.7)

The Beta function

Definition 3.2 The definition of the Beta function is given by

B(w, z) =

1∫
0

tw−1(1− t)z−1dt, ∀w, z ∈ R∗+. (3.8)

Proposition 3.3 The relationship between Euler’s Beta function and Euler’s Gamma is given by:

B(w, z) =
Γ(w)Γ(z)

Γ(w + z)
. (3.9)

The Mittag-Leffler function

The Mittag-Leffer function naturally embeds the usual exponential.

Definition 3.3 G.M. Mittag-Leffler introduced the generalization of the exponential function to a

single parameter [118], and denoted by the following function [119]:

Eq(w) =
∞∑
k=0

wk

Γ(qk + 1)
, ∀w ∈ R, q > 0. (3.10)
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Definition 3.4 In fractional calculus theory, the Mittag-Leffer function’s 2-parameter plays a very

important role. The latter is defined by the following series expansion [119]:

Eγ,δ(w) =
∞∑
k=0

wk

Γ(γk + δ)
, (∀w ∈ R, γ, δ > 0). (3.11)

Example 3.1

Eγ,1(w) =

∞∑
k=0

wk

Γ(γk + 1)
= Eγ(w)

E1,1(w) =
∞∑
k=0

wk

Γ(k + 1)
=

∞∑
k=0

wk

k!
= ew

E1,2(w) =
∞∑
k=0

wk

Γ(k + 2)
=

1

w

∞∑
k=0

wk+1

(k + 1)!
=
ew − 1

w

E1,δ(w) =
1

wδ−1

[
ew −

δ−2∑
k=0

wk

k!

]

E2,1(w2) =
∞∑
k=0

w2k

Γ(2k + 1)
=
∞∑
k=0

w2k

2k!
= cosh(w).

3.2.2 Laplace transformation

We will review some fundamental concepts of the Laplace transform. We denote the Laplace

transforms with capital letters and the originals with lowercase letters.

Definition 3.5 Given a function h ∈ L1(0,∞). we can define a function H(s) of the complex vari-

able s using the Laplace transform:

H(s) = L{h(t)}(s) =

∫ +∞

0

e−sth(t)dt, (3.12)

In this equation, h(t) is the original function of H(s), and H is commonly referred to as the Laplace

transform of h(t).

A sufficient condition for the existence of the integral (3.12) is that the function h(t) must be of

exponential order c, meaning there exist N , T > 0 such that |h(t)| ≤ Nect for t > T where T ∈ R∗+.

Laplace transform Properties

- We can reconstruct the origin h(t) from the Laplace transform H(s) using the inverse Laplace

transform

h(t) = L−1{H(s)}(t) =

∫ a+i∞

a−i∞
estH(s)ds, a = Re(s) > a0, (3.13)
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where a0 is the absolute convergence index of the integral (3.12).

- Assuming that the Laplace transformsH(s) andG(s) exist for two functions h(t) and g(t),whose

domains are limited to t ≥ 0, the Laplace transform of their convolution, defined as:

h(t) ∗ g(t) =

∫ t

0

h(t− τ)g(τ)dτ =

∫ t

0

h(t)g(τ − τ)dτ (3.14)

is equal to the product of their Laplace transforms:

L{h(t) ∗ g(t); s} = H(s)G(s).

- The Laplace transform of a derivative of an integer order q of the function h(t) :

L[h(q)(t)](s) = sqH(s)−
∑q−1

k=0 s
q−k−1h(k)(0)

= sqH(s)−
∑q−1

k=0 s
kh(q−k−1)(0).

(3.15)

Remark 3.1 Unfortunately, the Laplace transform technique is not well-suited for handling the

Riemann-Liouville fractional derivative because it necessitates knowledge of non-integer order deriv-

atives of the function at t = 0, making it challenging to apply. However, this issue is not present in

the Caputo definition, also referred to as the smooth fractional derivative in some literature [120].

3.2.3 Fractional derivatives

For the fractional derivation, there are several types of definitions, let us quote the most used in

the applications:

Fractional derivatives of Grünwald-Letnikov

Definition 3.6 ([121]) Let 0 ≤ m − 1 < q < m, we can define the left Grünwald -Letnikov

derivative of order q as follows:

G
aD

q
+h(t) = lim

p→0+

1

pq

∞∑
j=0

(−1)j(
q

j
)h(t− jh),∀t ∈ R, (3.16)

while (−1)j( q
j
) = Γ(j−q)

Γ(j+1)Γ(−q) .

Definition 3.7 Let 0 ≤ m− 1 < q < m. We can define the right Grünwald -Letnikov derivative

of order q as follows:

G
aD

q
−h(t) = lim

p→0+

1

pq

∞∑
j=0

(−1)j(
q

j
)h(t+ jh),∀t ∈ R, (3.17)

while (−1)j( q
j
) = Γ(j−q)

Γ(j+1)Γ(−q) .
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Fractional derivatives of Riemann-Liouville

Definition 3.8 The Riemann-Liouville fractional derivative of a function h of order q (with m− 1 ≤
q < m) on the interval [a, t] is defined as follows, provided the integral exists:

R
aD

q
th(t) =

1

Γ(m− q)
dm

dtm

t∫
a

(t− τ)m−q−1h(τ)dτ

=
dm

dtm
(Im−qh(t)). (3.18)

Remark 3.2 •

• If h is of class Cm, then by doing integrations by parts and repeated derivations we obtain

R
aD

q
th(t) =

m−1∑
k=0

h(k)(a)(t− a)k−q

Γ(k − q + 1)
+

1

Γ(m− q)

t∫
a

(t− τ)m−q−1h(n)(τ)dτ

= G
aD

q
th(t). (3.19)

In this case the Grünwald- Letnikov approach and Riemann- Liouville approach are equiva-

lent.

• Laplace transform: the Laplace transform of Riemann- Liouville fractional integral satisfies

L{RaD
q
th(t)} = s−qL{h(t)} (3.20)

Fractional derivatives of Caputo

Applied problems in viscoelasticity, solid mechanics and rheology have prompted several authors

including Caputo to realize that the definition of fractional derivation in the sense of Riemann

-Liouville needs to be revised despite the important role it has played in the development of

the fractional calculation. As a solution to the challenges encountered with the RL approach to

fractional differential equations when solving physical problems, the Caputo fractional derivative

was introduced.

The qth Caputo fractional derivative of h(t) (such that dmh
dtm
∈ L1[a, b] ) is defined by [122]

C
aD

q
th(t) =

1

Γ(m− q)

t∫
a

(t− τ)m−q−1f (m)(τ)dτ , (3.21)

where m− 1 ≤ q < m, m ∈ N∗.
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Remark 3.3 • Laplace transform of Caputo fractional derivative satisfies,

L{CaD
q
th(t)} = sqL{h(t)} −

m−1∑
j=0

h(j)(0+)sq−1−j (3.22)

where m− 1 < q ≤ m. To obtain the Laplace transform of the Caputo fractional derivative, it

is necessary to have information about the (bounded) initial values of the function, as well as

its integer derivatives of order j = 1,m− 1.

• Because of its favorable properties regarding Laplace transform and constant derivatives, the

Caputo definition has been used exclusively in Chapter 4.

3.3 Stability analysis of fractional systems

Control theory has extensively explored the stability analysis of fractional order systems. The

literature has derived necessary and sufficient conditions for stability [123]. As systems with

memory tend to be more stable than their memory-less counterparts, fractional-order systems are

considered to be at least as stable as their integer-order counterparts. In the fractional case, the

stability is different from that in the integer one.

Memory systems, in general, are more stable than their low-memory counterparts, making fractional-

order differential equations more stable than their corresponding integer-order equations.

This section summarizes the primary stability outcomes, which are crucial for investigating the

existence of chaotic attractors and achieving synchronization in fractional order systems.

The stability condition for fractional order systems can be expressed as follows:

Definition 3.9 Consider the following n dimensional fractional order system
Dq1z1 = h1(z1, z2, · · · , zn),

Dq2z2 = h2(z1, z2, · · · , zn),
...

Dqnzn = hn(z1, z2, · · · , zn),

(3.23)

here, qj represents a rational number between 0 and 1, indicating fractional orders, and Dqj refers to

the Caputo fractional derivative of orders qj, for j = 1, n. We assume that for j = 1,m, qj = kj/mj,

where (kj,mj) = 1, and kj,mj ∈ N. Let m denote the least common multiple of the denominators

mj ’s of qj ’s.

The system (3.23) is called as a commensurate order if q1 = q2 = · · · = qn otherwise an incom-

mensurate order.
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An equilibrium point of system (3.23) is defined as a point z∗ = (z∗1 , z
∗
2 , · · · , z∗n) where hj(z

∗) = 0

holds for all j = 1, n.

Indirect (linear) method

When the system (3.23) is a linear system, meaning [h1(z), h2(z), . . . , hn(z)]T = [cij]
n
i,j=1z = Cz,

where z ∈ Rn, the following results apply:

• The commensurate order system described by (3.23) is asymptotically stable if only if [124]

|arg(spec(C))| > qπ/2. (3.24)

• For the incommensurate fractional order dynamical system given by (3.23), asymptotic sta-

bility is achieved if all roots λ of the equation

det(diag(λmq1 , λmq2 , . . . , λmqn)− C) = 0 (3.25)

where qi is a rational number between 0 and 1,satisfy

|arg(λ)| > ρπ/2, (3.26)

where ρ = 1�m [125].

Direct method (Lyapunov)

If function hi has 2nd continuous partial derivatives at an equilibrium point z∗, the following

results apply:

• For a system (3.23) where q1 = q2 = · · · = qn, the equilibrium point z∗ is locally asymptoti-

cally stable if all the eigenvalues of the Jacobian matrix

J = [∂jhi(z
∗)]ni,j=1 =


∂1h1(z∗) ∂2h1(z∗) · · · ∂nh1(z∗)

∂1h2(z∗) ∂2h2(z∗) · · · ∂nh2(z∗)
...

... . . . ...

∂1hn(z∗) ∂2hn(z∗) · · · ∂nhn(z∗)

 . (3.27)

evaluated at z∗ satisfy the following condition [123]

|arg(Ei g(J |z∗ ))| > qπ/2. (3.28)
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• For an incommensurate fractional order dynamical system given by (3.23) with qi being a ra-

tional number between 0 and 1, the equilibrium point z∗ is asymptotically stable if all roots λ

of the equation det(diag(λmq1 , λmq2 , . . . , λmqn)− J |z∗ ) = 0 satisfy |arg(λ)| > ρπ/2, where

ρ = 1�m [120].

Lemma 3.1 [96], [126]If there exists a positive definite function V (Y (t)) such thatDα
t V (Y (t)) <

0, ∀t > 0, the trivial solution of the fractional order system

Dα
t Y (t) = G (Y (t)) , (3.29)

in which Dα
t is the Caputo fractional derivative of order α , 0 < α ≤ 1, G : Rm −→ Rm, is

asymptotically stable.

Lemma 3.2 [96]∀Y (t) ∈ Rm, ∀α ∈ [0, 1] , and ∀ t > 0

Dα
t

(
Y T (t)Y (t)

)
≤ 2Y T (t)Dα

t (Y (t)) . (3.30)

3.4 Adams-Bashforth-Moulton numerical method for calcula-

tion of fractional derivatives

A method based on the Adams Bashforth Moulton type predictor corrector scheme has been

proposed for the numerical simulation of fractional order systems in [125]. This method is

suitable for Caputo derivatives since it only requires initial conditions and has a clear physical

meaning for unknown functions. It is based on the fact that the following fractional differential

equations can be transformed into integral equations, which can then be solved by numerical

methods:

Dα
t z(t) = h(z(t), t), z(j)(0) = z

(j)
0 , j = 0,m− 1 (3.31)

is equivalent to the Volterra integral equation

z(t) =

[α]−1∑
j=0

z
(j)
0

tj

j!
+

1

Γ(α)

∫ t

0

(t− τ)α−1h(τ , z(τ))dτ . (3.32)

By converting the Volterra equation (3.32) to discrete form for time instances tn = nh (n =

0, N), h = Tsim/N , and employing the short memory principle (fixed or logarithmic [127]), a

satisfactory numerical approximation of the true solution of a fractional differential equation

can be obtained while maintaining the order of accuracy.

An improved predictor corrector approach to solve the Fokker-Planck equation has been men-

tioned in [128]. A variety of numerical algorithms have also been presented in [129].
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3.5 Fractional order chaotic systems

Studies have demonstrated that fractional order systems, which are extensions of numerous

established systems, can also exhibit chaotic behavior. Examples include:

Fractional Chen system
In 1999, Chen and Ueta proposed the Chen system [130], which shares similarities with the

Lorenz system but is not topologically equivalent to it. The Chen system is a chaotic system that

exhibits a double scroll attractor. The fractional form of the Chen system is given by [131]
dq1x
dtq1

= α(y − x),
dq2y
dtq2

= (γ − α)x− xz + γy,
dq3z
dtq3

= xy − βz,
(3.33)

where x, y, and z are the state variables, 0 < q1, q2, q3 ≤ 1 are the fractional-order derivatives.

The integer order Chen system displays chaotic attractors, for example, when (α, β, γ) = (35, 3,

28).

For qi = q = 0.9, (i = 1, 3) the fractional order Chen system can display chaotic attractor, and

numerical simulation of the Chen system for the parameter values α = 35, β = 3, γ = 28, the

fractional-order q = 0.9, and the initial conditions (−9,−5, 14) with h = 0.005 and TSim = 100s

is depicted in Figure 3.1.

Fractional Rössler system
The Rössler system is a non-linear system that has the potential to show a chaotic attractor of one

scroll [132], its fractional version [48] can be expressed as :
dq1x
dtq1

= −(y + z),
dq2y
dtq2

= x+ αy,
dq3z
dtq3

= z(x− γ) + β,

(3.34)

where x, y, and z are the state variables, 0 < q1, q2, q3 ≤ 1 are the fractional-order derivatives,

and α, β, and γ are the parameters.

Simulations are performed to obtain chaotic behavior of fractional order Rössler system and the

results demonstrate that chaos indeed exists with order less than 3. For example : chaotic attrac-

tors are found for the parameter values α = 0.63, β = 10, γ = 0.2, the fractional-order q1 = 0.9,

q2 = 0.8, q3 = 0.7, and the initial conditions (0, 0, 0) with h = 0.005 and TSim = 300s (see Figure

3.2).

Fractional Chua system
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Figure 3.1: Double scroll attractor of Chen system projected in (a) x− y − z space, (b) x− y, (c)

x− z, and (d) y − z planes.

Consider the fractional order Chua system

dα1x
dtα1

= δ(y + x−2x3

7
),

dα2y
dtα2

= x− y + z,
dα3z
dtα3

= −βy − γz.
(3.35)

where x, y, and z are the state variables, 0 < α1, α2, α3 ≤ 1 are the fractional-order derivatives.

For the parameter values δ = 10.725, β = 10.593, and γ = 0.268, the fractional-order α1 = 0.93,

α2 = 0.99, α3 = 0.92, and the initial conditions (x(0), y(0), z(0)) = (0.60, 1,−0.6) with h = 0.005

and TSim = 60s., the system (3.35) presents chaotic behavior (see Figure 3.3).

Fractional Lorenz system
The fractional order Lorenz system [133]-[135] is given by

0D
q1
t x = σ(y − x),

0D
q2
t y = x(ρ− z)− y,

0D
q3
t z = xy − βz,

(3.36)

where x, y, and z are the state variables, σ, ρ, and β are the parameters and 0 < qj ≤ 1 (j = 1, 2, 3)

are the fractional order derivatives.

for the parameter values σ = 10, ρ = 28, and β = 8/3, the fractional-order q1 = q2 = q3 =
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Figure 3.2: Chaotic attractror for the fractional-order Rössler system projected in (a) x − y − z
space and (b) x− y, (c) x− z, and (d) y − z planes.

0.993,and the initial conditions (0.1, 0.1, 0.1) with h = 0.005 and TSim = 100s, the chaotic attrac-

tor of fractional order Lorenz system is depicted in (Figure 3.4).

Fractional Lü system
The fractional Lü system is described as follows [136]

0D
q1
t x = α(y − x),

0D
q2
t y = − xz + γy,

0D
q3
t z = xy − βz,

(3.37)

where x, y, and z are the state variables, 0 < qi ≤ 1, i = 1, 3 are the fractional order derivatives,

and α, β, γ are the parameters.

The fractional order Lü system exhibit chaotic behavior for the parameter values α = 36, β =

3, γ = 20, the fractional-order q1 = 0.985, q2 = 0.99, q3 = 0.98,and the initial conditions (0.2, 0.5, 0.3)

with h = 0.005 and TSim = 200s. (see Figure 3.5).

Fractional Liu system
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Figure 3.3: Chaotic attractror for the fractional-order Chua system projected in (a) x−y−z space

and (b) y − z, and (c) x− y planes.

The fractional order Liu system ([137] and [138]) is given by

Dq1x = −αx− ey2,

Dq2y = by − dxz,
Dq3z = −γz + rxy.

(3.38)

where x, y, and z are the state variables, 0 < qi ≤ 1, i = 1, 3 are the fractional order derivatives,

and a, b, d, e, r, and γ are the parameters.

For the parameter values α = 1, β = 2.5, γ = 5, e = 1, d = 4, r = 4, the fractional-order qi = 0.95,

i = 1.3 and the initial conditions (0.2, 0, 0.5) with h = 0.005 and TSim = 100s, a two scroll

attractor exists, hence, fractional order Liu system can display chaotic behaviors (see.Figure 3.6

and Table 3.1).

Fractional Four-Wing system
The fractional order Four-wing system ([139], [140]) is given by

dqx
dtq

= αx+ βy − yz
dqy
dtq

= −γy − z + xz
dqz
dtq

= −x+ δz + xy

(3.39)

where x, y, and z are the state variables, 0 < qi ≤ 1, i = 1, 3 are the fractional order derivatives,

and α, β, δ, and γ are the parameters.
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Figure 3.4: Chaotic attractror for the fractional-order Lorenz system projected in (a) x − y − z

space and (b) y − z, (c) x− y, and (d) x− z planes.

For the parameter values α = 6, δ = 5, γ = 12, and β = 11, the fractional-order qi = 0.9, i = 1.3

and the initial conditions (−20, 3,−4) with h = 0.005 and TSim = 300s, a two scroll attractor

exists, hence, fractional order Four-Wing systam can display chaotic behaviors (see Figure 3.7).

Fractional Newton-Leipnik system
The fractional order Newton–Leipnik systam [141], [134] is given by

0D
q1
t x = −ax+ y + 10yz,

0D
q2
t y = −x− 0.4y + 5xz,

0D
q3
t z = bz − 5xz,

(3.40)

where x, y, and z are the state variables, 0 < qi ≤ 1 (j = 1, 3) are the fractional order derivatives,

and a and b are the parameters.

For the parameters value a = 0.4 and b = 0.175, the fractional-order qi = 0.95, i = 1.3 and the

initial conditions (0.19, 0,−0.18) with h = 0.005 and TSim = 200s, the chaotic attractors of the

fractional order Newton–Leipnik system are described in Figure 3.8.

Fractional Chen Four-Wing system
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Figure 3.5: Chaotic attractror for the fractional-order Lü system projected in (a) z − y − x space

and (b) y − z, (c) x− y, and (d) x− z planes.

The fractional order Chen four-wing systam [142],[138] is provided by

Dα1x = ax− yz,
Dα2y = −by + xz + d |x| ,
Dα3z = −cz + xy,

(3.41)

when a = 20
7
, b = 10, d = 0.5, c = 4,a two-scroll attractor exists, hence, fractional order Chen

Four-Wing systam can display chaotic behaviors (see.Table 3.2).

Fractional Li system
The fractional order Li system [143], [138] is provided by

Dα1x = β(y − x),

Dα2y = (γ − β)x+ γy − dxz,
Dα3z = −bz + ey2,

(3.42)

when β = 38, e = 1, b = 3, d = 1, γ = 30, a two-scroll attractor exists, hence, fractional order

Li system can display chaotic behaviors (see.Table 3.3).

Fractional Duffing system
The fractional order Duffing system is provided by

0D
α1
t x = y,

0D
α2
t y = x− x3 − γy + δ cos(zt),

(3.43)
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Figure 3.6: Chaotic attractror for the fractional-order Liu system projected in (a) x− y − z space

and (b) y − z, (c) x− y, and (d) x− z planes.

where α1, α2 are the fractional order derivatives and γ, δ, z are the system parameters.

The limit cycle in the phase plane for the Duffing fractional order oscillator with the parameter

values γ = 0.15, δ = 1.3, and z = 1, the fractional order derivatives α1 = α2 = 0.95, and the

initial conditions (1.0, 1.0) with Tsim = 200s and h = 0.005 is depicted in Figure 3.9.

Fractional Lotka Volterra system
The fractional order Lotka Volterra system, ( Petráš [137] and [134] ) is given by

dq1x
dtq1

= ax− bxy + ex2 − βzx2,
dq2y
dtq2

= −cy + dxy,
dq3z
dtq3

= −kz + βzx2,

(3.44)

in which a, b, c, d, e, k, and β are the model parameters with a, b, c, d > 0 and 0 < qj ≤ 1

(j = 1, 3) are the fractional order derivatives.

For the parameters a = b = c = d = 1, e = 2, β = 2.7, and k = 3, the initial condition

[1, 1.4 , 1], and at qj = 0.95 (j = 1, 3) and the initial conditions (1, 1.4, 1) with h = 0.005

and TSim = 200s, the fractional order Lotka Volterra system exhibit chaotic attractors which

described through Figure 3.10.
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Figure 3.7: Chaotic attractror for the fractional-order Four-wing system projected in (a) y−z, (b)

y − x, (c) x− z planes and (d) z − x− y space.

Fractional Van der Pol system
In 1920, Van der Pol employed the Van der Pol (VPO) model to investigate oscillations in

vacuum tube circuits. The nonlinear Van der Pol systam can be expressed in terms of a fractional

derivative of order q, as shown in [144]

0D
q1
t x(t) = y,

0D
q2
t y(t) = −x− ε(x2 − 1)y,

(3.45)

where 0 < q1, q2 < 1 and ε > 0. Figure 3.11 illustrate the limit cycle of the Van der Pol fractional-

order oscillator (3.45) in the phase planes x − y and y − x for the fractional-order derivatives

q1 = 1.2 and q2 = 0.8, the parameter value ε = 1, and the initial conditions (0.2,−0.2) with

Tsim = 30s and h = 0.005.
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Figure 3.8: Chaotic attractror for thr fractional-order Newton-Leipnik system projected in (a)

x− y − z space and (b) y − x, (c) z − y, and (d) z − x planes.

3.6 Conclusion

This chapter offers a concise overview, including historical background, fundamental concepts

and definitions, and a review of established chaotic systems with fractional order dynamics.
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Figure 3.9: Phase trajectory (limit cycle) in the plane x−y for the fractional-order Duffing system.

Figure 3.10: Chaotic attractror for the fractional-order Lotka Volterra system projected in (a)

z − x− y space and (b) y − x, (c) z − x, and (d) z − y planes.
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Liu System

a = e = 1, b = 2.5, d = r = 4, γ = 5

q = 0.8

q = 0.95

q = 1

Table 3.1: Simulation results for Liu system.
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Chen Four-Wing System

a = 20
7
, b = 10, d = 0.5, c = 4

α = 0.8

(a)

α = 0.9

α = 1

Table 3.2: Simulation results for Chen Four-Wing system.
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Li System

h = 2−8, β = 8, e = 1, b = 1.5, d = 1, γ = 8

α = 0.8 α = 0.95

α = 0.9 α = 1

Table 3.3: Simulation results for Li system.
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Figure 3.11: Limit cycle for the FrVPO system in (a) y − x and (b) x− y phase planes.

75



Chapter 4

Analysis and synchronization study of a

novel three-dimensional chaotic system

with fractional-order dynamics.

4.1 Introduction

This work introduces a novel 3D chaotic system in fractional order form [96]. The system displays

chaotic behavior when the order of commensurability is kept to a minimum, and both theoret-

ical and numerical solution representations are provided utilizing the Adams Bashforth Moul-

ton algorithm. The study explores FSHP synchronization of the new three-dimensional chaotic

system with fractional order and the Lorenz system exhibiting hyper chaotic behavior with

fractional-order dynamics, using FSHP synchronization and Lyapunov theory to ensure the stabil-

ity of fractional-order systems. Ultimately, numerical simulations are presented as proof of the

efficiency of the suggested controller, using the improved Adams Bashforth Moulton algorithm.

4.2 An overview of the new chaotic system

This investigation study examines the fractional order version of a three-dimensional chaotic

system originally presented in [145], which is expressed as equation
Dα1
t x = s(y − x) + βyz,

Dα2
t y = (γ − s)x+ γy − xz,

Dα3
t z = xy − z,

(4.1)

where s, β, γ ∈ R+ (where β is not equal to 1).

76



Chapter 4. Analysis and synchronization study of a novel three-dimensional chaotic system with
fractional-order dynamics.

The first section of this paper demonstrates that system (4.1) exhibits chaotic behavior when the

parameter values for s, β, and γ are set to

(s, β, γ) = (15, 8/3, 10). (4.2)

4.2.1 dynamics of system behavior

Equilibrium points and stability

When the parameters are set to the values specified in (4.2) of the system (4.1), and its equations

are set equal to zero and solved as follows:
15y − 15x+ 8

3
yz = 0,

−5x+ 10y − xz = 0,

xy − z = 0,

(4.3)

we obtain five equilibrium points [96]
P0 = (0, 0, 0) ,

P1,3 = (±4. 049,∓3. 165 9,−12. 819) ,

P2,4 = (±1. 746 4,±1. 256 3, 2. 194) .

(4.4)

In order to check the stability of the equilibrium point, we derive the Jacobian matrix of the

system (4.1) for each equilibrium point

J(P ) =


−15 15 + 8

3
z 8

3
y

−5− z 10 −x
y x −1

 . (4.5)

For P0, we obtain

J(P0) =


−15 15 0

−5 10 0

0 0 −1

 . (4.6)

Hence, the characteristic equation of the system evaluated at the equilibrium P0 can be computed

as:

det(J(P0)− λI) = 0, (4.7)

which simplifies to:

− λ3 − 6λ2 + 70λ+ 75 = 0. (4.8)
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By solving for the roots of the above equations, we obtain the eigenvalues

λ1 = −1, λ2 = 6. 5139, λ3 = −11. 514. (4.9)

The above suggests that P0 serves as an unstable saddle point.

Using a similar approach, the eigenvalues of the Jacobian matrix at P1 and P3 can be determined

λ1 = 3. 370 6− 8. 318 4i, λ2 = 3. 370 6 + 8. 318 4i, λ3 = −12. 741, (4.10)

and the eigenvalues of the Jacobian matrix at P2 and P4 can be determined

λ1 = 1. 082 4 + 4. 510 5i, λ2 = 1. 082 4− 4. 510 5i, λ3 = −8. 1648, (4.11)

consequently, P1 and P3 can be classified as unstable saddle-focus points, while P2 and P4 are also

unstable saddle-focus points due to the absence of eigenvalues with a real part equal to zero, and

the fact that λ1, λ2 are complex.

• If we consider the commensurate-order system with α1 = α2 = α3 = α, a critical re-

quirement for the fractional-order nonlinear system (4.1) to exhibit chaotic behavior is that

α > 2
π

arctan
(
|Im(λ)|
Re(λ)

)
, where λ represents the eigenvalues of the saddle equilibrium point

of index two in system (4.1). By using the aforementioned eigenvalues, we can determine

the minimum commensurate order that sustains the chaotic nature of system (4.1). The

results show that the value of α must exceed 0.75491 for P1 and P3, and 0.85006 for P2 and

P4. Thereby implying that the necessary condition for the fractional-order system (4.1) to

display chaos is α > 0.85006.

• The necessary criterion for system (4.1) to exhibit chaotic oscillations in the incommen-

surate case can be expressed as π
2M
− minj(|arg(λj (JP ))|) > 0, where λj (JP ), j = 1, 3,

represents the eigenvalues of the Jacobian matrix JP of the system (4.1) at the equilib-

rium P, M is the LCM of the fractional orders. As an example, if α1 = 0.9, α2 = 0.9,

α3 = 0.8, then M = 10. The characteristic equation of the system evaluated at the

equilibrium Pj can be computed as det(diag[λMα1 , λMα2 , λMα3 ] − JPj) = 0, which simpli-

fies to det(diag[λ9, λ9, λ8] − JPj) = 0 for j = 1, 4. We get det(diag[λ9, λ9, λ8] − JP0) = 0,

det(diag[λ9, λ9, λ8] − JP1,3) = 0, det(diag[λ9, λ9, λ8] − JP2,4) = 0. Solving for the roots of the

above equations yields λ26 + λ18 + 5λ17 + 5λ9− 75λ8− 75 = 0, λ26 + λ18 + 5λ17− 5. 333 4λ9−
3. 04× 10−4λ8 + 1026. 4 = 0, λ26 + λ18 + 5λ17 + 3. 841 2λ9 + 2. 094× 10−3λ8 + 175. 67 = 0.

From the roots of these equations, we obtain λ = 1. 231 5 whose argument is zero which is the

minimum argument. Thus, the necesary stability condition holds since π
2M
− 0 > 0.
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4.2.2 Using Adams–Bashforth–Moulton algorithm on the novel system

Through the utilization of the Adams-Bashforth-Moulton algorithm as described in [146], the

new fractional-order chaotic system (4.1) can be expressed as stated in: [96]

xm+1 = x0 + hα1
Γ(α1+2)

 a
(
yβm+1 − x

β
m+1

)
+ byβm+1z

β
m+1

+
∑m

j=1 a1,j,m+1 (a (yj − xj) + byjzj)

 ,

ym+1 = y0 + hα2
Γ(α2+2)

(
(c− a)xβm+1 + cyβm+1 − x

β
m+1z

β
m+1

+
∑m

j=1 a2,j,m+1 ((c− a)xj + cyj − xjzj)

)
,

zm+1 = z0 + hα3
Γ(α3+2)

(
xβm+1y

β
m+1 − z

β
m+1 +

∑m
j=1 a3,j,m+1 (xjyj − zj)

)
,

(4.12)

in which 
xβm+1 = x0 + 1

Γ(α1)

∑m
j=1 b1,j,m+1 (a (yj − xj) + byjzj) ,

yβm+1 = y0 + 1
Γ(α2)

∑m
j=1 b2,j,m+1 ((c− a)xj + cyj − xjzj) ,

zβm+1 = z0 + 1
Γ(α3)

∑m
j=1 b3,j,m+1 (xjyj − zj) ,

(4.13)

with 
b1,j,m+1 = hα1

α1
((m− j + 1)α1 − (m− j)α1) ,

b2,j,m+1 = hα2
α2

((m− j + 1)α2 − (m− j)α2) ,
b3,j,m+1 = hα3

α3
((m− j + 1)α3 − (m− j)α3) ,

(4.14)

and

ai,j,m+1 =


(m)αi+1 − (m− αi) (m+ 1)αi , j = 0,

(m− j + 2)αi+1 − (m− j)αi+1 − 2 (m− j + 1)αi+1 , 1 ≤ j ≤ n,

1, j = m+ 1.

i = 1, 3, (4.15)

The Adams-Bashforth-Moulton algorithm can be employed to numerically solve a fractional-order

system.

As shown in Figure 4.1, the simulation result for the fractional-order system (4.1) projected onto

the x − z plane, was computed using α1 = α2 = α3 = 0.88, simulation time Tsim = 100s, time

step h = 0.005, s = 15, β = 8/3, γ = 10, and initial conditions (x(0), y(0), z(0)) = (1,−1, 2) to

produce a double-scroll attractor.

Figure 4.2 shows the simulation result for the fractional-order system (4.1) projected onto the

z − y, with the parameter values s = 15, β = 8/3, γ = 10, fractional orders q1 = q2 = q3 = 0.95,

and initial conditions (x(0), y(0), z(0)) = (−2, 5,−10) .
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Figure 4.1: A double-scroll attractor.for the fractional-order system (4.1) projected onto the x− z
plane.

Figure 4.3 also shows the simulation result for the fractional-order system (4.1) projected onto

the y − z, with the parameter values a = 15, b = 8/3, c = 10, fractional orders q1 = q2 = q3 = 0.95,

and initial conditions (x(0), y(0), z(0)) = (−10, 5,−10) .

Simulation results for the fractional-order system (4.1) projected onto the z− x− y plane and the

x− y − z plane for q1 = q2 = 0.9, q3 = 0.8, (x(0), y(0), z(0)) = (1,−1, 2) are depicted in Figure 4.4

and Figure 4.5 respectively.

4.2.3 Lyapunov exponents

Lyapunov exponents are used to measure the exponential rates of divergence and convergence of

nearby trajectoiries, which is an important characterstic to judge whether the system is chaotic or

not.

The existence of at least one positive Lyapunov exponent implies that the system is chaotic.

For the parameter values s = 15, β = 8/3, γ = 10 and the initial conditions (1,−1, 2) for the

fractional order (4.1) system , the Lyapunov exponents (LEs ) were computed using MATLAB in

the two cases as follows:

Case 4.1 For the commensurate case with q1 = 0.98, q2 = 0.98, q3 = 0.98, (LEs ) are obtained as:

L1 = 0.7240, L2 = −0.00, L3 = −7.3507. (4.16)

Case 4.2 For the incommensurate case with q1 = 0.9, q2 = 0.9, q3 = 0.8, (LEs) are:

L1 = 1.6124, L2 = −0.0015, L3 = −12.4935. (4.17)
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Figure 4.2: Simulation result for the fractional-order system (4.1) projected onto the z − y plane.

The Lyapunov spectrium for the two cases is shown in Figure.4.6 and Figure.4.7 respectively.
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Figure 4.3: Simulation result for the fractional-order system (4.1) projected onto the y − z plane.

4.3 Full-State Hybrid Projective Synchronization of fractional

order systems

This section explores the synchronization of the new fractional-order chaotic system (4.1) and the

fractional-order hyper-chaotic Lorenz system through full-state hybrid projective.

The novel fractional-order chaotic system is used as the driving system, Thus, we cons ider the

novel fractional-order chaotic system as the driving system given by [96]
Dα1
t x1 = a(x2 − x1) + bx2x3,

Dα2
t x2 = (c− a)x1 + cx2 − x1x3,

Dα3
t x3 = x1x2 − x3,

(4.18)

where a = 15, b = 8/3, c = 10, and the fractional-order hyper-chaotic Lorenz system as the

response system [96] 
Dα1
t y1 = a (y2 − y1) + y4 + u1

Dα2
t y2 = cy1 − y2 − y1y3 + u2

Dα3
t y3 = −by3 + y1y2 + u3

Dα4
t y4 = −y2y3 + dy4 + u4,

(4.19)

where the parameter values are a = 10, b = 28, c = 8/3, d = −1, and the fractional orders of the

system are (α1, α2, α3, α4) = (0.98, 0.98, 0.98, 0.98) .
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Figure 4.4: Simulation result for the fractional-order system (4.1) projected onto the z − x − y

space.

In accordance with Definition 2.19, the state errors for (4.18) and (4.19) are given by

ei = yi −
3∑
j=1

βijxj, i = 1, 4. (4.20)

Taking the Caputo fractional derivative of both sides with respect to time t, we obtain:

Dαi
t ei = Dαi

t yi −Dαi
t

(
3∑
j=1

βijxj

)
, i = 1, 4. (4.21)

Thus, the error dynamical system can be represented as:

Dα1
t e1 = Dα1

t y1 −Dα1
t

(∑3
j=1 β1jxj

)
Dα2
t e2 = Dα2

t y2 −Dα2
t

(∑3
j=1 β2jxj

)
Dα3
t e3 = Dα3

t y3 −Dα3
t

(∑3
j=1 β3jxj

)
Dα4
t e4 = Dα4

t y4 −Dα4
t

(∑3
j=1 β4jxj

)
,

(4.22)

In equation (4.22), the error dynamical system is described using the fractional-order system

(4.11) and the driving system (4.12). The system can be written as:
Dα1
t e1 = a (y2 − y1) + y4 + u1 −Dα1

t (β11x1 + β12x2 + β13x3)

Dα2
t e2 = cy1 − y2 − y1y3 + u2 −Dα2

t (β21x1 + β22x2 + β23x3)

Dα3
t e3 = −by3 + y1y2 + u3 −Dα3

t (β31x1 + β32x2 + β33x3)

Dα4
t e4 = −y2y3 + dy4 + u4 −Dα4

t (β41x1 + β42x2 + β43x3) .

(4.23)
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Figure 4.5: Simulation result for the fractional-order system (4.1) projected onto the x − y − z

space.

This system can be rewritten as{
Dαi
t ei =

4∑
j=1

aijej (t) +Ri + ui, i = 1, 4, (4.24)

where 
R1 = −Dα1

t (β11x1 + β12x2 + β13x3) +
∑4

j=1 a1j (yj (t)− ej (t))

R2 = −y1y3 −Dα2
t (β21x1 + β22x2 + β23x3) +

∑4
j=1 a2j (yj (t)− ej (t))

R3 = y1y2 −Dα3
t (β31x1 + β32x2 + β33x3) +

∑4
j=1 a3j (yj (t)− ej (t))

R4 = −y2y3 −Dα4
t (β41x1 + β42x2 + β43x3) +

∑4
j=1 a4j (yj (t)− ej (t)) .

(4.25)

To rewrite the error system (4.24) in a compact form, we can write it as:
Dα1
t e1

Dα2
t e2

Dα3
t e3

Dα4
t e4

 =


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



e1

e2

e3

e4

+


R1

R2

R3

R4

+


u1

u2

u3

u4u1

 , (4.26)

which can be written in a more compact form as:

Dα
t e = Ae+R + U, (4.27)

where R = (Ri)i=1,4 , A = (aij)4×4 , U = (ui)i=1,4 , e = (e1, e2, e3, e4)T .
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Figure 4.6: Lyapunouv spectrium for the commensurate case with q1 = q2 = q3 = 0.98.

Figure 4.7: Lyapunouv spectrium for the incommensurate case with q1 = q2 = 0.9, and q3 = 0.8,

Theorem 4.1 ([96]) The full-state hybrid projective synchronization between the master system

(4.18) and the slave system (4.19) occurs under the following control law:

U = − (De+R) , (4.28)

where D is a 4× 4 feedback gain matrix selected so that A−D is a negative definite matrix.

Proof. By substituting equation (4.28) into (4.27) , we obtain:

Dα
t e = (A−D) e, (4.29)

where: A = (aij) , D = (dij) are two 4 × 4 matrices and e = (e1, e2, e3, e4)T is the error vector of

the system. If we select the feedback gain matrix D such that A−D is a negative definite matrix,
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then all the eigenvalues λi, i = 1, 4, of A − D stay in the left-half plane, i.e., Re (λi) < 0, and

selecting a candidate Lyapunov function as

V =

4∑
i=1

1

2
e2
i , (4.30)

then the time Caputo fractional derivative of order 0.98 of the Lyapunov function V along the

trajectory of the system (4.29) is as follows

D0.98
t V =

4∑
j=1

D0.98
t

(
1

2
e2
i

)
. (4.31)

applying Lemma 3.2, we get (4.31) is negative

D0.98
t V ≤

4∑
j=1

eiD
0.98
t ei (4.32)

= λ1e
2
1 + λ2e

2
2 + λ3e

2
3 + λ4e

2
4 < 0. (4.33)

which implies, according to Lemma 3.1, the asymptotic stability of the trivial solution of the

fractional-order system (4.29). Therefore, the full-state hybrid projective synchronization between

the two systems is achieved.

4.4 Numrical simulation

The approach mentioned earlier outlines the technique for achieving FSHPS, which is as follows

[96]

A =


−10 10 0 1

8/3 −1 0 0

0 0 −28 0

0 0 0 −1

 , (4.34)

and
R1 = 10e1 − 10e2 − e4 + 25x1 − 35x2 + 5x3 − 10y1 + 10y2 + y4 − 5x1x2 + 2x1x3 − 8

3
x2x3

R2 = e2 − 8
3
e1 + 35x1 − 40x2 − 3x3 + 8

3
y1 − y2 + 3x1x2 + x1x3 − 16

3
x2x3 − y1y3

R3 = 28e3 + 75x1 − 90x2 + 2x3 − 28y3 − 2x1x2 + 3x1x3 − 32
3
x2x3 + y1y2

R4 = e4 + 100x1 − 110x2 + 7x3 − y4 − 7x1x2 + 2x1x3 − 16x2x3 − y2y3,

(4.35)

and finally, the equation

(u1, u2, u3, u4)T = −
(
R +D (e1, e2, e3, e4)T

)
, (4.36)
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can be expressed as:
u1 = 35x2 − 25x1 − 15e1 − 5x3 + 10y1 − 10y2 − y4 + 5x1x2 − 2x1x3 + 8

3
x2x3

u2 = 40x2 − 35x1 − 5e2 + 3x3 − 8
3
y1 + y2 − 3x1x2 − x1x3 + 16

3
x2x3 + y1y3

u3 = 90x2 − 75x1 − 30e3 − 2x3 + 28y3 + 2x1x2 − 3x1x3 + 32
3
x2x3 − y1y2

u4 = 110x2 − 100x1 − 10e4 − 7x3 + y4 + 7x1x2 − 2x1x3 + 16x2x3 + y2y3

(4.37)

for the chosen
(
βij
)

4×3
=


1 2 5

2 1 −3

4 3 2

6 2 7

 , D =


5 10 0 1

8/3 4 0 0

0 0 2 0

0 0 0 9

 .

Then the error system is given by
Dα1
t e1

Dα2
t e2

Dα3
t e3

Dα4
t e4

 =


−15 0 0 0

0 −5 0 0

0 0 −30 0

0 0 0 −10




e1

e2

e3

e4

 . (4.38)

The matrix (A−D) has eigenvalues of λ1 = −15, λ2 = −5, λ3 = −30, λ4 = −10, all of which

are negative. This indicates that the error system is asymptotically stable and the synchronization

between systems (4.18) and (4.19) has been achieved.

To demonstrate the effectiveness of the proposed controller, we utilized the improved classical

Adams-Bashforth-Moulton method and solved system (4.38) with (α1, α2, α3, α4) = (0.98, 0.98, 0.98, 0.98)

and initial conditions of (e1 (0) , e2 (0) , e3 (0) , e4 (0)) = (−2, 1,−5, 1) . The time history of the syn-

chronization errors e1(t); e2(t); e3(t); e4(t) is illustrated in: Figure 4.8, Figure 4.9,.Figure 4.10, and

Figure 4.11,
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Figure 4.8: Time evolution of the error signal e1(t) under the action of the controller (4.29) is

shown for FSHP.

Figure 4.9: Time evolution of the error signal e2(t) under the action of the controller (4.29) is

shown for FSHP.
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Figure 4.10: Time evolution of the error signal e3(t) under the action of the controller (4.29) is

shown for FSHP.

Figure 4.11: Time evolution of the error signal e4(t) under the action of the controller (4.29) is

shown for FSHP.
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4.5 Conclusion

We establish that the system displays chaotic behavior beyond a certain minimum commensurate

order value, and present a hypothetical and computational solution using the Adams–Bashforth–

Moulton algorithm. Moreover, we investigate the feasibility of full-S hybrid PS between the

new three-dimensional fractional-order system and the Lorenz hyper-chaotic system of fractional-

order. This is done by utilizing the definition of FSHPS and Lyapunov theory for linear fractional-

order system stability. The proposed controller’s efficacy is validated through numerical simula-

tions conducted in Matlab using the improved Adams–Bashforth–Moulton algorithm.
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General Conclusion and Perspectives

We studied in this thesis the control and synchronization of integer and fractional nonlinear

continuous chaotic systems in dimension 3 or more.

With our findings presented, we have successfully attained our objectives: a novel fractional sys-

tem based on the Caputo derivative definition is introduced and has been shown to display chaotic

behavior when the order of commensurability is kept to a minimum. The Adams–Bashforth–

Moulton algorithm is employed to provide both theoretical and numerical solutions for this sys-

tem, and a thorough examination of full-state hybrid projective synchronization is conducted.

As prospects, we are interested in conducting additional research on the practical applications of

this fractional system.
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