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I 

 ملخص
 

التطبيقات، وتميل هذه  الميكانيكية بحل عدد من الأنظمة لمختلف  الميكانيكية يقوم مهندسو الإنشاءات  في مجال الإنشاءات 

الأنظمة إلى أن تكون معقدة وتستغرق وقتاً طويلاً وغالبًا ما يتم تنفيذها يدويًا. يجب معالجة هذه المشكلة، لذا فإن العملية الآلية  

وقابلية   منطقية  الأكثر  الحل  هي  الدراسة  المشاكل  .للتحقيقلطرق  تحل  فهي  مهمة،  منهجية  المحدودة  العناصر  منهجية  تعُد 

المنهجية   الهيكل إلى أجزاء أصغر، وبالتالي معالجة المشاكل بكفاءة وسرعة عالية. وقد طبقنا هذه  الميكانيكية من خلال تقسيم 

" أنظمة ميكانيكية هي  الميكانيكية من خلال توفير    ." beam "و"truss" و"barعلى ثلاثة  يساهم بحثنا في مجال الإنشاءات 

برنامج يستخدم خوارزميات طريقة العناصر المحدودة كقاعدة لحساب النتائج المطلوبة. ينقسم البرنامج إلى ثلاثة برامج فرعية 

ومن خلال تخفيف الوقت اللازم لحساب أنظمة الدراسة والجهود الشخصية المبذولة في    ".beam" و"truss" و"barلأنظمة "

 .هذا المجال، فإن نهجنا يسرّع هذه العملية مع ضمان نتائج عالية الدقة

المحدودة،    :المفتاحية  الكلمات العناصر  حسابي  ،RDM6طريقة  محدد    ،برنامج  محدد،  barعنصر  عنصر ،  trussعنصر 

 beamمحدد

  



 

  

 

II 

Abstract 
 

In mechanical construction engineers solve number of systems for various applications, these 

systems tend to be complex, time consuming and often done manually. This problem needs to be 

addressed so an automated process of the study methods is the most logical and achievable 

solution. Finite element method is an important methodology; it solves mechanical problems by 

devising the structure into smaller segments, therefore treating the problems with high efficiency 

and speed. We applied this methodology on three mechanical systems which are “Bar”, “Truss” 

and “Beam”. Our research contributes to the field of mechanical construction by providing a 

program that uses finite element method algorithms as a base to calculate the required results. 

The program is separated into three sub-programs for “Bar”, “Truss” and “Beam” systems. By 

mitigating the time required for study systems calculation and personal efforts, our approach 

speeds up that process while ensuring high accuracy results. 

Key words: Mechanical Construction, Finite Element Method, Algorithms, Bar, Truss, Beam. 
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General Introduction 
 

Mechanical construction is a key element in making mechanical systems; it includes building, 

installing and maintaining processes of various types of structures, where the engineer tracks 

heating, ventilation, and air conditioning (HVAC) and often other special phenomenon. These 

systems must follow 5 phases; Design and planning, Fabrication, Installation, Commissioning 

and Maintenance and repair. 

Our work is concentrated in the first phase just before fabrication, studying 3 mechanical 

systems which are “Bar”, “Truss” and “Beam”. The systems are widely used not only in the 

mechanical field, but other fields such as civil engineering which further amplifies its importance. 

Of the 3 mechanical systems mentioned before we start with the Bar system; the easiest 

system and the most used one, it is processed in one axis. The other two are processed in two 

axes, the Truss system is simply a number of bar systems linked together in a geometrical way. 

We see it most on bridges. Beam system in the other hand treats different factors like Flexion and 

bending. 

To study the mechanical systems a method must be used, in our case we are using the Finite 

Element Method, its implementation as a methodology in structural and computational mechanics 

is now an essential component of engineering practice. The complexity of modern structures and 

mechanical components has led to a growing demand for sophisticated computational tools that 

can accurately predict their behavior under a variety of conditions. The objective of this 

dissertation is to present a comprehensive programming methodology and validation procedure 

for multi-dimensional finite elements. Finite Element Method solves this problem mainly by 

enabling the resolution of complex problems by decomposing a structure into smaller, more 

manageable elements. 

In the background to our study, we aimed to automate the finite element method process and 

make it usable by the average person. To achieve that we developed a program written in python 

where the program asks the user for specific variables and returns the results. 

On this dissertation we present 3 main chapters; 
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The first contains a review of literature on Finite Element Method as well as its Phases and 

how important it is in Mechanical Construction, then concluding by identifying the gaps and 

areas that require further investigation.  

Chapter 2 goes deep into Finite Element Method, talking about its concepts and formulas, 

then specifically mention the 3 targeted systems, Bar, Truss and Beam; explaining what are they 

and how are they formulated, as well as mentioning their key features and general applications. 

The Last Chapter talks about programming and what programming language we used. Then 

presenting our program including step by step explanation and the main differences between the 

three systems, last but not least, we validated our program’s results with the RDM6 software as 

well as traditional analytic results (hand calculated). 

In the conclusion we will summarize the main findings. Contributions of the dissertation to 

mechanical construction and limitations of the dissertation and suggestions for future research 
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Chapter 1                                                              

Bibliographic research and state of the art 
 

1.1 Introduction 

    Nonlinear partial differential equations are of interest to mathematicians, physicists and 

engineers for their rich mathematical structure and properties, and for their applications in fluid 

mechanics, plasma physics, fiber optics, condensed matter physics and chemistry. Finding how to 

solve them is important. To understand the properties of the solutions, these nonlinear partial 

differential equations can be solved exactly or numerically [1]. Recently, engineering issues have 

become less complicated, and this is due to the finite element method. It has become one of the 

most famous and widely used methods. It is a powerful tool for solving numerical problems and 

can be used in almost all fields [2].  

1.2 Element finite method 

1.2.1 Historical background 

Advances in the structural analysis of airplanes led to the basic ideas of the finite element 

method. Hrennikoff offered by using “the frame work method” solution to elasticity problems 

that was in 1941. In 1956 Turner et al presented their findings which are derived stiffness 

matrices for truss, beam, and other elements. It was in 1960 that Clough formulated the term 

finite element and used it for the first time. Engineers were using it to approximate problems in 

stress analysis, fluid flow, heat transfer and other areas by the early 1960s. The foundation for 

further developments in finite element studies was set by a 1955 book by Argyris on energy 

theorems and matrix methods. Zienkiewicz and Cheung's first book on FEA was published in 

1967.In the late 1960s and early 1970s; the application of finite element analysis was to non-

linear problems and large deformations, in 1972. Oden's book on non-linear continua appeared. 

The mathematical foundations were laid in the 1970s.This category includes the development of 

new elements, convergence studies and other related areas. Today, the method is within reach of 

students and engineers working in small industries, thanks to the development of mainframe 

computers and the availability of powerful microcomputers [2]. 
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1.2.2 Definition 

It is a numerical method for the solution of certain problems in physics and differential 

equations. It is a method of finding an approximate solution on a spatial domain, which calculates 

a field (of scalars, vectors, tensors) that satisfies certain equations and conditions [3]. It consists 

of dividing (discretizing) the domain of these equations into a number of sub domains, called 

finite elements, which are connected to each other by nodes (Figure1.1 and Figure1.2). The 

solution sought is replaced in each element by an approximation using simple polynomials. The 

domain can then be reconstructed by assembling all these elements. FEM applied to structural 

calculations is a multidisciplinary technique based on the following three disciplines: 

- Structural mechanics: linear elasticity, resistance of materials (engineering science); 

- Numerical analysis: methods of approximation, numerical integration, resolution of  

linear systems, etc; 

- Computer science: development techniques (software engineering) and maintenance [4]; 

FEM is capable of solving 1D, 2D, and 3D systems, enabling the analysis of complex systems 

that are difficult or impossible to solve analytically. 

 

a) 

a) 

 

 

 

b) 

c) 

c) 

 

c) 

 

d) 

d) 
Figure 1.1: Examples of 1D finite element: a) Bar element; b) Bar element subjected to a 

distributed load with density q(x); c) Beam element [5]; d) Beam element subjected to distributed 

load and concentrated force [5] 
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a) b) 

b) 

 

c) 

 

 

 

 

 

d) 

Figure 1.2:Examples of 2D finite elements: a) Triangular element with 3 nodes; b) Plate modeled 

by 2 triangular elements with 3 nodes; c) Quadrilateral element with 8 nodes; d) Meshing of a 

plate with quadrilateral elements 

1.3 Steps of the Finite Element Method 

This text outlines the steps involved in applying the finite element method and the tools required 

to implement it in a simplified manner. The process of solving a physical problem using finite 

elements generally follows these steps [6]: 

- Discretizing the domain (create mesh): The first step in the discretization process is to 

subdivide the domain into elements and nodes. For systems that are already discrete, such as 

trusses, this step is unnecessary and the obtained answers are exact. However, for continuous 

systems such as plates, this step becomes critical and the answers obtained are only 

approximate. The accuracy of the solution in this case depends on the discretization used; 

- Writing the element stiffness matrices: The element stiffness matrices must be written for 

each element in the domain; 
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- Assembling the global stiffness matrix: After wrote matrix for each element, we will 

assemble them by using the direct stiffness approach; 

- Boundary conditions: Applying boundary conditions involves specifying supports, applied 

loads, and displacements; 

- Solving the global system: The equations are solved by partitioning the global stiffness 

matrix. The resulting equations are then solved using Gaussian elimination. 

The steps can be schematized in (Figure 1.3). 

1.4 The benefits of Finite Element Method 

    The Finite Element Method (FEM) offers several advantages that make it a widely used 

numerical technique for solving engineering and mathematical problems. Some of the main 

advantages of FEM are: 

- FEM can handle complex geometries and boundary conditions, making it suitable for 

analyzing a wide range of engineering problems. Engineers can accurately simulate real-

world scenarios by modeling irregular shapes and non-uniform material properties; 

- FEM enables engineers to achieve a balance between computational efficiency and 

accuracy by allowing the use of different types of elements, such as triangles and 

quadrilaterals, selected based on the specific characteristics of the problem; 

Physical problem (domain) 

 

Discretizing the domain (create mesh) 

Writing elementary matrices 

Assembly and application of boundary conditions 

Solving the global system 

Figure 1.3: Flowchart of the various steps of the finite element method 
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- By dividing the domain into smaller elements and using higher order interpolation 

functions, FEM provides accurate solutions to engineering problems. As the element size 

decreases, the solution approaches the exact solution of the continuous problem, resulting 

in more accurate outcomes; 

- FEM is a versatile tool, applicable to a broad range of physical phenomena, including 

structural, heat transfer, fluid flow, electromagnetic and geotechnical problems. Because 

of its versatility, it is a valuable tool for the analysis of a wide variety of engineering 

problems in a wide range of industries; 

- FEM enables engineers to conduct parametric analysis, studying the effects of varying 

input parameters, such as material properties, geometric dimensions, and boundary 

conditions, on the system's behavior. This allows for optimization, sensitivity analysis, 

and design exploration. 

1.5 Truss systems 

1.5.1 Definition 

Truss systems are structures made up of rigid elements connected by nodes to form a grid of 

triangles or squares.  These systems are commonly used in civil and mechanical engineering. 

Trusses are structures made up of several elastic bars that are subjected to axial forces only, 

meaning that the force in a straight section is reduced to a normal force. Trusses and Truss beams 

are crucial components in the construction industry. They are used to support floors, roofs, or 

provide bracing. These structures are essential for ensuring the stability and safety of bridges 

(Figure 1.4), buildings (Figure 1.5) [7]. 

 

 

 

 

 

 

 

 

 

  

 

Figure 1.4: Truss system in bridges Figure 1.5: Trussing buildings 
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1.5.2 The principle of a truss system 

    The truss principle is simple. It consists of a top chord and a bottom chord connected by a 

triangulation of bars, with each bar only absorbing a normal load. While additional effects may 

exist, they are secondary in a well-designed truss. The chords absorb the overall moment in the 

form of compression or traction, while the diagonals take up the overall trench force in the form 

of compression or traction. In the simple case, when connections are treated as joints and loads 

are applied to the nodes, no bending moment, trench force or torsion is produced in any of the 

bars. If loads are applied in a way that produces bending moment, trench force or torsion, it will 

result in inefficient use of the material [7]. 

1.5.3 Advantages of truss system 

    The truss system is a commonly used structural design in bridges, buildings and race cars as 

shown in (Figure 1.6), due to its several advantages. This design offers a high strength-to-weight 

ratio, excellent stability, and efficient use of materials. Geometric simplicity is a key feature of 

these designs, which are typically composed of rectilinear bars. This facilitates their design and 

manufacturing processes. It provides a high level of structural strength despite its lightweight 

nature. 

 

 

 

 

 

 

 

 

 

 

 

1.6 Beam element 

1.6.1 Introduction 

In structural engineering, beams are fundamental components used to support loads in 

buildings, bridges, and various infrastructure projects. Understanding the behavior of beams is 

crucial for designing safe and efficient structures. 

Figure 1.6: Example of application of truss system in the manufacturing of race cars 
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1.6.2 Definition of beams 

Beams are structural members primarily subjected to bending moments and shear forces (Figure 

1.7). They typically have a slender and elongated shape compared to their cross-sectional 

dimensions. Beams are designed to resist loads applied perpendicular to their longitudinal axis 

while transferring these loads to their supports [10]. 

 

Figure 1.7: Schematic representation of a beam 

1.6.3 Types of beams 

1.6.3.1 Simple beams 

Simple beams are supported at both ends and subjected to loads along their length (Figure 

1.8). They are the most basic type of beam configuration and are commonly used in building 

construction. 

 

 

Figure 1.8: Schematic representation of a simple beam 

1.6.3.2 Cantilever beams 

Continuous beams have multiple supports along their length, allowing them to carry heavier 

loads and span longer distances without additional intermediate supports (Figure 1.9 and Figure 

1.10). 
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Figure 1.9: Schematic representation of 

cantilever beam 

 

Figure 1.10: Example of application of 

cantilever beam 

1.6.3.3 Composite beams 

Composite beams are made from two or more different materials, such as steel and concrete, 

combined to enhance strength and stiffness (Figure 1.11 and Figure 1.12). They are frequently 

used in bridge construction to optimize structural performance. 

 

Figure 1.11: Schematic representation of 

composite 

 

 

 

 

 

 

Figure 1.12: Composite beams used in bridge 

construction 

1.6.3.4 Truss beams 

Truss beams consist of smaller interconnected members arranged in a triangular pattern 

(Figure 1.13). They are lightweight yet structurally efficient and are commonly used in roof and 

bridge designs. 
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Figure 1.13: Schematic representation of truss beam 

1.6.4 Flexural behavior of beams 

1.6.4.1 Bending moment 

Beams undergo bending when subjected to transverse loads, resulting in the development of 

bending moments along their length. The magnitude of the bending moment varies along the 

beam's span and is influenced by the applied load and beam geometry. 

1.6.4.2 Shear force 

Shear forces act perpendicular to the longitudinal axis of the beam and arise due to transverse 

loading. They induce internal stresses that can cause shear deformation or failure in the beam. 

1.6.4.3 Bend  

Shear forces act perpendicular to the longitudinal axis of the beam and arise due to transverse 

loading. They induce internal stresses that can cause shear deformation or failure in the beam. 

1.6.5 Euler-Bernoulli Beam Theory 

The Euler-Bernoulli beam theory provides a fundamental framework for analyzing the 

flexural behavior of beams. It relates bending moment, shear force, and deflection to beam 

geometry and material properties, enabling engineers to predict beam performance accurately 

[10]. 

1.7 Conclusion 

    The Finite Element Method (FEM) is a powerful numerical technique used to determine the 

approximate equilibrium state of a continuous medium. It has the major advantage of being 

adaptable to solve a variety of problems with minimal modifications. FEM can be applied to any 

complex geometric domain where a problem is well-posed with all boundary conditions. 

However, proficiency in mathematical and computer tools is necessary to use this method 
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effectively [4]. In general, the finite element method provides engineers with a tough and 

versatile approach to solving complex engineering problems. It offers accurate, efficient solutions 

to a wide range of challenges. 
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Chapter 2                                                                     

Finite element one dimensional 1D 
 

2.1 Introduction 

In the field of engineering and applied sciences, modeling of structures and physical 

phenomena is essential for understanding and predicting their behavior. Numerical methods, 

particularly finite element methods, play a crucial role in this modeling. The finite element 

method (FEM) uses one-dimensional (1D) finite elements to model physical phenomena that vary 

in only one spatial dimension. These elements are typically used to represent structures, 

components, or systems that exhibit behavior primarily along a single axis or direction. One-

dimensional finite elements are geometrically simple and represent a line segment or curve along 

the one-dimensional axis. They typically have two nodes at each end, defining the nodes of the 

element. In the finite element method, a unidirectional domain is divided into linear elements and 

an equation is developed for each of these elements. This process will be extended to the entire 

domain to generate a continuum of equations for the entire domain of linear elements [3]. 

In this chapter, we will explore the fundamentals of one-dimensional (1D) finite elements. 

This approach simplifies modeling by reducing the problem to a single spatial dimension while 

retaining the ability to represent a wide variety of physical phenomena. 

2.2 Fundamental concepts 

2.2.1 Domain discretization 

The finite element approach involves discretizing the physical domain into smaller, simpler 

elements called finite elements. In one dimension, the domain is represented by a series of 

segments or intervals. 

2.2.2 Shape functions 

To describe behavior within each finite element, shape functions are used. In one dimension, 

these functions are typically simple polynomials, such as linear or quadratic functions. 

2.2.3 Stiffness matrix 

The stiffness matrix represents interactions between nodes in the mesh, taking into account 

material and geometric properties of the problem. In one dimension, this simplified matrix 

reflects stress-strain relationships within each element. 
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2.3 Solution procedure 

2.3.1 Establishing equilibrium equations 

Using the principle of virtual work or other energy minimization methods, equilibrium 

equations are established for the problem. In one dimension, these equations often boil down to 

ordinary differential equations. 

2.3.2 Assembling the equation System 

Local equations associated with each finite element are assembled to form a global system of 

equations. This system represents the entirety of the problem and can be solved numerically. 

2.3.3 Applying boundary conditions 

Boundary conditions, such as Dirichlet or Neumann conditions, are applied to represent 

system behavior at the boundaries of the domain. 

2.4 Bar element 

A bar element is a fundamental component used in structural analysis within the framework 

of the finite element method (FEM). It is used for the modeling of one-dimensional (1D) 

structures such as beams, columns, trusses and other members that are primarily subject to axial 

loads (traction or compression). The term 'bar' in this context refers to a slender structural 

element, often represented by a straight-line segment, along which deformation occurs primarily 

in the axial direction. 

2.4.1 Governing equations 

    The finite element method (FEM) uses governing equations that are dependent on the type of 

physical problem being solved. 

2.4.2 Equilibrium equations 

    These equations express the balance of forces and moments acting on a structure. They are 

derived from Newton's second law of motion and are represented as equilibrium equations for 

each node or element in the finite element model. To formulate this element, we consider a bar 

with constant cross-sectional area A and length L, subjected to a tensile load q (N/m)(Figure 2.1). 

The bar exhibits linear elastic behavior (Young's modulus E). We seek the displacement field u, 

strain ε, and stress σ at all points along the bar. 
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Figure 2.1: Schematic representation of a bar, subjected to a tensile load q  

The equation is obtained by writing the equilibrium of forces for an elemental segment of the bar 

with length dx, located at a distance x from the edge 0(Figure 2.2). 

dN
N dx N qdx 0

dx
+ − + =  

(2.1) 

So: 

dN
q 0

dx
+ =  

(2.2) 

The internal axial force N(x) can, by application of Hooke's law, be expressed as a function of the 

displacement u: 

x xE =   (2.3) 

x

du

dx
 =  

(2.4) 

x

du
E

dx
 =  

(2.5) 

Knowing that: 

xN(x) A=   (2.6) 

So: 

du
N(x) AE

dx
=  

(2.7) 

Substituting (27) into (2.2), the equilibrium equation of the bar (one dimension) and the boundary 

conditions are finally written as: 

For 0 x  1 

d²u
AE q 0

dx²
+ =  

x L

du
N(L) 0 for x L

dx

u 0 for x 0

=

 
= = = 
 

= =

 

 

 

(2.8) 
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2.4.3 Approximate solution using the finite element method 

2.4.3.1General integral formulation 

Let u(x) is an interpolation function of the displacement function, denoted as u(x) . We form the 

residual R from the equilibrium equation (2.7), multiply it by the weighting function that 

satisfies the displacement boundary conditions, and integrate over the study domain (interval [0, 

L]). The cross-section of the bar is constant: 

L 2

2

0

d u
AE q dx 0

dx

 
 + = 
 

  

 

(2.9) 

2.4.3.2 Weak integral formulation 

To simplify this integral (2.9), we perform integration by parts on the first term of this integral, as 

follows: 

L
L L2

2

0 00

d u du d du
dx dx 0

dx dx dx dx

   
 = − =  

   
   

 

(2.10) 

This expression is based on the integration by parts formula, which states as follows: 

( )
'

uv u 'v uv '= +  (2.11) 

By introducing the boundary conditions of this problem (Eq.2.8): 

x L

du
0

dx =

 
= 

 
 

(2.12) 

 

 

Figure 2.2: Equilibrium of forces for an elemental segment of the bar with length dx 
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And: 

( )u x 0 0= =  (2.13) 

We can write: 

L L2

2

0 0

d u d du
dx dx 0

dx dx dx

 
 =− = 

 
   

 

(2.14) 

By substituting into the Equation2.9, we obtain: 

L L

0 0

d du
AE dx q dx 0

dx dx

 
− +  =  

 
   

 

(2.15) 

2.4.3.3 Discretization 

For the discretization, we use the Galerkin method (the test function is taken to be equal to 

the variation of the displacement (=u). The study domain is discretized using a two-node bar 

element of length L (Figure 2.3). 

 

 

 

 

Figure 2.3: Schematic representation of a two-node linear bar finite element 

This means the displacement within the element is interpolated based on the displacements at 

the two ends of the bar. Since the interpolation is linear, the displacement for a bar element 

(nodes 1 and 2) can be expressed as: 

( )    1 1

n 1 2 n 1 2

2 2

u N (x)
u x N(x) u N (x) N (x) u N(x) u u

u N (x)

   
=   =   =   =     

   
 

 

(2.16) 

un represents the nodal values of the approximation function ( )u x .The functionsN1(x) and N2(x) 

are the shape functions constructed to satisfy the following conditions: 

( ) 1u 0 u=  

( ) 2u L u=  

 

(2.17) 

The linear interpolation functions for a two-node bar element (nodes 1 and 2) of length L=x2-x1 

are defined as follows: 

1 2 

u1 u2 

x 

L 0 
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2
1

2 1

x x x
N (x) 1

x x L

−
= = −

−
 

(2.18) 

And: 

1
2

2 1

x x x
N (x)

x x L

−
= =

−
 

(2.19) 

By using these functions and the relation (2.16), we can determine the displacement at any point 

of the element. If we want to replace ( )u x in Equation (2.15), we need to evaluate
du

dx
: 

 
 n

n n

d N(x) udu dN(x) dN(x)
u u

dx dx dx dx

     
= = =    

 
 

 

(2.20) 

From the Equations (2.18) and (2.19), we have: 

1dN (x) 1

dx L
= −  

(2.21) 

And: 

2dN (x) 1

dx L
=  

(2.22) 

By using Equation (2.20), the relation (2.15), becomes: 

   
L L

n n n

0 0

dN(x) dN(x)
AE u dx q dN(x) dx 0

dx dx

 
−  +  = 

 
   

 

(2.23) 

Since n and un are not functions that depend on the integration variable x, we can write that: 

   
L L

n n

0 0

dN(x) dN(x)
AE u dx q N(x) dx 0

dx dx

  
 − + =  

  
   

 

(2.24)3) 

 

 

This relation is verified regardless of the value of the function n , so we can write that: 

(−∫ AE {
dN(x)

dx
} 〈
dN(x)

dx
〉 dx{un} + 𝑞∫ {N(x)}dx

L

0

L

0

) = 0 

 

(2.25)3) 

 

 

We initiate the process by computing the components of the integral (2.25) 

1

1 2

2

dN (x)

1 1dN (x) dN (x)dN(x) dN(x) 1dx

dN (x) 1 1dx dx dx dx L²

dx

 
  −   

  =   =     
−    

  

 

 
 

(2.26) 

The different integrals can be evaluated using interpolation functions, as follows: 
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0

L

0

L 1
A

1 1 1dN(x) dN(x) AE AE
dx dx

1 1
E

1 1dx dx L² L

− −    
  = =     

− −     
   

 

(2.27)3) 

 

 

  

Additionally, we have: 

 

 
L

2
L

0l L
0

L
2

0 0

0

xx x1 2L 1LL
AE N(x) dx dx

x 12x
L 2L

  
  −  −       

= = =    
     

      
  

   

 

 

(2.28)3) 

 

 

By substituting in Equation (2.25), we get: 

1

2

u1 1 1AE ql

u1 1 1L 2

−     
=    

−    
 

 

(2.29) 

The discretized Equation takes the form: 

    n nK u f=  (2.30) 

2.4.4 Example of the calculation for a bar element in tension 

To illustrate the use of one-dimensional finite elements, we will examine a practical 

application Example. We need to analyze the behavior of a beam subjected to tensile force using 

the finite element method. The beam with the x-axis shown in the (Figure 2.4) is made of a 

material with Young's modulus (E). The cross-sectional area is equal to (A) between nodes 1 and 

2, (2A) between nodes 2 and 3, and (3A) between nodes 3 and 4. The beam is fixed at nodes 1 

and 4, and it carries a uniformly distributed load of linear intensity (p) between nodes 1 and 2, 

and a force (𝐹=2𝑝𝐿) at node 3. We aim to determine the nodal displacements and the support 

reactions. 
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Given:  

E=2×105Mpa 

A=200 mm² 

p= 100 N/m 

L=1000 mm 

 

The steps to solve this problem are as follows: 

1. Modelof the beam structure: The geometry and material properties of the beam are presented 

in Figure 2.4. 

2. Discretize of the beam:Divide the beam into three finite elements between the nodes. Identify 

the nodes and elements, with nodes 1, 2, 3, and 1,2,3,4 as shown in Figure 2.5: 

 

 

 

 

 

 

Figure 2.5: Discretization of the beam into 3 linear elements and 4 nodes 

3. Set up of the element stiffness matrices: Calculate the stiffness matrix for each element using 

the formula for a beam element in the finite element method (FEM). 

- Element 1: between nodes 1 and 2, with cross-section A, Young's modulus E, and length 2L. 

 
(1)

(1)

1 1

1 1 1 1EA EA EA 2 2
K

1 1 1 1 1 1L 2L L

2 2

 
− − −    

= = =       
− −       −

  

 

- Element 2: between nodes 2 and 3, with cross-section 2A, Young's modulus E, and length L. 

 
(2)

(2) 1 1 1 1 2 2EA 2EA EA
K

1 1 1 1 2 2L L L

− − −      
= = =       

− − −       
 

- Element 3: between nodes 3 and 4, with cross-section 3A, Young's modulus E, and length L. 

Node 1 Node 2 Node 3 Node 4 

Element (1) Element (2) Element (3) 

Figure 2.4: Example of the calculation of a beam subjected to tensile force 
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 
(3)

(3) 1 1 1 1 3 3EA 3EA EA
K

1 1 1 1 3 3L L L

− − −      
= = =       

− − −       
 

4. Assemble the global stiffness matrix: Combine the element stiffness matrices to form the 

global stiffness matrix (GSM). 

Dim (GSM) = number of degrees of freedom per node multiplied by the number of nodes 

Dim (GSM) =1×4=4 

 

1 1
0 0

2 2

1 5EA
2 0K

2 2L

0 2 5 3

0 0 3 3

 
− 

 
 − −=
 
 

− −
 
 − 

 

5. Formulate the load vector: Create the global load vector {F}based on the applied 

concentrated force (𝐹=2𝑝𝐿) at node 3 and the uniformly distributed load p between nodes 1 and 

2. 

- Element 1: between nodes 1 and 2, uniformly distributed load P 

 
(1)

(1) 1 1pl
f pL

1 12

    
= =    
     

 

- Element 2: between nodes 2 and 3, concentrated force at node 3, F2=0 and F3=pL 

 
(2) 0

f
pL

 
=  
 

 

- Element 3: between nodes 3 and 4, concentrated force at node 3, F3=pL and F4=0 

 
(2) pL

f
0

 
=  
 

 

6. Global force vector: The vector that represents the cumulative forces applied at the nodes of 

the entire finite element mesh. It is assembled by summing the contributions of all local force 

vectors, thereby encompassing all the forces acting across the entire structure. 

   
T

F pL pL 2pL 0=  

7. Applying boundary conditions: The boundary conditions specific to this case study are 

presented in Table 2.1. 
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Table 2.1: The boundary conditions specific to the case study (bar in tension) 

Nodes Boundary conditions Displacements Forces 

Node 1 fixed support  1 0u =  1 pLF =  and 1 ?R =  

Node 2 free node 2 ?u =  2 pLF =  

Node 3 concentrated force 3 ?u =  3 2pLF =  

Node 4 fixed support  4 0u =  4 ?R =  

 

8. Formation of the global system: Solving the system of equations to calculate displacements 

and the reactions at the supports (nodes 1 and 4) using the relationship between the stiffness 

matrix, displacements, and external forces.      K . U F= . 

11

2

3

44

1 1
0 0

pLu R2 2

1 5 pL 0EA u
2 0

2 2 2pL 0L u
0 2 5 3 0u R
0 0 3 3

 
−       

       
      − − = +      
      

− −             
 − 

 

Solution: To solve this system, we eliminate the rows and columns with zero displacements, 

namely 1 and 4, resulting in the reduced system: 

 

2

3

5
pL2EA u

2
2pLL u

2 5

 
−      =   

     − 

 

We use Cramer's method to solve this system of equations with two unknowns: 

5 EA EA
2

17E²A²2 L L

EA EA 2L²
2 5

L L

−

 = =

−

 

2

EA
pL 2

L
9EApu

EA
2pL 5

L

−

 = =  
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3

5 EA
pL

2 L
7EApu

EA
2 2pL

L

 = =

−

 

 

Finally, we find: 

2
2

18pL²u
u

17EA


= =


 

3
3

14pL²u
u

17EA


= =


 

To determine the reactions at the supports, we reconsider equations 1 and 4 and replace the 

displacements u2 and u3 with their previously determined values: 

2 1 1 1

EA 1 1 EA 18pL² 9pL 26
pL R pL R R pLu

L 2 2 L 17EA 17 17

− − − −   
= + = = + =  =   

   
 

( )3 4 4 4

EA EA 14pL² 42pL 42
3u R 3 R R pL

L L 17EA 17 17

− − 
− = = − = =  = 

 
 

Numerical Application: After calculation, the results for the unknown displacements and 

reactions are shown in the following Table 2.2: 

Table 2.2: Results specific to the case study (bar in tension) 

Nodes Displacements Forces 

Node 1 1 0u =  1 100 NF = and 1 152.94 NR = −  

Node 2 2 0.0026 mmu =  2 100 NF =  

Node 3 3 0.0021 mmu =  3 200 NF =  

Node 4 4 0u =  4 247.06 NR = −  
 

2.5 Truss element 

2.5.1 Definition of truss systems 

Truss systems are structures made up of rigid elements connected by nodes, forming a 

network of triangles or quadrilaterals. These structures are widely used in various fields and 

sectors of engineering, particularly in civil engineering and mechanical engineering. Trusses are 

structures composed of several elastic bars subjected only to axial forces. The force in a straight 

section is reduced to a normal force A classic example of a truss system with triangular elements 

is the Pratt truss bridge (Figure 2.6). This type of bridge uses a truss configuration with triangles 
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to offer great strength and stability. The diagonal elements are inclined to support vertical loads 

and distribute forces efficiently throughout the structure [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

2.5.2 Characteristics of truss systems 

Truss systems have several advantages, including: 

- Geometric simplicity: Generally composed of straight bars, which simplifies their design and 

fabrication. 

- Lightweight: Trusses provide high structural strength while being relatively light and resistant 

2.5.3 Formulation of the truss finite element 

The elemental stiffness matrix of a truss element is a mathematical representation that 

describes the relationship between the nodal displacements and the resulting forces within the 

element. It is a key component in the finite element analysis of truss structures, allowing for the 

determination of internal forces and deformations under applied loads. The stiffness matrix 

encapsulates the geometric and material properties of the truss element, ensuring that the overall 

structural behavior is accurately modeled. The formulation of the elemental stiffness matrix for a 

truss element is a key step in the finite element analysis of truss structures. The basic assumptions 

of the formulation of a truss element are: 

- The bars are considered as rigid 1D elements; 

- Forces are applied at the nodes; 

- Deformations are small (small deformation hypodissertation); 

Figure 2.6: Schematic representation of a truss system with triangular elements (Pratt truss bridge) 
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Consider a bar element (truss structure element with two nodes (i) and (j), inclined at an angle θ 

relative to the global coordinate system as shown in (Figure 2.7) [8]. 

 

Figure 2.7:Schematic representation of truss element with two nodes (i) and (j), inclined at an 

angle θ 

 

(X,Y) represents the global system. (x,y) represents the local system. In the local coordinate 

system, this element has 2 degrees of freedom (ui ,vj), i.e., 1 degree of freedom per node. In the 

global coordinate system, this element has 4 degrees of freedom (Ui ,Vi,Uj ,Vj ), i.e., 2 degrees of 

freedom per node. The projection of displacement vectors from the local coordinate system to the 

global coordinate system is as follows: 

i i iu U cos V sin= +   (2.31) 

And: 

j j ju U cos V sin= +   (2.32) 

With: 

j iY Y
sin

L

−
 =  

(2.33) 

And: 

j iX X
cos

L

−
 =  

(2.34) 

The expression of equations (2.31) and (2.32) in matrix form leads to: 

i

i i

j j

j

U

u Vcos sin 0 0

u U0 0 cos sin

V

 
 

      
=    

     
 
 

 

 

(2.35) 
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So, we have: 

     eu T . U=  (2.36) 

In this relation,  u  represents the displacement vector in the local coordinate system,  U

represents the displacement vector in the global coordinate system, and  eT is the transformation 

matrix between the two systems. The same notation can be used for expressing the forces acting 

on the two nodes: 

ix

i iy

j jx

jy

F

f Fcos sin 0 0

f F0 0 cos sin

F

 
 

      
=    

     
 
 

 

 

(2.37) 

So: 

     ef T . F=  (2.38) 

In equation (2.38),  f  represents the force vector in the local coordinate system, while  F  

represents the force vector in the global coordinate system.  eT represents the transformation 

matrix between the two systems. The stiffness law for this system is written (with respect to the 

global coordinate system): 

     K . U F=  (2.39) 

And with respect to the local coordinate system: 

     k . u f=  (2.40) 

If we substitute the relations (2.36) and (2.38) into equation (2.40), we obtain: 

         e ek . T . U T . F=  (2.41) 

We multiply both sides of this equation by 1

e[T ]− : 

         1 1

e e e e[T ] . k . T . U [T ] . T . F− −=  (2.42) 

After simplification, this relation becomes: 

       1

e e[T ] . k . T . U F− =  (2.43) 

The transformation matrix is orthogonal, so: 

1 T

e e[T ] [T ]− =  (2.44) 

Substituting (2.44) into equation (2.43), we get: 

       1

e e[T ] . k . T . U F− =  (2.45) 

The general form of the stiffness     K . U F= law becomes apparent. This allows us to deduce: 

   T

e e eK [T ] . k . T=  (2.46) 
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 k represent the stiffness matrix of the element with respect to the local coordinate system where 

the relationship is given as follows: 

 

EA EA

1 1EA L L
k  

1 1 EA EAL

L L

 
− − 

= =  
−   −

  

 

 

(2.47) 

If we substitute equations (2.47) into (2.46), we obtain: 

(e)

cos 0 EA EA

sin 0 cos sin 0 0L L
[k] . .

0 cos EA EA 0 0 cos sin

L L0 sin

   
−       =         −     

 

 

(2.49) 

To simplify the expression, let's establish, C = cos  and S = sin. After transformation, equation 

(2.49) becomes: 

2 2

2 2

2 2

2 2

cos cos C CS C CS

sin sin cos sin 0 0 CS S CS SEA EA
[K]

cos cos 0 0 cos sinL L C CS C CS

sin sin CS S CS S

  −  − − 
  

 −    − −    = =    −     − − 
  

−   − −    

 

 

(2.50) 

Finally, the expression for the elemental stiffness matrix of a truss system bar element is:
 

2 2

2 2

(e)

2 2

2 2

C CS C CS

CS S CS SEA
[k]

L C CS C CS

CS S CS S

 − −
 

− − =
 − −
 
− −  

 

 

(2.51) 

We define: 

 
2

2

C CS
A

CS S

 
=  
 

 

 

(2.52) 

Equation (2.50) becomes: 

 
   
   

e

A AEA
K

A AL

 −
=  

− 
 

 

(2.53) 

2.5.4 Stress State of a Truss Finite Element 

The stress state of a truss finite element refers to the internal forces that develop within the 

element in response to applied loads. These stresses are generally axial, as truss elements are 
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designed to primarily support tensile or compressive forces along their axis. The basic 

assumptions adopted for analyzing the stresses are as follows: 

- Linear Elasticity: The materials behave in a linearly elastic manner up to the elastic 

limit; 

- Axial Loads: The bars support only axial forces (tension or compression); 

- Homogeneity and isotropy: The materials of the bars are homogeneous and isotropic; 

According to Equation (2.35), in the local coordinate system, the coordinates of the displacement 

vector are defined as follows: 

 

i

i i

j j

j

U

u Vcos sin 0 0
u

u U0 0 cos sin

V

 
 

      
= =    

     
 
 

 

 

Given that the stress state (1D) in the local coordinate system is defined as follows: 

  ( )i

i j

j

n

dN(x)
N

uU 1 1 ES
ES ES U E

d
SS ES u u

ux Lx L L

  − 
= =   =   =  


=  = −

  
(x)ε  

 

(2.54) 

The stress state (2D) in the global coordinate system becomes: 

i i i

j j j

U
N

u cos V sin1 1 1 1
ES ES

u U coLL L L s V sin

+  


=

 − −
  =     

+   
 

 

(2.55) 

Expanding this relation, we obtain:
 

i i

j j

U cos V sinES
N 1 1

U cos V sinL

+  
= −   

+  
 

 

(2.56) 

Finally: 

( ) j

i i j

j

i

j

i

U UES ES
N U cos V sin U cos V sin cos sin

V VL L

 
= − − + +  =     

 

−

−
 

 

(2.57) 

2.5.5 Illustration demonstrating the computation for a truss finite element 

To exemplify the application of one-dimensional finite elements, we'll explore a practical case 

study. Our objective is to analyze the response of a truss structure under tensile loading utilizing 

the finite element method. The truss system consists of 3 bars with the same stiffness E and 

cross-sectional area A (Figure 2.8). We aim to analyze the system's response by determining the 

unknown displacements and support reactions. 

Given: P = 10 KN, L = 1 m, H= 1 m, A = 200 mm², E=2×105 MPa 
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Figure 2.8: Example of the calculation of a truss structure under tensile loading 

The following steps outline the solution process: 

1. Properties of the structure: the structure’s geometry characteristics are summarized in the 

next Table 2.3: 

Table 2.3: The structure’s geometry characteristics (truss structure under tensile loading) 

 

 

 

 

 

 

2. Discretize of the structure: Partition the structure into three finite elements spanning between 

the nodes. Define the nodes and elements, denoting them as nodes 1(1, 2), 2(3, 4), 3(5, 6), and 

elements 1, 2, 3 as illustrated in Figure 2.8. 

3. Element stiffness matrices: Compute the stiffness matrix for each element utilizing the 

formula for a beam element within the finite element method (FEM). 

- Element 1: Spanning between nodes 1(1,2) and 2(3,4), with a cross-section A, Young's 

modulus E, and length L: 

(1)

(1)

C² CS C² CS 1 0 1 0

CS S² CS S² 0 0 0 0EA EA
[K]

C² CS C² CS 1 0 1 0L L

CS S² CS S² 0 0 0 0

− − −   
   

− −     = =     − − − 
   
− −   

 

- Element 2: between nodes 2(3,4) and 3(5,6), with cross-section A, Young's modulus E, and 

length L. 

Elements Length (m) Angle (°) C S C² S² CS 

Element (1) 1 0 1 0 1 0 0 

Element (2) 1 90 0 1 0 1 0 

Element (3) 2  

 

45 

 

1

√2
 

1

√2
 

1

2
 

1

2
 

1

2
 



Chapter 2: Finite element one dimensional 1D                                                                                                                . 

  

 

30 

( 2)

(2)

C² CS C² CS 0 0 0 0

CS S² CS S² 0 1 0 1EA EA
[K]

C² CS C² CS 0 0 0 0L L

CS S² CS S² 0 1 0 1

− −   
   

− − −     = =     − − 
   
− − −   

 

- Element 3: between nodes 1(1, 2) and 3(5, 6), with cross-section A, Young's modulus E, and 

length 2L . 

(3)

(3)

1 1 1 1

2 2 2 2
C² CS C² CS 1 1 1 1

CS S² CS S²EA EA 2 2 2 2
[K]

C² CS C² CS 1 1 1 1L 2L

2 2 2 2CS S² CS S²

1 1 1 1

2 2 2 2

2 2 2 2

4 4 4 4

2 2 2 2

EA 4 4 4 4

L 2 2 2 2

4 4 4 4

2 2 2 2

4 4 4 4

 
− − 

 − − 
 − − 

− −      = =     − −     − − 
 − − 
 
− − 
 


− −




− −
=

− −


− −













  

 

 

4. Assemble the global stiffness matrix: assemble the global stiffness matrix (GSM) by merging 

the stiffness matrices of the individual elements.  

Dim (GSM)= n (ddl)/n*(nn) = 2×3=6 

After assembly and calculation, the final expression of the global stiffness matrix is as follows: 

  4

1

3

0

0 0

1 0 0 0 0
K

1.35 0.3536 0.3536 0.3536

0.3536 0.3536 0.3536 0.3536

1

1

0. 536 0.

0

3536 0.3536 0.3536

0.3536 0.3536 1 0.35

4 10
0 0 0 1

36 1.35

0

0 0

36

− − − 
 

− −
 
 −

=   
− 

 − −
 
− − − 

 

5. Formulate the Load Vector: Construct the global load vector {F} by considering the 

concentrated force (P, 2P) applied at node 3. The other nodes, 1 and 2, are free: 
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- Element 1: between nodes 1 and 2, no loading. 

 
(1)

0 1

0 2
f

0 3

0 4

 
 
 

=  
 
  

 

- Element 2: between nodes 2 and 3, concentrated force at node 3, F3x=
P

2
 and F3y=-P 

 
(2)

0
2

0
3

f P
5

2
6

P

 
 
  

=  
 
 
−  

 

- Element 3: between nodes 1 and 3, concentrated force at node 3, F3x=
P

2
 and F3y=-P 

 
(3)

0
1

0
2

f P
5

2
6

P

 
 
  

=  
 
 
−  

 

6. Global force vector: The vector representing the total forces applied at the nodes throughout 

the entire finite element mesh is created by combining all local force vectors. This process 

includes all the forces acting on the entire structure. 

Dim (GVF) = number of degrees of freedom per node multiplied by the number of nodes 

Dim (GVF) =2×3=6 

 

0 1

0 2

0 3
F

0 4

P 5

2P 6

 
 
 
 

=  
 
 
 
− 

 

7. Applying boundary conditions: The boundary conditions for this particular case study are 

detailed in Table 2.4: 
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Table 2.4: The boundary conditions specific to the case study (truss structure under tensile 

loading) 

Nodes Boundary conditions Displacements Forces 

Node 1 fixed support  1 0u =  and 1 0v =  1x ?R =  and 1y ?R =  

Node 2 fixed support 2 0u =  and 2 0v =  2x ?R =  and 2y ?R =  

Node 3 concentrated force 3 ?u =    and 3 ?v =  3x PF =  and 

 
 

8. Formation of the global system: Solving the system of equations to determine the 

displacements at node 3 and the reactions at the supports (nodes 1 and 2) using the relationship 

between the stiffness matrix, displacements, and external forces:      K . U F=  

x1

y1

x2

y2

3

3

R01 0

R00

2

0

R1 0 0 0 0E

1.35 0.3536 0.3536 0.3536

0.3536 0.3536 0.3536 0.3536

01

1

u0.3536 0.3536 0.3536 0.353

A
.

R00 0 0 0

0

6

v.3536 0

=

.3536 1 0.3536 1

1L

0 0 P 10000

0 .3536

− − −   
  

− −
  
  −  

=  
−   

  − −
  

− −   − − P 20000

 
 
 
  
 


=


 
 
 − 

 

9. Solution: To solve this system, we eliminate the rows and columns corresponding to zero 

displacements, specifically 1, 2, 3, and 4, resulting in a reduced system: 

3

3

0.3536 0.3536 10000EA u

0.3536 1.3536 20000L v

     
=    

−     
 

After solving this system, we obtained the following results: 

3 1.4654 mm u =
 

3 0.7522 mmv = −  

To calculate the reactions at the supports, we reconsider equations 1,2,3 and 4, substituting the 

displacements u3 and v3 with their previously determined values: 

 
4 4

x1 3 3R 4 10 0.3536(u v ) 4 10 0.3536( ( ) 10 087.50 N1.4654 0.7522)= −   + = −    = −−  

4 4

y1 3 3R 4 10 ( 0.3536)u 4 10 ( 0.3536)v 10 087.50 N=   − +   − = −  

x2R 0 N=  

4 4

y2 3R 4 10 ( 1)v 4 10 ( 1) ( 30088 N0.7522)=   − =   =−−   

After calculation, the results for the unknown displacements and reactions are summarized in the 

Table 2.5: 
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Table 2.5: Outcomes specific to the case study (truss structure under tensile loading) 

Nodes Displacements (u) Displacements (v) Forces /x-axis Forces /y-axis 

Node 1 1 0u =  1 0v =  -10 087.5 N -10 087.5 N 

Node 2 2 0u =  2 0v =  0 N 30 087.5 N 

Node 3 3 1.4654mmu =  3 0.7522mmv = −  10 000 N -20 000 N 
 

2.6 Beam elements 

2.6.1 Definition of beam systems 

A beam system typically refers to a structural framework composed of beams, which are long, 

straight members designed to support loads by resisting bending (Figure 2.9). In engineering and 

construction, beam systems are common components of buildings, bridges, and other structures 

where horizontal spans need to be supported. These systems are characterized by their ability to 

distribute loads primarily through bending moments and shear forces along their length. Beams 

are often categorized based on their cross-sectional shape, such as I-beams, H-beams, or 

rectangular beams, and are made from materials like steel, wood, or concrete, depending on the 

specific requirements of the structure. Beam systems are fundamental elements in structural 

analysis and design, and engineers utilize various analytical methods and techniques to ensure 

their stability, strength, and durability under different loading conditions [10]. 

 

Figure 2.9:Schematic representation of a beam system 

2.6.2 Beam elements 

Beam elements are usually one-dimensional (1D) and represent the longitudinal axis of the 

beam. They have two nodes at each element. These nodes define the endpoints of the element. 

The resistance of the beam to bending and axial deformation is represented by the stiffness matrix 

of a beam element. It takes into account the material properties of the beam, such as Young's 

modulus, cross-sectional area, and moment of inertia, as well as the element's geometry. Beam 

elements can be subjected to different boundary conditions, such as fixed supports, pinned 

supports or other types of restraints. The constraints applied to the nodes of the beam element are 
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determined by these boundary conditions. Beam elements can be subjected to different types of 

loads. These include concentrated loads, distributed loads, moments and thermal loads. Each of 

these types of load is applied at a specific point along the length of the beam element. In the FEM 

model, beam elements are combined with other types of finite elements to form a global stiffness 

matrix. The displacements, rotations and internal forces in the beam elements are determined by 

solving the system of equations representing the equilibrium of forces and moments. 

2.6.3 Bending behavior of beam bar finite element 

The analysis of the bending behavior of beam-bar finite elements is a common task in 

structural mechanics, allowing the prediction of how the structure will respond to applied loads, 

in terms of deformation, bending moments, and stresses. Computational tools like the finite 

element method facilitate this analysis for complex structures and varied loading conditions. 

2.6.3.1 Beam Theory 

Beam theory provides essential tools for analyzing the behavior of beams under various loads. 

The Euler-Bernoulli theory is suitable for slender beams where shear deformation can be 

neglected, while the Timoshenko theory is more appropriate for thick beams where shear effects 

are significant. Understanding these theories is crucial for the design and analysis of safe and 

efficient structural systems. The basic concepts that form the foundation of beam theory are: 

- Beam Definition: A beam is a long, slender structural member subjected primarily to 

loads perpendicular to its longitudinal axis; 

- Loads and Reactions: Beams can be subjected to different types of loads such as point 

loads, distributed loads, and moments. Supports provide reactions that balance the applied 

loads, with common types being fixed, simply supported, and cantilever supports; 

- Shear Force (T): The internal force perpendicular to the longitudinal axis of the beam. 

- Bending Moment (M): The internal moment causing the beam to bend. 

- Normal Stress (σ): Induced by bending moments, varying linearly across the cross-

section. 

- Shear Stress (τ): Induced by shear forces, typically parabolic in distribution across the 

cross-section; 

2.6.3.2 Bending behavior 

Let's consider a beam with a rectangular cross-section A and a length l subjected to a linearly 

varying bending load q(x) along the longitudinal axis x (Figure 2.10). We isolate an element dx 
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of this beam as shown in the Figure 2.11. The beam bends under the load and undergoes a 

vertical displacement w(x) (deflection). Based on Bernoulli's theory, the movement of the beam 

in the (x,y) plane is described by the axial displacement u(x,y)and the vertical displacement 

w(x)as shown in the (Figure 2.11) [9]. 

 

Figure 2.10:Beam system under bending load q(x) 

 

Based on this Figure, the rotation 𝜃(x) of the deformed section is calculated by the following 

relation: 

( )
w(x)

tg
x


 =  =


 

(2.58) 

The axial displacement 𝑢(𝑥) induced by the rotation is given by the relation: 

( )
dw(x)

u x y y
dx

= − = −  
(2.59) 

  

Hooke's law for an elastic medium allows the expression of the stress distribution along the 

cross-section of the beam by the following relations: 

x x

du d²w
E E yE

dx dx²
 =  = = −  

(2.60) 

The basic principles of strength of materials allow expressing the bending moment of the beam 

by the following relation: 

x

d²w
M(x) y dA EI

dx²
= −  = −  

(2.61) 

With: 

A

I y²dA=   (2.62) 
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Where𝑀(𝑥) is the bending moment at position 𝑥, 𝐸 is the Young's modulus, I is the moment of 

inertia, and 𝑤 is the deflection of the beam. The uniformly distributed load q(x) can be expressed 

in terms of the shear force by the following relation: 

( )
dT

q x
dx

=  
(2.63) 

And the shear force by: 

( )
dM(x) d d²w

T x EI
dx dx dx²

 
= =  

 
 

(2.64) 

 

 

Figure 2.11:Representative beam element showing displacements and rotations due to bending 

load 

2.6.4 Formulation beam element 

The formulation of a finite element beam involves developing mathematical models to represent 

the behavior of the beam under various loading conditions within the framework of finite element 

analysis. As shown in Figure 2.12, a beam element has two degrees of freedom at each node: a 

transverse displacement and a rotation [9]. 
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Figure 2.12: Schematic representation of the degrees of freedom of a beam bar element 

2.6.3.1 Stiffness matrix of a beam-bar element 

This stiffness matrix relates the generalized deformations (displacements and rotations) to the 

generalized forces (axial forces and moments) for a beam-bar element subjected to axial and 

bending loads. In bending, each node of this element has two degrees of freedom: one in 

translation in the transverse direction (y-axis) denoted v, and one associated with the rotation θ 

around the z-axis perpendicular to the (x,y) plane. Thus, four boundary conditions (v1, θ1,v2, θ2) 

can be used to define its approximation function, which explains the expression of v(x) in the 

form of a polynomial of degree 3.The expression for the approximation function of the 

displacement function is given as follows: 

( ) 3

1 2 3 4w x x x² x=  + + +  (2.65) 

Where, i are the unknown coefficients of the polynomial chosen as the approximation function. 

The rotation is defined by the following relation: 

( )
( )dw x

x
dx

 =  
(2.66) 

If we substitute relation (2.65) into equation (2.66), we obtain: 

( ) 2

2 3 4x 2 x 3 x =  +  +   (2.67) 

The displacement vector is fully defined by combining the two relations (2.65) and (2.67). 

( ) 
3

1

2

3

4

w(x) 1 x x² x
u x

(x) 0 1 2x 3x²

 
 
    

= =    
     
  

 

 

 

(2.68) 

 

 

In the compact form: 
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( )    u x P(x)=   (2.69) 

The application of the boundary conditions specific to this problem allows us to write: 

Node 1: x=0 
1 1w =   1 2 =   

Node 2: X=L 3

2 1 2 3 4w L L² L=  + + +  2

2 2 3 42 L 3 L =  +  +   

These equations are grouped and written in matrix form as follows: 

 

2

1 1

2

3

2

2

n

3

2 4

w 1 0 0 0

0 1 0 0
u

w 1 L L² L

0 1 2L 3L

    
         = =   

     
         

 

 

 

(2.70) 

The matrix A is denoted as follows: 

  3

2

1 0 0 0

0 1 0 0
A

1 L L² L

0 1 2L 3L

 
 
 =
 
 
 

 

 

 

(2.71) 

In a simplified matrix form, the system (2.70) is written as: 

    nu A=   (2.72) 

 

(2.70) The inversion of this matrix leads to: 

 
1

3 3

1 0 0 0

0 1 0 0

3 2 3 1A
L² L L L

2 1 2 1

L L² L L²

−

 
 
 
 − − −=
 
 

− 
  

 

 

 

(2.73) 

To determine the unknown coefficients ai, it suffices to invert the system (2.70), and we obtain: 

2

3

1 1

2

3 2

4 2

3

1 0 0 0

w0 1 0 0

3 2 3 1

wL² L L L

2 1 2 1

L L² L L²

 
    
    

     − − −=        
    −    

  

 

 

 

(2.74) 

Additionally, when represented in a more concise matrix format, equation (2.74) appears as: 

     1

nA u− =  (2.75) 

 

(2.70) Substituting relation (2.75) into equation (2.69), we obtain: 

( )      1

nu x P(x) A u−=  (2.76) 



Chapter 2: Finite element one dimensional 1D                                                                                                                . 

  

 

39 

According to elasticity theory, the strain field ε(x) is deduced from the displacement field u(x), as 

follows: 

( )  ( ) ( )     ( )1

n

d d
x u x P(x) A u

dx dx

− = =  
(2.77) 

Based on relations (2.60) and (2.61), we have: 

x

d²w
yE

dx²
 = −  

 

And: 

d²w
M(x) EI

dx²
= −  

 

So: 

(x) d²w
(x) y

E dx²


 = = −  

(2.78) 

The displacement approximation function 𝑤(𝑥) given by equation (2.65) can be written in terms 

of the shape functions N𝑖(𝑥) as follows: 

( ) ( )
4

3

1 2 3 4 i i

i 0

w x x x² x N x .u
=

=  + + + =  
(2.79) 

The shape functions are determined based on the boundary conditions at the nodes: 

Node 1:for  x=1: 1 1w =   and   2 1 =   (2.80) 

And: 

Node 2:for x=L: 3

2 1 2 3 4w L L² L=  + + +   and   2

2 2 3 42 L 3 L =  +  +   (2.81) 

Substituting relation (2.80) into equation (2.81), we obtain: 

( ) ( )1 2 1 2

3

2 3 w w

L L²

 + −
 = − −  

(2.82) 

And: 

( ) ( )1 2 1 2

3 3

2 w w

L² L

 + −
 = − +  

(2.83) 

Knowing, that the displacement vector is given by the following relation: 

   
T

i 1 1 2 2u v v=    (2.84) 

By substituting equations (2.80), (2.81), (2.82), (2.83) and (2.84) into equation (2.79) and then 

identifying, the expressions for the shape functions can be derived as follows: 

( )
( )3 2 3

1 3

2x 3Lx L
N x

L

− +
=  

(2.85) 
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( )
( )3 2

2

x 2Lx L²x
N x

L²

− +
=  

(2.86) 

( )
( )3 2

3 3

2x 3Lx
N x

L

− −
=  

(2.87) 

( )
( )3 2

4 2

x Lx
N x

L

−
=  

(2.88) 

( )1N x , ( )2N x , ( )3N x  and ( )4N x  represent the forms functions refer to the mathematical 

functions used to describe the shape of the beam element and how it deforms under load. In the 

context of a beam finite element, these functions are typically interpolation functions or shape 

functions. They describe how the displacement varies within the beam element, usually in terms 

of nodal displacements and help to approximate the displacement field and deformation behavior 

of the beam element. Once these shape functions are defined, the equation (2.79) becomes: 

( )

( ) ( ) ( ) ( )
1 1 2 1 3 2 4 2

3 2 3 3 2 3 2 3 2

1 1 2 23 3 2

w x N (x)w N (x) N (x)w N (x)

2x 3Lx L x 2Lx L²x 2x 3Lx x Lx
w w

L L² L L

= +  + + 

− + − + − −
= +  − + 

 

(2.89) 

Substituting equations (2.89) into equation (2.78) leads to: 

 1 2 3 4

1

2

2

2

w

d²
(x) y N (x) N (x) N (x) N (x)

wdx²

 
 
 

 = −  
 
  

 

(2.90) 

After expanding this expression, we obtain: 

2

3 4

1

2

2

1 2

w

d²N (x)d²N (x) d²N (x) d²N (x)
(x) y

wdx² dx² dx² dx²

 
 
  

 = −   
   

  

 

(2.91) 

This expression reveals the matrix [B], Such that: 

  31 2 4
d²N (x)d²N (x) d²N (x) d²N (x)

B y
dx² dx² dx² dx²

 
= −  

 
 

(2.92) 

At this stage, and knowing the matrix [𝐵], we can determine the elemental stiffness matrix of the 

beam element defined by the following relation: 

  (e) T

V
[K] [B] D B dV=   (2.93) 
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In this relation, the matrix [𝐷] represents the stiffness of the beam. Substituting equation  (2.92) 

into equation (2.93), we obtain: 

1

h b 2
L2 2

(e) 31 2 4

h b 30

2 2

4

d²N (x)

dx²

d²N (x)

d²N (x)d²N (x) d²N (x) d²N (x)dx²
[K] E y²dydz dx

d²N (x) dx² dx² dx² dx²

dx²

d²N (x)

dx²

− −

 
 
 
 
   

=    
  

 
 
 
 

    

 

 

 

(2.94) 

If we replace the second derivatives of the shape functions, the relation '(2.89) becomes: 

1

h b 2
L2 2

(e) 31 2 4

h b 30

2 2

4

d²N (x)

dx²

d²N (x)

d²N (x)d²N (x) d²N (x) d²N (x)dx²
[K] E y²dydz dx

d²N (x) dx² dx² dx² dx²

dx²

d²N (x)

dx²

− −

 
 
 
 
   

=    
  

 
 
 
 

    

 

 

 

(2.95) 

Considering that: 
h b

2 2

h b

2 2

E y²dydz EI

− −

=   

(2.96) 

After evaluating the terms of this matrix product and integrating the different terms, we arrive at 

a final expression for the stiffness matrix of a beam element: 

2 2

e

3

2 2

12 6L 12 6L

6L 4L 6L 2LE.I
[K]

12 6L 12 6LL

6L 2L 6L 4L

− 
 

−
 =
 − − −
 

− 

 

 
 

(2.97) 

2.6.3.2Vector force of a beam-bar element 

The elemental force vector contains the components of the forces and moments applied to the 

nodes and on the boundaries of the element itself (concentrated forces and distributed loads). It is 

represented by a 1x4 column matrix. The first two values represent the forces and moments at the 

first node, while the last two represent those at the second node. As with the case of the two-node 

bar element, the distributed load is transformed into equivalent nodal loads (Figure 2.13). To 
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represent the vector force of a beam-bar element, we typically consider the forces and moments 

at both ends of the element. For a two-dimensional beam-bar element, the vector can be 

expressed as follows: 

   
T(e)

L

f q N(x) dx= −  
(2.98) 

If we substitute the values of the shape functions given by expressions (2.85) to (2.88) into 

relation (2.98), we obtain: 

 

( )

( )

( )

( )

3 2 3

3

3 2

(e)

3 2
L

3

3 2

2

2x 3Lx L
L

qL 2
x 2Lx L²x L²

q
L² 12

f q dx
L2x 3Lx q
2L

L²
x Lx q

12
L

 − +
   −  
  − +
   −
  

= − =   
− −    −

  
  
 − 
  

 

  

 

 

 

 

 

 

 

(2.99) 

 

 

 

 

 

Figure 2.13: Transformation of the distributed load into equivalent nodal loads 

2.6.5 Example calculation of beam element 

To illustrate the use of beam finite elements, we will examine a practical case study in this 

section. Our goal is to analyze the response of a beam structure under bending loading using the 

finite element method. The system consists of a circular section beam made of a material with 

Young's modulus E=2×105 MPa, with a diameter of d=60 mm, fixed at one end and supported by 

a simple support at the other, with a length of 2𝐿=1.6 m. The beam is subjected to a bending load 

F=4 kN (Figure 2.14). We will analyze the system's response by determining the unknown 

displacements and the reactions at the supports. 
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Figure 2.14: Illustrates a demonstration of calculating the response 

The procedure to address this issue involves the following steps: 

1. Model of the beam structure: The beam's geometric characteristics and material properties 

are depicted in Figure 2.14. 

2. Discretize of the beam: Partition the beam into two finite elements between the nodes, and 

designate the nodes and elements accordingly. Nodes are labeled as 1, 2, 3, and elements as 1 and 

2, as illustrated in Figure 2.15. 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: Discretization of the beam into 2 linear elements and 3 nodes 

3. Set up of the element stiffness matrices: Compute the stiffness matrix for each element 

utilizing the formula specific to a beam element within the finite element method (FEM). 

 e 3

12 6L 12 6L

6L 4L² 6L 2L²EI
K

12 6L 12 6LL

6L 2L² 6L 4L²

− 
 

−
 =
 − − −
 

− 

 

Let's calculate the flexural stiffness term: 

 

(w1,1) 

Node 1 

(1,2) 

Element (1) Element (2) 

(w2,3) (w3,3) 

Node 2 

(3,4) 
Node 3 

(5,6) 
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( )
44

4
3.14 60d

I 635 850 mm
64 64


= = =  

So: 

( )

4

33

EI 21 10 635850 N
260.8

L mm800

 
= =  

- Element 1: between nodes 1 and 2, with cross-section A, Young's modulus E, and length  

2 2

3

1

2 2

12 6L 12 6L

6L 4L 6L 2LEI
[K]

12 6L 12 6LL

6L 2L 6L 4L

− 
 

−
 =
 − − −
 

− 

 

 

 

- Element 2: between nodes 2 and 3. Since it has the same geometric and material properties as 

element 1, then: 

 

2 2

3

2

2

1

2

12 6L 12 6L

6L 4L 6L 2LEI
[K] [K]

12 6L 12 6LL

6L 2L 6L 4L

− 
 

−
 =
 − − −


− 

=



 

 

4. Assemble the global stiffness matrix: Form the global stiffness matrix (GSM) by assembling 

the stiffness matrices of the individual elements.  

dim (GSM)= number of degrees of freedom per node multiplied by the number of nodes 

dim(GSM)=2×3=6 

  3

12 0

12 6L 0 12 6LEI
K

0

12 6L 6L 0

6L 4L² 6L 2L² 0 0

24

8L²

0 12 6L

²

6L 2L² 0 6L 2L

12 6L

0 0 6L 2L² 6L 4L

²L

− 
 
 
 − − −



−

=  
− − 
 

 −

− − −

 

 

5. Formulate the load vector: Construct the global load vector {F} considering the applied 

concentrated force 𝐹 at node 2. 

- Element 1: between nodes 1 and 2, concentrated force at node 2: 
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 

1

(1) 1

2

2

0
F 1

0
M 2

f F
F 3

2
M 4

0

 
   
      

= =   
−   

       

 

- Element 2: between nodes 2 and 3, concentrated force at node 2: 

 

 

2

(2) 2

3

3

F
F 2

2
M 3

0f
F 4

0
M 5

0

 
−   

      
= =   
   
       

 

 

6. Global force vector: The cumulative force vector represents the total forces and moments 

applied at the nodes throughout the entire finite element mesh. It is created by aggregating the 

contributions of all local force vectors, thus encapsulating all the forces and moments acting 

across the entire structure. 

Dim (GVF) = number of degrees of freedom per node multiplied by the number of nodes 

Dim (GVF) =2×3=6 

   
T

F 0 0 F 0 0 0= −  

 

7. Applying boundary conditions: The boundary conditions relevant to this case study are 

shown in Table 2.6: 

 

Table 2.6: The boundary conditions specific to the case study (beam under bending) 

Nodes Boundary conditions Displacements Forces 

Node 1 fixed support  1 0w = and 1 0=  1 1
?RT ==  and 1 ?M =  

Node 2 concentrated force 2 ?w = and 2 ?=  2 FT = −  and 2 0M =  

Node 3 simple support 3 0w = and 3 ?=  3 0T =  and 3 0M =  
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8. Formation of the global system: To determine displacements and reactions at the supports 

(nodes 1 and 3), solve the system of equations using the relationship between the stiffness matrix, 

displacements, and external forces:     K . U F=  

1

4 4

1

2

4 4 4
2

3

3
4 4

12 4800 0 0 w 0

4800 256

8

10 10 0 0 0

24 w ?
2

1

12 4800

60.8
?10 512 10 10

w 00 0 4800

4

12 480

800 128

12 4800 0 12 4800
.

4800 128 0 4800 12

1

4

2

4800 12

0

?0 0 0 800 2568 10

−   
   − 
   
   − − −  
   

−   
  −
  

   



=

 =

=

 =



  

=− −

 = − 

1 1

1 1

2

2

2

33

T =R

M =M

T =-4000

M =0

T =R

M 0

 
 
 
  

=  
 

  
  

=   

 

 Solution: To solve this system, we eliminate the rows and columns corresponding to nodes 1,2  

and 5, which have zero displacements, resulting in the reduced system: 

2

4 4

2

4

3

4

24 0 4800 w 4000

260.8 0 512 10 128 10 . 0

4800 128 10 256 10 0

−     
    

   =    
           

 

 

Finally, we find: 

2 1.1183 mm w = −
 

2 0.000599 mm = −  

3 0.002396 mm = −  

To ascertain the reactions at the supports, we revisit equations 1,2 and 5, substituting the 

displacement w2 and rotations 2 and 3 with their previously calculated values. 

( ) ( )1 2 2R 260.8 12w 4800 260.8 ( 12) ( 1.1183) 4800 N9( 0.00059 ) 2750= − +  = −−  =+ −

 

( ) ( )4 4

1 2 2 1M 260.8 4800W 128 10 260.8 ( 4800) ( 121.1183) 0.00059 68 10 ( 1200000 N.mm M 1199972.0 .9 9) N mm= − +   = −    = =− + − −

 

( )

( )

3 2 2 3

1.1183) N

R

( 480

W

0)

260.8 12 4800 4800

260.8 ( 12) ( ( 0.000599) 0.002394 6)( 800) ( 1250

= − −  − 

= −   −− +  =− + − −
 

Upon computation, the outcomes for the unknown displacements and reactions are presented in 

the following Table2.7: 
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Table 2.7: Results specific to the case study (beam under bending) 

 

Nodes 
Displacements Loads 

bend (mm) rotation (rad) Forces (N) Moments (N.mm) 

Node 1 1 0w =  1 0=  1 2750R =  1 1200000M =  

Node 2 
2 1.1183  w = −  2 0.000599 = −  2 2 4000T F= = −  2 0M =  

Node 3 3 0w =  
3 0.002396 = −  3 1250R =  3 0M =  

 

2.7 Conclusion 

In this chapter, we explored the fundamental principles and applications of finite elements in 

structural analysis. We began with truss elements under tensile loading, where we examined how 

axial forces influence deformations and stresses in simple structures. Moving on to trusses, we 

studied structures composed of multiple bars. Finally, we investigated beam-bar elements, 

analyzing the response of beams under various bending loads. The combination of these concepts 

showcases the power of the finite element method in modeling and solving various engineering 

problems. By integrating different types of elements, we can analyze complex structures with 

high accuracy, predicting their behavior under various loading conditions. This ability to simulate 

and optimize structures is essential in modern design and engineering, providing robust and 

efficient solutions for a wide range of industrial applications. 
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Chapter 3                                                               

Programming and validation 
 

3.1 Programming Languages 

3.1.1 Overview of programming languages 

Programming languages are essential tools in coding, enabling developers to write 

instructions that computers can follow. They can be categorized into low-level and high-level 

languages. Low-level languages, such as machine language and assembly language, are closer to 

the computer's hardware and offer high performance, though they are more challenging to write 

and understand. High-level languages, such as Python, Java, C++, and JavaScript, are more 

abstract and user-friendly, making them easier to read, write, and maintain. These languages 

provide various features and libraries that help developers create complex software more 

efficiently [11]. 

  

 

 

 

Figure 3.1: popular programming languages 

3.1.2 Core Concepts in Programming 

Key concepts in programming include variables, data types, control structures, functions, and 

objects. Variables are storage locations identified by names that hold data, which can be 

manipulated throughout the program. Data types define the kind of data a variable can hold, such 
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as integers, floats, strings, and Booleans. Control structures, like loops and conditionals, direct 

the flow of the program by executing different code blocks based on certain conditions. 

Functions or methods are reusable blocks of code designed to perform specific tasks and can take 

inputs (parameters) and return outputs. In object-oriented programming (OOP), objects and 

classes are fundamental. Objects are instances of classes, which define the structure and behavior 

of these objects, promoting code reuse and modularity [12]. 

3.1.3 Development Paradigms 

Programming follows various development paradigms, including procedural programming, 

object-oriented programming, and functional programming. Procedural programming focuses on 

a sequence of instructions to perform tasks, emphasizing linear execution. Object-oriented 

programming organizes code into objects that encapsulate data and methods, enhancing 

modularity and code reuse. Functional programming, on the other hand, treats computation as the 

evaluation of mathematical functions and avoids changing state and mutable data [13]. 

3.1.4 Development Tools 

Development tools play a crucial role in programming, providing environments where code 

can be written, tested, and debugged. Integrated Development Environments (IDEs) like Visual 

Studio Code, PyCharm, and Eclipse offer comprehensive features that streamline the 

development process. Version control systems such as Git and SVN help manage changes to the 

source code over time, facilitating collaboration among developers [14]. 

3.1.5 Software Development Lifecycle 

The software development lifecycle comprises several stages: planning, design, 

implementation, testing, deployment, and maintenance. Planning involves defining the scope and 

purpose of the software, while design focuses on creating blueprints for the software architecture. 

Implementation is the actual coding phase, followed by testing to ensure the software is bug-free 

and performs as expected. Deployment releases the software to users, and maintenance involves 

updating and fixing the software post-release to address any issues or new requirements [15]. 
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Figure 3.2: Software Development Lifecycle 

3.1.6 Popular Programming Languages and Their Uses 

Various programming languages have become popular due to their unique strengths and use 

cases. Python is known for its simplicity and versatility, making it popular for web development, 

data analysis, artificial intelligence, and scientific computing. Java is commonly used in 

enterprise environments, Android app development, and large systems due to its robustness and 

portability. JavaScript is essential for web development, both on the client-side and server-side, 

thanks to its ability to create interactive and dynamic web pages. C++ is favored in system and 

software development, game development, and performance-critical applications for its 

efficiency and control over system resources. Ruby, with its simplicity and productivity, is often 

used in web development with the Ruby on Rails framework [16]. 

3.1.7 Emerging Trends 

Emerging trends in programming include machine learning and artificial intelligence, which 

are increasingly integrated into applications to provide intelligent features and automation. 

Quantum computing, although still in its early stages, promises to revolutionize problem-solving 

with new programming paradigms, block chain technology is gaining traction for developing 

decentralized applications and crypto currencies, while the Internet of Things (IoT) focuses on 

programming interconnected devices and sensors to create smart environments. 
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Programming is a dynamic and ever-evolving field that adapts to technological advancements 

and changing user needs. Mastering programming languages and understanding core concepts are 

essential for developing efficient, innovative software solutions [17]. 

3.2 Chosen Programming Language (Python) 

3.2.1 Definition and history of python 

Python is a cross-platform, multi-paradigm, object-oriented programming language (Figure 

3.3). It supports structured, functional and object-oriented imperative programming and is 

comparable to other languages in the same programming paradigm, such as Perl, Ruby, Scheme, 

Smalltalk and Tcl. 

 

Figure 3.3: python logo 

The language is dynamic, which allows for rapid development and flexibility. Automatic 

memory management using garbage collection is another feature which makes it more efficient 

and easier to maintain. Python also includes a comprehensive exception handling system which 

provides a robust solution for handling errors in a structured way. 

Furthermore, educationalists have identified the language as an accessible introduction to the 

fundamental concepts of programming, as its syntax is clearly separated from low-level 

mechanisms. 

Python is a versatile programming language that can be employed in a multitude of contexts 

and adapted to a wide range of applications through the use of specialized libraries. It is 

particularly popular as a scripting language for automating simple yet time-consuming tasks, 

such as retrieving the weather forecast from the Internet or integrating it into computer-aided 

design software to automate repetitive sequences of actions. 

Computer-aided design software is one area where Python is used to automate repetitive 

sequences of actions (see the Adoption section). Additionally, it is employed as a prototype 

development language when a functional application is required prior to optimization with a 
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lower-level language. It is particularly prevalent in the scientific community and boasts numerous 

extensions for numerical applications. 

The Python language is licensed under an open-source license similar to the BSD licence3 

and runs on a wide range of computer platforms, including supercomputers, mainframes4, 

Windows, Unix, GNU/Linux, Mac OS, Android and iOS, as well as Java and .NET. 

The language is designed to optimize the productivity of programmers by offering high-level 

tools and an easy-to-use syntax [18]. 

3.2.2 Python capabilities and functions 

Python offers a diverse set of capabilities that cater to various programming needs: 

- Writing small, very simple programs, known as scripts, which perform specific tasks on 

your computer. 

- Developing complete programs, such as games, office suites, multimedia software, e-mail 

clients, and more. 

- Handling very complex projects, including software packages a collection of multiple 

pieces of software that can work together, commonly utilized in professional settings. 

- Creating graphical interfaces to enhance user interaction and experience. 

- Facilitating information circulation across a network, enabling seamless communication 

between devices. 

- Engaging in advanced dialogue with your operating system, allowing for efficient system-

level operations and automation. 

3.2.3 Errors and exceptions 

The process of programming is inherently complex, as is any human activity. Errors in 

programming are referred to as "bugs," and the techniques used to detect and correct them are 

collectively known as "debugging." It is evident that the most crucial skills to be acquired during 

the learning process are those required to debug a program effectively. 

To gain a deeper understanding of the context of our work, it is first necessary to elucidate a 

few related concepts. 

A) Types of Programming Error: As is the case with all programming languages, three types of 

error can occur in a Python program: 

- Syntax errors: Python can only execute a program if the syntax is perfectly correct. If this is 

not the case, the process is interrupted and an error message is displayed (Figure.3.4).  The 
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term syntax refers to the language syntax rules that the authors have set up for the structure of 

the program. 

- The second type of error is the semantic error or logical error. If there is an error of this type 

in one of your programs, it functions correctly in the sense that no error message is generated. 

However, the result is not what was intended. The program instructions in the sequence do 

not correspond to the desired objective. The semantics (logic) are incorrect. 

- The third category of error is the execution error, which manifests when a program is already 

operational but under specific conditions. For instance, if a program attempts to read a file 

that no longer exists, an execution error will occur. These errors are also known as exceptions 

because they typically indicate that an unforeseen event has occurred. 

B) The distinction between an error and an exception: In general, an error is a response to a 

problem posed by the system. However, exceptions are alerts whose location and behavior are 

defined by the developer. Exceptions are used to handle errors; the reverse makes no sense. 

C) Error and exception handling: Error handling is usually solved by recording the state of 

execution at the time of the error and interrupting the normal flow of the program to execute a 

special function or piece of code, which is known as the exception handler. Depending on the 

type of error ("division by zero", "file open error" and so on) that had occurred, the error handler 

can resolve the problem and the program can then continue with the data previously saved. 

Exception handling is a construct in some programming languages for automatically handling 

or dealing with errors. Many programming languages such as C++, Objective-C, PHP, Java, 

Ruby, Python and many others have built-in support for exception handling. 

When an exception occurs the normal flow of the program is disrupted and the 

program/application terminates abnormally, which is not recommended, therefore these 

exceptions must be handled. 

 

Figure 3.4: Undefined variable error example in python 
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Unfortunately, using the built-in support for exception handling requirements exception 

handling needs for a deep beginner's knowledge of how these exceptions occur. In addition, full 

details can be given by the compiler to guide and help learners catch these exceptions. When a 

learner's program crashes at runtime, the learner receives feedback that an exception has 

occurred. However, the cognitive level of a beginner cannot allow him to catch these exceptions 

to avoid possible errors. Python (version 3.4) has around 29 built-in exceptions (Table 3.1) [19]. 

Table 3.1: Some standard Python built-in exceptions 

Exception name Description 

Arithmetic Error Basic exception for all errors that occurs numerical 

calculation. 

Floating Point Error Triggered when a floating point calculation fails. 

Zero Divison Error Triggered when division or modulo by zero occurs for all 

numeric types. 

EOF Error Triggered when there is no input from either raw_input () or 

input () and the end of the file is reached. 

Index Error Triggered when an index is not in a sequence. 

IO Error The event is triggered when an input/output operation fails, 

such as the print statement or the open () function when an 

attempt is made to open a file that does not exist. 

OS Error For operation system errors  

Value Error In the event that the integrated function for a data type is of 

the correct type for the arguments, yet the arguments 

themselves are of an invalid value. 

3.2.4 Jupyter notebook 

We used Jupiter’s notebook for easy troubleshooting and debugging and to well organize our 

code (Figure 3.5). 

 

Figure 3.5: Jupyter Logo 

3.2.5 Overview of Jupyter notebook 

Jupyter Notebook is an open-source web application that allows users to create and share 

documents containing live code, equations, visualizations, and narrative text. It's a powerful tool 
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widely used in data science, scientific computing, and machine learning for interactive computing 

[20]. 

3.2.6 Key features of Jupyter notebook 

- Interactive Code Execution 

- Rich Text Support 

- Data Visualization 

- Documentation and Sharing 

- Extensibility 

3.3 Finite element program 

In order to achieve the desired results and guarantee a well-built program we need to respect 

the geometric and physical description of the problem studied the calculation of the elementary 

matrices and vectors and assembly of the overall system, solving the system and finally 

visualizing the results. The actual use of finite element modeling software on the market provides 

certain know-how and expertise adapted to the problem being addressed, a good knowledge of 

the physics involved and a general understanding of the finite element method. 

3.3.1 Finite element program exaction steps 

Finite Element Analysis (FEA) involves several methodical steps to accurately model and 

analyze physical systems (Figure.3.6). Each one of the previous steps contain a number of 

conditions and elements that is related to how the program function, which are and not limited to: 

Step 1: input 

Consists of the different variables and parameters the program needs to function like each 

node coordination and how elements are linked together, physical parameters and demands as 

well as limit conditions. 

Step 2: Generation of K matrix and F vector 

Starting with extracting each information related to an element then building the global 

matrix K and vector F and finally the Assembly process. 

Step 3: Solving the system 

Applying: the limit conditions on the matrix and vector, Gaussian elimination and calculating U 
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. 

Figure 3.6: program execution steps 

3.3.2 Developed program 

Finite element programs are available in the net on variety of programming languages which 

most are in MATLAB, however there are nearly none in python therefore the method can be 

easily exported as an API. 

3.3.3 Code 

Out of the numerous systems we addressed three; 1 Dimensional bar, Trillis and Beam. All of 

them share the same libraries as follow: 

- NumPy: library is used for numerical computing in Python, widely used for its powerful 

capabilities in handling and manipulating numerical data. 

- Pandas: Pandas is a powerful and flexible open-source data analysis and manipulation 

library for Python. It is built on top of NumPy and provides high-level data structures and 

functions designed to make data analysis fast and easy. 

- Matplotlib is a comprehensive library for creating static, animated, and interactive 

visualizations in Python. It is widely used for generating plots and graphs and is an 

essential tool in the data analysis and data science toolkit. 

importnumpyas np 

import pandas as pd 

importmatplotlib.pyplotasplt 

Figure 3.7: Used python libraires 

3.3.4 Bar program 

The bar program will perform a linear static analysis on a bar subjected to axial loads. The bar 

will be divided into elements, and the program will calculate the displacements at the nodes and 

the stresses in each element. The structured Python program that performs this analysis is given 

below: 

 

 

Input 
Generating K 

matrix and F vector 

 

Solving the 

system 
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Phase 1: input 

This is the input part of nodes and boundary conditions, where data is an array that stores “x” and 

“y” as coordinates, “U” as displacement and “F” as the load of each node (Figure.3.8). 
 

columns = ['coordinate_x','coordinate_y','displacement_x','load_x'] 

data = [[x, y, U, F]] 

nodes = pd.DataFrame(data, columns = columns) 

nodes 

 

Figure 3.8: Bar nodes parameters 

This is the input part of elements where we define the 2 nodes that represent each single element 

(Figure.3.9). 

Note: Unknown variables are described as “np.nan”. 

columns = ['start','end','area','material'] 

data = [[starting_node,ending_node, A, E]] 

elements = pd.DataFrame(data, columns = columns) 

elements 

Figure 3.9: Bar element parameters 

- p.DataFrame is a function in pandas library that has a 2 dimensional data structure, like a 

2 dimensional array, or a table with rows and columns. 

Phase 2: elementary stiffness matrix 

The elementary stiffness matrix represents the stiffness of a single finite element within the larger 

system and is crucial for assembling the global stiffness matrix. For a 1D bar element subjected 

to axial loads, the elementary stiffness matrix can be derived from the governing equations of 

linear elasticity. For a bar element with length Le, cross-sectional area A, and Young's modulus 

E, the program for computing the elementary stiffness matrix [k] for a bar element is given below 

(Figure.3.10):  
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defcompute(element): 

  start = element['start'] 

  end = element['end'] 

  x_coordinate_start = nodes.loc[start,'coordinate_x'] 

  y_coordinate_start = nodes.loc[start,'coordinate_y'] 

  x_coordinate_end = nodes.loc[end,'coordinate_x'] 

  y_coordinate_end = nodes.loc[end,'coordinate_y'] 

  deltaX = x_coordinate_end - x_coordinate_start 

  deltaY = y_coordinate_end - y_coordinate_start 

  length = np.sqrt(deltaX ** 2+deltaY ** 2) 

  stiffness = element['material']*element['area']/length 

  R= np.array([[1,-1], 

              [-1,1]]) 

  return length, stiffness, R 

elements [['length','stiffness','R']] = elements.apply(compute, axis = 

1,result_type='expand') 

elements 

Figure 3.10: Bar elementary stiffness matrices calculation 

- .loc function is a property that allows Pandas to query data within a data frame in a 

standard format. 

- .array is a linear data structure where all elements are arranged sequentially. 

Phase 3: Stiffness matrix Global 

This phase assembles the elementary stiffness matrices into a global one (Figure.3.11). 
 

defcompute_globalK(element): 

  N = len(nodes) 

  indices = np.arange(N) 

  indices = indices.reshape(-1,1) 

  K = np.zeros((N, N)) 

  start = element['start'] 

  end = element['end'] 

  indices = np.hstack([indices[start], indices[end]]) 

  K[np.ix_(indices, indices)] = element['stiffness']*element['R'] 

  return K 

K = elements.apply(compute_globalK, axis=1).sum() 

K.round(4) 

Figure 3.11: Bar global matrix calculation 

- len returns the length of given variable. 

- .arrange allows you to create arrays with evenly spaced values. 
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- .hstack function is used to horizontally stack data of the variables. 

Phase 4: Gaussian elimination 

Where we shrink the stiffness matrix global into a smaller one for further calculation  
 

defpartition_K(K, A, B): 

  KAA = K[np.ix_(A, A)] 

  KAB = K[np.ix_(A, B)] 

  KBA = K[np.ix_(B, A)] 

  KBB = K[np.ix_(B, B)] 

  return KAA, KAB, KBA, KBB 

U = nodes[['displacement_x']].to_numpy() 

U = U.ravel() 

A = np.isnan(U) 

P = nodes[['load_x']].to_numpy() 

P = P.ravel() 

B = np.isnan(P) 

KAA, KAB, KBA, KBB = partition_K(K, A, B) 

KAA 

Figure 3.12: Bar Gaussian elimination process 

- .ravel is used to change a 2-dimensional array or a multi-dimensional array into a 

contiguous flattened array. 

- .isnan returns if given values are not a void. 

Phase 5: Results 

Calculates the final results “Unknown displacement” and “Unknown loads” ” (Figure.3.13). 

UB = U[B] 

UB 

PA = P[A] 

PA 

UA = np.dot(np.linalg.inv(KAA),(PA - np.dot(KAB,UB))) 

U[A] = UA 

PB = np.dot(KBA, UA) + np.dot(KBB, UB) 

P[B] = PB 

result = nodes.copy() 

result[['displacement_x']] = U.reshape(-1,1) 

result[['load_x']] = P.reshape(-1,1) 

result 

Figure 3.13: Bar results 

- .linalg defines linear algebra functions. 

- .inv inverses a matrix. 
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3.3.5 Truss program 

Truss program is similar to the previous program therefore we decided to show only the 

difference between the two. 

Phase 1: input 

In Input phase we added only the displacement “Uy” and load “Fy” as follow (Figure.3.14): 
 

columns = 

['coordinate_x','coordinate_y','displacement_x','displacement_y','load_x','load_y'] 

data = [[x, y,Ux, Uy,Fx,Fy]] 

nodes = pd.DataFrame(data, columns = columns) 

nodes 

Figure 3.14: Truss node parameters 

Element part is still the same as (Figure 3.9). 

Phase 2: elementary stiffness matrix 

The difference here is the elementary stiffness matrix components (Figure.3.15). 
 

defcompute(element): 

  start = element['start'] 

  end = element['end'] 

  x_coordinate_start = nodes. loc[start,'coordinate_x'] 

  y_coordinate_start = nodes.loc[start,'coordinate_y'] 

  x_coordinate_end = nodes. loc[end,'coordinate_x'] 

  y_coordinate_end = nodes. loc[end,'coordinate_y'] 

  deltaX = x_coordinate_end - x_coordinate_start 

  deltaY = y_coordinate_end - y_coordinate_start 

  length = np.sqrt(deltaX ** 2+deltaY ** 2) 

  stiffness = element['material']*element['area']/length 

  c = deltaX/length 

  s = deltaY/length 

  R= np.array([[c*c, c*s, -c*c, -c*s], 

              [c*s, s*s, -c*s, -s*s], 

              [-c*c, -c*s, c*c, c*s], 

              [-c*s, -s*s, c*s, s*s]]) 

  return length, stiffness, R 

elements [['length','stiffness','R']] = elements.apply(compute, axis = 

1,result_type='expand') 

elements 

Figure 3.15: Truss elementary stiffness matrices calculation 

Phase 3: stiffness matrix global 

Assembly is the same regardless of the system 
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Phase 4: Gaussian elimination 

In the Gaussian elimination phase we added displacement y “Uy” and load y “Fy” (Figure.3.16). 

defpartition_K(K, A, B): 

  KAA = K[np.ix_(A, A)] 

  KAB = K[np.ix_(A, B)] 

  KBA = K[np.ix_(B, A)] 

  KBB = K[np.ix_(B, B)] 

  return KAA, KAB, KBA, KBB 

# index A is where the displacement is unknown 

U = nodes[['displacement_x','displacement_y']].to_numpy() 

U = U.ravel() 

A = np.isnan(U) 

P = nodes[['load_x','load_y']].to_numpy() 

P = P.ravel() 

B = np.isnan(P) 

KAA, KAB, KBA, KBB = partition_K(K, A, B) 

KAA 

Figure 3.16: Truss Gaussian elimination process 

Phase 5: results 

Same as phase 1 and 4 we added displacement y “Uy” and load y “Fy” (Figure.3.17). 

UB = U[B] 

UB 

PA = P[A] 

PA 

UA = np.dot(np.linalg.inv(KAA),(PA - np.dot(KAB,UB))) 

U[A] = UA 

PB = np.dot(KBA, UA) + np.dot(KBB, UB) 

P[B] = PB 

result = nodes.copy() 

result[['displacement_x','displacement_y']] = U.reshape(-1,2) 

result[['load_x','load_y']] = P.reshape(-1,2) 

result 

Figure 3.17: Truss results 

3.3.6 Beam program: 

Truss program is similar to the previous program therefore we decided to show only the 

difference between the two. 
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Phase 1: input 

In Input phase got only one displacement y “W” and we added a rotation “θ” as well as torque 

“M” (Figure.3.18). 
 

columns = ['coordinate_x','coordinate_y','displacement_y','rotation','load_y','torque'] 

data = [[x, y, W,θ,T, M]] 

nodes = pd.DataFrame(data, columns = columns) 

nodes 

 

Figure 3.18: Beam node parameters 

The element part changed as follow: we replaced area with width “b” and height “h” 

(Figure.3.19). 

columns = ['start', 'end', 'inertia', 'material', 'length'] 

data = [[starting node, ending node, I, E, L]] 

elements = pd.DataFrame(data, columns = columns) 

elements 
  

Figure 3.19: Beam element parameters 

Phase 2: elementary stiffness matrix 

Stiffness law changed and elementary stiffness matrix as well (Figure.3.20). 
 

def compute(element): 

  start = element['start'] 

  end = element['end'] 

  x_coordinate_start = nodes. loc[start, 'coordinate_x'] 

  y_coordinate_start = nodes.loc[start, 'coordinate_y'] 

  x_coordinate_end = nodes. loc[end, 'coordinate_x'] 

  y_coordinate_end = nodes. loc[end, 'coordinate_y'] 

   stiffness=(element['material']*element['inertia'])/(element['length']*element 

['length' ]*element['length' ]) 

    L = element['length' ] 

  R= np.array([[12, 6*L, -12, 6*L], 

              [6*L, 4*L*L, -6*L, 2*L*L], 

              [-12, -6*L, 12, -6*L], 

              [6*L, 2*L*L, -6*L, 4*L*L]]) 

 

  return stiffness, R 

elements [['stiffness', 'R']] = elements.apply(compute, axis = 1, result_type='expand') 

elements 

 Figure 3.20: Beam elementary stiffness matrices calculation 

Phase 3: stiffness matrix global 

Assembly is the same regardless of the system  

Phase 4: Gaussian elimination 

In this phase displacement and load got replaced by rotation “θ” and torque “M” (Figure.3.21). 
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defpartition_K(K, A, B): 

  KAA = K[np.ix_(A, A)] 

  KAB = K[np.ix_(A, B)] 

  KBA = K[np.ix_(B, A)] 

  KBB = K[np.ix_(B, B)] 

  return KAA, KAB, KBA, KBB 

# index A is where the displacement is unknown 

U = nodes[['displacement_y','rotation']].to_numpy() 

U = U.ravel() 

A = np.isnan(U) 

P = nodes[['torque','load_y']].to_numpy() 

P = P.ravel() 

B = np.isnan(P) 

KAA, KAB, KBA, KBB = partition_K(K, A, B) 

KAA 

Figure 3.21: Beam Gaussian elimination process 

Phase 5: results 

Same as phase 1 and 4 we replaced displacement x and load x with rotation “θ” and torque “M” 

(Figure.3.22). 
 

UB = U[B] 

UB 

PA = P[A] 

PA 

UA = np.dot(np.linalg.inv(KAA),(PA - np.dot(KAB,UB))) 

U[A] = UA 

PB = np.dot(KBA, UA) + np.dot(KBB, UB) 

P[B] = PB 

result = nodes.copy() 

result[['displacement_y','rotation']] = U.reshape(-1,2) 

result[['load_y','torque']] = P.reshape(-1,2) 

result 

Figure 3.22: Beam results 

3.4 Validating results using RMD6 software 

3.4.1 Overview of RDM6 

RDM6 or "Resistance des Matériaux 6" is software used in mechanical and civil engineering 

for analyzing the strength and resistance of materials. It is commonly used for educational 
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purposes, and provides tools to solve problems related to material resistance and structural 

analysis. It’s a software tool designed for the simulation and analysis of material strength, 

intended for engineers and researchers working in the field of structural mechanics. This software 

allows users to model, simulate, and analyze the behavior of materials under various constraints 

and load conditions [21]. 

3.4.2 RDM6 Features 

Rdm6 offers a range of features to help engineers of which are [21]: 

• Material resistance calculation; including stress, strains and deformation. 

• Structural analysis; provides tools for analyzing beams, columns, and other structural 

elements to determine their behavior under various loading conditions. 

• Educational tools; often used in engineering courses to help students understand and 

apply principles of material resistance and structural mechanics. 

• Applications; that are used to design and evaluate the safety and performance of 

buildings, bridges, and other structures. 

3.4.3 RDM6 Modules 

The RDM6 structural analysis software is composed of various modules that enable 

comprehensive and detailed analyses of material and structural behaviors under different 

conditions. It contains 4 modules or sub-software; Flexion, Ossatures, Element Finis and Rosette. 

Below is an overview of the main modules available in the RDM6 software (Table 3.2) [21]. 

Table 3.2: The main modules available in the RDM6 

Flexion 
Flexion is software designed for static analysis, using the 

finite element method, of straight beams subjected to simple 

bending.  

Ossatures This software allows the study, using the finite element 

method, of the static and dynamic behavior of frameworks. 
 

Element Finis The evaluation of the mechanical and/or thermal behavior of 

a part using the finite element method. 
 

Rosette Analysis of strain gauge rosettes, study of stresses and 

deformations around a point. 
 

3.5 Comparing program results with traditional analytical results 

In the field of structural analysis and material strength, it is crucial to validate the accuracy 

and reliability of computational tools. This section focuses on comparing the results obtained 
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from the developed programs with those derived from manual calculations in simple cases and 

with those provided by RDM 6 software in more complex cases. Such comparisons are essential 

to ensure that the developed programs can replicate established theoretical predictions. By 

examining the consistency between program results, manual calculations, and RDM 6 software 

outputs, we can assess the software's performance, identify any discrepancies, and understand the 

underlying reasons for these differences. This process not only enhances confidence in the 

software's capabilities but also contributes to its continuous improvement and refinement. 

3.5.1 Example of the calculation for bar element in tension 

For the first example of the calculation of the bar element in tension (Paragraph 2.4.4), the 

xcomparison is between the manual results of the finite element method (Table 3.3) and those 

obtained by the developed program for the 1D bar element in tension (Table 3.4). 

Table 3.3: Outcomes provided by manual computing for bar element 

Nodes Displacements (mm) Forces (N) 

Node 1 
1 0u =  1 100F =  1 152.94R = −  

Node 2 
2 0.0026 u =  2 100F =  

Node 3 
3 0.0021 u =  3 200F =  

Node 4 4 0u =  4 247.06R = −  
 

Table 3.4: Results derived from proposed program for bar element 

 

To compare these results, the relative error calculated using the following formula (3.1) is 

shown in Table 3.5. 

program manual

manual

y y
e% 100

y

−
=   

(3.1) 
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Table 3.5: Relative error between outcomes provided by manual computing and those from 

proposed program for bar element 

Nodes (e %) displacements 

(mm) 

(e %) Forces 

Node 1 0 0 0.04 

Node 2 0 0 

Node 3 0 0 

Node 4 0 0.4 
 

Table 3.5 presents the relative errors between manual calculation’s results and the proposed 

program’s results for a bar element consisting of 3 elements and 4 nodes; we observe that on 

displacement’s section there is no errors, on force’s section there is error valuated with 0.04% in 

node 1, in node 4 there is valuated with 0.4%, if we gather all the errors we have a total error 

valuated with 0.44%, the total error is under 1% so we can say that the solution of the proposed 

program is almost same as manual calculation in bar elements.     

3.5.2 Example of the calculation for truss element  

In the second example involving the calculation of the truss element in tension (Paragraph 

2.5.5), the comparison is made between the manual finite element method results (Table 3.6) and 

those obtained using the developed program for the truss element in tension (Table 3.7). 

Table 3.6: Results obtained through manual calculations for truss element 

Nodes Displacements (u) Displacements (v) Forces /x-axis Forces /y-axis 

Node 1 1 0u =  1 0v =  -10 087.5 N -10 087.5 N 

Node 2 2 0u =  2 0v =  0 N 30 087.5 N 

Node 3 3 1.4654mmu =  3 0.7522mmv = −  10 000 N -20 000 N 

Table 3.7: Results derived from the proposed program for truss element 

 

To contrast these findings, the relative discrepancy computed via formula (3.1) is displayed in 

Table 3.8. 
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Table 3.8: Relative error between outcomes provided by manual computing and those from 

proposed program for truss element 

Nodes (e%) u (e%) v  (e %) F /x-axis F /y-axis 

Node 1 0 0 0.87 0.87 

Node 2 0 0 0 0.87 

Node 3 0 0 0 0 
 

Table 3.8 presents the relative errors between manual calculation’s results and the proposed 

program’s results for a truss consisting of 3 bars and 3 nodes; we observe that on displacement’s 

section there is no errors, on force’s section there is error valuated with 0.87% in node 1 on F /x-

axis and F /y-axis, in node 2 there is on F /y-axis with the same value, if we gather all the errors 

we have a total error valuated with 2.61%, the total error is under 5% so we notice that the 

proposed program is solving the system with a reasonable solution comparing to manual 

calculation in simple truss structures.     

3.5.3 Example of the calculation for a bar element in bending 

In this instance, concerning the calculation of the bar element in bending (Paragraph 2.6.5), 

the comparison extends to the manual finite element method results (Table 3.9) and those derived 

from the developed program for the bar element in tension (Table 3.10). 

Table 3.9: Results derived from manual calculations for beam element 

 

Nodes 
Displacements Loads 

bend (mm) rotation (rad) Forces (N) Moments (N.mm) 

Node 1 1 0w =  1 0=  1 2750R =  1 1200000M =  

Node 2 
2 1.1183  w = −  2 0.000599 = −  2 2 4000T F= = −  2 0M =  

Node 3 3 0w =  
3 0.002396 = −  3 1250R =  3 0M =  

Table 3.10: Results derived from the proposed program for beam element 

 

To compare these results, Table 3.11 illustrates the relative error calculated using formula (3.1) 

between the outcomes generated by manual computation and those obtained from the proposed 

program for the beam element. 
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Table 3.11: Relative error between the outcomes obtained through manual computation and 

those generated by the proposed program for the beam element 

 

Nodes 
(e%) displacements (e%)loads 

bend rotation Forces Moments 

Node 1 0 0 0.72 0 

Node 2 0.045 0.17 0 0 

Node 3 0 0.17 0.72 0 
 

Table 3.11 presents the relative errors between manual calculation’s results and the proposed 

program’s results for a beam contains 2 elements and 3 nodes with a circular section; we observe 

that in node 2 on bend there is an error that valuated with 0.045%, on rotation the error is 0.17%, 

in node 3 the error is same as node 2 on rotation, this errors on displacement’s section, on force’s 

section there is error valuated with 0.72% in node 1 and node 3, if we gather all the errors we 

have a total error valuated with 1.825%, the total error is under 2% so we notice that the proposed 

program is reliable to solve a simple beam structures.     

3.6 Comparing program results with RDM6 results in complex cases 

When evaluating the performance of a developed program for structural analysis, it's often 

necessary to compare its results with those obtained from simulations using established software 

such as RDM6. This comparison is particularly important in the case of complex structures where 

manual calculations are difficult or even impossible. With this in mind, this part of the work 

examines the comparison between the results produced by the developed program and those from 

simulations conducted with RDM6, highlighting the discrepancies and similarities between these 

two analysis approaches for more complex structural cases. 

3.6.1 Illustration of the computation for a truss element 

Given a truss system consisting of 7 bars with a double support at node 5 and a single support 

at node 2, with identical lengths L=1 m meter and the same stiffness E=2×105MPa, and cross-

sections A=10 cm², and subjected to concentrated forces as shown in the figure: F1= 20KN and 

F2=10KN. We propose to determine the unknown displacements and the support reactions. 
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Figure 3.23: A truss structure consisting of 7 bars and 5 nodes 

Using the calculation program dedicated to 2D bar elements (trusses), and inputting the data from 

this problem, we arrived at the results shown in the Table 3.12. 

Table 3.12: Results provided by the developed calculation program for the truss structure 

consisting of 7 bars 

 

To compare the results obtained with others provided by the RDM6 software for this structure of 

7 bars, we present the different steps of the simulation: 

1- Initial Configuration 

- Open RDM6. 

- Configure the basic settings based on the measurement units you use (mm). 

2- Creating the truss model 

-Node definition: access the model creation section in RDM6 and add the structure's nodes by 

specifying their coordinates (X, Y). 

- Adding bars: Select the start and end nodes for each bar and add the 7 truss bars by connecting 

the appropriate nodes (Figure 3.24). 
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Figure 3.24: Creating the truss model consisting of 7 bars and 5 nodes 

3- Defining material and section properties 

- Material properties definition: Enter the properties of the material used (Young's modulus, 

Poisson's ratio, etc.) (Figure 3.25). 

- Defining bar sections: Specify the dimensions of the bar sections (Figure 3.26) (cross-

sectional area, moment of inertia, etc.). 

 

Figure 3.25: Properties of the material used   
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Figure 3.26: Dimensions and shape of the chosen section of the bar  

4- Applying loads and boundary conditions 

- Applying Loads: Add the forces applied to the nodes or bars and specify the direction and 

intensity of the loads (Figure 3.27). 

- Defining Boundary Conditions: Fix the support nodes by defining their restricted degrees of 

freedom (DOF) and indicate nodes that are fixed or have limited displacements (Figure 3.27). 
 

 

Figure 3.27: Applying loads and boundary conditions 

5- Performing the Analysis 

- Running the Simulation: Verify that all data is correctly entered and execute the analysis to 

obtain results (reactions, displacements, internal forces). 
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6- Analyzing the Results 

- Viewing the Results: Review the results provided by RDM6, including node displacements 

and internal forces in the bars and compare these results with those obtained by our developed 

calculation program. 

- Reports and Export: Generate detailed reports from the results and export data if necessary 

for further analysis. 

 

Figure 3.28: Viewing the Results 

 

 

Figure 3.29: Exporting the report results 

The results obtained from the simulations conducted using the RDM6 software for this truss 

structure composed of 7 bars are presented in Table 3.13. 
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Table 3.13: Outcomes provided by RDM6 software for the truss structure consisting of 7 bars 

Nodes Displacement u (mm)   Displacement v (mm) 

(v) 

Forces/x-axis 

(N) 

Forces/y-axis (N) 

Node 1 0 0 0 17500.6 

Node 2 0.08741 -0.2558 0 0 

Node 3 0.1498 0 0 12499.4 

Node 4 0.04371 -0.1944 0 -10000 

Node 5 0.1186 -0.2423 0 -20000 
 

To compare these findings, the relative discrepancy calculated using formula (3.1) is shown 

in Table 3.14. 

Table 3.14: Relative error between the results generated by the RDM6 software and those 

produced by the proposed program for the truss structure consisting of 7 bars 

Nodes (e%) u (e%) v  (e%) F /x-axis F /y-axis 

Node 1 0 0 0 0.004 

Node 2 0.1 0.05 0 0 

Node 3 0.13 0 0 0.005 

Node 4 1.9 0 0 0 

Node 5 0 0 0 0 
 

Table 3.14 presents the relative errors between RDM6’s results and the proposed program’s 

results for a truss consisting of 7 bars and 5 nodes with a square cross-section; we observe that in 

node 2 on displacement u there is an error that valuated with 0.1%, on displacement v the error is 

0.05%, in node 3 there is error on displacement u rated with 0.13%, node 4 has error as same as 

node 3 with a value of 1.9%, this errors on displacement’s section, on force’s section there is 

error valuated with 0.004% in node 1 and 0.005% in node 3, if we gather all the errors we have a 

total error valuated with 2.19%, the total error is under 5% so we can say that the proposed 

program is usable comparing with RDM6 software in complex truss structures.     

3.6.2 Illustration of the computation for a beam element 

Given a beam with a solid rectangular cross-section (width b=10cm and height h=20 cm), 

fixed at node 1, and with a double support at nodes 2, 3, and 4, with lengths L1=L2=3 meters, 

L3=L4=2 meters. The beam is subjected to a bending load F=30 KN and a uniformly distributed 

linear load (w=10 KN/m) applied on element 1 Figure 3.30. We propose to determine the 

unknown bend, rotations, reaction, and Moments. Given: E=2×105Mpa. 
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Figure 3.30: A beam structure consisting 5 nodes 

Using the calculation program dedicated to 2D beam elements, and inputting the data from this 

problem, we arrived at the results shown in the Table 3.15. 

Table 3.15: Results provided by the developed calculation program for the beam structure  

 

To compare the results obtained with others provided by the RDM6 software for this structure of 

7 bars, we present the different steps of the simulation: 

1- Initial Configuration 

- Open RDM6. 

- Configure the basic settings based on the measurement units you use (mm). 

2- Creating the truss model 

-Node definition: access the model creation section in RDM6 and add the structure's nodes by 

number of nodes and specifying their coordinates in axis X. 

- Adding beams: the beams are defined automatically after defining the nodes (Figure 3.31). 

 

 

Figure 3.31: Creating the beam model consisting 5 nodes 
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3- Defining material and section properties 

- Material properties definition: Enter the properties of the material used (Young's modulus, 

Poisson's ratio, etc.) (Figure 3.32). 

- Defining beam sections: Specify the dimensions of the beam sections (Figure 3.33)  

 

Figure 3.32: Properties of the material used 

 

 

Figure 3.33: Dimensions and shape of the chosen section of the beam 

4- Applying loads and boundary conditions 

- Applying Loads: Add the forces applied to the nodes and specify the direction and intensity 

of the loads (Figure 3.34). 

- Defining Boundary Conditions: Fix the support nodes by defining their restricted degrees of 

freedom (DOF) and indicate nodes that are fixed or have limited displacements (Figure 3.34). 
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Figure 3.34: Applying loads and boundary conditions 

5- Performing the Analysis 

- Running the Simulation: Verify that all data is correctly entered and execute the analysis to 

obtain results (bend, rotations, reaction, and Moments). 

6- Analyzing the Results 

- Viewing the Results: Review the results provided by RDM6, including displacements and 

rotation and reaction and torque in the nodes and compare these results with those obtained 

by our developed calculation program. 

- Reports and Export: Generate detailed reports from the results and export data if necessary 

for further analysis. 

 

Figure 3.35: Viewing the Results 
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Figure 3.36: Exporting the report results 

The results obtained from the simulations conducted using the RDM6 software for this beam 

structure is presented in Table 3.16. 

Table 3.16: Outcomes provided by RDM6 software for the beam structure  

 

Nodes 
Displacements Loads 

bend (mm) rotation (rad) Forces (N) Moments (N.mm) 

Node 1 0 0 15000 7500000 

Node 2 0 0 15000 -7500000 

Node 3 0 0 15000 15000000 

Node 4 -0.75 0 -30000 0 

Node 5 0 0 15000 -15000000 

To compare these findings, the relative discrepancy calculated using formula (3.1) is shown 

in Table 3.17. 

Table 3.17: Relative error between the results generated by the RDM6 software and those 

produced by the proposed program for the beam structure  

 

Nodes 
(e%) displacements (e%)loads 

bend rotation Forces Moments 

Node 1 0 0 0 0 

Node 2 0 0 0 0 

Node 3 0 0 0 0 

Node 4 0.023 0 0 0 

Node 5 0 0 0 0 
 

Table 3.17 presents the relative errors between RDM6’s results and the proposed program’s 

results for a beam contains 4 elements and 5 nodes with a rectangular cross-section; we observe 
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that in node 4 on bend there is an error that valuated with 0.023%, and in the other nodes there is 

no error and this show us that the proposed program almost precise as RDM6- software in 

complex beams structures.     

3.7 Conclusion 

In this chapter, we achieve our goal which is programming a program that helping us with 

calculating in finite element method and it making complex structures solved easily, we began 

with bar program, next we programming a program for truss, then we beam’s program, and we 

validate our programs with simple examples that solved manually, we used RDM6 software for 

validating our program for the complex examples. Finally, we used error formula to see the 

difference between the proposed program’s results and validation’s results. After using error 

formula we assured that the proposed programs are usable and helpful with the finite element 

method, and proposed program’s results is reliable.      
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General Conclusion 
 

In conclusion, this dissertation has explored the increasing importance of Mechanical 

construction in various aspects of our lives. However, the process of building mechanical systems 

is often challenging, particularly when it comes to the presence of complex systems. To address 

this issue, an efficient program has been developed as part of this research. The developed 

program has demonstrated its capability to accurately calculate and export Finite Element 

Method results. This process significantly simplifies the Finite Element Method calculations. The 

results obtained from the developed program show its potential for practical application in 

various fields, such as construction, architecture, civil engineering, and virtual simulations. The 

accurate results of the program enable engineers, students, and decision-makers to focus on the 

core aspects of mechanical construction without the hindrance of long inaccurate results. Our 

research not only presents a novel approach to mechanical construction but also emphasize the 

importance of automation and efficiency in the study of mechanical systems. Because there is no 

such completed or perfect research, ours still holds a lot of potential for the future. Adding a 

proper user interface and merging the 3 systems into one major program instead of 3 separate 

ones, we might also think about adding a graphical input of elements and nodes, where the user 

can draw the system directly with a set of tools and features. 
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