
Programming and validation of 1D finite

elements for bar and beam structures

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

Larbi Tébessi University - Tebessa

Faculty of Science and Technology

Department: Mechanical Engineering

Final dissertation for obtaining the MASTER degree

Faculty:Science and Technology

Department:Mechanical Engineering

Specialty: Mechanical Construction

Theme

Theme Submitted by:

BOUACHMA Mohamed Amine

Before the jury:

President Dr. HADJAB Abdelhakim MAA

Supervisor Pr. DEGHBOUDJ Samir Professor

Examiner Dr. LEMITA Nour El Houda MAB

Date of defense: 26/06/2024

I

 ملخص

التطبيقات، وتميل هذه الميكانيكية بحل عدد من الأنظمة لمختلف الميكانيكية يقوم مهندسو الإنشاءات في مجال الإنشاءات

الأنظمة إلى أن تكون معقدة وتستغرق وقتاً طويلاً وغالبًا ما يتم تنفيذها يدويًا. يجب معالجة هذه المشكلة، لذا فإن العملية الآلية

وقابلية منطقية الأكثر الحل هي الدراسة المشاكل .للتحقيقلطرق تحل فهي مهمة، منهجية المحدودة العناصر منهجية تعُد

المنهجية الهيكل إلى أجزاء أصغر، وبالتالي معالجة المشاكل بكفاءة وسرعة عالية. وقد طبقنا هذه الميكانيكية من خلال تقسيم

" أنظمة ميكانيكية هي الميكانيكية من خلال توفير ." beam "و"truss" و"barعلى ثلاثة يساهم بحثنا في مجال الإنشاءات

برنامج يستخدم خوارزميات طريقة العناصر المحدودة كقاعدة لحساب النتائج المطلوبة. ينقسم البرنامج إلى ثلاثة برامج فرعية

ومن خلال تخفيف الوقت اللازم لحساب أنظمة الدراسة والجهود الشخصية المبذولة في ".beam" و"truss" و"barلأنظمة "

 .هذا المجال، فإن نهجنا يسرّع هذه العملية مع ضمان نتائج عالية الدقة

المحدودة، :المفتاحية الكلمات العناصر حسابي ،RDM6طريقة محدد ،برنامج محدد، barعنصر عنصر ، trussعنصر

 beamمحدد

II

Abstract

In mechanical construction engineers solve number of systems for various applications, these

systems tend to be complex, time consuming and often done manually. This problem needs to be

addressed so an automated process of the study methods is the most logical and achievable

solution. Finite element method is an important methodology; it solves mechanical problems by

devising the structure into smaller segments, therefore treating the problems with high efficiency

and speed. We applied this methodology on three mechanical systems which are “Bar”, “Truss”

and “Beam”. Our research contributes to the field of mechanical construction by providing a

program that uses finite element method algorithms as a base to calculate the required results.

The program is separated into three sub-programs for “Bar”, “Truss” and “Beam” systems. By

mitigating the time required for study systems calculation and personal efforts, our approach

speeds up that process while ensuring high accuracy results.

Key words: Mechanical Construction, Finite Element Method, Algorithms, Bar, Truss, Beam.

III

Acknowledgment

In the name of Allah, our Lord and Creator, Who has blessed us with the gift of

reasoning and the pursuit of knowledge, we begin by expressing our gratitude.

I would like to extend my heartfelt appreciation to my supervisors, Pr.

DEGHBOUDJ Samir for his unwavering trust and patience. His insightful

guidance, advice, and commitment were instrumental in shaping this dissertation.

I also wish to express my deep gratitude to the esteemed members of the jury Dr.

HADJAB Abdelhakim and Dr. LEMITA Nour El Houda agreeing to evaluate and

judge this humble work.

I am indebted to CHERGUI Kheir Eddine, my brother, who was nothing but

supportive, helpful and I always look at you as a perfect role model.

Last but not least, I must express my profound gratitude to my father, my

mother, my sisters and my friends. Their unwavering support, continuous

encouragement, and countless sacrifices throughout our academic journey made

this accomplishment possible.

IV

Dedication

“To my beloved parents, your encouragement is the

Only thing keeps me going.

To my sisters and my brother

Thanks for always being there for me.

To all my friends, the ones near my heart,

Thank you all; I dedicate this work to you”

V

List of Content

 I .. ملخص

Abstract...II

Acknowledgment ... III

Dedication .. IV

List of Content ... V

List of Abbreviations .. IX

List of Tables ... X

List of Figures ... XII

General Introduction .. 1

Chapter 1 Bibliographic research and state of the art .. 3

1.1 Introduction ... 3

1.2 Element finite method ... 3

1.2.1 Historical background .. 3

1.2.2 Definition ... 4

1.3 Steps of the Finite Element Method .. 5

1.4 The benefits of Finite Element Method ... 6

1.5 Truss systems ... 7

1.5.1 Definition ... 7

1.5.2 The principle of a truss system ... 8

1.5.3 Advantages of truss system .. 8

1.6 Beam element .. 8

1.6.1 Introduction .. 8

1.6.2 Definition of beams .. 9

1.6.3 Types of beams ... 9

VI

1.6.4 Flexural behavior of beams .. 11

1.6.5 Euler-Bernoulli Beam Theory .. 11

1.7 Conclusion ... 11

Chapter 2 Finite element one dimensional 1D .. 13

2.1 Introduction ... 13

2.2 Fundamental concepts ... 13

2.2.1 Domain discretization .. 13

2.2.2 Shape functions .. 13

2.2.3 Stiffness matrix .. 13

2.3 Solution procedure ... 14

2.3.1 Establishing equilibrium equations .. 14

2.3.2 Assembling the equation System ... 14

2.3.3 Applying boundary conditions ... 14

2.4 Bar element .. 14

2.4.1 Governing equations .. 14

2.4.2 Equilibrium equations .. 14

2.4.3 Approximate solution using the finite element method ... 16

2.4.4 Example of the calculation for a bar element in tension .. 19

2.5 Truss element ... 23

2.5.1 Definition of truss systems ... 23

2.5.2 Characteristics of truss systems .. 24

2.5.3 Formulation of the truss finite element .. 24

2.5.4 Stress State of a Truss Finite Element .. 27

2.5.5 Illustration demonstrating the computation for a truss finite element 28

2.6 Beam elements ... 33

2.6.1 Definition of beam systems .. 33

2.6.2 Beam elements ... 33

2.6.3 Bending behavior of beam bar finite element .. 34

2.6.4 Formulation beam element ... 36

2.6.5 Example calculation of beam element ... 42

2.7 Conclusion ... 47

VII

Chapter 3 Programming and validation .. 48

3.1 Programming Languages ... 48

3.1.1 Overview of programming languages .. 48

3.1.2 Core Concepts in Programming ... 48

3.1.3 Development Paradigms .. 49

3.1.4 Development Tools .. 49

3.1.5 Software Development Lifecycle ... 49

3.1.6 Popular Programming Languages and Their Uses ... 50

3.1.7 Emerging Trends .. 50

3.2 Chosen Programming Language (Python) .. 51

3.2.1 Definition and history of python .. 51

3.2.2 Python capabilities and functions ... 52

3.2.3 Errors and exceptions ... 52

3.2.4 Jupyter notebook .. 54

3.2.5 Overview of Jupyter notebook ... 54

3.2.6 Key features of Jupyter notebook ... 55

3.3 Finite element program .. 55

3.3.1 Finite element program exaction steps ... 55

3.3.2 Developed program .. 56

3.3.3 Code ... 56

3.3.4 Bar program .. 56

3.3.5 Truss program .. 60

3.3.6 Beam program: ... 61

3.4 Validating results using RMD6 software .. 63

3.4.1 Overview of RDM6 .. 63

3.4.2 RDM6 Features .. 64

3.4.3 RDM6 Modules .. 64

3.5 Comparing program results with traditional analytical results .. 64

3.5.1 Example of the calculation for bar element in tension ... 65

3.5.2 Example of the calculation for truss element ... 66

3.5.3 Example of the calculation for a bar element in bending ... 67

VIII

3.6 Comparing program results with RDM6 results in complex cases 68

3.6.1 Illustration of the computation for a truss element .. 68

3.6.2 Illustration of the computation for a beam element ... 73

3.7 Conclusion ... 78

General Conclusion .. 79

References .. 80

IX

List of Abbreviations

1D One dimensional

2D Two dimensional

3D Three dimensional

BSD Berkeley Software Distribution

DOF Degrees of freedom

FEA Finite Elements Analysis

FEM Finite Elements Method

Git Global information tracker

HVAC heating, ventilation, and air conditioning

IDEs Integrated Development Environments

IoT Internet of Things

OOP object-oriented programming

OS operating system

RDM 6 Résistance de matériaux 6

SVN Subversion

X

List of Tables

Table 2.1: The boundary conditions specific to the case study (bar in tension) 22

Table 2.2: Results specific to the case study (bar in tension) .. 23

Table 2.3: The structure’s geometry characteristics (truss structure under tensile loading) 29

Table 2.4: The boundary conditions specific to the case study (truss structure under tensile

loading) ... 32

Table 2.5: Outcomes specific to the case study (truss structure under tensile loading) 33

Table 2.6: The boundary conditions specific to the case study (beam under bending) 45

Table 2.7: Results specific to the case study (beam under bending) ... 47

Table 3.1: Some standard Python built-in exceptions ... 54

Table 3.2: The main modules available in the RDM6 .. 64

Table 3.3: Outcomes provided by manual computing for bar element ... 65

Table 3.4: Results derived from proposed program for bar element ... 65

Table 3.5: Relative error between outcomes provided by manual computing and those from

proposed program for bar element ... 66

Table 3.6: Results obtained through manual calculations for truss element 66

Table 3.7: Results derived from the proposed program for truss element 66

Table 3.8: Relative error between outcomes provided by manual computing and those from

proposed program for truss element ... 67

Table 3.9: Results derived from manual calculations for beam element 67

Table 3.10: Results derived from the proposed program for beam element 67

Table 3.11: Relative error between the outcomes obtained through manual computation and

those generated by the proposed program for the beam element ... 68

Table 3.12: Results provided by the developed calculation program for the truss structure

consisting of 7 bars ... 69

Table 3.13: Outcomes provided by RDM6 software for the truss structure consisting of 7 bars . 73

Table 3.14: Relative error between the results generated by the RDM6 software and those

produced by the proposed program for the truss structure consisting of 7 bars 73

Table 3.15: Results provided by the developed calculation program for the beam structure 74

Table 3.16: Outcomes provided by RDM6 software for the beam structure 77

XI

Table 3.17: Relative error between the results generated by the RDM6 software and those

produced by the proposed program for the beam structure .. 77

XII

List of Figures

Figure 1.1: Examples of 1D finite element: a) Bar element; b) Bar element subjected to a

distributed load with density q(x); c) Beam element [5]; d) Beam element subjected to

distributed load and concentrated force [5] .. 4

Figure 1.2:Examples of 2D finite elements: a) Triangular element with 3 nodes; b) Plate modeled

by 2 triangular elements with 3 nodes; c) Quadrilateral element with 8 nodes; d) Meshing of

a plate with quadrilateral elements ... 5

Figure 1.3: Flowchart of the various steps of the finite element method .. 6

Figure 1.4: Truss system in bridges .. 7

Figure 1.5: Trussing buildings .. 7

Figure 1.6: Example of application of truss system in the manufacturing of race cars 8

Figure 1.7: Schematic representation of a beam ... 9

Figure 1.8: Schematic representation of a simple beam ... 9

Figure 1.9: Schematic representation of cantilever beam ... 10

Figure 1.10: Example of application of cantilever beam .. 10

Figure 1.11: Schematic representation of composite .. 10

Figure 1.12: Composite beams used in bridge construction ... 10

Figure 1.13: Schematic representation of truss beam ... 11

Figure 2.1: Schematic representation of a bar, subjected to a tensile load q 15

Figure 2.2: Equilibrium of forces for an elemental segment of the bar with length dx 16

Figure 2.3: Schematic representation of a two-node linear bar finite element 17

Figure 2.5: Discretization of the beam into 3 linear elements and 4 nodes 20

Figure 2.4: Example of the calculation of a beam subjected to tensile force 20

Figure 2.6: Schematic representation of a truss system with triangular elements (Pratt truss

bridge) .. 24

Figure 2.7:Schematic representation of truss element with two nodes (i) and (j), inclined at an

angle θ .. 25

Figure 2.8: Example of the calculation of a truss structure under tensile loading 29

Figure 2.9:Schematic representation of a beam system .. 33

Figure 2.10:Beam system under bending load q(x) .. 35

XIII

Figure 2.11:Representative beam element showing displacements and rotations due to bending

load ... 36

Figure 2.12: Schematic representation of the degrees of freedom of a beam bar element 37

Figure 2.13: Transformation of the distributed load into equivalent nodal loads 42

Figure 2.14: Illustrates a demonstration of calculating the response .. 43

Figure 2.15: Discretization of the beam into 2 linear elements and 3 nodes 43

Figure 3.1: popular programming languages .. 48

Figure 3.2: Software Development Lifecycle ... 50

Figure 3.3: python logo ... 51

Figure 3.4: Undefined variable error example in python .. 53

Figure 3.5: Jupyter Logo ... 54

Figure 3.6: program execution steps ... 56

Figure 3.7: Used python libraires .. 56

Figure 3.8: Bar nodes parameters .. 57

Figure 3.9: Bar element parameters .. 57

Figure 3.10: Bar elementary stiffness matrices calculation .. 58

Figure 3.11: Bar global matrix calculation ... 58

Figure 3.12: Bar Gaussian elimination process ... 59

Figure 3.13: Bar results ... 59

Figure 3.14: Truss node parameters .. 60

Figure 3.15: Truss elementary stiffness matrices calculation ... 60

Figure 3.16: Truss Gaussian elimination process ... 61

Figure 3.17: Truss results .. 61

Figure 3.18: Beam node parameters .. 62

Figure 3.19: Beam element parameters ... 62

Figure 3.20: Beam elementary stiffness matrices calculation ... 62

Figure 3.21: Beam Gaussian elimination process ... 63

Figure 3.22: Beam results ... 63

Figure 3.23: A truss structure consisting of 7 bars and 5 nodes ... 69

Figure 3.24: Creating the truss model consisting of 7 bars and 5 nodes 70

Figure 3.25: Properties of the material used ... 70

XIV

Figure 3.26: Dimensions and shape of the chosen section of the bar ... 71

Figure 3.27: Applying loads and boundary conditions ... 71

Figure 3.28: Viewing the Results .. 72

Figure 3.29: Exporting the report results .. 72

Figure 3.30: A beam structure consisting 5 nodes .. 74

Figure 3.31: Creating the beam model consisting 5 nodes ... 74

Figure 3.32: Properties of the material used ... 75

Figure 3.33: Dimensions and shape of the chosen section of the beam .. 75

Figure 3.34: Applying loads and boundary conditions ... 76

Figure 3.35: Viewing the Results .. 76

Figure 3.36: Exporting the report results .. 77

General Introduction .

1

General Introduction

Mechanical construction is a key element in making mechanical systems; it includes building,

installing and maintaining processes of various types of structures, where the engineer tracks

heating, ventilation, and air conditioning (HVAC) and often other special phenomenon. These

systems must follow 5 phases; Design and planning, Fabrication, Installation, Commissioning

and Maintenance and repair.

Our work is concentrated in the first phase just before fabrication, studying 3 mechanical

systems which are “Bar”, “Truss” and “Beam”. The systems are widely used not only in the

mechanical field, but other fields such as civil engineering which further amplifies its importance.

Of the 3 mechanical systems mentioned before we start with the Bar system; the easiest

system and the most used one, it is processed in one axis. The other two are processed in two

axes, the Truss system is simply a number of bar systems linked together in a geometrical way.

We see it most on bridges. Beam system in the other hand treats different factors like Flexion and

bending.

To study the mechanical systems a method must be used, in our case we are using the Finite

Element Method, its implementation as a methodology in structural and computational mechanics

is now an essential component of engineering practice. The complexity of modern structures and

mechanical components has led to a growing demand for sophisticated computational tools that

can accurately predict their behavior under a variety of conditions. The objective of this

dissertation is to present a comprehensive programming methodology and validation procedure

for multi-dimensional finite elements. Finite Element Method solves this problem mainly by

enabling the resolution of complex problems by decomposing a structure into smaller, more

manageable elements.

In the background to our study, we aimed to automate the finite element method process and

make it usable by the average person. To achieve that we developed a program written in python

where the program asks the user for specific variables and returns the results.

On this dissertation we present 3 main chapters;

General Introduction .

2

The first contains a review of literature on Finite Element Method as well as its Phases and

how important it is in Mechanical Construction, then concluding by identifying the gaps and

areas that require further investigation.

Chapter 2 goes deep into Finite Element Method, talking about its concepts and formulas,

then specifically mention the 3 targeted systems, Bar, Truss and Beam; explaining what are they

and how are they formulated, as well as mentioning their key features and general applications.

The Last Chapter talks about programming and what programming language we used. Then

presenting our program including step by step explanation and the main differences between the

three systems, last but not least, we validated our program’s results with the RDM6 software as

well as traditional analytic results (hand calculated).

In the conclusion we will summarize the main findings. Contributions of the dissertation to

mechanical construction and limitations of the dissertation and suggestions for future research

Chapter 1: Bibliographic research and state of the art .

3

Chapter 1

Bibliographic research and state of the art

1.1 Introduction

 Nonlinear partial differential equations are of interest to mathematicians, physicists and

engineers for their rich mathematical structure and properties, and for their applications in fluid

mechanics, plasma physics, fiber optics, condensed matter physics and chemistry. Finding how to

solve them is important. To understand the properties of the solutions, these nonlinear partial

differential equations can be solved exactly or numerically [1]. Recently, engineering issues have

become less complicated, and this is due to the finite element method. It has become one of the

most famous and widely used methods. It is a powerful tool for solving numerical problems and

can be used in almost all fields [2].

1.2 Element finite method

1.2.1 Historical background

Advances in the structural analysis of airplanes led to the basic ideas of the finite element

method. Hrennikoff offered by using “the frame work method” solution to elasticity problems

that was in 1941. In 1956 Turner et al presented their findings which are derived stiffness

matrices for truss, beam, and other elements. It was in 1960 that Clough formulated the term

finite element and used it for the first time. Engineers were using it to approximate problems in

stress analysis, fluid flow, heat transfer and other areas by the early 1960s. The foundation for

further developments in finite element studies was set by a 1955 book by Argyris on energy

theorems and matrix methods. Zienkiewicz and Cheung's first book on FEA was published in

1967.In the late 1960s and early 1970s; the application of finite element analysis was to non-

linear problems and large deformations, in 1972. Oden's book on non-linear continua appeared.

The mathematical foundations were laid in the 1970s.This category includes the development of

new elements, convergence studies and other related areas. Today, the method is within reach of

students and engineers working in small industries, thanks to the development of mainframe

computers and the availability of powerful microcomputers [2].

Chapter 1: Bibliographic research and state of the art .

4

1.2.2 Definition

It is a numerical method for the solution of certain problems in physics and differential

equations. It is a method of finding an approximate solution on a spatial domain, which calculates

a field (of scalars, vectors, tensors) that satisfies certain equations and conditions [3]. It consists

of dividing (discretizing) the domain of these equations into a number of sub domains, called

finite elements, which are connected to each other by nodes (Figure1.1 and Figure1.2). The

solution sought is replaced in each element by an approximation using simple polynomials. The

domain can then be reconstructed by assembling all these elements. FEM applied to structural

calculations is a multidisciplinary technique based on the following three disciplines:

- Structural mechanics: linear elasticity, resistance of materials (engineering science);

- Numerical analysis: methods of approximation, numerical integration, resolution of

linear systems, etc;

- Computer science: development techniques (software engineering) and maintenance [4];

FEM is capable of solving 1D, 2D, and 3D systems, enabling the analysis of complex systems

that are difficult or impossible to solve analytically.

a)

a)

b)

c)

c)

c)

d)

d)
Figure 1.1: Examples of 1D finite element: a) Bar element; b) Bar element subjected to a

distributed load with density q(x); c) Beam element [5]; d) Beam element subjected to distributed

load and concentrated force [5]

Chapter 1: Bibliographic research and state of the art .

5

a) b)

b)

c)

d)

Figure 1.2:Examples of 2D finite elements: a) Triangular element with 3 nodes; b) Plate modeled

by 2 triangular elements with 3 nodes; c) Quadrilateral element with 8 nodes; d) Meshing of a

plate with quadrilateral elements

1.3 Steps of the Finite Element Method

This text outlines the steps involved in applying the finite element method and the tools required

to implement it in a simplified manner. The process of solving a physical problem using finite

elements generally follows these steps [6]:

- Discretizing the domain (create mesh): The first step in the discretization process is to

subdivide the domain into elements and nodes. For systems that are already discrete, such as

trusses, this step is unnecessary and the obtained answers are exact. However, for continuous

systems such as plates, this step becomes critical and the answers obtained are only

approximate. The accuracy of the solution in this case depends on the discretization used;

- Writing the element stiffness matrices: The element stiffness matrices must be written for

each element in the domain;

Chapter 1: Bibliographic research and state of the art .

6

- Assembling the global stiffness matrix: After wrote matrix for each element, we will

assemble them by using the direct stiffness approach;

- Boundary conditions: Applying boundary conditions involves specifying supports, applied

loads, and displacements;

- Solving the global system: The equations are solved by partitioning the global stiffness

matrix. The resulting equations are then solved using Gaussian elimination.

The steps can be schematized in (Figure 1.3).

1.4 The benefits of Finite Element Method

 The Finite Element Method (FEM) offers several advantages that make it a widely used

numerical technique for solving engineering and mathematical problems. Some of the main

advantages of FEM are:

- FEM can handle complex geometries and boundary conditions, making it suitable for

analyzing a wide range of engineering problems. Engineers can accurately simulate real-

world scenarios by modeling irregular shapes and non-uniform material properties;

- FEM enables engineers to achieve a balance between computational efficiency and

accuracy by allowing the use of different types of elements, such as triangles and

quadrilaterals, selected based on the specific characteristics of the problem;

Physical problem (domain)

Discretizing the domain (create mesh)

Writing elementary matrices

Assembly and application of boundary conditions

Solving the global system

Figure 1.3: Flowchart of the various steps of the finite element method

Chapter 1: Bibliographic research and state of the art .

7

- By dividing the domain into smaller elements and using higher order interpolation

functions, FEM provides accurate solutions to engineering problems. As the element size

decreases, the solution approaches the exact solution of the continuous problem, resulting

in more accurate outcomes;

- FEM is a versatile tool, applicable to a broad range of physical phenomena, including

structural, heat transfer, fluid flow, electromagnetic and geotechnical problems. Because

of its versatility, it is a valuable tool for the analysis of a wide variety of engineering

problems in a wide range of industries;

- FEM enables engineers to conduct parametric analysis, studying the effects of varying

input parameters, such as material properties, geometric dimensions, and boundary

conditions, on the system's behavior. This allows for optimization, sensitivity analysis,

and design exploration.

1.5 Truss systems

1.5.1 Definition

Truss systems are structures made up of rigid elements connected by nodes to form a grid of

triangles or squares. These systems are commonly used in civil and mechanical engineering.

Trusses are structures made up of several elastic bars that are subjected to axial forces only,

meaning that the force in a straight section is reduced to a normal force. Trusses and Truss beams

are crucial components in the construction industry. They are used to support floors, roofs, or

provide bracing. These structures are essential for ensuring the stability and safety of bridges

(Figure 1.4), buildings (Figure 1.5) [7].

Figure 1.4: Truss system in bridges Figure 1.5: Trussing buildings

Chapter 1: Bibliographic research and state of the art .

8

1.5.2 The principle of a truss system

 The truss principle is simple. It consists of a top chord and a bottom chord connected by a

triangulation of bars, with each bar only absorbing a normal load. While additional effects may

exist, they are secondary in a well-designed truss. The chords absorb the overall moment in the

form of compression or traction, while the diagonals take up the overall trench force in the form

of compression or traction. In the simple case, when connections are treated as joints and loads

are applied to the nodes, no bending moment, trench force or torsion is produced in any of the

bars. If loads are applied in a way that produces bending moment, trench force or torsion, it will

result in inefficient use of the material [7].

1.5.3 Advantages of truss system

 The truss system is a commonly used structural design in bridges, buildings and race cars as

shown in (Figure 1.6), due to its several advantages. This design offers a high strength-to-weight

ratio, excellent stability, and efficient use of materials. Geometric simplicity is a key feature of

these designs, which are typically composed of rectilinear bars. This facilitates their design and

manufacturing processes. It provides a high level of structural strength despite its lightweight

nature.

1.6 Beam element

1.6.1 Introduction

In structural engineering, beams are fundamental components used to support loads in

buildings, bridges, and various infrastructure projects. Understanding the behavior of beams is

crucial for designing safe and efficient structures.

Figure 1.6: Example of application of truss system in the manufacturing of race cars

Chapter 1: Bibliographic research and state of the art .

9

1.6.2 Definition of beams

Beams are structural members primarily subjected to bending moments and shear forces (Figure

1.7). They typically have a slender and elongated shape compared to their cross-sectional

dimensions. Beams are designed to resist loads applied perpendicular to their longitudinal axis

while transferring these loads to their supports [10].

Figure 1.7: Schematic representation of a beam

1.6.3 Types of beams

1.6.3.1 Simple beams

Simple beams are supported at both ends and subjected to loads along their length (Figure

1.8). They are the most basic type of beam configuration and are commonly used in building

construction.

Figure 1.8: Schematic representation of a simple beam

1.6.3.2 Cantilever beams

Continuous beams have multiple supports along their length, allowing them to carry heavier

loads and span longer distances without additional intermediate supports (Figure 1.9 and Figure

1.10).

Chapter 1: Bibliographic research and state of the art .

10

Figure 1.9: Schematic representation of

cantilever beam

Figure 1.10: Example of application of

cantilever beam

1.6.3.3 Composite beams

Composite beams are made from two or more different materials, such as steel and concrete,

combined to enhance strength and stiffness (Figure 1.11 and Figure 1.12). They are frequently

used in bridge construction to optimize structural performance.

Figure 1.11: Schematic representation of

composite

Figure 1.12: Composite beams used in bridge

construction

1.6.3.4 Truss beams

Truss beams consist of smaller interconnected members arranged in a triangular pattern

(Figure 1.13). They are lightweight yet structurally efficient and are commonly used in roof and

bridge designs.

Chapter 1: Bibliographic research and state of the art .

11

Figure 1.13: Schematic representation of truss beam

1.6.4 Flexural behavior of beams

1.6.4.1 Bending moment

Beams undergo bending when subjected to transverse loads, resulting in the development of

bending moments along their length. The magnitude of the bending moment varies along the

beam's span and is influenced by the applied load and beam geometry.

1.6.4.2 Shear force

Shear forces act perpendicular to the longitudinal axis of the beam and arise due to transverse

loading. They induce internal stresses that can cause shear deformation or failure in the beam.

1.6.4.3 Bend

Shear forces act perpendicular to the longitudinal axis of the beam and arise due to transverse

loading. They induce internal stresses that can cause shear deformation or failure in the beam.

1.6.5 Euler-Bernoulli Beam Theory

The Euler-Bernoulli beam theory provides a fundamental framework for analyzing the

flexural behavior of beams. It relates bending moment, shear force, and deflection to beam

geometry and material properties, enabling engineers to predict beam performance accurately

[10].

1.7 Conclusion

 The Finite Element Method (FEM) is a powerful numerical technique used to determine the

approximate equilibrium state of a continuous medium. It has the major advantage of being

adaptable to solve a variety of problems with minimal modifications. FEM can be applied to any

complex geometric domain where a problem is well-posed with all boundary conditions.

However, proficiency in mathematical and computer tools is necessary to use this method

Chapter 1: Bibliographic research and state of the art .

12

effectively [4]. In general, the finite element method provides engineers with a tough and

versatile approach to solving complex engineering problems. It offers accurate, efficient solutions

to a wide range of challenges.

Chapter 2: Finite element one dimensional 1D .

13

Chapter 2

Finite element one dimensional 1D

2.1 Introduction

In the field of engineering and applied sciences, modeling of structures and physical

phenomena is essential for understanding and predicting their behavior. Numerical methods,

particularly finite element methods, play a crucial role in this modeling. The finite element

method (FEM) uses one-dimensional (1D) finite elements to model physical phenomena that vary

in only one spatial dimension. These elements are typically used to represent structures,

components, or systems that exhibit behavior primarily along a single axis or direction. One-

dimensional finite elements are geometrically simple and represent a line segment or curve along

the one-dimensional axis. They typically have two nodes at each end, defining the nodes of the

element. In the finite element method, a unidirectional domain is divided into linear elements and

an equation is developed for each of these elements. This process will be extended to the entire

domain to generate a continuum of equations for the entire domain of linear elements [3].

In this chapter, we will explore the fundamentals of one-dimensional (1D) finite elements.

This approach simplifies modeling by reducing the problem to a single spatial dimension while

retaining the ability to represent a wide variety of physical phenomena.

2.2 Fundamental concepts

2.2.1 Domain discretization

The finite element approach involves discretizing the physical domain into smaller, simpler

elements called finite elements. In one dimension, the domain is represented by a series of

segments or intervals.

2.2.2 Shape functions

To describe behavior within each finite element, shape functions are used. In one dimension,

these functions are typically simple polynomials, such as linear or quadratic functions.

2.2.3 Stiffness matrix

The stiffness matrix represents interactions between nodes in the mesh, taking into account

material and geometric properties of the problem. In one dimension, this simplified matrix

reflects stress-strain relationships within each element.

Chapter 2: Finite element one dimensional 1D .

14

2.3 Solution procedure

2.3.1 Establishing equilibrium equations

Using the principle of virtual work or other energy minimization methods, equilibrium

equations are established for the problem. In one dimension, these equations often boil down to

ordinary differential equations.

2.3.2 Assembling the equation System

Local equations associated with each finite element are assembled to form a global system of

equations. This system represents the entirety of the problem and can be solved numerically.

2.3.3 Applying boundary conditions

Boundary conditions, such as Dirichlet or Neumann conditions, are applied to represent

system behavior at the boundaries of the domain.

2.4 Bar element

A bar element is a fundamental component used in structural analysis within the framework

of the finite element method (FEM). It is used for the modeling of one-dimensional (1D)

structures such as beams, columns, trusses and other members that are primarily subject to axial

loads (traction or compression). The term 'bar' in this context refers to a slender structural

element, often represented by a straight-line segment, along which deformation occurs primarily

in the axial direction.

2.4.1 Governing equations

 The finite element method (FEM) uses governing equations that are dependent on the type of

physical problem being solved.

2.4.2 Equilibrium equations

 These equations express the balance of forces and moments acting on a structure. They are

derived from Newton's second law of motion and are represented as equilibrium equations for

each node or element in the finite element model. To formulate this element, we consider a bar

with constant cross-sectional area A and length L, subjected to a tensile load q (N/m)(Figure 2.1).

The bar exhibits linear elastic behavior (Young's modulus E). We seek the displacement field u,

strain ε, and stress σ at all points along the bar.

Chapter 2: Finite element one dimensional 1D .

15

Figure 2.1: Schematic representation of a bar, subjected to a tensile load q

The equation is obtained by writing the equilibrium of forces for an elemental segment of the bar

with length dx, located at a distance x from the edge 0(Figure 2.2).

dN
N dx N qdx 0

dx
+ − + =

(2.1)

So:

dN
q 0

dx
+ =

(2.2)

The internal axial force N(x) can, by application of Hooke's law, be expressed as a function of the

displacement u:

x xE =  (2.3)

x

du

dx
 =

(2.4)

x

du
E

dx
 =

(2.5)

Knowing that:

xN(x) A=  (2.6)

So:

du
N(x) AE

dx
=

(2.7)

Substituting (27) into (2.2), the equilibrium equation of the bar (one dimension) and the boundary

conditions are finally written as:

For 0 x  1

d²u
AE q 0

dx²
+ =

x L

du
N(L) 0 for x L

dx

u 0 for x 0

=

 
= = = 
 

= =

(2.8)

Chapter 2: Finite element one dimensional 1D .

16

2.4.3 Approximate solution using the finite element method

2.4.3.1General integral formulation

Let u(x) is an interpolation function of the displacement function, denoted as u(x) . We form the

residual R from the equilibrium equation (2.7), multiply it by the weighting function that

satisfies the displacement boundary conditions, and integrate over the study domain (interval [0,

L]). The cross-section of the bar is constant:

L 2

2

0

d u
AE q dx 0

dx

 
 + = 
 



(2.9)

2.4.3.2 Weak integral formulation

To simplify this integral (2.9), we perform integration by parts on the first term of this integral, as

follows:

L
L L2

2

0 00

d u du d du
dx dx 0

dx dx dx dx

   
 = − =  

   
 

(2.10)

This expression is based on the integration by parts formula, which states as follows:

()
'

uv u 'v uv '= + (2.11)

By introducing the boundary conditions of this problem (Eq.2.8):

x L

du
0

dx =

 
= 

 

(2.12)

Figure 2.2: Equilibrium of forces for an elemental segment of the bar with length dx

Chapter 2: Finite element one dimensional 1D .

17

And:

()u x 0 0= = (2.13)

We can write:

L L2

2

0 0

d u d du
dx dx 0

dx dx dx

 
 =− = 

 
 

(2.14)

By substituting into the Equation2.9, we obtain:

L L

0 0

d du
AE dx q dx 0

dx dx

 
− +  =  

 
 

(2.15)

2.4.3.3 Discretization

For the discretization, we use the Galerkin method (the test function is taken to be equal to

the variation of the displacement (=u). The study domain is discretized using a two-node bar

element of length L (Figure 2.3).

Figure 2.3: Schematic representation of a two-node linear bar finite element

This means the displacement within the element is interpolated based on the displacements at

the two ends of the bar. Since the interpolation is linear, the displacement for a bar element

(nodes 1 and 2) can be expressed as:

()    1 1

n 1 2 n 1 2

2 2

u N (x)
u x N(x) u N (x) N (x) u N(x) u u

u N (x)

   
=   =   =   =     

   

(2.16)

un represents the nodal values of the approximation function ()u x .The functionsN1(x) and N2(x)

are the shape functions constructed to satisfy the following conditions:

() 1u 0 u=

() 2u L u=

(2.17)

The linear interpolation functions for a two-node bar element (nodes 1 and 2) of length L=x2-x1

are defined as follows:

1 2

u1 u2

x

L 0

Chapter 2: Finite element one dimensional 1D .

18

2
1

2 1

x x x
N (x) 1

x x L

−
= = −

−

(2.18)

And:

1
2

2 1

x x x
N (x)

x x L

−
= =

−

(2.19)

By using these functions and the relation (2.16), we can determine the displacement at any point

of the element. If we want to replace ()u x in Equation (2.15), we need to evaluate
du

dx
:

 
 n

n n

d N(x) udu dN(x) dN(x)
u u

dx dx dx dx

     
= = =    

 

(2.20)

From the Equations (2.18) and (2.19), we have:

1dN (x) 1

dx L
= −

(2.21)

And:

2dN (x) 1

dx L
=

(2.22)

By using Equation (2.20), the relation (2.15), becomes:

   
L L

n n n

0 0

dN(x) dN(x)
AE u dx q dN(x) dx 0

dx dx

 
−  +  = 

 
 

(2.23)

Since n and un are not functions that depend on the integration variable x, we can write that:

   
L L

n n

0 0

dN(x) dN(x)
AE u dx q N(x) dx 0

dx dx

  
 − + =  

  
 

(2.24)3)

This relation is verified regardless of the value of the function n , so we can write that:

(−∫ AE {
dN(x)

dx
} 〈
dN(x)

dx
〉 dx{un} + 𝑞∫ {N(x)}dx

L

0

L

0

) = 0

(2.25)3)

We initiate the process by computing the components of the integral (2.25)

1

1 2

2

dN (x)

1 1dN (x) dN (x)dN(x) dN(x) 1dx

dN (x) 1 1dx dx dx dx L²

dx

 
  −   

  =   =     
−    

  

(2.26)

The different integrals can be evaluated using interpolation functions, as follows:

Chapter 2: Finite element one dimensional 1D .

19

0

L

0

L 1
A

1 1 1dN(x) dN(x) AE AE
dx dx

1 1
E

1 1dx dx L² L

− −    
  = =     

− −     
 

(2.27)3)

Additionally, we have:

 

 
L

2
L

0l L
0

L
2

0 0

0

xx x1 2L 1LL
AE N(x) dx dx

x 12x
L 2L

  
  −  −       

= = =    
     

      
  

 

(2.28)3)

By substituting in Equation (2.25), we get:

1

2

u1 1 1AE ql

u1 1 1L 2

−     
=    

−    

(2.29)

The discretized Equation takes the form:

    n nK u f= (2.30)

2.4.4 Example of the calculation for a bar element in tension

To illustrate the use of one-dimensional finite elements, we will examine a practical

application Example. We need to analyze the behavior of a beam subjected to tensile force using

the finite element method. The beam with the x-axis shown in the (Figure 2.4) is made of a

material with Young's modulus (E). The cross-sectional area is equal to (A) between nodes 1 and

2, (2A) between nodes 2 and 3, and (3A) between nodes 3 and 4. The beam is fixed at nodes 1

and 4, and it carries a uniformly distributed load of linear intensity (p) between nodes 1 and 2,

and a force (𝐹=2𝑝𝐿) at node 3. We aim to determine the nodal displacements and the support

reactions.

Chapter 2: Finite element one dimensional 1D .

20

Given:

E=2×105Mpa

A=200 mm²

p= 100 N/m

L=1000 mm

The steps to solve this problem are as follows:

1. Modelof the beam structure: The geometry and material properties of the beam are presented

in Figure 2.4.

2. Discretize of the beam:Divide the beam into three finite elements between the nodes. Identify

the nodes and elements, with nodes 1, 2, 3, and 1,2,3,4 as shown in Figure 2.5:

Figure 2.5: Discretization of the beam into 3 linear elements and 4 nodes

3. Set up of the element stiffness matrices: Calculate the stiffness matrix for each element using

the formula for a beam element in the finite element method (FEM).

- Element 1: between nodes 1 and 2, with cross-section A, Young's modulus E, and length 2L.

 
(1)

(1)

1 1

1 1 1 1EA EA EA 2 2
K

1 1 1 1 1 1L 2L L

2 2

 
− − −    

= = =       
− −       −

  

- Element 2: between nodes 2 and 3, with cross-section 2A, Young's modulus E, and length L.

 
(2)

(2) 1 1 1 1 2 2EA 2EA EA
K

1 1 1 1 2 2L L L

− − −      
= = =       

− − −       

- Element 3: between nodes 3 and 4, with cross-section 3A, Young's modulus E, and length L.

Node 1 Node 2 Node 3 Node 4

Element (1) Element (2) Element (3)

Figure 2.4: Example of the calculation of a beam subjected to tensile force

Chapter 2: Finite element one dimensional 1D .

21

 
(3)

(3) 1 1 1 1 3 3EA 3EA EA
K

1 1 1 1 3 3L L L

− − −      
= = =       

− − −       

4. Assemble the global stiffness matrix: Combine the element stiffness matrices to form the

global stiffness matrix (GSM).

Dim (GSM) = number of degrees of freedom per node multiplied by the number of nodes

Dim (GSM) =1×4=4

 

1 1
0 0

2 2

1 5EA
2 0K

2 2L

0 2 5 3

0 0 3 3

 
− 

 
 − −=
 
 

− −
 
 − 

5. Formulate the load vector: Create the global load vector {F}based on the applied

concentrated force (𝐹=2𝑝𝐿) at node 3 and the uniformly distributed load p between nodes 1 and

2.

- Element 1: between nodes 1 and 2, uniformly distributed load P

 
(1)

(1) 1 1pl
f pL

1 12

    
= =    
     

- Element 2: between nodes 2 and 3, concentrated force at node 3, F2=0 and F3=pL

 
(2) 0

f
pL

 
=  
 

- Element 3: between nodes 3 and 4, concentrated force at node 3, F3=pL and F4=0

 
(2) pL

f
0

 
=  
 

6. Global force vector: The vector that represents the cumulative forces applied at the nodes of

the entire finite element mesh. It is assembled by summing the contributions of all local force

vectors, thereby encompassing all the forces acting across the entire structure.

   
T

F pL pL 2pL 0=

7. Applying boundary conditions: The boundary conditions specific to this case study are

presented in Table 2.1.

Chapter 2: Finite element one dimensional 1D .

22

Table 2.1: The boundary conditions specific to the case study (bar in tension)

Nodes Boundary conditions Displacements Forces

Node 1 fixed support 1 0u = 1 pLF = and 1 ?R =

Node 2 free node 2 ?u = 2 pLF =

Node 3 concentrated force 3 ?u = 3 2pLF =

Node 4 fixed support 4 0u = 4 ?R =

8. Formation of the global system: Solving the system of equations to calculate displacements

and the reactions at the supports (nodes 1 and 4) using the relationship between the stiffness

matrix, displacements, and external forces.      K . U F= .

11

2

3

44

1 1
0 0

pLu R2 2

1 5 pL 0EA u
2 0

2 2 2pL 0L u
0 2 5 3 0u R
0 0 3 3

 
−       

       
      − − = +      
      

− −             
 − 

Solution: To solve this system, we eliminate the rows and columns with zero displacements,

namely 1 and 4, resulting in the reduced system:

2

3

5
pL2EA u

2
2pLL u

2 5

 
−      =   

     − 

We use Cramer's method to solve this system of equations with two unknowns:

5 EA EA
2

17E²A²2 L L

EA EA 2L²
2 5

L L

−

 = =

−

2

EA
pL 2

L
9EApu

EA
2pL 5

L

−

 = =

Chapter 2: Finite element one dimensional 1D .

23

3

5 EA
pL

2 L
7EApu

EA
2 2pL

L

 = =

−

Finally, we find:

2
2

18pL²u
u

17EA


= =



3
3

14pL²u
u

17EA


= =



To determine the reactions at the supports, we reconsider equations 1 and 4 and replace the

displacements u2 and u3 with their previously determined values:

2 1 1 1

EA 1 1 EA 18pL² 9pL 26
pL R pL R R pLu

L 2 2 L 17EA 17 17

− − − −   
= + = = + =  =   

   

()3 4 4 4

EA EA 14pL² 42pL 42
3u R 3 R R pL

L L 17EA 17 17

− − 
− = = − = =  = 

 

Numerical Application: After calculation, the results for the unknown displacements and

reactions are shown in the following Table 2.2:

Table 2.2: Results specific to the case study (bar in tension)

Nodes Displacements Forces

Node 1 1 0u = 1 100 NF = and 1 152.94 NR = −

Node 2 2 0.0026 mmu = 2 100 NF =

Node 3 3 0.0021 mmu = 3 200 NF =

Node 4 4 0u = 4 247.06 NR = −

2.5 Truss element

2.5.1 Definition of truss systems

Truss systems are structures made up of rigid elements connected by nodes, forming a

network of triangles or quadrilaterals. These structures are widely used in various fields and

sectors of engineering, particularly in civil engineering and mechanical engineering. Trusses are

structures composed of several elastic bars subjected only to axial forces. The force in a straight

section is reduced to a normal force A classic example of a truss system with triangular elements

is the Pratt truss bridge (Figure 2.6). This type of bridge uses a truss configuration with triangles

Chapter 2: Finite element one dimensional 1D .

24

to offer great strength and stability. The diagonal elements are inclined to support vertical loads

and distribute forces efficiently throughout the structure [7].

2.5.2 Characteristics of truss systems

Truss systems have several advantages, including:

- Geometric simplicity: Generally composed of straight bars, which simplifies their design and

fabrication.

- Lightweight: Trusses provide high structural strength while being relatively light and resistant

2.5.3 Formulation of the truss finite element

The elemental stiffness matrix of a truss element is a mathematical representation that

describes the relationship between the nodal displacements and the resulting forces within the

element. It is a key component in the finite element analysis of truss structures, allowing for the

determination of internal forces and deformations under applied loads. The stiffness matrix

encapsulates the geometric and material properties of the truss element, ensuring that the overall

structural behavior is accurately modeled. The formulation of the elemental stiffness matrix for a

truss element is a key step in the finite element analysis of truss structures. The basic assumptions

of the formulation of a truss element are:

- The bars are considered as rigid 1D elements;

- Forces are applied at the nodes;

- Deformations are small (small deformation hypodissertation);

Figure 2.6: Schematic representation of a truss system with triangular elements (Pratt truss bridge)

Chapter 2: Finite element one dimensional 1D .

25

Consider a bar element (truss structure element with two nodes (i) and (j), inclined at an angle θ

relative to the global coordinate system as shown in (Figure 2.7) [8].

Figure 2.7:Schematic representation of truss element with two nodes (i) and (j), inclined at an

angle θ

(X,Y) represents the global system. (x,y) represents the local system. In the local coordinate

system, this element has 2 degrees of freedom (ui ,vj), i.e., 1 degree of freedom per node. In the

global coordinate system, this element has 4 degrees of freedom (Ui ,Vi,Uj ,Vj), i.e., 2 degrees of

freedom per node. The projection of displacement vectors from the local coordinate system to the

global coordinate system is as follows:

i i iu U cos V sin= +  (2.31)

And:

j j ju U cos V sin= +  (2.32)

With:

j iY Y
sin

L

−
 =

(2.33)

And:

j iX X
cos

L

−
 =

(2.34)

The expression of equations (2.31) and (2.32) in matrix form leads to:

i

i i

j j

j

U

u Vcos sin 0 0

u U0 0 cos sin

V

 
 

      
=    

     
 
 

(2.35)

Chapter 2: Finite element one dimensional 1D .

26

So, we have:

     eu T . U= (2.36)

In this relation,  u represents the displacement vector in the local coordinate system,  U

represents the displacement vector in the global coordinate system, and  eT is the transformation

matrix between the two systems. The same notation can be used for expressing the forces acting

on the two nodes:

ix

i iy

j jx

jy

F

f Fcos sin 0 0

f F0 0 cos sin

F

 
 

      
=    

     
 
 

(2.37)

So:

     ef T . F= (2.38)

In equation (2.38),  f represents the force vector in the local coordinate system, while  F

represents the force vector in the global coordinate system.  eT represents the transformation

matrix between the two systems. The stiffness law for this system is written (with respect to the

global coordinate system):

     K . U F= (2.39)

And with respect to the local coordinate system:

     k . u f= (2.40)

If we substitute the relations (2.36) and (2.38) into equation (2.40), we obtain:

         e ek . T . U T . F= (2.41)

We multiply both sides of this equation by 1

e[T]− :

         1 1

e e e e[T] . k . T . U [T] . T . F− −= (2.42)

After simplification, this relation becomes:

       1

e e[T] . k . T . U F− = (2.43)

The transformation matrix is orthogonal, so:

1 T

e e[T] [T]− = (2.44)

Substituting (2.44) into equation (2.43), we get:

       1

e e[T] . k . T . U F− = (2.45)

The general form of the stiffness     K . U F= law becomes apparent. This allows us to deduce:

   T

e e eK [T] . k . T= (2.46)

Chapter 2: Finite element one dimensional 1D .

27

 k represent the stiffness matrix of the element with respect to the local coordinate system where

the relationship is given as follows:

 

EA EA

1 1EA L L
k

1 1 EA EAL

L L

 
− − 

= =  
−   −

  

(2.47)

If we substitute equations (2.47) into (2.46), we obtain:

(e)

cos 0 EA EA

sin 0 cos sin 0 0L L
[k] . .

0 cos EA EA 0 0 cos sin

L L0 sin

   
−       =         −     

(2.49)

To simplify the expression, let's establish, C = cos  and S = sin. After transformation, equation

(2.49) becomes:

2 2

2 2

2 2

2 2

cos cos C CS C CS

sin sin cos sin 0 0 CS S CS SEA EA
[K]

cos cos 0 0 cos sinL L C CS C CS

sin sin CS S CS S

  −  − − 
  

 −    − −    = =    −     − − 
  

−   − −    

(2.50)

Finally, the expression for the elemental stiffness matrix of a truss system bar element is:

2 2

2 2

(e)

2 2

2 2

C CS C CS

CS S CS SEA
[k]

L C CS C CS

CS S CS S

 − −
 

− − =
 − −
 
− −  

(2.51)

We define:

 
2

2

C CS
A

CS S

 
=  
 

(2.52)

Equation (2.50) becomes:

 
   
   

e

A AEA
K

A AL

 −
=  

− 

(2.53)

2.5.4 Stress State of a Truss Finite Element

The stress state of a truss finite element refers to the internal forces that develop within the

element in response to applied loads. These stresses are generally axial, as truss elements are

Chapter 2: Finite element one dimensional 1D .

28

designed to primarily support tensile or compressive forces along their axis. The basic

assumptions adopted for analyzing the stresses are as follows:

- Linear Elasticity: The materials behave in a linearly elastic manner up to the elastic

limit;

- Axial Loads: The bars support only axial forces (tension or compression);

- Homogeneity and isotropy: The materials of the bars are homogeneous and isotropic;

According to Equation (2.35), in the local coordinate system, the coordinates of the displacement

vector are defined as follows:

 

i

i i

j j

j

U

u Vcos sin 0 0
u

u U0 0 cos sin

V

 
 

      
= =    

     
 
 

Given that the stress state (1D) in the local coordinate system is defined as follows:

  ()i

i j

j

n

dN(x)
N

uU 1 1 ES
ES ES U E

d
SS ES u u

ux Lx L L

  − 
= =   =   =  


=  = −

  
(x)ε

(2.54)

The stress state (2D) in the global coordinate system becomes:

i i i

j j j

U
N

u cos V sin1 1 1 1
ES ES

u U coLL L L s V sin

+  


=

 − −
  =     

+   

(2.55)

Expanding this relation, we obtain:

i i

j j

U cos V sinES
N 1 1

U cos V sinL

+  
= −   

+  

(2.56)

Finally:

() j

i i j

j

i

j

i

U UES ES
N U cos V sin U cos V sin cos sin

V VL L

 
= − − + +  =     

 

−

−

(2.57)

2.5.5 Illustration demonstrating the computation for a truss finite element

To exemplify the application of one-dimensional finite elements, we'll explore a practical case

study. Our objective is to analyze the response of a truss structure under tensile loading utilizing

the finite element method. The truss system consists of 3 bars with the same stiffness E and

cross-sectional area A (Figure 2.8). We aim to analyze the system's response by determining the

unknown displacements and support reactions.

Given: P = 10 KN, L = 1 m, H= 1 m, A = 200 mm², E=2×105 MPa

Chapter 2: Finite element one dimensional 1D .

29

Figure 2.8: Example of the calculation of a truss structure under tensile loading

The following steps outline the solution process:

1. Properties of the structure: the structure’s geometry characteristics are summarized in the

next Table 2.3:

Table 2.3: The structure’s geometry characteristics (truss structure under tensile loading)

2. Discretize of the structure: Partition the structure into three finite elements spanning between

the nodes. Define the nodes and elements, denoting them as nodes 1(1, 2), 2(3, 4), 3(5, 6), and

elements 1, 2, 3 as illustrated in Figure 2.8.

3. Element stiffness matrices: Compute the stiffness matrix for each element utilizing the

formula for a beam element within the finite element method (FEM).

- Element 1: Spanning between nodes 1(1,2) and 2(3,4), with a cross-section A, Young's

modulus E, and length L:

(1)

(1)

C² CS C² CS 1 0 1 0

CS S² CS S² 0 0 0 0EA EA
[K]

C² CS C² CS 1 0 1 0L L

CS S² CS S² 0 0 0 0

− − −   
   

− −     = =     − − − 
   
− −   

- Element 2: between nodes 2(3,4) and 3(5,6), with cross-section A, Young's modulus E, and

length L.

Elements Length (m) Angle (°) C S C² S² CS

Element (1) 1 0 1 0 1 0 0

Element (2) 1 90 0 1 0 1 0

Element (3) 2

45

1

√2

1

√2

1

2

1

2

1

2

Chapter 2: Finite element one dimensional 1D .

30

(2)

(2)

C² CS C² CS 0 0 0 0

CS S² CS S² 0 1 0 1EA EA
[K]

C² CS C² CS 0 0 0 0L L

CS S² CS S² 0 1 0 1

− −   
   

− − −     = =     − − 
   
− − −   

- Element 3: between nodes 1(1, 2) and 3(5, 6), with cross-section A, Young's modulus E, and

length 2L .

(3)

(3)

1 1 1 1

2 2 2 2
C² CS C² CS 1 1 1 1

CS S² CS S²EA EA 2 2 2 2
[K]

C² CS C² CS 1 1 1 1L 2L

2 2 2 2CS S² CS S²

1 1 1 1

2 2 2 2

2 2 2 2

4 4 4 4

2 2 2 2

EA 4 4 4 4

L 2 2 2 2

4 4 4 4

2 2 2 2

4 4 4 4

 
− − 

 − − 
 − − 

− −      = =     − −     − − 
 − − 
 
− − 
 


− −




− −
=

− −


− −















4. Assemble the global stiffness matrix: assemble the global stiffness matrix (GSM) by merging

the stiffness matrices of the individual elements.

Dim (GSM)= n (ddl)/n*(nn) = 2×3=6

After assembly and calculation, the final expression of the global stiffness matrix is as follows:

  4

1

3

0

0 0

1 0 0 0 0
K

1.35 0.3536 0.3536 0.3536

0.3536 0.3536 0.3536 0.3536

1

1

0. 536 0.

0

3536 0.3536 0.3536

0.3536 0.3536 1 0.35

4 10
0 0 0 1

36 1.35

0

0 0

36

− − − 
 

− −
 
 −

=   
− 

 − −
 
− − − 

5. Formulate the Load Vector: Construct the global load vector {F} by considering the

concentrated force (P, 2P) applied at node 3. The other nodes, 1 and 2, are free:

Chapter 2: Finite element one dimensional 1D .

31

- Element 1: between nodes 1 and 2, no loading.

 
(1)

0 1

0 2
f

0 3

0 4

 
 
 

=  
 
  

- Element 2: between nodes 2 and 3, concentrated force at node 3, F3x=
P

2
 and F3y=-P

 
(2)

0
2

0
3

f P
5

2
6

P

 
 
  

=  
 
 
−  

- Element 3: between nodes 1 and 3, concentrated force at node 3, F3x=
P

2
 and F3y=-P

 
(3)

0
1

0
2

f P
5

2
6

P

 
 
  

=  
 
 
−  

6. Global force vector: The vector representing the total forces applied at the nodes throughout

the entire finite element mesh is created by combining all local force vectors. This process

includes all the forces acting on the entire structure.

Dim (GVF) = number of degrees of freedom per node multiplied by the number of nodes

Dim (GVF) =2×3=6

 

0 1

0 2

0 3
F

0 4

P 5

2P 6

 
 
 
 

=  
 
 
 
− 

7. Applying boundary conditions: The boundary conditions for this particular case study are

detailed in Table 2.4:

Chapter 2: Finite element one dimensional 1D .

32

Table 2.4: The boundary conditions specific to the case study (truss structure under tensile

loading)

Nodes Boundary conditions Displacements Forces

Node 1 fixed support 1 0u = and 1 0v = 1x ?R = and 1y ?R =

Node 2 fixed support 2 0u = and 2 0v = 2x ?R = and 2y ?R =

Node 3 concentrated force 3 ?u = and 3 ?v = 3x PF = and

8. Formation of the global system: Solving the system of equations to determine the

displacements at node 3 and the reactions at the supports (nodes 1 and 2) using the relationship

between the stiffness matrix, displacements, and external forces:      K . U F=

x1

y1

x2

y2

3

3

R01 0

R00

2

0

R1 0 0 0 0E

1.35 0.3536 0.3536 0.3536

0.3536 0.3536 0.3536 0.3536

01

1

u0.3536 0.3536 0.3536 0.353

A
.

R00 0 0 0

0

6

v.3536 0

=

.3536 1 0.3536 1

1L

0 0 P 10000

0 .3536

− − −   
  

− −
  
  −  

=  
−   

  − −
  

− −   − − P 20000

 
 
 
  
 


=


 
 
 − 

9. Solution: To solve this system, we eliminate the rows and columns corresponding to zero

displacements, specifically 1, 2, 3, and 4, resulting in a reduced system:

3

3

0.3536 0.3536 10000EA u

0.3536 1.3536 20000L v

     
=    

−     

After solving this system, we obtained the following results:

3 1.4654 mm u =

3 0.7522 mmv = −

To calculate the reactions at the supports, we reconsider equations 1,2,3 and 4, substituting the

displacements u3 and v3 with their previously determined values:

4 4

x1 3 3R 4 10 0.3536(u v) 4 10 0.3536(() 10 087.50 N1.4654 0.7522)= −   + = −    = −−

4 4

y1 3 3R 4 10 (0.3536)u 4 10 (0.3536)v 10 087.50 N=   − +   − = −

x2R 0 N=

4 4

y2 3R 4 10 (1)v 4 10 (1) (30088 N0.7522)=   − =   =−− 

After calculation, the results for the unknown displacements and reactions are summarized in the

Table 2.5:

Chapter 2: Finite element one dimensional 1D .

33

Table 2.5: Outcomes specific to the case study (truss structure under tensile loading)

Nodes Displacements (u) Displacements (v) Forces /x-axis Forces /y-axis

Node 1 1 0u = 1 0v = -10 087.5 N -10 087.5 N

Node 2 2 0u = 2 0v = 0 N 30 087.5 N

Node 3 3 1.4654mmu = 3 0.7522mmv = − 10 000 N -20 000 N

2.6 Beam elements

2.6.1 Definition of beam systems

A beam system typically refers to a structural framework composed of beams, which are long,

straight members designed to support loads by resisting bending (Figure 2.9). In engineering and

construction, beam systems are common components of buildings, bridges, and other structures

where horizontal spans need to be supported. These systems are characterized by their ability to

distribute loads primarily through bending moments and shear forces along their length. Beams

are often categorized based on their cross-sectional shape, such as I-beams, H-beams, or

rectangular beams, and are made from materials like steel, wood, or concrete, depending on the

specific requirements of the structure. Beam systems are fundamental elements in structural

analysis and design, and engineers utilize various analytical methods and techniques to ensure

their stability, strength, and durability under different loading conditions [10].

Figure 2.9:Schematic representation of a beam system

2.6.2 Beam elements

Beam elements are usually one-dimensional (1D) and represent the longitudinal axis of the

beam. They have two nodes at each element. These nodes define the endpoints of the element.

The resistance of the beam to bending and axial deformation is represented by the stiffness matrix

of a beam element. It takes into account the material properties of the beam, such as Young's

modulus, cross-sectional area, and moment of inertia, as well as the element's geometry. Beam

elements can be subjected to different boundary conditions, such as fixed supports, pinned

supports or other types of restraints. The constraints applied to the nodes of the beam element are

Chapter 2: Finite element one dimensional 1D .

34

determined by these boundary conditions. Beam elements can be subjected to different types of

loads. These include concentrated loads, distributed loads, moments and thermal loads. Each of

these types of load is applied at a specific point along the length of the beam element. In the FEM

model, beam elements are combined with other types of finite elements to form a global stiffness

matrix. The displacements, rotations and internal forces in the beam elements are determined by

solving the system of equations representing the equilibrium of forces and moments.

2.6.3 Bending behavior of beam bar finite element

The analysis of the bending behavior of beam-bar finite elements is a common task in

structural mechanics, allowing the prediction of how the structure will respond to applied loads,

in terms of deformation, bending moments, and stresses. Computational tools like the finite

element method facilitate this analysis for complex structures and varied loading conditions.

2.6.3.1 Beam Theory

Beam theory provides essential tools for analyzing the behavior of beams under various loads.

The Euler-Bernoulli theory is suitable for slender beams where shear deformation can be

neglected, while the Timoshenko theory is more appropriate for thick beams where shear effects

are significant. Understanding these theories is crucial for the design and analysis of safe and

efficient structural systems. The basic concepts that form the foundation of beam theory are:

- Beam Definition: A beam is a long, slender structural member subjected primarily to

loads perpendicular to its longitudinal axis;

- Loads and Reactions: Beams can be subjected to different types of loads such as point

loads, distributed loads, and moments. Supports provide reactions that balance the applied

loads, with common types being fixed, simply supported, and cantilever supports;

- Shear Force (T): The internal force perpendicular to the longitudinal axis of the beam.

- Bending Moment (M): The internal moment causing the beam to bend.

- Normal Stress (σ): Induced by bending moments, varying linearly across the cross-

section.

- Shear Stress (τ): Induced by shear forces, typically parabolic in distribution across the

cross-section;

2.6.3.2 Bending behavior

Let's consider a beam with a rectangular cross-section A and a length l subjected to a linearly

varying bending load q(x) along the longitudinal axis x (Figure 2.10). We isolate an element dx

Chapter 2: Finite element one dimensional 1D .

35

of this beam as shown in the Figure 2.11. The beam bends under the load and undergoes a

vertical displacement w(x) (deflection). Based on Bernoulli's theory, the movement of the beam

in the (x,y) plane is described by the axial displacement u(x,y)and the vertical displacement

w(x)as shown in the (Figure 2.11) [9].

Figure 2.10:Beam system under bending load q(x)

Based on this Figure, the rotation 𝜃(x) of the deformed section is calculated by the following

relation:

()
w(x)

tg
x


 =  =



(2.58)

The axial displacement 𝑢(𝑥) induced by the rotation is given by the relation:

()
dw(x)

u x y y
dx

= − = −
(2.59)

Hooke's law for an elastic medium allows the expression of the stress distribution along the

cross-section of the beam by the following relations:

x x

du d²w
E E yE

dx dx²
 =  = = −

(2.60)

The basic principles of strength of materials allow expressing the bending moment of the beam

by the following relation:

x

d²w
M(x) y dA EI

dx²
= −  = −

(2.61)

With:

A

I y²dA=  (2.62)

Chapter 2: Finite element one dimensional 1D .

36

Where𝑀(𝑥) is the bending moment at position 𝑥, 𝐸 is the Young's modulus, I is the moment of

inertia, and 𝑤 is the deflection of the beam. The uniformly distributed load q(x) can be expressed

in terms of the shear force by the following relation:

()
dT

q x
dx

=
(2.63)

And the shear force by:

()
dM(x) d d²w

T x EI
dx dx dx²

 
= =  

 

(2.64)

Figure 2.11:Representative beam element showing displacements and rotations due to bending

load

2.6.4 Formulation beam element

The formulation of a finite element beam involves developing mathematical models to represent

the behavior of the beam under various loading conditions within the framework of finite element

analysis. As shown in Figure 2.12, a beam element has two degrees of freedom at each node: a

transverse displacement and a rotation [9].

Chapter 2: Finite element one dimensional 1D .

37

Figure 2.12: Schematic representation of the degrees of freedom of a beam bar element

2.6.3.1 Stiffness matrix of a beam-bar element

This stiffness matrix relates the generalized deformations (displacements and rotations) to the

generalized forces (axial forces and moments) for a beam-bar element subjected to axial and

bending loads. In bending, each node of this element has two degrees of freedom: one in

translation in the transverse direction (y-axis) denoted v, and one associated with the rotation θ

around the z-axis perpendicular to the (x,y) plane. Thus, four boundary conditions (v1, θ1,v2, θ2)

can be used to define its approximation function, which explains the expression of v(x) in the

form of a polynomial of degree 3.The expression for the approximation function of the

displacement function is given as follows:

() 3

1 2 3 4w x x x² x=  + + + (2.65)

Where, i are the unknown coefficients of the polynomial chosen as the approximation function.

The rotation is defined by the following relation:

()
()dw x

x
dx

 =
(2.66)

If we substitute relation (2.65) into equation (2.66), we obtain:

() 2

2 3 4x 2 x 3 x =  +  +  (2.67)

The displacement vector is fully defined by combining the two relations (2.65) and (2.67).

() 
3

1

2

3

4

w(x) 1 x x² x
u x

(x) 0 1 2x 3x²

 
 
    

= =    
     
  

(2.68)

In the compact form:

Chapter 2: Finite element one dimensional 1D .

38

()    u x P(x)=  (2.69)

The application of the boundary conditions specific to this problem allows us to write:

Node 1: x=0
1 1w =  1 2 = 

Node 2: X=L 3

2 1 2 3 4w L L² L=  + + + 2

2 2 3 42 L 3 L =  +  + 

These equations are grouped and written in matrix form as follows:

 

2

1 1

2

3

2

2

n

3

2 4

w 1 0 0 0

0 1 0 0
u

w 1 L L² L

0 1 2L 3L

    
         = =   

     
         

(2.70)

The matrix A is denoted as follows:

  3

2

1 0 0 0

0 1 0 0
A

1 L L² L

0 1 2L 3L

 
 
 =
 
 
 

(2.71)

In a simplified matrix form, the system (2.70) is written as:

    nu A=  (2.72)

(2.70) The inversion of this matrix leads to:

 
1

3 3

1 0 0 0

0 1 0 0

3 2 3 1A
L² L L L

2 1 2 1

L L² L L²

−

 
 
 
 − − −=
 
 

− 
  

(2.73)

To determine the unknown coefficients ai, it suffices to invert the system (2.70), and we obtain:

2

3

1 1

2

3 2

4 2

3

1 0 0 0

w0 1 0 0

3 2 3 1

wL² L L L

2 1 2 1

L L² L L²

 
    
    

     − − −=        
    −    

  

(2.74)

Additionally, when represented in a more concise matrix format, equation (2.74) appears as:

     1

nA u− = (2.75)

(2.70) Substituting relation (2.75) into equation (2.69), we obtain:

()      1

nu x P(x) A u−= (2.76)

Chapter 2: Finite element one dimensional 1D .

39

According to elasticity theory, the strain field ε(x) is deduced from the displacement field u(x), as

follows:

()  () ()     ()1

n

d d
x u x P(x) A u

dx dx

− = =
(2.77)

Based on relations (2.60) and (2.61), we have:

x

d²w
yE

dx²
 = −

And:

d²w
M(x) EI

dx²
= −

So:

(x) d²w
(x) y

E dx²


 = = −

(2.78)

The displacement approximation function 𝑤(𝑥) given by equation (2.65) can be written in terms

of the shape functions N𝑖(𝑥) as follows:

() ()
4

3

1 2 3 4 i i

i 0

w x x x² x N x .u
=

=  + + + =
(2.79)

The shape functions are determined based on the boundary conditions at the nodes:

Node 1:for x=1: 1 1w = and 2 1 =  (2.80)

And:

Node 2:for x=L: 3

2 1 2 3 4w L L² L=  + + + and 2

2 2 3 42 L 3 L =  +  +  (2.81)

Substituting relation (2.80) into equation (2.81), we obtain:

() ()1 2 1 2

3

2 3 w w

L L²

 + −
 = − −

(2.82)

And:

() ()1 2 1 2

3 3

2 w w

L² L

 + −
 = − +

(2.83)

Knowing, that the displacement vector is given by the following relation:

   
T

i 1 1 2 2u v v=   (2.84)

By substituting equations (2.80), (2.81), (2.82), (2.83) and (2.84) into equation (2.79) and then

identifying, the expressions for the shape functions can be derived as follows:

()
()3 2 3

1 3

2x 3Lx L
N x

L

− +
=

(2.85)

Chapter 2: Finite element one dimensional 1D .

40

()
()3 2

2

x 2Lx L²x
N x

L²

− +
=

(2.86)

()
()3 2

3 3

2x 3Lx
N x

L

− −
=

(2.87)

()
()3 2

4 2

x Lx
N x

L

−
=

(2.88)

()1N x , ()2N x , ()3N x and ()4N x represent the forms functions refer to the mathematical

functions used to describe the shape of the beam element and how it deforms under load. In the

context of a beam finite element, these functions are typically interpolation functions or shape

functions. They describe how the displacement varies within the beam element, usually in terms

of nodal displacements and help to approximate the displacement field and deformation behavior

of the beam element. Once these shape functions are defined, the equation (2.79) becomes:

()

() () () ()
1 1 2 1 3 2 4 2

3 2 3 3 2 3 2 3 2

1 1 2 23 3 2

w x N (x)w N (x) N (x)w N (x)

2x 3Lx L x 2Lx L²x 2x 3Lx x Lx
w w

L L² L L

= +  + + 

− + − + − −
= +  − + 

(2.89)

Substituting equations (2.89) into equation (2.78) leads to:

 1 2 3 4

1

2

2

2

w

d²
(x) y N (x) N (x) N (x) N (x)

wdx²

 
 
 

 = −  
 
  

(2.90)

After expanding this expression, we obtain:

2

3 4

1

2

2

1 2

w

d²N (x)d²N (x) d²N (x) d²N (x)
(x) y

wdx² dx² dx² dx²

 
 
  

 = −   
   

  

(2.91)

This expression reveals the matrix [B], Such that:

  31 2 4
d²N (x)d²N (x) d²N (x) d²N (x)

B y
dx² dx² dx² dx²

 
= −  

 

(2.92)

At this stage, and knowing the matrix [𝐵], we can determine the elemental stiffness matrix of the

beam element defined by the following relation:

  (e) T

V
[K] [B] D B dV=  (2.93)

Chapter 2: Finite element one dimensional 1D .

41

In this relation, the matrix [𝐷] represents the stiffness of the beam. Substituting equation (2.92)

into equation (2.93), we obtain:

1

h b 2
L2 2

(e) 31 2 4

h b 30

2 2

4

d²N (x)

dx²

d²N (x)

d²N (x)d²N (x) d²N (x) d²N (x)dx²
[K] E y²dydz dx

d²N (x) dx² dx² dx² dx²

dx²

d²N (x)

dx²

− −

 
 
 
 
   

=    
  

 
 
 
 

  

(2.94)

If we replace the second derivatives of the shape functions, the relation '(2.89) becomes:

1

h b 2
L2 2

(e) 31 2 4

h b 30

2 2

4

d²N (x)

dx²

d²N (x)

d²N (x)d²N (x) d²N (x) d²N (x)dx²
[K] E y²dydz dx

d²N (x) dx² dx² dx² dx²

dx²

d²N (x)

dx²

− −

 
 
 
 
   

=    
  

 
 
 
 

  

(2.95)

Considering that:
h b

2 2

h b

2 2

E y²dydz EI

− −

= 

(2.96)

After evaluating the terms of this matrix product and integrating the different terms, we arrive at

a final expression for the stiffness matrix of a beam element:

2 2

e

3

2 2

12 6L 12 6L

6L 4L 6L 2LE.I
[K]

12 6L 12 6LL

6L 2L 6L 4L

− 
 

−
 =
 − − −
 

− 

(2.97)

2.6.3.2Vector force of a beam-bar element

The elemental force vector contains the components of the forces and moments applied to the

nodes and on the boundaries of the element itself (concentrated forces and distributed loads). It is

represented by a 1x4 column matrix. The first two values represent the forces and moments at the

first node, while the last two represent those at the second node. As with the case of the two-node

bar element, the distributed load is transformed into equivalent nodal loads (Figure 2.13). To

Chapter 2: Finite element one dimensional 1D .

42

represent the vector force of a beam-bar element, we typically consider the forces and moments

at both ends of the element. For a two-dimensional beam-bar element, the vector can be

expressed as follows:

   
T(e)

L

f q N(x) dx= −
(2.98)

If we substitute the values of the shape functions given by expressions (2.85) to (2.88) into

relation (2.98), we obtain:

 

()

()

()

()

3 2 3

3

3 2

(e)

3 2
L

3

3 2

2

2x 3Lx L
L

qL 2
x 2Lx L²x L²

q
L² 12

f q dx
L2x 3Lx q
2L

L²
x Lx q

12
L

 − +
   −  
  − +
   −
  

= − =   
− −    −

  
  
 − 
  

 



(2.99)

Figure 2.13: Transformation of the distributed load into equivalent nodal loads

2.6.5 Example calculation of beam element

To illustrate the use of beam finite elements, we will examine a practical case study in this

section. Our goal is to analyze the response of a beam structure under bending loading using the

finite element method. The system consists of a circular section beam made of a material with

Young's modulus E=2×105 MPa, with a diameter of d=60 mm, fixed at one end and supported by

a simple support at the other, with a length of 2𝐿=1.6 m. The beam is subjected to a bending load

F=4 kN (Figure 2.14). We will analyze the system's response by determining the unknown

displacements and the reactions at the supports.

Chapter 2: Finite element one dimensional 1D .

43

Figure 2.14: Illustrates a demonstration of calculating the response

The procedure to address this issue involves the following steps:

1. Model of the beam structure: The beam's geometric characteristics and material properties

are depicted in Figure 2.14.

2. Discretize of the beam: Partition the beam into two finite elements between the nodes, and

designate the nodes and elements accordingly. Nodes are labeled as 1, 2, 3, and elements as 1 and

2, as illustrated in Figure 2.15.

Figure 2.15: Discretization of the beam into 2 linear elements and 3 nodes

3. Set up of the element stiffness matrices: Compute the stiffness matrix for each element

utilizing the formula specific to a beam element within the finite element method (FEM).

 e 3

12 6L 12 6L

6L 4L² 6L 2L²EI
K

12 6L 12 6LL

6L 2L² 6L 4L²

− 
 

−
 =
 − − −
 

− 

Let's calculate the flexural stiffness term:

(w1,1)

Node 1

(1,2)

Element (1) Element (2)

(w2,3) (w3,3)

Node 2

(3,4)
Node 3

(5,6)

Chapter 2: Finite element one dimensional 1D .

44

()
44

4
3.14 60d

I 635 850 mm
64 64


= = =

So:

()

4

33

EI 21 10 635850 N
260.8

L mm800

 
= =

- Element 1: between nodes 1 and 2, with cross-section A, Young's modulus E, and length

2 2

3

1

2 2

12 6L 12 6L

6L 4L 6L 2LEI
[K]

12 6L 12 6LL

6L 2L 6L 4L

− 
 

−
 =
 − − −
 

− 

- Element 2: between nodes 2 and 3. Since it has the same geometric and material properties as

element 1, then:

2 2

3

2

2

1

2

12 6L 12 6L

6L 4L 6L 2LEI
[K] [K]

12 6L 12 6LL

6L 2L 6L 4L

− 
 

−
 =
 − − −


− 

=



4. Assemble the global stiffness matrix: Form the global stiffness matrix (GSM) by assembling

the stiffness matrices of the individual elements.

dim (GSM)= number of degrees of freedom per node multiplied by the number of nodes

dim(GSM)=2×3=6

  3

12 0

12 6L 0 12 6LEI
K

0

12 6L 6L 0

6L 4L² 6L 2L² 0 0

24

8L²

0 12 6L

²

6L 2L² 0 6L 2L

12 6L

0 0 6L 2L² 6L 4L

²L

− 
 
 
 − − −



−

=  
− − 
 

 −

− − −

5. Formulate the load vector: Construct the global load vector {F} considering the applied

concentrated force 𝐹 at node 2.

- Element 1: between nodes 1 and 2, concentrated force at node 2:

Chapter 2: Finite element one dimensional 1D .

45

 

1

(1) 1

2

2

0
F 1

0
M 2

f F
F 3

2
M 4

0

 
   
      

= =   
−   

       

- Element 2: between nodes 2 and 3, concentrated force at node 2:

 

2

(2) 2

3

3

F
F 2

2
M 3

0f
F 4

0
M 5

0

 
−   

      
= =   
   
       

6. Global force vector: The cumulative force vector represents the total forces and moments

applied at the nodes throughout the entire finite element mesh. It is created by aggregating the

contributions of all local force vectors, thus encapsulating all the forces and moments acting

across the entire structure.

Dim (GVF) = number of degrees of freedom per node multiplied by the number of nodes

Dim (GVF) =2×3=6

   
T

F 0 0 F 0 0 0= −

7. Applying boundary conditions: The boundary conditions relevant to this case study are

shown in Table 2.6:

Table 2.6: The boundary conditions specific to the case study (beam under bending)

Nodes Boundary conditions Displacements Forces

Node 1 fixed support 1 0w = and 1 0= 1 1
?RT == and 1 ?M =

Node 2 concentrated force 2 ?w = and 2 ?= 2 FT = − and 2 0M =

Node 3 simple support 3 0w = and 3 ?= 3 0T = and 3 0M =

Chapter 2: Finite element one dimensional 1D .

46

8. Formation of the global system: To determine displacements and reactions at the supports

(nodes 1 and 3), solve the system of equations using the relationship between the stiffness matrix,

displacements, and external forces:     K . U F=

1

4 4

1

2

4 4 4
2

3

3
4 4

12 4800 0 0 w 0

4800 256

8

10 10 0 0 0

24 w ?
2

1

12 4800

60.8
?10 512 10 10

w 00 0 4800

4

12 480

800 128

12 4800 0 12 4800
.

4800 128 0 4800 12

1

4

2

4800 12

0

?0 0 0 800 2568 10

−   
   − 
   
   − − −  
   

−   
  −
  

   



=

 =

=

 =



  

=− −

 = − 

1 1

1 1

2

2

2

33

T =R

M =M

T =-4000

M =0

T =R

M 0

 
 
 
  

=  
 

  
  

=   

 Solution: To solve this system, we eliminate the rows and columns corresponding to nodes 1,2

and 5, which have zero displacements, resulting in the reduced system:

2

4 4

2

4

3

4

24 0 4800 w 4000

260.8 0 512 10 128 10 . 0

4800 128 10 256 10 0

−     
    

   =    
           

Finally, we find:

2 1.1183 mm w = −

2 0.000599 mm = −

3 0.002396 mm = −

To ascertain the reactions at the supports, we revisit equations 1,2 and 5, substituting the

displacement w2 and rotations 2 and 3 with their previously calculated values.

() ()1 2 2R 260.8 12w 4800 260.8 (12) (1.1183) 4800 N9(0.00059) 2750= − +  = −−  =+ −

() ()4 4

1 2 2 1M 260.8 4800W 128 10 260.8 (4800) (121.1183) 0.00059 68 10 (1200000 N.mm M 1199972.0 .9 9) N mm= − +   = −    = =− + − −

()

()

3 2 2 3

1.1183) N

R

(480

W

0)

260.8 12 4800 4800

260.8 (12) ((0.000599) 0.002394 6)(800) (1250

= − −  − 

= −   −− +  =− + − −

Upon computation, the outcomes for the unknown displacements and reactions are presented in

the following Table2.7:

Chapter 2: Finite element one dimensional 1D .

47

Table 2.7: Results specific to the case study (beam under bending)

Nodes
Displacements Loads

bend (mm) rotation (rad) Forces (N) Moments (N.mm)

Node 1 1 0w = 1 0= 1 2750R = 1 1200000M =

Node 2
2 1.1183 w = − 2 0.000599 = − 2 2 4000T F= = − 2 0M =

Node 3 3 0w =
3 0.002396 = − 3 1250R = 3 0M =

2.7 Conclusion

In this chapter, we explored the fundamental principles and applications of finite elements in

structural analysis. We began with truss elements under tensile loading, where we examined how

axial forces influence deformations and stresses in simple structures. Moving on to trusses, we

studied structures composed of multiple bars. Finally, we investigated beam-bar elements,

analyzing the response of beams under various bending loads. The combination of these concepts

showcases the power of the finite element method in modeling and solving various engineering

problems. By integrating different types of elements, we can analyze complex structures with

high accuracy, predicting their behavior under various loading conditions. This ability to simulate

and optimize structures is essential in modern design and engineering, providing robust and

efficient solutions for a wide range of industrial applications.

Chapter 3: Programming and validation .

48

Chapter 3

Programming and validation

3.1 Programming Languages

3.1.1 Overview of programming languages

Programming languages are essential tools in coding, enabling developers to write

instructions that computers can follow. They can be categorized into low-level and high-level

languages. Low-level languages, such as machine language and assembly language, are closer to

the computer's hardware and offer high performance, though they are more challenging to write

and understand. High-level languages, such as Python, Java, C++, and JavaScript, are more

abstract and user-friendly, making them easier to read, write, and maintain. These languages

provide various features and libraries that help developers create complex software more

efficiently [11].

Figure 3.1: popular programming languages

3.1.2 Core Concepts in Programming

Key concepts in programming include variables, data types, control structures, functions, and

objects. Variables are storage locations identified by names that hold data, which can be

manipulated throughout the program. Data types define the kind of data a variable can hold, such

Chapter 3: Programming and validation .

49

as integers, floats, strings, and Booleans. Control structures, like loops and conditionals, direct

the flow of the program by executing different code blocks based on certain conditions.

Functions or methods are reusable blocks of code designed to perform specific tasks and can take

inputs (parameters) and return outputs. In object-oriented programming (OOP), objects and

classes are fundamental. Objects are instances of classes, which define the structure and behavior

of these objects, promoting code reuse and modularity [12].

3.1.3 Development Paradigms

Programming follows various development paradigms, including procedural programming,

object-oriented programming, and functional programming. Procedural programming focuses on

a sequence of instructions to perform tasks, emphasizing linear execution. Object-oriented

programming organizes code into objects that encapsulate data and methods, enhancing

modularity and code reuse. Functional programming, on the other hand, treats computation as the

evaluation of mathematical functions and avoids changing state and mutable data [13].

3.1.4 Development Tools

Development tools play a crucial role in programming, providing environments where code

can be written, tested, and debugged. Integrated Development Environments (IDEs) like Visual

Studio Code, PyCharm, and Eclipse offer comprehensive features that streamline the

development process. Version control systems such as Git and SVN help manage changes to the

source code over time, facilitating collaboration among developers [14].

3.1.5 Software Development Lifecycle

The software development lifecycle comprises several stages: planning, design,

implementation, testing, deployment, and maintenance. Planning involves defining the scope and

purpose of the software, while design focuses on creating blueprints for the software architecture.

Implementation is the actual coding phase, followed by testing to ensure the software is bug-free

and performs as expected. Deployment releases the software to users, and maintenance involves

updating and fixing the software post-release to address any issues or new requirements [15].

Chapter 3: Programming and validation .

50

Figure 3.2: Software Development Lifecycle

3.1.6 Popular Programming Languages and Their Uses

Various programming languages have become popular due to their unique strengths and use

cases. Python is known for its simplicity and versatility, making it popular for web development,

data analysis, artificial intelligence, and scientific computing. Java is commonly used in

enterprise environments, Android app development, and large systems due to its robustness and

portability. JavaScript is essential for web development, both on the client-side and server-side,

thanks to its ability to create interactive and dynamic web pages. C++ is favored in system and

software development, game development, and performance-critical applications for its

efficiency and control over system resources. Ruby, with its simplicity and productivity, is often

used in web development with the Ruby on Rails framework [16].

3.1.7 Emerging Trends

Emerging trends in programming include machine learning and artificial intelligence, which

are increasingly integrated into applications to provide intelligent features and automation.

Quantum computing, although still in its early stages, promises to revolutionize problem-solving

with new programming paradigms, block chain technology is gaining traction for developing

decentralized applications and crypto currencies, while the Internet of Things (IoT) focuses on

programming interconnected devices and sensors to create smart environments.

Chapter 3: Programming and validation .

51

Programming is a dynamic and ever-evolving field that adapts to technological advancements

and changing user needs. Mastering programming languages and understanding core concepts are

essential for developing efficient, innovative software solutions [17].

3.2 Chosen Programming Language (Python)

3.2.1 Definition and history of python

Python is a cross-platform, multi-paradigm, object-oriented programming language (Figure

3.3). It supports structured, functional and object-oriented imperative programming and is

comparable to other languages in the same programming paradigm, such as Perl, Ruby, Scheme,

Smalltalk and Tcl.

Figure 3.3: python logo

The language is dynamic, which allows for rapid development and flexibility. Automatic

memory management using garbage collection is another feature which makes it more efficient

and easier to maintain. Python also includes a comprehensive exception handling system which

provides a robust solution for handling errors in a structured way.

Furthermore, educationalists have identified the language as an accessible introduction to the

fundamental concepts of programming, as its syntax is clearly separated from low-level

mechanisms.

Python is a versatile programming language that can be employed in a multitude of contexts

and adapted to a wide range of applications through the use of specialized libraries. It is

particularly popular as a scripting language for automating simple yet time-consuming tasks,

such as retrieving the weather forecast from the Internet or integrating it into computer-aided

design software to automate repetitive sequences of actions.

Computer-aided design software is one area where Python is used to automate repetitive

sequences of actions (see the Adoption section). Additionally, it is employed as a prototype

development language when a functional application is required prior to optimization with a

Chapter 3: Programming and validation .

52

lower-level language. It is particularly prevalent in the scientific community and boasts numerous

extensions for numerical applications.

The Python language is licensed under an open-source license similar to the BSD licence3

and runs on a wide range of computer platforms, including supercomputers, mainframes4,

Windows, Unix, GNU/Linux, Mac OS, Android and iOS, as well as Java and .NET.

The language is designed to optimize the productivity of programmers by offering high-level

tools and an easy-to-use syntax [18].

3.2.2 Python capabilities and functions

Python offers a diverse set of capabilities that cater to various programming needs:

- Writing small, very simple programs, known as scripts, which perform specific tasks on

your computer.

- Developing complete programs, such as games, office suites, multimedia software, e-mail

clients, and more.

- Handling very complex projects, including software packages a collection of multiple

pieces of software that can work together, commonly utilized in professional settings.

- Creating graphical interfaces to enhance user interaction and experience.

- Facilitating information circulation across a network, enabling seamless communication

between devices.

- Engaging in advanced dialogue with your operating system, allowing for efficient system-

level operations and automation.

3.2.3 Errors and exceptions

The process of programming is inherently complex, as is any human activity. Errors in

programming are referred to as "bugs," and the techniques used to detect and correct them are

collectively known as "debugging." It is evident that the most crucial skills to be acquired during

the learning process are those required to debug a program effectively.

To gain a deeper understanding of the context of our work, it is first necessary to elucidate a

few related concepts.

A) Types of Programming Error: As is the case with all programming languages, three types of

error can occur in a Python program:

- Syntax errors: Python can only execute a program if the syntax is perfectly correct. If this is

not the case, the process is interrupted and an error message is displayed (Figure.3.4). The

Chapter 3: Programming and validation .

53

term syntax refers to the language syntax rules that the authors have set up for the structure of

the program.

- The second type of error is the semantic error or logical error. If there is an error of this type

in one of your programs, it functions correctly in the sense that no error message is generated.

However, the result is not what was intended. The program instructions in the sequence do

not correspond to the desired objective. The semantics (logic) are incorrect.

- The third category of error is the execution error, which manifests when a program is already

operational but under specific conditions. For instance, if a program attempts to read a file

that no longer exists, an execution error will occur. These errors are also known as exceptions

because they typically indicate that an unforeseen event has occurred.

B) The distinction between an error and an exception: In general, an error is a response to a

problem posed by the system. However, exceptions are alerts whose location and behavior are

defined by the developer. Exceptions are used to handle errors; the reverse makes no sense.

C) Error and exception handling: Error handling is usually solved by recording the state of

execution at the time of the error and interrupting the normal flow of the program to execute a

special function or piece of code, which is known as the exception handler. Depending on the

type of error ("division by zero", "file open error" and so on) that had occurred, the error handler

can resolve the problem and the program can then continue with the data previously saved.

Exception handling is a construct in some programming languages for automatically handling

or dealing with errors. Many programming languages such as C++, Objective-C, PHP, Java,

Ruby, Python and many others have built-in support for exception handling.

When an exception occurs the normal flow of the program is disrupted and the

program/application terminates abnormally, which is not recommended, therefore these

exceptions must be handled.

Figure 3.4: Undefined variable error example in python

Chapter 3: Programming and validation .

54

Unfortunately, using the built-in support for exception handling requirements exception

handling needs for a deep beginner's knowledge of how these exceptions occur. In addition, full

details can be given by the compiler to guide and help learners catch these exceptions. When a

learner's program crashes at runtime, the learner receives feedback that an exception has

occurred. However, the cognitive level of a beginner cannot allow him to catch these exceptions

to avoid possible errors. Python (version 3.4) has around 29 built-in exceptions (Table 3.1) [19].

Table 3.1: Some standard Python built-in exceptions

Exception name Description

Arithmetic Error Basic exception for all errors that occurs numerical

calculation.

Floating Point Error Triggered when a floating point calculation fails.

Zero Divison Error Triggered when division or modulo by zero occurs for all

numeric types.

EOF Error Triggered when there is no input from either raw_input () or

input () and the end of the file is reached.

Index Error Triggered when an index is not in a sequence.

IO Error The event is triggered when an input/output operation fails,

such as the print statement or the open () function when an

attempt is made to open a file that does not exist.

OS Error For operation system errors

Value Error In the event that the integrated function for a data type is of

the correct type for the arguments, yet the arguments

themselves are of an invalid value.

3.2.4 Jupyter notebook

We used Jupiter’s notebook for easy troubleshooting and debugging and to well organize our

code (Figure 3.5).

Figure 3.5: Jupyter Logo

3.2.5 Overview of Jupyter notebook

Jupyter Notebook is an open-source web application that allows users to create and share

documents containing live code, equations, visualizations, and narrative text. It's a powerful tool

Chapter 3: Programming and validation .

55

widely used in data science, scientific computing, and machine learning for interactive computing

[20].

3.2.6 Key features of Jupyter notebook

- Interactive Code Execution

- Rich Text Support

- Data Visualization

- Documentation and Sharing

- Extensibility

3.3 Finite element program

In order to achieve the desired results and guarantee a well-built program we need to respect

the geometric and physical description of the problem studied the calculation of the elementary

matrices and vectors and assembly of the overall system, solving the system and finally

visualizing the results. The actual use of finite element modeling software on the market provides

certain know-how and expertise adapted to the problem being addressed, a good knowledge of

the physics involved and a general understanding of the finite element method.

3.3.1 Finite element program exaction steps

Finite Element Analysis (FEA) involves several methodical steps to accurately model and

analyze physical systems (Figure.3.6). Each one of the previous steps contain a number of

conditions and elements that is related to how the program function, which are and not limited to:

Step 1: input

Consists of the different variables and parameters the program needs to function like each

node coordination and how elements are linked together, physical parameters and demands as

well as limit conditions.

Step 2: Generation of K matrix and F vector

Starting with extracting each information related to an element then building the global

matrix K and vector F and finally the Assembly process.

Step 3: Solving the system

Applying: the limit conditions on the matrix and vector, Gaussian elimination and calculating U

Chapter 3: Programming and validation .

56

.

Figure 3.6: program execution steps

3.3.2 Developed program

Finite element programs are available in the net on variety of programming languages which

most are in MATLAB, however there are nearly none in python therefore the method can be

easily exported as an API.

3.3.3 Code

Out of the numerous systems we addressed three; 1 Dimensional bar, Trillis and Beam. All of

them share the same libraries as follow:

- NumPy: library is used for numerical computing in Python, widely used for its powerful

capabilities in handling and manipulating numerical data.

- Pandas: Pandas is a powerful and flexible open-source data analysis and manipulation

library for Python. It is built on top of NumPy and provides high-level data structures and

functions designed to make data analysis fast and easy.

- Matplotlib is a comprehensive library for creating static, animated, and interactive

visualizations in Python. It is widely used for generating plots and graphs and is an

essential tool in the data analysis and data science toolkit.

importnumpyas np

import pandas as pd

importmatplotlib.pyplotasplt

Figure 3.7: Used python libraires

3.3.4 Bar program

The bar program will perform a linear static analysis on a bar subjected to axial loads. The bar

will be divided into elements, and the program will calculate the displacements at the nodes and

the stresses in each element. The structured Python program that performs this analysis is given

below:

Input
Generating K

matrix and F vector

Solving the

system

Chapter 3: Programming and validation .

57

Phase 1: input

This is the input part of nodes and boundary conditions, where data is an array that stores “x” and

“y” as coordinates, “U” as displacement and “F” as the load of each node (Figure.3.8).

columns = ['coordinate_x','coordinate_y','displacement_x','load_x']

data = [[x, y, U, F]]

nodes = pd.DataFrame(data, columns = columns)

nodes

Figure 3.8: Bar nodes parameters

This is the input part of elements where we define the 2 nodes that represent each single element

(Figure.3.9).

Note: Unknown variables are described as “np.nan”.

columns = ['start','end','area','material']

data = [[starting_node,ending_node, A, E]]

elements = pd.DataFrame(data, columns = columns)

elements

Figure 3.9: Bar element parameters

- p.DataFrame is a function in pandas library that has a 2 dimensional data structure, like a

2 dimensional array, or a table with rows and columns.

Phase 2: elementary stiffness matrix

The elementary stiffness matrix represents the stiffness of a single finite element within the larger

system and is crucial for assembling the global stiffness matrix. For a 1D bar element subjected

to axial loads, the elementary stiffness matrix can be derived from the governing equations of

linear elasticity. For a bar element with length Le, cross-sectional area A, and Young's modulus

E, the program for computing the elementary stiffness matrix [k] for a bar element is given below

(Figure.3.10):

Chapter 3: Programming and validation .

58

defcompute(element):

 start = element['start']

 end = element['end']

 x_coordinate_start = nodes.loc[start,'coordinate_x']

 y_coordinate_start = nodes.loc[start,'coordinate_y']

 x_coordinate_end = nodes.loc[end,'coordinate_x']

 y_coordinate_end = nodes.loc[end,'coordinate_y']

 deltaX = x_coordinate_end - x_coordinate_start

 deltaY = y_coordinate_end - y_coordinate_start

 length = np.sqrt(deltaX ** 2+deltaY ** 2)

 stiffness = element['material']*element['area']/length

 R= np.array([[1,-1],

 [-1,1]])

 return length, stiffness, R

elements [['length','stiffness','R']] = elements.apply(compute, axis =

1,result_type='expand')

elements

Figure 3.10: Bar elementary stiffness matrices calculation

- .loc function is a property that allows Pandas to query data within a data frame in a

standard format.

- .array is a linear data structure where all elements are arranged sequentially.

Phase 3: Stiffness matrix Global

This phase assembles the elementary stiffness matrices into a global one (Figure.3.11).

defcompute_globalK(element):

 N = len(nodes)

 indices = np.arange(N)

 indices = indices.reshape(-1,1)

 K = np.zeros((N, N))

 start = element['start']

 end = element['end']

 indices = np.hstack([indices[start], indices[end]])

 K[np.ix_(indices, indices)] = element['stiffness']*element['R']

 return K

K = elements.apply(compute_globalK, axis=1).sum()

K.round(4)

Figure 3.11: Bar global matrix calculation

- len returns the length of given variable.

- .arrange allows you to create arrays with evenly spaced values.

Chapter 3: Programming and validation .

59

- .hstack function is used to horizontally stack data of the variables.

Phase 4: Gaussian elimination

Where we shrink the stiffness matrix global into a smaller one for further calculation

defpartition_K(K, A, B):

 KAA = K[np.ix_(A, A)]

 KAB = K[np.ix_(A, B)]

 KBA = K[np.ix_(B, A)]

 KBB = K[np.ix_(B, B)]

 return KAA, KAB, KBA, KBB

U = nodes[['displacement_x']].to_numpy()

U = U.ravel()

A = np.isnan(U)

P = nodes[['load_x']].to_numpy()

P = P.ravel()

B = np.isnan(P)

KAA, KAB, KBA, KBB = partition_K(K, A, B)

KAA

Figure 3.12: Bar Gaussian elimination process

- .ravel is used to change a 2-dimensional array or a multi-dimensional array into a

contiguous flattened array.

- .isnan returns if given values are not a void.

Phase 5: Results

Calculates the final results “Unknown displacement” and “Unknown loads” ” (Figure.3.13).

UB = U[B]

UB

PA = P[A]

PA

UA = np.dot(np.linalg.inv(KAA),(PA - np.dot(KAB,UB)))

U[A] = UA

PB = np.dot(KBA, UA) + np.dot(KBB, UB)

P[B] = PB

result = nodes.copy()

result[['displacement_x']] = U.reshape(-1,1)

result[['load_x']] = P.reshape(-1,1)

result

Figure 3.13: Bar results

- .linalg defines linear algebra functions.

- .inv inverses a matrix.

Chapter 3: Programming and validation .

60

3.3.5 Truss program

Truss program is similar to the previous program therefore we decided to show only the

difference between the two.

Phase 1: input

In Input phase we added only the displacement “Uy” and load “Fy” as follow (Figure.3.14):

columns =

['coordinate_x','coordinate_y','displacement_x','displacement_y','load_x','load_y']

data = [[x, y,Ux, Uy,Fx,Fy]]

nodes = pd.DataFrame(data, columns = columns)

nodes

Figure 3.14: Truss node parameters

Element part is still the same as (Figure 3.9).

Phase 2: elementary stiffness matrix

The difference here is the elementary stiffness matrix components (Figure.3.15).

defcompute(element):

 start = element['start']

 end = element['end']

 x_coordinate_start = nodes. loc[start,'coordinate_x']

 y_coordinate_start = nodes.loc[start,'coordinate_y']

 x_coordinate_end = nodes. loc[end,'coordinate_x']

 y_coordinate_end = nodes. loc[end,'coordinate_y']

 deltaX = x_coordinate_end - x_coordinate_start

 deltaY = y_coordinate_end - y_coordinate_start

 length = np.sqrt(deltaX ** 2+deltaY ** 2)

 stiffness = element['material']*element['area']/length

 c = deltaX/length

 s = deltaY/length

 R= np.array([[c*c, c*s, -c*c, -c*s],

 [c*s, s*s, -c*s, -s*s],

 [-c*c, -c*s, c*c, c*s],

 [-c*s, -s*s, c*s, s*s]])

 return length, stiffness, R

elements [['length','stiffness','R']] = elements.apply(compute, axis =

1,result_type='expand')

elements

Figure 3.15: Truss elementary stiffness matrices calculation

Phase 3: stiffness matrix global

Assembly is the same regardless of the system

Chapter 3: Programming and validation .

61

Phase 4: Gaussian elimination

In the Gaussian elimination phase we added displacement y “Uy” and load y “Fy” (Figure.3.16).

defpartition_K(K, A, B):

 KAA = K[np.ix_(A, A)]

 KAB = K[np.ix_(A, B)]

 KBA = K[np.ix_(B, A)]

 KBB = K[np.ix_(B, B)]

 return KAA, KAB, KBA, KBB

index A is where the displacement is unknown

U = nodes[['displacement_x','displacement_y']].to_numpy()

U = U.ravel()

A = np.isnan(U)

P = nodes[['load_x','load_y']].to_numpy()

P = P.ravel()

B = np.isnan(P)

KAA, KAB, KBA, KBB = partition_K(K, A, B)

KAA

Figure 3.16: Truss Gaussian elimination process

Phase 5: results

Same as phase 1 and 4 we added displacement y “Uy” and load y “Fy” (Figure.3.17).

UB = U[B]

UB

PA = P[A]

PA

UA = np.dot(np.linalg.inv(KAA),(PA - np.dot(KAB,UB)))

U[A] = UA

PB = np.dot(KBA, UA) + np.dot(KBB, UB)

P[B] = PB

result = nodes.copy()

result[['displacement_x','displacement_y']] = U.reshape(-1,2)

result[['load_x','load_y']] = P.reshape(-1,2)

result

Figure 3.17: Truss results

3.3.6 Beam program:

Truss program is similar to the previous program therefore we decided to show only the

difference between the two.

Chapter 3: Programming and validation .

62

Phase 1: input

In Input phase got only one displacement y “W” and we added a rotation “θ” as well as torque

“M” (Figure.3.18).

columns = ['coordinate_x','coordinate_y','displacement_y','rotation','load_y','torque']

data = [[x, y, W,θ,T, M]]

nodes = pd.DataFrame(data, columns = columns)

nodes

Figure 3.18: Beam node parameters

The element part changed as follow: we replaced area with width “b” and height “h”

(Figure.3.19).

columns = ['start', 'end', 'inertia', 'material', 'length']

data = [[starting node, ending node, I, E, L]]

elements = pd.DataFrame(data, columns = columns)

elements

Figure 3.19: Beam element parameters

Phase 2: elementary stiffness matrix

Stiffness law changed and elementary stiffness matrix as well (Figure.3.20).

def compute(element):

 start = element['start']

 end = element['end']

 x_coordinate_start = nodes. loc[start, 'coordinate_x']

 y_coordinate_start = nodes.loc[start, 'coordinate_y']

 x_coordinate_end = nodes. loc[end, 'coordinate_x']

 y_coordinate_end = nodes. loc[end, 'coordinate_y']

 stiffness=(element['material']*element['inertia'])/(element['length']*element

['length']*element['length'])

 L = element['length']

 R= np.array([[12, 6*L, -12, 6*L],

 [6*L, 4*L*L, -6*L, 2*L*L],

 [-12, -6*L, 12, -6*L],

 [6*L, 2*L*L, -6*L, 4*L*L]])

 return stiffness, R

elements [['stiffness', 'R']] = elements.apply(compute, axis = 1, result_type='expand')

elements

 Figure 3.20: Beam elementary stiffness matrices calculation

Phase 3: stiffness matrix global

Assembly is the same regardless of the system

Phase 4: Gaussian elimination

In this phase displacement and load got replaced by rotation “θ” and torque “M” (Figure.3.21).

Chapter 3: Programming and validation .

63

defpartition_K(K, A, B):

 KAA = K[np.ix_(A, A)]

 KAB = K[np.ix_(A, B)]

 KBA = K[np.ix_(B, A)]

 KBB = K[np.ix_(B, B)]

 return KAA, KAB, KBA, KBB

index A is where the displacement is unknown

U = nodes[['displacement_y','rotation']].to_numpy()

U = U.ravel()

A = np.isnan(U)

P = nodes[['torque','load_y']].to_numpy()

P = P.ravel()

B = np.isnan(P)

KAA, KAB, KBA, KBB = partition_K(K, A, B)

KAA

Figure 3.21: Beam Gaussian elimination process

Phase 5: results

Same as phase 1 and 4 we replaced displacement x and load x with rotation “θ” and torque “M”

(Figure.3.22).

UB = U[B]

UB

PA = P[A]

PA

UA = np.dot(np.linalg.inv(KAA),(PA - np.dot(KAB,UB)))

U[A] = UA

PB = np.dot(KBA, UA) + np.dot(KBB, UB)

P[B] = PB

result = nodes.copy()

result[['displacement_y','rotation']] = U.reshape(-1,2)

result[['load_y','torque']] = P.reshape(-1,2)

result

Figure 3.22: Beam results

3.4 Validating results using RMD6 software

3.4.1 Overview of RDM6

RDM6 or "Resistance des Matériaux 6" is software used in mechanical and civil engineering

for analyzing the strength and resistance of materials. It is commonly used for educational

Chapter 3: Programming and validation .

64

purposes, and provides tools to solve problems related to material resistance and structural

analysis. It’s a software tool designed for the simulation and analysis of material strength,

intended for engineers and researchers working in the field of structural mechanics. This software

allows users to model, simulate, and analyze the behavior of materials under various constraints

and load conditions [21].

3.4.2 RDM6 Features

Rdm6 offers a range of features to help engineers of which are [21]:

• Material resistance calculation; including stress, strains and deformation.

• Structural analysis; provides tools for analyzing beams, columns, and other structural

elements to determine their behavior under various loading conditions.

• Educational tools; often used in engineering courses to help students understand and

apply principles of material resistance and structural mechanics.

• Applications; that are used to design and evaluate the safety and performance of

buildings, bridges, and other structures.

3.4.3 RDM6 Modules

The RDM6 structural analysis software is composed of various modules that enable

comprehensive and detailed analyses of material and structural behaviors under different

conditions. It contains 4 modules or sub-software; Flexion, Ossatures, Element Finis and Rosette.

Below is an overview of the main modules available in the RDM6 software (Table 3.2) [21].

Table 3.2: The main modules available in the RDM6

Flexion
Flexion is software designed for static analysis, using the

finite element method, of straight beams subjected to simple

bending.

Ossatures This software allows the study, using the finite element

method, of the static and dynamic behavior of frameworks.

Element Finis The evaluation of the mechanical and/or thermal behavior of

a part using the finite element method.

Rosette Analysis of strain gauge rosettes, study of stresses and

deformations around a point.

3.5 Comparing program results with traditional analytical results

In the field of structural analysis and material strength, it is crucial to validate the accuracy

and reliability of computational tools. This section focuses on comparing the results obtained

Chapter 3: Programming and validation .

65

from the developed programs with those derived from manual calculations in simple cases and

with those provided by RDM 6 software in more complex cases. Such comparisons are essential

to ensure that the developed programs can replicate established theoretical predictions. By

examining the consistency between program results, manual calculations, and RDM 6 software

outputs, we can assess the software's performance, identify any discrepancies, and understand the

underlying reasons for these differences. This process not only enhances confidence in the

software's capabilities but also contributes to its continuous improvement and refinement.

3.5.1 Example of the calculation for bar element in tension

For the first example of the calculation of the bar element in tension (Paragraph 2.4.4), the

xcomparison is between the manual results of the finite element method (Table 3.3) and those

obtained by the developed program for the 1D bar element in tension (Table 3.4).

Table 3.3: Outcomes provided by manual computing for bar element

Nodes Displacements (mm) Forces (N)

Node 1
1 0u = 1 100F = 1 152.94R = −

Node 2
2 0.0026 u = 2 100F =

Node 3
3 0.0021 u = 3 200F =

Node 4 4 0u = 4 247.06R = −

Table 3.4: Results derived from proposed program for bar element

To compare these results, the relative error calculated using the following formula (3.1) is

shown in Table 3.5.

program manual

manual

y y
e% 100

y

−
= 

(3.1)

Chapter 3: Programming and validation .

66

Table 3.5: Relative error between outcomes provided by manual computing and those from

proposed program for bar element

Nodes (e %) displacements

(mm)

(e %) Forces

Node 1 0 0 0.04

Node 2 0 0

Node 3 0 0

Node 4 0 0.4

Table 3.5 presents the relative errors between manual calculation’s results and the proposed

program’s results for a bar element consisting of 3 elements and 4 nodes; we observe that on

displacement’s section there is no errors, on force’s section there is error valuated with 0.04% in

node 1, in node 4 there is valuated with 0.4%, if we gather all the errors we have a total error

valuated with 0.44%, the total error is under 1% so we can say that the solution of the proposed

program is almost same as manual calculation in bar elements.

3.5.2 Example of the calculation for truss element

In the second example involving the calculation of the truss element in tension (Paragraph

2.5.5), the comparison is made between the manual finite element method results (Table 3.6) and

those obtained using the developed program for the truss element in tension (Table 3.7).

Table 3.6: Results obtained through manual calculations for truss element

Nodes Displacements (u) Displacements (v) Forces /x-axis Forces /y-axis

Node 1 1 0u = 1 0v = -10 087.5 N -10 087.5 N

Node 2 2 0u = 2 0v = 0 N 30 087.5 N

Node 3 3 1.4654mmu = 3 0.7522mmv = − 10 000 N -20 000 N

Table 3.7: Results derived from the proposed program for truss element

To contrast these findings, the relative discrepancy computed via formula (3.1) is displayed in

Table 3.8.

Chapter 3: Programming and validation .

67

Table 3.8: Relative error between outcomes provided by manual computing and those from

proposed program for truss element

Nodes (e%) u (e%) v (e %) F /x-axis F /y-axis

Node 1 0 0 0.87 0.87

Node 2 0 0 0 0.87

Node 3 0 0 0 0

Table 3.8 presents the relative errors between manual calculation’s results and the proposed

program’s results for a truss consisting of 3 bars and 3 nodes; we observe that on displacement’s

section there is no errors, on force’s section there is error valuated with 0.87% in node 1 on F /x-

axis and F /y-axis, in node 2 there is on F /y-axis with the same value, if we gather all the errors

we have a total error valuated with 2.61%, the total error is under 5% so we notice that the

proposed program is solving the system with a reasonable solution comparing to manual

calculation in simple truss structures.

3.5.3 Example of the calculation for a bar element in bending

In this instance, concerning the calculation of the bar element in bending (Paragraph 2.6.5),

the comparison extends to the manual finite element method results (Table 3.9) and those derived

from the developed program for the bar element in tension (Table 3.10).

Table 3.9: Results derived from manual calculations for beam element

Nodes
Displacements Loads

bend (mm) rotation (rad) Forces (N) Moments (N.mm)

Node 1 1 0w = 1 0= 1 2750R = 1 1200000M =

Node 2
2 1.1183 w = − 2 0.000599 = − 2 2 4000T F= = − 2 0M =

Node 3 3 0w =
3 0.002396 = − 3 1250R = 3 0M =

Table 3.10: Results derived from the proposed program for beam element

To compare these results, Table 3.11 illustrates the relative error calculated using formula (3.1)

between the outcomes generated by manual computation and those obtained from the proposed

program for the beam element.

Chapter 3: Programming and validation .

68

Table 3.11: Relative error between the outcomes obtained through manual computation and

those generated by the proposed program for the beam element

Nodes
(e%) displacements (e%)loads

bend rotation Forces Moments

Node 1 0 0 0.72 0

Node 2 0.045 0.17 0 0

Node 3 0 0.17 0.72 0

Table 3.11 presents the relative errors between manual calculation’s results and the proposed

program’s results for a beam contains 2 elements and 3 nodes with a circular section; we observe

that in node 2 on bend there is an error that valuated with 0.045%, on rotation the error is 0.17%,

in node 3 the error is same as node 2 on rotation, this errors on displacement’s section, on force’s

section there is error valuated with 0.72% in node 1 and node 3, if we gather all the errors we

have a total error valuated with 1.825%, the total error is under 2% so we notice that the proposed

program is reliable to solve a simple beam structures.

3.6 Comparing program results with RDM6 results in complex cases

When evaluating the performance of a developed program for structural analysis, it's often

necessary to compare its results with those obtained from simulations using established software

such as RDM6. This comparison is particularly important in the case of complex structures where

manual calculations are difficult or even impossible. With this in mind, this part of the work

examines the comparison between the results produced by the developed program and those from

simulations conducted with RDM6, highlighting the discrepancies and similarities between these

two analysis approaches for more complex structural cases.

3.6.1 Illustration of the computation for a truss element

Given a truss system consisting of 7 bars with a double support at node 5 and a single support

at node 2, with identical lengths L=1 m meter and the same stiffness E=2×105MPa, and cross-

sections A=10 cm², and subjected to concentrated forces as shown in the figure: F1= 20KN and

F2=10KN. We propose to determine the unknown displacements and the support reactions.

Chapter 3: Programming and validation .

69

Figure 3.23: A truss structure consisting of 7 bars and 5 nodes

Using the calculation program dedicated to 2D bar elements (trusses), and inputting the data from

this problem, we arrived at the results shown in the Table 3.12.

Table 3.12: Results provided by the developed calculation program for the truss structure

consisting of 7 bars

To compare the results obtained with others provided by the RDM6 software for this structure of

7 bars, we present the different steps of the simulation:

1- Initial Configuration

- Open RDM6.

- Configure the basic settings based on the measurement units you use (mm).

2- Creating the truss model

-Node definition: access the model creation section in RDM6 and add the structure's nodes by

specifying their coordinates (X, Y).

- Adding bars: Select the start and end nodes for each bar and add the 7 truss bars by connecting

the appropriate nodes (Figure 3.24).

Chapter 3: Programming and validation .

70

Figure 3.24: Creating the truss model consisting of 7 bars and 5 nodes

3- Defining material and section properties

- Material properties definition: Enter the properties of the material used (Young's modulus,

Poisson's ratio, etc.) (Figure 3.25).

- Defining bar sections: Specify the dimensions of the bar sections (Figure 3.26) (cross-

sectional area, moment of inertia, etc.).

Figure 3.25: Properties of the material used

Chapter 3: Programming and validation .

71

Figure 3.26: Dimensions and shape of the chosen section of the bar

4- Applying loads and boundary conditions

- Applying Loads: Add the forces applied to the nodes or bars and specify the direction and

intensity of the loads (Figure 3.27).

- Defining Boundary Conditions: Fix the support nodes by defining their restricted degrees of

freedom (DOF) and indicate nodes that are fixed or have limited displacements (Figure 3.27).

Figure 3.27: Applying loads and boundary conditions

5- Performing the Analysis

- Running the Simulation: Verify that all data is correctly entered and execute the analysis to

obtain results (reactions, displacements, internal forces).

Chapter 3: Programming and validation .

72

6- Analyzing the Results

- Viewing the Results: Review the results provided by RDM6, including node displacements

and internal forces in the bars and compare these results with those obtained by our developed

calculation program.

- Reports and Export: Generate detailed reports from the results and export data if necessary

for further analysis.

Figure 3.28: Viewing the Results

Figure 3.29: Exporting the report results

The results obtained from the simulations conducted using the RDM6 software for this truss

structure composed of 7 bars are presented in Table 3.13.

Chapter 3: Programming and validation .

73

Table 3.13: Outcomes provided by RDM6 software for the truss structure consisting of 7 bars

Nodes Displacement u (mm) Displacement v (mm)

(v)

Forces/x-axis

(N)

Forces/y-axis (N)

Node 1 0 0 0 17500.6

Node 2 0.08741 -0.2558 0 0

Node 3 0.1498 0 0 12499.4

Node 4 0.04371 -0.1944 0 -10000

Node 5 0.1186 -0.2423 0 -20000

To compare these findings, the relative discrepancy calculated using formula (3.1) is shown

in Table 3.14.

Table 3.14: Relative error between the results generated by the RDM6 software and those

produced by the proposed program for the truss structure consisting of 7 bars

Nodes (e%) u (e%) v (e%) F /x-axis F /y-axis

Node 1 0 0 0 0.004

Node 2 0.1 0.05 0 0

Node 3 0.13 0 0 0.005

Node 4 1.9 0 0 0

Node 5 0 0 0 0

Table 3.14 presents the relative errors between RDM6’s results and the proposed program’s

results for a truss consisting of 7 bars and 5 nodes with a square cross-section; we observe that in

node 2 on displacement u there is an error that valuated with 0.1%, on displacement v the error is

0.05%, in node 3 there is error on displacement u rated with 0.13%, node 4 has error as same as

node 3 with a value of 1.9%, this errors on displacement’s section, on force’s section there is

error valuated with 0.004% in node 1 and 0.005% in node 3, if we gather all the errors we have a

total error valuated with 2.19%, the total error is under 5% so we can say that the proposed

program is usable comparing with RDM6 software in complex truss structures.

3.6.2 Illustration of the computation for a beam element

Given a beam with a solid rectangular cross-section (width b=10cm and height h=20 cm),

fixed at node 1, and with a double support at nodes 2, 3, and 4, with lengths L1=L2=3 meters,

L3=L4=2 meters. The beam is subjected to a bending load F=30 KN and a uniformly distributed

linear load (w=10 KN/m) applied on element 1 Figure 3.30. We propose to determine the

unknown bend, rotations, reaction, and Moments. Given: E=2×105Mpa.

Chapter 3: Programming and validation .

74

Figure 3.30: A beam structure consisting 5 nodes

Using the calculation program dedicated to 2D beam elements, and inputting the data from this

problem, we arrived at the results shown in the Table 3.15.

Table 3.15: Results provided by the developed calculation program for the beam structure

To compare the results obtained with others provided by the RDM6 software for this structure of

7 bars, we present the different steps of the simulation:

1- Initial Configuration

- Open RDM6.

- Configure the basic settings based on the measurement units you use (mm).

2- Creating the truss model

-Node definition: access the model creation section in RDM6 and add the structure's nodes by

number of nodes and specifying their coordinates in axis X.

- Adding beams: the beams are defined automatically after defining the nodes (Figure 3.31).

Figure 3.31: Creating the beam model consisting 5 nodes

Chapter 3: Programming and validation .

75

3- Defining material and section properties

- Material properties definition: Enter the properties of the material used (Young's modulus,

Poisson's ratio, etc.) (Figure 3.32).

- Defining beam sections: Specify the dimensions of the beam sections (Figure 3.33)

Figure 3.32: Properties of the material used

Figure 3.33: Dimensions and shape of the chosen section of the beam

4- Applying loads and boundary conditions

- Applying Loads: Add the forces applied to the nodes and specify the direction and intensity

of the loads (Figure 3.34).

- Defining Boundary Conditions: Fix the support nodes by defining their restricted degrees of

freedom (DOF) and indicate nodes that are fixed or have limited displacements (Figure 3.34).

Chapter 3: Programming and validation .

76

Figure 3.34: Applying loads and boundary conditions

5- Performing the Analysis

- Running the Simulation: Verify that all data is correctly entered and execute the analysis to

obtain results (bend, rotations, reaction, and Moments).

6- Analyzing the Results

- Viewing the Results: Review the results provided by RDM6, including displacements and

rotation and reaction and torque in the nodes and compare these results with those obtained

by our developed calculation program.

- Reports and Export: Generate detailed reports from the results and export data if necessary

for further analysis.

Figure 3.35: Viewing the Results

Chapter 3: Programming and validation .

77

Figure 3.36: Exporting the report results

The results obtained from the simulations conducted using the RDM6 software for this beam

structure is presented in Table 3.16.

Table 3.16: Outcomes provided by RDM6 software for the beam structure

Nodes
Displacements Loads

bend (mm) rotation (rad) Forces (N) Moments (N.mm)

Node 1 0 0 15000 7500000

Node 2 0 0 15000 -7500000

Node 3 0 0 15000 15000000

Node 4 -0.75 0 -30000 0

Node 5 0 0 15000 -15000000

To compare these findings, the relative discrepancy calculated using formula (3.1) is shown

in Table 3.17.

Table 3.17: Relative error between the results generated by the RDM6 software and those

produced by the proposed program for the beam structure

Nodes
(e%) displacements (e%)loads

bend rotation Forces Moments

Node 1 0 0 0 0

Node 2 0 0 0 0

Node 3 0 0 0 0

Node 4 0.023 0 0 0

Node 5 0 0 0 0

Table 3.17 presents the relative errors between RDM6’s results and the proposed program’s

results for a beam contains 4 elements and 5 nodes with a rectangular cross-section; we observe

Chapter 3: Programming and validation .

78

that in node 4 on bend there is an error that valuated with 0.023%, and in the other nodes there is

no error and this show us that the proposed program almost precise as RDM6- software in

complex beams structures.

3.7 Conclusion

In this chapter, we achieve our goal which is programming a program that helping us with

calculating in finite element method and it making complex structures solved easily, we began

with bar program, next we programming a program for truss, then we beam’s program, and we

validate our programs with simple examples that solved manually, we used RDM6 software for

validating our program for the complex examples. Finally, we used error formula to see the

difference between the proposed program’s results and validation’s results. After using error

formula we assured that the proposed programs are usable and helpful with the finite element

method, and proposed program’s results is reliable.

79

General Conclusion

In conclusion, this dissertation has explored the increasing importance of Mechanical

construction in various aspects of our lives. However, the process of building mechanical systems

is often challenging, particularly when it comes to the presence of complex systems. To address

this issue, an efficient program has been developed as part of this research. The developed

program has demonstrated its capability to accurately calculate and export Finite Element

Method results. This process significantly simplifies the Finite Element Method calculations. The

results obtained from the developed program show its potential for practical application in

various fields, such as construction, architecture, civil engineering, and virtual simulations. The

accurate results of the program enable engineers, students, and decision-makers to focus on the

core aspects of mechanical construction without the hindrance of long inaccurate results. Our

research not only presents a novel approach to mechanical construction but also emphasize the

importance of automation and efficiency in the study of mechanical systems. Because there is no

such completed or perfect research, ours still holds a lot of potential for the future. Adding a

proper user interface and merging the 3 systems into one major program instead of 3 separate

ones, we might also think about adding a graphical input of elements and nodes, where the user

can draw the system directly with a set of tools and features.

80

References

[1] Lu, C., Gao, Q., Fu, C., & Yang, H. (2017). Finite Element Method of BBM‐Burgers

Equation with Dissipative Term Based on Adaptive Moving Mesh, Discrete Dynamics in Nature

and Society, 2017(1), 3427376

[2] Chandrupatla, T. R., Belegundu, A. D., Ramesh, T., & Ray, C. (2012). Introduction to finite

elements in engineering, London: Pearson.

[3] Samir, D. E. G. H. B. O. U. D. J. METHODE DES ELEMENTS FINIS.

[4] ZEROUROU. Bachir., OUDJEDI. Lydia. ; (2016) Programmation de la méthode des

éléments finis sous MATAB

[5] RDM6

[6] Kattan, P. I. (2010). MATLAB guide to finite elements: an interactive approach. Springer

Science & Business Media.

[7] Saleh, Faisal & Benterboua, Farah. (2016). Elaboration d'un code éléments finis sous Matlab

pour l'analyse statique des structures en treillis plans articulés.

[8] Wahid. KADDOURI ; METHODE DES ELEMENTS FINIS ANALYSE DES

STRUCTURES PAR ELEMENTS FINIS ; Batna, 2017

 [9] SEGHIR, A. (2005). Cours, << Méthode des Éléments Finis>>. Université Abderrahmane

Mira–Bejaia, Faculté de Technologie, Département de Génie Civil, 2014.

[10] Belkheira, R., & Belhouari, F. (2021). Modélisation du comportement statique d’une poutre

FGM par la méthode des éléments finis (Doctoral dissertation, FACULTÉ DES SCIENCES

APPLIQUÉES DÉPARTEMENT GÉNIE CIVIL).

[11] Gries, D. (2012). The science of programming, Springer Science & Business Media

[12] Charpentier, M. (2022). Functional and Concurrent Programming: Core Concepts and

Features. Addison-Wesley Professional.

81

 [13] Gorodniaia, L., & Andreyeva, T. (2016). Study of Programming Paradigms, In INTED2016

Proceedings (pp, 7482-7491), IATED

[14] Van Horn II, B. M., & Nguyen Q. (2023), Hands-On Application Development with

PyCharm: Build applications like a pro with the ultimate python development tool. Packt

Publishing Ltd.

[15] Hameed, A. (2016). Software development lifecycle for extreme programming; international

Journal of Information Technology and Electrical Engineering, 5(1), 7-13

[16] Fourment, M., & Gillings, M. R. (2008). A comparison of common programming languages

used in bioinformatics. BMC bioinformatics, 9, 1-9

[17] SALEEM, M., & ASHRAF, M. CHALLENGES AND TRENDS OF EMERGING

PROGRAMMING LANGUAGES: A SYSTEMATIC.

[18] Python, W. (2021). Python, Python releases for windows, 24.

[19] Mukherjee, S., Almanza, A., & Rubio-González, C. (2021, July). Fixing dependency errors

for Python build reproducibility. In Proceedings of the 30th ACM SIGSOFT international

symposium on software testing and analysis (pp, 439-451)

[20] Randles, B. M., Pasquetto, I. V., Golshan, M. S., & Borgman, C. L. (2017, June). Using the

Jupyter notebook as a tool for open science: An empirical study, In 2017 ACM/IEEE Joint

Conference on Digital Libraries (JCDL) (pp, 1-2), IEEE

[21] Roger, D., Frédéric, L., Marc, R. (2005, Augest), Découvrir le calcul de structure avec le

Progiciel RDM 6.

