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Abstract 
   In this memoir, we study quasilinear elliptic equations and 

systems with double phase operator. We prove the 

existence of a weak solution by applying the theory of 

pseudomonotone operators. Furthermore, Imposing some 

additional linear condition the gradient variable the 

uniqueness of the solution is obtained. 

Keywords : Elliptic system, Doube phase problems, 

pseudomonotone operators, Existence results, Uniqueness. 

 



Résumé 
 
    Dans ce mémoire, nous étudions les équations elliptiques 
quasilinéaires et les systèmes avec des opérateurs elliptiques de 
double phase. Nous prouvons l’existence d’au moins une solution 
faible en appliquant la théorie d’opérateur pseudomonotone. En 
imposant des conditions de linéarisation sur la variable de gradient, 
pour assurer l’unicité de la solution. 
 
Mots clés : Système elliptique, Problème de double phase, 
Opérateur pseudomonotone, Résultat existence, Unicité. 



 ملخص

في هذه المذكرة، قمنا بدراسة المعادلات والأنظمة البيضاوية شبه الخطية في وجود مؤثر     

ة. مؤثرات شبه رتيبالمزدوج، نثبت وجود حل ضعيف واحد على الأقل من خلال تطبيق نظرية 

صول يتم الحفي الطرف الايسرالغير خطي  الشروط الخطية على متغير التدرج بفرض بعض

 وحدانية الحلول.على 

 
 مؤثرات شبه رتيبة، نتائج الوجود،جة، دوالمزمسائل المرحلة نظام بيضوي، : الكلمات المفتاحية

 .الوحدانية
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Introduction

Partial di¤erential equations are of crucial importance in modelization and descrip-
tion of a wide variety of phenomena such as �uid dynamics, quantum physics, sound,
heat, electrostatics, di¤usion, gravitation, chemistry, biology, calculator charts and
time prediction.
In recent years, authors have interested by elliptic problems called double phase,

originally the idea to treat such operators comes from Zhikov [36, 37, 38] who intro-
duced such classes to provide models of strongly anisotropic materials; and also the
monograph of Zhikov-Kozlov-Oleinik [39]. In order to describe this phenomenon, he
introduced the functional.

! 7!
Z
(jr!jp + � (x) jr!jq) dx; (1)

that generates a double phase operator whose behavior switches between two di¤er-
ent elliptic situation, on the set fx 2 
; � (x) = 0g the operator will be controlled
by gradient of order p and in the case fx 2 
; � (x) 6= 0g it is the gradient of order
q. This reason why it is called double phase operator.
The double phase problems has been studied deeply recently, we refer to the

papers of Baroni-Colombo-Mingione [3, 4, 5], Baroni-Kussi-Mingione [6], Colombo-
Mingione [11, 12] and the references therein concerning the regularity.
In the works of [13, 27, 28] the integral form (1) arise in the context of functional

with non-standard growth, Colasuonno-Squassina [10] studied the corresponding ei-
genvalue problem of the double phase operator with Dirichlet boundary condition he
proved the existence and properties of related variational eigenvalues. By applying
variational methods, Liu [24] treated double phase problems and proved existence
and multiplicity results.
In our work the problem studied depend a non linearity on the right hand side

called convection terms which is functions depends on the gradient of the solution.
Our starting point is the work of Averna-Motreanu-Tornatore [1] who considered a
(p; q)-Laplacian problem with a homogeneous Dirichlet boundary condition.
In this memoir we study the existence and uniquesse of solution of double phase

elliptic equation , for the existence we used the theory psudomontone operators
(surjectivety result), by conditions on the convection term, in addition a strong
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Introduction

condition on the non-linearity we can prove the uniqueness of solution, see [20]; this
result is generalized for a system of two equations, the problem treated by the same
manner, see [26]:
For other existence results on quasilinear equations with dependence on the gradi-
ent and the p-Laplace or the (p; q)-Laplace di¤erential operator we refer to the pa-
pers of Bai-Gasiński-Papageorgiou [2], De Figueiredo-Girardi-Matzeu [14];Dupaigne-
Ghergu-Radulescu [15] , Faraci-Motreanu-Puglisi [16], and the references therein.
The memoir is divided into three chapters.
In the �rst chapter we suggest some basic concepts concerning functional farme-

work, psudomonotone operators, eigenvalue problems and Nemytskij Operator.
In chapter 2, we study the existence and uniqueness results for the following

double phase problem with convection term�
� div

�
jrujp�2ru+ � (x) jrujq�2ru

�
= f (x; u;ru) in 


u = 0 on @
:
(2)

Such that 
 is a bounded domain of RN ; N � 2 with a lipschitz boundary @
:
Where 1 < p < q < N; the function � : 
 ! [0;1) is Lipschitz continuous. The
function f : 
 � R � RN ! R is a carathéodory function that is, x 7! f (x; s; �) is
measurable for all (s; �) 2 R � RN and (s; �) 7! f (x; s; �) is continuous for a. a.
x 2 
:
In the last chapter we study the existence and uniqueness of solution of an elliptic

system with double phase operator and convection term, using the same theory in
chapter 2.
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Preliminaries

The aim of this chapter is to introduce the basic concepts, notations, and elementary
results that are used throughout the memoire.

1.1 Functional spaces

1.1.1 Lebesgue spaces

Let 
 � RN be an open set of RN

De�nition 1.1.1 [7] Let p 2 R with 1 � p <1, we set

Lp (
) =
�
f : 
! R; f measurable and jf jp 2 L1 (
)

	
;

equipped with norm

kfkLp(
) = kfkp =

0@Z



jf (x)jp dx

1A 1
p

:

We set

L1 (
) = ff : 
! R=f measurable and 9c > 0= jf (x)j � c a.e in 
g :

With
kfkL1(
) = kfk1 = inf fc > 0= jf (x)j � c; a.e in 
g :

Proposition 1.1.1 [7] Let 1 < p < 1�Lp is re�exive�separable�and the dual of
Lqsuch that 1

p
+ 1

q
= 1:

If p = 1, L1 is not re�exive, separable and the dual of L1:
If p =1, L1 is not re�exive�not separable and the dual contains L1:

3



Chapter 1. Preliminaries

1.1.2 Sobolev spaces

Let 
 � RN be an open set and let p 2 R with 1 � p � 1

De�nition 1.1.2 [7] The sobolev space W1;p (
) is de�ned by

W1;p (
) =
n
u 2 Lp (
) ;ru 2 (Lp (
))N

o
:

The space W 1;p (
) is equipped with the norm

kukW1;p(
) =
�
kukpLp(
) + kruk

p
Lp(
)

� 1
p
;

if p =1, The space W 1;p (
) is equipped with the norm

kukW1:1(
) = max (kuk1 ; kruk1) :

Proposition 1.1.2 [7] W 1;p is Banach space for every 1 � p � 1. W 1;p is re�exive
for 1 < p � 1, and it is Separable for 1 � p <1.

1.1.3 W 1;p
0 (
) Space

De�nition 1.1.3 [7] For 1 � p < +1 we de�ne the space W 1;p
0 (
) as being the

closure of D (
) in W 1;p (
), and we write

W1;p
0 (
) = D (
)

W1;p

:

1.1.4 Musielak-Orlicz space

Let H : 
� [0;+1)! [0;+1) be the function

(x; t) 7! tp + � (x) tq;

where 1 < p < q < N , and

q

p
< 1 +

1

N
; � : 
! [0;1) is Lipschitz continuous. (1.1)

We set

�H (
) :=

Z



H (x; juj) dx =
Z



(jujp + � (x) jujq) dx:

4



Chapter 1. Preliminaries

De�nition 1.1.4 [24]The Musielak-Orlicz space LH (
) is de�ned by

LH (
) =

8<:u j u : 
! R; is measurable and �H (u) :=
Z



H (x; juj) dx < +1

9=; :

Equipped with the norm

kukH = inf
n
� > 0 : �H

�u
�

�
� 1
o
:

Proposition 1.1.3 [24]The space L H (
) a separable, uniformly convex and so a
re�exive Banach space. Furthermore we de�ne

Lq� (
) =

8<:u j u : 
! R is measurable and
Z



� (x) jujq dx < +1

9=; ;

and endow it with the semi norm

kukq;� =

0@Z



� (x) jujq dx

1A 1
q

:

In the same way we de�ne Lq�
�

;RN

�
.

From Colasuonno-Squassina [10];we have the continuous embeddings

Lq (
) ,! LH (
) ,! Lp (
) \ Lq� (
) :

For u 6= 0 we that �H
�

u
kukH

�
= 1 and so, it follows that

min fkukpH ; kuk
q
Hg � kuk

p
p + kuk

q
q � max fkuk

p
H ; kuk

q
Hg : (1.2)

De�nition 1.1.5 [24]The Musielak-Orlicz sobolev space W 1;H (
) de�ned by

W1;H (
) =
�
u 2 LH (
) : jruj 2 LH (
)

	
;

equipped with the norm
kuk1;H = krukH + kukH :

where krukH = kjrujkH :
By W 1;H

0 (
) we denote the completion of C10 (
) in W 1;H and thanks to (1:1) we
have an equivalent norm on W 1:H

0 (
) given by

kuk1;H;0 = krukH ;

5



Chapter 1. Preliminaries

Proposition 1.1.4 [24] Both space W 1;H (
) and W 1;H
0 (
) are uniformly convex,

and so, re�exive Banach space.
In addition it is known that the embedding

W1;H
0 (
) ,! Lr (
) ; (1.3)

is compact where r < p�, with p� being the critical exponent to p given by

p� :=
Np

N � p
; (1.4)

recall that 1 < p < N . From (1:2) we directly obtain that

min
n
kukp1;H;0 ; kuk

q
1;H;0

o
� kukpp + kuk

q
q;� � max

n
kukp1;H;0 ; kuk

q
1;H;0

o
; (1.5)

for all u 2W 1;H
0 (
) :

Proposition 1.1.5 [21] Let 1 < p < q < N , Nq
N+q�1 < p; � (x) 2L1 (
) ; � (x) � 0

for a. a. x 2 
 be satis�ed and let

p� :=
Np

N � p
and p� =

(N � 1) p
N � p

;

be the critical exponents to p. Then the following embeddings hold
(i) LH (
) ,!Lr (
) and W1;H ,!W 1;r (
) are continuous for all r 2 [1; p] ;
(ii) W1;H ,!Lr (
) is continuous for all r 2 [1; p�] ;
(iii) W1;H ,!Lr (
) is compact for all r 2 [1; p�) ;
(i�) W1;H ,!Lr (@
) is continuous for all r 2 [1; p�] ;
(�) W1;H ,!Lr (@
) is compact for all r 2 [1; p�)
(�i) LH (
) ,!Lq� (
)is continuous;
(�ii) Lq (
) ,!LH (
) is continuous.

1.2 Monotone operators

De�nition 1.2.1 [9] Let X be real Banach space, and let A : X ! X� be an
operator.
(i) A is called monotone if and only if

hAu� A�; u� �i � 0for all u; � 2 X:

(ii) A is called strictly monotone if and only if

hAu� A�; u� �i > 0 for u; � 2 X with u 6= �:

6



Chapter 1. Preliminaries

(iii) A is called strongly monotone if and only if there is the constant c > 0 such
that

hAu� A�; u� �i � c ku� �k2 for all u; � 2 X:
(iv) A is called uniformly monotone if and only if

hAu� A�; u� �i � � (ku� �k) ku� �k for all u; � 2 X:

Where the continuous function � : R+ ! R+ is strictly monotone increasing with
� (0) = 0 and � (t)! +1 as t! +1

De�nition 1.2.2 [9] Let X be a real Banach space, and let A : X ! X� be an
operator A is called hemicontinuous if for all u; � 2 X, the maps t! hA (u+ t�) ; �i
is continuous from R in R.

De�nition 1.2.3 [9] Let X be real Banach space, and let A : X ! X� be an
operator. A is called coercive if and only if

lim
kuk!1

hAu; �i
kuk = +1;

1.3 Pseudomonotone Operators

De�nition 1.3.1 [9] The operator A : X ! X� is pseudomonotone if and only if
un * u and

lim sup
n!1

hAun; un � ui � 0 implies Aun * Au and hAun; uni ! hAu; ui :

Lemma 1.3.1 [9] Let A;B : X ! X� be operators on the real re�exive Banach
space X: Then the following implications hold
(i) If A is monotone and hemicontinuous, then A is pseudomonotone.
(ii) If A is strongly continuous, then A is pseudomonotone.
(iii) If A and B are pseudomonotone, A+B is pseudomonotone.

Theorem 1.3.1 [20] Let X be a real, re�exive Banach space, and let A : X ! X�

be a pseudomonotone, bounded, and coercive operator,and b 2 X�. Then a solution
of the equation Au = b exists.

For the proof of this theorem see [8]; it was proved by using the Galerkin
method.it is summarized in the following steps:

7



Chapter 1. Preliminaries

Step1 Solution of Galerkin equations, take a sequence (ek)k of linearly inde-
pendent vectors in V , such that setting

Vn := span fe1; :::; e2g ;

yields V = UnVn. We are looking for a solution un 2 Vn, which is of the form

un =
nX
k=1

cnkek;

and which solves the Galerkin equations

hA (un)� f; eki = 0 for k 2 f1; :::; ng :

Step2 A priori estimates, we show that (un) is bounded.
Step3 Weak convergence.
We show that there is a subsequenc (un) with

un * u as n!1:

Step4 We show that u is a solution of the original equation Au = b; u 2 X: see [4]

Theorem 1.3.2 [7](Lebesgue�s dominated convergence) Let (fn) be a sequence of
functions in L1 (
) that satisfy

fn (x)! f a. e, on 
; there is a function g 2 L1 (
) such that for all n,

jfn (x)j � g (x) ; a. e. on 
:

Then

f 2 L1 (
) and kfn � fkL1 ! 0:

Lemma 1.3.2 [7] (Fatou�s Lemma)
Let (fn) a sequence of functions in L

1 (
) that satisfy, for all n; fn � 0;

sup
n

R
fn < 1; for almost all x 2 
 we set f (x) = lim inf

n!1
fn (x) � +1. Then

f 2 L1 (
) and Z



f (x) dx � lim
n!1

inf

Z



fn (x) dx:

8



Chapter 1. Preliminaries

1.4 Nemytskij Operator

De�nition 1.4.1 [9] (Carathéodory Function) Let 
 � RN ; N � 1; be a nonempty
measurable set, and let f : 
�Rm ! R; m � 1; and u : 
! Rm The function f is
called a Carathéodory function if the following two conditions are satis�ed
(i) x 7! f (x; s) is measurable in 
 for all s 2 Rm:
(ii) s 7! f (x; s) is continuous on Rm for a.e.x 2 
:

De�nition 1.4.2 [9] (Nemytskij Operator) Let 
 � RN ; N � 1; be a nonempty
measurable set, and let f : 
 � Rm ! R; m � 1; and u : 
 ! Rm be a given
function. Then the superposition or Nemytskij operator F assigns u 7! f � u; i.
e.; F is given by

Fu (x) = (f � u) (x) = f (x; u (x)) for x 2 
:

Lemma 1.4.1 [9] Let f : 
 � Rm ! R; m � 1; be a Carathéodory function that
satis�es a growth condition of the form

jf (x; s)j � k (x) + c
mX
i=1

jsij
pi
q ; 8s = (s1; :::; sm) 2 Rm; a. e.x 2 
;

for some positive constant c and some k 2 Lq (
), and 1 � q; pi < 1 for all
i = 1; ::::;m. Then the Nemytskij operator F de�ned by

Fu (x) = f (x; u1 (x) ; ::::; um (x)) ;

is continuous and bounded from Lp1 (
)� :::� Lpm (
) into Lq (
). Here u denotes
the vector function u = (u1; :::::um). Furthermore,

kFukLq(
) � c

 
kkkLq(
) +

mX
i=1

kuik
pi
q

Lpi(
)

!
:

1.5 Eigenvalue problems

For 1 < p < 1, the p-Laplacian of a function f on an open bounded domain 
 is
de�ned by

�pf = div
�
jrf jp�2rf

�
:

Lemma 1.5.1 Let V be a closed subspace ofW1;p (
) andW1;p
0 (
) � V �W1;p (
) :

Then it holds
(i) ��p : V ! V �is continuous bounded and has the (S+)-property. i e, if every

9



Chapter 1. Preliminaries

sequence fungn in V such that un * u and lim
n!1

sup h��pun; un � ui � 0 has a

converngent subsequence funkgk such that unk ! u:
(ii) ��p :W

1;p (
)!W�1;q (
) is
a) strictly monotone if 1 < p <1:
b) strongly monotone if p = 2:
c) uniformly monotone if 2 < p <1:

De�nition 1.5.1 we say that u 2W 1;p
0 (
), u 6= 0, is an eigenfunction of the oper-

ator ��pu if: Z



jrujp�2ru:r'dx = �

Z



jujp�2 u:'dx; (1.6)

for all ' 2 C10 (
).The corresponding real number � is called eigenvalue.
Let �1;p de�ned by

�1;p = inf
u2W1;p

0 (
);u 6=0

R



jrujp dxR



jujp dx ; (1.7)

equivalent to

�1;p = inf

8<:
Z



jrujp dx :
Z



jujp dx = 1; u 2W1;p
0 (
) ; u 6= 0

9=; ; (1.8)

�1;p is the �rst eigenvalue of p-laplacian operator with homogeneous Dirichlet con-
ditions at the edge.

1.6 Some Inequalities

Holder�s Inequality
Let 1 � p; q � 1, 1

p
+ 1

q
= 1. If u 2 Lp (
) ; � 2 Lq (
) ; then one hasZ



ju�j dx � kukLp(
) � k�kLq(
) :

Monotonicity Inequality
Let 1 < p <1. Consider the vector-valued function a : RN �! RN de�ned by

a (�) = j�jp�2 � for � 6= 0; a (0) = 0:

If 1 < p < 2; then we have

(a (�)� a (�0)): (� � �0) > 0 for all �; �0 2 RN ; � 6= �0:

10



Chapter 1. Preliminaries

If 2 � p <1; then a constant c > 0 exists such that

(a (�)� a (�0)): (� � �0) � c j� � �0jp for all � 2 RN :

Young�s Inequality
Let 1 < p; q <1 and 1

p
+ 1

q
= 1 then

ab � ap

p
+
bq

q
(a; b � 0) :

11
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Existence and uniqueness results for double
phase problems with convection term

2.1 Introduction

In this chapter, we study the existence and uniqueness results for double phase
problems with convection term�

div
�
jrujp�2ru+ � (x) jrujq�2ru

�
= f (x; u;ru) ; in 


u = 0 on @
;
(2.1)

whereas 
 is a bounded domain of RN with smooth boundary @
; where 1 < p <
q < N; the function � : 
 ! [0;1) is supposed to be Lipschitz continuous and
f : 
� R� RN ! R is a Carathéodory function.

2.2 De�nition and notations

We give the following two de�nitions before we give our main result.

De�nition 2.2.1 Let X be a re�exive Banach space, X�its dual space and denote
by h:; :i its duality pairing. Let A : X ! X�; then
(a) A satis�es (S+)-property if un * u in X and lim sup

n!1
hAun; un � ui � 0 imply

un ! u in X;
(b) A is called pseudomonotone operator if un * u inX and lim sup

n!1
hA (un) ; un � ui �

0 imply Aun * Au and hAun; uni ! hAu; ui :
Our existence result is based on the following surjectivity result for pseudomonotone
operators, see, e.g. Carl-Le-Motreanu [9]:

12



Chapter 2. Existence and uniqueness results for double phase problems with
convection term

De�nition 2.2.2 We say that u 2W 1;H
0 (
) is a weak solution of problem (1; 1) if

it satis�esZ



�
jrujp�2ru+ � (x) jrujq�2ru

�
:r'dx =

Z



f (x; u;ru)'dx; (2.2)

for all test functions ' 2W 1;H
0 (
). by the embedding (1:3) and the fact that p < q

along with (1:5)we easily see that a weak solution of (2:2) is well-de�ned.

Let A :W 1;H
0 (
)!W 1;H

0 (
)� be the operator de�ned by

hA (u) ; 'iH :=
Z



�
jrujp�2ru+ � (x) jrujq�2ru

�
:r'dx; (2.3)

Where h:; :iH is the duality pairing betweenW
1;H
0 (
) and its dual spaceW 1;H

0 (
)�.The
properties of the operator A :W 1;H

0 (
)!W 1;H
0 (
)� are summarized in the following

proposition, see Liu-Dai [18]

Proposition 2.2.1 The operator A de�ned by (2:3) is bounded, continuous, mono-
tone (hence maximal monotone) and of type (S+).

Proof.
1) A is bounded. For convenience in writing we set �1 := kuk ; �2 := k�k. By

Hölder�s inequality and Young�s inequality, we have that���DA(u)�1
; �
�2

E��� = ����R



���ru�1 ���p�2 ru�1 r��2 dx+ R



� (x)
���ru�1 ���q�2 ru�1 r��2 dx

���� ;
�
�R



���rup�1 ��� dx�
p�1
p
�R



���r�p�2 ��� dx�
1
p

+

�R
� (x)



���ru�1 ���q dx�
q�1
q
�R

� (x)



���r��2 ���q dx�
1
q

;

� p�1
p

R



���ru�1 ���p dx+ q�1
q

R



� (x)
���ru�1 ���q dx+ 1

p

R



���r��2 ���+ 1
q

R



� (x)
���r��2 ���q dx;

� q�1
q

�R



���ru�1 ���p dx+ R



� (x)
���ru�1 ���q dx�+ 1

p

�R



���r��2 ���p + R



� (x)
���r��2 ���q dx;� ;

� q�1
q
+ 1

q
� 2:

Hence, we have that

kA (u)kX� = sup
k�k�1

jhA (u) ; �ij � 2 kukX ;

which implies that A is bounded.
2) A is continuous
Suppose that uj ! u in W 1;H

0 (
). For all � 2W 1;H
0 (
) with k�k = 1 by the Hölder

inequality,

13
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jhA (uj)� A (u) ; �ij �
jrujjp�2ruj � jrujp�2rup0 kr�kp

+
� (x) ��jrujjq�2ruj � jrujq�2ru��q0 kr�kq;� ;

Since LH (
) ,! Lp (
)\Lq� (
) ; ruj ! ru in Lp (
)\Lq� (
) ; and kr�kp ; kr�kq;�
are uniformly bounded, according to Theorem (Lebesgue�s dominated convergence)

lim
uj!1

jhA (uj)� A (u) ; �ij � 0) A (uj) !
j!1

A (u) :

3) A is monotone
8u; � 2W1;H

0 (
)

hAu� A�; u� �i =
R



(jrujp + jr�jp) + � (x) (jrujq + jr�jq)dx

�
R



(jrujp�2rur� + jr�jp�2r�ru)dx

�
R



� (x) (jrujq�2rur� + jr�jq�2r�ru))dx;
(*)

by using inequatity of Young we haveZ



jrujp�2rur�dx �
Z



jrujp�1 jr�j dx �
Z



�
jrujp

s
+
jr�jp

p

�
dx; s =

p

p� 1 :

It followsZ



jrujp�2rur�dx+
Z



jr�jp�2r�rudx �
Z



jrujp dx+
Z



jr�jp dx;

Z



� (x) (jrujq�2rur� + jr�jq�2r�ru))dx �
Z



� (x) jrujq dx+
Z



� (x) jr�jq dx;

by substitution in (�) �nds

hAu� A�; u� �i � 0:

4) A veri�y (S+)-propriety, assume that fung � X; un * u and

lim sup
n!+1

hA (un)� A (u) ; un � ui � 0

A special case: A special case of the operator A de�ned by (2:3) occurs when
� � 0. This leads to the operator

Ap :W
1;p
0 (
)!W 1;p

0 (
)� de�ned by

hAp (u) ; 'ip :=
Z



jrujp�2ru:r'dx;

14
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where h:; :ip is the duality pairing between W
1;p
0 (
) and its dual space W 1;p

0 (
)�.
This operator is the well-known p-Laplace di¤erential operator.
Another special case happens when � � 1, that is, Aq; p :W

1; q
0 (
) !W 1; q (
)�

de�ned by

hAq;p (u) ; 'iq p :=
Z



jrujp�2ru:r'dx+
Z



jrujq�2ru:r'dx; (2.4)

where h:; :iq p stands for the duality pairing between W 1;q (
) and its dual space
W 1;q

0 (
)� ; is the so-called (q; p)-Laplace di¤erential operator.

2.3 Existence result

We suppose the following hypotheses:
(H) f : 
� R� RN ! R is a Carathéodory function such that
(i) There exists � 2 L

q1
q1�1 (
) and a1; a2 � 0 such that

jf (x; s; �)j � a1 j�jp
q1�1
q1 + a2 jsjq1�1 + � (x) ; (2.4)

for a. a. x 2 
; for all s 2 R and for all � 2 RN ; where 1 < q1 < p� with the critical
exponent p�given in (1:4) :
(ii) There exists ! 2 L1 (
) and b1;b2 � 0 such that

f (x; s; �) s � b1 j�jp + b2 jsjp + ! (x) ; (2.5)

for a. a. x 2 
; for all s 2 R and for all � 2 RN : Moreover,

b1 + b2�
�1
1; p < 1; (2.6)

where �1; p is the �rst eigenvalue of the Dirichlet eigenvalue problem for the p -
Laplacien.

Theorem 2.3.1 [20] Let 1 < p < q < N and let hypotheses (1:1) and (H) be
satis�ed. Then problem (2:1) admits at least one weak solution u 2W1;H

0 (
) :

Proof. Let N̂f :W
1;H
0 (
) � Lq1 (
)! Lq

0
1 (
) be the Nemytskij operator associated

to f and let i� : Lq
0
1 (
) ! W1;H

0 (
)� be the adjoint operator of the embedding i
: W1;H

0 (
)! Lq1 (
). For u 2W1;H
0 (
) we de�ne Nf : = i� � N̂f and set

A (u) = A (u)�Nf (u) : (2.7)

From the growth condition on f;see (2:4), we easily thatA :W1;H
0 (
)!W1;H

0 (
)� maps
bounded sets into bounded sets. Let us now prove that A is pseudomonotone, see
De�nition 2.2.1(b).To this end, let fungn�1 �W

1;H
0 (
) be a sequence such that

un * u in W1;H
0 (
) and lim sup

n!1
hA (un) ; un � uiH � 0: (2.8)
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From the compact embedding in (1:3)we obtain that

un ! u in Lq1 (
) ; (2.9)

since q1 < p�. Using the strong convergence in Lq1 (
) ; see (2:9) ; along with Hölder�s
inequality and the growth condition on f we obtain

lim
n!1

Z



f (x; un;run) (un � u) dx = 0:

Therefore, we can pass to the limit in the weak formulation in (2:2) replacing u by
un and ' by un � u. This gives

lim sup
n!1

hA (un) ; un � uiH = lim sup
n!1

hA (un) ; un � uiH � 0: (2.10)

From Proposition 2.2.1 we know that A ful�lls the (S+)-property and so we con-
clude, in view of (2:8) and (2:10), that un ! u in W1;H

0 (
). Hence, because of the
continuity of A, we have that A (un) ! A (u) in W1:H

0 (
)� which proves that A is
pseudomonoton.
Next we show that the operator A is coercive, that is,

lim
kuk1;H;0!1

hAu; uiH
kuk1:H;0

= +1: (2.11)

From the representation of the �rst eigenvalue of the p-Laplacian, see (1:8) ; replacing
r by p, we have the inequality

kukpp � ��11:p kruk
p
p for all u 2W

1;p
0 (
) : (2.12)

Since W1;H
0 (
) �W1;p

0 (
) and by applying (2:12) ; (2:5) and (1:2) we derive

hA (u) ; u) =
R



�
jrujp�2ru+ � (x) jrujq�2ru

�
:rudx�

R



f (x; u;ru)udx

� krukpp + kuk
q
q;� � b1 krukpp � b2 kukpp � k!k1

�
�
1� b1 � b2�

�1
1;p

�
krukpp + kuk

q
q;� � k!k1

�
�
1� b1 � b2�

�1
1;p

� �
krukpp + kuk

q
q;�

�
� k!k1

�
�
1� b1 � b2�

�1
1;p

�
min

n
kukp1;H;0; kuk

q
1;H;0

o
� k!k1 :

Therefore, since 1 < p < q and (2:6), it follows (2:11) and thus, the operator
A : W1;H

0 (
)!W1;H
0 (
)� is coercive. Hence, the operatorA : W1;H

0 (
)!W1;H
0 (
)� is

bounded, pseudomonotone and coercive. Then Theorem 1.3.1 provides u 2W1;H
0 (
)

such that A (u) = 0: By the de�nition of A, see (2:7), the function u turns out to
be a weak solution of problem (2:1) which completes the proof.
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Example 2.3.1 The following function satis�es hyootheses (H), where for simpli-
city we drop the x-dependence

f (s; �) = �d1 jsjq1�2 s+ d2 j�jp�1 for all s 2 R and all � 2 RN ;
with 1 < q1 < p�; d1 � 0 and

0 � d2 <
p

p� 1 + ��11;p
:

2.4 Uniqueness result

Let us now give su¢ cient conditions on the perturbation such that problem (1:2)
has a unique weak solution. To this end, we need the following stronger conditions
on the convection term f :
� R� RN ! R:
(U1) There exists c1 � 0 such that

(f (x; s; �)� f (x; t; �)) (s� t) � c1 js� tj2 ;

for a. a. x 2 
; for all s; t 2 R and for all � 2 RN :
(U2) There exists p 2 Lr

0
(
) with 1 < r0 < p� and c2 � 0 such that � 7�! f

(x; s; �)� � (x) is linear for a. a. x 2 
; for all s 2 R and

jf (x; s; �)� � (x)j � c2 j�j ;

for a. a. x 2 
; for all s 2 R and for all � 2 RN : Moreover,

c1�
�1
1;2 + c2�

� 1
2

1;2 < 1; (2.13)

where �1;2 is the �rst eigenvalue of the Dirichlet eigenvalue problem for the Laplace
di¤erential operator.

Theorem 2.4.1 [20] Let (1:1) ; (H) ; (U1) ; and (U2) be satis�ed and let 2 = p <
q < N . Then, problem (2:1) admits a unique weak solution.

Proof. Let u; � 2 W1;H
0 (
) be two weak solutions of (2:1). Taking in both weak

formulations the test function ' = u� � and subtracting these equations result inR



jr (u� �)j2 dx+
R



� (x)
�
jrujq�2ru� jr�jq�2r�

�
:r (u� �) dx

=
R



(f (x; u;ru)� f (x; �;ru)) (u� �) dx+
R



(f (x; �;ru)� f (x; �;r�)) (u� �) dx;

(2.14)
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sine the second term on the left-hand side of (2:14) is nonnegative, we have the
simple estimateR




jr (u� �)j2 dx+
R



� (x)
�
jrujq�2ru� jr�jq�2ru

�
:r (u� �) dx

�
R



jr (u� �)j2 dx: (2.15)

The right-hand side of (2:14) can be estimated via (U1) ; (U2) and Hölder�s inequality

R



(f (x; u;ru)� f (x; �;ru)) (u� �) dx+
R



(f (x; �;ru)� f (x; �;r�)) (u� �) dx

� c1 ku� �k22 +
R



�
f
�
x; �;r

�
1
2
(u� �)2

��
� � (x)

�
dx

� c1 ku� �k22 + c2
R



ju� �j jr (u� �)j dx

�
�
c1�

�1
1;2 + c2�

�1
2
1;2

�
kr (u� �)k22 :

(2.16)
Combining (2:14) ; (2:15) and (2:16) gives

kr (u� �)k22 =
Z



jr (u� �)j2 dx �
�
c1�

�1
1;2 + c2�

�1
2
1;2

�
kr (u� �)k22 : (2.17)

Then, by (2:13) and (2:17) ; we get that u = �:

Example 2.4.1 The following function satis�es hypotheses (H) ; (U1) and (U2),
where for simplicity we drop the s-dependence,

f (x; �) =
NX
i=1

�i�i + � (x) for a. a. x 2 
 and for all � 2 RN ;

with 2 = p � q1 < 2
�; � 2 L2 (
) and

k�k2RN < min

�
1� 1

2
��11;2; �1;2;

�
where � = (�1; �2; :::�N) 2 RN .
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Existence and uniqueness of elliptic systems
with double phase operators and convection
terms

3.1 Introduction

In this chapter, we are concerned with the existence and uniqueness of elliptic sys-
tems with double phase operators and convection term8<:

� div
�
jrujp1�2ru+ �1 (x) jruj

q1�2ru
�
= f1 (x; u; �;ru;r�) in 


� div
�
jr�jp2�2r� + �2 (x) jr�j

q2�2r�
�
= f2 (x; u; �;ru;r�) in 


u = � = 0 on @
;
(3.1)

where 1 < pi < qi < N; �i : 
 ! [0;1) are Lipschitz continuous and fi : 
 � R �
R� RN � RN ! R are Carathéodory function.

3.2 De�nitions and notations

We give the following de�nition before we give our main result.

De�nition 3.2.1 We say that (u; �) 2W1;H1

0 (
)�W1;H2

0 (
) is a weak solution of
problem (3:1) ifR




�
jrujp1�2ru+ �1 (x) jruj

q1�2ru
�
:r'dx =

R



f1 (x; u; �;ru;r�)'dxR



�
jr�jp2�2r� + �2 (x) jr�j

q2�2r�
�
:r dx =

R



f2 (x; u; �;ru;r�) dx;
(3.2)
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is satis�ed for all test functions (';  ) 2W1;H1

0 (
)�W1;H2

0 (
). Taking the embed-
ding (1:3) into account, along with the growth conditions on f1andf2 , we see that
the de�nition of a weak solution is well de�ned.

Our existence result is based on the following surjectivity result for pseudomono-
tone operators, see, e.g., Carl-Le-Motreanu[5];or Papageorgiou-Winkert [27]:
We consider the space W :=W1;H1 (
)�W1;H2 (
) endowed with the norm

k(u; �)kW := kuk1;H1;0
+ k�k1;H2;0

;

for every (u; �) 2W1;H1

0 (
)�W1;H2

0 (
).
Then we consider the operator

A :W1;H1 (
)�W1;H2 (
)!
�
W1;H1 (
)

�� � �W1;H2 (
)
��
;

de�ned by

hA (u; �) ; (';  )iH1�H2
:=
R



�
jrujp1�2ru+ �1 (x) jruj

q1�2ru
�
:r'dx

+
R



�
jr�jp2�2r� + �2 (x) jr�j

q2�2r�
�
:r dx: (3.3)

Where h:; :i
H1�H2

is the duality pairing between W1;H1 (
)�W1;H2 (
) and its dual

space
�
W1;H1 (
))� � (W1;H2 (
)

��
. Then next result summarizes the properties of

the operator A.

Lemma 3.2.1 Let A : W1;H1

0 (
) �W1;H2

0 (
) !
�
W1;H1

0 (
)
��
�
�
W1;H2

0 (
)
��
be

the operator de�ned by (3:3). Then, A is bounded, continuous, monotone (hence
maximal monotone), and of type (S+). The proof to the one in Liu-Dai [18]

3.3 Existence result

We assume the following hypotheses on the nonlinearities f1; f2.
(H) f1; f2 : 
� R� R� RN � RN ! R are Carthéodory functions such that
(i) There exist �i 2 L

ri
ri�1 (
) (i = 1; 2) such that

jf1 (x; s; t; �; �)j � A1 jsja1+A2 jtja2+A3 jsja3 jtja4+A4 j�ja5+A5 j�ja6+A6 j�ja7 j�ja8+j�1 (x)j ;

jf2 (x; s; t; �; �)j � B1 jsjb1+B2 jtjb2+B3 jsjb3 jtjb4+B4 j�jb5+B5 j�jb6+B6 j�jb7 j�jb8+j�1 (x)j ;
for a. a. x 2 
, for all s; t 2 R and for all �; � 2 RN , where Aj; Bj; j = 1; :::6;
are nonnegative constants and with 1 < ri < p�i , i = 1; 2. Moreover, the exponents
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a`; b`; ` = 1; :::; 8; are nonnegative and satisfy the following conditions

(E1) a1 � r1 � 1; (E2) a2 � r1�1
r1
r2;

(E3)
a3
r1
+ a4

r2
� r1�1

r1
; (E4) a5 � r1�1

r1
p1;

(E5) a6 � r1�1
r1
p2; (E6)

a7
p1
+ a8

p2
� r1�1

r1
;

(E6) b1 � r2�1
r2
r1; (E8) b2 � r2 � 1;

(E9)
b3
r1
+ b4

r2
� r2�1

r2
; (E10) b5 � r2�1

r2
p1;

(E11) b2 � r2�1
r2
p2; (E12)

b7
p1
+ b8

p2
� r2�1

r2
:

(ii) There exist ! 2 L1 (
) and �;� � 0 such that

f1 (x; s; t; �; �) s+f2 (x; s; t; �; �) t � � (j�jp1 + j�jp2)+� (jsjp1 + jtjp2)+! (x) ; (3.4)

for a. a. x 2 
, for all s; t 2 R and for all �; � 2 RN and with

� + �max
�
��11;p1 ; �

�1
1;p2

	
< 1; (3.5)

where �1;pi is the �rst eigenvalue of the pi-Laplacian, see (1:6).
Let us consider, for example, the third term on the right-hand side of the growth

of f1. Applying Hölder�s inequality we get

A3

Z



juja3 j�ja4 'dx � A3

Z



0@Z



juja3s1 dx

1A 1
s1

0@Z



j�ja4s2 dx

1A 1
s2

0@Z



j'js3 dx

1A 1
s3

;

(3.6)
where (u; �) 2W1;H1

0 (
)�W1;H2

0 (
) ; ' 2W1;H1

0 (
) and

1

s1
+
1

s2
+
1

s3
= 1:

Taking s3 = r1 with 1 < r1 < p�i and using s1 � r1
a3
as well as s2 � r2

a4
leads to

a3
r1
+
a4
r2
� r1 � 1

r1
;

which is exactly condition (E3). Note that the conditions in (H) (i) are chosen
in order to prove our main results by applying the compact embedding (1:3). Of
course, for the �niteness of the integrals in the weak formulation (3:2), we can also
allow critical growth to have a well de�ned weak formulation. Now we are ready to
formulate and prove our main result in this section.

Theorem 3.3.1 [26] Let 1 < pi < qi < N , i = 1; 2, and let hypotheses (1:2) and
(H) be satis�ed. Then, there exists a weak solution (u; �) 2W1;H1

0 (
)�W1;H2

0 (
)
of problem (3:1).
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Proof. Let

N̂fi :W
1;H1

0 (
)�W1;H2

0 (
) � Lr1 (
)� Lr2 (
)! Lr
0
1 (
)� Lr01 (
) ;

be the Nemytskij operator associated to fi. Moreover, let

j�i : L
r
0
1 (
)� Lr

0
2 (
)!

�
W1:H1
0 (
)

�� �
W1:H2
0 (
)

��
;

be the adjoint operator for the embedding

ji :W
1:H1
0 (
)�W1:H2

0 (
)! Lr1 (
)� Lr2 (
) :

We then de�ne

Nfi := j�i � N̂fi :W1:H1
0 (
)�W1:H2

0 (
)!
�
W1:H1
0 (
)

�� �
W1:H2
0 (
)

��
;

which is well de�ned by hypotheses (H) (i). We set

A (u; �) := A (u; �)�Nf1 (u; �)�Nf2 (u; �) : (3.7)

Our aim is to apply Theorem 1:3:1, so, we need to show that A is bounded, pseudo-
monotone and coercive.
1) A is bounded
The boundedness of A follows directly from the boundedness of A and the growth
conditions on f1and f2 stated in (H) (i).
2) A is pseudomonotone.
To this end, let f(un; �n)gn2N �W

1;H1

0 (
)�W1;H2

0 (
) be a sequence such that

(un; �n)* (u; �) in W1;H1

0 (
)�W1;H2

0 (
) ; (3.8)

and
lim sup
n!1

hA (un; �n) ; (un � u; �n � �)iH1�H2
< 0: (3.9)

Taking the compact embedding (1:3) into account yields

un ! u in Lr1 (
) and �n ! � in Lr2 (
) ; (3.10)

since r1 < p�1 and r2 < p�2; respectively. We want to show that

lim
n!1

R



f1 (x; un; �n;run;r�n) (un � u) dx = 0;

lim
n!1

R



f2 (x; un; �n;run;r�n) (�n � �) dx = 0:
(3.11)

Let us consider the �rst expression in (3:11). By the growth condition (H) (i) it
follows R




f1 (x; un; �n;run;r�n) (un � u) dx

�
R



(A1 junja1 + A2 j�nja2 + A3 junja3 j�nja4 + A4 jrunja5

+A5 jr�nja6 + A6 jrunja7 jr�nja8 + j�1 (x)j jun � uj dx:

(3.12)
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Applying Hölder�s inequality, (3:10) and condition (E1) and (E2), respectively, we
obtain

A1
R



junja1 jun � uj dx � A1

�R



junja1r
0
1 dx

� 1
r01 kun � ukr1

� C1
�
1 + kunkr1�1r1

�
kun � ukr1 ! 0;

and

A2
R



j�nja2 jun � uj dx � A2

�R



�
a2r01
n dx

� 1
r01 kun � ukr1

� C2

�
1 + k�nk

r2
r01
r2

�
kun � ukr1 ! 0;

for some C1; C2 > 0. Moreover, Hölder�s inequality with exponents x1; y1; z1 > 1
such that

x1a3 � r1; y1a4 � r2; z1 = r1;
1

x1
+
1

y1
+
1

z1
= 1;

gives, by hypothesis (E3) ;

A3

Z



junja3 j�nja4 jun � uj dx � A3 kunka3a3x1 k�nk
a4
a4y1

kun � ukr1 ! 0:

Next we apply Hölder�s inequality with exponents r1; r01 and use (E4) and (E5) to
get

A4
R



jrunja5 jun � uj dx � A4

�R



jrunja5r
0
1 dx

� 1
r01 kun � ukr1

� C3

�
1 + krunk

p1
r01
p1

�
kun � ukr1 ! 0;

and

A5
R



jr�nja6 jun � uj dx � A5

�R



jr�nja6r
0
1 dx

� 1
r01 kun � ukr1

� C4

�
1 + kr�nk

p2
r01
p2

�
kun � ukr1 ! 0;

for some C3; C4 > 0: Furthermore, condition (E6) allows us to apply Hölder�s in-
equality with exponents x2; y2; z2 > 1 such that

x2a7 � p1; y2a8 � p2; z2 = r1;
1

x2
+
1

y2
+
1

z2
= 1;

in order to have

A6

Z



jrunja7 jr�nja8 (un � u) dx � A6 kunka7a7x2 kr�nk
a8
a8y2

kun � ukr1 ! 0:
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Since both krunka7x2 and kr�nka8y2 are bounded. Finally, for the last term in
(3:12) we have Z




j�1 (x)j (un � u) dx � k�1kr01 kun � ukr1 ! 0:

Combining all the calculations above give

lim
n!1

Z



f1 (x; un; �n;run;r�n) (un � u) dx = 0:

Applying similar arguments proves that

lim
n!1

Z



f2 (x; un; �n;run;r�n) (�n � �) dx = 0:

Hence, (3:11) is ful�lled. We now take the weak formulation (3:2), replace u by
un; � by �n; ' by un � u and  by �n � � and use (3:9) as well as (3:11) in order
to have

lim sup
n!1

hA (un; �n) ; (un � u; �n � �)iH1�H2
= lim sup

n!1
hA (un; �n) ; (un � u; �n � �)iH1�H2

� 0:
(3.13)

Since A satis�es the (S+)-property, see Lemma 3:2:1, we derive from (3:8) and (3:13)
that

(un; �n)! (u; �) in W1:H1
0 (
)�W1:H2

0 (
) :

Since A is continuous we have A (un; �n)! A (u; �) in
�
W1:H1
0 (
)

����W1:H2
0 (
)

��
;

which proves that A is pseudomonotone.
3) A is coercive.
First of all taking into account the representation(1:8) and replacing r by p1 and p2,
respectively, we have

kukp1p1 � ��11;p1 kruk
p1
p1
and k�kp2p2 � ��11;p2 kr�k

p2
p2
; (3.14)

for all (u; �) 2 W1;H1

0 (
) � W1;H2

0 (
). Note that W1;H1

0 (
) � W1;p1
0 (
) and

W1;H2

0 (
) �W1;p2
0 (
)
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Applying these facts along with (3:14) ; (3:4) ; and (1:4) leads to

hA (u; �) ; (u; �)iH1�H2
=
R



�
jrujp1�2ru+ �1 (x) jruj

q1�2ru
�
:rudx

+
R



�
jr�jp1�2r� + �2 (x) jr�j

q2�2r�
�
:r�dx

�
R



f1 (x; u; �;ru;r�)udx�
R



f2 (x; u; �;ru;r�) �dx

� krukp1p1 + kruk
q1
q1;�1

+ kr�kp2p2 + kr�k
q2
q2;�2

��
�
krukp1p1 + kr�k

p2
p2

�
� �

�
kukp1p1 + k�k

p2
p2

�
� k!k1

�
�
1� �� ���11;p1

�
krukp1p1 + kruk

q1
q1;�1

+
�
1� �� ���11;p2

�
kr�kp2p2 + kr�k

q2
q2;�2

� k!k1
�
�
1� �� �max

�
��11;p1 ; �

�1
1;p2

	��
min

n
kukp11;H1;0

; kukq11;H1;0

o�
+min

n
k�kp21;H2;0

; k�kq21;H2;0

o
� k!kL1(
) :

Since 1 < pi < qi and condition (3:5) holds, it follows that A is coercive.
From the Claims 1-3 we see that A is bounded, pseudomonotone and coercive.
Therefore, by Theorem 1.3.1, there exists (u; �) 2W 1;H1

0 (
)�W 1;H2
0 (
) such that

A (u; �) = 0. Taking into account the de�nition of A, see equation (3:7), it follows
that (u; �) is a weak solution of problem (3:1). That �nishes the proof.

3.4 Uniqueness result

Now we consider the uniqueness of solutions of (3:1). To this end, let f : 
� R2 ��
RN
�2 ! R2 be the vector �eld de�ned by:

f (x; s; �) = (f1 (x; s; �) ; f2 (x; s; �)) ;

for a.a. x 2 
, for all s 2 R2 and for all � 2
�
RN
�2
. We suppose the following

conditions on f :
(U1) There exists c1 � 0 such that

(f (x; s; �)� f (x; t; �)) : (s� t) � c1 js� tj2 ;

for a.a. x 2 
, for all s; t 2 R2 and for all � 2
�
RN
�2
:

(U2) There exist � =
�
�1;�2

�
with �i 2 Lsi (
) ; 1 < si < p�i and c2 � 0 such that

f (x; s; :)� � (x) is linear on
�
RN
�2
for a.a. x 2 
; and for all s 2 R2 and

jf (x; s; �)� � (x)j � c2 j�j ;

for a.a. x 2 
, for all s 2 R2 and for all � 2
�
RN
�2
:
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Theorem 3.4.1 [26]Let (1:2) ; (H) ; (U1), and (U2) be satis�ed. If 2 = pi � qi � N
for i = 1; 2 and

c1�
�1
1;2 + c2

�
2��11;2

� 1
2 < 1; (3.15)

then there exists a unique weak solution of problem (3:1) :

Proof. Let u = (u1; u2) ; � = (�1; �2) 2W1;H1

0 (
)�W1;H2

0 (
) be two weak solutions
of (3:1). Considering the weak formulation for u and �, choosing ' = u1 � �1 as
well as  = u2 � �2 and subtracting the related equations givesR




jr (u1 � �1)j2 dx+
R



jr (u1 � �1)j2 dx

+
R



�1 (x)
�
jru1jq1�2ru1 � jr�1jq1�2r�1

�
:r (u1 � �1) dx

+
R



�2 (x)
�
jru2jq2�2ru2 � jr�2jq2�2r�2

�
:r (u2 � �2) dx

=
R



(f (x; u;ru)� f (x; �;r�)) : (u� �) dx

+
R



(f (x; �;ru)� � (x)� f (x; �;r�) + � (x)) : (u� �) dx:

(3.16)

By the monotonicity of � 7! j�jqi�2 � we see that the third and the fourth integral
on the left hand side of (3:16) are nonnegative, that is,R




jr (u1 � �1)j2 dx+
R



jr (u2 � �2)j2 dx

+
R
�1 (x)

�
jru1jq1�2ru1 � jr�1jq1�2r�1

�
:r (u1 � �1) dx

+
R



�2 (x)
�
jru2jq2�2ru2 � jr�2jq2�2r�2

�
:r (u2 � �2) dxR




jr (u1 � �1)j2 dx+
R



jr (u2 � �2)j2 dx

= kr (u1 � �1)k22 + kr (u2 � �2)k22 :

(3.17)

On the other side, by applying (U1) to the �rst integral on the right hand side of
(3:16) and (U2) to the second we obtain along with Hölder�s inequalityR




(f (x; u;ru)� f (x; �;ru)) : (u� �) dx

+
R



(f (x; �;ru)� � (x)� f (x; �;r�) + � (x)) : (u� �) dx

� c1
�
ku1 � �1k22 + ku2 � �2k22

�
+
R



(f1(x; �1; �2; (u1 � �1)r (u1 � �1) ; (u1 � �1)r (u2 � �2))� �1 (x))dx

+
R



(f2 (x; �1; �2; (u2 � �2)r (u1 � �1) ; (u2 � �2)r (u2 � �2))� �2 (x)) dx

� c1�
�1
1;2

�
kr (u1 � �1)k22 + kr (u2 � �2)k22

�
+c2
R



(ju1 � �1j+ ju2 � �2j)
�
jr (u1 � �2)j2 + jr (u2 � �2)j2

� 1
2 dx

�
�
c1�

�1
1;2 + c2

�
2��11;2

� 1
2

� �
kr (u1 � �1)k22 + kr (u2 � �2)k22

�
:

(3.18)
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Combining (3:16) ; (3:17) and (3:18) gives

kr (u1 � �1)k22 + kr (u2 � �2)k22
�
�
c1�

�1
1;2 + c2

�
2��11;2

� 1
2

� �
kr (u1 � �1)k22 + kr (u2 � �2)k22

�
:

(3.19)

Taking (3:15) into account, we see from (3:19)that u1 = �1 and u2 = �2 and so the
solution of (3:1) is unique
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Conclusion

In this memoir, we studied the existence and uniqueness of quasilinear elliptic equa-
tion and system with double phase operator, using theory of pseudomonotone oper-
ator.
These result can be generalized to more problems with di¤erent boundary condi-
tions, it can be treated in other ways, by using �xed point theory or by minimization
of energy functional.
studies in this area provide valuable results that will contribute to exploring new

horizons for research in this emerging topic, so we looking forward to study the
multiplicity of solution of this kind of problems in Nehari Manifold, and extending
the study to the double phase problems with variable exponents.
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