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Abstract

This thesis concerns the study of periodic orbits in some
Zeraoulia-Sprott maps in 1 and 2 dimensions. The focus was
on the analytical stability of periodic orbits in piecewise smooth
maps of one dimension. The thesis was divided into three
chapters that dealt with the properties of some 1 and 2
dimensions piecewise smooth maps, the Lyapunov exponent,
the study of the periodic orbits of some two-dimensional
chaotic attractors, and the study of the periodic orbits in one
dimension



Resumé

Cette these concerne I'étude des orbites périodiques dans
certaines cartes de Zeraoulia-Sprott en 1 et 2 dimensions.
L'accent était mis sur la stabilité analytiqgue des orbites
périodiques dans des cartes lisses par morceaux d'une
dimension. La these était divisée en trois chapitres traitant des
propriétés de certaines cartes lisses par morceaux en 1 et 2
dimensions, de I'exposant de Lyapunov, de I'étude des orbites
périodiques de certains attracteurs chaotiques bidimensionnels
et de I'étude des orbites périodiques en une dimension.
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’ General Introduction \

The periodic orbits is a fundamental concept in the analysis of dynamical systems and serving as
a critical determinant of their characteristics. This concept was first used at the start of the 20th
by the mathematician Henri Poincaré in the field of differential systems. Periodic orbits can be
classified according to their period or their stability. It can be found in discrete and continuous
dynamical systems.

In this work, we studied periodic orbits in some discrete Zeraoulia-Sprott chaotic maps in 1 and 2
dimensions. We focus on the stability of periodic orbits analytically in one-dimensional piecewise
smooth maps. More details we divide this thesis into three chapters as follows:

Chapter 1, is devoted to presenting some properties of one and two-dimensional piecewise
smooth maps and Lyapunov exponents.

Chapter 2, is focused only on studying periodic orbits 2-dimensional Zeraoulia-Sprott chaotic
attractors.

Chapter 3, is interested in studying periodic orbits of some one-dimensional Zeraoulia-Sprott

mappings.




Chapter 1

Notions of dynamical systems and

prelimanery concepts

This chapter examines various concepts related to dynamical systems and piecewise smooth maps,

including fixed points, periodic orbits, bifurcations, and Lyapunov exponents.

1.1 Fixed pionts and periodic orbits of maps

A discrete time system or map is defined by a difference equation:
Tpy1 = fu(xn), x, € R,

Definition 1.1 Fixed points x,1 = x,, that is solutions of z* = f (z*).

Definition 1.2 Periodic orbits (zo, ..., xp—1) With o, = f (vx—1) .k =1,...p—land xg = f (xp—1) .

Therefore,
xp=f"(zx)=f (.. (f(zx))..), k=0,1,2,..,p—1.

That is, periodic points are fixed points of the iteration f? of the map f. The stability of fixed
point or periodic orbits can also be studied by linearization. If n = 1, then a fixed point x* is

linearly stable if | f” (z*)| < 1. The condition for a periodic orbit with period p is:
‘(f”)' (xk)‘ <1 k=0,1,2,..p— 1L
If fact, we only need to check one £, since

(") (@o) = () (x1) = .. = (") (wp-1)
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y=£ (x)

unstable

Figure 1.1: Left figure showing graphic of the fixed points at the intersection between y = = and
y = f(x), and the cobweb diagram showing the iteration of the map 2" +1 = f(z") in right figure.

We have

FOf @) o)) XS (F (of () ) X % f ()

N
-~ -~

X [ (Thip-2) X oo X [ (@)
Tr-1) X f (Tp—2) X oo X f (1)

zo) X f'(x1) X oo X f'(2po1)

—1
So for the linear stability of a periodic orbit there is only one condition: HZ_O |f (zr)| < 1.
Example 1.1 Consider the map
Tpy1 = Axn; Yn+1 = )\2yn

with ) is any non-gero constant. An invariant set for this map is the parabola P = {(z,y) : y = x*} .
In fact, if (z,,,y,) € P, then y,, = 22 and

Yn+1 = Ny = )\%i = ()‘xn)z - xfb-‘rl'
That is (41, Ynsr1) € P as well. Therefore, the parabola P is invariant.

Due to the discrete nature of the points z,, in the space, special graphical tools are used instead of
phase portraits. To visualize fixed points for the one-dimensional map z,,,1 = f (z,,) , we consider
the intersection of the line y = x and the curve y = f (z) . The stability of a fixed point z* can be
determined graphically by comparing the slope of f (z) at x* with the slope of the line y = z (see
Figure 1.1). The iteration of the trajectory xg,r1,... can be viewed from the cobweb diagram

(right figure in Figure 1.1):

1. The vertical line x = z,, intersect the curve y = f (z) at (z,, f (zn)) = (Tn, Ty1) -

1.1. Fixed pionts and periodic orbits of maps
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. /
“ —
N
0< fifz*) <1 fulzm) > 1 —1< fi(z") <0 fulzr) <=1

Figure 1.2: The cobweb diagrams description of the behavior near a fixed point.

Figure 1.3: Saddle-node bifurcation.

2. The horizontal line through (z,, z,,+1) intersect the line y = x at (11, f (Tn11)) -

3. The vertical line through (x,.1,%,+1) becomes =z = z,.; and the whole process can be

continued again.

The behavior of the map z,,1 = f,(x,) near a fixed point can be visualized using a cobweb
diagram (see Figure 1.2). The stability (whether it converges towards the fixed point z* or not)
depends on whether the absolute value of the derivative |f], (z*) | is greater than one.

The sign of f/ (v*) determines the appearance of the cobweb diagram. If f} (z*) is positive, the

diagram looks like stairs. If f/, (z*) is negative, the diagram looks like spirals.

1.1.1 Bifurcation of maps
Saddle-node (tangential) bifurcation: For the map z,,; = p + z,, — 2.

e If u > 0,there are two fixed points 2, = +p'/2, the fixed point z* = p'/? is stable but
z* = —p'/? is unstable.

e If 1 < 0, there is no fixed point, because bifurcation occurs when the straight line y = «
touches the parabola y = y + z,, — 22 tangentially at ; = 0 (see Figure 1.3).

Transcritical bifurcation: For z,,; = (1 + u)z, — 22 . There are always two fixed points z* = (

and z* = p.

1.1. Fixed pionts and periodic orbits of maps E
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Figure 1.5: Pitchfork bifurcation.

e When u < 0, the fixed point z* = 0 is stable and x* = 1 is unstable.

e When 1 > 0, * = 0 becomes unstable and =* = p stable.
Supercritical pitchfork bifurcation: For z,, = u + z,, — 23

e If 4 < 0, there is only one fixed point z* = 0, and it is stable.

e If 11 > 0, there are three fixed points, 2* = +4'/2 and they are stable, but » = 0 unstable.

1.1.2  Logistic map

The most basic quadratic family of maps is the logistic map
fu@)=pr(l—2x), p>0, (1.1)

In the context of population dynamics, the two terms 2 and —ua? in this map can be interpreted
as and starvation (density-dependent mortality) respectively.

Fixed Points: There are two fixed points z* = 0 and z* = (x — 1) /i, provided p > 1.

Linear stability: We have f/ (v) = p — 2zp.

e If 0 <y < 1, the fixed point z* = 0 is stable and the fixed point 2* = (u — 1) /p is not in the
range [0, 1].

1.1. Fixed pionts and periodic orbits of maps E
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o.5F" j ~-o-ounStable fixed point (U-1)/p
e ———-stable periocd-two orbit
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5 10 ll5 ZIC
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Figure 1.6: The fixed point 2* = (u — 1)/u becomes unstable as ; > 3, and a period-2 orbit

emerges.

e If 1 > 1, the fixed point z* = 0 becomes unstable, but * = (1 — 1) /u become stable, as
long as 1 < p < 3. Because the fixed points z* = 0 and z* = (1 — 1) /u exchange stability at
1 = 1, this is a transcritical bifurcation.

Period-doublin bifurcation: As y passes 3, f, ((¢ — 1) /u1) passes —1 and 2* = (u — 1) /1 becomes
unstable (see Figure 1.6 for sample iterations at ; = 3.35). Aperiod-two orbit (:vi, xi) appears,
such that %, = f, (27),2* = f, (2%). In other words, both 27 and z* are fixed points of z =
fu (fu (x)), but not fixed points of x = f, (z). This is called period-doubling bifurcation, signified
by fu () = —1at u* = 3.

Since

= fu(fu (@) =2 (pz —p+1) (P2 = (B +p) e+ p+1),

all solutions of = — f, (f, (z)) =0 are

—1 14 /(-3 1
Y ek S s s V=3 (n+1)

U 20

The first two are inherited from z* = f, (z*) , while the last two constitute the periodic two orbits.

Solving the quadratic equation p22? — (u? 4+ p) x +p+1 = 0, and with a more detailed calculation

it’s shown that the this period-two orbit loses its stability when the modulus

Wb; = [ (fu (@) f1 (@) oy, = fh (27) [ (a%)

is greater than unit. From

* * _
Tyt =—— x,x =

can be simplified the Jacobian %‘z‘(w))

|27 as

Fo@s) fo (@) =p* (1—20%) (1—22%) = p® (L =2 (% +2%) + 42’ ) =44 2u — .

1.1. Fixed pionts and periodic orbits of maps
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Figure 1.7: Bifurcation diagram for the map (1.1), when 1 is not too close to 4.

Resolving

dfy (fu (2))

Sy = 1,

dx | *
we obtain ;
uw=-—-loru=3 for M'ﬂﬂ;:l’
T
and p
,uzli\/éforwz* = 1.
dx *

We do not need to consider the negative values of 1 = —1 or 1 = 1—+/6, indeed the fixed points 2%

exists only for ;1 > 3. Therefore, the only possible bifurcation occurs at p* = 14++/6 ~ 3.449, where
Wb; = —1. For equation z = f,(f,(z)), the value —1 suggests an additional period-doubling
bifurcation that results in period-four orbits, which are solutions of = = f,, (f, (f. (f. (x)))).

In fact, there is an infinite cascade of period-doubling bifurcations. At yu, = 3, the system transi-

tions from period 1 to period 2. At ., = 1+ /6, the period-doubles again from 2 to 4. This pattern

continues: y,, corresponds to a transition from period 2"~! to 2". Furthermore, as j, approaches
a finite limit (approximately 3.56995), the period-doubling cascade ceases and chaotic behaviors
emerge. The limit of the ratio between the lengths of two consecutive bifurcation intervals is a

universal Feigenbaum constant:
lim Hpn—1 Koy,
e e T

Many other maps exhibit similar period-doubling bifurcations, and this limiting ratio remains

~ 4.669

consistent regardless of the specific details of the map. It’s worth noting that while the bifurcation
diagrams for both pitchfork and period-doubling bifurcations may appear similar, the behaviors of
the fixed points differ significantly. In period-doubling bifurcation, the new "fixed points" actually
satisfy the equation = = f,(f,(z)), rather than = = f, (z).

1.1. Fixed pionts and periodic orbits of maps
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Figure 1.8: The eigenvalues of the Jacobian matrix near (z7,y;) and (z5,v3) .

1.1.3  Bifurcation of two-dimensional maps

By observing that when a parameter changes,it results in eigenvalues of the Jacobian matrix with
unit modulus, the same method may be used to investigate the bifurcation of two-dimensional

maps.

Example 1.2 Consider the map z,.1 = pyn + Tn — 22, Yps1 = x,. There are two fixed points
(x},y7) = (0,0), (2%, y5) = (u, p) . The Jacobian matrix is given by

1—-2z p
J(%@/)Z( . 0)-
“ 1 op ‘o 1=2p p
J(zlayl)_<1 0>7J($27y2)_< 1 0)

For the fixed point (%, y), the two eigenvalues are governed by \f = =Vt V21+4“. For the fixed point

we get

(x3,y5) , the two eigenvalues are governed by

2
A= 1—2p+ \/(1—2u) +Hau 1—2ui\/1+4/¢2'
2 2

The stability of the two fixed points (27, y}) and (x3, y3) are exchanged, indicating the transcritical
bifurcation at ¢ = 0. The bifurcation is also clear from Figure 1.8. The fixed point (z7, y7) = (0,0)
is stable, for . € (—1/4,0) . The other fixed point (z3, y5) = (u, ) is stable for p > 0, but becomes
unstable again when A\, = —1, or u = 2/3. A period-doubling bifurcation occurs her (associated

with eigenvalue —1).

1.1. Fixed pionts and periodic orbits of maps
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1.2 Piecewise smooth maps

This section examines the piecewise smooth map in one and two dimensions by focusing on three
key ideas. Firstly, the map’s definition and some of its characteristics. Secondly, the fixed points

in both dimensions. Thirdly, periodic orbits. Consider a map F': R™ — R™ as follows:
Tp+1=F(zr,), z0€R (1.2)
Some properties:

e The map (1.2) is a piecewise smooth, if the phase space R™ can be partitioned into a finite

number J of disjoint non-empty open regions R;,7 = 1,...,J, and a boundary ¥, so that
J

R™ = <U Ri> Uy,
=1

The boundary ¥ made up of a union of continuously differentiable surfaces which separate

the regions R;.

F is smooth in each regions R;.

Non-smoothness of F' occurs on ¥, which is called switching surface or switching manifold.

The map (1.2) is also known as hybrid system. For more details see [5]

1.2.1 One-dimensional piecewise smooth maps

Let 1-D piecewise smooth system be defined as follow:

<
g(l’,ﬂ), r Tp (13)
h(z,pn), x>um

Tpy1 = f(xm:u) = {

where p is the bifurcation parameter, the smooth curve x = 1, the state space was separated into

two regions R, and Rp given by:

Rp={reR:z <z}
Rr={zeR:z>ux}

and the boundary between them is given by:
Y={reR:z=ux}

Some properties:

1.2. Piecewise smooth maps
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The map f is continuous, but its derivative is discontinuous at the borderline = = ;.

The functions g and / are both continuous and they have continuous derivatives in = every-

where except at xy,.
e 1, (u) is a possible path of fixed points of f, this path depends continuously on .

The possible fixed point hits the boundary at a critical parameter value y, : o (1,) = .

This system has a normal form given by:

ar +p, =<0

N(z,p) = { 1.4

br +p, x>0

where 1 is a parameter and a, b are the graph’s slopes at its two sides R; and Ry of the border
x = 0. The fixed points are as follow: to the left (z < x;) and right (z > x;), respectively of the
boundary, let 3 and z7}, be the system’s possible fixed points. Then, in the normal form (1.4) we

have:
{xz=ﬁ<o, if a<lAp<0

TR = 5 >0, if b<O0Ap<O
Periodic orbits are as follow: The period-2 orbit of the normal form (1.4) is given by:

(@®=1Dz+(a+1)p, =<0

N(N(J?,N))—x—{ M=o+ OB+1)p, x>0

and the period-3 orbit are given by:

(a*—1Dz+(@+a*+a+1)p, x<0
=Dz + @+ +b+1)p, x>0

N (N (N, 1)) — o = {

1.2.2 Two-dimensional piecewise smooth maps

%3>
<

) if  ©<S,p)

%3>
QQ>

Let 2-D piecewise smooth system defined be as follow:
,p)
) (1.5)
,p)

g1 = ( (
NS f2 (2,
f3 (2, L )
, 1 > S(y,
i G p)) [ &> 55, p)

where p is the bifurcation parameter, the smooth curve z = S(7, p) created two regions in the

&%>
<

%3>

phase plane R; and Rj given by:

1.2. Piecewise smooth maps
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Ry =A{(2,9) eR? & <S(g,p
Rp={(2,9) eR?, &> 5(5,p)}

and the boundary between them as:

Some properties:

e Although the map g is continuous, its derivation discontinues at the borderline z = S(7, p).
e Both ¢; and ¢, are continuous functions with continuous derivatives.
e In each subregion R; and Ry, the one-sided partial derivatives near the boundary are finite.

e The map (1.5) has one fixed point in R; and one fixed point in Ry for a value p, of the

parameter p.

This system has a normal form is given:

()G ) () e

N(z,y) = (1.6)

(a) () () o

where p is a parameter and 7, g, 9, ,, are the traces and determinants of the corresponding ma-

trices of the linearized map in the two subregions R; and Ry given by :

{ Ry ={(z,y) €R?}, z<0
Rr={(z,y) eR?*}, x>0

Fixed points: Let P, and Py be the possible fixed points of the system near the border to the
right: x < S(y, p) and left: = > S(g, p) of the border respectively. Then in the normal form (1.6)

we have

PL:< £ _5L“>€RL

l—7p+6r’ 1-7+0r,

— o4 —ORu
PR - (1—TR+5R’ 1—TR+5R> € RR

with eigenvalues \; 1, and Ay 12 respectively.

1.2. Piecewise smooth maps
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Periodic orbits: The period-2 orbit of the normal form (1.6) is given by:
( Nl — X
, <0
Ny —y
Na —
3T , x>0
L Ny—vy

N (N (z,y)) = (z,y) =

where )
( N1=y+2u+x7L+y7L+uTL+xT%
, <0
L N2:—5L.CL'
(
Ny =y+2u+aTr+YyTr+ UTr + 7%
, >0
L\ N4:—5RJ,’

and the period-3 orbit given by:

N (N (N (z,y))) = (z,y) =

where

N5 =y +3p+ a7y +2y7p + 3ury + 2077 + w73 + Y17 + P}

N¢ = —0rx
N7 =y+3u+a7r+2yTR + 3uTr + 20T + 2T + yTh + ut]
, x>0
Ng = —0rx

1.3 Lyapunov Exponent

In this section, we present an analytical metric that can be applied to periodic orbits and chaos
analysis. The rate at which an infinitesimally small gap between two initially close states increases

over time is known as the Lyapunov exponent:

F'(zg + &) — F'(zo) ~ e (1.7)

1.3. Lyapunov Exponent
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The distance between two initially near states after ¢ steps is represented on the left, while the
assumption that the distance increases exponentially with time is represented on the right. The
Lyapunov exponent is the exponent ) that is measured over an extended period of time (prefer-
ably ¢ — oo). Small distances extend infinitely over time if A > 0, indicating the presence of
the stretching mechanism. Alternatively, in the case when A < 0, the system finally settles into a
periodic trajectory, meaning that short distances don’t expand endlessly. Keep in mind that while
stretching is the only mechanism of chaos that the Lyapunov exponent characterizes, this is not
the only mechanism. Remember that this Lyapunov exponent does not capture the folding mech-
anism. We can do a little bit of mathematical derivation to transform Equation (1.7) and make it

easier to compute:

A | F* (w0 +€) — F'(x0)]

€ ~
E

|[F* (0 + 6) F'(xo)]

A= lim - 10
t—>oo,£—>0

= lim - log ‘

t—o00,e—0 {

(using the chain rule of differentiation)

dF
dx

dF dF

1
A= hm - log .E‘(E:Ft_2((lio):(lit_2“.%Lx:xo

z=Ft=1(zo)=x¢1

t—1

3 s

Hence, the Lyapunov exponent is a time average of log|%| at every state the system visits over

dF

=5

the course of the simulation.

By comparing this figure with the bifurcation diagram (Fig.1.9 ), we will notice that the parameter
range where the Lyapunov exponent takes positive values nicely matches the range where the
system shows chaotic behaviors. Additionally, the Lyapunov exponent meets the A = 0 line
whenever a bifurcation takes place (e.g » = 1, 1.5, etc), showing the criticality of such parameter
values. Finally, there are several locations in the plot where the Lyapunov exponent diverges to
negative infinity. Such values occur when the system converges to an extremely stable equilibrium

point with %|z=xo ~ ( for certain ¢.

1.3. Lyapunov Exponent
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2.5

2.0

10

0.5

0.0

—05)

Figure 1.9: The numerically constructed bifurcation diagram of equation z; = z;_; +r — 2% ;.

Lyapunov exponent

Figure 1.10: The Lyapunov exponent of equation z; = z; | +r — 2?2 ;.

1.3. Lyapunov Exponent



Chapter 2

Periodic orbits of some 2-D

Zeraoulia-Sprott chaotic attractors

This chapter presents some characteristics of periodic orbits of some two dimensions Zeraoulia-
Sprott chaotic maps. It also touches on fixed points their stability. In addition, we give some

graphical representations of their dynamical behaviors in parameter space.

2.1 A minimal 2-D quadratic map

This section describes and analyse a simple minimal 2-dimensional quadratic map. Indeed, the

Hénom map [7] given by:

H (z.y) ( 1—ax +by>

X

is the simplest example of a dissipative map with chaotic solutions and it has been widely studied.
Its area contraction is constant over the orbit in the ab-plane and depends solely on b, result-
ing in a single quadratic nonlinearity. An alternative way to express it is as a one-dimensional
time-delayed map x, .1 = 1 — az? + bx,,_,. Here we present and analyze an equally simple two-

dimensional quadratic map given by:

fla,y) = ( L-ay*+bo ) (2.1)

T

where a and b are bifurcation parameters.

19
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2.1.1 Some properties

e Equation (2.1) is an interesting minimal system, similar to the Hénom map, but with the
time delay in the non-linear rather than the linear term as evidence by writing it in the

time-delayed form z,, ;1 = 1 — az?_| + bz,.

e It differs from the Hénon map, despite its similarity and simplicity, in that it contains irreg-

ular dissipation, a richer and more diverse path to chaos and a variety of attractors.

e These attractors covering the entire range of dimensions from 1 to 2 with basin of attraction

that are often much more complicated than for the Hénon map.
e This system is special case of general 2-D quadratic maps and differs from other well-known

2-D maps such as the delayed logistic map [8] given by g (z,y) = (ax (1 —y),z).

2.1.2 Fixed points

We starting by studying the existence of the fixed points of the map (2.1), then determine their

stability. We have
1 —ay? + bx x
f(w,y)=(x7y)<:>< >=< )
T Yy

we get the following equations:

1—ay?+br =
{ W vt =1—-ar*—(1-b)x=0

r=Yy

we calculate the discriminant of the last equation A = (1 — b)* + 4a and we have two cases:

o If A = (1 —b)* + 4a > 0, the map (2.1) has two fixed points

P, = b—1—v4a—2b+b%24+1 b—1—+/4a—2b+b%2+1
1= 2a ’ 2a

P = b—14+v4a—2b+b%24+1 b—1++4a—2b+b%2+1
2 — 2a ) 2a

o If A = (1 —b)* + 4a < 0, the map (2.1) has no fixed points.

Now, we determine their stability:

2.1. A minimal 2-D quadratic map
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b —2ay

1. The Jacobian matrix of the map (2.1) is J(z,y) = ( -

) and at a fixed point (z, x),
its characteristic polynamials are given by:

A —bA\+2ax =0 (2.2)

2. The local stability of the two equilibria is studied by evaluating the roots of equation (2.2).

So, after some of calculate we obtained the following results:
P is unstable in the following cases:
1.a>—((=b+1)/2)°,b<0.
2. a>—((=b+1)/2)%,a> (1/2)b+ (3/4)b* — (1/4) ,b > 0.
P, is a saddle point in the following case:
1.a>—((=b+1)/2)°,a < (1/2)b+ (3/4)b* — (1/4) ,b > 0.
On the other hand, P, is unstable in the following cases:
1a>—((=b+1)/2)*,a> (1/8)b* — (1/8) b + (1/64) b*, b > 2.

2.a>—((=b+1)/2)7,a>—(1/2)b+(3/4),b < 2.

3.a>—((=b+1)/2)%,a < (1/8)b* — (1/8) b® + (1/64) b*, b > 2.
P, is stable in the following cases:
1.a>—((=b+1)/2)%,a> (1/8) b — (1/8) b3 + (1/64) b*,a > — ((=b+ 1) /2)?,
a<—(1/2)b+ (3/4),b < 2.

2. a>—((—b+1)/2)%,a < (1/8) 6> — (1/8) b + (1/64)b*,0 < b < 2.

3.a>—((=b+1)/2)°,a < (1/8)b? — (1/8) b + (1/64) b*,

a>(1/2)b+(3/4)b—(1/4),-2<b<0
P, is a saddle point in the following cases:

1.a>—((=b+1)/2)%,a < (1/8) 0> — (1/8) 1® + (1/64) b*,

a < (1/2)b+ (3/4)b? — (1/4),—2<b<2.

A shematic representation of these results is given in Figure 2.1.

2.1. A minimal 2-D quadratic map
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e b=0

Figure 2.1: Stability of the fixed points of the map (2.1) in the ab-plane, where the numbers on
the figure are as follows: 1: P; is unstable, 2: P, is a saddle, 3: P, is stable, 4: P, is unstable, 5:
P, is a saddle, 6: P, is stable.

2.1.3 Priodic orbits

We have

(@ 9) = (fl (St?,y))

f2 (':Cv y)
where
f1(z,y) = ady* + 2a%bxy? + 2a?y?
—ab?z? — 2abx — aby? —a +b?z + b+ 1

f2 ([L’, y) =T
The period-2 orbit of the map (2.1) is given by:

F(f(@,y) —(,y) =0 (fl(l",y)—a:) _ ( 0)

and the period-3 orbit given by:

) = fs(z,y) —= _ 0
Ff(f () = (2,9) 0@<f4($,y)_y> (o)

where
{ falw.y) = 1= a(fi (z.9))" +b(fi (2.9))
fo(zy) =
The periodic orbits are shown respectively in Figure.2.2 along with their basins of attraction in

white and their absence in Figure.2.3.

2.1. A minimal 2-D quadratic map



Chapter 2. Periodic orbits of some 2-D Zeraoulia-Sprott chaotic attractors

Figure 2.2: Left figure represent a periodic orbit of the map (2.1) with its basin of attraction
(white) obtained for a« = 1land b = 0.1, right figure represent a quasi-periodic orbit with its basin
of attraction (white) fora = 1 and b = 0.17.

':L IEF

=

Figure 2.3: Left figure represent the chaotic attractor with its basin of attraction (white) for a = 1
and b = 0.675, and the right figure represent another chaotic attractor with its basin of attraction
(white) for a = 0.59948 and b = 1.

o a 107

Figure 2.4: The quasi-periodic route to chaos for the map (2.1) obtained versus the parameter
0 <a<1.07with b=0.6.

2.1. A minimal 2-D quadratic map
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o>

5
Y

LEs 'k \' g K I *%n
= \ /

0z

]
| I

o A J.J.l

osT

Figure 2.5: The Lyapunov exponents of map (2.1) versus the parameter 0 < a < 1.07 with b = 0.6
and 0 < b < 0.67, with a = 1.

Figure 2.4 shows a the periodic orbits of periods 5 and 6 for map (2.1)

Figure 2.5 shows big dots that indicate the existence periodic orbits and the values for which
Lyapunov exponents are zero.

Figure 2.6 shows regions of unbounded (white), fixed point (gray), periodic (blue), quasiperiodic
(green), and chaotic (red) solutions in the ab-plane for the map (2.1), where we use |LE| <
0,0001 as the crirterion for quasi-periodic orbits with 10° iterations for each point.

Figure 2.7 shows a similar plot for the Hénom map.

2.2 A simple 2-D rational discrete mapping

This section introduces a simple rational map along with some of its dynamical properties. In
[9], a 1-D discrete iterative system featuring a rational fraction was discovered during a study of

evolutionary algorithms:
1
= ——— —az,
0.1+ x2

g (z) (2.3)

2.2. A simple 2-D rational discrete mapping
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Quasi-penodic

Fixec pomt

i Periodic

o=t Tnbonnced ocbity ------- -]

Unboeunded orbit:

Figure 2.6: Dynamical behaviors regions in the ab-plane of the map (2.1).

Periodie

¢ Unbounded orbitz

Chaos!

TUnbounded orbits Fized Ipoinm

(1] h 067

Figure 2.8: The bifurcation diagram for the map (2.1) obtained for « = land 0 < b < 0.67.

2.2. A simple 2-D rational discrete mapping
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where « is a parameter, the map (2.3) delineates diverse random evolutionary processes, pre-
senting a complexity surpassing that of the logistic system. In [10], an extended version of the
initial one-dimensional discrete chaotic system from [9] is introduced, broadening it into two
dimensions as follows:

; — a
hw,y) = ( o ) : 2.4
01+yz AT

where a and b are parameters. The map (2.4) has more complicated dynamical behavior than the
one-dimensional map (2.3). A novel and very simple 2-D map is created by Zeraoulia and Sprott
[3] based on concepts studied in [9,10], which is defined by the existence of only one rational

fraction without a vanishing denominator:

flz,y) = ( T > : (2.5)

x+by

where a and b are bifurcation parameters.

2.2.1 Some properties

e The map (2.5) is algebraically simpler but with more complicated behavior than map (2.4).

It produces several new chaotic attractors obtained via the quasi-periodic route to chaos.

The map (2.5) is defined for all points in the plane.

The associated function f (z,y) of the map (2.5) is of class C* (R?), and it has no vanishing

denominator.

The chaotic map (2.5) is symmetric under the coordinate transformation (x, y) — (—z, —y),

and this transformation persists for all values of the map parameters.

2.2.2 Fixed points

The fixed points of the map (2.5) are the real solution of

[ @) = (5,y) & ( ) _ ( )
x+ by Y

So, we may easily obtain the equations:

{ (a+1+y*)z=0

I-by=z

2.2. A simple 2-D rational discrete mapping
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Let —1 < a < 4. Then, if b # 1, the map (2.5) has only fixed point P = (0,0). If b = 1, then the
y-axis is invariant by iteration of the map (2.5). The Jacobian matrix of map (2.5) evaluated at a

point (z,y) is given by:

—a_ 2axy
Df (z,y) = ( 1+192 <1+Zz)ﬂ>E )

and at the fixed point p = (0, 0), the Jacobian matrix is given by

Df(:v,y)—<_1a 2)

The local stability of P is studied by evaluating the eigenvalues of the Jacobian Df (P). The
eigenvalues of D f (P) are: A\; = —a and A\, = b. Then one has the following results:

If |a] < 1 and |b|] < 1, then P is asymptotically stable. If |a| > 1 or |b| > 1, then P is an unstable
fixed point. If |[a| < 1 and |b] > 1, or |a| > 1 and |b| < 1, then P is saddle point. If |a|] = 1 or
|b| = 1, then P is a non-hyperbolic fixed point.

2.2.3 Periodic orbits

The period-2 orbit of the map (2.5) is given by:

where

+
fi(2,y) = merram

fo(2,y) =z + b*y + br + by
and the period-3 orbit given by:

f3 ($7y> - O
) - ) _O -
FUF @) = () ‘:’<f4<x,y>—y> (0)
where
f3 (.Z‘,y) = 1+<a2x(;;f§‘::2:2+1)2

f1(z,y) = 2+ b®x + 2%y + b3y + 2bx + by

2.2. A simple 2-D rational discrete mapping
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Figure 2.9: The classic double scroll attractor obtained for o = 9.35, 5 = 14.79, mgy = —%, my =

N

2.3 The discrete hyperchaotic double scroll map

This section introduces a 2-D discrete piecewise linear chaotic map and we focusing on three
key ideas. Firstly, the map’s definition and some of its characteristics. Secondly, the fixed points
and the Jacobian matrix. Thirdly, periodic orbits. This map is called the discrete hyperchaotic
double-scroll, capable of generating a hyperchaotic solutions similar to the calssical double-scroll
attractor generated by the Chua circuit [11] given by:

7 = aly—h(z))
Yy = r—y+z
7= =Py

where

~ 2maw + (moe —my) (|o 4 1] — [z — 1])

h(z) = 5 :

The double scroll attractor for this case is shown in Figure 2.9.

Consider the following 2-D piecewise linear map:

flzy) = ( ! _:zh (v) ) (2.6)

where a and b are the bifurcation parameters, h is given above and m, and m, are respectively

the slopes of the original Chua circuit’s inner and outer sets. So, the discrete hyper-chaotic double

2.3. The discrete hyperchaotic double scroll map
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Periodic orbits of some 2-D Zeraoulia-Sprott chaotic attractors

Figure 2.10: The discrete hyperchaotic double scroll attractor obtained from the map (2.6) for
a=3.36,b= 1.4, my = —0.43, and m1 = 0.41 with initial conditions z = y = 0.1.

scroll map can be given by:

f(z,y) =

where

0

by — ( a(my — my)

Jor (i) e ()
0 0

Due to the shape of the vector field f of the map (2.6), the plane can be devided into three linear

regions denoted by:

Ry
Ry
R

= {(z,y) eR*/y > 1},
= {(z,y) eR?/ |y| <1},
= {(z,y) eR?/y < -1},

where in each of these regions the map (2.6) is linear

2.3. The discrete hyperchaotic double scroll map
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2.3.1 Some properties

e The associated function f(z,y) is continuous in R?, but it is not differentiable at the points
(x,—1) and (x,1) for all z € R.

e The map (2.6) is a diffeomorphism except at points (z, —1) and (x,1) when abm;mg # 0,

since the determinant of its Jacobian is non zero if and only if abmg # 0 or abm; # 0, but

it does not preserve area and it is not a reversing twist map for all values of the system

parameters.

e The map (2.6) is symmmetric under the coordinate transformion (z,y) — (—x,—y), and

this transformation persists for all values of the system parameters.

2.3.2 Fixed points

The fixed points of the map (2.6) are the real solutions of the system:

f(x,y>=<m,y><:>(x‘“h(y> ) =()
bx Y

We get the following equation:

where

filz,y) =0, ify>1
fo(z,y) =0, if |y <1
fs (@, y) =0, if y<-—1
br =y

fi(z,y) = amz + a(mo — my)
fo (z,y) = amoz

fs(z,y) = amyz — a(mg — my)

So, we have three cases from the existance of the fixed points:

Case 1: Fory > 1

such that

mi — My my — Mg
bmy ma
myp —m
ylz—ozl@ml—m02m1@m0<03ndml>0
my

SO, P = (w w) exist in R if momy < 0.

bmy

Case 2: For |y| <1

mi

2.3. The discrete hyperchaotic double scroll map
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9o =0=yy=0,abmg # 0

So, P, = (0,0) exist in Ry if mgy # 0.
Case 3: Fory < —1

mo —m mog —m
bmy ma
such that
mip—m
y1:¥S_l@ml—mog—m1<:>m0<0andm1>0
my

bmy 7 bmy

So, P; = (w M) exist in R3 if momy # 0. Then, can be written the fixed points as follows:

/ (
P — mi—mg mMmi1—MmMo
1 — ) )

bmi mi

PQZ(O,()) if momq < 0

— mo—mi1 Mmo—mi
\P?’_(b’ml’ bm1>'

\P:(O,O)7 if momq > 0

Jacobian matrix: The Jacobian matrix of the map (2.6) evaluated at the fixed points P;, P, and

1 —abmy 1 —abmyg
Jl,?) = 7J2 =
1 0 1 0

We note here that P, and P; is the same, therefore the two equilibrium points P, and P; have the

P5 given by:

same stability type. The eigenvalues of the corresponding Jacobian matrices (2.6) is given by the

solutions of their characteristic polynomials given respectively by:

AN = X+abm; =0
AN = X+abmg=0

To study the stability of the fixed points, we perform three main steps:

1. We assess the Jacobian matrix at the fixed point.
2. We calculate the eigenvalues from the solution of the characteristic polynomial.

3. We compare the resulting eigenvalues with the unit disk (if [\| < 1 the fixed point is stable,
if |A\| > 1 the fixed point is unstable).

2.3. The discrete hyperchaotic double scroll map
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2.3.3 Periodic orbits

The period-2 orbit of the map (2.6) is given by:

fa(z,y) if y>1
B f5 (z,9) if |yl <1 (0
P =g =0e | ) 200 T _(o)
br =y

where
fa(z,y) = 2amy — 2amg — a®>m? + a’*mgemy + a’*ym? — axmy — aym,

f5 (z,y) = a2ymg —armg — aymy

fo (z,y) = a®m? + 2amg — 2am; — a®>memy + a’ym? — azmy — aym;

and the period-3 given by:

fr(zy), if y>1
fs (@,9) if [yl <1 0
z))) —(z,y) =0« = (2.7)
FF (S (@) = (2,9) by, £y <1 .
br — vy
where
( (z,y) = —3mg + 3my + a®*m? — 3am? + a’xm? + 2a*ym? — adym? — 2axm; — aymy

—a*mom? + 3amem,
fs (z,y) = a®?xmi + 2a*ymi — adym3 — 2axmg — aymo

fo (z,y) = 3a*m? — a®>m3 + 3amg — 3am, — 3a*memy + a*zm? + 2a*ym? — adym?

—2axmy — aymy + a*mem?
1

Big dots that indicate the periodic orbits for the map (2.6) and the Lyapunov exponent spectrum
for mg = —0.43 and m; = 0.41, b = 1.4, and —3.365 < a < 3.365 as shown in Figure 2.11.

If we fix parameters b = 1.4, mg = —0.43, and m; = 0.41 and vary a € R, the map (2.6) exhibits
the following dynamical behaviors as shown in Fig 2.12. For « = —1.8 and a = 1.8, the map (2.6)
has a stable period-3 orbit with equation (2.7). In the interval —1.8 < a < 0.1,and 0 < a < 1.8,

2.3. The discrete hyperchaotic double scroll map
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LEs \
A
f

/
3.366

Figure 2.11: The Lyaponov exponents of the map (2.6) versus the parameter —3.365 < a < 3.365

with b = 1.4, mg = —0.43,and m; = 0.41.

Figure 2.12: The border collision bifurcation route to chaos of the map (2.6) for b = 1.4 with

—3.365 < a < 3.365 , mp = —0.43,and m; = 0.41.

2.3. The discrete hyperchaotic double scroll map
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-3.365

' 3365

Figure 2.13: Regions of dynamical behaviors in the ab-plane for the map (2.6).

the map (2.6) has a period-1 orbit and its equation is of the form:

f(xvy) - (l‘,y) =

\

0
0

— + — 0 .
amyy + a(mo—mi) | _ ify < 1
br —y 0
— 0
R I , if Jy] <1
bxr —y 0
— + — 0 .
amyy + a (myq — my) _ ify > 1
br —y 0

Figure 2.13 shows regions in the ab-plane given by (a,b) € [—3.365, 3.365] x [—2, 2] of unbounded

(white), periodic orbits of periods 1 and 3 (blue) in the ab-plane for the map (2.6), with 10°

iterations for each point.

2.3. The discrete hyperchaotic double scroll map
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Periodic orbits of some 1-D

Zeraoulia-Sprott mpaping

This chapter presents the mathematical analysis of some one-dimensional Zeraoulia-Sprott mpa-

ping, with special emphasis on the analysis of the stability of fixed points and periodic orbits.

3.1 One-dimensional discrete mapping

Consider the arbitrary 1-D discrete mappings given by:

Tr+1 = Go (xk) , UE (Umina Umax) . (31)

where g, : [a,b] — R with a < b be two real numbers, and g, is of class C3. Let us consider the
controlled 1-D mapping given by:

Tk+1 = Go (Ik:) +u (xk) = ¥y (xk) ) (32)
v o€ (Uminu Umax) .

where u : [a,b] — [a,b] is the unknown controller to be chosen. Define the controller « : [a,b] —

[a, b] by the following conditios:
(A1) The controller u (z) is of class C*.

(A2) The controller u (=) has the following special values:

u(a) = a - g, (a)
u(b) = a — gy (b)
there exist a piont ¢ € (a,b) : v’ (c) = —g., (c)

35
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(A3)
a—gy(z) <u(z) <b-—g,(x)
(A4)
u' (r) > —g, (), forallz € [a,c).
(AS)
u' (z) < —g, (x), forallz € (c,b].
(A6)

2 (g; (z) +u (x)) (gl/,// (z) +u" (a:)) -3 <g,',/ (z) 4+ u” (a:))z < 0 for all = € [a, b]

More generally, take g, (x) = vz, with = € [0, 1] . Define the controller

u(z)=—(v+B+7)2* + Ba* +ya,

where )
0§U<%,
0<v<y<l-—u,
v+ B+ <1,
\ 5<min{1—(7+U),%\/13v2+301)7+2172—%7—%1;},
Hence

¢, (@)= (-v—B—7)2°+ B2+ (v +7) = (3.3)

The conditions (A1)-(A6) are satisfied.

3.1.1 Fixed pionts
The fixed points of map (3.3) are:

o, (1) = 2 (—v—F-Y2+B2°+V+y)r =2
(—v—B—7)2*+ B>+ (v+y—-1)z=0
((—1/—6—7)$2+6x+(1/+7—1))x:0

R

3.1. One-dimensional discrete mapping
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x1:0

(~v—=B-7)2*+Pr+v+y-1)=0

xlz()

B4/ —4B—4y—4v+B2+4v2 +4v2+ 4By +48v+8
5 = A P AR oy £ 0

So, there are three fixed points. Now, we study their stability, we have

\ :C2

o, (x)=3(—v—B8—7)2"+2Bz+ (v+7)
At z; we have:
oy (1) = ¢, (0) = v +v=my

Thus, we get
o If Imy| < 1, x; stable.
e If |my| > 1, x; unstable.
e If m;| = 1, we cannot conclude their stability.

At x5 we have:

15+\/—45—47—4y+ﬁ2+4fy2+4y2+4ﬁfy+4ﬁu+8fyy> .
— p— 2

S0;(””2):%<2 B4y+v
Thus, we get
o If |my| < 1, x4 stable
e If |my| > 1, x5 unstable
e If |my| = 1,we cannot conclude their stability.

At x5 we have:

, , 184+ /=48 — 4y —4v + B% + 472 + 42 + 43y + 4Pv + 8y
Po (:L’?)) =% | 75 =ms
2 B+y+v

Thus, we get
o If m3| < 1, x5 stable.
e If |ms| > 1, x5 unstable.

e If |m3| = 1,we cannot conclude their stability.

3.1. One-dimensional discrete mapping
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3.1.2 Periodic orbits

The period-2 orbit of the map (3.3) is given by ¢, (¢, (z)) —x =0, i.e.,

where

aoz’ + a12® + apr” + az2® + agr® + asat + agr® + arx® + (ag — 1)z =0

ap = B +45% + 45°% + 6597 + 1267w + 65%° + 467° + 1287y
+128v02 + 4613 + 4t + 430 + 6922 + 4y + vt

ar = 35" — 98% — 98% — 98%y® — 188w — 95°° — 337° — 98w
—98yv? — 313

ap = 38 + 3%y + 35°v — 65°y% — 128*yv — 6% — 98y° — 2762w
—27By1% — 963 — 39 — 12931 — 189202 — 1292 — 3vt

as = 53°y — 1+ 58%0 + 57 + 12692 + 245w + 2%y
+128%02 4+ 25%v + 647° + 1867%v + B2
+188vv2 + 2Byv + 6813 + Br/?

as = 667% — 35% — 2B% — 232y — 2%y — 333y + 185~
+18By1% + 6813 + 3yt + 1293 + 184212
+12y13 + 304

as = 63 o 352,}/2 . 6ﬁ2’}/l/ . 2627 _ 362y2 . 2521/ . 36’73
L —98~% — 2B4% — 9BvyV? — 4By — 3813 — 2812

(
ag = 20%y + 26°v — By* = 37%v = 3y® — By — ¥ — Br — "

—473y — 67922 — 42 — dyd — 29 — vt — 12

ar = By? + 20yv + By + v + Br

ag = 2 + 2yv + v/?

3.1. One-dimensional discrete mapping
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and the period-3 orbit given by ¢, (¢, (¢, (z))) — 2z =0, i.e.,

boz? + by 3% + bor + bsa?t + bz + bsr? + bgz®! + bra?® + bea?
+box'® + brox!” + b1z + bioxt® + bigzt + by + bisat? + bt
+01720 4 b1gz? + broa® + bogz” + bora® + bogr® + boga? + boygx®
+bysw? + (byg — 1) =0

where
( _ 3 3 3
by = —pay — yay — vay
by = —3Baka; — 3yaia; — 3vaia,
by = —3Baga? — 3Bakas — 3yapa? — 3yakas — 3vaga? — 3vaiay
by = —Ba3 — vya} — vad — 3BaZas — 3vadas — 3vaias — 6Bagaiay — 6yaga,ay — 6ragaia
\ U3 = 1~ 7ay 1 0a3 Yanas 0a3 00102 YapG1a2 0a1G2

,

= —3Bagal — 3Batay — 3yagad — 3Baas — 3yatas — 3vagas — 3yatay

—3valay — 3vatay — 6Bapaias — 6yapaias — 6vagaas

= —3Baya3 — 3Bataz — 3yajai — 3Baas — 3yataz — 3vayai — 3yatas
—3vataz — 3vatas — 6Baparas — 6PBagazaz — 6yagaiay — 6yagasas

—6ragaias — 6ragasas

_ 3 3 3 2 2 2 2 2
= —fay — yay — va, — 3PBagaz — 3yapaz — 3Pajas — vapaz — 3Bagag
—3va3aq — 3yadas — 3valay — 3vadas — 6faparas — 6Bagasay
—68aiasas — 6yagaias — 6yagasay — 6yajasaz — 6ragaias

—b6ragasay — 6vajasas

3.1. One-dimensional discrete mapping
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by = —3Bara% — 3Badaz — 3yaya3 — 3Ba%as — 3yadaz — 3vaia? — 3Bakay
—37a%a5 — 3ya§a3 — 37a(2)a7 — 3ya%a5 — 3ya(2)a7 — 6fapaiag
—6Bagasas — 6Bagazas — 68aiasay — 6yagaiag — 6yagasas
—6vagasay — 6yajasa4 — 6vagaiag — 6ragasas

—6ragasas — 6rajasay

bs = —3fagai — 3Basai — 3yapal — 3Paias — 3yazai — 3vagai — 3Balag
—3vya3ay — 3vasa? — 3Batag — 3yatag — 3vada, — 3yatag
—3valag — 3vakag — 6fagaray — 6Bapazas — 6Bagazas
—6Bayasa5 — 6PBayazas — 6vagaiar — 6yagasag — 6yapasas
—6vayazas — 6yajasay — 6ragaiar; — 6ragasag — 6ragasas

—6raiasas — 6rajasay

by = Bad — Ba3 — vai — va3 — 3Bajai — 3vajai — 3Ba3as — 3vaial
—3Ba%a; — 3yaias — 3yatar; — 3vaias — 3vaia; — 6fagaiag
—6Bapasar — 6Bagazas — 6Bapasas — 6Baiazas — 63aiazas
—608asazay — 6yagaiag — 6yagasar; — 6yagazag — 6yagasas
—6vaiasa6 — 6yayaszas — 6yasazay — 6vaga,ag — 6ragasay

—b6ragasag — 6rvagasas — 6raiasag — 6rajasas — 6rasasaa

3.1. One-dimensional discrete mapping
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( bio = 2Bapay — 3Bazai — 3yaga? — 3Paiay — 3yasa? — 3vaga? — 3Ba3as — 3yazay
—3vasa? — 3Balag — 3yadag — 3vaia, — 3yatag — 3vaiag — 3valag
—3Baga? — 6Bagazag — 6fagazar — 6Bapasas — 6Ba1azar; — 6fajazas
—6Bayasa5 — 6Pasazas — 6yapasag — 6yapasar — 6yapasas — 6yaiasar
—6vaiasag — 6ya1aqas — 6vasasas — 6ragasag — 6ragasa; — 6ragasag

—b6rajasar — 6rajasag — 6rajasas — 6rasasas

by = fa? — 3Baja — 3PBazai — 3yaya? — 3Paias — 3yazai — 3vajai — 3Ba3ay
—3va3as — 3vazai — 3yaia; — 3vaias — 3vaiar; + 2Bagas — 6Bagazas
—6Bagasar — 6Pagasas — 6Parasas — 6Farazar — 6Farasae — 6Fasazae
—68asasas — 6yagasag — 6yapasar — 6yagasag — 6yayasags — 6yajazay
—6vajaqsag — 6vasasag — 6yasagsas — 6ragasag — 6ragasar; — 6ragasag

—b6rajasag — 6rajasay; — 6rajasag — 6vasasag — 6rasasas

bz = 2Bagaz — vai — va3 — 3Bagai — 3Baza — 3yagai — 3yasa? — 3vagal
—3Bazas — 3vagai — 3Ba3as — 3yaias — 3yazas — 3vaias — 3vaias
—Ba3 + 2Baray — 6Bagasag — 6Bagasar — 6Laiazas — 6Baasar
—608aiasae — 6Basazar — 6fasasae — 6fasasas — 6yagasas — 6yapasay
—6vaiazag — 6yajaqar — 6yarasag — 6yasasar — 6vasasag — 6yazaqsas
—b6ragagag — bragasa; — 6rajasag — 6rajasar; — 6vajasag — 6rasasay

—b6rasasag — 6rasasas

3.1. One-dimensional discrete mapping
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biz = fa3 — 3Bajai — 3Baza? — 3yaya? — 3Paias — 3yaza? — 3vajak — 3Ba3ay
—3va3as — 3vaza? — 3yaiar — 3vaias — 3vaiar + 2Bagay + 2Bajas
—6BCLOCL5CL8 - 66@0(16@7 - 65@1&4@8 - 6Ba1a5a7 - 66@2&3(18 - 65@2&4@7
—6Basasag — 6Pasasas — 6yapasag — 6yapagar — 6yaiasag — 6yajasar
—6yaqgasas — 6yasasar — 6vasasag — 6yasaqas — 6ragasas — 6rapagar

—brajasag — 6rvajasay; — 6vasasag — 6rasasar — 6rasasag — 6rasasag

b1y = 2Bagas — 3Bazal — 3yapa? — 3Basa? — 3yasai — 3vaga? — 3Pajag
—3yaqa? — 3vaza? — 3Paiag — 3vaiag — 3vaga? — 3yaiag — 3vaiag
—3vaiag — 3Bapa2 + 2PBajay + 2Basasz — 6Lagagas — 6Baasas
—65611@6@7 - 66@2@4@8 - 65@2@5&7 - 66@3@4@7 - 65(13&5&6
—6vagagag — 6yaiasag — 6yayagar — 6vasasag — 6yasasar
—6yasagar; — 6yasasag — 6ragagas — 6rajasag — 6rajagar

—brasasag — 6vasasay; — 6rasasar; — 6rasasag

bis = Ba3 — Bai — yai — va; — 3faja? — 3Pazal — 3yarai — 3vyazai — 3vaia?
—3Bazay — 3vaza — 3yaiar; — 3vaiar + 2Bagag + 2Bajas + 2[azay
—6Bagarag — 6Paragas — 6Pasasas — 6Pasagar — 6Pasasas — 6Fasasar
—68asasa¢ — 6yagayag — 6yaiagas — 6vasasag — 6yasagar; — 6yazasas
—6vasasar; — 6yagasag — 6ragarags — 6rayagag — 6rasasag — 6rasagar

—b6rasasag — 6vasasa; — 6rvasasag

3.1. One-dimensional discrete mapping
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bie = 2Bagar — 3Baxa? — 3yapai — 3Pasat — 3yaza? — 3vaga’
—3Baag — 3yasai — 3vasa? — 3Ba3as — 3yatag — 3vasai
—3vyalag — 3vaiag — 3vaiag — 3Bapai + 2Bayae + 2Basas
+2Baszay — 6Bayarag — 6Bazagas — 6Bazasas — 63azagar
—608asasa7 — 6yajarag — 6yasagag — 6yazasag — 6yasagay
—6vyaqasa; — 6rajarag — 6rasagag — 6rasasas — 6rasagar

—6ragasar

biy = fa? — 3Bajai — 3Baza? — 3yaia? — 3Pasai — 3vaza?
—3vaja? — 3Bata; — 3yasai — 3vaza? — 3vatas
—3vasai — 3vatar + 2fagag + 2Bajar + 2Bagag
+2Basas — 6Lasarag — 6Fazagas — 65asasas
—6Basagar — 6yagarag — 6yazagag — 6yasasag
—6vasasar; — 6vasarag — brasagag — 6rasasas

—b6ragagar

bigs = yap + vag — Bai — vai — vad — 3Basa — 3Basa? — 3yasad
—3yaqa? — 3vasa? — 3Batag — 3vasa — 3yatag — 3vaiag
+2Bajag + 2Basar + 2PBasag + 2Basas — 65azarag
—6Paqagas — 6Pasagar — 6yazarag — 6yasagas

—6vyasagar; — 6rasarag — 6ragsagas — 6rasagay

3.1. One-dimensional discrete mapping
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( big = yai + va; + Bag — 3Ba3a§ — 3[‘3@5@% — 37a3a§ — 36a§a7 — 37a5a$

—3vaza? — 3yaia; — 3vasa? — 3vaia; + 2Basas + 2Pazay
+2Basa6 — 68asaras — 68asagas — 6yasarag — 6yazagas

—bragarag — 6rasagag

bag = vas + vag — 35a4a§ — 36a6a$ — 37a4a§ — 35&%@8 — 37a6a$ — 31/a4a§
—3vya2ag — 3vaga? — 3vaiag + 2Bazag + 2Bagar + 2Basag

—6Basaras — 6yasayag — 6rasarag

bo1 = yaz + vaz + Bai — Ba3 — ya3 — vad — 3Basai — 3yasai — 3vasa?

+2Bagas + 2Basa; — 6fagarag — 6yagarag — 6ragarag

bas = yay + vay — 3fagai — 3Pazas — 3yagai — 3yazas — 3vagai

L —3vatag + 2Basag + 2[agar

( bas = ~yas + vas + Baz — 3Baraf — 3yaraf — 3varaf + 2fagas
boy = yag + vag — Baz — vai — val + 2Bazag

b25 = 6a§ + yar + vary

bas = yag + vag

3.2 About periodic orbits in 1-D linear piecewise smooth maps

In this section we shall study stable periodic orbits of piecewise-smooth systems analytically. The
map is defined by:

ar, + [ for x, <0

, 3.9
br, +pu+1 for z, >0

Tpt1 = f (xn,a7b7,u7 l) = {

where a,b € (0,1), and [ is denoted for height of the discontinuity. With these parameters, it turns
out that stable periodic orbits exist for u € (0,1]. Let us consider [ > 0 in equation (3.4). There
are three cases as shown in Figure.3.1.

Case 1: For p > 0, there is a stable fixed point xp = ’f—f; on the the right-half plane.

Case 2: For 0 > p > —I, there are two stable fixed points on both sides of the discontinuity.

3.2. About periodic orbits in 1-D linear piecewise smooth maps
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e l>u>0 u= -l

Figure 3.1: Graph of the map for0 <a <land0< b< 1,and! >0

Figure 3.2: Graph of the map for0 <a <land0 <b < 1,and —[ > 0.

Case 3: For u < —I, there is a stable fixed point in the left half plane and it is given by
Ty = 5.
Three additional cases may be observed when [ < 0, as shown in Figure.3.2.

Case 4: For i < 0, there is a stable fixed point in the left half plane and it is given by v, = *-.

Case 5: For —[ > p > 0, there is no fixed point.

Case 6: For ;1 < —I, there is another stable fixed point in the right half plane xy = %
Assume that the left half plane is L = (—o00,0] and the right half plane is R = (0,00). By
designating which of the two sets (L or R) the corresponding point belongs to, one can transform
(code) a given sequence of points {z,},-, through which the system evolves into a sequence of
Ls and Rs. It is obvious that a periodic orbit has a repeating string of Ls and Rs. We designate
this repeated string with the symbol o as a pattern. The length of the string ¢ is denoted by |o]
and gives the number of symbols in the pattern i.e., the period of the orbit. A period orbit with a
pattern ¢ is denote as O,. P, denote the interval of paremeter y for which orbit O, exists. The

sum of geometric series 1 + k + k% + ... + k" is denoted by S,

Definition 3.1 A periodic orbit O, is termed as admissible if P, # (). An admissible pattern is the

pattern of an admissible orbit.

Definition 3.2 If a pattern of a periodic orbit O, consists of only one R and multiple Ls or vica-

3.2. About periodic orbits in 1-D linear piecewise smooth maps
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versa, it is called an atomic pattern.

——t—
Thus, there are two types of atomic patterns, thos with pattern LLL........ LL R, abbreviated as
——tN—
L™R (termed as L-atomic pattern) and those with pattern L RRR........ RR, abbreviated as LR"
(termed as R-atomic pattern). Both L and R-atomic form the pattern LR.

Definition 3.3 A pattern is called a molecullar pattern if it is made up of a combination of atomic

patterns.

Example 3.1 LLRLLRLR is a molecular pattern. The atomic patterns LLR and LR are combined

to create it.

Lemma 3.1 An atomic pattern of any period is admissible.

Proof. Consider an atomic orbit Oz» with period n + 1. We write down the inequalities as: m

rg < 0,
r1 = axg+p <0,
To = axg+p <0,
= a*vo+ (a+1)p <0,
Ty = a" g+ pSt_, <0,
T, = a"zo+pS,_; >0,
Tpni1 = To=br,+p—1<0,
v — (a"1b+a"2b7;...+zb+b+1)ﬂ—1.
—an

Substituting the value of z; into the list of inequalities above, would yield a list of upper bounds

for ;. (whenever the point z; is in L ) and lower bounds for x (when the point z; is in R).

upper
%

We denote upper bounds by p and lower boundes by p!*“". We define p, = min; (u;?"") and

py = max; plover. Therefore, P, = (uy, j1,] - Some simple algebraic manipulation of the inequalities
abouve gives:
n n—1

a a
Pop= |2 94
Lk (Sg’an—1b+sg_1

Let us assume Prn.p = (), then

a® an—l

_ > e —
Sa an—l ‘|‘ng1

n

" x (a" b+ S0 ) —a" Tt x (S7) >0

3.2. About periodic orbits in 1-D linear piecewise smooth maps
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a" ! [a”b +aS;_; — S;ﬂ >0

—a™ ' (1 —a"b) >0

which is a contradiction since a,b € (0,1) . Hence Pr.r # (). We write down the inequalities as:

Lo S 07
ry > 0,
Tpny1 = Do <0
— B+ 2+ L+ b+ 1) (p— 1) + b
0o =

1—bra

Finding 1, and ., in the way as explained above, we get

ab" + 5272 5271
Ppnp = b
abn~t+Sb 7 Sh

Further, it can be easily checked that Pr.p # 0.

Example 3.2 Let us consider an orbit O rn. Here zo < 0,27 > 0 and x5 = x. From equation (3.4)

we get

T = axg -+ U.
To = bfL'l +u— 1,
= abro+ (b+1)p—1,

= Xp-
b+1)pu—1
= —— <0.
o 1l—ab —
< 1
=y
Substituting the value of xq in x; we get:
b+1)pu—1
1—ab
. ¢
a 1+a

1
Hence Pprg = (1%, 717] -

3.2. About periodic orbits in 1-D linear piecewise smooth maps



Chapter 3. Periodic orbits of some 1-D Zeraoulia-Sprott mpaping

Example 3.3 Consider a pattern LLRLLRLR LLRLLRLR LLRLR. This pattern corresponds to a
molecular orbit of period-21. LLR is represented by L' and LR is represented by R'. Then the above
pattern becomes L'’ R'L' L' R'L’ R'. Additionally, ' L’R' = LLRLLRLR is now designated as L" and
L'R' = LLRLR is designated as R". Therefore, the above pattern can be written as L" " R", which
is atomic in symbols L” and R”. So this is an admissible pattern. Now consider another pattern like
LLRLLRLR LLRLR LLRLR LLRLLRLR. It can be expressed as L"R"R"L". This pattern does

not correspond to an admissible orbit since it is neither atomic or molecular in the new notation.

3.3 Conclusion

In conclusion, this study focused on finding periodic orbits of some Zeraoulia-Sprott maps. The
goal of this study is to understand the behaviors of dynamic systems by providing information
about the stability of these periodic orbits. This study also revealed the presence of chaotic orbits

in the Zeraoulia-Sprott maps that are very sensitive to the starting conditions.

3.3. Conclusion
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