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Abstract

In this thesis, we will study some evolution problems that represent some physical phenomena
(Piezoelectric beam, Kirchhoff beam) with some types of delay (for example, distributed delay,
neutral delay) acting on linear or nonlinear internal feedbacks. We will prove the well-posedness
(existence and uniqueness) of solutions to these systems by semigroup theory or by Faedo—
Galerkin method. With regard to the asymptotic behavior of the solutions, we will get the
exponential decay of solutions, which represents the rapid decrease of energy, by constructing
a Lyapunov functional using the multiplication method. Or we get the blow-up of solutions by

using Georgiev and Todorova’s method.

Keywords: Piezoelectric beam; Kirchhoff beam; Semigroup theory; Faedo—Galerkin method;

Time delay; Lyapunov functional; Exponential decay of solutions; Blow-up of solutions.
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Résumé

D ans cette these, nous étudierons des problémes d’évolution qui représentent certains phénomeénes
physiques (poutre piézoélectrique, poutre de Kirchhoff) avec certains types de retard (par ex-
emple, retard distribué, retard neutre) agissant sur des rétroactions internes linéaires ou non
linéaires. Nous démontrerons ’existence et I'unicité des solutions de ces systémes par la théorie
des semi-groupes ou par la méthode Faedo—Galerkin. En ce qui concerne le comportement
asymptotique des solutions, nous obtiendrons la décroissance exponentielle des solutions, qui
représente la décroissance rapide de ’énergie, en construisant une fonctionnelle de Lyapunov
en utilisant la méthode de multiplication. Ou nous obtenons une explosion des solutions en

utilisant la méthode de Georgiev et Todorova.

Mots-clés: Poutre piézoélectrique; Poutre de Kirchhoff; Théorie des semi-groupes; Méthode
de Faedo-Galerkin; Temps de retard; Fonctionnelle de Lyapunov; Décroissance exponentielle

des solutions; Explosion des solutions.
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Introduction

I n physical phenomena and systems, time delay refers to the time interval between the occur-
rence of a specific event and the appearance of its effect or a change in the system. In general,
time delay reflects the time required for information transmission or change from one point to
another in a physical system and affects response speed and event timing within the system. For
example, continuous combustion systems, including domestic and industrial burners, steam and
gas turbines and waste incinerators, are widely used in power generation and heating. There
are two major dynamics in a combustion system: flame dynamics and acoustic wave dynamics.
They are coupled to form a loop, as shown in the next figure. Due to wave propagation, there
is a delay in the wave dynamics. Delays also appear in the measurement and actuator units of

the system

Flame

l dynamics
Flow Acoustic Flow
waves velocity
Delay: acoustic
wave propagation
i

A

Fuel Acouslic
o Delay * Delay
injector wave sensor
J . . . - .
Ve:voltage P.s: the acoustic

I measurement from a
| reference point in the
' combustor

------- Controller [=--=~

Figure 1 : Dynamics in a combustion system



Introduction 2

For more examples, we direct the reader to reference [103].

I n the context of mathematical problems, the term "delay" typically refers to a phenomenon
known as delay differential equations (DDEs) or functional differential equations (FDEs). It
is employed in mathematical models that assume a specified behavior or phenomenon depends
on both the current and past states of a system [10]. For this reason, functional differential
equations are more applicable than ordinary differential equations (ODE). The simplest type

of functional differential equations is of the form:

t)=gt,x(t),z(t—r1)).

Delay differential equations arise in various fields of science and engineering, such as biology,
physics, economics, and control theory [1, 2, 3, 15, 82 ]. Solving delay differential equations
can be challenging due to the need to consider past values of the variables. Numerical methods,
such as the method of steps or various approximations, are often employed to approximate the
solutions to these equations. Additionally, stability analysis and the existence of solutions are
important aspects when dealing with delay differential equations. Datko in [20] proved that
uniform asymptotic stability is not necessarily preserved under small perturbations of the delay

for infinite dimensional problems with finite lags. Also, Datko et al. [21] considered the equation

U — Ugy + 2au; +a2u=0, 0 <z <1, t>0, (1)
with time delays in boundary feedback given by

{ w(0,t) =0, @

ug (1,t) = —ku (1, —€), t>0.

By using some lemmas, an example was given that showed this time delay can destabilize the
system (1)-(2) which, in the absence of delays, is uniformly asymptotically stable. Xu et al. in
[97] were interested in studying the following wave system

(

Wyt (x,1) — Wy (x,1) =0, in (0,1) x (0,00),

w(0,t) =0, in (0,00),

w, (1,t) = —kpwy (1,8) — k(1 —p)w (1,t—7), t>0, (3)
w(x,0) = wo (z),w; (z,0) = wq (x)

wy(L,t—7)=f(t—1) te(0,7).

\

The following cases are proven:
e System (3) is exponentially stable if 1 > 1.
e System (3) becomes unstable when p < %

e If y =% and 7 € (0, 1) is rational, so the system is unstable.

Introduction



Introduction 3

o If p =3 and 7 € (0,1) is irrational, so the system (3) is asymptotically stable.

In [I] Agrawal et al. present a stability analysis of a single-degree-of-freedom system with
time-delayed feedback. And proved by numerical simulation that when the time delay is close to
its maximum allowable limit, significant control degradation occurs or may lead to instability.
A compensation technique was also introduced by modeling time delay as transportation lag,
which ensures the stability of their controlled system. Nicaise and Pignotti [66] studied a
wave equation problem with a delay term in the boundary or internal feedbacks. In the case
[y < p4, established the exponential stability of the solution. If j15, > p, the authors showed the
existence of an explicit sequence of arbitrarily small delays that lead to the destabilization of the
system. Also, Nicaise and Pignotti in [67] considered the wave equation with the boundary or
internal distributed delay by introducing appropriate energy, and by proving some observability
inequalities, proved the exponential stability of the solution. For the internal distributed delay,
and in the case where some assumptions are not verified, showed that this time delay leads to
instability. We direct the reader to the following references [19, 34, 69, 78, 86, 93] for more

results related to the instability of some systems due to the time delay.

» Stability of some systems with some types of delays

B ecause delay is the source of instability. In [16], the stability of solutions for a one-
dimensional model of a Rao-Nakra sandwich beam with Kelvin-Voigt damping and a time
delay was studied by Cabanillas et al. The well-posedness of the problem is established by
applying the Lumer-Phillips theorem. The exponential stability is then proven by utilizing the
Gearhart-Huang-Priiss’ theorem. Feng and Raposo et al. in their search [28], considered in
(0,T') x (0,00) the Rao-Nakra sandwich beam equation with time-varying weight and time-
varying delay

prhiuy — Erhitug, —k (—u+ v+ awy) + iy (8) ue + pg (8) ug (8 — 71 (1))

pshsvy — Eshsvae +k (—u+ v 4 awy) + iy (1) vy + Jig (t) vi (t — 72 (1))
phwy + Elw,ppy — ak (—u+ v+ awy), + iy (£) wy + iy (£) wy (t — 73 () = 0.

t)) =0,

t)) =0,

By utilizing the semigroup of the linear operator and employing the Kato variable norm tech-
nique, they demonstrated that the system is globally well-posed. When the coefficients of delay
are small, they establish an exponential decay of the system by using the multiplier approach
(the first method to prove stability). In the last, they showed the inequality of internal observ-
ability and the equivalence between stabilization and observability (the second method to prove
stability). Feng and Almeida Junior et al. [30] were interested in the asymptotic behavior of the
following Bresse-Timoshenko type system with time-dependent delay terms acting on angular
rotation

{ Py = £ (e + ¥), = 0, in J0,T[x]0, 00[,
—poYite — Wy + K (Yo + ) + pythy + pothy (¢ — 7 (¢)) = 0.

Introduction



Introduction 4

Through the introduction of a suitable Lyapunov functional and irrespective of any relationship
between wave propagation velocities, exponential stability was proven under some assumptions.
Finally, this problem was studied again in the case of time-dependent delay and viscous damping
acting on vertical displacement, yielding the same results. Feng and Li [26] considered the
following nonlinear viscoelastic Kirchhoff plate equation with a time delay term in the internal
feedback

t

Uy + A%u — div F (Vu) — o () [ g (t — s) A% (s)ds + py Jug|™ g
Fptg g (t— 7)) g (t—7) =0, (x,t) € Q x RT.

By using the energy perturbation method and under suitable assumptions, the general decay
of the solution for this problem was established. In the presence of delay feedback, Komornik

and Pignotti in [17] considered the Korteweg-de Vries-Burgers (KdV-Burgers) equation

Up + Ugzy — Uge + Aot + A (t — 7) + uu, =0, in Rx (0,00),
u(z,s) =ug(z,s), in Rx [—7,0],

together with its linear version, i.e. without the term uwu,. The well-posedness of the models
and exponential decay estimates were proven under appropriate conditions for the damping
coefficients. Their arguments relied on a Lyapunov functional approach and semigroup the-
ory. Mpungu and Apalara [57] investigated a system of laminated beams that incorporates an

internal constant delay

pwi + G (Y —wy), + pw (¢ —7) =0,
[P (3Stt - wtt) - D (333393 - wmx) - G (w - wl’) - 07
31,51 — 3Dy + 3G (Y — w,) + 4ys + 48s, = 0,

where (z,t) € (0,1) x (0,00). The dissipation through structural damping at the interface
was proven to be sufficiently strong to achieve exponential stabilization of the system under
suitable assumptions on coefficients of wave propagation speed and delay feedback. In [9]
Almeida Junior et al. considered a truncated version of the Bresse-Timoshenko equations with

delay and viscous damping acting on displacement

1Y — k (yx + w)x + 1Y T oYt (33,25 - T) =0, in ]O’ F[ X ]0> OO[?
_p2yttx_waw+k(yx+w) = 07 in }O,F[X]0,00[,

with the homogeneous boundary conditions of Dirichlet and the following initial conditions
y(x,()) = yO(x)a yt(.%',O) =Y ($)7 ZM%O) = ¢0 (JZ), VS ]O,F[,

the same equations with delay and viscous damping acting on angular rotation, equipped with
the same previous conditions, were considered. Under certain assumptions and using the Lya-

punov functional technique, the exponential decay is obtained in both cases, regardless of any
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relationship between the system’s coefficients. Ouchenane and Zennir in [72] considered a one-
dimensional porous-elastic system that incorporates both memory and distributed delay terms
in the second equation with second sound. Although the delay is a source of instability, a
general decay result was demonstrated under some conditions on the relaxation function. In
[18] Khochemane et al. considered a one-dimensional porous-elastic system with distributed
delay acting in the second equation. Under some assumptions, the existence and uniqueness of
this system were proven by using semi-group theory (Hille-Yosida theorem). Also, exponential
stability is obtained by using the energy method. Douib et al. [22] by introducing a suitable
Lyaponov functional, proved exponential stability for a flexible structure with distributed delay
and fourier’s type heat conduction. The Bresse system with delay terms in the internal feed-
backs acting in the first, third equations and a distributed delay term in the second equation
was studied by Bouzettouta et al. [10] through some theories of semigroup, proved the global
existence of solution. Furthermore, the stability of solutions was studied using the multiplier
method. Fares Yazid et al. in their paper [102], studied a one-dimensional linear thermoelastic
(Cattaneo’s law) system of Timoshenko type with distributed delay term. Through an appro-
priate assumption between the weight of the damping and the weight of the delay and using
the energy method, exponential stability was proven without the usual assumption on the wave

speeds.
Among the types of functional differential equations (FDEs), we find “Neutral Delay Dif-

ferential Equations” (NDDEs), where this type of equation relies on both past and present
values of the function, it also incorporates derivatives with delays [35, 10, 41, 12, 55]. We

provide the reader with some illustrative examples

[w(t) —au(t—7)]" = f(t,u,u(t-s)),
u (t,x) = Au+ f (tu,u (t—T1,1)).

In fact, neutral delays are commonly applied in the study of vibrating masses attached to an
elastic bar and also in some variation problems, heat exchanges, electrodynamics, biological
sciences, population ecology, etc [10, 95]. While minor delays can lead to instability in some
systems, 'large’ neutral delays can stabilize certain systems. In fact, intentional incorporation of
neutral delays into a system is done at times to enhance its performance, structure, or stability
[89]. In [88], Tatar considered in [0,1] x [0, 00) the damped wave equation problem with the

inclusion of a neutral delay
utt—um+ut+f0th(t—s)utt(s)ds =0,
(u,ue) (0,2) = (uo,uq) (). (4)
u(t,0) =0, u(t,1) = 0.

An exponential stability result of (4) was shown in some cases on the kernel h. Mpungu and

Apalara, in their research [58] proved the exponential stability of a laminated beam when a

Introduction
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neutral delay is present. In [0, 1] x [0, 00), the thermoelastic laminated system subjected to a

neutral delay was investigated by Seghour et al. [84]

pwy + G (P —w,), + Aw, = 0,

I, (Bsu — ) — G (Y —wy) — (3s =), + pb. =0,

31, [st + fot h(t—s)s(r) dr], +3G (Y — wy) +4vs — 354, = 0,
0 — K0pe + 11 (38 — 1), =0,

tx

with the boundary and initial conditions

Y =s=0,=w, =0, in the case x = 0,
0=w=s, =1, =0, in the case x =1,
(w,,5,0) (z,0) = (wo, 1y, S0,00) , = € [0,1],
(we, ¥y, 8¢) (2, 0) = (w1, 4y, 81).-

By employing the energy method with certain conditions on the kernel A and system parameters,
both exponential and polynomial stability were demonstrated. For further results concerning
neutral delay problems with the occurrence of delays in the second derivative (see [23, 51, (62, 87]

and the references therein).
» Blow-up of solution of some systems with some types of delays

A nonlinear wave equation with delay was examined by Kafini and Messaoudi in [44] and
demonstrated that the solution of this problem blows up in a finite time under appropriate
conditions for the initial data, the nonlinear source term, the weights of delay, and the damping
term. Also, Kafini and Messaoudi in [16] examined the following delayed wave equation with a

logarithmic nonlinear source term
U — A+ ity + piouy (E—7) = wlul’ Injul®, 2 € Qand t >0,

under the conditions

u(x,t) =0, x € 092,
u (x,t —7) = folz,t —7), in (0,7),
u(x,0) =wug (), ut(z,0) =uq (x), in Q.

The local existence result has been proven using semigroup theory. Furthermore, the blow-up
of solutions in finite time with nonpositive initial energy is demonstrated. Yiiksekkaya et al. in
their work [98] focused on the investigation of the higher-order Kirchhoff-type equation with a
delay term in a bounded domain. Firstly, the global existence of the solution was established.
Next, the decay of solutions was discussed using Nakao’s technique, considering both polynomial
and exponential decays. Additionally, they established the blow-up result for negative initial

energy under suitable conditions.
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Yiiksekkaya and Pigkin in [100] considered the following nonlinear viscoelastic plate equation
with a distributed delay

t T2
utt—i-AQu_/ g (t—s)A*u(s) ds—l—,ulut—l—/ |t (@) e (t — q) dg = blulP*u, € Qand t > 0,
0

T1

with the conditions

u:%:O, x € 08,
Uy (l‘, _t) = fO (ﬁat)v (l’,t) € Q x (OvTQ)a

u(z,0) =wug (), u(x,0) =wu (), in .

A blow-up of solutions was successfully obtained under some conditions. Fatima Zohra Mahdi
et al. [104] the focus of their paper is to investigate the initial boundary value problem for a
system of viscoelastic wave equations of Kirchhoff type with a delay term in a bounded domain.
Under some suitable assumptions, the energy decay rate is proved by Nakao’s technique. In

addition, the blow up of solutions is obtained in different states on the initial energy.
» The concept of stability in dynamic systems

D ynamic systems, also known as dynamical systems, refer to mathematical models used to
describe and analyze the behavior of systems that evolve or change over time. These systems
can be found in various fields, including physics, engineering, biology, economics, and social
sciences [74].

In the dynamic systems, understanding the behavior and properties of various states is of
utmost importance. Some concepts that play a fundamental role in analyzing system dynamics
are equilibrium, stability, asymptotic stability, instability, and system explosions. Stable equi-
librium points (also known as rest points or stationary points) are characterized by a system
that returns to its original state after experiencing small disturbances. In other words, if the
system is slightly displaced from equilibrium, it will eventually return to the same equilibrium

state.

Example 0.1 A typical example that illustrates this situation is the pendulum. Pendulums
with a rigid rod have two equilibrium points. One equilibrium point occurs when the rod is in

a vertical position, with the mass hanging downward, the other is when the mass is up.

Stability is the property of a system to maintain or return to equilibrium after experiencing
a disturbance. A stable system resists change and exhibits a tendency to restore its original
state. Stability is often evaluated by examining the system’s response to small perturbations
or deviations from the equilibrium point. If the system’s response damps out over time, it is

considered stable.

Introduction
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Example 0.2 As an illustrative example, considering the first equilibrium point of the pen-
dulum (when the rod is vertical and the mass is hanging downward) and assuming there is
no friction, a small push from this resting position will lead to sustained oscillations with a
bounded amplitude around the equilibrium. This implies that the first equilibrium point is
stable [13].

Asymptotic stability goes one step further than stability. It implies that a disturbed sys-
tem not only returns to equilibrium but also the solutions or trajectories starting nearby to
it converge (as time approaches infinity) back to it. In other words, the system’s response
converges towards the equilibrium point, resulting in a progressively diminishing deviation.
Asymptotic stability is a desirable property as it guarantees long-term stability and resilience

to disturbances.

Example 0.3 Taking the pendulum example once more, if we introduce friction into the prob-
lem, will result in damped oscillations around the equilibrium point. Ultimately, the pendulum

will cease its oscillations and revert back to its resting position.

On the other hand, instability refers to a system’s inability to return to equilibrium after
a disturbance. Instead of converging towards a steady state, an unstable system exhibits an
ever-increasing deviation from the original state. Small perturbations can trigger significant

changes, leading to unpredictable behavior and often resulting in chaotic or explosive dynamics.

Example 0.4 The second equilibrium point of the pendulum with friction, i.e., where the mass
is positioned upwards, is considered unstable. If it is slightly disturbed from its equilibrium

position, it does not return to that position.

System explosions occur when a system becomes highly unstable, leading to an exponential
growth of its variables or components. System explosions are undesirable and often indicate a
breakdown in the system’s structure or control mechanisms.

Understanding these concepts and their implications is crucial for engineers, scientists, and
analysts working with dynamic systems. By assessing equilibrium, stability, asymptotic stabil-
ity, instability, and the risk of system explosions, experts can design robust and reliable systems,

predict their behavior, and identify potential vulnerabilities or failure modes.

Introduction
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» Description and objective of the thesis

T he main goal of this thesis is to study the well-posedness and asymptotic behavior (expo-
nential decay and blow-up result) of solutions for some evolution problems with different types

of boundary conditions and delay terms. This work consists of five chapters:

e In Chapter 1, we focused on some mathematical principal concepts, some theorems and
lemmas on distributions, Lebesgue and Sobolev spaces, which we need in the proofs of

our next results.

e In Chapter 2, we study a one-dimensional system of piezoelectric beams with a dis-
tributed delay term. The existence of solutions has been obtained by using semigroup
theory. Also, by constructing a suitable Lyapunov functional, the exponential stability

result of the solution has been established independent of any conditions on the wave

speeds (\/% , \/§> or any system parameters.

e In Chapter 3, we focus on a one-dimensional system of piezoelectric beams with dis-
tributed delay acting in the mechanical equation, where magnetic and thermal effects
governed by Maxwell’s equations and Fourier’s law are taken into account. Using the
same methods and assumptions that we used in chapter 2, we prove exponential stability.
Finally, the results are compared to those of the electrostatic case (the magnetic effects

are negligible).

e In Chapter 4, we will prove the global existence, uniqueness and exponential energy de-
cay of a one-dimensional system of fully dynamic and electrostatic or quasi-static piezo-
electric system with distributed delay of neutral type acting on mechanical equation
without adding any damping term. Under some assumptions and by using the classical
Faedo-Galerkin approximations along with some a priori estimates, we first prove the
global existence and uniqueness of the system. Next, using the energy method and con-
structing a Lyapunov functional we establish that this system is exponentially stable.
Our results are associated with specific assumptions only concerning the kernel A. In the

end, we get the same results in the case quasi-static or electrostatic system.

e In Chapter 5, we consider some problem of Kirchhoff type with variable exponents
and time delay. Under suitable hypotheses, the blow-up of solutions is proved by using

Georgiev and Todorova’s method.

Introduction
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» Methodology

I n this thesis, we utilize the theory of semigroup to prove the existence and uniqueness (well-
posedness) of solutions related to our systems. Particularly, the Hille-Yosida theorem is a
fundamental and powerful tool to find the existence, uniqueness and regularity of the solutions

of a stationary differential equation

U'(t) = AU(), t € (0,00),
U (0) = Uy,
where A : D(A) C H — H and H generally called the energy space. Or we will adopt
Faedo-Galerkin method to show the existence of solutions.
For the stability results, we employ the multiplier technique to construct the Lyapunov

function L that is equivalent to the energy E of the solution. This implies the existence of two

positive constants, ¢; and ¢y such that

aFE(t) < L(t)<cE(t), Vt>0. (5)
For exponential stability, it is sufficient to establish that

L'(t) < —cE(t), Vt €0, +o0|. (6)

Where ¢ > 0. By introducing the integral on (6) over the interval (0,¢) and utilizing the
equivalence between the Lyapunov function and energy, as indicated in the inequality (5), we
reach the desired result of exponential stability (exponential decay of solutions or exponential
energy decay). In fact, the main difficulty lies in determining the appropriate Lyapunov function

that guarantees us a stability result.

Remark 0.1 There are other types of stability, that we mention some of them
e Strong stabilization this means F () —_ 0.
e Polynomial stabilization. For example F () < ct™™, ¢,m >0, Vt > 0.

e Logarithmic stabilization. For example E (t) < ¢ (log (¢))™™, ¢,m >0, V¢ > 0.

For the blow-up result, we employ the Georgiev-Todorova method [37], which is based on

searching for 0 < @ < 1 and € > 0 in such a way that the functional

Lt)=[-E@®)]" "+ e/ﬂutudx,

verifies an inequality of the form

L'(t)>ALI(1), t>0, ¢> 1.

Introduction
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This inequality will indeed lead to an explosion in finite time.
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CHAPTER 1

Preliminaries

T he primary aim of this chapter is to introduce several fundamental mathematical concepts,
some theorems, definitions and lemmas on distributions, Lebesgue and Sobolev spaces that we

may need in the next chapters. These spaces are defined over an arbitrary domain 2 C R".

1.1 Spaces of test functions and distributions

Definition 1.1 Let Q C R"”, if u is a function defined on 2, we define the support of u to be
the set

supp(u) = {z € Q:u(z) # 0}.

Definition 1.2 Let 2 be a domain in R". For any nonnegative integer m, let C"™ (2) represent
the vector space consisting of all functions ¢ along with all their partial derivatives D¢ of orders

|a| < m, are continuous on 2. So that o = («y, ..., ;) € N* and

lal = a1 + ... + ay,
Do = 00

ST o -
Oz, "...0xp"

Definition 1.3 We denote by D (R™), or simply D, the set of infinitely differentiable functions
with bounded support
D = {p € C*™ : supp ¢ is bounded} .

This set is called the base space, and its elements are called base functions (or test functions).

Note that D is an infinite-dimensional vector space.

Definition 1.4 We say that a sequence of functions (¢,) € D converges in D to a function
p e D if:

12
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(i) All the supports of ¢, are contained within the same compact set K.

(ii) For every j € N, 0 < j < m, the sequence of derivatives (ap,(cj)) converges uniformly to

0V on K.
Definition 1.5 A distribution 7 is defined as a linear continuous functional on D.

(i) A linear functional means that for any ¢, p, € D and «, 8 € C, we have:

(T, oy + Bipy) = (T’ 1) + BT, 03) -
Instead of linear functional, we also use the term linear form.

(ii) Continuity means that if the sequence (g;) converges in D to ¢, then (T, ¢, ) converges
in the usual sense to (7', ).

We also say that a linear functional on D defines a distribution if, for any sequence (¢,) € D

that converges in D to zero, the sequence (T, ¢,) converges in the usual sense to zero.

Proposition 1.1 A linear functional on D is a distribution if and only if, for every compact
K and for every function ¢ € D with supp ¢ C K, there exists a constant C' > 0 and an integer

m such that: .

(T, )| < C " sup oY) (x)].

j=0 zeK

Definition 1.6 The derivative 7" of a distribution T is defined as the functional determined
by the relation
<T/7 §0> = - <T7 90I> ; VSO € D

Example 1.1 The derivative of the Heaviside function, defined by

H (z) 0if z <0,
xT) =
1lif x>0,

determines a distribution denoted H. The derivative of H(x) does not exist at the point

x = 0. But in the sense of distributions, we have for ¢ € D

(H'\ ) = — () :—/Omso%x)dx:so(m — (5.0).

because ¢ (+00) = 0. Therefore, H' = 0.

1.1. Spaces of test functions and distributions
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1.2 Lebesgue and Sobolev Spaces

In this part, we introduce Lebesgue and Sobolev spaces of integer order and establish some of

their most important properties.

1.2.1 The L?(Q2) spaces

Definition 1.7 (The space L? (Q2) [4]) Let Q be a domain in R™ and let p be a positive

number. We denote by L? (€2) the class of all measurable functions u defined on €2 for which

/Q]u ()P dr < . (1.1)

Definition 1.8 (The Lp norm [4]) the functional ||.||, defined by

foll, = [ 1u<m>|ﬁda:)’l’,

is a norm on L? () provided 1 < p < oo. (It is not a norm for values of p in the range
0<p<l).

Definition 1.9 (The space L (2)[4]) L* () denotes the measurable real valued functions
that are essentially bounded (bounded except on a set of measure zero). For u € L> (Q), we

define the norms

ull, = 65551618 lu(z)| =inf{M : p{z:u(z) > M} =0},
is a norm on L* (Q2).
Theorem 1.1 ([4]) L () is a Banach space if 1 < p < oo.

Corollary 1.1 ([4]) L? () is a Hilbert space with respect to the inner product given by:

(u,v) = /Qu(x)y(m)dm
Theorem 1.2 ([4]) L? () is separable if 1 < p < cc.
Theorem 1.3 (Density theorem [25]) D (2) = C§° (Q) is dense in LP (Q) if 1 < p < oo.
Theorem 1.4 ([4]) L? () is reflexive if and only if 1 < p < oo.

Theorem 1.5 (The Dominated Convergence theorem [4]) Let A C R™ be measurable,
and let {f;} be a sequence of measurable functions converging to a limit pointwise on A. If
there exists a function g € L' (A) such that

/i (@)] < g (),

1.2. Lebesgue and Sobolev Spaces
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for every j and all x € A, then

lim [ f;(z )dx:/ lim f; (z) d.
A A

‘]H()O J]—00

Theorem 1.6 (Fubini’s theorem [4]) Let f be a measurable function on R™*" and suppose

that at least one of the integrals

L= / \f (2. )| dady,
Rnt+m

b= [ ([ el )a
b= [ ([ i)

exists and is finite. For Iy, we mean by this that there is an integrable function g on R™ such

that g(y) is equal to the inner integral for almost all y, and similarly for I3. Then

(y
(a) f(.,y) € L' (R") for almost all y € R™.

(b) f(z,.) € L' (R™) for almost all z € R™.
(¢) Jam f( y)dy € L' (R™).
(d) fR” J)dxr € L' (R™).

(e) Il = _[2 = ]3.

1.2.2 The L?(0,T; X) spaces

Definition 1.10 Let —oo < a < b < 400 and X be a Banach space with the norm denoted
by ||.|| . We define the spaces L? (a,b; X), 1 < p < oo and L™ (a, b; X) respectively, as follows

b
LP (a,b; X) = {u : (a,b) — X measurable, where/ Ju ()5 dt < +oo} ,
and

te(a,b)

L% (a,b; X) = {u : (a,b) — X measurable, where ess sup ||u (.)||y < —I—OO} .

The space L (a,b; X) is a Banach space with respect to the norm

(f o (t det) if 1<p< oo,
Uu P(a.b: = .
e =Y cos suplluolly. itp=oo

te(a,b)

Naturally, we have
LP (a,b; LP () = LP ((a,b) x Q), 1<p<oo.

1.2. Lebesgue and Sobolev Spaces
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1.2.3 The W™P (Q)) spaces

Definition 1.11 (Sobolev spaces [4]) For any positive integer m and 1 < p < 0o we con-

sider the vector space
W (Q) = {ue L”(Q): D*u e L () for 0 < |a] <m},

where D“u represents the distributional or weak partial derivative. Equipped with the norm
1
(Socacn ID7ull)” if 1<p< o,

De =
oéﬁ??m” ul o if p= oo,

(1.2)

[llfmp =

called Sobolev space over (2.
Theorem 1.7 ([4]) W™P (Q) equipped with the norm (1.2) is a Banach space.

Lemma 1.1 ([4]) Let u € L}, (Q) satisfy [yu(z)d(x)dz =0 for every ¢ in D (). Then

loc
u(z) =0 a.e. in Q.

Definition 1.12 (Compact sets [4]) A subset A of a normed space X is considered compact
if every sequence of points in A contains a subsequence converging in X to an element belonging

to A. This definition is equivalent to the compactness definition in a general topological space.

Remark 1.1 Compact sets are both closed and bounded. However, closed and bounded sets

may not necessarily be compact unless X is finite dimensional.

Definition 1.13 (precompact sets [4]) A set A in space X is defined as precompact if its

closure, denoted by A is a compact set in the norm topology of X.

Definition 1.14 A set A is termed weakly sequentially compact if each sequence in A has a
subsequence that weakly converges in X to a point belonging to the set A. The reflexivity of a

Banach space can be characterized in terms of this property.

Definition 1.15 (Imbeddings) We say the normed space X is imbedded in the normed space

Y, and we write X — Y to designate this imbedding, if these conditions are satisfied:
(i) X is a vector subspace of Y.
(ii) The operator I : X — Y defined by Ix = z for all x € X is continuous.
Since [ is linear, (i7) is equivalent to the following relationship
IM' >0 ||Iz]y < M|z Vo e X.

We say that X is compactly imbedded in Y if the imbedding operator [ is compact.

1.2. Lebesgue and Sobolev Spaces
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Definition 1.16 (Closed operator [49]) Let X and Y are Banach spaces and D (T') C X a
subspace. A linear operator 7" : D (T') — Y is called closed if, for each sequence {z,}, C D (T)

check
X
Ty — T,
{ Tx, X v,

this imply x € D (T) and Tz = y.

1.3 Some important inequalities

Theorem 1.8 (Holder’s inequality [4]) Let 1 < p < oo and let p' denote the conjugate
exponent defined by
, [ 11
p=—— thatis —+—-=1,
p—1 p P
which also satisfies 1 < p' < co. Ifu € LP (Q) and v € L¥ (Q), then uv € L*(Q), and

[u@v @ < fu, I,

Remark 1.2 Holder’s inequality for L? () is just the well-known Cauchy-Schwarz inequality
[ (u, )] < lully [Iv]]5 -

Theorem 1.9 (Poincaré’s inequality[11]) Assuming I is a bounded interval, then there ex-
ists a constant C' (which depends on the finite length of I) such that

oy < Cllngy — Yu€ Wo™ (1), (1.3)

Remark 1.3 Through (1.3) we conclude that on I/VO1 P the quantity Hul H LoDy is a norm equi-
valent to the W'* (I) norm.

Theorem 1.10 (Young’s inequality [25]) Let 1 < p,q < oo, % + % =1 and a,b > 0. Then

al bl
ab < —+ —.
p q
Theorem 1.11 (Young’s inequality with ¢ [25]) Let 1 < p,q < oo, 119 + % =1 anda,b >
0. Then for any € > 0,

ab < ea? + C (g) b,

where )
C (5) = q
q(ep)?
For p,q = 2, the inequality takes the form
b2
ab < ea® + —,
4e

1.3. Some important inequalities
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ab:((ep);a)( ' >

(ep)

Proof. Write

hSAl

and apply Young’s inequality. m

Lemma 1.2 (Gronwall inequality [105]) Let dyds > 0 and f is a nonnegative integrable
function. If

f(t)§d1+dz/of(8)d87

then
f(t) <de®™ foro<t<T.

1.4 Some results on the existence and uniqueness

In this section, our focus will be on providing basic definitions and presenting important results

related to the existence and uniqueness of solutions.

Definition 1.17 Let H be a Hilbert space. A bilinear form a : H x H — R is said to be

(i) continuous if
de>0:a(u,v)| <cllullylvly YurveH,

(ii) coercive if
Ja>0:a(v,v)>alv|3 VYveH.

Lemma 1.3 (Lax-Milgram lemma [11]) Consider a bilinear form a(-,-) defined on a Hilbert

space H, which is equipped with the norm ||-||g, and the following properties are satisfied

i) a(-,) is continuous and coercive.

i) The mapping L : H — R is linear continuous, i.e 3y, > 0 such that ’i (V)‘ < llvlly Vre
H.

Then there exists a unique element u € H such that

a(a,v)=L(v) YveH.

1.4. Some results on the existence and uniqueness
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1.4.1 Some theory of semi-groupe

Definition 1.18 ([73]) Let X be a real or complex Banach space, and X* be its dul. We
denote the value z* € X* at x € X by (z*,z) or (z,2*) . For every x € X we define the duality
set F'(z) C X* by

F(2)={z" € X" z",2) = lal/* = "I} .

Definition 1.19 ([73]) A linear operator A : D(A) C X — X is dissipative if, for every
x € D (A) there exists * € F' (x) such that

Re (Az,z*) <0.

Remark 1.4 ([92]) In the case in which X = H is a real Hilbert space with an inner product
(.,.)p, a linear operator A : D (A) C H — H is dissipative if

(Az,z) <0 Vo€ D(A).

Definition 1.20 ([11]) A linear operator A : D (A) C X — X is said to be monotone if the
operator (—A) is dissipative, this property is expressed by

Re (Az,2*) >0  Vxe D(A).
Remark 1.5 According to some authors, A is accretive or — A is dissipative is the same thing.

Definition 1.21 ([92]) A collection {S()},5, of bounded linear operators in a Banach space

X into X is a semigroup of linear operators on X, or simply semigroup if:
(i) S(0)=1
(ii)) S(t+s)=S5(t)S(s) for each t,s > 0.
If, in addition, it fulfills the condition of continuity at ¢t = 0,

limS (t) = I,

t—0

the semigroup is termed uniformly continuous.

Definition 1.22 ([92]) The infinitesimal generator of the semigroup of linear operators {S(t) },-,
is the operator A : D (A) C X — X, which is defined by

D(A) = {xeX:HlimM},

t—0

and

A = Lo BT~
t—0 t

1.4. Some results on the existence and uniqueness
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Remark 1.6 ([92]) If A: D(A) C X — X is the infinitesimal generator of a semigroup of
linear operators, then D(A) is a vector subspace of X and A is a linear operator that may be

unbounded.

Theorem 1.12 ([92]) A linear operator A : D (A) C X — X s the generator of a uniformly

continuous semigroup if and only if the domain D(A) equals the space X and A is bounded.

Definition 1.23 ([92]) A semigroup of linear operators {S(t)},., is called a Cy-semigroup, or
semigroup of class Cp, if
limS(t)r =z Vo € X.

t—0

Definition 1.24 A Cy-semigroup {S(t)},5, is termed a Cp-semigroup of contractions, or of

nonexpansive operators, if
15 @ £xy < 1.
Where £ (X) represents the set of all linear bounded operators from X to X.

Theorem 1.13 (Hille-Yosida [92]) The linear operator A : D (A) C X — X is considered

as the infinitesimal generator of a Cy-semigroup of contractions if and only if

(i) A is densely defined and closed.
(i) (0,00) C p(A) and for each X > 0

HR<)‘;A)H£(X) <

> =

where p (A) denotes the resolvent set of the operator A and R (\; A) = (M — A)~".
Theorem 1.14 (Lumer-Phillips [92]) Let A: D(A) C X — X (D (A) dense subspace). A

generates a Cy-semigroup of contractions on X if and only if
(i) A is dissipative.
(i1) There exists X > 0 such A\l — A is surjective.

Moreover, if A generates a Cy-semigroup of contractions, then \I — A is surjective for any
A > 0.

Theorem 1.15 (Hille—Yosida [11]) Let A be a mazximal monotone operator. Then, given

any vy € D(A) there exists a unique function

v € C1([0,+00); H) N C ([0, +00); D (A))

satisfying
L 4 Av =0 on [0,+00),
v (0) = vy.
Moreover ||v (t)|| < ||vol| and || % (¢)|| = |Av (t)|| < ||Avol| ¥t > 0.

1.4. Some results on the existence and uniqueness
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1.4.2 Compactness Method

The method is based on three steps:

1) To apply the Faedo-Galerkin method, we select a set of suitable basis functions from
an appropriate Sobolev space. We then solve the approximate problems within a finite-
dimensional space spanned by these finite base functions. This approach often leads to
an initial value problem for nonlinear ordinary differential equations. According to the
well-known local existence theorem for ordinary differential equations, the local existence

of a solution to the approximate problem can be guaranteed.

2) Obtain the compactness estimates for the solution of the approximate problem. It also

turns out that the solution to the approximate problem globally exists.

3) By utilizing the obtained compactness estimates, it becomes possible to select a sub-
sequence from the solutions of the approximate problem obtained in the second step.
This subsequence is chosen in such a way that it converges to a solution of the original

problem.

For more explanation about this method, see [105] and references therein.

1.4. Some results on the existence and uniqueness



CHAPTER 2

LEXistence, uniqueness and exponential energy decay of piezoelectric system with magnetic

effects and distributed delay time

2.1 Introduction

P iezoelectric materials such as barium titanate, quartz and rochelle salt exhibit the property
of transforming mechanical energy into electromagnetic energy (see [94]). The direct piezoelec-
tric effect was initially demonstrated by the brothers Pierre and Jacques Curie, in 1880 [91],
where single crystal quartz was the first material used in early experiments with piezoelectricity.
These same materials, when subjected to an electric field, exhibit a phenomenon known as the

reverse piezoelectric effect, which was discovered by Gabriel Lippmann in 1881 [91, 94]

Voltage(OQutput) Voltage(Input)

(-) ﬁ ;l}i

(+) e -y

. N R
| i

i- e = ____...-fj b S v L

ﬁ I..--.i--..--.

Strain(Input) Strain(OQutput)

Direct Piezoelectric Effect Converse Piczoelectric Effect

Figure 2 :Direct and converse piezoelectric effect
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Various sectors benefit from the utilization of these piezoelectric materials in various industries,
including manufacturing, the medical device industry, telecommunications, and information
technology. Furthermore, piezoelectric beam refers to an elastic beam that is coated with a
piezoelectric material on both its upper and lower surfaces, while the edges are insulated to pre-
vent fringing effects. The beam is also connected to an external electric circuit [59]. To operate
piezoelectric materials electrically, there are three fundamental methods: voltage, current, or
charge. For more detailed information on these methods, the reader is referred to the refer-
ences [31, 38]. When modeling piezoelectric systems, it is essential to consider three primary
effects and their interrelationships: mechanical, electrical, and magnetic effects. The mechan-
ical effects are commonly represented using small displacement assumptions, such as Kirchhoff,
Euler-Bernoulli, or Mindlin-Timoshenko theories. References such as [14, 83] provide further
details on these modeling approaches. On the other hand, the incorporation of electrical and
magnetic effects in piezoelectric systems can be achieved through three main approaches: elec-
trostatic, quasi-static, and fully dynamic methods. These approaches are discussed in detail
in references such as [54, 90] and the related literature. It is important to note that magnetic
effects are not considered in the case of electrostatic and quasi-static approaches. In [59], Morris
and Ozer employed a variational approach to derive the differential equations and boundary
conditions that describe a single piezoelectric beam with magnetic effects. By utilizing the Lag-
rangian and Hamilton’s principle, setting the variation of admissible displacements {v, w, ¢} of
I' to zero and assuming that the beam is clamped at x = 0 and left free at x = I', two distinct
sets of equations are obtained. These equations correspond to stretching and bending, respect-
ively, with associated boundary conditions. They ignored the bending equation in favor of
studying the stretching equations because the bending equation is completely decoupled from

the stretching equations given as follows

pytt — Qg + Vﬁgpajx = 07 (2 1)
HPy — /6S0$x + 757/3“33 - 07
with the boundary and initial conditions
v (0) = ¢ (0) = av, (') — v8¢, () =0, By, (I) — v, () = -2, 22)
(v, 0,v60,) (0) = (12, 0, 11, 1),

where @ = a; + %8 and the parameters I', p, «, 7, pu and 3 represent respectively the length
of the beam, the mass density, elastic stiffness, piezoelectric coefficient, magnetic permeability
and water resistance coefficient. Finally, by using only an electrical feedback controller V' (t) =
kp, (I'), they demonstrate that the closed-loop system is strongly stable in the energy space. In
[77] in the case V (t) = 0, exponential stability has been demonstrated for piezoelectric beams
with magnetic effects by incorporating damping dv; into the first equation by Ramos et al., and

employing the finite difference method, they computed a numerical energy associated with their

2.1. Introduction
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system. The numerical simulations involved using specific values of I'; p, u, v, § and 4. In a
recent study [7], Akil and Soufyane et al. investigated a one-dimensional piezoelectric system
with partial viscous dampings and established the existence and uniqueness of a solution under
Lorenz gauge conditions. The strong stability was obtained by applying the general criteria
of Arendt-Batty. Finally, exponential stability is proven to be obtainable by controlling the
stretching of the center-line of the beam in the z-direction. In [8] Afilal et al. considered a
one-dimensional dissipative system of piezoelectric beams with a magnetic effect and localized

damping. The authors proved that the semigroup S (t) = e#

associated with their system
is exponentially stable. A Multi-dimensional nonlinear piezoelectric beam with viscoelastic
infinite memory has been studied by [100] et al. by using semigroup theories and the Banach
fixed-point theorem, the well-posedness of this nonlinear coupled system was demonstrated.
Also, the exponential decay is established by the energy estimation method. We refer the reader
to [56, 60, 61, 70, 79, ] and the references therein for more results related to piezoelectric
systems (in the absence of delay terms). Ramos et al. [7(], demonstrated the exponential

stability of a system of piezoelectric beams with delayed

PVit — QU gy + Vﬁwxx + glyt + §2yt (ZL’,t - 7-) = 07 in ]07F[ X ]07 —I—OO[,
11 — BPry + VVew = 0, in ]0,T[ x )0, +o0],

with the boundary and initial conditions

(1(0,t) = av, (T,t) = 9B, (T,1) =0, t>0,
©(0,t) = ¢, (I't) =y, (I't) =0,  t=0,
vi(x,t —71) = fo(z,t —1), (x,t) €]0,T[ x ]0, 7] (2.3)
v(z,0) =vo(x), v (2,0) = vy (x), x € 10,17,

[ #(2,0) =@y (7)), ¢ (2,0) = ¢y (x),  2€(01),

where &,v4 (z,t — 7) is the time of delay on vertical displacement, 7 > 0 is the respective retard-
ation time. The authors proved this stability under the condition £; > &,. Recently, Kong et al.
[50], employed the Kato variable norm technique to demonstrate that the system of magnetic
effected piezoelectric beams with time-dependent weights and time-varying delay is well-posed.
Furthermore, the application of the multiplier technique allowed them to obtain exponential
stability. Finally, the equivalence between stabilization and observability was proven by im-
posing certain conditions on the time-varying delay term and time-dependent weights. In [35],
Soufyane et al. extended the previously mentioned recent finding in [50]. Their investigation

focused on stability, using several lemmas. Feng and Ozer in [29] considered the following fully

2.1. Introduction
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dynamic and electrostatic or quasi-static models with clamped-free boundary

/

PV — Way + YBP,, + 1y + a1y (t—7) =0, (x,t) € (0,T) x R,
1Py — By + VBVas + C20, + azpy (t — 7) = 0,

v (0,t) = (0,t) =0,

(avy —yBe,) (I t) = by (L)1) — arve (Tt — 7)),

(0r = o) (U,t) = =bog, (I',1) —axp, (Ut —7), L E€RT,

(

(

Y, Vi, @, %)( ,0) = (vo,v1, 90, 1) (2), z € (0,1,
| e 9) (Tt = 7) = (fo,90) (Tt — 7)), te(0,7),
( PVt — Q1 gy + C11¢ + ayvy (t — T) = 0, (x,t) € (0,T) x R,
v(0,t) =
av, (0,t) = =bvy (T, t) —avy (T, t —7), tE€RT
(Vayt)($a0):(7/071/1)(x)7 376(0,1_1)
| vzt —1) = fo(z,t—7), te(0,7).

Their study is noteworthy as it focused on investigating boundary feedback controllers and

their interactions with both internally and boundary distributed delay feedback controllers (i.e.

by,by # 0 and ¢; = co = 0). The well-posedness of these models was determined using semigroup

theory. In each model, the exponential stability has been proven through the Lyapunov theory

by satisfying some conditions.

2.2

Problem statement

I n the present chapter, we are concerned one dimensional piezoelectric beams with distributed

delay terms, which has the form

(

\

PVt — QlVgy + 769033:10 + KVt + f:f C (ﬁ) Vi (Jﬁ,t - h) dh = 07 in (O,F) X (0700) )
1y = By + 7BVae = 0,

v(0,t) =v, (T,t) = ¢(0,t) = ¢, (T',t) =0, t € (0,00),

v(z,0) =vg(x),vs(x,0) =v1(x), x € (0,1,

@ (2,0) =@y (2), @ (x,0) =y (2),

vi (z,—t) = fo (z,1), (x,t) € (0,T) x (0,72),

(2.4)

where 71, T2, f1; are positive numbers and ¢ : [71, 73] — R is a bounded function satisfying the

following assumption

[ cmlan <. (25)

T1

2.2.

Problem statement
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2.3 Existence, uniqueness

In this section, we will show the existence and uniqueness of solutions for (2.4) through the

application of semigroup theory.
Following the method used in [(7], we introduce the new variable.

Y (x,p,t,h) = vy (z,t — ph), ze (0,), pe(0,1), h € (r1,72), t >0.

Therefore, we achieve
Yy (x,p,t,h) +Y, (z,p,t,h) =0.
The problem (2.4), take the form

PVt — Oy + VBP e + pyVe + f:f’ C(R)Y (z,1,t,h)dh =0,

1Py — BPrg + VVaa = 0, (2.6)
hn ('I7p7t7ﬁ) +Yp (x7p7t7ﬁ> = 07

with the following conditions

v(0,t) = av, (I',t) — yByp, (T,t) =0, ¢>0,
¢ (0,8) = ¢, (I',t) = vz (I',7) =0,
v(z,0)=vo(x), v (x,0) =vy (), Ve € (0,T),
@ (2,0) = @ (2), @ (x,0) = ¢y (x),
| Y (2,0,0,h) = fo(z,p,h), 2€(0,1), pe(0,1), he(0,72).

By using the following notations

Vg =1u, (,Ot:q a’nd U:(V7U,§0,q,Y)T,

atU - (Vt7 Ug, 90157 dt, }/t)T )

therefore, the problem (2.6) can be represented as follows

U (0) = Uy = (vo, V1,90, @1, fo) »

where the operator A: D(A) C H — H is defined by

Vi
%Vx:r_%l/t__(p:mc— 1 :126( ) (l’,l,t,ﬁ)dﬁ
AU = @, : (2.8)
_28 8
u Ve + o Pz
-1y,
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we consider the following spaces
a'(0,1) = {ve H' (0,T): v (0) =0},
H?(0,T) = H*(0,T) N H*(0,T),
and we define the previous Hilbert space H as
H:=H"(0,T) x L*(0,T) x H' (0,T) x L?(0,T) x L*((0,T) x (0,1) x (1,72)) -

We define the inner product on H as follows

r r r
(U, U)H = ,0/ vy dr + ,u/ 0, P, dx + ozl/ U Updr + 6 fyyw ©0,) (VWe — @,) dz

// h|C (R |/ (z,p,t,h)Y (x, p,t, h) dpdhdz,

r
—,0/ Vtth$+,u/ gptgotdx—yﬁ/ ngpxdx—yﬁ/ l/xgozdl‘+04/ VeUdx
0
s / puBude + / [ e / Y (20,6, W)Y (5, .t B dpdid. (2.9)
0 o Jr 0

Now, we defined the previous domain of operator A as follows

D(A) = {(y,ut, 0,0, Y) € H2(0,T) x H'(0,T) x % (0,T) x H'(0,T) 2.10)
x L2 ((0,T) x (0,1) x (11,72)) : vz () = ¢, (I') =0}.

D(A) is clearly dense in H.

Theorem 2.1 Let Uy € H, then problem (2.7) admits a unique solution U € C (R*, H).
Moreover, if Uy € D (A) then U € C(RT,D(A))NC* (RT, H).

Proof. Our initial step is to show that the operator A is dissipative.
Let U = (v, vy, 0, ¢y, Y)T € D (A), by employing the inner product defined earlier, we get

V¢ 1%
oz — vy — gom -1 S22 ()Y (@, 1,8, ) dh vy
(AU, U)u = SOt | e (2.11)
—%ng« + ggoaw Pt
4, v

H
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After integrating by parts and taking the boundary conditions into account, we obtain
T /o i
MMUMZp/ C%m—iw——wm——/ ¢(h xmumwamm
0 P p
r r
s s
+ ILL/ (_LVII + —Prx (Ptdl' - ’76 Vtz%cdf - 76 ()Ot:cyccdx
0 2 ,U 0 0

T
+ Oé/ I/tzl/xdx + ﬂ gOthOIdI'

/ / (h)| / Y, (20,1, ) Y (2, p,t, h) dpdhda
0
I T2
:—ul/ l/fd:t—/ l/t/ C(R)Y (z,1,t,h) dhdx
0 0 T1

T T2
- / / ¢ () /1Yp<x,p,t,ﬁ)Y(a:,p,t,mdpdhdx. (2.12)
0 T1 0

Additionally, by integrating with respect to p, we find

// ¢ (A |/ (,p,t,h)Y (x,p,t, h) dpdhdx = - // (W)|Y? (z,1,t, k) dhdz

_%/ C(h )]dh/o Vide, (2.13)

applying Young’s inequality, we find

—/Fl/t/T2((fi)Y(:v,l,t,ﬁ)dﬁdx
/ yfdx/ ¢ (B)| dh+ = / / (W) Y2 (2,1,4, B) dhda, (2.14)

by (2.13)-(2.14) and condition (2.5) we obtain

(AU, U}y < — (m -/ < () dﬁ) / i

Hence, we get that A is a dissipative operator.
We will now prove the surjectivity of the operator (I — A).

Given M = (g1, g2, 93, 94, 95) € H, we demonstrate that there exists a unique U = (v, u, ¢, q, Y)T €

D (A) so that

(I - AU = M, (2.15)
i.e
v u 91
Uu %Vacac %u_ :%ﬁgpxx o ,% T?C(ﬁ)Y(fL’,l,t, ﬁ) dh g2
e |- q =1 % | (2.16)
q _%Vm: + E@azx 94
Y i 95
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then, by (2.16), we get

(

v—u=g,
pu — WV + pyu + 80, + [P C(R)Y (2,1,t, h) dh = pgs,
1q + VBVer = By = 1194,
\ Y + %X/P = Ys-
Also, by using (2.17), we have
L= (2.18)
qg=%—9s

as
Y (2,0,t,h) = u(z,t) = vy (2,1), for x € (0,T"), h € (11,72),t >0,

and by (2.17)5 we get

Y (z,p,t,h) + %Yp (x,p,t,h) = g5 (x,p, h), (2.19)
that implies
Y (x,p,t,h) = he™" /P g5 (z,7,h) " dr + ue™"", (2.20)
in particular 0
Y (2,1,t,h) = he™" /1 gs (z,7,h) "dr + ue™". (2.21)
0

Now by using (2.18)-(2.21) in the other equations for (2.17), we obtain
T2 1
p(v=g1) = o + 1y (v = 91) + 7By, + / ¢ (n) ﬁeﬁ/ g5 (@, 7, h) e""drdh
T1 0

T2 )
ww=g) [ Cwean = g
1(p = g3) + VBVws — BPyn = 1194, (2.22)

then we get
— Wy + VP, + v = Q1 € L?(0,T),

(2.23)
’YBVIJU - waz +/1’QO - Q2 S L2 (OJF) )
where
T2 i
W1=Uh+p%+/ ¢ (h) e "dn,
T1
T2 ) 1
Q1= @190 + pgs — / ¢ () e / gs (.7, ) " drdh,
T1 0
Q2= (9s + 93). (2.24)
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Multiplying (2.23);, (2.23), respectively by 7, @ € H* (0,T), and integrating by parts together

with the boundary conditions, we have

« fOF Voplgpdx — 0 for YV dx + w1 fOF vodx = for Q1vdx,

(2.25)
=B Jo vaude + B fy 0uadr + p [y e = [y Qapde,
consequently, problem (2.25) is equivalent to the problem
a((v,e),(7,9)=0b(0,). (2.26)
Where )
<H1 (0,T) x H' (0,T) > — R is the bilinear form given by
r r r r
a((v, ) a/ v l/de?—Fﬁ/ 0, PLdx —75/ gpwﬁmdx—yﬁ/ Ve pdx
0 0 0 0
r
+ @y / vodr + u/ ppdr, (2.27)
0 0
b: H' (0,T) x H'(0,T) — R is the linear form given by
r r
0, p) = / Quivdz + / Qopda. (2.28)
0 0
Now, for H := H" (0,T) x H' (0,T) equipped by this norm
8 | :
2 2 2
.0l = (’ (v = )|+ 18+ et + ||sox||2) . (2.29)
2

Proving the continuity of both the bilinear form a and the linear form b is simple. Moreover,

we have

T 2 2 r r
CL((V’QO),(V,QO)) :Oé/ (Vm_ ﬁ%%) diE—l— B_ (76) / widm—o—wl/ VQdQZ
0 Q o 0 0
: 2
s [ ez il v (2.30)
0
where

m = min (a, (ﬁ — (75)2) ,wl,,u> ) (2.31)

For all @o; > 0 thus a is coercive, by using the Lax-Milgram theorem, we can conclude that the

system (2.26) has a unique solution

(v,p) € H (0,T) x H' (0,T).
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Substituting v, ¢ in (2.18), we obtain
(u,q) € H'(0,T) x H'(0,T),
also by substituting « in (2.20) and (2.17); we get
Y,Y, € L*((0,T) x (0,1) X (71,72)),
and by (2.23) we get

1
Ve = 2y o 20— Ly e 12(0,T) = v e H*(0,T) = p € H2(0,T), (2.32)
051 aq Qi 051
also (2.25); implies
—QVgy + VB¢, + @1V = @1, in the distribution sense. (2.33)
Multiplying (2.33) by € H! (0,T") and using integration by parts, we get by using (2.25); again

—av, (1) 7 () +78¢, (D) (1) =0 i e H'(0,T),

we choose
T
7 =2 2.34
7 (1) = 5 (2.34)
then we obtain
18, () = av, (T), (2.35)
also (2.25), implies
VBVsy — By + 1o = Q2, in the distribution sense. (2.36)

Multiplying (2.36) by @ € H* (0,T") and using integration by parts we get by using (2.25), again

VB, (1)@ (L) — B, M) p(T) =0, Ve H(0,T),

we choose
7o) ==
2 T’
then we obtain
using (2.35) in (2.37), then we get
v, (I') = ¢, (') =0, (2.38)

then, by (2.32) and (2.38) we obtain
v, € H2(0,T) : i, (1) = v (1) = 0,

then the operator (I — A) is surjective.
Therefore, A is a maximal dissipative operator, and by applying the Hille-Yosida theorem,

we get the desired result. m
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2.4 Exponential stability

In this section, we present and demonstrate the technical lemmas necessary for establishing the

proof of our stability result.

Lemma 2.1 Let (v,¢,Y) represent a solution to (2.6), then the expression of energy E(t) is
defined as follows

1 r 1 T2
B0 =3 [ (w2 netvanzestu—et+ [ [RcmIY @ptmands) ds
0 0 T1
(2.39)
and satisfies
d T2 r )
th( ) < (lh / IC (R)] dﬁ) / vid. (2.40)
T1 0

Proof. Multiplying (2.6);, (2.6)y by vy, ¢, respectively, and integrating over the interval
(0,T), we get
r r r

d d
= e+ p— 24 24
Podr J, V1T gy ) ST gy | Vet

F T
8 / (s — 03) v — B / (s — 0,) oyl
0 0

I I T2
—i—,ul/ u?dx—i—/ l/t/ C(h)Y (z,1,t,h) dhdz = 0, (2.41)
0 0 T1
by (2.41), we find
d (" d
Pﬁ d‘Hiﬁ +§£/57x p,) du
d r
congg | idcc—i—,ul/ yfd:c+/ ut/ C(W)Y (1,8, h) dhdz = 0. (2.42)
0 0 T1

After multiplying (2.6)3 by | (h)|Y (x, p, t, h) and integration over (0,I") x (0,1) x (71, 72) with

respect to z, p and h, we obtain

I T9
/// RIC()Y (2, ., 1) Vs (2, 1, ) didpd

/ / / Y (x,p,t,h) Y, (x,p,t, h)dhdpdz = 0, (2.43)
then we have
2(
th/ / /T1 R|C ()| Y= (z,p, t, h) dhdpdz
/ / / (R)| Y2 (2, p,t,h) dhdpdz = 0, (2.44)
dp /s,
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as

//d/ (M| Y2 (x,p,t, h) dhdpdr = // (R)| Y2 (x,1,t, h) dhdx
p T1 T1

1
2
% / / IC (h)| v2dhdz, (2.45)

then we obtain

1 d N 1 T2
S (pl/f + it + anvi + B (e — @,) + / / RIC(R)|Y? (x,p,t,h) dﬁdp) dzx
0 0 T1

I Iy T2
+,u1/ Vfdx—i—/ l/t/ C(h)Y (z,1,t,h) dhdx
/ / (R)|Y? (x,1,t, h) dhdx — —/ / ()| v?dhdx = 0, (2.46)

Since a; = o — 28 > 0, we get

d N N T9
CE () = ul/ yfdx_/ ut/ COR)Y (1,1, h) dhdz
T1

1 T2 T
——/ / (R)|Y?(x,1,t,h) dhdx + 2/ |C(ﬁ)|dﬁ/ Vi, (2.47)
T1 0

using Young’s inequality, we obtain

Iy T2 T T2 1 1
—/0 / <<ﬁ>Y<x,1,t,ﬁ>dﬁdxs/O/ il [ (DIF 1C ()} Y (1,8, )| diida

<3 [ e [
+%/0/ ¢ (h)| Y (x, 1,t, h) dhdz, (2.48)

then we have by using (2.47)-(2.48)

CZE()_ (ul—/TjQ\g(ﬁ)mﬁ) /Orygdx,

also, by using (2.5), we obtain

HE ) <0.

Lemma 2.2 Let (v, p,Y) represent a solution to (2.6), then the first functional

r r u (T
L(t)= p/ vvdr + v,u/ o vdr + ?1 v2dx, vt > 0,
0 0 0
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satisfies for some positive constant eq

o " (o " !
I (t) < ——/ vidr+ | p+ — / Vt2d1‘+81/ idx
2 4eq 0 0
C“”l/ / (7)| Y2 (2, 1,t, ) dhda. (2.49)

Proof. By integrating equation (2.6); multiplied by v over the interval (0,I") with respect to

x, we arrive at the following expression

d [T r r r
Ep/ utud:c—p/ ytdx—i—ozl/ v dx—l—’y/ (BPrs — VBVar) vda

d
v 2dx+/ / CR)Y (2,18, h) dh = 0, (2.50)

also by using the equation (2.6), we get

d r r r r
Ep/ Vtz/da:—p/ d:lH—Oél/ Qda:—i—w,u/ purde

+ %&/ 2d1‘—|—/ / C(R)Y (x,1,t,h) dhdx = 0, (2.51)

(2.51), satisfies the equation

4 /Fl/ vdx + /F vdz + 12 2dx =
dt p ; t TH Pt 2 J; =
r r r r
p/ vidr — oy / v2dx + 'y,u/ o vdr — / 1// C(R)Y (z,1,t,h) dhdzx. (2.52)
0 0 0 0 1

When applying Cauchy-Schwarz, Young’s, and Poincaré’s inequalities, the following inequality
holds for any £; > 0

r r r
v,u/ pride < 51/ 2dx + (’W) / vidr, (2.53)
0 0 0

481
T T2
—/ y/ C(h)Y (z,1,t,h) dhdz
0

< %/ V2 +C°“1/ / (h)| Y (2,1, t, k) dhda, (2.54)
0

by using (2.53)-(2.54) in (2.52) we get (2.49). =

Lemma 2.3 Let (v, ,Y) represent a solution to (2.6), then the functional

T r
I (t) ZM/ sotsodwrp/ vivdz,
0 0
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its derivative satisfies

c,u r r
I (t) < B/ VW — P,) w——/ de+( 0 1)/ Vfdx+u/ ©ldx
0 0
60“1/ / ()| Y2 (z,1,t, k) dhdz. (2.55)

Proof. By differentiating I (t) and using (2.6);, (2.6)2, we have

r r r r
I (t) = u/ ©2dr + u/ oppdr + p/ vidx + p/ vyvdr
0 0 0 Lo
o [[otars [ s [
0 0 0
r r T 1o
- al/ vidr — #1/ vvdr — / V/ C(h)Y (z,1,t,h) dhdzx, (2.56)
0 0 0 T1

employing Cauchy-Schwarz, Young’s, and Poincaré’s inequalities, we get

r
—,ul/ vvdr < —/ v2dx + 20,u1 de, (2.57)
0 @1 Jo
and
r
V/ C(h)Y (z,1,t,h) dhdx
0
g%/ V2de + ° / / (h)| Y2 (z,1,t, k) dhda. (2.58)
0 1

By using (2.57)-(2.58) in (2.56) we get (2.55). =

Lemma 2.4 Let (v, p,Y) satisfy system (2.6) then the functional

N T
fs(t)zp/ Vt(w—w)dwrw/ @ (yv — ) du,
0 0

satisfies for any €9, €3, €4 > 0

yu " :
I (t) < 5 cpfdw + (g2 4 €3¢0 + €40¢0) / (yv, — gox)2 dx
0 0

2 2 I
251 n
d
+(4€3+p7+2 >/ T

2
o 2 2
— ) Y“(x,1 2.
+4€2/ dw+4€4/ / P Y* (z,1,t,h) dhdx. (2.59)
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Proof. By differentiating I3 (t) and using (2.6);, (2.6)s then we have
r r r
I3 (t) = —w/ pide — al/ Ve (VWa — ¢,) da — ul/ ve (W — ) dx
0

T
—/ Y — / C(R)Y (z,1,t, k) dhdx + pv/ vidx
0 0

+ (v —p) / vipda, (2.60)
5,—/ 0

by using Cauchy-Schwarz, Young’s, and Poincaré’s inequalities, we obtain

r r a2 (T
—a1/ Ve (YW — ) dx < 52/ (Yo — @) do + —L I/id:L‘,Vég > 0, (2.61)
0 0 482
and
r r u2 (T
—,ul/ vi(yv — ) de < 5300/ (Yo — ¢,)° d + 451 / vidx,Vez > 0, (2.62)
0 0 3
I T2 N
—/ (yv — go)/ C(h)Y (z,1,t, h) dhdx < 8460/ (Ve — ¢,)° dz
0 0
/ / (W)|Y? (z,1,t, k) dhdz,Vey > 0, (2.63)
464
and r 2 T
TH 2 > 2
» | vpdr < — / d:v—l——/ vidx. 2.64
/0 . 2 Jo T T fy (264

By using (2.61)-(2.62)-(2.63)-(2.64) in (2.60) we get (2.59). m

Lemma 2.5 Let (v, ,Y) satisfy system (2.6), then the functional

T 1 T2
= [ [ [ @)y ot dndps,
0 0 T1

r
/ / (R)| Y2 (x,1,¢, ﬁ)dﬁdw—i—ul/ vidx
/ / / R|C(R)|Y? (z,p,t,h) dhdpda.

satisfies
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Proof. By differentiating I, (t) and using (2.6)s3, then we have

T 1 T2
1 (1) = —2/ / / e " IC(R)|Y (z,p,t,h)Y, (2, p, t, h) dhdpdx

/ / / e "Y? (z,p,t, b)) dhdpdx
/ / / he " |¢ (B)| Y2 (x, p, t, h) dhdpda
r
/ / e "¢ (M) Y? (x,1,t, 1) dhdm+/ ¢ (ﬁ)|dﬁ/ v2dx
0
/ / / he " |¢ (h)| Y? (, p, t, h) dhdpdz,
by using the following relation e <e <1, V0L p< 1, we get
T2 r
/ / e "¢ ()| Y (x,1,t, h) dhd:c+/ |((h)|dh/ v2da
0
/ / / he "¢ (h)| Y2 (x, p,t, h) dhdpdz.

Since (—e‘”’) = e " >0, we conclude that —e™" < —e~ ™ VA € (71,79), then we get

r
< —e” // (R)| Y2 ( x,1,th)dhda:+u1/ vidw
/// R|C(R)| Y2 (x,p,t,h) dhdpda.

Now, for a large enough N, the Lyapunov functional is defined as follows

L(t) = NE(t)+ NiIy (t) + Naols (t) + N3l3 (t) + Nyly (1),
where N1, N5, N3 and N, are positive constants, to be chosen later.

Theorem 2.2 Let (v, p,Y) satisfy system (2.6), then there exist two positive constants c1,cy >
0 that satisfy
aE(t) < L(t) < eE(t), Vt>0. (2.65)

Proof. Let

S(t) =L(t) — NE(t) = N1y (t) + Noly () + N3l (t) + Nyly (1), (2.66)
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S ()| =|L(t) = NE ()]
r r L r
< N (p/ \ytu|dx—|—*yu/ lo,v| do + 2 u2da:)
0 0 2 0
T r
+ Ny <u/ |90t§0|dx+:0/ |VtV|dI)
0 0
N I
+ N3 (p/ v (w—so}|da:+w/ [ (7’/—<P)|d$>
0 0
r 1 T2
+ Ny / / / he " |C (h)| Y2 (x, p, t, h) dhdpdz, (2.67)
0 0 T1

using Poincaré’s and Young’s inequalities in (2.67), we find for any e > 0

N 2 N. 2 I
|%(t)|§( 4” + Nop2e + jp )/0 V2da

9 9

-

01

2 2 2 T
+ (MM + N NSM) / ©2dx
0

4e 4e 4e

N J/
-

02

Coft c r
+ <N1 (2500 - L) + N, (257200 + —0>) / v2dx
R 2 4e//, Jo

-

03

T
+ (2N2€C() + 2N3€C[)) / (’W/z - 9096)2 dx
0

- 7

s
I 1 T9

LN / / / BIC ()Y (. put, h) dhdpda,
0 0 T1

then

where

then we obtain

Theorem 2.3 Let (v, ¢,Y) satisfies system (2.6), then there exist two positive constants k and
A, such that
E(t) <ke™,  Vt>0. (2.68)
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Proof. Using the previous lemmas, we get
L'(t) = NE'(t) + NIy (t) + Nody (t) + NIy () + NIy (t) .

This leads to
: " (v)* cotty
Lt)<—[N{p — IC(R)|dh ) — Ny | p+ — Ny | p+
- 481 2041
2 2 r
1251 % 2
—N3 | — — | =N, d
’ (453 M 27#) 4#1) /o Vet
Y1N3 r Niay | Naay oF r
_ ( 5 — N1€1 — NQ[L) /0 (,D?dl’ — < B + 4 — N34—€12 . V?Edl'

r
— (N2 — (N3eg + Nsesco + N35400))/ (Ye — %)2 dx
0

I 1 T2
N / / / BIC ()| Y2 (. pot, h) dhdpda
0

Nap
— (N46_T2 _ ? NSO C;’“) / / ()| Y2 (x,1,t, ) dhdz,
4 aq a7

we choose the following values

/ 2 N 2 -
L(t)g—(N(Ml—/ \((ﬁ)\dﬁ)—N1<p+#>_N2(p+ 20#1)
T1 (6%}
N. 2 2 r
— N3 ( 3H1 + py + L) _ N4’u1) / nga:
4 2yp 0
N. r N 2 r
- (W 3 —1—Nzu)/ sOfdx—( L —ﬂzvg)/ Vi
2 0 2 4 0

- (8= (1 +20) [ (s =) da

I 1 )
— Nye™ ™2 / / / h|C(R)|Y? (z,p,t, h) dhdpdx
0

N2
—(N4eT2— 1“1 Ngc‘)’“‘1 NICOM)// (W)| Y2 (2,1,¢, ) dhdz.  (2.69)

First, in (2.69), we choose N, until it becomes

Ny — (14 2¢) > 0.
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We also choose N3 until it becomes

N.
TEE 1 Ny > 0.
2
Now, we choose N; large enough so that
Ny 2
- —N > 0.
2 4
We also choose N, large enough so that
2
Nye ™ — N3y — N, CoH1 1COM1
4 (651 2061

Finally, we choose a very large N so that

> 0.

@(M—[ﬁqu)JWG+@?M>—%Q”%f)

Ny 2
—Nj3 ilad! +py+— ) —Nypy | > 0.
4 2vp

4 (6%}

N2 T2
_ (N4€—Tz B 1o S AT 620“1> / / ¢ (B)| Y2 (z,1,t, k) dhdz < 0,
a1

then we get
L(t) < —mE (1),

by (2.65) we get
L'(t) < ——L(t),

C2

this implies
m t

L(t) < L(0)e &,

using (2.65) again, we obtain (2.68). m
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CHAPTER 3

LEXistence, uniqueness and exponential energy decay of piezoelectric system with thermal

effect and distributed delay time in the presence or absence of magnetic effects

3.1 Introduction

F ourier’s law, also known as the law of heat conduction, is a fundamental principle in the field
of thermal conduction. It states that the rate of heat transfer through a material is proportional
to the negative gradient in temperature and to the area, at right angles to that gradient, through
which the heat flows. This law can be stated in two equivalent forms: the integral form, which
looks at the amount of energy flowing into or out of a body as a whole, and the differential form,
which looks at the flow rates or fluxes of energy locally. The differential form of Fourier’s law is
given by the equation ¢ = —kV#, where ¢ is the heat flux, k is the thermal conductivity of the
material, and V@ is the temperature gradient. The integral form of Fourier’s law is given by the
equation Q = —kA(df/dz), where ) is the amount of heat transferred per unit time, A is an
oriented surface area element, and df/dz is the temperature gradient. To solve Fourier’s law,
the relationship of geometry, temperature difference, and thermal conductivity of the material
is derived. Joseph Fourier first introduced this law in 1822 and concluded that "the heat flux
resulting from thermal conduction is proportional to the magnitude of the temperature gradient
and opposite to it in sign [68]. Thermoelastic damping is a source of intrinsic material damping
due to the thermoelasticity present in almost all materials. As the name thermoelastic suggests,
it describes the coupling between the elastic field in the structure caused by deformation and the
temperature field. The earliest study of thermoelastic damping can be found in Zener’s classical
work, [107] in 1937/1938, which studied thermoelastic damping in beams undergoing flexural
vibrations. Messaoudi et al.[05] studied piezoelectric beams with thermal and magnetic effects
in the presence of a nonlinear damping term acting on the mechanical equation. A general

decay result of the solution was shown, from which the exponential and polynomial decay are
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only special cases. Keddi and al. [53] by using semigroup theory, studied the well-posedness of
a linear thermoelastic Timoshenko system free of a second spectrum where the heat conduction
is given by Cattaneo’s law. The asymptotic stability of this system was also proven. Finally,
they further clarified their theoretical results through some numerical tests. Afilal et al. [3]
considered the thermoelastic Timoshenko system with past history, where the thermal effects
are given by Cattaneo and Fourier laws. By using the energy method in Fourier space to build
appropriate Lyapunov functionals, it was obtained that both systems, have the same rate of
decay (1 + t)_% . Rivera et al. [31] in their paper, by using semigroup theory, demonstrated
the lack of exponential stability (the wave speeds are different) of linear Timoshenko systems

coupled with heat conduction given by Fourier law.

3.2 Problem statement
Based on the following points:

e Since the model of piezoelectric beams with magnetic effects is proven to not be ex-
actly observable/exponentially stabilizable in the energy space for all choices of material
parameters. Additionally, achieving strong stability is not possible for many material

parameter values [71].
e Since the time delay can destabilize the systems.

e Since many authors have proven the lack of exponential stability for some systems coupled

with heat equation governed by Fourier’s law.

In the present chapter, we consider the following fully dynamic piezoelectric beams with

thermal effects

PVt — Ol gy +7690x:c + 693? +M1Vt

+ [ C(h) vy (x,t = h)dh =0, (1) € (0,1) x (0,.00),

(3.1)
1Py = By + V0Ver = 0,
cly — kO, + OV = 0,
(v (0,t) = av, (T,t) — By, (I',t) =0, t>0,
0 (0,t) = ¢, (I'1) = yva (I 1) = 0,
6(0,t)=0(T,t) =0, (3.2)
V(x70):V0($>>Vt($70)_yl(x)7@(x70)_900($)a $€(O7F) '
Pt (.I',O) =¥ (1‘) 79 (*7:70) = b (iL’) )
L v (z,—t) = fo(x,—t), t € (0,7q),
where ¢, k and ¢ are positive physical constants (see [32, 59]).

3.2. Problem statement
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The important question we ask here is whether the linear damping is strong enough to achieve
exponential stability (rapid decrease in the energy) in the presence of magnetic and thermal
effects with distributed delay.

3.3 Existence, uniqueness

In this section, we will establish the existence and uniqueness of solutions for system (3.1)- (3.2)

by employing semigroup theory. As stated in the work [67], we introduce the new variable
Y(l’,p,t,ﬁ) = Vt(xat_ph>7 LS (O,F), P € (071)7 h e <T177-2>7 t>0.

Then, we find the new equivalent problem
(

PV — Oy + VPP + 00, + vy (x,t) € (0,T) x (0,00),
+ [ C(R)Y (2,1,t,h) dh =0,
1Py — BPgy + VBVaw =0, (3.3)
by — KOy + vy = 0,
Y (z,p,t,h)+Y, (z,p,t,h) =0, (p,h) € (0,1) x (71,72),
with the following initial and boundary conditions:
((v(0,t) = av, (T,t) — 4By, (T, 1) =0, t>0,
(0,2) = ¢, (I',t) =y, (I, 1) = 0,
(0,t) =6 (I',t) =0,
(:L’,O) = Vo (37)>Vt (:L’,O) =W (33), 90(7;70) = %o (33), S (0>F)
@ (2,0) = ¢y (x), 0 (2,0) =0 (2),
( Y (2,p,0,h) = fo(z,p,N). (p,h) € (0,1) x (0,72).

By using the following notations

\

R T

(3.4)

Vi =1u, p =(q, and V:(V7u7907Q797Y)T7
atv = (Vty U, Py Gt eta }/;)T )
therefore, the problem (3.3)-(3.4) can be reformulated as
0,V = BV,
! ’ (3.5)
V (O) = % = (V()) V1, %oy P15 6)07 fO) )
where the operator B : D(B) C H; — H; is defined by

Uy = Doy — 200 — By — L [T2C(R)Y (2,1, 1) dh

. Pt
BV : s, . (3.6)
m (pxaz o T

K
Eex:c -

)
Eytx

Y,

p

1
h
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We consider the following spaces
a'(0,r) = {ve H (0,T): _0}
ﬁﬂ(o,r {veH*(0,T):v,(l)=0}.
Furthermore, we define the aforementioned Hilbert space H; as follows:
Hy = H"(0,T) x L*(0,T) x H'(0,T") x L?(0,T) x L*(0,T) x L2 ((0,T) x (0,1) X (71,72)) .

The inner product on H; is defined as follows:

r r r r
<V,V> = p/ W%dwru/ sotsbtdfv—vﬁ/ Vz@zdx—vﬁ/ Vppyda
o 0
—l—a/ Vxl/xdx+ﬁ/ wxwxdx—kc/ 00da:

// BIC (h |/ (2. p. 4, 1)V (2, p., ) dpdhde. (3.7)

Now, we defined the previous domain of operator B as
D(B) := {(y, vy, 0,Y) € H2(0,T) N HY (0,T) x H'(0,T) x H2(0,T) N A (0,T)
X (0,T) x H2(0,T) VHE(0,T) x L ((0,T) x (0,1) x (71,75)) }
(3.8)
Clearly, D (B) is dense in H;.
Theorem 3.1 Let Vy € D (B). Then, the problem mentioned (3.3)-(3.4) has a unique solution
Ve C(RT,D(B))NC*(RT, Hy).

Proof. Firstly, we establish the dissipativity of the operator B.
Let V = (v, vy, 0,0, 0, Y)T € D (B). By utilizing the previous inner product, we get:

12 14
Sy = Loy — 20, — By — L [T2C(R)Y (2, 1,8, 1) dh vy
¥ ¥
<BV7 V>H1 = < B _tﬁy ) >
M%x uo xTT Pt
%emc - gl/t:c 9
_%yp H1
(3.9)
By integrating by parts and taking into account the boundary conditions, we obtain:
T T I T2
(BV,V)p, = —,ul/ vidr — /{/ 02 dx —/ I/t/ C(h)Y (x,1,t, h) dhdx
0 0 0 T
r T2 1 '
[l [ Yt Y (ot ) dp, (3.10)
0 T1 0

3.3. Existence, uniqueness
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also, by integrating with respect to p, we find

I T2
—//I I/ (z,p,t, 1) Y (xmh)dpdﬁdx———// (R)|Y? (x,1,t, k) dhda
0 T1

+§/n ¢ ()|dh/0 Vde, (3.11)

by applying Young’s and Cauchy-Schwarz inequalities, we get

—/Fyt/mC(ﬁ)Y(x,l,t,ﬁ)dhdx
/ yfd:c/ h)|dh+ = / / (W)| Y? (z,1,t, h) dhdw, (3.12)

by (3.11), (3.12), we obtain

T9 T I
(BV, V), < — (ul —/ yc(h)ydﬁ)/ vidr — /i/ 02dx.
T1 0 0

Consequently, throught the condition (2.5), we conclude that B is a dissipative operator. Next,

we will proceed to prove that the operator (I — B) is surjective. Given My = (g1, g2, g3, 94, 5, g6 )~ €

H,, we show that there exists a unique V = (v,u, ¢, q, 0, Y)T € D (B) such that

(I — B)V = My, (3.13)
this implies
(
V—u=4g,
PU = Way +YBP,, + pu+ 00, + [2C(R)Y (2,1,t,h) dh = pga,

1q — Bpyp + VBVaz = 119,
cl — Kb,y + Ou, = cgs,
\ Y + %YP = Y-

Using (3.14); and (3.14)3, we have
{ LErea (3.15)

q=¢ — gs-

Because
Y (2,0,t,h) = vy (2,t) = u(z,t), for x € (0,T"), h e (11,72),t >0,

and according to equation (3.14)s, we obtain

p
Y (z,p,t,h) = ﬁe_hp/ g6 (z, 7, h) " dr + ue ", (3.16)
0

3.3. Existence, uniqueness
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in particular

1
Y (z,1,t,h) = ﬁeh/ g6 (x,7,h) "dr + ue™". (3.17)
0
Now, by using (3.15)-(3.17) in the remaining equations for (3.14), we get

( — QW + VPP + 00, + v =Qq € L2(0,T),

VBVaz — Bpuy + 1 = Q2 € L?(0,T), (3.18)

| 0 — Kb + 0, = @3 e L*(0,T).

Where
T2 )
w1 = (g +p) + / ¢ (h)e™"dn,
T1

T2 ) 1
Ql = w101 + Pg2 — / C (ﬁ> he_h / e (I7 T, h) ethTdhv

T1 0

Q2= (g2 +g3),
Qg = CQgs + (5g1x (319)

Multiplying (3.18);, (3.18)s, (3.18); respectively by 7, @ € H'(0,T') and 0 € H} (0,T), and
using integration by parts while considering the boundary conditions, we find

(o fUF Vaplpdr — 3 fOF O Vpdr + 6 fOF 0.vdx + @, fOF vodr = fOF Q1 vdr,

B [y Va@pdr + B [} 0uudr + [y p@pdr = [} Qapda, (3.20)

chF 00dz + K fOF Qméxda: -0 fOF Vémdl‘ = fOF Qgédx.

\

Consequently, problem (3.20) is equivalent to the following variational problem
ay ((y, 0,0), (D, ?, 9)) — b (D, 2, é) . (3.21)

. R 2
Where a; : |H'(0,T) x H' (0,T) x H} (0,')] — R is the bilinear form defined as follows
0

3 r r r r
o (00), (7.2.0)) = a [ varader5 [ ppude =18 [ ende—ap [ vipdo
0 0 0 0

r N I I 5
+wy / vidx + u/ ppdr + (5/ 0,vdr + c/ 00dx
0 0 0 0

r r
+/<;/ 0,0,.dr — (5/ uéxdx, (3.22)
0 0

3.3. Existence, uniqueness
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by : H'(0,T) x H' (0,T) x H} (0,T) =R is the linear form given by

,(p, / Qludx+/ Qg(,pdx+/ Qs0dz. (3.23)

Now, for Hy := H'(0,T) x H' (0,T) x H} (0,T') equipped with this norm

v, 6.0)]1 5, = (\ (v 20.)

2
The continuity of the bilinear form a; and the linear form b; can be easily established. Addi-

1
2

2 2 2 2 2
+ ||V||2 + ||S0||2 + ||90x||2 + ”9”2 + ||9x||2> . (3.24)

tionally, we have

T 2 2 T r
a1 (v, 0,0), (v, 0,0)) = a/o (uz — %%) dr + <6— @) /0 goida:—l—wl/o v2dx

r r T
o[ drie [ Gdoirn [ oz we)lE. (629)
0 0 0

m = min (a, (ﬁ — <7§> ) L T, fy Cy n) ) (3.26)

For all w; > 0 the bilinear form a; is coercive. Therefore, by applying the Lax-Milgram

where

theorem, it follows that the system (3.21) possesses a unique solution
(v,0,0) € H (0,T) x H' (0,T) x H} (0,T).
Therefore, through (3.15), we find
(u,q) € H'(0,T) x H"(0,T),
also, by substituting u in (3.16) and (3.14)s, we obtain
Y,Y, € L*((0,T) x (0,1) x (71,72)).

We consider the following cases (7,0,0), (0,%,0), (O, 0, é) and we apply the derivative in the
distribution sense, we find that the unique solution (v, ¢, f) satisfies (3.18).
Now using (3.18); and (3.18), we get

o
Vew = v+ Lo 2, ——Ql——czgeﬁ(o )= veH (0.T) = ¢ H(0.T).

aq a1 aq
(3.27)
Multiplying (3.18); by the function 7 € H (0,I") and applying integration by parts, we obtain
by using (3.20);

—av, (D) 7(T) + 8¢, M) #(T) =0 Ve H'(0,T),

3.3. Existence, uniqueness
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we select

v(x)=

x
T (3.28)
then we get

VB, (I') = av, (T) . (3.29)

Multiplying (3.18)s by @ € H! (0,T") and using integration by parts, we find by using (3.20),
182 (D) § () = B, (D)@ () =0, Vpe A (0,T),

we choose

(@)= 3
(10 F?
then we get
by utilizing equation (3.29) in equation (3.30), we obtain

v, ()=, () =0. (3.31)
Through the results we obtained in (3.27) and (3.31), we have
v,p € H(0,T),

and by (3.18)3, we obtain

O = 1 (Q3 — cf — dv,) € L*(0,T).
K

Consequentially, the operator (I — B) is surjective.
Hence, B is a maximal dissipative operator, then we can utilize the Hille-Yosida theorem and

get the well-posedness result of a solution for the problem (3.5). =

3.4 Exponential stability

In this section, we will state and provide the proofs of the necessary technical lemmas that are

required for establishing the proof of our stability result.

Lemma 3.1 Let (v,9,0,Y) be a solution of (3.3)-(5.4), in that case, the expression of energy
E(t) defined as follows

1 (T
E(t) = 5/0 (i + pg? + onw + B (e — )" + o
1 To
+/ / R|C(R)|Y? (x,p,t,h) dﬁdp) dx, (3.32)
0 T1

and satisfies

G20 <= (n- [Ticmian) [ o~ s / . (3.33)

T1

3.4. Exponential stability
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Proof. Multiplying the first equation of (3.3) by v4, the second equation by ¢, and the third
by 0, integrating over the interval (0,T"), with respect to x, we get

r d
Podt |, d“/% *m / Bl
d r d r
+ o |, vidr + “odi |, 92da: + /1/0 0 dx + /0 vidx
+/ ut/ C(h)Y (z,1,t,h) dhdz = 0. (3.34)
0 T1

Next, multiplying equation (3.3), by |¢ (h)|Y (x, p,t, h) and integrating over (0,I") x (0,1) X

(11, T2) with respect to x, p and h, we find

I 1 T2
/ / / BIC)Y (2. put. ) Vs (2, p, £, 1) dhidpda

/ / / MY (z,p,t,h) Y, (z,p,t,h) dhdpdx = 0, (3.35)
then we obtain
2(
th/ / /T1 R|C ()| Y= (z,p,t, h) dhdpdz
/ / / (R)| Y2 (2, p,t,h) dhdpdz = 0, (3.36)
dp /s,

because

1 T T2
/ / < / ()] V2 a:p,tﬁ)dﬁdpdx—§/ / C(B)| Y2 (2, 1,1, h) dhidz
P T1 0 T1
1 I T2
——/ / ¢ (h)| vidhdz, (3.37)
2 0 T1
we have

1 d 2 2 2 2 2

2t ), (pvi + pei + oavl + B (e — @) + b

r r

// RIC(R)|Y? (z,p,t, ﬁ)dﬁdp)dw— —KZ/ Hd:v—ul/ vidx
0

/Vt/ ¢ (h x,l,tﬁdﬁdw——// (R)| Y2 (x,1,t,h) dhdx

+§/T ¢ (h )ydh/ vidz. (3.38)

3.4. Exponential stability
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By applying Young’s and Cauchy-Schwarz inequalities, we obtain

T T9 T T2
—/0 / <<ﬁ>Y<:c,1,t,ﬁ>dndxs/o/ Al 1C ) IC B IY (2, 1,8, 1)) diide
1
< 5/ d:p/ 1| dh
1 ,
+2/0 / IC(R) Y2 (2,1, 1, 1) diide, (3.39)

by employing the inequality (3.39) in (3.38), we get

d T2 T I
GEO <~ (- / cwlan) [ vtis—n [ 20

also, by using (2.5), we obtain

Lemma 3.2 Let (v,p,0,Y) satisfies (3.3)-(5.4) then the functional

r

r r
L (t) = p/ vivdzr + WL/ pvdr + % vidx, vt > 0,
0 0 0

satisfies for any positive constant eq

r r
Iy (¢ <——/ vidx +< ( )>/ 2d93+51/ ©ldx
481 0

5
+ﬁ/ 02dz C““l/ / (h)| Y2 (x, 1,1, ) diida. (3.40)
0

(651

Proof. By multiplying equation (3.3); by v and integrating with respect to = in (0,I"), we get

d [T r r r
%p/ Vtyd:v—p/ I/fdx—i—al/ v d33+7/ (BYrs — VBVaz) vdz
0

+5/ 0, ydm+—ﬂ 2dm—|—/ / C(R)Y (x,1,t,5) dhdz = 0. (3.41)

Furthermore, by employing equation (3.3),, we obtain

d r r r r
%p/ VtVdCL’—p/ I/fdx—l—ozl/ v dx+7u/ pyvdx
0

d
+5/ 9uda:+d “21/ 2d:c+/ / C(R)Y (z,1,t, k) dhdz = 0, (3.42)

3.4. Exponential stability
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(3.42), can be written as follows

d r r

dt( / I/tz/da:+’yu/ gOtVd$+— 2dx) =

p/ dx—al/ v d:E—i—”}/,u/ gotytdx—é/ 0 de—/ / C(R)Y (z,1,t,h) dhdzx.
0 0

(3.43)

By utilizing Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we obtain the following res-

r r r
fyu/ pdr < 61/ 2dr + ~——— (V,u) / vidz, (3.44)
0 0 0

451
T T2
—/ y/ COR)Y (1,1, h) dhda

< _/ 2da:+ / / (R)| Y2 (z,1,t, h) dhdw, (3.45)

r r 2 r
—5/ O vdr < % vidr + m/ 02du, (3.46)
0 0

0 (631

ults for any €; > 0

by using (3.44), (3.45) and (3.46) in (3.43), we get (3.40). m

Lemma 3.3 Let (v,p,0,Y) be the solution of system (3.3)-(3.4) then the functional

r r
I (t) = M/ ppdr + ,0/ vvde,
0 0

r T
I(t) < B/ Wo —¢,)° dw+u/ 2dx+<p+20—ull)/ vida

+u 02 dx + —-L 0”1 / / (R)| Y2 (z,1,t, ) dhdz. (3.47)
1 Jo

(67

satisfies

Proof. By multiplying the first equation of (3.3) by v, we obtain

r
pdt/ vwvdr — / tha:—l—al/ vide — B3 goxuxdx+5/ 0 vdx
0
+,u1/ ytydx+/ / C(h)Y (z,1,t,h) dﬁdx+726/ vidr = 0. (3.48)
0

Furthermore, by multiplying equation (3.3)y by ¢, we obtain

I T T
udt/ pupdr — i / @fdx+6/ widm—vﬁ/ Vappdr =0, (3.49)
0 0 0

3.4. Exponential stability
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adding (3.48) to (3.49) gives us
I (t :ufo gofdx Bfor <7Vx_90x)2d$+pfor Vfdm
—ay [y vide — 8 [} Ouvda — py [y vivda (3.50)
— Jo v [7? C(W)Y (x,1,t, h) dhdz.
By using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we obtain
8 1
—,ul/ vwdr < —/ vidr + -+ illaf! zdx, (3.51)
0 2061 0
r r 52 r
—(5/ 0 vdx < ﬂ/ Vidx—i—ﬁ/ 02du, (3.52)
0 4 Jo a1 Jo
and
I T2
—/ y/ C(h)Y (z,1,t,h) dhdz
0
< %/ V2 +C°“1/ / (h)| Y2 (2, 1,t, k) diida. (3.53)
0
By utilizing (3.51), (3.52) and (3.53) in (3.50), we get (3.47). =
Lemma 3.4 Let (v,¢,0,Y) satisfies (3.3)-(3.4) then the functional
r r
I3 (t) IP/ Vt(’w—w)dwrw/ o (v — ) da,
0 0
satisfies for any 4, €3, €4, €5 >0
d T T
EI?’ (t) < —% prdz + (€3 + £3¢0 + €460 + €5¢0) / (Ve — %)2 dx
0 0
2 r 2 T
Ml 7 2
— vidr + —- d
2
+5— 02dy + - / / |Y2 (z,1,t,h) dhdz. (3.54)
4es 4ey
Proof. By multiplying the first equation of (3.3) by yv, the second by —yp, we obtain
P r r r
vp—/ vivdr = *yp/ Vfdx—ozfy/ l/id.r—kfﬂ/ O VA
dt Jo 0 0 0
r r
—75/ 0 de—y,ul/ vivdx
/ 71// C(R)Y (x,1,t,h) dhdz, (3.55)
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P r r r
e / pupde = —p / pidr +p / prde —~*B / Vapade, (3.56)
0 0 0 0
again, by multiplying the first equation of (3.3) by —¢, the second by v*v, we get
r r r
— p— / vipdr = —p/ vip,dx +a/ Ve dr — 0 ©2dx
dt 0 0 0
r r
+5/ 0, pdr + ,ul/ vipdx
0 0
I T2
—I—/ 90/ C(h)Y (z,1,t,h) dhdz, (3.57)
0 T1
d [T r r r
oy — / pdr = iy / pvidr — 23 / P Vodr +7°f / vida. (3.58)
dt Jo 0 0 0
By summing (3.55), (3.56), (3.57) and (3.58) together, we get
d r r r
— 13 (1) = —w/ w?dx—cn/ Vx(wz—%)dx—ul/ vi (v — ) do
dt 0 0 0
r r r
+ pv/ vide + (v — p) / vy dr — 6/ 0, (yv — ) dx
0 N————J0 0
I T2 h
- [ w0 [Ty @ dnas, (3.59)
0 T1
by utilizing Young’s, Poincaré’s, and Cauchy-Schwarz inequalities, we get
r r o2 [T
—al/ Ve (VWe — ) da < 52/ (Ve — ,)° dz + ?1/ v2dx, ey > 0, (3.60)
0 0 2.Jo
and
r r 12
—,ul/ ve(yw — @) de < 5300/ (Yo — @,)  do + L / *dx,Ves > 0, (3.61)
0 0 4es
T i) T
—/ (yv — 4,0)/ C(h)Y (z,1,t, h)dhdx < 5400/ (Yo — @,)° da
0 0
/ / (W) V2 (2, 1,1, h) dhida, ey > 0, (3.62)
484
r 2 T
TH 2 > 2
»x [ v dr < — da:+—/1/das 3.63
/0 =T )y T ey (363)
r r sz (T
—5/ 0. (yv —p)dx < 5500/ (Yo — @,)" dz + —/ 0%dz. (3.64)
0 0 des Jo

Using the inequalities (3.60) to (3.04) in the relationship (3.59), we find (3.54). m
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Lemma 3.5 Let (v,p,0,Y) be a solution of system (3.3)-(3.4) then the functional

N 1 T2
= / / / he " ¢ ()| Y? (x, p, t, h) dhdpdz, (3.65)
0 0 T1

satisfies

r
/ / (R)| Y2 (x,1,t, ﬁ)dhdw+p1/ vidx
—e / / / R|C(R)| Y2 (x,p,t,h) dhdpdz. (3.66)
Proof. By multiplying the fourth equation of (3.3) by e~ |C (h)|Y (z, p, t, k), we have
he " (¢ (R)| Y (z, p, t, ) i (2, p,t, B) + e " |C(R)|Y (@, p,,h) Y, (z,p,t, h) = (3.67)

by integrating with respect to z, p and h over (0,T") x (0,1) x (71, 72) in (3.67), we get

d [Tt
it / / / he™"|C (h)| Y2 (x, p, t, k) dhdpdx
o Jo Jn

I 1 T2
+2/ // e " IC(R)|Y (z,p,t,h)Y, (x,p,t, h) dhdpdx = 0, (3.68)
0 0 T1
so we find
d —h 2 " . 2
ELL IC ()| Y? (x,1,¢, ﬁ)dﬁdx+ ] (h)|dh | vidx
T1 0
/ / / he " |¢ (h)| Y2 (@, p, t, h) dhidpdz, (3.69)

by using the following relation e " <e ™ <1,V 0<p <1, we get

—14 // e "¢ (h |Y2(ac,1,th)dhdx+/ |(ﬁ)|dh/oryfdx

- / / / he "¢ (R)| Y2 (z, p, t, h) dhdpdz. (3.70)
0 0 T1

Since (—e‘h)/ = e " > 0, we conclude that —e™" < —e~"2, VA € (71,72), then we obtain
directly (3.66). m
Now, we define the Lyapunov functional as follows

L(t)=NE(t) + NI (t) + Noly (t) + N3l (t) + Nyly (t),

where N, Ny, N,, N3, N, are positive constants to be determined later.
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Theorem 3.2 Let (v,,0,Y) be the solution of system (3.3)-(3.4). Then there exist two pos-

itive constants c1,co > 0 satisfies

B (t) < L(t) < cE(t), vt > 0. (3.71)
Proof. Let N
S(t)=L(t)— NE(t) =Y NI (t), (3.72)
then

T T M T
< N, (p/ lvv| do + WL/ l,v| do + 71 Vde)
0
<§/|%¢W$+P/|WW¢O
4J%((/Iwwv—jwh+vu/|%’w— nm)

1N, / / / fie ™ |¢ (B)| Y2 (x, p, £, ) dhdpdz. (3.73)
0 0 T1

By utilizing Young’s and Poincaré’s inequalities in (3.73), we obtain the following inequality

N1p® N3p2 : 2
300 < (S50 + Mgt Vi
4e de ) Jo !

01

2 2 2 T
(O N, ) / p2dz
4e 4e 4e 0

-~

02

r
+ <N1 (2600 + TM) + No (257 co+ 1 >) / vidr
_Jo

93

r
+ (2N2eco + 2N3ec) / (yve — g0$)2 dx
N ~ 4 0

0
T 41 T2
M///MWW%mﬁMm,
0 0 T1

for each constant value of €, there is a positive constant C' such that

for any e > 0:

()] < CE(1),
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where 5 ) ) )
C — Imax (—01, —02, —937 —94, 2N4) s
poop T oq TP

then we obtain

(—-C+NEX) <L) <(C+N)E(t).
e N——

C1 Cc2

Theorem 3.3 Let (v, ¢,0,Y) be a solution of system (3.3)-(3.4). Then there exist two positive
constants k and X\, such that the following inequality is satisfied

E(t)<ke™,  Vt>0. (3.74)

Proof. By utilizing the previous lemmas, we get the following result

T2 2 2
/ TH Colt
L(t)<- (N (M—/ |C(ﬁ)|dﬁ) - M (P+%> - N, (P+20711>
2 r
Nl > 2
—Nj — | = N, d
(m Tz 2w> 4’“) /0 v
T : 2\ T
— (N3—2 —N1€1—NQIU)/ gO?dl'— <N1?—N34 ) / Vidx
0 €2

T
_ (NaB — N (2 + e300 + 240 + £300) / (s — ) da

2
(NF;—NlM —N2m —Ng—)/ 02da

aq

(N4e Nlco"1 —Nf““l Ny Z; )/ / ()| Y2 (z,1,t, k) dhdz
4

—N4e”’/ / / R|C(R)| Y2 (x,p,t,h) dhdpda.

We select the following values as follows

1 1
E1 = ——, €9 = E3 = &4 = €5 = —
Ny’ N3’
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we get
/ 2 Ny (y)? cotl}
L (8 (i [lcmian) - n (pr T g (4 21
T1 al
N. 2 T
_N3 pfy_i_ 31“’1 + L _ N4Iu1 / y?dm
4 2vp 0

r 2 r
(Ng% —1- NQ,u> / O2dx — (Nl% — Ng%) / vidr
0 0

- (8= (1+3) [ (e =)o

2 2
_ (z\m—mm—N{Sﬁ—N?(5 )/ 02dx

Qaq o 4
(N e~z — N, o1 60“1 NZ% - N2“1) / / (W)| Y2 (2,1,t, ) dhda
—Ne_”/ / / h|C(R)|Y? (z,p,t, h) dhdpdz. (3.75)

We select Ny as the first option in (3.75) until it becomes
N3 — (1 + 30()) > 0.

We also choose N3 until it becomes

N.

2
Now, we select V; to be sufficiently large such that
o2

N —N2—>o
12 4

Additionally, we choose N, large enough so that

Nye™™ — Ny ol NZCOM N2_ > 0.
(651 (03] 4

Lastly, we choose an exceptionally large value for NV in order to ensure that

<N (u—/ \C(ﬁ)\dﬁ> - N, (W%W)j - (“Czo_uf)

Nypi? 2
—Nj3 pfy+3—u1+— — Nypy | > 0.
4 2vp

2 2
<Nn—Nl5ﬁ—N25 —N25) > 0.
7] aq 4
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Since
N2
(N = Nat oty Co / / (B)| Y2 (x, 1, t, ) dhdz < 0.
4 a1 20./1

By employing Poincaré’s inequality, we obtain
L'(t) <—-mE(t).

By (3.71), we find
L)< -2L). (3.76)

Co
By integrating (3.76) over the interval (0,t), we get

L(t)<L(0)e &

When we use (3.71) once more, we get (3.74). m

3.5 Exponential energy decay when the magnetic effects

are neglected

By neglecting the magnetic effects, we can achieve the electrostatic and quasi-static cases. For
a beam of a length I" and thickness h, we consider the system of stretching motion subjected
to a distributed delay term coupled with the parabolic equation governed by Fourier’s law

;

PV — alyw + 00, + pyvy in (0,T) x (0,00),
+ [ (M) v (2 t—h)dﬁ:O,
Cet - Kemm + 5Vtx = 7

v(0,t) =v, (0,t)=60(0,t) =0(,t) =0, t>0, (3.77)
(v,v4,0) (x,0) = (vo,v1,00) () e (0,
L v (x, —t) = fo(z,—t), t € (0,73).
As in [67], we introduce the new variable
Y (z,p,t,h) = v (x,t — ph), z € (0,T), pe(0,1), he (r1,m2), t >0,
then we get
Y, (xz,p,t,h) +Y,(z,p,t,h) =0, e (0,T), pe(0,1), he (r1,72), t > 0.
Consequently, the problem (3.77) rewritten as follows
PV — OV + 00, + g1y (x,t) € (0,T) x (0,00),
+ [ C(M)Y (x,1,t,h) dh =0, (3.78)

cly — KOy + Oy = 0,
hY; (w,p,t,h) + Y, (z,p,t,h) =0, (p,h) € (0,1) X (71,72),
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with the given initial and boundary conditions

v(0,t) = v, (I,t) =0(0,t) =0 (T',t) =0, t>0,
(v,v1,0) (2,0) = (vo,v1,00) (2) e (0,I" (3.79)
Y (z,p,0,h) = fo(z,p,h). (p,h) € (0,1) x (0,72) .

Moreover, the energy associated with the system is expressed as follows

2

d T2 N I
th( ) < (/Ll /T1 IC (h)] dﬁ) /o vidr — /ﬁl/o 02dr vt > 0. (3.81)

We now demonstrate that the system (3.78)-(3.79) is exponentially stable.

_ 1 T 1 T2
E(t) = —/ <p1/f + o2 + e + / / h|C(R)| Y2 (x,p,t,h) dﬁdp) dz, (3.80)
0 0 Jm

and satisfies

Lemma 3.6 Let (v,0,Y) be a solution of the system (3.78)-(3.79). Then the functional defined

as follows

r
K (t) = p/ vdr + [;1 / vidr Yt >0, (3.82)
0 0

satisfies

) 061 r p o ey [T,
Ki(t) < —— dx+p/ thx+a—l 6-dx
0

C“‘“ / / (W)| Y2 (x,1,t, ) dhda. (3.83)

Proof. By multiplying equation (3.78); by v and integrating with respect to x in (0,1"), we

get the following expression

I N d I
pdt/ vivdr — p / da:+a1/0 Vidx+5/0 Hxl/dx+u12—dt/0 vidx

+/0 1//T1 C(h)Y (x,1,t,h)dhdz = 0, (3.84)

(3.84), satisfies the equation

d r

dt( / Vtudx—i——/ 2dx> =

,0/ tha:—ozl/ v dm—5/ 0 de—/ / C(h)Y (x,1,t, h) dhdz, (3.85)
0 0

3.5. Exponential energy decay when the magnetic effects are neglected



Chapter 3. Existence, uniqueness and exponential energy decay of piezoelectric system
with thermal effect and distributed delay time in the presence or absence of magnetic
effects 60

by utilizing Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we obtain

T T2
—/ y/ CORY (1,1, ) dhda
0

< % V2dg + / / (W)| Y2 (2,1,t, ) dhdz, (3.86)

0

2 52 Co . 2
—0 0 vdx < — sdr+— | Oidx. (3.87)
0 a1 Jo

Using the inequalities (3.86) and (3.87) in (3.85), we find (3.83). =
We define the Lyapunov functional as follows

L(t)=NE @)+ Ky (t)+ NyIy(t). (3.88)

As stated in the theorem (3.2), it is evident that there exist two positive constants ¢; and éo > 0
that satisfy

HE(t) < L(t) <&E(t), Yt >0. (3.89)

Theorem 3.4 Let (v,0,Y) solution of system (3.78)-(3.79), then there are two positive con-
stants k and 5\, such that

Et) <ke™,  Vt>0. (3.90)
Proof. Differentiating £ () and exploiting (3.66)-(3.81)-(3.83), we get

T2 N I
L) < — (N <,u1 —/ |C(ﬁ)|dﬁ> — Ny, —p)/o vidr — %/ vidr
(N/{— @>/ 02dx — Nye™ / / / RIC(B)| Y2 (2, p, t, k) dhidpda
(N4 2 _ 00“1)/ / (h)| Y2 (2,1,t, ) dhdz. (3.91)

We select ]\74 so that
(N - _ﬂ) - 0.
€3]

Furthermore, we choose N big enough so that

(N <u1 - /TIT IC(ﬁ)Idﬁ) — Nupy —p> > 0.

2
(N/@— M) > 0.
a1

Using the equivalence between energy and the Lyapunov functional, we have completed the
proof. =

3.5. Exponential energy decay when the magnetic effects are neglected



CHAPTER 4

LGlobal well-posedness and asymptotic stability of piezoelectric system with neutral delay

time in the presence or absence of magnetic effects

4.1 Presentation of the problem

I n t