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ر دي  ق  كر و ت 
ش 

 
 

 مصداق ا لقوله تعالى بعد بسم الله الرحمان الرحيم

.﴾ٌ وَإِذْ تأَذََّنَ رَبُّكُمْ لئَِن شَكَرْتمُْ لََزَِيدَنَّكُمْ ۖ وَلئَِن كَفَرْتمُْ إِنَّ عَذَابِي لَشَدِيد ﴿  

لله الذي وهبني عق لا مفكرا، ولسانا ناطق ا وأنار دربي، ويسر أمري لإنهاء هذا العمل،   الحمد
.والصلاة والسلام على رسول الله صلى الله عليه وسلم  

والشكر من    للهم لك الحمد والشكر في الأولى ولك الحمد والشكر في الأخرة ولك الحمداف 
. وأبدا    قبل ولك الحمد والشكر من بعد وفي كل حين ودائما    

أتقدم بأسمى عبارات الشكر والتقدير إلى كل من علمني حرف ا وكل من انار دربي إلى كل  
.وادبا به ارتفع  من علمني علما به انتفع    

" الذي أف ادني بنصائحه وتوجيهاته طيلة إنجاز  حناشي ف ارح  شكر خاص للأستاذ المشرف " 
 هذه المذكرة

شرفتني بقبولها مناقشة مذكرتي، أستاذنا القدير  كما أشكر أعضاء لجنة المناقشة التي  
.ممتحنا" نذير جدي"  رئيسا والاستاذ"راولية الحاج  "ز  

بتوجيهاتهما القيمة وملاحظاتهما السديدة  لياللذين لاشك أنهما سيفيضون     .  

وفي الأخير أشكر كل من قدم لي يد العون والمساعدة سواء من قريب أو من بعيد ولو  
بتوجيه أو حتى بدعوة في ظهر الغيب لهم جزيل الشكر والعرف ان  بكلمة طيبة أو  

.ول كم مني ف ائق التقدير والاحترام  

  



 

هدإء  إ 
 أهدي ثمرة هذا العمل المتواضع

سر    اإلى من كانفي الوجود وأسمى لفظين نطق بهما لساني   تينالى أعذب كلم
وسبب بلوغي في هذه المرحلة والدي حفظهما الله وأطالا عمرهما.  وجودي  

". وق ل ربي ارحمهما كما ربياني صغيرامن ق ال فيهما الله جل و علا : "الى    

أبلغ    ىلأجلي وضحت بالكثير حت  تإلى نور ق لبي و ابتسامة حياتي، إلى منبع الحنان التي سهر 
هائياضعكس  يإلى الشمس التي تنير حياتنا وما كنا إلا قمرا   الدرجة,هذه    

"الى أمي الغالية  "    

الذي أضاء طريقي فكان نبراسا وعبق ا  د بيتنا و سندي وسر قوتي إلىإلى عما  

"الى أبي سندي  "  امتدت رائحته ثلاثة و عشرون سنة  

" أمينة" و "  وصالالى أختاي الغاليتان "   

" إسلام" و "  أحمد"  براعميالى أخوي    

"خالتي وزوجها   الى"" "بلق اسموجدي   " عائشةالى جدتي " الى من وافتهم المنية  

  " جدة الدكتورة دعاءوالى"

 رحمهم الله وغفر لهم ورزقهم الفردوس الاعلى.

" والى   خالي علاء الدينبالاخص " ل عمرهما الى خوالي وحفظهما الله واطاي  الى جدتي وجد
 اعمامي وخالاتي وكل أحبابي

غلاب عائشة""  زيان "و الى صديق اتي " ايمان ب   

 

 

.إلى كل من تصفح هذه المذكرة وانتفع بها وتذكرني بدعائه  



 

Abstract 

The purpose of this work is to study the existence of chaos in 

some fractional-order systems, by broving that the studied 

fractional system can display chaotic behavior in two cases. 

In the case commensurate using the minimal order systems 

and in the case incommensurate order using the caracteristic 

polynomial, then the corresponding simulation results are 

provided to demonstrate the effectiveness of the proposed 

method in Matlab. 

Keywords: 

 Dynamical system, chaos, chaos theory , chaotic of 

Fractional-order, commensurate , incommensurate. 



 

ملخصال  
من خلال  ,ةنظممة السسر الادراسة وجود الفوضى في بعض الهدف من هذا العمل هو 

اثبات ان النظمام السسري المدروس  مسنظه عرض السلوك الفوضوي في الحالت ن الحالة 

المنظاسب والحالة الغ ر متسافئة باستخدام باستخدام الحد الادنظى من معا  ر الترت ب   المتسافئة

متعددة حدود متم زة  ثم التحقق من النظتائج باستخدام المحاساة العدد ة من خلال برنظامج 

.الماتلاب   

 السلمات المفتاح ة:

.برتب سسر ة فوضوي، نظمام  فوضوي نظمام د نظام سي، فوضى، جاذب   
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General Introduction
Dynamical systems are part of life, Quite often it has been studied as an abstract concept

in mathematics, chaos is one of the few concepts in mathematics which cannot usually be

defined in a word or statement[12]. Most dynamical systems are considered chaotic depending

on either the topological or metric properties of the system [15]. Chaotic systems have been a

focal point of renewed interest for researchers in recent decades and such nonlinear systems

can occur in various natural and man-made systems [16] .

The study of chaos in dynamical systems has revolutionized our understanding of complex

and unpredictable behavior in various scientific disciplines [13]. In the late 20th century, the

subject of research known as "chaos theory" began to take shape. Since then, it has had a

significant influence on several fields [22], including mathematics, physics, biology, and many

more [23]. Henri Poincaré, a French mathematician, made substantial contributions to the

discipline in the early 19th century [11], which can be seen as the beginning of the history of

chaos in dynamical systems [14]. There are solutions that are quite sensitive to the beginning

circumstances, as Poincaré’s work on the three-body problem in celestial mechanics showed,

the Butterfly Effect is a concept derived from chaos theory, in which this term refers to the

concept that a tiny change in one location and time can cause significant, unforeseen effects

in another location and time [21]. The idea of sensitive dependency on beginning conditions

serves as the foundation for this, where small changes in the starting conditions of a system

can lead to vastly different outcomes over time [18].

Indeed, the idea of chaos extends beyond integer-order systems to fractional-order systems,

and fractional calculus offers a mathematical foundation for analyzing and simulating such

systems since it works with derivatives and integrals of non-integer order [19]. Systems with

fractional order have intricate dynamics, which may involve chaotic behavior [17]. The study

of chaos in fractional-order systems is an active research area [20], and it has implications

for understanding and modelling complex phenomena with memory effects and long-range

interactions. Fractional calculus provides a powerful tool for analyzing and predicting the

behavior of such systems, allowing for a more comprehensive understanding of their dynamics

and potential applications in various fields.



In the first chapter, we recall some basic notions of dynamical systems and the theory of

chaos, also basic definitions and properties of fractional derivatives are provided with numeri-

cal methods for solving fractional-order systems.

In the second chapter, we present some examples of fractional-order chaotic systems.

Finally, the last chapter is devoted to the study of the existence of chaos in a novel fractional-

order system, in the first part, we describe the fractional-order system and we study the equilib-

rium points and the stability, and in the last part, we provide evidence that the system exhibits

chaotic behavior once it reaches a certain threshold of minimum commensurate order.



Chapter 1

Preliminaries

1.1 Introduction

In this chapter, we introduce some preliminaries about dynamical systems and chaos theory,

also basic definitions and properties of fractional derivative are given with numerical method

for solving fractional-order systems, and study its stability.

1.2 Dynamical systems

Dynamical systems refer to systems that change over time. Systems like this may be found in a

number of disciplines, including physics, engineering, biology, economics, and social sciences.

Dynamic systems can be either linear or nonlinear, its classified into two categories:

1.2.1 Continuous dynamic systems

Definition 1.1 A continuous dynamic system is a system where its state changes continuously

over time, and it is represented by the form:

x·t = F (x, t); x ∈ Rn, t ∈ R+,

with F : Rn × R+ → Rn denotes the dynamics of the system.

6



Chapter 1. Preliminaries

1.2.2 Discrete dynamic systems

Definition 1.2 A discrete-time dynamic system is a mathematical model that describes how a

system evolves over time, where time is treated as a sequence of discrete points in time [1] , and it

is represented by a fine difference equation as follows:

x(k + 1) = F (x(k), k), (1.1)

with x (k) ∈ Rn, k ∈ N and F : Rn × N→ Rn.

1.2.3 Phase space of a dynamical system

Definition 1.3 The phase space of a dynamical system is typically represented as a multidimen-

sional space, where each dimension is a direct representation of a phase variable. A point in this

space represents the system’s state at any given moment, and a trajectory in the phase space depicts

the system’s mobility through time.

1.2.4 Equilibrium point

Definition 1.4 In mathematics, specifically in differential equations, an equilibrium point is a

constant solution to a differential equation.

The point
∗
x ∈ Rn is an equilibrium point [2] for the differential equation:

dx
dt

= f (t, x) if f
(
t,
∗
x
)

= 0 for all t.

Similarly, the point
∗
x ∈ Rn is an equilibrium point (or fixed point) for the difference equation.

xk+1 = f (k, xk) ,

if

f
(
k,
∗
xk

)
=
∗
x for k = 0, 1, 2...

In the study of dynamic systems, equilibrium points are crucial because they provide de-

tails about the behavior and stability of the system. They may also be used to create control

systems to manage the behavior of the system and examine how the system behaves close to

its equilibrium point.

1.2. Dynamical systems 7



Chapter 1. Preliminaries

1.3 Chaos theory

1.3.1 Definition of chaotic systems

In dynamic systems, "chaos" refers to a complex behavior that appears to be random or un-

predictable. Because chaotic systems are sensitive to the beginning conditions, tiny changes in

the early circumstances can have a significant impact on the course of events. This makes it

exceedingly difficult, if not impossible, to anticipate the long-term behavior of chaotic systems.

Definition 1.5 Let V be a set. f : V → V is said to be chaotic on V if f has the following three

properties:

1· f has sensitive dependence on initial conditions.

2 · f is topologically transitive.

3· The periodic points of f are dense in V .

1.3.2 Some characteristics of chaotic systems

Chaotic systems have several properties that distinguish them from other types of dynamical

systems:

• Sensitive to initial conditions: This means that small changes in the initial conditions

of the system can lead to large differences in the behavior of the system over time.

• topologically transitive: In mathematics, If a point in the phase space has an orbit that

is dense in the phase space, the dynamical system is said to be topologically transitive.

This means that any point in the phase space is arbitrarily near to the system’s trajectory,

which it follows.

• dense periodic orbits: Since they offer a means of approximating the behavior of chaotic

systems, dense periodic orbits are significant in the study of dynamical systems.

• Lyapunov exponent: The Lyapunov exponent is a way to gauge how quickly close paths

in a dynamical system diverge. It is named after the Russian mathematician Alexander

1.3. Chaos theory 8



Chapter 1. Preliminaries

Lyapunov, who created the concept in the late 19th century. The Lyapunov exponent is a

measurement of the stability of a dynamical system. On the other hand, if the Lyapunov

exponent is positive, the system is unstable and behaves chaotically because neighboring

paths tend to diverge over time. Nearby paths in the system tend to converge over

time if the Lyapunov exponent is negative, demonstrating that the system is stable. It

is frequently used to investigate the behavior of chaotic systems, in which neighboring

paths are subject to sudden and unpredictable divergence.

1.3.3 Chaos theory applications

Chaos theory has many applications in various fields. Here are some examples:

1. Physics: Chaos theory has been applied in physics to comprehend the behavior of com-

plex systems like celestial mechanics, nonlinear optics, and fluid dynamics.

2. Engineering: Chaos theory has been applied in engineering to enhance the planning

and management of intricate systems including power plants, chemical reactors, and

communication networks.

3. Biology: Chaos theory has been applied in biology to comprehend the functioning of

biological systems including ecological systems, brain networks, and heart cycles.

4. Finance: Chaos theory has been applied in finance to understand the behavior of finan-

cial markets and to develop models that can predict market fluctuations.

5. Computer Science: Chaos theory has been applied in computer science to develop algo-

rithms for optimization and data analysis.

6. Music and Art: Chaos theory has been applied in music and art to create new forms of

expression and to explore the relationship between randomness and creativity.

Overall, chaos theory has developed into a potent tool for comprehending the behavior of

complex systems in a wide range of disciplines, and it continues to stimulate new research and

applications in science, engineering, and the arts.

1.3. Chaos theory 9
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1.4 Fractional calculus

Over the years, many mathematicians using their own notation and approach, have found

various definitions that fit the idea of a non-integer order integral or derivative. One version

that has been popularized in the world of fractional calculus is the Riemann Liouville definition.

1.4.1 Useful Mathematical Functions

We first explore several essential mathematical notions that are intrinsically linked to fractional

calculus and will frequently be encountered before looking at the formulation of the Riemann-

Liouville Fractional and caputo derivatives. The beta function and the gamma function are

examples of these.

The Gamma Function

Definition 1.6 The most basic interpretation of the Gamma function is simply the generalization

of the factorial for all real numbers [3]. Its definition is given by

Γ (x) =
∫∞

0
e−ttx−1dt, x ∈ R+. (1.2)

The Beta Function

Definition 1.7 Like the Gamma function, the Beta function is defined by a definite integral [3].

Its definition is given by

β (x, y) = Γ(x)Γ(y)
Γ(x+y)

, x, y ∈ R+. (1.3)

The Beta function can also be defined in terms of the Gamma function:

β (x, y) =
∫ 1

0
tx−1 (1− t)y−1 dt, x, y ∈ R+. (1.4)

1.4.2 Grünwald-Letnikov derivative

The Grünwald-Letnikov derivative [9] is a method used to approximate the derivative of a

function. It is a numerical approach that is particularly useful for functions that are not easily

1.4. Fractional calculus 10



Chapter 1. Preliminaries

differentiable or for situations where analytical differentiation is not feasible.

Let us consider the continuous function f (t) . Its first derivative can be expressed as

d

dt
f (t) ≡ f ′ (t) = lim

h→0

f (t)− f (t− h)

h
(1.5)

By using Eq. (1.5) twice, we obtain a second derivative of the function f (t) in the form

d2

dt2
f (t) ≡ f ′′ (t) = lim

h→0

f ′ (t)− f ′ (t− h)

h
(1.6)

= lim
h→0

f (t)− 2f (t− h) + f (t− 2h)

h2

With (1.5) and (1.6) we can get a third derivative of the function f (t) as

d3

dt3
f (t) ≡ f ′′′ (t) = lim

h→0

f ′′ (t)− f ′′ (t− h)

h

= lim
h→0

f (t)− 3f (t− h) + 3f (t− 2h)− f (t− 3h)

h3

The Grünwald-Letnikov derivative provides an alternative way to approximate derivatives, es-

pecially for functions that do not have a simple algebraic expression for their derivatives or for

problems where numerical methods are more suitable. However, it’s important to note that

the convergence of the method depends on the properties of the function being differentiated

and the choice of the time step ∆t.

1.4.3 The Riemann-Liouville derivative

Definition 1.8 The Riemann-Liouville derivative of fractional order α of function x (t), [3]is given

as

RLDα
0,t v (t) =

dm

dtm
D
−(m−α)
0,t v (t) (1.7)

=
1

Γ (m− α)

dm

dtm

∫ t

a

(t− s)α−1 v (s) ds

where m− 1 6 α < m ∈ Z+.

This derivative was induced by the Riemann-Liouville derivative and is useful inphysics.

1.4. Fractional calculus 11
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1.4.4 Caputo fractional derivative

Definition 1.9 The Caputo fractional derivative of v(t) is given as:

CDα
xv (t) =

1

Γ (m− α)

t∫
a

f (m) (s)

(t−m)α−m+1ds, (1.8)

where m− 1 6 α < m ∈ Z+.

1.4.5 Relation between Riemann-Liouville and Caputo fractional deriva-

tives

The relation between Riemann-Liouville and Caputo fractional derivatives with singulareker-

nels given as:

CDα
xv (t) =RL Dα

0,t v (t)−
m−1∑
k=0

v(k) (α)

Γ (k − α + 1)
(t− a)k−a (1.9)

There fore,

If v (a) = v′ (a) = · · · = v(n−1) (a) = 0, then CDα
xv (t) =RL Dα

0,t v (t) . (1.10)

1.4.6 Stability of Fractional Order Systems

Stability analysis of fractional order systems, which is of main interest in control theory [4] . We

take into consideration the fractional order system in n dimensions below.

dq1x1
dtq1

= h1 (x1, x2, ..., xn) ,

dq2x2
dtq2

= h2 (x1, x2, ..., xn) ,
...

dqnxn
dtqn

= hn (x1, x2, ..., xn) ,

(1.11)

Where qi are equal to real number or rational num bers between 0 and 1 and dqi
dtqi

is the Ca-

puto frac tional derivative of order qi,for i = 1, 2, ..., n. If function fi has second continu-

ous partial deriva tives in a ball centered at an equilibrium point P ∗ = (x∗1, x
∗
2, ..., x

∗
n), that is

fi (x
∗
1, x
∗
2, ..., x

∗
n) = 0 for i = 1, 2, ..., n, then we have the following results.

1.4. Fractional calculus 12
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• Case commensurate if q1 = q2 = · · · = qn = q then the equilibrium point x* of system

(1.11) is asymptotically stable if |arg (spec (J |x∗))| > qπ/2, where the matrix J is the

Jacobian matrix of the system (1.11) that is defined as J =
[
∂fi
∂xi

]n
i,j=1

.

• Case Incommensurate A fractional-order system’s stability is typically influenced by

where its poles and zeros are situated on the complex plane. If all the poles lie in the

left half of the complex plane, the system is said to be asymptotically stable. If some

poles lie on the imaginary axis, the system may exhibit oscillations. If any pole lies in

the right half of the complex plane, the system is unstable. If qi are rational numbers

between 0 and 1 such that αi = li/mi, (li,mi) = 1, li, mi ∈ N for i = 1, 2, · · · , n, then the

equilibrium point X∗ of system (1.11) is asymptotically stable if all roots λ of the equation

det (diag (λmα1 , λmα2 , · · · , λmαn)− J |x∗) = 0. satisfy |arg (λ)| > qπ/2, where q = 1/m and

m be the least common multiple of the denominators mi of αi.

1.4.7 Numerical method for solving fractional order systems

Numerical methods for solving fractional-order dynamic systems have become increasingly im-

portant in recent years due to their wide range of applications in physics, engineering, finance,

and other fields. Among these methods we introduce Adams-Bashforth-Moulton algorithm.

Adams-Bashforth-Moulton algorithm

Consider for α ∈ (m− 1,m] the following initial value problem (IVP)

Dαy (t) = f (t, y (t)) , 0 ≤ t ≤ T, (1.12)

y(k) (0) = y
(k)
0 k = 0, 1, ...,m− 1. (1.13)

The IVP (1.12)and (1.13) is equivalent to the Volterra integral equation

y (t) =
m−1∑
k=0

y
(k)
0

tk

k!
+

1

Γ (α)

t∫
0

(t− τ)α−1 f (τ , y (τ)) dτ . (1.14)

1.4. Fractional calculus 13
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Consider the uniform grid {tn = nh/n = 0, 1, ..., N} for some integer N and h := T/N. Let

yh (tn) be approximation to y (tn). Assume that we have already calculated approximations

yh (tj) , j = 1, 2, ..., n and we want to obtain yh (tn+1) by means of the equation

yh (tn+1) =
m−1∑
k=0

tkn+1

k!
y

(k)
0 +

hα

Γ (α + 2)
f (tn+1, y

p
h (tn+1)) +

hα

Γ (α + 2)

n∑
j=0

aj,n+1f (tj, yn (tj)) , (1.15)

where

aj,n+1 =


nα+1 − (n− α) (n+ 1)α , if j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2 (n− j + 1)α+1 , if 1 ≤ j ≤ n,

1, if j = n+ 1

. (1.16)

The preliminary approximation yph (tn+1) is called predictor and is given by

yph (tn+1) =
m−1∑
k=0

tkn+1

k!
y

(k)
0 +

1

Γ (α)

n∑
j=0

bj,n+1f (tj, yn (tj))

where

bj,n+1 =
hα

α
((n+ 1− j)α − (n− j)α) . (1.17)

The error in this method is given by

max
j=0,1,...N

|y (tj)− yh (tj)| = O (hp) , (1.18)

where p = min (2, 1 + α) .

It involves predicting the solution at the next time step using the Adams-Bashforth method

and then correcting the solution, both of which are modified to handle fractional derivatives.

The method is accurate and efficient, but it can be computationally expensive for high order

dynamical systems.

1.5 Conclusion

This Chapter contain some prelimanaries about dynamical systems and chaos theory, Also,Basic

definitions and properties of fractional derivative are given with numerical method for solving

fractional differential equations.

1.5. Conclusion 14



Chapter 2

Examples of fractional-order chaotic

systems

2.1 Introduction

Chaos in fractional order systems refers to the study of complex dynamical behavior in systems

involving fractional derivatives or integrals. Unlike traditional integer-order systems, fractional

order systems exhibit unique characteristics such as sensitivity to initial conditions, aperiodic

long-term behavior, and the presence of strange attractors in phase space. This area of research

provides insights into the intricate dynamics of physical phenomena.

2.2 Fractional-order chaotic systems

2.2.1 Fractional-order Genesio–Tesi system

The Genesio-Tesi system is a 3D dynamical system that was introduced by Raffaele Genesio

and Alberto Tesi in 1985 [5] . This system has been studied extensively in the literature and

has found applications in various fields, such as secure communication, image encryption, and

chaos synchronization. The fractional-order Genesio-Tesi system can be used as a benchmark

system for testing new fractional-order chaos detection and control algorithms, also this system

15
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can be used as a platform for investigating the effect of fractional-order derivatives on the

dynamics of nonlinear systems". The fractional form of the Genesio-Tesi systemis is described

as follows 
Dqx1 = x2

Dqx2 = x3,

Dqx3 = −ax1 − bx2 − cx3 +mx2
1,

(2.1)

where x1, x2, x3 are state variables, q is the fractional-order satisfying 0 < q ≤ 1, q = 0.97 and

for the parameters a = 6, b = 2.92, c = 1.2, and m = 1, the system can display choatic attractor,

and numerical simlulations of Genesio-Tesi system is depicted in Figure 2.1, 2.2, 2.3, and 2.4.

Figure 2.1: Chaotic attractor of system (2.1) in x− z plane

Figure 2.2: Chaotic attractor of system (2.1) in y − z plane.

2.2. Fractional-order chaotic systems 16
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Figure 2.3: Chaotic attractor of system (2.1) in x− y − z space.

Figure 2.4: Chaotic attractor of system (2.1) in x− y plane.

2.2.2 The fractional-order simplified Lorenz system

The fractional order Lorenz system[6] is a generalization of the classical Lorenz system. The

system has been studied extensively in the literature and has found applications in various

fields, such as chaos-based cryptography, secure communication, and image encryption and it

is given by the following from:
dq1x1
dtq1

= 10 (y − x) ,

d
q2 x2
dtq2

= −xz + (24− 4c)x+ cy,

dq3x3
dt
q3 = xy − 8

3
z,

(2.2)

2.2. Fractional-order chaotic systems 17



Chapter 2. Examples of fractional-order chaotic systems

Figure 2.5: Chaotic attractor of system (2.2) in x− z plane.

Figure 2.6: Chaotic attractor of system (2.2) in y − z plane.

where x, y, z are the state variables, and 0 < qi ≤ 1, i = 1, 3 determine the fractional order of

the system. For q1 = q2 = q3 = 1 and for c ∈ [2.6, 7.4] , the system can display choatic attractor,

and numerical simlulations of the Lorenz system is depicted in Figure 2.5, 2.6 and 2.7

2.2.3 The Rabinovich–Fabrikant chaotic system

The Rabinovich-Fabrikant chaotic system [7] is a 3D dynamical system that was introduced

by Michael M. Sushchik and Leonid Fabrikant in 1979. This system has found applications

in various fields, such as chaos-based cryptography, secure communications, and nonlinear

control. It is also used as a benchmark system for testing new chaos detection and control

2.2. Fractional-order chaotic systems 18
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Figure 2.7: Chaotic attractor of system (2.2) in x− y − z space.

algorithms.

This system is described by the following set of differential equations
dαx
dtα

= y (z − 1 + x2) + ax,

dαy
dtα

= x (3z + 1− x2) + ay,

dαz
dtα

= −2z (b+ xy) , 0 < α < 1

(2.3)

where x, y, z are the state variables, 0 < α ≤ 1 is the fractional-order derivative, and for the

parameters a = 0.87, b = 1.1, and for α = 0.99, the system can display choatic attractor, and nu-

merical simlulations of Rabinovich-Fabrikant fractional-order system for the initial conditions

[−1, 0, 0.5] is depicted in Figure 2.8, 2.9 and 2.10.

2.2.4 3D Fractional-Order Chaotic System

The fractional-order 3D chaotic system [8] is constructed, which is described as follows:
Dqx = y,

Dqy = −x− yz,

Dqz = a |x|+ xy − b,

(2.4)

where x, y, z are the state variables, 0 < q ≤ 1 is the fractional-order satisfying, and for the pa-

rameters a = 2.5, b = 1.35, and q = 0.9, the system can display choatic attractor and numerical

2.2. Fractional-order chaotic systems 19
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Figure 2.8: Chaotic attractor of system (2.3) in x− y plane.

Figure 2.9: Chaotic attractor of system (2.3) in x− z plan.

simlulations of the fractional-order 3D chaotic system is depicted in Figure 2.11, 2.12, 2.13 and

2.14.

2.2.5 Fractional-Order Rössler System

The fractional order Rössler system is a generalization of the well-known Rössler system, which

is a system of ordinary differential equations (ODEs) that exhibits chaotic behavior. The frac-

tional order Rössler system extends the concept by introducing fractional derivatives instead

of ordinary derivatives.

2.2. Fractional-order chaotic systems 20
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Figure 2.10: Chaotic attractor of system (2.3) in x− y − z space.

Figure 2.11: Chaotic attractor of system (2.4) in x− y plan.

The fractional order Rössler system [9] is given by the following nonlinear equations:
Dq1x = −y − z,

Dq2y = x+ ay,

Dq3z = bx− cz + xz.

(2.5)

where x, y, z are the state variables, a, b and c are parameters, and qi, i = 1, 3 are the fractional-

order derativative. For q1 = 0.9, q2 = 0.85, q3 = 0, 95, and for the parameters (a; b; c) =

(0.5, 0.2, 10) and ICs (x0, y0, z0) = (0.5, 1.5, 0.1), the system can display choatic attractor, and

numerical simlulations of the Rössler system is depicted in Figure 2.15 and 2.16.
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Figure 2.12: Chaotic attractor of system (2.4) in x− z plane.

Figure 2.13: Chaotic attractor of system (2.4) in y − z plane.

2.3 Conclusion

In this chapter, we have presented some examples of fractional-order 3D chaotic systems.

There are many other examples of such systems, each with its own unique behavior and char-

acteristics.
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Figure 2.14: Chaotic attractor of system (2.4) in x− y − z space.

Figure 2.15: Chaotic attractor of system (2.5) in y − z plane.

Figure 2.16: Chaotic attractor of system (2.5) in x− y − z space.

2.3. Conclusion 23



Chapter 3

Existence of Chaos in a fractional order

System

3.1 Introduction

In this chapter, we study the existence of chaos in a fractional order system

3.2 Description of the chaotic system

The chaotic system [10] is described by the independent nonlinear system of differential equa-

tions that follows: 
·
x = ay − x,
·
y = −bx− z,
·
z = cz + xy2 − x,

(3.1)

where x, y and z are the states and a, b, c are constant, positive, parameters of the system.

The new system (3.1) has totally seven terms on the right-hand side with a cubic nonlinearity.

The parameters’ typical values are:

a = 1, b = 0.46, c = 0.46. (3.2)
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3.2.1 Chaotic Dynamics of Fractional chaotic system

In this section, we study the chaotic dynamics of fractional novel chaotic system It is obtained

from the classical system, described in (3.1), by replacing the first time derivative d
dt

by a

fractional derivative dα

dtα
, where the last denotes the differential operator in the sense of Caputo.

The fractional version of novel chaotic system reads as
dα1x
dtα1

= ay − x,
dα2y
dtα2

= −bx− z,
dα3z
dtα3

= cz + xy2 − x,

(3.3)

where α = (α1, α2, α3) is subject to 0 < α1, α2, α3 6 1.

The state space of the system (3.3) is three-dimensional, The right-hand side of the system (3.3)

vector field is defined by

v (x, y, z) =


v1 (x)

v2 (y)

v3 (z)

 =


y − x

−0.46x− z

0.46z + xy2 − x

 (3.4)

The divergence of the vector field v is easily calculated as

div v (x) =
∂v1

∂x
+
∂v2

∂y
+
∂v3

∂z
= −1 + 0 + 0.46 = −0.54 < 0. (3.5)

A necessary and sufficient condition for system (3.3) to be dissipative is that the divergence of

the vector field v is negative. In view of Eq (3.5), it is immediate that system (3.3) is dissipative

if and only if c > 1 with an exponential rate dv
dt

= e−0.54.

Thus, in the dynamical system (3.3), a volume element V0 is apparently contracted by the

flow into a volume element V0e
−0.54t in time t. This means that each volume containing the

trajectories of this dynamical system shrinks to zero as t → ∞ at an exponential rate. So, all

the orbits of the dynamical system (3.3) will be eventually confined to a special subset that

has zero volume, and the asymptotic motion of system (3.3) will settle onto an attractor of the

system.
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3.2.2 Equilibrium points and stability

For the values of parameters (3.2), the system (3.3) has three equilibrium points, given by

E1 : (0, 0, 0) ,

E2 : (1.100727032, 1.100727032, −0.5063344349) ,

E3 : (−1.100727032, −1.100727032, 0.5063344349) .

Clearly, E1 is an equilibrium of the system (3.3) for all values of the parameters a, b, and c. The

equilibrium points E2, E3 of system (3.3) are real only when cb ≥ 1. When cb < 1, E1 is the

only real equilibrium of (3.3).

The Jacobian matrix of the system (3.3) evaluated at the equilibrium point E∗ = (x∗, y∗, z∗) is:

J (E∗) =


−1 1 0

−0.46 0 −1

−1 + y2 2xy 0.46


For E1:

J (E1) =


−1− λ 1 0

−0.46 −λ −1

−1 0 0.46− λ


Determinant:

Pλ (E1) = −λ3 − 0.54λ2 + 1.2116.

So, we obtain the eigenvalues

λ1 = 0.9131216591, (3.6)

λ2 = −0.7265608295 + 0.8938602918i,

λ3 = −0.7265608295− 0.8938602918i.

For E2:

With the same method, the eigenvalues of the Jacobian at E2 are

J (E2) =


−1− λ 1 0

−0.46 −λ −1

0.211599999 2.423199998 0.46− λ
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Determinant:

Pλ (E2) = −λ3 − 0.54λ2 − 2.4232λ− 2.4232.

which has the eigenvalues

λ1 = −0.887212, λ2 = 0.173606− 1.64351i, λ3 = 0.173606 + 1.64351i (3.7)

For E3 :

With the same method, the eigenvalues of the Jacobian at E3 are

J (E3) =


−1− λ 1 0

−0.46 −λ −1

0.211599999 2.423199998 0.46− λ


Determinant:

Pλ (E3) = −λ3 − 0.54λ2 − 2.4232λ− 2.4232.

which has the eigenvalues

λ1 = −0.887212, λ2 = 0.173606− 1.64351i, λ3 = 0.173606 + 1.64351i (3.8)

Since the linearization matrices J (E1), J (E2), and J (E3) have eigenvalues with positive real

parts, it follows from Lyapunov stability theory [17] that the equilibrium points E1, E2, and E3

are unstable, and this implies chaos in the dissipative system (3.3). So, the trajectories of the

system (3.3) diverge from the three equilibrium points and orbit onto the strange attractor of

the system (3.3).

3.2.3 Minimal order for chaos

Commensurate case

In the case of the comensurate-order system, we have a = 1, b = 0.46 and c = 0.46, where

α1 = α2 = α3 = α a necessary condition for the fractional-order nonlinear system (3.3) to be

chaotic is:

α >
2

π
arctan

(
|Im (λ)|
Re (λ)

)
,
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For E1:

α >
2

π
arctan

(
|Im (λ2,3)|
Re (λ2,3)

)
' 2

π
arctan

(
0.8938602918

0.7265608295

)
' 2

π
(0.8882780847)

' 0.5654953921.

For E2, E3:

α >
2

π
arctan

(
|Im (λ2,3)|
Re (λ2,3)

)
' 2

π
arctan

(
1.64351

0.173606

)
' 2

π
(1.465555353)

' 0.9330015154.

Thus, the necessary condition of existence chaos in fractional-order system (3.3) is:

α > 0.9330015154.

Incommensurate case

In the case of the incomensurate-order system where α1 6= α2 6= α3 If α1, α2 and α3.

are rational numbers between zero and one, which are not necessarily equal, The necessary

condition for the system (3.3) to exhibit chaotic oscillations in the incommensurate case is :

π
2M
−mini (|arg (λi (JE))|) > 0, i = 1, 2, 3

Where λi (JE) , i = 1, 2, 3, are the eigenvalues of the Jacobian matrix JE of the system (3.3) at

the equilibrium E, M is the LCM of the fractional orders.

For example, if α1 = 1, α2 = 0.95, α3 = 0.975, then we have l1 = 40, l2 = 38, l3 = 39 and

M = 40. The characteristic equation of the system evaluated at the equilibrium Ei is :

det
(
diag

[
λMα1 , λMα2 , λMα3

]
− JEi

)
= 0

det
(
diag

[
λ40, λ38, λ39

]
− JEi

)
= 0 i = 1, 2, 3.
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For E1 :

det
(
diag

[
λ40, λ38, λ39

]
− JE1

)
= 0,

det




λ40 0 0

0 λ38 0

0 0 λ39

−

−1 1 0

−0.46 0 −1

−1 0 0.46


 = 0

λ117 − 0.46λ78 + λ77 + 0.46λ39 − 0.46λ38 − 1.2116 = 0

For E2,3 :

det
(
diag

[
λ40, λ38, λ39

]
− JE2,3

)
= 0,

det




λ40 0 0

0 λ38 0

0 0 λ39

−


−1 1 0

−0.46 0 −1

0.2111599999 2.423199998 0.46


 = 0

λ117 − 0.46λ78 + λ77 + 2.4232λ40 + 0.46λ39 − 0.46λ38 + 2.42276 = 0

From the roots of the above equations, we find λ = 0.997665. whose argument is zero which is

the minimum argument,

min
i

(|arg (λi (JE))|) = 0,

and hence the necesary stability condition is holds because

π

80
− 0 > 0,

3.2.4 Chaos by using Lyapunov exponents test

The Lyapunov exponent is a way to gauge how quickly close paths in a dynamical system

diverge. It is named after the Russian mathematician Alexander Lyapunov, who created the

concept in the late 19th century. The Lyapunov exponent is a measurement of the stability of a

dynamical system. Nearby paths in the system tend to converge over time if the Lyapunov ex-

ponent is negative, demonstrating that the system is stable. On the other hand, if the Lyapunov

exponent is positive, the system is unstable and behaves chaotically because neighboring paths

tend to diverge over time. It is frequently used to investigate the behavior of chaotic systems,
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in which neighboring paths are subject to sudden and unpredictable divergence.

The Lyapunov exponent where computed using Matlab in 103s, and the Lyapunov spectrum

is shown in figure 3.1 and 3.2 for two cases with commensurate and incommensurate respec-

tively.

Figure 3.1: Lyapunov exponents spectrum of system (4.1) for α = 0.95

Figure 3.2: Lyapunov exponents spectrum of system (4.1) for α1 = 0.95, α2 = α1 = 0.98.
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3.3 Conclusion

In this chapter, we and we provided evidence that these systems exhibit chaotic behavior once

it reaches a certain threshold of minimum commensurate order.

General conclusion
In this work, we have studied the existence of chaos in fractional order systems in a novel

chaotic system, in the first chapter we have mentioned some basic concepts of dynamical sys-

tems and chaos theory, and also basic definitions and properties of fractional derivatives with

numerical methods to solve fractional-order systems, and in the next chapter we have provided

some examples of chaotic fractional order systems with numerical simulation. In the last chap-

ter we have a novel 3D fractional order system is introduced and its basic properties have been

studied. Moreover, the two necessary conditions of the existence of chaos in commensurate

order and incommensurate order are given. Also, the Lyapunov exponents are calculated using

Matlab to prove that the proposed system exhibits chaotic behavior.
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