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Abstract 

Improved Vehicle Detection in Aerial Images for 3D City Modeling 

CHERGUI Kheir Eddine 

High-quality 3D city models serve as fundamental infrastructure for smart 

cities and various applications. However, the presence of moving objects, especially 

Vehicles, poses a significant challenge to the automated generation of these models. 

Moving targets introduce instability in density matching and aerial triangulation 

processes, which can adversely affect the overall quality of the final models. 

To address this challenge and faithfully represent the dynamic environment of 

cities using discrete still captures, we propose a pre-processing procedure for optical 

imagery. This procedure focuses on detecting problematic objects, specifically 

vehicles, to pass them later to the elimination phase and to ensures the generation of 

accurate and precise 3D city models without the inconveniences and distortions 

caused by these objects. 

This research contributes to the fields of Image Processing and Computer 

Vision by addressing the Object Detection key aspect. We design a modern, fresh and 

more flexible Deep Learning-based method to detect moving vehicles that may 

disrupt stereo-vision during the 3D extrusion process. The detection models showed a 

promising result of 98% mAP and 94% mAP, this may not seem impressive but the 

flexibility and new features of these models make up for the relatively average 

accuracy.  

By mitigating the impact of moving vehicles on the 3D city generation 

process, our approach enhances the overall accuracy and realism of the resulting 

models. 

Key words: 3D City Modeling, Deep Learning, Aerial triangulation process, Vehicle 

Detection, Photogrammetry, mAP.  
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 ملخص

ي الصور الجوية لبناء المدن ثلاثية الأبعاد ال كشف المركبات 
 محسن ف 

ي خير الدين 
ف   شر

تعتبر نماذج المدن ثلاثية الأبعاد عالية الجودة أساسًا للبنية التحتية الأساسية للمدن الذكية 

، تحديًا كبيرًا  المركبات والتطبيقات المتنوعة. ومع ذلك، يشكل وجود الأجسام المتحركة، وخاصة  

ع في  ثابت  غير  عاملًا  المتحركة  الأهداف  تضيف  تلقائي.  بشكل  النماذج  هذه  توليد  مليات  يعيق 

 مطابقة الكثافة والتثليث الجوي، مما يؤثر سلبًا على جودة النماذج النهائية. 

فصلية،   ثابتة  لقطات  باستخدام  للمدن  الديناميكية  البيئة  وتمثيل  التحدي  هذا  على  للتغلب 

الأجسام   اكتشاف  الإجراءات على  هذه  تركز  البصرية.  الصور  لمعالجة  إجراءات مسبقة  نقترح 

، وبالتحديد المركبات، ومن ثم إزالتها لضمان إنشاء نماذج مدن ثلاثية الأبعاد  هاغير مرغوب فيال

 دقيقة ومتقنة دون الإزعاج والتشويش الناتج عن هذه الأجسام. 

على   التركيز  خلال  من  الحاسوب  ورؤية  الصور  معالجة  مجال  في  البحث  هذا  يساهم 

ال الأجسام  عن  الكشف  فيهاجانب  مرغوب  بتصميم  غير  نقوم  تقنيات .  على  قائمة  حديثة  طريقة 

لاكتشاف   العميق  عملية   المركبات التعلم  أثناء  الاستريو  الرؤية  على  تؤثر  قد  التي  المتحركة 

   %  98الانبثاق ثلاثية الأبعاد. أظهرت نماذج الكشف نتائج واعدة بمعدل دقة متوسط يصل إلى  

من   يزات الجديدة لهذه النماذج.، حيث توازنت الدقة المتوسطة بالمرونة والملنموذجينا  % 94و  

خلال تخفيف تأثير السيارات المتحركة على عملية إنشاء مدن ثلاثية الأبعاد، يعزز نهجنا الدقة 

 العامة والواقعية للنماذج الناتجة.

نماذج ثلاثية الأبعاد، التعلم العميق، التثليث الجوي، كشف المركبات، المسح    الكلمات المفتاحية:

 سط الدقة.التصويري، متو
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Résumé 

Amélioration de la détection des véhicules dans les images 
aériennes pour la modélisation 3D des villes 

CHERGUI Kheir Eddine 

Les modèles urbains 3D de haute qualité servent d'infrastructure fondamentale 

pour les villes intelligentes et diverses applications. Cependant, la présence d'objets en 

mouvement, en particulier les véhicules, constitue un défi majeur pour la génération 

automatisée de ces modèles. Les cibles mobiles introduisent une instabilité dans les 

processus d'appariement de densité et de triangulation aérienne, ce qui peut affecter 

négativement la qualité globale des modèles finaux. 

Pour relever ce défi et représenter fidèlement l'environnement dynamique des 

villes à partir de captures d'images fixes, nous proposons une procédure de prétraitement 

pour les images optiques. Cette procédure se concentre sur la détection d'objets 

problématiques, en particulier les véhicules, afin de les éliminer ultérieurement et 

d'assurer la génération de modèles urbains 3D précis, sans les inconvénients et les 

distorsions causés par ces objets. 

Cette recherche contribue aux domaines du traitement d'images et de la vision par 

ordinateur en abordant l'aspect clé de la détection d'objets. Nous concevons une méthode 

moderne et flexible basée sur l'apprentissage profond pour détecter les véhicules en 

mouvement pouvant perturber la vision stéréo lors du processus d'extrusion 3D. Les 

modèles de détection ont montré un résultat prometteur de 98% mAP et 94% mAP, ce qui 

peut ne pas sembler impressionnant, mais la flexibilité et les nouvelles fonctionnalités de 

ces modèles compensent la précision relativement moyenne. 

En atténuant l'impact des voitures en mouvement sur le processus de génération 

de villes 3D, notre approche améliore la précision globale et le réalisme des modèles 

obtenus. 

Mots clés : Modélisation 3D des ville, Apprentissage profond, Processus de 

triangulation aérienne, Détection de véhicules, Photogrammétrie, mAP. 
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Introduction and Research Background 

3D city modeling is an important field of research that has gained significant 

attention in recent years. It involves the creation of three-dimensional digital models 

of urban areas using various data.  Accurate 3D city models can help in visualizing 

and analyzing urban environments, identifying potential risks and hazards, and 

planning future development projects. Additionally, 3D city models can provide a 

realistic representation of urban areas that can be used in video games, movies, and 

virtual reality applications. Therefore, the development of accurate and efficient 

methods for 3D city modeling is crucial to support decision-making processes and 

improve the quality of life in urban areas[1]. 

However, obtaining accurate 3D models of urban areas is a challenging task 

due to various factors such as the complexity of urban environments, occlusions 

caused by buildings and other structures, and the presence of dynamic objects such as 

vehicles and pedestrians. 

One of the most widely used data sources for 3D city modeling is aerial 

imagery, which is obtained by capturing images of urban areas from airplanes, drones 

and satellites. Aerial images provide a top-down view of urban areas, making them a 

valuable source of data for 3D city modeling. However, using aerial images for 3D 

city modeling poses several challenges[2]. 

Despite these challenges, aerial images remain an essential data source for 3D 

city modeling due to their availability, affordability, and high-resolution capabilities. 

Advancements in computer vision and machine learning techniques have also enabled 

researchers to develop more efficient and accurate methods for 3D city modeling 

using aerial images. 
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Deep into aerial images, the presence of vehicles in these images stay in the 

way of creating accurate and detailed three-dimensional representations of urban 

environments and can significantly impact the quality and reliability of the resulting 

models. 

Vehicles present several challenges in the context of 3D city modeling. Firstly, 

vehicles often obstruct the view of important urban features such as buildings, roads, 

and infrastructure. This occlusion can lead to incomplete or inaccurate representations 

of the city's geometry and layout. Furthermore, vehicles can introduce noise, shadows, 

and artifacts into the aerial images, which amplifies the complexity of the modeling 

process[3].  

 

Figure 1 : Rendering Degradation on the model texture 

 

Figure 2 : Distortion on the Geometric models 
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Moreover, the accurate removal of vehicles from these images is crucial for 

generating clean and precise 3D city models. Vehicle removal techniques are 

necessary to eliminate the unwanted visual artifacts and occlusions caused by 

vehicles, allowing for a clearer view of the underlying urban structures[3]. 

Addressing the problem of vehicles in aerial images for 3D city modeling 

requires the development of robust vehicle detection and removal algorithms. These 

algorithms need to be capable of accurately identifying vehicles, estimating their pose 

and dimensions, and effectively removing them from the images while preserving the 

integrity of the remaining urban elements. 

By solving the problem of vehicle detection and removal in aerial images, we 

can enhance the quality, completeness, and accuracy of 3D city models. This, in turn, 

enables various applications such as urban planning, architecture, environmental 

simulations, and transportation analysis to benefit from more reliable and detailed 

representations of the urban environment. 

In various situations, it is relatively straightforward to create individual 

building models and generate a generic street image by manually adding other 

objects. However, when it comes to modeling an entire city, a significant dilemma 

arises. The process becomes exceedingly monotonous, repetitive, and demands 

substantial time and financial resources. Consequently, an automated procedural 

approach to 3D modeling becomes the only viable solution[4]. 

Our Objective 

We can present our objectives on the following notes: 

• Train an effective vehicle detection algorithm for accurately identifying and 

localizing vehicles in aerial images. 

• Evaluate the proposed vehicle detection methods using benchmark datasets 

and compare their performance against state-of-the-art approaches. 

• Assess the impact of vehicle detection on the quality and accuracy of 3D city 

models. 
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• Investigate the practical applications and potential benefits of improved 

vehicle detection techniques in the context of 3D city modeling. 

On this thesis we present 3 main chapters; 

The first will contain a review of literature on 3D city modeling as well as its 

techniques and how important it is in some applications, then concluding by 

identifying the gaps and areas that require further investigation.  

On chapter 2 we will start by checking an overview of object detection with 

deep learning, seeing the principles, applications, and types of models. State the 

challenges in training deep learning models and techniques and how to overcome 

them. And finally, the integration of deep learning in our project (vehicle detection in 

aerial images.) 

Chapter 3 talks about Vehicle Detection in Aerial Images where we discuss the 

methodology for detecting vehicles in aerial images. Present the dataset and 

preprocessing steps as well as the deep learning model architecture we used. 

Additionally, the training process and evaluation metrics. Then comparing the 

experimental results with the state of the art. Last but not least we will discuss the 

limitations and areas of improvements. 

In the conclusion we will summarize the main findings. Contributions of the 

thesis to 3D city modeling and deep learning and limitations of the thesis and 

suggestions for future research. 



 

 



 

 

 

 

 

Chapter I :  3D City 

Modeling 
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Introduction 

Before bringing out the source of 3D city models distortions and miss-

rendering issue, we will try in this chapter to place the problem in its context by 

giving an overview of urban 3D modelling technologies while showing some of their 

pros and cons. 

1. What are 3D city models 

3D city modeling involves creating digital representations of urban 

environments in three dimensions. It aims to provide accurate and detailed virtual 

cityscapes for visualization, analysis, and simulation purposes. 

It integrates various data sources and technologies like aerial imagery, LiDAR 

data, and photogrammetry to reconstruct the geometry and appearance of buildings 

and other urban features. The resulting 3D models enable immersive exploration and 

analysis of the urban environment.  

3D city modeling is valuable for urban planning, architecture, transportation, 

environmental studies, and more, allowing stakeholders to visualize, assess, and make 

informed decisions about urban development and infrastructure projects[5], [6]. 

2. Modeling Methods Categorization 

The categorization of 3D modeling methods can be based on various criteria, 

including the application domain, level of abstraction, representation mode, or 

visualization effects. However, in many cases, 3D modeling methods are primarily 

categorized either based on their automation level or the data input techniques 

used[7]. 
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2.1. Automation basis 

 

Figure I-1: Automation Basis 

• Automatic methods rely heavily on computational algorithms and techniques 

to generate 3D models without significant human intervention. They are efficient and 

can handle large datasets, but may have limitations in capturing intricate details.  

• Semi-automatic methods combine automated algorithms with user interaction, 

allowing users to provide input or guidance during the modeling process. These 

methods strike a balance between automation and user control.  

• Manual methods involve extensive human involvement and expertise, with 

skilled artists or designers manually creating 3D models. Manual methods offer high 

levels of customization and attention to detail but are time-consuming. 

2.2. Data input techniques basis 

Data input technique-based categorization focuses on the primary data sources 

used for 3D modeling. Image-based methods use 2D images, often obtained from 

aerial or street-level photography, as the main data source. These methods leverage 

computer vision algorithms to extract 3D information from overlapping images. 

LiDAR-based methods utilize data captured by LiDAR sensors, which measure the 

distance to objects using laser pulses. LiDAR data enables the creation of highly 

accurate point clouds for 3D modeling. GIS-based methods integrate Geographic 

Information System (GIS) data with other data sources such as satellite imagery or 

LiDAR to generate 3D models. GIS data provides geospatial information such as 

elevation, land use, and infrastructure data. 

 

3D City Modeling

Automatic
Semi-

automatic
Manual
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Figure I-2: Data Input Techniques Basis 

2.3. 3D Modeling Techniques 

A comprehensive review of the literature on 3D city modeling reveals various 

approaches and techniques used in the field. These approaches can be categorized into 

several key areas: 

a. Photogrammetry-based Approaches: 

• Structure from Motion (Same): This technique uses multiple 

overlapping aerial images to reconstruct the 3D geometry of the city by 

identifying corresponding features and estimating camera positions. 

• Multi-View Stereo (MVS): MVS algorithms combine information 

from multiple images to generate dense 3D point clouds, which are 

then used to create detailed 3D models. 

3D City Modeling

Photogrammetery

Aerial

Satallite

Close Range

Laser Scanning

Aerial

Terrestrial

Geographic 
Information System
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b. LiDAR-based Approaches: Light Detection and Ranging (LiDAR): 

LiDAR sensors emit laser pulses and measure their return time to calculate 

accurate 3D point cloud representations of the city. LiDAR data is often 

used in combination with aerial imagery for 3D city modeling. 

c. Procedural Modeling: Procedural modeling techniques use algorithms 

and rule-based systems to generate 3D city models automatically. These 

approaches define rules for the generation of buildings, roads, and other 

urban elements, enabling the creation of large-scale city models efficiently. 

d. Image-based Modeling: Image-based modeling techniques rely on a 

collection of images from different viewpoints to reconstruct the 3D 

geometry of the city. These approaches use feature matching, camera 

calibration, and bundle adjustment algorithms to estimate the 3D structure. 

e. Point Cloud Processing: Point cloud processing techniques involve 

filtering, segmentation, and classification of LiDAR or dense point clouds 

to extract meaningful urban features. These features can include buildings, 

vegetation, roads, and other objects. 

f. Semantic Modeling: Semantic modeling aims to assign meaningful labels 

or semantic information to the elements in 3D city models. This enables 

the representation of not only geometric properties but also functional and 

contextual information of urban objects. 

g. Hybrid Approaches: Hybrid approaches combine multiple data sources, 

such as aerial imagery, LiDAR data, and GIS data, to create more accurate 

and detailed 3D city models. These approaches leverage the 

complementary strengths of different data sources for improved modeling 

results. 

h. Real-time and Interactive Modeling: Real-time and interactive modeling 

techniques focus on generating 3D city models in real-time or near real-

time for applications like virtual reality, augmented reality, and gaming. 

These approaches often prioritize efficiency and user interactivity. 

The literature review should provide an in-depth understanding of the 

strengths, limitations, and applications of each approach. It should also identify the 
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gaps in the existing research and highlight the areas that require further investigation 

for advancing the field of 3D city modeling[6]. 

2.4. Comparison between modeling techniques 

We can summarize the advantages and limitations of the techniques mentioned 

above on the following table: 

Technique Advantages Limitations 

Photogrammetry-

based Approaches 

Cost-effective, detailed 3D 

models, texture information. 

Sensitive to image quality, struggles 

with complex environments, time-

consuming manual processes. 

LiDAR-based 

Approaches 

High precision, reliable in 

various conditions, detailed 

geometric features. 

Expensive, varying point cloud density, 

limited texture information. 

Procedural 

Modeling 

Efficient for large-scale models, 

parametric control, simulation of 

urban scenarios. 

Lack of detail, simplified 

representations, time-consuming rule 

creation. 

Image-based 

Modeling 

Cost-effective, captures visual 

appearance, advancements in 

computer vision. 

Sensitivity to image quality, struggles 

with depth estimation, computationally 

demanding. 

Point Cloud 

Processing 

Detailed analysis, precise 

geometric properties, integration 

with other data. 

Noise removal, computational intensity, 

data acquisition limitations. 

Semantic Modeling 

Contextual information, 

advanced analysis, enhanced 

understanding. 

Data annotation challenges, 

standardization, scalability. 

Hybrid Approaches 

Combined benefits of multiple 

data sources, accurate and 

detailed models. 

Data fusion challenges, increased cost 

and resource requirements. 

Real-time and 

Interactive Modeling 

Immediate visual feedback, 

interactivity, immersive 

experiences. 

Sacrifices accuracy for efficiency, 

hardware requirements, simplified 

representations. 

Table 1: Advantages and Limitations of 3D City Modeling Techniques 



Chapter I: 3D City Modeling 

12 
 

3. Applications of 3D City Modeling 

Accurate 3D city models contribute to improved planning, decision-making, 

and analysis in urban environments. As it plays a vital role in various applications as 

we will explain[8]. 

a. Urban Planning and Design: Provide urban planners, architects, and 

designers with a realistic representation of the urban landscape. They enable 

better visualization and understanding of existing structures, infrastructure, 

and spatial relationships. This information aids in the development of 

sustainable urban plans, efficient transportation systems, and optimized land 

use[9]. 

b. Disaster Management and Emergency Response: During natural disasters 

or emergencies, accurate 3D city models assist in disaster preparedness, 

response planning, and resource allocation. They facilitate the identification of 

vulnerable areas, evacuation routes, and potential hazards. These models also 

support simulations and predictive analysis, helping authorities mitigate risks 

and improve disaster management strategies. 

c. Environmental Analysis: They are crucial for assessing environmental 

impacts and conducting simulations. As they enable the evaluation of sunlight 

exposure, wind patterns, and energy consumption in urban areas. These 

models aid in optimizing renewable energy installations, reducing carbon 

emissions, and enhancing the overall environmental sustainability of 

cities[10],[11]. 

d. Infrastructure Development and Management: Provide insights into the 

existing infrastructure network. Which helps to identify areas requiring 

infrastructure upgrades, optimizing utility networks, and planning for future 

expansions. These models also assist in asset management, maintenance 

planning, and coordination among different stakeholders. 

e. Visualization and Virtual Reality: Enhance visualization and immersive 

experiences for various applications. They enable virtual tours, augmented 

reality applications, and interactive simulations. These models are invaluable 
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for marketing, tourism, education, and cultural heritage preservation, 

providing a realistic and engaging representation of urban spaces. 

f. Simulation and Gaming: Accurate 3D city models serve as a foundation for 

urban simulations and gaming applications. They support traffic simulations, 

crowd behavior analysis, and urban simulations for research purposes. In the 

gaming industry, these models form the basis for creating realistic virtual 

worlds, enabling engaging and interactive gaming experiences. 

4. Current research gaps in the field 

The existing research on vehicle detection and removal in aerial images for 3D 

city modeling has made significant progress, but there are still several gaps that 

require further investigation. One area that requires attention is the development of 

improved vehicle detection algorithms. Current algorithms exhibit varying 

performance and struggle with challenging scenarios, such as crowded urban 

environments and occlusion. Further research is needed to develop more robust and 

accurate algorithms, potentially utilizing deep learning techniques and advanced 

feature extraction methods[12]. 

Another important gap is the enhancement of vehicle removal techniques. 

While existing methods show promise, there is room for improvement in preserving 

the integrity and quality of the background scene. Researchers need to focus on 

developing advanced techniques that effectively remove vehicles while maintaining 

visual coherence and realism in the aerial images. This involves addressing challenges 

such as accurate inpainting, texture blending, and handling complex backgrounds. 

The availability of diverse and comprehensive datasets is crucial for 

evaluating and comparing different vehicle detection and removal methods. There is a 

need for large-scale datasets that encompass various urban environments, vehicle 

types, and occlusion scenarios. Establishing standardized evaluation metrics and 

benchmarks would enable fair comparison and facilitate advancements in the field. 

Real-time and scalable solutions are highly desirable for practical applications. 

Further research should focus on developing efficient algorithms and techniques that 
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can handle large-scale aerial images and process them in real-time or near real-time. 

This involves exploring parallel processing, optimization strategies, and hardware 

acceleration to achieve faster and more scalable solutions. 

Integrating vehicle detection and removal techniques seamlessly with 3D city 

modeling frameworks is an important area of research. Investigating methods to 

automatically update 3D city models based on the detected and removed vehicles 

would enable dynamic and accurate representations of urban environments. This 

includes addressing challenges related to data fusion, registration, and maintaining 

consistency between the 3D models and the underlying aerial images. 

Additionally, researchers should consider application-specific considerations. 

Different applications may have specific requirements and challenges in vehicle 

detection and removal. Tailored solutions are needed for applications such as urban 

planning, traffic management, or environmental analysis. Understanding these 

specific considerations and developing specialized algorithms and techniques will be 

crucial in meeting the requirements of these applications. 

Addressing these research gaps will contribute to the advancement of vehicle 

detection and removal techniques in aerial images for 3D city modeling. It will lead to 

more accurate and realistic representations of urban environments, benefiting various 

fields such as urban planning, disaster management, environmental analysis, and 

virtual reality applications. 

Conclusion  

In this chapter, we mentioned the main goal of the research, which is the 3D 

city modelling, starting by giving definitions and literature. Next, we talked about the 

main criteria in 3D city modelling categorization while showing the pros and the cons 

of each one. Furthermore, we mention some of its applications and Research Gaps. 
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Introduction 

After getting a clear view of 3D city modeling, we will now take our research 

to the deep learning part where we will understand the principles and applications of 

DL. As well as its different types and which one we chose to achieve our goal. 

Additionally, we will further explain object detection and see a brief performance 

comparison between detection models  

1. Overview of deep learning 

Deep learning is a subfield of machine learning that focuses on training 

artificial neural networks to learn and make predictions or decisions. It has gained 

significant attention and achieved remarkable success in various domains. Deep 

learning has revolutionized the field of artificial intelligence by enabling models to 

automatically learn and extract meaningful representations from complex data[13]. 

1.1. History and Development 

Deep learning has its roots in the field of artificial neural networks, which 

dates back to the 1940s. However, it wasn't until the late 2000s and early 2010s 

that deep learning gained widespread popularity due to advancements in 

computational power, availability of large datasets, and algorithmic innovations. 

Breakthroughs such as the AlexNet architecture in 2012, which won the 

ImageNet[14] competition, demonstrated the power of deep learning in computer 

vision and triggered the deep learning revolution. 

1.2. Principles of deep learning 

The key principle underlying deep learning is the use of deep neural 

networks with multiple layers. These networks are composed of interconnected 

nodes, called artificial neurons or units, organized into layers. Each neuron 

performs a simple computation on its inputs and passes the result to the next layer. 

DL models learn by adjusting the weights and biases associated with these 

connections to minimize the difference between predicted and actual outputs. This 
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process, known as training, is typically performed using large datasets and 

optimization techniques such as stochastic gradient descent[15]. 

 

Figure II-1 : Major architecture of deep learning [16] 

1.3. Application fields 

Deep learning has found applications in various domains. In computer 

vision, deep learning models have achieved state-of-the-art performance in tasks 

such as object detection, image classification, and image segmentation. Natural 

language processing has also benefited from deep learning, with applications like 

machine translation, sentiment analysis, and text generation. Speech recognition 

systems, recommender systems, autonomous vehicles, and medical diagnosis are 

other areas where deep learning has made significant contributions[17]. 

Deep learning's success stems from its ability to learn intricate patterns, aided 

by hierarchical representations, and advancements in parallel computing with high-

performance GPUs. Large labeled datasets have further fueled its progress. 

Challenges include the need for substantial computational resources, overfitting, and 

interpretability. Nevertheless, deep learning holds vast potential for complex problem-

solving and driving AI advancements. 
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2. Deep learning types 

There are various types of deep learning models, each designed to tackle 

different types of problems and data structures. 

2.1. Convolutional Neural Networks (CNNs) 

CNNs are primarily used for computer vision tasks and excel at image 

classification, object detection, and image segmentation. They are composed of 

convolutional layers that apply filters to extract spatial features from input images, 

followed by pooling layers to downsample the feature maps[18]. CNNs have 

revolutionized computer vision and achieved remarkable performance in tasks like 

image recognition. CNN will be the type we are going to use to achieve our desired 

goal. 

2.2. Recurrent Neural Networks (RNNs) 

RNNs are suitable for sequential data processing tasks, such as natural 

language processing and speech recognition. They have recurrent connections that 

allow information to persist across time steps, making them capable of capturing 

temporal dependencies. RNNs can process variable-length sequences and have been 

extended with variants like Long Short-Term Memory (LSTM) and Gated Recurrent 

Unit (GRU) to address the vanishing gradient problem and improve performance on 

long-term dependencies. 

2.3. Generative Adversarial Networks (GANs) 

GANs consist of a generator network and a discriminator network that 

compete against each other[19]. GANs are used for generative modeling, where they 

learn to generate realistic synthetic samples that resemble the training data. GANs 

have been successfully applied to tasks like image synthesis, image-to-image 

translation, and data augmentation. 
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2.4. Autoencoders 

Autoencoders are unsupervised learning models that aim to learn efficient data 

representations by reconstructing the input from a compressed latent representation. 

They consist of an encoder network that maps the input to a lower-dimensional latent 

space and a decoder network that reconstructs the input from the latent representation. 

Autoencoders have applications in tasks like dimensionality reduction, anomaly 

detection, and denoising. 

2.5. Transformers 

Transformers have gained popularity in natural language processing tasks, 

especially in machine translation and language understanding tasks. Transformers 

employ a self-attention mechanism that allows them to capture dependencies between 

different positions in the input sequence. They have shown superior performance in 

tasks that involve long-range dependencies and have become the backbone of many 

state-of-the-art language models, such as the Transformer-based models like BERT 

and GPT. 

2.6. Deep Reinforcement Learning (DRL) 

DRL combines deep learning with reinforcement learning, where an agent 

learns to interact with an environment to maximize a reward signal. DRL has been 

successful in game playing, robotics, and control problems. Deep Q-Networks (DQN) 

and Proximal Policy Optimization (PPO) are examples of popular DRL algorithms. 

These are just a few examples of the different types of deep learning models. 

There are also hybrid models that combine different architectures to leverage their 

strengths for specific tasks. The choice of the model depends on the problem at hand, 

the nature of the data, and the specific requirements of the task. 
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3. Deep learning and traditional machine learning 

Deep learning offers several advantages over traditional machine learning 

techniques. It can automatically learn features from raw data, handle high-

dimensional data effectively, scale well with large datasets, enable end-to-end 

learning, and generalize to new data. That greatly makes it more efficient and worthy. 

However, deep learning requires substantial labeled data and computational resources 

and may be challenging to interpret and explain. 

4. Image processing using deep learning 

4.1. Overview of Object detection 

As mentioned earlier the presence of vehicles in aerial images is considered a 

significant challenge, as they can cause distortions and rendering issues in the 

resulting models. In order to address this problem, it is necessary to first detect these 

vehicles. This detection step plays a crucial role in accurately identifying and 

localizing the cars for subsequent removal[20]. 

Image detection, Image classification, 3D-pose Estimation, Object tracking 

and many more are well known terms in computer vision, however there is still a 

confusing between these many terms[21]. 

    

(Car)  (Car, Dog, Person) (Car, Dog, Person) 

Classification Localization Detection Segmentation 

Figure II-2 : Comparison between Deep Learning Tasks 
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As shown in the Figure II-1, computer vision tasks can be broadly categorized 

into two main categories based on their focus: 

Single object tasks: 

• Classification: This involves assigning a single image into one of several 

predefined categories or classes. The goal is to determine what object or 

concept the image represents. 

• Localization: In this task, the objective is to locate a single object within an 

image and provide bounding box coordinates around it. The focus is on 

identifying the object's presence and its spatial position within the image. 

Multiple objects tasks: 

• Detection: The aim is to detect and locate multiple objects of interest within an 

image. This involves identifying the presence and location of multiple objects 

while also classifying them into respective categories. 

• Segmentation: This task goes a step further by providing a pixel-level mask 

for each object present in the image. The goal is to precisely delineate the 

boundaries of each object and assign a unique label to every pixel belonging to 

that object. 

For our research we will be working on the object detection task. 

4.2.  Definitions 

4.2.1. Object Detection 

Object detection refers to the computer vision task of identifying and 

localizing objects within an image or a video. It involves both classifying the 

objects into predefined categories or classes and providing their spatial location 

information in the form of bounding boxes. The goal of object detection is to 

accurately detect and locate objects of interest, regardless of their size, 

orientation, or context within the given image or video frame[15]. 

Given an input image we aim to obtain three primary outputs: 
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• A list of bounding boxes, or the coordinates for each object in an image; 

• A class label associated with each bounding box; 

• A confidence score associated with each bounding box and class label. 

4.2.2. Object Segmentation 

A computer vision task that involves dividing an image into distinct 

regions or segments and assigning a specific label to each pixel within those 

regions. The goal of object segmentation is to precisely delineate the boundaries 

of objects within an image and assign them a unique label, indicating their 

semantic meaning or class[22]. 

Unlike object detection, which provides bounding box coordinates around 

objects, object segmentation aims to provide a pixel-level mask for each object 

in the image. This pixel-level accuracy allows for a more fine-grained 

understanding of the image content and enables more detailed analysis and 

manipulation of objects. 

4.3. Applications 

4.3.1. Security and Surveillance: 

Object detection and segmentation have important applications in security 

and surveillance systems. They can be used for intrusion detection, perimeter 

security, crowd monitoring, suspicious object detection, facial recognition and 

tracking, traffic monitoring and management, and object tracking. These 

technologies enhance monitoring capabilities, enable proactive threat detection, 

and ensure public safety in security-sensitive environments. 

4.3.2. Visual Search Engines: 

Object-based Image Retrieval, Visual Similarity Search, Image 

Annotation and Tagging, Image Object Localization and Image Content 

Analysis are the main tasks where deep learning shines in visual search engines 

by enhancing the functionality and effectiveness of these engines and enabling 

more precise and targeted search. 
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4.3.3. Aerial Image Analysis 

Object detection and segmentation have numerous applications in aerial 

image analysis such us urban planning and development, Environmental 

monitoring, Infrastructure inspection, Object tracking, Geospatial mapping and 

change detection. 

4.3.4. Data Processing 

They are used for data annotation, labeling, cleaning, and quality control. 

These techniques aid in data augmentation, compression, and storage. 

4.4. Model training challenges 

Training deep learning models poses several challenges that researchers and 

practitioners need to address. Some of the main challenges include: 

4.4.1. Availability of labeled data 

Deep learning models often require large amounts of accurately labeled data 

for effective training. However, obtaining such data can be time-consuming, 

expensive, and sometimes impractical. Limited labeled data can lead to overfitting or 

poor generalization of the model. Techniques such as data augmentation, transfer 

learning, and active learning can be used to overcome this challenge[15]. 

4.4.2. Computational resources 

Deep learning models, particularly those with complex architectures and large-

scale datasets, demand substantial computational power and memory. Access to high-

performance GPUs and sufficient memory is a must for training deep neural networks 

efficiently. 

4.4.3. Model architecture and hyperparameter selection 

Choosing the right model architecture and hyperparameters can significantly 

affect the model's convergence, generalization, and overall performance. DL models 

offer various architecture options, including the number and type of layers, 

connectivity patterns, and activation functions[22]. 
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4.4.4. Gradient vanishing or exploding 

Gradients can diminish or explode during backpropagation, affecting the 

model's optimization process. This can lead to slow convergence or instability. 

Techniques like careful weight initialization, using appropriate activation functions 

(e.g., ReLU), employing gradient clipping, or normalization methods (e.g., batch 

normalization) help alleviate these problems and ensure stable gradient flow. 

4.4.5. Overfitting 

Overfitting occurs when the model becomes too complex and starts to 

memorize the training data instead of learning generalizable patterns. Regularization 

techniques such as dropout, L1/L2 regularization, and early stopping, ensemble 

learning and dropout regularization are commonly used to mitigate overfitting and 

improve the model's abilities. 

5. Object Detection Approaches 

5.1. One-stage object detector 

In the regression approach, the whole image will be run through a CNN 

directly to generate one or more bounding boxes for objects in the images (e.g. 

SSD[23], YOLO[24], RetinaNet[25], FPN[26]). 

 

Figure II-3 : One-stage object detectors flowchart 

5.2. Two-stage object detector 

In the classification (or region-based) approach, the image is divided into 

small patches, each of which will be run through a classifier to determine whether 

there are objects in the patch. The bounding boxes will be assigned to patches with 
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positive classification results (e.g. R-CNN[18], Fast R-CNN[27], Faster R-CNN[18], 

R-FCN[28], Mask R-CNN[29], Light-Head R-CNN[30] ... etc.). 

 

Figure II-4 : Two-stage object detectors flowchart 

6. Comparison between Object detection methods 

The field of Computer Vision has witnessed the introduction of innovative 

concepts and techniques in object detection, making it challenging to compare 

different object detectors and determine the best model. Each year, new systems are 

proposed, but conducting a fair apples-to-apples comparison becomes difficult due to 

variations in base feature extractors (e.g., VGG[31], Residual Networks), default 

image resolutions, and hardware and software platforms. 

Instead of searching for the definitive best detector, the more important question 

to ask is which detector and configurations provide the optimal balance between 

speed and accuracy for a specific application. The choice should be guided by the 

requirements of the application at hand. By carefully selecting the detector and fine-

tuning its settings, one can achieve the desired trade-off between detection speed and 

accuracy, catering to the specific needs of the application. 

Performance Results 

It is unwise to compare results from different papers side-by-side. Those 

experiments are done in different configurations which are not purposed for apples-to-

apples comparisons. But in this section, we summarize the performance reported by 

the corresponding papers in Table 2: 
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Detector VOC07 VOC12 MS COCO 

mAP IoU=0.5 IoU=0.5 IoU=0.5 : 0.95 

R-CNN 58.5 - - 

Fast R-CNN 70.0 68.4 19.7 

Faster R-CNN 73.2 70.4 42.0 

YOLOv1 66.4 57.9 - 

SSD 76.8 74.9 31.2 

R-FCN 79.5 77.6 29.9 

YOLOv3 - - 33.0 

YOLOv5 - - 50.2 

FPN - - 53.3 

Mask R-CNN - - 45.2 

RetinaNet - - 39.1 

YOLOv7[32] - - 51.4 

YOLOv8 - - 53.9 

Table 2 : Performance reported by the corresponding papers 

Conclusion 

In this chapter, we defined object detection and mentioned some of its 

applications. We went through the details of object detection approaches and present 

some of the problems and challenges that may cause issues to object detection. We 

also talked about the available datasets and the performance metrics for comparison 

reason. And concluded by showing a table that summarize the performance reported 

from a variety of detectors. 
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Introduction 

 In this chapter, we will check the used datasets for training and testing and 

give an overview of the selected object detector, namely You Only Look Once version 

8, present the reasons which motivated this choice and describe the implementation of 

the adapted Yolov8 object detector that we have modified to fit our specific problem 

which is overhead car detection. 

1. Proposed Solution 

In our research, we trained two models using a RoboFlow[33] dataset of aerial 

images for vehicle detection. The dataset was split into training, validation, and test 

sets. We used the Vedai[20] (Vehicle Detection in Aerial Images) dataset for extensive 

testing.  

To improve generalizability, we applied data pre-processing techniques[34], 

including auto-orientation of pixel data and image resizing. The models were trained 

with different hyperparameters, one on RoboFlow cloud server and the other on 

personal computers with limited resources. Our approach achieved accurate vehicle 

detection, distinguishing between various vehicle types.  

The proposed structure is visually represented in this diagram: 
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Figure III-1 : Our Research General Structure 



Chapter III: Research Results and Models Implementation 

32 
 

2. Datasets and performance metrics 

Over the years, numerous datasets have been made available for detection 

challenges. These datasets are valuable resources that provide standardized 

benchmarks for evaluating the performance of object detection algorithms. 

2.1. Datasets 

Datasets play a crucial and often underestimated role in driving research 

advancements. With the release of each new dataset, researchers have the opportunity 

to compare and enhance existing models. This iterative process of model development 

and evaluation fuels progress in the field. Below is a list of the most used datasets in 

Table 3: 

Name Images Classes Updated 

MS COCO 330K 80 2021 

ImageNet 14M 200 2021 

Pascal VOC[35] 11K 20 2012 

Cityscapes[36] 25k 30 2020 

Table 3 : Most used datasets in artificial intelligence 

2.2. Performance metrics 

In the context of performance assessment, early research often relied on the 

term "Accuracy" to evaluate the quality of a model's predictions. This measure is 

typically computed by comparing the model's predictions to the ground truth 

information. In the case of Object Detection, the ground truth consists of the bounding 

box coordinates and the corresponding object class for each object present in the 

image. Hence, a high level of accuracy indicates that the model is capable of 

generating bounding boxes that closely align with the ground truth and accurately 

classifying the objects. 
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Now, when evaluating object detector performance, we use an evaluation 

metric called Mean Average Precision (mAP) which is based on the Intersection over 

Union (IoU) across all classes in our dataset.  

3. Used Datasets 

The dataset used for training our models is a RoboFlow universe dataset 

provided by a random anonymous user. It contains 2758 aerial images taken in urban 

aeras in the city of Columbus, Ohio, USA and the city of Potsdam in Germany. Both 

cities’ images are 256x256 pixels size and are taken using the GeoEye-1 satellite 

sensor, however Columbus city ones are in grayscale. 

    

Columbus City Potsdam City 

Figure III-2 : Sample images of RoboFlow Universe dataset 

The second dataset, Vedai is provided by Sebastien Razakarivony and Frederic 

Jurie. It contains 1999 images at 256x256 resolution. No further information about the 

dataset was announced by the publishers. 

    

Figure III-3 : Sample images of Vedai dataset 
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4. Images pre-processing 

In the pre-processing step we ran our datasets through 2 stages, auto-

orientation of pixel data (with EXIF-orientation stripping) and image resizing. 

The auto-orientation process strips images of their EXIF data so that we see 

images displayed the same way they are stored on disk. This step is obligatory by the 

Roboflow cloud server training for any dataset, therefore the second model that we 

trained in our personal computer does not run through this phase. 

However, the resizing process touch both our datasets because the algorithm 

we are going to use is Yolov8 and it automatically resize the images to 640x640 as 

standard or any other selected dimension. 

Then, we divided our Roboflow data to training and validation images as 

follow: 

 

Figure III-4 : Dataset Division 

5. Training Models using Yolov8 

Based on the detectors comparison we mentioned in chapter II Table 2, we 

decided to use a Yolov8[37] model and train it for detecting vehicles in aerial images. 

Training
80%

Validation
20%

Training Validation
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The YOLOv8 model represents an innovative advancement developed by the 

team responsible for the highly influential YOLOv5 architecture[38]. This novel 

iteration exhibits substantial enhancements in terms of visual perception when 

compared to existing models. Empirical evidence, as illustrated by performance 

graphs provided by the Ultralytics team (Figure III-5), demonstrates notable 

improvements in accuracy across the widely-used MS COCO dataset[21]. 

 

 

Figure III-5 : Yolov8 Architecture[39] 

 

The YOLOv8 model is based on the YOLOv5 architecture, but it introduces a 

number of key innovations. These include: 

• A new backbone network that is more efficient and accurate. 

• A new head network that is better at predicting object bounding boxes and 

classes. 

• A new loss function that is more robust to noise and outliers. 
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Figure III-6 : Yolov8 Performance compared to other Yolo models[40] 

 The distinction between the two trained models primarily lies in the 

hyperparameters employed during the training process. The model trained on the 

RoboFlow cloud server utilized the yolov8m.pt base model, with 16 batches, 199 

epochs, an 8-core CPU, and an NVIDIA V100 GPU. 

Conversely, our local training involved the yolov8m.pt base model, with 8 

batches, 50 epochs, a 4-core CPU, and an AMD Radeon Vega 8 GPU.  

These variations in hyperparameters were selected based on the available 

resources and computational capacity of each training environment resulting in a quite 

gap in the overall performance of each model. 

6. Training Results 

The training of computer vision models became a lot easier with Yolov8 since 

the developers officially added a YOLO package to the python libraries, however it 

still has significant limitations and challenges. To get a performant model we changed 

some of the hyperparameters and configuration data of the main yolov8 medium 

model (which could never predict vehicles from a top view) like classes, layers and 

region selection rules. Finally, we had to train the model and validate it. 

Since we have the yolo package, all we had to do is run the following code 

snippets for training and validation 
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yolo task=detect mode=train  data={dataset.location} 

/data.yaml epochs=50 model=yolov8m.pt imgsz=640 batch=8 

 

yolo task=detect mode=val model={HOME}/runs/detect 

/train/weights/best.pt data={dataset.location}/data.yaml 

 

after the training is complete and result graphs are extracted, we used yet another 

simple code to detect vehicles in our test dataset. 

 

yolo predict model=best.pt imgsz=256 conf=0.5 

source="D:/Khairou/Studies/Univ/M2 SI/Q4/PFE/Code/ 

DataSets/vedai-master/images/train/" line_thickness=1 

save_txt=true 

 

 

6.1. Roboflow model 

Cloud training took an hour to complete and provided us with the following results:  

6.1.1. Performance Graphs 

Obtained results of this model: 

 

Figure III-7 : Mean Average Precision over epochs 
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The observed graph demonstrates the training progress of our model in terms 

of Mean Average Precision (mAP). Initially, the model's mAP started at 0 and 

gradually increased over the course of several epochs. This consistent improvement 

indicates that the model was effectively learning and not suffering from overfitting. 

However, after approximately 110 epochs, the model's mAP reached a plateau 

at around 0.96. It appeared that the precision remained relatively stable for the 90 

epochs of training. While this may give the impression that the model's development 

has stagnated, it is a critical stage in achieving the desired refinement. It is this 

incremental progress that distinguishes our model from other available models, as it 

represents a mere 2% difference that contributes significantly to its overall 

performance and pushes to final mAP to 98%. 

 

Figure III-8 : Training graphs of the Roboflow model 

When utilizing the Roboflow cloud server for training, there are certain 

limitations to be aware of. Firstly, the model can only be used online, and it is limited 

to processing a single image at a time. This means that multiple images predictions 

may not be supported. 
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6.1.2. Detection Samples 

  

Figure III-9 : Predictions of Roboflow model 

6.2. Local model 

Our local model completed the training in a very stressful 2 days and 18 hours, 

proving us with these results. 
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6.2.1. Performance graphs 

Our local model got the following results: 

 

Figure III-10 : Personal model Confusion matrix 

The confusion matrix demonstrates promising results for a locally trained 

model with a limited training duration of 50 epochs. The average accuracy of the 

model is 92.5%. However, it is important to note that the accuracy of class 3, 

representing "Other vehicles," is relatively low. Conversely, classes 0, 1, and 2, 

representing "Hatchbacks," "Pickups," and "Sedans" respectively, exhibit strong 

performance. The reason behind the low accuracy of class 3 ("Other vehicles") can be 

attributed to the limited number of labels available during the training phase.  

It is worth mentioning that the "background" class is not one of the targeted 

objects for detection but rather denotes non-object regions. Its inclusion in the model's 

training was intended to enhance overall accuracy. 
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Figure III-11 : Precision-Confidence Curve 

 

 

Figure III-12 : Precision Recall Curve 
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Figure III-13 : Recall-Confidence Curve 

  

 

 

Figure III-14 : F1 Curve 
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Figure III-15 : Training graphs for the personal model 

Figures III-11 to III-15 provides a comprehensive overview of the 

performance evaluation of our model, complementing the confusion matrix. Notably, 

the loss values for bounding boxes (box_loss), classes (cls_loss), and Distribution 

Focal Loss (dfl_loss) show a significant degradation, indicating that our model is 

undergoing successful training. Additionally, the precision, recall and mAP graphs 

demonstrate a consistent rise, reaching around 0.95. 

These results are particularly remarkable, considering the model's training 

limited to only 50 epochs. The findings from this evaluation hold significant 

implications for my master's thesis. 
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6.2.2. Detection Samples 

  

Figure III-16 : Predictions of Personal Model 

6.3. Comparison between the models 

After a thorough analysis of the two models, it was observed that the Roboflow 

model exhibited superior performance in detecting vehicles, achieving an average 

precision of 0.98. In contrast, the personal model achieved a lower average precision 

of 0.94 and remarkably missed some vehicles that was either on the edges of the 

images of partially-hidden by buildings and trees.  Based on these results, it can be 

concluded that longer training time with more resources generally lead to better 

model performance. 

However, it is important to note that higher-performance cloud servers often 

come with limitations, such as in Roboflow case restricted access to training data and 

no access to the detection model itself. These limitations can impact the ability to 

fine-tune or modify the model according to specific requirements. 

7. Limitations and Area of Improvement 

As we have seen detecting objects in general is considered an easy and fast 

task, but training the detection model requires a lot more time and resources, and that 

is what stood in the way of further improving our models and fine-tune it. The 
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restricted access to training data of Roboflow model and the very poor hardware 

performance of our personal computers forced us to conclude this thesis without 

reaching the peak of the research. 

If not, our work would have extended to Object segmentation for more 

accurate detection and extracting masks instead of bounding boxes. Then passing to 

the Object Removal and inpainting phase as the second and final part of eliminating 

vehicles and offering perfect and reliable aerial images for 3d city modelers. 

Conclusion 

In this chapter, we have used Yolov8 to create our model that takes aerial 

images as input and outputs a bounding box for each vehicle instance in the image. 

These boxes will be used as inputs to other researches which will concentrate on 

vehicle removal and image inpainting as the second pre-processing phase to get the 

desired aerial images. Besides, we included the implementation of the chosen 

detector, a description of data and also the preparation of the dataset used for its 

training and testing as well as pointing fingers to the limitations and area of 

improvements of our research.  
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General Conclusion 

In conclusion, this thesis has explored the increasing importance of 3D city 

models in various aspects of our lives. However, the process of building these models 

is often challenging, particularly when it comes to the presence of vehicles in the data 

inputs. To address this issue, an efficient vehicle detection model has been developed 

as part of this research. 

The developed model has demonstrated its capability to accurately detect 

vehicles in aerial images, paving the way for their removal and the creation of pristine 

aerial images. This process significantly simplifies the 3D city modeling process by 

providing high-quality imagery devoid of vehicles. 

The results obtained from the developed model show its potential for practical 

application in various fields, such as urban planning, architecture, transportation 

management, and virtual simulations. The accurate detection of vehicles enables 

researchers, city planners, and decision-makers to focus on the core aspects of city 

modeling without the hindrance of unwanted objects. 

Our research not only presents a novel approach to vehicle detection but also 

emphasizes the importance of automation and efficiency in the development of 3D 

city models. It opens up opportunities for further research and development in the 

field, encouraging the exploration of innovative techniques to enhance the quality and 

realism of 3D city representations. 

Because there is no such completed or perfect research, ours still holds a lot of 

potential for the future. Adding the vehicles removal and inpainting phase is the first 

step to improve it whether using deep learning methods such as GANs or develop a 

whole new algorithm to do so. Next we might think about 3D City models, how can 

we enhance and push them to the near millimeter perfect quality which will prove it’s 

worth over the few next years. 
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Last but not least, the developed vehicle detection model offers a valuable 

contribution to the field of 3D city modeling by providing an effective solution to the 

challenges posed by vehicles in aerial images. Its implementation holds great promise 

for advancing the accuracy, efficiency, and realism of 3D city models, ultimately 

benefiting a wide range of applications and stakeholders. 
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