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Notations and Abbreviations 

 

Notations: 

)(tu  : The control signal. 

𝜃: The angle of the pendulum. 

𝑚𝑝: The mass of the pendulum. 

𝑚𝑐: The weight of the trolley. 

𝑚𝑡 = 𝑚𝑐 +𝑚𝑝: the total mass of the pendulum trolley. 

𝐿:  Half-length of the pendulum. 

𝑔: Gravity. 

R  : set of real numbers. 

)(tX  : System State Vector. 

)(tX d  : Desired State Vector. 

  : Whatever. 

ex  : Equilibrium point of the system. 

V  : Lyapunov function. 

𝑉̇ : Derived from the function of Lyapunov. 

𝐵(𝜌) : Boule dans 𝑅𝑛 on définit une boule fermée dans 𝑅𝑛 comme l’ensemble  

                                            xRxB n /)( =  

. : Euclidean norm. 

)(ty  : Output size (size to adjust). 

S  : sliding surface. 



  

 

)(xe  : The difference between the status variable to be adjusted 𝑥 and the reference 𝑥𝑑. 

𝑢𝑒𝑞 : the equivalent control. 

𝑢𝑒𝑞
∗  : The optimal equivalent control. 

K  : Sliding gain. 

⟨𝑓, 𝑔⟩: The scalar product of f  and 𝑔. 

)(td  : Perturbation. 

𝐾̂ : Adaptative gain. 

𝑢𝑛: The discontinuous control. 

 

Abbreviations: 

SMC: Sliding mode control  

MPC: Model Predictive Control  

VSS: variable structure system 

SISO: single-input single-output 

MIMO: multi-input multi-output
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General introduction: 

           In Automatic, the mathematical modeling of a system consists in representing the 

dynamic behavior of the system by mathematical equations with the desired precision. The 

mathematical models obtained are generally in the form of linear (linear systems) or nonlinear 

(nonlinear systems) differential equations.  

Over the last two decades, a large number of publications have been dedicated to the problem 

of controlling nonlinear systems. A problem that presents many challenges since nonlinear 

systems, unlike linear systems for which the automatic provides a panoply of methods for the 

synthesis of the control, does nonlinear control law. This is due to the fact that nonlinear 

systems have extremely varied structures, complex dynamics and can exhibit all kinds of 

strange behavior.[27] 

In general, control techniques are required in order to solve the problem of parametric 

variations, with almost zero static error and fast response, so we obtain a stable and robust 

control system. Among these techniques, one finds the control by sliding mode with an 

adaptive gain, for example, known by its simplicity and robustness. 

The control of non-linear systems by sliding mode with adaptive gain is a significant area of 

study in control systems. This approach combines sliding mode control with adaptive gain to 

enhance system stability and performance. It aims to mitigate the effects of external 

disturbances, uncertainties, and the "chattering" phenomenon associated with classical sliding 

mode control. By utilizing Lyapunov's approach, the stability of the closed-loop system is 

analytically proven. This method offers advantages in terms of robustness against 

disturbances and model uncertainties, addressing issues like chattering and high control 

efforts. The integration of sliding mode control with adaptive gain results in a robust and 

smooth control strategy, combining the speed and ease of implementation with the stability 

and robustness of sliding mode control. [32] 

This brief is organized into a general introduction, three chapters and a conclusion: 

The first chapter is devoted to some reminders on the state models of nonlinear systems, the 

stability theory of nonlinear systems and the different methods of control of nonlinear 

systems. 
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In the second chapter, we present fundamental notions of variable structure control and some 

basic concepts on the theory of sliding modes of monovariable systems (SISO) with an 

adaptive gain. 

In the third chapter, we present the technique of sliding mode control of multivariable 

nonlinear systems (MIMO) with an adaptive gain. 
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I.1.Introduction 

Approaches used to study linear systems are extremely effective due to the many available 

tools, such as linear algebra, differential equations, and linear differential systems. However, 

despite their power, these methods have several limitations: 

• No physical system is perfectly linear, meaning that linear methods are only 

applicable in restricted operating ranges. 

• Some phenomena cannot be adequately described by linear models. 

• Some systems are inherently impossible to model using linear techniques. [1] 

In this context, various tools are proposed in the literature, such as the use of differential 

geometry for system linearization, control based on Lyapunov theory for system stability 

approach, variable structure control, adaptive control, …etc. 

I.2. Nonlinear Systems 

       A nonlinear system is defined as a system that cannot be described by linear differential 

equations with constant coefficients. Unlike linear systems, nonlinear systems do not follow 

the principle of superposition and can exhibit characteristics such as distortions due to 

nonlinearities, such as saturation or thresholds, which can affect the relationship between the 

input and output of the system [1]. 

Nonlinear systems are varied and complex, necessitating specific approaches for their analysis 

and control. Instead of a single general theory, there are several methods adapted to different 

classes of nonlinear systems. For instance, in the field of nonlinear control systems, the 

emphasis is on studying control systems that contain one or more nonlinear elements 

belonging to specific types of nonlinearities. 

I.3. Characteristics of a nonlinear system 

• The principle of superposition does not apply: The behavior of a non-linear system 

cannot be predicted by adding up the behavior of its components. 

• It is described by non-linear differential equations: These equations include 

coefficients that depend on the variables. 
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• It is difficult to analyze: There is no general theory for analyzing non-linear systems, 

which makes their study more complex. 

I.4. State Space Representation 

provides a powerful mathematical framework for modeling physical systems as first-order 

differential equations, offering a flexible and efficient approach for the analysis and design of 

complex systems in diverse fields such as economics, statistics, computer science, electrical 

engineering, and neuroscience. 

The general representation of a nonlinear system is of the form [2]: 

{
𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥) ⋅ 𝑢(𝑡)

𝑦 = ℎ(𝑥)
                                          (I.1) 

y is the system output, 𝑥 is the state vector, and 𝑢 is the control vector. 

𝑓(𝑥), 𝑔(𝑥), and ℎ(𝑥) are nonlinear functions of the state vector describing the system. 

I.4.1. Autonomous System 

The nonlinear system (I.1) is said to be autonomous if: 

• The evolution of a system can be defined by a differential equation of the form 

𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑡), ∀𝑡 ≥ 0                                                 (I.2) 

where: 

• 𝑥(𝑡)is the state vector 

• 𝑢(𝑡) is the control vector 

In this chapter, we will restrict ourselves to considering unforced systems (zero input; (t) = 0) given 

by:                𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑡)                                                                                                                      (I.3) 

A system is said to be autonomous if 𝑓(𝑡) does not explicitly depend on time 𝑡:
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  𝑥̇(𝑡) = 𝑓(𝑥(𝑡))                                                              (I.4) 

Otherwise, the system is said to be non-autonomous [3]. 

I.4.2. Variable Structure Systems (VSS) 

A system is said to be a variable structure if it admits a representation by differential 

equations of the type: 

                           𝑥̇ = {
𝑓1(𝑥)   if condition 𝟏 is verified

𝑓𝑛(𝑥)   if condition 𝒏 is verified
                                                (I.5) 

Where 𝑓𝑖 the functions belong to a set of subsystems of class 𝐶𝑘 . Consequently, variable 

structure systems are characterized by the choice of a function and a switching logic [4]. 

I.5. Equilibrium Points of a Nonlinear System 

Linear systems have only one equilibrium point, but nonlinear systems can have multiple 

equilibrium points. [1] 

• Example 

Consider a physical system described by the following differential equation: 

𝑥̇(𝑡) = −𝑥(𝑡) + 𝑥2(𝑡)

𝑥(0) = 𝑥0
                                                         (I. 6) 

The nonlinear system has the following characteristics 

𝑥̇(𝑡) = −𝑥(𝑡) + 𝑥2(𝑡)       Equilibrium points 𝑥 = 0 and 1  

                                            Solution 𝑥(𝑡) =
𝑥0𝑒

−𝑡

1−𝑥0+𝑥𝑜𝑒
−𝑡
                                               (I. 7) 
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Figure I.1. Equilibrium points of a nonlinear system 

The nonlinear system has two equilibrium points, X = 0 and X = 1. The point X = 1 is 

unstable and constitutes a kind of stability boundary. The axis is indeed divided into two 

regions of initial conditions for which the trajectories are convergent to the equilibrium state 0 

or are divergent [1]. 

I.6. Stability of Nonlinear Systems 

Stability: is considered to be the most sought-after concept in the study of a dynamic system. 

There are different ways of expressing stability in automatic control. We distinguish between 

the stability of an equilibrium point, input-output stability, etc. In general, this study has 

undergone a very important development since the use of the results of the stability theory 

deduced from the work of Lyapunov, which takes into account the stability of the dynamic 

models of linear or nonlinear systems [5]. 

I.6.1. Lyapunov stability 

        Powerful tools for analyzing and ensuring the stability of nonlinear systems use specific 

functions to evaluate the convergence of trajectories towards equilibrium points [6]. 

Let be a function such that [7]:                V: 𝑅𝑛 → 𝑅+ 
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1. V is continuously differentiable in all its arguments, 

2. V is positive definite, 

3. There exist two scalar functions 𝑎 and 𝑏 from 𝑅+ to 𝑅+, continuous, monotonic, non-

decreasing such that: 

𝑎(0) = 𝑏(0) = 0 

∀𝑥 ∈ 𝑅𝑛: 𝑎(‖𝑥‖) ≤ 𝑉(𝑥) ≤ 𝑏(‖𝑥‖)                                                                                             

(I. 8) 

Then V is a Lyapunov candidate function. 

I.6.2. Stability Theorems 

I.6.2.1. Local Asymptotic Stability 

If there exists a scalar function V(x) of the state whose first partial derivatives are continuous 

and such that: 

1. V is a Lyapunov candidate function. 

2. 𝑉̇  is a locally semi-definite negative in a neighborhood of the origin, Ω. 

Then the origin equilibrium point is stable and a domain of stable initial conditions is 

delimited by any Lyapunov equipotential contained in Ω. If V is locally definite negative in 

Ω, then the stability is said to be locally asymptotically stable in the part of the space 

delimited by any Lyapunov equipotential contained in Ω [3]. 

I.6.2.2. Global Asymptotic Stability 

If there exists a function V such that [3]: 

1. V is a Lyapunov candidate function. 

2. 𝑉̇ is definitely negative. 

3. The condition ‖𝑥‖→+∞ implies V(x)→+∞. 

Then the equilibrium point (origin) is a globally asymptotically stable point. 
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Example 

Consider the following system 

{
𝑥̇1 = 𝑥2
𝑥̇2 = −𝑥1

 

The equilibrium point of this system is: (𝑥1, 𝑥2 ) = (0,0). 

 

Figure I.2.The evolution of 𝑥1 with several initial conditions close to the equilibrium point 
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Figure I.3.Phase plane with several initial conditions close to the equilibrium point (0,0) 

From the two figures above, we can see that the trajectories of the system remain close to the 

equilibrium point (0,0), therefore, the system is stable. 

I.6.3. Stability of a Trajectory 

      In some cases, systems do not have equilibrium points, or the equilibrium point is not 

stable. However, the trajectories do not diverge. Various cases can occur [3]: 

➢ The system has a stable domain: There is a domain of initial conditions (basin of 

attraction) such that all trajectories remain within the stable domain. 

➢ The system has an attractive domain: There is a domain of initial conditions such 

that all trajectories are included in the attractive domain after a certain time. 

➢ The system has a stable trajectory. The stability of a trajectory can be demonstrated 

by applying Lyapunov's second theorem. 

I.6.4. The phase plane 

        The phase plane method is a graphical approach used to analyze and study the behavior, 

typically the stability, of both linear and nonlinear second-order systems.
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It involves graphically solving the second-order differential equation without seeking the 

analytical solution. The main concept is to create trajectories in the state space of a second-

order dynamical system (a two-dimensional plane known as the phase plane) for different 

initial conditions and then observe and analyze the qualitative characteristics of these 

trajectories. 

I.6.5. Input/Output Stability 

Input/output stability is a special form of stability of dynamical systems studied in automatic 

control. A system is stable if a bounded input corresponds to a bounded output or the free 

response of the system tends to zero at infinity. By simplification, if the output remains of 

finite energy as long as the input is of finite energy. A necessary and sufficient condition is 

that all poles of the transfer function have strictly negative real parts. 

Current approaches to defining system stability focus on the stability of the equilibrium state 

around a point, within a domain, or along a trajectory. Input-output stability is another 

possible perspective. 

Consider the nonlinear system [7]: 

                                          
𝑥̇(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = 𝑔(𝑥(𝑡), 𝑢(𝑡))
                                                               (I. 9) 

Or 𝑢 is the system input and 𝑦 its output. The input/output stability of an equilibrium point 

(𝑢𝑒 , 𝑦𝑒) is defined as: 

Whatever 𝜀 ≻ 0 there is 𝛼 ≻ 0 and an initial condition domain of the system state such that if 

‖𝑢(𝑡) − 𝑢𝑒‖ ≺ 𝛼  for any 𝑡  and 𝑥(0) belongs to the initial condition domain then ‖𝑦(𝑡) −

𝑦𝑒‖ ≺ 𝜀for any 𝑡 . 

It is worth noting that input/output stability is very rarely used. It is indeed essential to know 

the evolution of the entire state of the system. It is not uncommon, in fact, for non-observable 

systems, for the output to have stable behavior and yet for the system state to diverge [7].
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I.7. Types of Control of a Nonlinear System 

       Many different types of control can be used for nonlinear systems. Some of the most 

common types include: 

I.7.1. Adaptive control  

        Adaptive control is a branch of control theory that deals with designing control laws for 

systems with parameters that vary over time or are initially unknown. The goal is to ensure 

the stability and performance of the system despite these variations.  

It relies on estimating the system's parameters online and adapting the control law 

accordingly. This estimation is usually done using machine learning techniques like Kalman 

filters or neural networks [9]. 

applications: 

Adaptive control finds use in various applications, including: 

• Robotics: Controlling robots where parameters change based on payload or 

environment. 

• Aerospace: Controlling airplanes where parameters vary with altitude and speed. 

I.7.2. Model Predictive Control (MPC)  

         Has become increasingly popular in recent years in the industrial field due to its 

tolerance for different types of systems and respect for imposed constraints, as well as its 

compatibility with hardware. It can be used to control complex systems with multiple inputs 

and outputs where the simple PID controller is insufficient. This technique is particularly 

interesting when systems have significant delays, inverse responses, and many disturbances. 

The main users of predictive control are oil refineries, the chemical and agri-food industry, 

metallurgy, and aerospace [8]. 
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I.7.3. Robust control 

         Is a method or approach used to design a system that can handle uncertainty, specifically 

in terms of stability or performance measures. Uncertainty can arise from various sources, 

such as unknown plant dynamics, disturbances, or sensor noise.  

The goal of robust control is to create a control system that remains stable and performs well, 

even when these uncertainties are present. This is achieved by designing the system in a way 

that accounts for potential variations and disturbances, ensuring that it can handle a range of 

possible scenarios. Robust control theory is a branch of control theory that focuses on 

designing controllers that can handle plant uncertainties, disturbances, and noise2. This 

involves modeling the plant and its uncertainties, as well as understanding the properties of 

observability, controllability, and stability. Robust control methods seek to bind the 

uncertainty rather than express it in the form of a probability distribution, as in stochastic 

control. This allows for a worst-case analysis, ensuring that the system meets its control 

requirements in all cases, even if some performance is sacrificed [10]. 

I.7.4. Backstepping 

        Is a recursive control design for nonlinear systems that uses the Lyapunov stability 

theory to synthesize the control law. It is applied to nonlinear triangular systems and has been 

used in various applications, such as the control of a class of nonlinear dynamic systems, the 

control of manipulator robot with two degrees of freedom, and the control of a vehicle’s 

movement along the X and Y axes. It has several advantages over other control methods for 

nonlinear systems but also has some limitations, such as the determination of regression 

matrices and the assumption of linearity in parameters.  

I.7.5. Fuzzy control 

         Fuzzy logic control is a method of controlling systems that uses fuzzy logic to determine 

the control action. Fuzzy logic is a mathematical approach that allows for the representation 

of imprecise information and the manipulation of uncertain or vague concepts. In fuzzy 

control, the input variables are mapped to output variables through a set of rules that are based 

on linguistic variables and fuzzy sets. These rules are typically defined by a human expert and  
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are used to create a fuzzy controller that can handle complex systems with non-linear 

behavior. Fuzzy control has been used in various applications, such as the control of a class of 

non-linear dynamic systems, the control of a manipulator robot with two degrees of freedom, 

and the control of a vehicle's movement along the x and y axes. It has also been used in 

adaptive control for non-linear systems, such as the control of a suspension system with input 

saturation. The implementation of fuzzy control is typically done using a computer or 

microcontroller. There are libraries of programs in languages such as C that can be used to 

implement fuzzy control, and some microcontrollers, such as the 68HC12 of Motorola, have 

instructions for implementing fuzzy control directly in assembly. Fuzzy control has several 

advantages over other control methods for non-linear systems. It does not require the system 

to become linear and allows for the cancellation of non-linearities that could be useful. It also 

provides a systematic and iterative method for designing controllers for non-linear systems of 

any order and guarantees the stability of the controller-system couple. However, fuzzy control 

also has some limitations. One of the main difficulties is the determination of the regression 

matrices and the number of unknown parameters, which increases with each step of the 

Backstepping development process. Additionally, the assumption of linearity in parameters 

may not always be true in practice [12]. 

I.7.6. Sliding mode control 

          Is a control technique that aims to bring the state trajectory of a system to a sliding 

surface, where it remains until equilibrium. This method is divided into several parts: the 

convergence mode, the sliding mode, and the steady-state mode. 

Sliding mode control is a particularly interesting technique. It dates back to the 1970s with the 

work of Utkin [9]. The principle is to bring, regardless of the initial conditions, the 

representative point of the evolution of the system on a hyperplane of the phase space by 

integrating switching elements into the control law. In addition, the control guarantees that the 

representative point of the system reaches the hyperplane in a finite time. The system enters 

sliding mode when this point has reached the hyperplane, called the sliding surface. Its 

behavior then becomes insensitive to output disturbances and parameter variations. However, 

the problems of "chattering" inherent to this type of discontinuous control quickly appear. 
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Note that chattering can excite neglected high-frequency dynamics sometimes leading to 

instability. Methods to reduce this phenomenon have been developed [11]. 

I.8.Conclusion 

      This chapter provided a general overview of the properties of nonlinear systems, 

addressing the most commonly used methods to analyze and ensure their stability. We also 

reviewed several control approaches applicable to these systems. 

In the next chapter, we will go into detail with the sliding mode control and we focus to 

ensure the stability and robustness of nonlinear systems and explore its applications in detail. 

We will analyze its fundamental principles, and its practical implementations through various 

examples.
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Ⅱ.1. Introduction 

       Conventional control techniques are very effective for controlling systems Constant 

parameter linear systems. For linear (or nonlinear) systems with non-parameter, these control 

techniques will be insufficient. 

    Sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a 

system by applying a discontinuous control signal, forcing the system to "slide" along a cross-

section of its normal behavior. This technique is robust against disturbances and uncertainties, 

making it suitable for real-time control without requiring a linearly parameterized dynamic 

model of the system. In SMC, the control law switches between different continuous 

structures based on the system's current state, ensuring trajectories move towards adjacent 

regions with different dynamics. This variable structure control method allows trajectories to 

slide along boundaries of control structures, known as sliding modes, Leading to robust and 

optimal control of various dynamic systems. The main strength of sliding mode control lies in 

its robustness and simplicity, as it can Handle parameter variations and uncertainties 

effectively. By using discontinuous control laws, the sliding mode can be reached in finite 

time, offering better performance than asymptotic behavior. This approach has applications in 

Electric drives, robotics, and other fields where robust and efficient control is essential [14]. 

Ⅱ.2. Introduction to variable structure control systems 

Ⅱ.2.1. Historic 

       Considerable attention has been paid to the control of the non-linear uncertainty 

dynamics, often subject to perturbations and parametric variations. The Theory of variable 

structure systems and associated sliding modes has been studied in Detailed studies over the 

past 30 years. Controllers with variable structure Have made their application in the Soviet 

literature (Emelyanov 1967, Utikin 1974), and have been widely identified as a potential 

approach to this problem (Gao and Hung 1993). 

    Searches on the variable structure control were given by DeCarlo and Other (1998), and 

Hung and Other (1993), control action forces the trajectory of systems to Intercept the surface 

of the slide. The system trajectories are Then confused with the sliding surface during the use 

of High switching speed. The salient advantage of variable structure control with the sliding 

mode is robustness against changes in parameters or disturbances. The "chattering" 

phenomenon associated with the sliding mode control presents a major drawback because it  
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can excite the dynamics of high switching frequency which makes it undesirable. Several 

methods to reduce this phenomenon have been proposed [23] [24]. 

Ⅱ.2.2. Objective of sliding mode control 

The objective of the sliding mode control is summarized in two essential points [14]: 

➢ Synthesize a surface 𝑆(𝑥, 𝑡), such that all trajectories of the system obey A desired 

behavior of pursuit, regulation, and stability.  

➢ Determine a control law (switching) 𝑢(𝑥, 𝑡)  that can attract All state trajectories 

toward the sliding surface and maintain them on this surface. 

Ⅱ.2.3.the advantages and disadvantages of sliding mode control 

Advantages [14] 

• Simple control implementation. 

• Control converges in finite time. 

• Robust control of system parameter variations. 

• Robust control of external disturbances. 

Disadvantages 

• Presence of oscillations (chattering phenomenon) caused by the discontinuous part of 

the control. 

• The system (controlled by sliding mode control) is constantly subjected to a high-

frequency control to ensure its convergence to the desired state, which is not desirable 

or possible for certain systems. 

Ⅱ.2.4. Principle 

         A variable structure system (VSS) is a system whose structure changes during Its 

functioning. It is characterized by the choice of a structure and logic of Switching. This 

choice allows the system to switch from one structure to another to any instance. In addition, 

such a system may have new properties that do not exist in Each structure [18]. 

Ⅱ.2.5. Structure by switching at the control organ level 

    The change in structure is done by switching at the control unit level, by the figure shown 

below: 
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In this case, the control unit between two constant values 𝑢𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛, according to the 

𝑠𝑖𝑔𝑛 of the function 𝑆(𝑥), the switching logic is given by: 

𝑓(𝑥) = {
𝑢 = 𝑢𝑚𝑎𝑥 , 𝑆(𝑥) > 0

𝑢 = 𝑢𝑚𝑖𝑛, 𝑆(𝑥) < 0
                                               (Ⅱ. 1) 

This configuration corresponds to a two-position setting, with a more efficient switching law. 

When the sliding speed is reached, the state variables are connected by the 

relationship: 𝑆(𝑥) = 0 [22]. 

Ⅱ.2.6. Structure by commutation at a state feedback level 

         The change in structure occurs when switching the 𝑈 control. The control unit receives 

in this case a control voltage 𝑢𝐶𝑚 that rapidly switches between two variable values, 𝑢𝐶𝑚1
and 

𝑢𝐶𝑚2  which can cause strong solicitations of the control organ, therefore, a practical 

realization impossible [25]. 

    The representation of this configuration is given by the figure below. The system then 

operates in slip mode and the dynamic behavior of the system is determined by the condition: 

𝑆(𝑥) = 0. 

𝑓(𝑥) {
𝑈 = 𝑢𝐶𝑚1

= −𝑘1𝑥,    𝑆(𝑥) > 0

𝑈 = 𝑢𝐶𝑚2
= −𝑘2𝑥,    𝑆(𝑥) < 0

                                                 (Ⅱ. 2) 
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Figure Ⅱ.1. Configuration of the structure by switching at the control organ [16]. 
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Ⅱ.2.7. Switching structure at the control organ with equivalent control 

         Such a structure, the principle of which is shown in Figure. Ⅱ.3 has a real Advantage. It 

allows pre-positioning of the future state of the system through the equivalent control, which 

is nothing other than the desired value of the system in a steady state. 

    The control element is much less solicited, but we are more dependent on parametric 

variations due to the expression of this equivalent control [21]. 

 

U 

X 

 

 

 

 

 

 

 

S(X) commutative law 

 

Perturbations 

output 

Figure. Ⅱ.2. Configuring the structure by switching a variable state feedback 

[16]. 
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
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Figure Ⅱ.3. Control structure by adding equivalent control [16]. 
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      We have chosen to base our study on this type of configuration, such a structure by its 

constitution is very simple and allows for less solicitation of the controller. It seems natural to 

add the equivalent control to pre-position the system in a desired permanent and stable state 

and then play on the switching term to ensure convergence towards this state and to stay there 

afterward. 

Ⅱ.3. Principle of sliding mode control 

        The principle of sliding mode control involves constraining a system to stay on a sliding 

surface using a control strategy. This surface forces system trajectories into a reduced-order 

subspace, referred to as a sliding surface. The control law in sliding mode control is not 

continuous; it switches between states based on the system's position in the state space. By 

selecting a hyper-surface or manifold (sliding surface) and finding feedback gains to keep the 

system trajectory on this surface, sliding mode control can drive trajectories to the sliding 

mode in finite time. Once trajectories reach the sliding surface, the system exhibits the 

characteristics of the sliding mode, with trajectories confined to this surface by high-gain 

feedback. The sliding mode control scheme ensures trajectories approach the sliding surface,  

 

offering stability superior to asymptotic stability. The control law's discontinuity allows for 

trajectories to move across the sliding surface efficiently, enhancing the system's robustness 

against disturbances and uncertainties. So, this order is controlled in two phases [14]: 

➢ The convergence phase: The state trajectory of the system moves from an initial 

state (𝑥0, 𝑥̇0) and converges to the sliding surface in finite time. During this phase, the 

system remains sensitive to parametric variations, uncertainties, and external 

disturbances. 

 

➢ The sliding phase: The state trajectory of the system has reached the sliding surface 

and is moving toward the desired state. The system's behavior during this phase no 

longer depends on the system itself or disturbances, but solely on the properties of the 

sliding surface. 

The figure below shows the principle of sliding mode control. 
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Figure Ⅱ.4. principle of sliding mode control [14]. 

In summary, a sliding mode control is mainly done in three parts: 

1. The choice of sliding surface. 

2. The establishment of the conditions for convergence. 

3. The determination of the control law. 

Ⅱ.4. Reference 

     Let the system be a non-linear affine system whose dynamic behavior is described by the 

following differential equation [20] [14]: 

𝑥̇ = 𝑓(𝑥) + 𝑔(𝑥)𝑢                                                          (Ⅱ. 3) 

With:     

𝑥 = [𝑥1𝑥2……𝑥𝑛]
𝑇 : represents the state vector of the system. 

𝑓 and 𝑔: are linear or nonlinear functions. 

𝑢 : represents the control vector. 

    The steps for constructing the sliding mode control can be summarized in three main steps: 

determining a suitable sliding surface, establishing the conditions for the system trajectory to  

 

converge to the chosen sliding surface, and determining the control law that allows the system 

trajectory to be brought back to this surface and remain there. 

Ⅱ.4.1. Choice of sliding surface 

    The sliding surface is a scalar function on which the state trajectory of the system to be 

controlled slides on this surface and tends towards the desired state. There are several forms  

The state desired  
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of the sliding surface, but the most commonly used surface to ensure convergence towards the 

desired state is given by [14]: 

𝑆 = (
𝑑

𝑑𝑡
+ 𝛼)

𝑟−1

𝑒                                                               (Ⅱ. 4) 

With: 

𝑒: represents the error between the current and desired value. 

𝛼: is a positive constant. 

𝑟: represents the relative degree, which is equal to the number of times the system output 

needs to be differentiated to reveal the control input 𝑢. 

▪ If 𝑟 =  1: 𝑆 = 𝑒. 

▪ If 𝑟 =  2: 𝑆 = 𝑒̇ + 𝛼𝑒. 

▪ If 𝑟 =  3: 𝑆 = 𝑒̈ + 2𝛼𝑒̇ + 𝛼2𝑒. 

The sliding surface must satisfy the following two conditions:  

1-If: 𝑆 = 0 ⇒ 𝑥 = 𝑥𝑑. 

2- 𝑆̇ contains the control vector 𝑢. 

The derivative with respect to time of the sliding surface is written as: 

 

𝑆̇ =
𝜕𝑆

𝜕𝑡
=
𝜕𝑆

𝜕𝑥

𝜕𝑥

𝜕𝑡
=
𝜕𝑆

𝜕𝑥
𝑥̇ =

𝜕𝑆

𝜕𝑥
 (𝑓(𝑥) + 𝑔(𝑥)𝑢)                                 (Ⅱ. 5) 

Ⅱ.4.2. Establishment of convergence conditions 

    The convergence conditions are the criteria that allow the system dynamics to converge 

towards the sliding surface. To do this, the Lyapunov method is used to ensure the stability 

and convergence of the control law. 

Let 𝑉(𝑆) be the candidate Lyapunov function, which is a scalar function defined as positive, 

that is: 𝑉(0) = 0 and 𝑉(𝑆) > 0, 𝑆 ≠ 0. 

𝑉(𝑆) =
1

2
𝑆2                                                                         (Ⅱ. 6) 

 

The derivative of the Lyapunov function is: 

 

𝑉̇(𝑆) = 𝑆(𝑥)𝑆̇(𝑥)                                                                                                                        (Ⅱ. 7) 

     To determine a control law capable of ensuring the convergence of the system's state 

trajectory to the sliding surface, it is sufficient to ensure that the time derivative of the 

Lyapunov function 𝑉(𝑆) is defined as negative: 𝑉̇(𝑆) < 0.  
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       Therefore, in order for the Lyapunov function 𝑉(𝑆) to decrease and converge to zero, it is 

sufficient to ensure that [19]: 𝑆(𝑥)𝑆̇(𝑥) ≤ 0. 

Ⅱ.4.3. Determination of the control law 

    The sliding mode control law is divided into two parts: equivalent control and 

discontinuous control [17]: 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑑𝑖𝑠                                                                       (Ⅱ. 8)  

𝑢𝑒𝑞: is the equivalent control, it allows to drive the state trajectory of the system to the sliding 

surface. It is obtained by solving the equation 𝑆̇ = 0. 

𝑆̇ = 0 =
𝜕𝑆

𝜕𝑥
(𝑓(𝑥) + 𝑔(𝑥)𝑢𝑒𝑞) ⇒ 𝑢𝑒𝑞 = −(

𝜕𝑆

𝜕𝑥
𝑔(𝑥))

−1

(
𝜕𝑆

𝜕𝑥
𝑓(𝑥))                             (Ⅱ. 9) 

𝑢𝑑𝑖𝑠 : is the discontinuous control, once the system's state trajectory reaches the sliding 

surface, the discontinuous control brings it to the desired state. There are several options for 

discontinuous ordering. But the simplest function is the sign function (simple relay): 

𝑠𝑖𝑔𝑛(𝑆) = {
1, 𝑆 > 0
0, 𝑆 = 0
−1, 𝑆 < 0

                                                                                                           (Ⅱ. 10) 

 

 

Figure Ⅱ.5. Sign function 

    

        The gain 𝐾 must be positive to verify the stability condition. The value of 𝐾 is very 

influential, because if it is chosen very small, the response time will be very long, if it is 

chosen too large, there will be strong oscillations (chattering phenomenon) at the level of the 

control organ [19]. 
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Ⅱ.5. Chattering phenomenon 

         During the sliding phase, the use of the sign function 𝑠𝑖𝑔𝑛(𝑆) means that the control 𝑢 

switches between two values ±𝐾 at a high frequency and is manifested by strong oscillations 

around the slip surface 𝑆.  

    This phenomenon is known as reluctance or chattering. However, in practice, this 

phenomenon is undesirable because the switching frequency can deteriorate the control 

accuracy, damage actuators, and mechanical components, and cause an increase in 

temperature in electrical systems [13]. 

 

Ⅱ.6. Solutions to mitigate the chattering phenomenon 

    To mitigate or eliminate the chattering phenomenon, several solutions have been proposed, 

among these proposals, we can mention [13] [14]: 

➢ Boundary layer solution: This solution involves replacing the discontinuous part in 

the control with more appropriate functions that filter out high frequencies. Among the  

functions used are the saturation function, the sigmoid function, and the hyperbolic tangent 

function. These functions reduce the chattering phenomenon. 

𝑠𝑎𝑡(𝑆) = {

1, 𝑆 > 𝑎
1

𝑎
, −𝑎 ≤ 𝑆 ≤ 𝑎

−1, 𝑆 < −𝑎

                                                                                          (Ⅱ. 11) 
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Figure. Ⅱ.6. Chattering phenomenon 
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Figure Ⅱ.7. Saturation function 

𝑠𝑖𝑔𝑚(𝑆) =
1

1 + 𝑒−𝑆
                                                                                                             (Ⅱ. 12)       

 

Figure Ⅱ.8. Sigmoid function 

𝑡𝑎𝑛ℎ(𝑆) =
𝑒𝑆−𝑒−𝑆

𝑒𝑆+𝑒−𝑆
                                                                                                   (Ⅱ. 13)

 

Figure Ⅱ.9. Hyperbolic tangent function 
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Ⅱ.7. Stability Analysis 

Let's consider a nonlinear system described by the following state representation: 

{
 
 

 
 

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑥3

⋮
𝑥̇𝑛 = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡)

𝑦 = 𝑥1

                                                             (Ⅱ. 14) 

Where: 

{
𝑥(𝑛) = 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡)

𝑦 = ℎ(𝑥)
                                                           (Ⅱ. 15) 

 

With: 

𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑛(𝑡)]
𝑇 = [𝑥(𝑡), 𝑥̇(𝑡), … , 𝑥(𝑛−1)(𝑡)]

𝑇
is the state vector. 

𝑓(𝑥) and 𝑔(𝑥) are nonlinear functions of the state vector with 𝑔 ≠ 0. 

𝑢 : the control. 

𝑑(𝑡): the disturbance considered to be bounded 𝑑(𝑡) ≤ 𝐷. 

 

    The purpose of the control is to find a control law such that, the trajectories of the state 

vector tend towards zero despite the presence of disturbances. 

The implementation of a sliding mode control goes through three stages:  

Ⅱ.7.1. The choice of the sliding surface 

The sliding surface 𝑆 is given by [14]:  

𝑆(𝑥) = 𝑐1𝑥1 + 𝑐2𝑥2 +⋯+ 𝑐𝑛−1𝑥𝑛−1 + 𝑥𝑛                                    (Ⅱ. 16)                                 

where:    

𝑆(𝑥) = ∑ 𝐶𝑖𝑥𝑖
𝑛−1
𝑖=1 + 𝑥𝑛                                                        (Ⅱ. 17) 

With: 

𝐶𝑖 > 0 , 𝑖 = 1, 𝑛 − 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅     

Ⅱ.7.2. The existence condition of a sliding surface 

can be deduced from the Lyapunov function given by the following relationship: 

𝑉̇(𝑆) =
1

2
𝑆2                                                                                                                                       (Ⅱ. 19) 

A sufficient condition for the system (Ⅱ.14) to be stable is: 

𝑉̇(𝑆) = 𝑆𝑆̇ ≤ −𝜂|𝑆|                                                                                                                        (Ⅱ. 20) 

where:  𝜂 > 0. 
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Ⅱ.7.3. The establishment of the control law 

The sliding mode control law is given by the following formula: 

𝑢 = 𝑢𝑒𝑞 + 𝐾𝑠𝑖𝑔𝑛(𝑆)                                                                   (Ⅱ. 21) 

𝑢𝑒𝑞 : the equivalent control. 

𝑠𝑖𝑔𝑛(. ): the sign functions. 

𝐾: a positive constant representing the gain of the control. 

    The objective is to determine a sliding mode control law of such the state of the system 

converges to the origin. 

 For the system (Ⅱ.14) to be stable the coefficients of (Ⅱ.16) must be chosen from such output 

that the roots are with negative real parts. 

The function of Lyapunov is considered: 

𝑉(𝑆) =
1

2
𝑆2                                                                    (Ⅱ. 22) 

According to Lyapunov’s theorem if is negative the state trajectory will be attracted to the 

sliding surface and switches around it to the equilibrium point. 

𝑉̇(𝑆) = 𝑆𝑆̇ = 𝑆 (∑𝑐𝑖𝑥𝑖+1

𝑛−1

𝑖=1

+ 𝑥̇𝑛)                                       (Ⅱ. 23) 

𝑉̇(𝑆) = 𝑆𝑆̇ = 𝑆 (∑𝑐𝑖𝑥𝑖+1

𝑛−1

𝑖=1

+ 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡) + 𝑑(𝑡))                    (Ⅱ. 24) 

It is easy to conclude if the control 𝑢 has the following form: 

𝑢 = 𝑢𝑒𝑞 + 𝐾𝑠𝑖𝑔𝑛(𝑆 )(xg ) , 𝑘 >
𝐷

)(xg
                              (Ⅱ. 25) 

with: 

𝑢𝑒𝑞 =
−∑ 𝑐𝑖𝑥𝑖+1

𝑛−1
𝑖=1 − 𝑓(𝑥)

𝑔(𝑥)
                                                   (Ⅱ. 26)

 

 

And:                   

𝑠𝑖𝑔𝑛(𝜑) = {

1, 𝜑 > 0
0, 𝜑 = 0
−1, 𝜑 < 0

                                                      (Ⅱ. 27) 

      Note that the law of control (Ⅱ.25)- (Ⅱ.27) depends only on known parameters and 

functions and that the term causes a chattering phenomenon that can excite high frequencies   
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and nonlinearities that cannot be modeled and damage the system. Thus, the control law 

(Ⅱ.25) is effective but it is difficult to implement and can present risks to the process. 

    To reduce the effect of grazing the discontinuous function can be replaced by a saturation 

function, which consists in determining a boundary band around the sliding surface ensuring 

the smoothing of the control and the maintenance of the state of the system in this band.  

𝑢 = 𝑢𝑒𝑞 − 𝐾𝑠𝑎𝑡 (
𝑆

𝜙
) , 𝜙 > 0                                          (Ⅱ. 28) 

With: 

𝑠𝑎𝑡 (
𝑆

𝜙
) =

{
 

 𝑠𝑖𝑔𝑛 (
𝑆

𝜙
) , |𝜑| ≥ 1

𝑆

𝜙
 , |𝜑| < 1

                                              (Ⅱ. 29) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ⅱ.8. Sliding mode control with adaptive gain 

    The previous part assumed that the gain 𝐾  of the control by sliding mode can be 

determined. However, in practice, there is no method for calculating this gain. To solve this 

problem, we use an adaptive gain control in this section. 

The equivalent control can be obtained from the time derivative of the surface 𝑆̇1 = 0: 

                                                  

                                                  𝑆̇1 = 𝑐1𝑒̇1 + 𝑒̇2                                                                       (Ⅱ.30) 

Figure Ⅱ.10. control output by sliding mode [27]                )(
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                                       𝑆̇1 = 𝑐1𝑒2 + 𝑓1(𝑋) + 𝑔1(𝑋)𝑢 − 𝑥̇2𝑑                                                    (Ⅱ.31)                            

We approach the equivalent control law optimal 
*

equ  by the equivalent order  equ  given by: 

                                                    𝑢𝑒𝑞 =
−𝑐1𝑒1−𝑓(𝑥)+𝑥2𝑑

𝑔1(𝑋)
                                                     (Ⅱ.32) 

                                                     𝑢𝑒𝑞
∗ =

−𝑐1𝑒1−𝑓1(𝑋)+𝑥̇2𝑑

𝑔1(𝑋)
                                                    (Ⅱ.33) 

and is 𝐾(𝑡) = 𝑢𝑒𝑞 − 𝑢𝑒𝑞
∗  given by: 

𝐾(𝑡) = 𝑢𝑒𝑞 − 𝑢𝑒𝑞
∗ , 0 ≤ |𝐾(𝑡)| ≤ 𝐾                                               (Ⅱ.34) 

    The uncertainty limit is a positive constant. However, this uncertainty limit cannot be 

measured in practice. 

Let 𝐾̂ be the estimated value of 𝐾, the estimation error is considered:  

                                                            𝐾̃(𝑡) = 𝐾 − 𝐾̂(𝑡)                                                 (Ⅱ.35) 

𝑢𝑛  : the discontinuous control whose purpose is to check the attractiveness conditions, an 

adaptive sliding mode control term is introduced to compensate for the difference between the 

optimal equivalent control 𝑢𝑒𝑞
∗  is the equivalent control 𝑢𝑒𝑞.  

𝑢𝑛 = −𝐾̂𝑠𝑖𝑔𝑛(𝑆𝑔)                                                                                                                        (Ⅱ. 36) 

To ensure the objectives of the order, the following adaptation law is adopted:  

𝐾̇̂ = −𝐾̇̃ = 𝑛|𝑆𝑔|                                                                        (Ⅱ. 37) 

With: 𝑛 > 0. 

Ⅱ.8.1. Stability Analysis 

    The objective is to ensure the stability of the control structures in the sense that all input 

and output signals remain bounded and the tracking error asymptotically tends to zero. In 

general, Lyapunov synthesis consists of selecting a candidate Lyapunov function 𝑉 and then 

choosing control or adaptation laws that ensure its decrease. To demonstrate the stability of 

the system, we consider the following candidate Lyapunov function:  

𝑉 =
1

2
𝑆2 +

1

2𝑛
𝐾̃2                                                                 (Ⅱ. 38) 

with: 𝐾̃(𝑡) = 𝐾 − 𝐾̂(𝑡). 

The time derivative of (Ⅱ.41) is: 

𝑉̇ = 𝑆𝑆̇ +
1

𝑛
𝐾̃𝐾̇̃                                                                           (Ⅱ. 39) 

 

From (Ⅱ.34) and (Ⅱ.38), it comes: 
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𝑉̇ = 𝑆(𝑐1𝑒2 + 𝑓(𝑥) + 𝑔(𝑥)𝑢 + 𝑑(𝑡)) +
1

𝑛
(𝐾 − 𝐾̂)𝐾̇̃                                (Ⅱ. 40) 

By replacing 𝑢 with its expressions (Ⅱ.31), (Ⅱ.34) and using the adaptation law (Ⅱ.37), the 

relation (Ⅱ.40) becomes:      

𝑉̇ = 𝑆(𝑐1𝑒2 + 𝑓(𝑥) + 𝑔(𝑥)(𝑢𝑒𝑞 + 𝑢𝑛) − 𝑥̇2𝑑) − (𝐾 − 𝐾̂)|𝑆𝑔(𝑥)|                                 (Ⅱ. 41) 

𝑉̇ = 𝑆(𝑐1𝑒2 + 𝑓(𝑥) + 𝑔(𝑥)(𝑢𝑒𝑞 − 𝑢𝑒𝑞
∗ + 𝑢𝑒𝑞

∗ + 𝑢𝑛) − 𝑥̇2𝑑) − (𝐾 − 𝐾̂)|𝑆𝑔(𝑥)|           (Ⅱ. 42) 

From (Ⅱ.33), (Ⅱ.34) and (Ⅱ.36), comes: 

𝑉̇ = 𝑆 (𝑔(𝑥)(𝑢𝑒𝑞 − 𝑢𝑒𝑞
∗ + 𝑢𝑛)) − (𝐾 − 𝐾̂)|𝑆𝑔(𝑥)|                                                               (Ⅱ. 43) 

𝑉̇ = 𝑆 (𝑔(𝑥) (𝐾 − 𝐾̂𝑠𝑖𝑔𝑛(𝑆𝑔(𝑥)))) − (𝐾 − 𝐾̂)|𝑆𝑔(𝑥)|                                                     (Ⅱ. 44) 

𝑉̇ = 𝑆𝑔(𝑥)𝐾 − 𝑆𝑔(𝑥)𝐾̂𝑠𝑖𝑔𝑛(𝑆𝑔(𝑥)) − 𝐾|𝑆𝑔(𝑥)| + 𝐾̂|𝑆𝑔(𝑥)|                                          (Ⅱ. 45) 

𝑉̇ = 𝑆𝑔(𝑥)𝐾 − 𝐾|𝑆𝑔(𝑥)|  ≤ 0                                                                                                    (Ⅱ. 46) 

Ⅱ.9. Example: control of an inverted pendulum 

Ⅱ.9.1. Discontinued control 

Consider the inverted pendulum represented in the following figure: 

 

 

                                                                          𝜃 = 𝑥1 

 

 

 

    

 

 

 

 

 

 

 

 

𝑢(𝑡) 

Figure Ⅱ.11. inverted pendulum 
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     The dynamics of the system can be described by the following system of differential 

equations [19]: 

 

{
  
 

  
 

𝑥̇1 = 𝑥2
𝑥̇2 = 𝑓(𝑥) + 𝑔(𝑥) ⋅ 𝑢 + 𝑑(𝑡)

𝑥̇2 =
𝑔 𝑠𝑖𝑛(𝑥1) −

𝑚𝐿𝑥2
2 𝑠𝑖𝑛(𝑥1)
𝑀 +𝑚

𝐿 (
4
3 −

𝑚 𝑐𝑜𝑠(𝑥1
2)

𝑀 +𝑚
)

+

𝑐𝑜𝑠(𝑥1)
𝑀 +𝑚

𝐿 (
4
3 −

𝑚𝑐𝑜𝑠(𝑥1
2)

𝑀 +𝑚
)

𝑢 + 𝑠𝑖𝑛(𝑡)

𝑦 = 𝑥1

                                            (Ⅱ. 47) 

With: 

𝜃 = 𝑥1: is the angle of the pendulum. 

𝑚 =  0.1𝑘𝑔: is the mass of the pendulum. 

𝑀 =  1 𝑘𝑔: is the mass of the trolley. 

𝐿 =  0,5 𝑚: is half length of pendulum.  

𝑔 = 9.81𝑚 ∕ 𝑆2: Gravity. 

the discontinuous control is: 

𝑢𝑛 = −𝐾̂𝑆𝑖𝑔𝑛(𝑆𝑔)                                                                                                                          (Ⅱ. 48) 

With:K̂ is adaptative gain.  

With K̂ = 10  and the initial 𝑥(0) = [0.5,0.5]𝑇;. 

simulation results represent with an external disturbance: 𝑑(𝑡) = 0.8 𝑠𝑖𝑛( 𝑡) 
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Figure Ⅱ.12. The variation of the position and the speed of the pendulum -

real and setpoint- 
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Figure Ⅱ.13. The variation of the control signal-u- 

Figure Ⅱ.14. The error variation of the pendulum position-e1- and speed-e2- 
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Figure Ⅱ.16. The variation of the surface 
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    Figure (Ⅱ.12) shows that the variation of the position and speed of the real and set-point 

pendulum converges to the desired state. Figure (Ⅱ.13): As shown, the variation of the control 

signal indicates that the system is subjected to a high control signal at each instant to ensure 

its convergence to the desired state. Figure (Ⅱ.14) shows the variation of the position and 

speed error of the pendulum. Figure (Ⅱ.15) shows that the phase plane is originally in the 

permanent regime but generates a chattering phenomenon in the sliding mode. The figure 

(Ⅱ.16) shows the variation of the sliding surface. Figure (Ⅱ.17) illustrates that the adaptive 

gain variation is not constant. Instead, it varies according to the system. This variation allows 

for optimizing the system's quality. 

    This type of control law achieves the desired objective but generates oscillations that lead 

to undesirable "chattering" in practice for certain variables. 

Ⅱ.9.2. continued control 

By replacing the 𝑠𝑖𝑔𝑛(𝑠) function in (Ⅱ.43) with the 𝑠𝑎𝑡 (
𝑆𝑔(𝑥)

𝜙
) function, it results in  

the control Law the expression: 

𝑢 = −𝐾̂𝑠𝑎𝑡 (
𝑆𝑔(𝑥)

𝜙
)                                                                                                                      (Ⅱ. 49) 
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Figure Ⅱ.17. The variation of adaptive gain K 
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Figure Ⅱ.18. The variation of the position and the speed of the pendulum -real and 

setpoint- 

Figure Ⅱ.19. The variation of the control signal-u- 
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Figure Ⅱ.20. The error variation of the pendulum position-e1-  

 

Figure Ⅱ.21. The error variation of the pendulum speed-e2- 
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Figure Ⅱ.22. Phase plan and sliding line 

Figure Ⅱ.23. The variation of the surface 
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        Figures (Ⅱ.18) show that the variation in position and speed of the pendulum real and 

setpoint. The control u is shown in Figure (Ⅱ.19) it is a continuous and real control, Figures 

(Ⅱ.20; Ⅱ.21) show the error variation of the pendulum position-e1- and speed-e2, and the 

phase plane and the sliding line in Figure (Ⅱ.22), and the variation of the surface is shown in 

Figure (Ⅱ.23). Figures (Ⅱ.24) show that the variation of adaptive gain ‘K’. 

It is observed that the actual trajectories converge to their equilibrium point, the phase plane 

at the origin in steady state, and the sliding surface tends to zero. 

The results of simulations show that the continuous control allows mitigation of the effects of 

external disturbances and uncertainties, as well as eliminating phenomenon of "chattering" 

introduced by the discontinuous control. 

Ⅱ.10. Conclusion 

    Sliding mode control is that it is a robust and computationally efficient control technique 

suitable for nonlinear systems. Sliding mode control alters the dynamics of a system by 

applying a discontinuous control signal, forcing the system to "slide" along a cross-section of 

its normal behavior. This method is a variable structure control approach where the control 

law switches between different continuous structures based on the system's current state.  

Sliding mode control offers robustness, simplicity, and insensitivity to parameter variations, 

making it ideal for systems with uncertainties. It can lead to optimal control for a wide range  
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of dynamic systems and has applications in areas like electric drives and robotics. Chattering, 

a common issue in sliding mode control, can be mitigated through techniques like dead bands 

or adaptive control methods. Overall, sliding mode control provides a powerful tool for 

controlling nonlinear systems effectively. 
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III.1. Introduction 

         Sliding mode control (SMC) is a robust design methodology developed using a 

systematic scheme based on a sliding surface and the Lyapunov stability theorem. The main 

advantage of SMC is that system uncertainties can be handled under the invariance 

characteristics of the system's sliding state with guaranteed system stability. However, the 

discontinuity of the control signal is its drawback. An approach to avoid discontinuous control 

signals in SMC is to replace the sign function with a saturation function. 

In this chapter, a sliding mode control with adaptive gain for a class of multivariable 

nonlinear systems is presented. The coupling system can be divided into two subsystems, and 

two sliding surfaces are constructed using the state variables of the decoupled system. An 

intermediate variable is introduced to incorporate these two slipping surfaces. 

We will study a sliding mode controller with adaptive gain to control a multivariable system 

to ensure stability and robustness to parametric variations of the system and external 

disturbances.   

III.2. Synthesis controller of robust sliding mode 

Let be the nonlinear system of order four described by the following state representation: 

𝑥̇1(𝑡) = 𝑥2(𝑡) 

𝑥̇2(𝑡) = 𝑓1(𝑥) + 𝑔1(𝑥)𝑢(𝑡) + 𝑑1(𝑡) 

𝑥̇3(𝑡) = 𝑥4(𝑡) 

𝑥̇4(𝑡) = 𝑓2(𝑋) + 𝑔2(𝑋)𝑢(𝑡) + 𝑑2(𝑡)                                                                              (III.1) 

  With: 

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 is the state vector, )(),(),( 121 xgxfxf and )(2 xg  are non-linear functions,

X , )(tu  is the control, )(1 td  and )(2 td  are disturbances assumed to be bounded: 

ii Dtd )( ,  2,1=i . 

Two sliding surfaces are defined 1S  and 2S   

                                           2111 xxcS +=                                                                             (III.2)                                               
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                                             𝑆2 = 𝑐2𝑥3 + 𝑥4                                                                  (III.3) 

From the theory of sliding mode presented in the previous section, one can choose a control 

law of the form [28]: 

                               𝑢1 = 𝑢1𝑒𝑞 − 𝐾1𝑆𝑎𝑡(𝑆1𝑔1(𝑥)/𝛷1), with 
( )xg

D
K

1

1
1 >                           (III.4) 

With: 

                                              
)(

)(

1

121
1

xg

xfxc
u eq

−−
=                                                            (III.5) 

and : 

                              𝑢2 = 𝑢2𝑒𝑞 − 𝐾2𝑆𝑎𝑡(𝑆2𝑔2(𝑥)/𝛷2), with      
( )xg

D
K

2

2
2 >                     (III.6) 

         It is evident that if we set 1uu = , this control allows to bring back states 1x  and 2x to 

surface 1S  as quickly as possible, and then to slide them to the equilibrium point. The same 

will be true for states 2x  and 3x  with 2S  if we take 2uu = , in other words, this controller can 

only control one of the two subsystems. 

         For the system given by equation (III.01), we seek to determine an output control law 

)(xuu =  so that the closed-loop system is globally stable, in the sense that all state variables 

are uniformly bounded and converge asymptotically to their equilibrium point. 

         The main idea of this decoupled regulator is to decompose the system into two 

subsystems A and B, subsystem A consists of  1x and 2x  its  corresponding sliding surface is 

1S , the subsystem B consists of 3x and 3x  its corresponding sliding surface is 2S .Assuming 

that the primary goal is to stabilize subsystem A, it is reasonable to consider information from 

subsystem B as secondary, and this secondary information must be taken into account by 

subsystem A, an intermediate variable z representing this secondary information is 

incorporated into 1S [29]. 
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The surface 1S  takes shape 211 )( xzxc +− , meaning that the main objective is changed to 

zx =1 , 02 =x , or z is a function of 2S . 

The expression  1S and 2S can be chosen as: 

                                                    2111 )( xzxcS +−=                                                      (III.7)                                                       

                                                     4322 xxcS +=                                                             (III.8)                                                     

So, the control law becomes: 

                                 ( )111111 /)( −== xgSSatKuuu eq
                                                (III.9) 

With: 

                                                  
)(

)(

1

121
1

xg

xfxc
u eq

−−
=                                                      (III.10) 

The value of the state z  can be limited by setting                                                  

                                                   1<<0, UU zzz                                                             (III.11) 

where Uz  is the maximum value of  z . 

The variable z can be defined as: 

                                                 
U

Z

z
S

Satz 









= 2   with:   1<<0 Uz                                (III.12)       

with Z  is the boundary band of the slipping surface 2S  who ensures the smoothing of the 

control and maintains the system state in this range. Starting from the equation if 02 S  

where 0Z , if 02 →S  so , 01 →x  and 01 →S  The objective of the order can be 

completed[30]. 

 

 

 

0→z
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III.3. Elestrative examples 

       III.3.1. Inverse Pendulum 

The system consists of a mobile translation cart supporting a freely rotating pendulum as 

shown in Figure III.1: 

 

 

   

 

 

        

 

 

 

By exerting a horizontal force )(tu  On the cart, the cart moves to the position x  causing the 

pendulum to rotate an angle  . The inverted pendulum is an unstable system in an open loop, 

non-linear and multivariable. 

The control of this system must achieve: 

• Stabilization of the pendulum around its equilibrium position, starting from an initial 

condition )0( Comprised within the interval [ 2/− , 2/+ ]. 

• Stabilization of the carriage in position 0=x , starting from an initial condition comprised 

within the interval [ m1− , m1+ ].  

Motion can be described by the following differential equations [31]: 

      

 

 

 

    Figure III.1. Schematic diagram of the simple inverted 

pendulum 
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

          (III.13)   

With: 

𝑥1 = 𝜃, 𝑥2 = 𝜃̇, 𝑥3 = 𝑥, 𝑥4 = 𝑥̇ 

)(tu  : the control applied on the trolley. 

x : the position of the trolley. 

𝜃: the angle of the pendulum. 

𝑚𝑝 = 0.1𝑘𝑔 : is the mass of the pendulum. 

𝑚𝑐 = 1𝑘𝑔 : the weight of the trolley. 

𝑚𝑡 = 𝑚𝑐 +𝑚𝑝 : the total mass of the pendulum trolley. 

𝐿 = 0.5𝑚  :  half length of the pendulum. 

𝑔 = 9.81𝑚/𝑠2  : gravity. 

The simulation results are given in the following figures for a condition  

initial 𝑥(0) = [−0.5,0,0.5,0]𝑇; for a regulator by sliding mode whose  

parameters are: C1 = 5; C2 = 0.5; zu = 0.9425; 𝑘 = 10 

simulation results represent with an external disturbance: 𝑑(𝑡) = 0.4 𝑠𝑖𝑛( 𝑡) 
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Figure III.2. The Variation of state variables 𝜃(𝑡), 𝜃̇(𝑡) 

Figure III.3. The Variation of state variables   𝑥(𝑡)𝑒𝑡 𝑥̇(𝑡) 
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Figure III.5. The variation of the control U. 

Figure III.4. The variation of the surface S1 and S2. 
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Figure III.7. The variation angle of the pendulum and variable Z. 
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      Figures (III.2 and III.3) shows the states of the system 𝜃(𝑡), 𝜃̇(𝑡), 𝑥(𝑡)𝑎𝑛𝑑 𝑥̇(𝑡)converge 

towards the equilibrium points despite the presence of disturbances. Figure (III.4) shows that 

the two sliding surfaces S1 and S2 tend towards zero. Figure (III.5) shows That the control 

converges to zero. Figure (III.6) represents phase plan is in the permanent regime.  

Figure (III.7) shows that the variable z is a fuzzy value (0 ≤ 𝑍 ≤ 1) ; Note that the angle 

following the variable z is convergent to zero; and note that the variation in adaptive gain is 

not constant in Figure (III.8). 

It is found that the control is reliable and robust despite external disturbances. 

III.4. Tracking signal reference 

       Consider the single-input single-output system described by the following differential 

equations:  

                                           

)()(

)()()()()(

)()(

)()(

1

32

21

txty

tdtuxgxftx

txtx

txtx

n

=

++=

=

=









                                               (III.14) 
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Figure III.8. The variation of the adaptative gain. 
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with:  

TnT

n txtxtxtxtxtxtx )](,),(),([)](,),(),([)( )1(

21

−==   the state vector. 

Tn

ddd

T

ndddd txtxtxtxtxtxtx )](,),(),([)](,),(),([)(
)1(

21

−
==   the desired state vector. 

)(xf  and )(xg  are non-linear functions of the state vector, )(tu  is the control and )(td  the 

disturbance considered to be bounded: Dtd )( . 

The sliding mode control approach for trajectory tracking is to find a control law such that, 

given a desired trajectory the tracking error tends to zero despite the presence of external 

disturbances. 

The tracking error vector is defined as: 

                                      Tn

d tetetetxtxtE )](,),(),([)()()( )1( −=−=                                 (III.15)  

                                      T

nn tetetetE )](),(,),([)( 11 −=      (III.16) 

And the pursuit error:                                       

)()()( txtxte d−=                                                                                                              (III.17) 

whose derivative is:                                                    

                                                 )()()( txtxte d
 −=                                                             (III.18)   

A linear function is defined S  which represents the sliding surface [32]: 

                                             nnn eececectxS ++++= −− 112211),(                                     (III.19) 

                                            ( ) 
−

=

+=
1

1

,
n

i

nii eectxS     with: 0>ic , 1,,1 −= ni                    (III.20)                                        

whose derivative is:         

                                  
( ) ( )n

d

n
n

i

ii xxecS −+=
−

=

+

1

1

1
                                                                  (III.21)               
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                                ( ) ( ) ( )n

d

n

i

ii xtduxgxfecS −+++=
−

=

+ )(
1

1

1
                                             (III.22) 

If you choose a Lyapunov function of the form: 

                                                           
2

2

1
SV =                                                               (III .23) 

then the derivative of the Lyapunov function:  

                         ( ) ( ) ( ) ( )n

d

n

i

ii SxtSduxSgxSfecSSSV −+++== 
−

=

+

1

1

1
                                  (III.24)                     

if we assume that 0>)(xg ,  x  then: 

u  increases with the increase of S  and vice versa.                      

if 0>S  the decrease of u  will decrease SS   so that 0<V  and 0<S  the increase in U will 

decrease SS   also so that 0<V .  

     According to Lyapunov’s theorem if V  is negative the trajectory )(tx  will be drawn 

towards the desired trajectory )(txd , tracking error )()( txtx d−  tends to zero and will be 

attracted to the sliding surface 0)( =eS  for all 0t  . 

III.4.1. The sliding mode for trajectory tracking 

First, the sliding surface is defined 1S  as follows:                                                                

                                2111 )( ezecS +−=                                                                           (III.25)             

With:                               )()()( 111 txtxte d−=       and        )()()( 222 txtxte d−=  

in the same way another sliding surface is defined 2S  :   

                                                                  4322 eecS +=                                                 (III.26) 

With: 
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)()()( 333 txtxte d−=         and    )()()( 444 txtxte d−=  

The expression of the control becomes:                                

                                                      ( )111111 /)( −== xgSSatKuuu eq
                                   (III.27) 

With: 

                                                      
)(

)(

1

2121
1

xg

xxfec
u d

eq

+−−
=                                          (III.28) 

The value z  may be limited by posing: 

                                               1<<0, UU zzz                                                                  (III.29) 

Or Uz is the maximum value of z   

The Variable z  can be defined as:  

                        U

Z

z
S

Satz 









= 2

  with  10  Uz                                                         (III.30) 

III.5. Sliding mode control with adaptive gain 

       in the previous part, it was assumed that the gain K of the control by sliding mode can be 

determined. however, in practice, there is no method for calculating this gain. To solve this 

problem, we use in this section, an adaptive gain control. 

       III.5.1. position of the problem                          

Now we are looking at the following control law: 

                          
neq uutu +=)(                                                                                          (III.31)    

The equivalent control 
equ  can be obtained from the temporal surface derivative  01 =S  

                                  2111 )( ezecS  +−=                                                                           (III.32)  

                                 
dxuxgxfzecS 211211 )()()(  −++−=                                                 (III.33) 
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)(

)(

1

21111*

xg

xxfzcec
u d

eq

 +−+−
=                                               (III.34) 

The variable z  cannot be derived, z  cannot be obtained, for this we approach the optimal 

equivalent control law *

equ  by the equivalent control 
equ  given by: 

                                        
)(

)(

1

2111

xg

xxfec
u d

eq

+−−
=                                                          (III.35) 

and either *)( eqeq uutk −=  given by: 

                                                        *)( eqeq uutk −=          Ktk  )(0                             (III.36) 

The limit of uncertainty K  is a positive constant. However, this uncertainty limit cannot be 

measured in practice [29]. 

Let K̂ be the estimated value of K  , we consider the estimation error: 

                                                                  )(ˆ)(
~

tKKtK −=           (III.37) 

nu  : the discontinuous order whose purpose is to check the attractiveness conditions, an 

adaptive sliding mode control term is introduced to compensate for the difference between the 

optimal equivalent control *

equ  and the equivalent control 
equ . 

                                                                  )(ˆ
11gSSignKun −=            (III.38) 

To ensure the objectives of the order, the following adaptation law is adopted: 

                                                                 11

~ˆ gSnKK =−=


         (III.39) 

With   𝑛 > 0. 

 

 

 

01 =S
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III.5.2.  Stability analysis 

        The aim is to ensure the stability of the control structures in the sense that all input and 

output signals remain bounded and the tracking error tends asymptotically to zero. 

           In general, the synthesis of Lyapunov consists of selecting a candidate function of 

Lyapunov and then choosing laws of control or adaptation ensuring its decay.  

      To demonstrate the stability of the system, we consider the following Lyapunov candidate 

function:                                   

                                                                  22

1

~

2

1

2

1
K

n
SV +=                    (III.40)        

With: 

                                                                 )(ˆ)(
~

tKKtK −=  

The temporal derivative of (III.59) is: 

                                                                 KK
n

SSV
 ~~1

11 +=                                              (III.41)       

from (III.36) and (III.40), it comes: 

            𝑉̇ = 𝑆1(𝑐1𝑒2 − 𝑐1𝑧̇ + 𝑓1(𝑥) + 𝑔1(𝑥)𝑢 − 𝑥̇2𝑑) +
1

𝑛
(𝐾 − 𝐾̂)𝐾̇̃                              (III.42) 

  by replacing u  by its expression (III.31) and using the law of adaptation (III.39), the 

relation (III.42) becomes: 

( ) )()ˆ())(()( 112111211 xgSKKxuuxgxfzcecSV dneq −−−+++−=               (III.43) 

( ) )()ˆ())(()( 112

**

111211 xgSKKxuuuuxgxfzcecSV dneqeqeq −−−++−++−=                   (III.44) 

( ) )()ˆ()))((ˆ)(( 111111 xgSKKxgSSignKkXgSV −−−=                      (III.45) 

from (III.36) and (III.38), it comes: 

           𝑉̇ = 𝑆1(𝑔1(𝑥)(𝑘 − 𝐾̂𝑆𝑖𝑔𝑛(𝑆1𝑔1(𝑥)))) − (𝐾 − 𝐾̂)|𝑆1𝑔1(𝑥)|           (III.46) 
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            𝑉̇ = 𝑆1𝑔1(𝑥)𝑘 − 𝑆1𝑔1(𝑥)𝐾̂𝑆𝑖𝑔𝑛(𝑆1𝑔1(𝑥)) − 𝐾|𝑆1𝑔1(𝑥)| + 𝐾̂|𝑆1𝑔1(𝑥)|    (III.47) 

           𝑉̇ = 𝑆1𝑔1(𝑥)𝑘 − 𝐾|𝑆1𝑔1(𝑥)|             (III.48)                                                                                          

::::::::: 0V            

III.6. Elestrative example 

    III.6.1. Simulation results for Continuation of trajectory 

     The inverted pendulum is represented by (Figure III.1), the movement of which can be 

described by equation (III.13), with the following parameters: 

                             
2/81.9,5.0,1.1,1,1.0 smgmLkgmkgmkgm tcp =====   

The figures (III.10 III.13 III.14 III.15) represent the results obtained for the continuation of 

the desired state vector as follows: 

𝜃𝑑(𝑡) = 0,𝜃̇𝑑(𝑡) = 0,𝑥𝑑(𝑡) = 𝑡 and 𝑥̇𝑑(𝑡) = 1 

 

Figure III.9. The variation angle and desired angle of the pendulum. 
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Figure III.11. The variation angular speed and desired angular speed. 

Figure III.10. The variation position 𝑥 and desired position 𝑥𝑑 of the trolley. 
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Figure III.13. The variation angle error and desired angle error of the pendulum. 

Figure III.12. The variation of the trolley speed and desired trolley speed. 
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Figure III.15. The variation error of the trolley position and speed. 

Figure III.14. The variation of the angular error velocity. 
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Figure III.16. The variation of the surface S1 and S2. 

Figure III.17. The variation the variable Z. 
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Figure III.19. The variation of the phase plane and sliding line S1 and S2. 

Figure III.18. The variation of the control. 
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       It is noted that the pursuit error of the system converges to the desired state in the figures 

(III.13; III.14; III.15), and the figures (III.9; III.10; III.11; III.12) observe that they converge 

to the desired state, while the sliding surfaces S1 and S2 tend towards zero (Figure III.16). 

And note that the intermediate variable z and the control applied converge to zero in the 

figures (III.17; III.18). The representation of phase plans is originally in the permanent regime 

(figure III.19). and Figure (III.20) shows that adaptive gain variation is not constant; this 

variation allows for optimizing the system's quality. 

It is found that this pursuit is carried out by minimizing the error of continuation on the one 

hand and by ensuring the stability of the system on the other. 

III.7. Comparative Study between Sliding mode control with adaptive gain 

and fixed gain 

III.7.1. The position of the tracking rectangular of signals references 

Figures(III.21-III.23)illustrate the results obtained for tracking the following desired state 

vector:   0)( =td , 0)( =td
 ,𝑥𝑑(𝑡) = {

−2
2

   
if

if
  
20 𝑠𝑒𝑐 ≤ 𝑡 ≤ 40𝑠𝑒𝑐

𝑒𝑙𝑠𝑒
 and 0)( =txd

  
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Figure III.20. The variation of the adaptative gain. 
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Figure III.21. Position evolution of the cart ( )x t  

 

Figure III.22. Command signals by ( )u t  SMC and ( )u t SMC adaptive gain 
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Figure III.23. Evolution of the adaptive gain and fixed gain  

    The simulation results show the efficiency and performance of the sliding mode control 

with adaptive gain. It can be seen that this controller has eliminated the chattering and ensured 

the smoothing of the control, the stabilization of the system, and the tracking of the trajectory. 

III.8. Conclusion 

        In this chapter, we have studied a sliding mode control approach with 

adaptative gain that can be used from a large class of nonlinear systems. 

        The application of this control on an example of simulation (the inverted 

pendulum) gave very satisfactory results for the stabilization and the 

continuation of trajectory and the robustness compared to the external 

disturbances while overcoming the chattering problems of sliding mode control. 
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Conclusion and perspective 

        In this thesis, a very important property in the study of systems has been presented, 

which is robustness against external and parametric disturbances. Sliding mode control has 

significant advantages in the study of linear and nonlinear systems. The nature of sliding 

mode control is non-linear and its control law changes in a discontinuous manner.  

The work presented in this thesis concerns the implementation of the sliding mode technique 

for the control of single-input and multi-input non-linear systems with adaptive gain. 

In the first chapter, we presented some reminders about the general properties of nonlinear 

systems, and the different methods most commonly used for the control of nonlinear systems. 

In the second chapter, we presented the operating principle of sliding mode control for single-

input single-output (SISO) systems with adaptive gain, accompanied by an application of it to 

a non-linear system, the inverted pendulum system. 

This command has good performance with a good choice of sliding surface and command 

parameters. 

This control conducted at good performance, and gets a better quality of adjustment compared 

to the non-linear control, it will be necessary to choose the sliding surface as well as the 

parameters of the control to be used.  

In the third chapter, we apply the command mode sliding with adaptative gain on the inverted 

pendulum which is a multivariable system (MIMO), using the simulation under MATLAB 

which gives satisfactory results to the stability, performance and robustness of our system. 

In this work we studied a technique that combines the advantages of both techniques. The 

studied method allows the mitigation of the effects of external disturbances and eliminate the 

phenomenon of "chattering" introduced by the adaptive sliding mode. The pursuit of the 

desired trajectory is done in two phases: the approach and the sliding. Thus, the control used 

in this case consists of two parts: the first allowing the approach to the arrival at the surface, 

and the second maintaining the sliding along this surface. 

At the end of this work, we can say that sliding mode control with adaptative gain offers 

certain advantages:                                                                                                                                                                 

1. Robustness with respect to variations in system parameters. 
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2. A highly efficient dynamic "acceptable response time and practically zero steady-state 

error".                                                                                                                                                                   

Finally, as a result of this work, we propose the implementation of the technique presented in 

this work in order to experimentally verify the results found, in practice. Since the 

measurement of all states is generally impossible because of the physical constraints and/or 

the high cost of the sensors. It would then be interesting to develop the command by sliding 

mode with adaptative gain using observers by return of state or by return of out-put.
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Résumé :  

      On présente dans ce mémoire, une étude sur la commande des systèmes non linéaires 

monovariables et multivariables par mode glissant avec gain adaptatif dont l’objectif est la 

stabilisation où la poursuite d’une trajectoire désirée. Dans la première partie, nous avons 

étudié la stabilité et la commande des systèmes non linéaires, Dans la deuxième partie, nous 

avons présenté le principe de fonctionnement du contrôle en mode glissant pour les systèmes 

monovariables avec gain adaptatif, accompagné d'une application à un système non linéaire 

(le pendule inversé). L’application de la commande par mode glissant avec gain adaptatif 

pour les systèmes multivariables sur le pendule inversé est l’objet de la dernière partie, les 

résultats de simulation ont bien montré la robustesse et la stabilisation de la commande. 

Mots clés : commande, mode glissant, système non linéaire, Stabilité du système. 

Abstract:   

         We present in this thesis, a study on the control of nonlinear monovariable and 

multivariable systems by sliding mode with adaptive gain whose objective is stabilization or 

the tracking of a desired trajectory. In the first part, we studied the stability and control of 

non-linear systems, In the second part, we presented the operating principle of sliding mode 

control for monovariables systems with adaptive gain, accompanied by an application to a 

non-linear system (the inverted pendulum). The application of sliding mode control with 

adaptive gain for multivariables systems on the inverted pendulum is the subject of the last 

part, the simulation results showed the robustness and stabilization of the control. 

Keywords: control, sliding mode, nonlinear system, system stability. 

 ملخص: 

دراسة حول التحكم في الأنظمة الأحادية والمتعددة المتغيرات غير الخطية عن طريق وضع الانزلاق   ،نحن نقدم في هذه المذكرة       

درسنا استقرار الأنظمة غير الخطية   في الجزء الأول،  .تكيفي هدفه الاستقرار أو السعي لتحقيق المسار المطلوب  عاملممع 

مصحوبة   تكيفي، عاملمتغيرة ذات موالتحكم فيها، في الجزء الثاني، قدمنا مبدأ التشغيل للتحكم في الوضع المنزلق لأنظمة أحادية 

تكيفي للأنظمة متعددة المتغيرات على  عاملتطبيق التحكم في الوضع المنزلق مع م بتطبيق على نظام غير خطي )البندول المقلوب(. 

أظهرت نتائج المحاكاة متانة واستقرار السيطرة.  البندول المقلوب هو موضوع الجزء الأخير،  

. : التحكم، الوضع المنزلق، النظام غير الخطي، استقرار النظامالكلمات المفتاحية  
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