People’s Democratic Republic ‘i-};é;i,@

Ministry of Higher Education and

Scientific Research
p : . A . . . ﬂll.l.“yﬂl'.u}l” pglﬂgnn.gm” JIQ.‘EJINM
Q- Lol Lngal G0ty Larbi Tebessi University- Tebessa o o TS AR s v

E=MC
Y
—4

Faculty of the Exactes Sciences and Sciences of
Nature and life

Departement: Mathematics

Final dissertation
For the graduation of MASTER,

Domaine: Mathematics and Computer Science
Field: Mathematics
Option: Partial Differential Equations and Applications
Theme

4 . R
Carleman estimates to study

some controllability problems
of hyperbolic PDES

Presented by:

Kamla DERBALI
Before the jury :

®r, Nouri BOUMAAZA PROF Larbi Tebessi University ~President

Dr, Abdelhak, HAFDALLAH MCA Larbi Tebessi University ~ Supervisor
®r, Salem ABDELMALEK PROF  Larbi Tebessi University Examiner

Date of Dissertation : 09/06/2024







%k}wwﬁecﬁement

r

AIhamduIiIIih_untiI the praise reaches its end, prayer and peace be
upon the most honorable creature that God illuminated with His light
and chose him. | thank God who bless me with tha completion of this

research lalso extend my sincere thanks and appreciation to
Dr.Abdelhak Hafdallah for his guidance, patience, dedication,

and the valuable information he provided to me that contributed

fundamentally to the realization of this memory.

I also thank Pr. Nouri Boumaaza for his assumption of Chair-
manship of the Discution Committee .

l also thank Pr.Salem Abdelmalek for agreeing to be part of the

discussion Committee as an examiner and to take a look at my work.

| also extend my sincere thanks and giving to my parents who made
sur to provide the appropriate conditions for this work .

And | would also like to thank every hand that accompanied us in this

work, whether from near or far.




/ eﬁedz‘catz'on (
4

| dedicate this modest work to: My father “Mohamed” for his love,

support, constant encouragement and patience with me, his advice

ahd guidance that all my words are not enough to thank him, thank

you for everything you have given me.

To my mother, who taught me steadfastness to the greatest and
indest heart, she has the credit for what | am now, may God prolon

er life and give her health and well being. /

To my only brother “Djamel” and my support in life, God bless you

and keep you safe, and to my cousin, sister and My supportive“Hanan”.

\ To every teacher who taught me even one letter, he had a great imp&t

in overcoming many obstacles and difficulties.

To all my family members, whose words were like a support and ngo)r

that helped me to progress.
And To the friends I've known at the university who were more than

friends to me my sisters and my soulmates who shared the steps ofye

road with me” Soufides , Amina ,Oulfa’

\ (

\ \




Abstract

In this memory,we present carleman estimates for some hyperbolic Partial
Differential Equations and on the techniques of construction and application
to solving controllability problems.

In the first chapter, we mention some important and comprehensive

notion and theories that we need later.

In the second chapter, we introduced some methodes for creating carleman

estimates of hyperbolic (PDES).
In the third chapter we present some applications to solve problems

of controllability of hyperbolic equation.

Key words: Carleman estimates,hyperbolic equations,null controllability,

weight functions
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Introduction

In 1930s , carleman estimates were presented by the swedish mathematician Torsten carleman
[9].These estimates give essential information about the internal behavior of the system, helping
to complete the analysis and design of control strategies to acheive desired outcomes.
Carleman’s works focused on the study of partial differential equations (PDES) and their solution.
The basic idea of Carleman estimates is to use an integrated identity that includes a PDE solution
and weight function. Choosing the weight function should be carefully to make sure that these
estimates are found in good form [7].

One of the most important uses of the latter in mathematics is some applications that include
inverse problems [14] where it has been used for certain types of inverse problems of partial dif-
ferential equations, where it seeks to recover information about an unknown operator or function
due to some of them Data and knowledge of the differential equation governing their behavior,
as well as Integral Equations. Carleman estimates have been used in many theories, the most
important of which is :

control theory (see for example [22] and [16])in the study of controllability and stability of
systems governed by partial differential equations.

Spectral theory [17] was used to study the spectral properties of operators in Hilbert spaces.Descr-
iptions of nonlinear analysis are also used to study the behavior of nonlinear systems, such as
nonlinear Partial differential equations.

Finally, we must not forget also the geometric analysis of the study of geometry Properties of
cubes and subfolders, such as curvature and volume.

So this work is organised as follows :

In the first chapter, we will give a reminder of some elements in functional analysis , firstly, the
basic spaces as follows :Hilbert spaces, L? spaces and Sobolev space, as well as some theorems
that we will use later, secondly, some notions and definitions necessary for control, and finally we
can consider some concepts of carleman estimates.

In the second chapter, we will introduce some techniques for creating carleman estimates for
hyperbolic partial differential equations .These estimates were introduced by the Swedish mathe-
matician Torsten carleman in 1922 who named them carleman’s inequality.

The last chapter will be devoted to the proof of the null control of some hyperbolic equations ,
that is it is associated with the use of the already presented Carleman estimates Chapter 2,finally

,we will prove the equivalence between Controllability problem and Variational problem.




Chapter 1

Basics on the controllability of hyperbolic
PDES

In this chapter, we will present a call on fundamental spaces in functional analy-
sis which contains some essential notions that concern the L” spaces, the spaces
of Hilbert and Sobolev as well as a part of definitions and theories then, we will
consider to deduce some concepts of controllability, and finally, we will familia-
rize ourselves with the concept of Carleman’s estimates that they are necessary

to know in order to approach the continuation of this memory.

1.1 Elements of Functional Analysis

1.1.1 Inner Product Spaces

Definition 1.1 [11] Assume that E is real space, (.,.)p : E x E — R is an inner
product on FE iff the following condition are met :
1.Vu,v e E (u,v)p = (v u)p (symetry) .

Vuel (u,u)p
Vue E (v, u)p=0=u=20
3.Vu,v € K (vu 4+ pv,w)p = y(u,w)g + p(v,w)p ¥y, p € R (bilinearity) .

(positivity) .
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1.1.2 Hilbert Spaces

Definition 1.2 [11] A Hilbert space H is an complet inner product space (see Def

1.1), considering that ||.||y be the norm associated with inner product (.,.)y such

that ||.||lm = /(. ) -

1.1.3 LP?(Q2) Spaces

Definition 1.3 [19] Let Q) be an open of R", and p € R with 1 < p < oo, we define
LP(§2) space as follow :

LP(Q) ={¢: Q — R, ¢ is mesurable and / lo(z)|Pdx < oo} .
0

ol = ( [ |¢<x>|pda:)’l’ .

L>*(Q) ={p: Q — R, pis mesurable, 3C > 0 s.t |p(x)] < C a.e on Q} .

with the norm

forp=o0:

is equipped with the norm

|¢]]o0 = supp ess (@) = inf{C : |p(x)| < C a.e} .

1.1.4 Sobolev Spaces
The space H'(Q)

Definition 1.4 [18] Let ) be an open of R" of boundary T, we call Sobolev space of

order one on {2 the space

H'(Q) ={ue L*Q),0,,ue L*(Q),Vi=1,...,n} .

1.1. Elements of Functional Analysis



Chapter 1. Basics on the controllability of hyperbolic PDES

equipped with the norm

Q Q

And the inner product given by

(u,v) () = / uv dr + / VuVu dx .
The space H'(Q) is a Hilbert space. " "
The space H}(()
Definition 1.5 [1] We defined the space H; as follows

Hy(Q) = {ue H(Q),u=0on 00} .
The norm in Hj () is given by

Julf = [ [VuP do.
0

Remark 1.1 :[14] We can characterize the structure of V as a subspace of a weigh-

ted sobolev space. Indeed, let H,(()) be the weighted Hilbert space defined by

H,(Q) = {u € L*(Q) such that / %|u|2rdrdt < 00}.
Q

endowed with the natural norm

12 1/2
-1 i) = (o 21 2dadt)

1.1.5 L*(0,T,X) Spaces

Definition 1.6 [20] Let X be a Banach space, we denote by LP(0,T, X) the space of

measurable functions v :]0; T[— X such that

T P
[ — ( / Hu(t)ﬂszdt) < oo forl<p<oo.
0

1.1. Elements of Functional Analysis
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and for p = oo we have

[ul| 0,7, x) = sup ess |[u(t)||x < oo.
te[0,7]

The space LP(0,T, X) is a Banach space for all 1 < p < oo
If X is of Hilbert for the scalar product (.,.)x, L?(0,T, X) is a Hilbert space for
the Scalar product

(u, ) L2(0,7,x) =/0 (u(t),v(t))xdt .

1.1.6 Some fundamental theorems

Variational problem
L’ets consider the following problem, called variational problem, with a = a(u, v)

be a bilinear form in Hilbert space H :

{ Findu € H such that a(u,v) = (F,v),Yv € H} (1.1)

Theorem 1.1 (Lax-Miligram)|[8] Let H be a Hilbert space,a = a(u,v) be a bilinear
form in H, there exist a unique solution u € H of the problem (1.1) , iff :

i) a is continuous, if there exist 3 a constant M > 0 such that
la(u, v)| < M |[|ul|a|lv||z Yu,v € H .
ii) a is coercive, if there exist 3 a constant o > 0 such that
alu,u) = o ||ull}4 Vv € H .
Proof. given in [11] m
Theorem 1.2 [8] Consider uw and v € H , then, Schwarz’s inequality given by :

|(w, 0) | < [fullml[o]]a -

1.1. Elements of Functional Analysis
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Theorem 1.3 (Integration by parts)[7] Let 2 C R”" be a bounded spatial domain
with smouth boundary 02, where v denote the external unit normal vector .

Let v and v be any two real functions of class C*(Q) , we have

/Vu@dx:/uv.ydf—/qudm.
Q r 0

Theorem 1.4 (Green Formula)(7| Let 2 C R" be a bounded spatial domain with
smouth boundary OS2, where v denote the external unit normal vector .

Let v and v be any two real functions of class C*(Q) , we have

/Q(Au)v dr = /F((%u)v ol — /QV”LLV”U dx .

1.2 The controllability of evolution equations

1.2.1 Some notions of linear controllability

Consider the following system with infinite dimensional

z'(t) = Az(t) + Bo(t),t € [0,T]
.T)(O) =9 € D(A)

(1.2)

where :

(A, D(A)) is the infinitesimal generator of C, semi-group {S(¢)}:;>o in a Hilbert
space H.

V' is an Hilbert space and B is an operator in £L(V, X).

The function z(t) € X and x, is the initial data , we assume that v € L*(0,7,V)
be the control.

The system (1.2) has the unique solution z(t) € X characterized by :

t
z(t) = el +/ eA=9) By(s)ds,Vt € [0,T] .
0

The principle of control is based on asking the following question is there exist a

function v that allows to pass (in a sense to define precisely) from the state z to

1.2. The controllability of evolution equations [
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the state x, in a specific time 7" > 07?
Our goal is controlling the system(1.2) to get x,; , now we will introduce various

types of controllability :

1.2.2 Diffrent consepts of controllability

Exact controllability

Definition 1.7 [6] the system (1.2) is called exactly controllable in X on [0,T] if
there existe v € L*(0,T,V) such that the solution of (1. 2) satisfies x(T) = x4 .

Null controllability

Definition 1.8 [4] the system (1.2) is called null controllable in X on [0, T if there
existe v € L*(0,T,V) such that the solution of (1. 2) satisfies z(T) = 0 .

Approximate controllability

Definition 1.9 [10] the system (1.2) is called approximate (weakly) controllable in
X on [0, T)] if there existe v € L?(0,T, V) such that the solution of (1. 2) satisfies

|z(T) — xq4||x < €.

x(t)!
a4 Exact controllable
& ApproXimate
controlable
g = Null contrelable
Xa
x 3
v
¥
0 |

FIGURE 1.1 - Diffrent Concepets of controllability

1.2. The controllability of evolution equations
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The operator of controllability

For system (1.2) , let’s introduce the operator defined by

Ly : L*0,T,V) — X

v — fOT eMT=5) By(s)ds

Proposition 1.1 [13]

1. The system (1.2) is exactly controllable , iff Lt is surjective then
ImLy =X .
2. The system (1.2) is approximately controllable , iff
ImLr = X .
Proof. See [3] m

1.2.3 The wave equation with potential coefficient

Let 2 C R" be an open domain,we set ) =) x [0,7]and ¥ =T x [0,7] .

Consider the following problem search a function y(z, t) satisfying

0%y

57— Ay+py=1in Q (1.3)
y(z,0) =y (z,0) =0 in Q (1.4)
y(x,t) =0 on X (1.5)

1.2. The controllability of evolution equations |



1.2.4 Weight function

To create Carleman estimates,we use a special function called the weight function
, we summarize the conditions under which this function can be chosen.
for zo ¢ Q,A > 0and 5 € (0,1), and for any (z,t) € Q x [0,7T] :

b(x,t) = |z — 2o|> — B2 + Cp and p(a,t) = M@

Where Cj > 0 is chosen so that ¢ > 1 on Q x [0,7] .

1.3 What is carleman estimates ?

Careleman estimates is a mathematical concept named after swedish mathemati-
cien Torsten careleman in the early 20th century which he presented in 1939[9] ,
Carleman’s estimates were from fundamental tools in the field of functional ana-
lysis and partial differential equations.

Careleman estimates are particularly used in the study of uniqueness and stabi-
lity of solution,over time careleman estimate have found application in various
areas of mathematics, including inverse problem,control theory and mathemati-
cal physics.

Careleman estimates are a tool used in the study of controllability for hyperbolic
partial differential equations,They provide a quantitive measure of the controla-
bility of a system by estimating the minimal amount of control necessery to drive
the system from one state to another in specifique time.

Carleman’s estimates can be presented as an inequality of the form :

\[e*?u|[20) < C' ||€* Pul| 12

Where ¢ is the weight function , s is a large positive parameter and u is any

smooth compactly supported function in €2 and C' > 0.

1.3. What is carleman estimates? |



Chapter 2

Construction of Carleman estimates for

some hyperbolic systems

In this chapter,we will present some methodes for creating Carleman estimates of
hyperbolic (PDE), These estimates were introduced in 1922 by the mathematician

Torsten Carlman and named them Carleman inequality.

2.1 Carleman estimates for the wave equation with potential

coefficient

This section present a Carleman inequality for the wave equations given by (1.3)-
(1.5):

we define, for m > 0 the set :
LZ,(9) = {p € L¥(Q) st |[pllpeio) < m).
Define the typical wave operator L as follows :
L=0-A.

Let z € L*(0, T, H}(Q2)) be a function such that Lz €L2(0, 7, L*(2)) and satisfying
2(x,T) =2'(z,T) =0, Vx € Q.

10
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Now let us define ,
for zp ¢ 2, A > 0and g € (0,1), and for any (z,t) € Q x [0,7T] :

U(x,t) = |x — 20 — B2 + Cp and p(x,t) = )

where it is determined that Cj > 0 such that ¢» > 1 on © x [0, 7. Also, we set for
s>0

w(x,t) = eS?@ 2 (x,t)
For p € L%, (€2), we consider the operator L, as :
L,=0?—A+p.

It’s clear that L,z € L?(0,T, L*(Q)) if Lz € L*(0,T, L*(Q))
First, let’s introduce the Carleman estimate, which we shall formalize and

calculate as follows :

Pw = e**L(e *w) .

We set
Pw = (07 — A) (e *w)

= [0 (e *Pw) — Ale *w)] .

we obtain :

(77w (a, 1)) = 8,(8,(e”* " w(z, 1))

(e7** =D (z, t) + w(x, t)dhe 7 @)

(e=*°@)dap(z, t) — sOyp(x, t)e Ty (x, 1)) (2.1)
= dfw(z, t)e D 4+ 2 (Opp(x, t))%e ¥ Dw(, t)

— 25(0pp(z, 1)) (Dyw(z, t))e P&

|
S

besides that, for alli=1ton:

2.1. Carleman estimates for the wave equation with potential coefficient
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O, ) _ 0pl5,t) i du(w,t)

ox; ox; Oz;
O (e=*? @t (z, 1)) [0 (Op(x,t), 9, Ow(x,t)
) _ ) —sp(x,t) —sp(z,t)
x? | O; ( 0z (e w(az,t)))] i x; <e 0z
-8290 x,t —solz 8()0 z,1 0 —sp(x
= s | G et ) + D (et )

~oz
N dw(z,t) 0 O*w(w, t)
o 8290(337 t) —sp(x,t) 2890(1.7 t) agp(l‘? t) —sp(x,t)
= —5 [—83:12 (e w(.r,t)))] + s o o C
dp(z,t) Ow(x,t) —sol@d) _ S@go(a: t) Ow(zx, t)
ox; ox; ox; Oz,

2
_ _tse—tsgo(xﬂf)w(x7 t) 9 9(;(@27 t) s (8908(337 t) >2€—sg0(x,t)w(x’ t)
€L

w(zx, t) + e *P@

(e—sgo(x,t)> + e—sgp(m,t)

—sp(x,t)

_ Op(x,t) Ow(z,t)  O*w(w,t) _
. sp(x,t) sp(a,t)
2s¢ x; O i dx? c '
(2.2)
On the other hand , we have , p(z,t) = M@t
Then , for alli:
8@($, ) _ aw(x t) /\w(x,t) _ (23)

8@- 8$Z

and

9 2 2
9 gg(;,t) e <0w8(;vf t)) BYTT I (% ) M (2.4)

When we replace both (2.3) and (2.4) in (2.2), we have this result
82( () (Q?, t)) 82(,0@3, t) —sp(x,t) 2 890(337 t) ’ —sp(x,t)
o2 = —s <W> e w(x,t)+s (8—3@> e w(zx,t)

1 0p(a,t) Ow(x,t)  Pw(w,t) _
(o) 908(; ) wa(:f ) lgg’;“ j—rry (2.5)

2

—2se

2.1. Carleman estimates for the wave equation with potential coefficient

)
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Using the previous result (2.5) we conclude that

A(e*w(x’t)w(x,t)) = —ge 0@t w(z, ) Ap + s (VQO) sl t)w(x,t)

—25e T WV + Aw (2.6)

Then, using (2.1) and (2.6), we have this result
Puw = e¥[0fw (e, t)e 0 — &(Bup(x, 1) e Du(a, 1)
— 25(0pp(z, 1)) (Bpw(z, t))e*#WD — s @y (2, 1) Ap
+ $2(V)2e @z, t) — 25 ** @ DVwV i 4+ Aw]
= 0fw = 2sAp(Qwdrp — VwVe) + s N wp(|0a]* — [Vl*) —
— swp(AJfY + N (V)?)
Also , we can write
Pw = 0jw — 2s\p(Qwdp — Vw. Vi) + "N w (|0 * — [V[?) —
—shpw(07Y — Ap) — s ow (|0 — [V [?)

If we consider the operators :
Piow = 02w — Aw + 2220w (|0p))? — |V]?)

Pow = (a—1)shpu(p—At) —s\2pw (|0, — [V]2) ~2s\p(Bwd)— V. V)
(2.7)
Rw = —as pw (02 — Av)

Choosing « later so that 25 <a<gn; ~ (see[2]) , we obtain
Piw + Pow = Pw — Rw.

Now, we could state a Carleman inequality for the wave equations with potential

coefficient under consideration

2.1. Carleman estimates for the wave equation with potential coefficient
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Theorem 2.1 [2] Let us suppose that there exists xz ¢ €) such that

LoD {x € 0Q; (v — x).v(x) = 0} (2.8)

where v(x) denote the external unit normal vector at .
Then for every m >0, there exists )\, sy > 0 and a constant
C — C(Q7 T7 m, )\07 50, /67 .17())

such that for all p € LZ,,(2),and for all A > Xg, s > s :

s)\/623¢(]8tz|2+]Vz\Q)d:cdt+s3)\3/625‘/’|z\2da:dt+/ | P (e%%2) P dadt
Q Q Q

+/ | Py (e 2) |Pdadt < C/ ezs‘p\Lpz\Qda:dt+Cs)\/ ©0e®?|0,z]2dldt  (2.9)
Q Q Yo

for all = € HY(0, T, H}(2)) satisfying Lz € L*(Q) and z(z,T) = 2/(x,T) = 0,
Ve €.

2.2 Construction of Caleman estimates for the considered wave

equations

In this section, we are interested to creating a Carleman estimate for the
considered wave equation with Lz in the right hand side instead of L,z,Then we
will see at the end that the result hold as well for L, since p € LZ, (Q) :

As we started writing, for w(z,t) = e*#@!)z(x,t) we have Pw = e**L(e**w(x, 1))

and

T T
/ /(\P1w|2+ \P2w12)dxdt+2/ /lepzw dxdt
0 Q 0 Q

T
:/ /|Pw — Rw|*dxdt. (2.10)
0 Jo

2.2. Construction of Caleman estimates for the considered wave equations
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Now we seek to find a lower estimate for

T
/ / PiwPyw dxdt .
0 Jo

The First step : some explicite calculation

First , we need to calculate both of :

O =2, 0,00 =0, O =-25;
O = MOu)p,  Oup = MO)p;
070 = (\(0:0)* + A7) s
07 = (N*(0)* + A3/ )p;

We denote

where [; ; is the integral of the ith-term in Pw multiplied by the jth-term in Pw .

Using integration by parts[Theorem 1.4] in time

T
I = /0 /Qﬁfw((oz — D)sApw (92 — Avp))dxdt .

— (1-a)sA / /Q Duwlp(Ow) (B3 — A)
—(Brp)w (0 — AY) — pwd, (OF4 — Ay)]dxdt .

2.2. Construction of Caleman estimates for the considered wave equations
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=(1- oz)s)\/o /QgplﬁthQ(afzb — Av)dxdt
—(1— oz)s)\/o /Qw(ﬁtw)(atgo)(at2¢ — Av)dzdt .

T
= (1- a)sA/ /w!@twlz(afw — Ay)dxdt
0 Q

—a) g 2.
3)\/0 /QQw(atw)(@tgp)(@tw AY)dxdt .

T
= (1- a)s)\/ /gp\@w\?(afzp — Ay)dxdt

S)\ / / O (w?)(0,0)(021) — A)dadt .

= (1— oz)s)\/ /¢|atw|2(a§¢ — Avp)dzdt .
0 Q

B T
Dy | [ k@it - avjasat.

T
= (1- a)s)\/o /Qgp\ﬁtw\2((93¢ — Ay)dxdt

(1-a)
2

T
A [ [ 1wPellaf + 2@k - Av)dade.
0 Q

T
(1 2092
=(1 oz)s)\/o /Qgp\ﬁtw\ (07 — Av)dxdt
(1 -«
2

T
loxt [ [ elupopuots - Aujdodt

(1-a) 5 [" 2 292
S5 [ plulow P - Avjded

In a similar way, we get
T
I = / /Q?w(—s)\?gow(\@th — |VY)|?)dxdt .
0o Ja

:_3)\/0 /Qatw[(aw)w(\am — [V)P)
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+o(0w) (|10 = [V) ) + pwd, (|0 — V) [*)]dadt .

T
— s / /Q D20 — V)| dard
T
2 2 2
sA/O / (Brw)w(@up) (10 — Vo) 2)dudt
T
o) / / () wipdy (|9 ) dacdlt
0 Q
T
— s / / 02002 — |V0) ) dvdt
)\2
[ [ wP@eiowt — v
— s / / D0 — V)| dard
X / / (Dw)p(2(00) (92 ddlt
)\2
s / / WP + A0 — |V)[2)dudt
2 2 2 2\ 2 2192712
o / / oo ([0 — [V)2) — sA / / ol 2|02 P dudt
)\3
i / / w2V 20 dadt
(24 )N / / w0202 — |V)[2)dadt

4
A / / ol 0 2@ — Ag)dadt

Moreover, by employing integrations by part in the space variable, we obtain

T
I = / / O w(—25\p(Owdy) — Vw.V))dxdt .
0o Jo

T
— / /(8tw)8t(—2$)\gp(8tw8tw — Vw.V))dzdt .
0o Ja
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T
~ s\ / / (D) A1) p(Dpwdid — V. Vb)) dawdlt
0 Q
T T
—23)\/ /(atw)goﬁt(ﬁtwﬁm)da:dtnt23)\/ /(&gw)gp@t(Vw.V?/))dxdt.
0 Q 0 Q
T
= —23)\2/ /(&w)(@twgo(@tw@tw — Vw.V))dzdt
0 Q
T T
—25/\/ /(@Qw)(@tw)@twdxdt—%)\/ /(8tw)g0(8tw)(8f¢)dxdt
0 Q 0 Q
T T
+2s)\/ /(&gw)gpat(Vw).dexdt+25)\/ /(@w)goVw.@t(Vw)dxdt.
0 Q 0 Q
T T
= s)\? / / |0aw|?| 0 |*dwdt — 25\? / / (Oyw) (0)) Vw. Vepdxdt
0 Q 0 Q
T T
s / / |0 o2y dzdt + sA / / B (Vep) (V) dadlt
0 Q 0 Q
T
+5A / / |0,w|* Arpdadt .
0 Q
T T
:sA/ /gp|5’tw|25)t2¢dxdt+s)\2/ /g0|8tw|2]8tzp|2dxdt
0 Q 0 Q
T T
+3A/ /¢|atw|2A¢da:dt+sA2/ /90\8tw\2|vw\2dxdt
0 Q 0 0

T
—25)\2 / / 0O WOV w.Vpdxdt .
0 Q

We use the Green Formula [Theorem 1.5] and integration by part
T
I = / / —Aw((a — 1)show(0%) — Av))dxdt .
0o Jo
T
= / / —VuwV((a — 1)show(0) — Ay))dxdt .
0o Jo

——(1=ah [ | ~VulVi(w(@? - Av)
+o(Vw) (02 — AY) 4+ owV (92 — A)]dadt .
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T
= —(l—oz)s/\/o /Q]Vw]%(afw—Azp)dmdt
T
J— J— 2 J—
(1 a)s/\/O /QVngow(ﬁtw AvY)dzdt .

T
=—(1- a)sA/O /Q IVw (02 — Av)dadt

(1-a)

T
2 2 . A '
A / /Q WV (V) (@2 — Ag)dedt

T
= —(1— a)s)\/o /vawy?gp(afw — Ay)dxdt

(1-a)
2

T
——(1=a)sr [ [ [Vufp(opy - Av)dadt.

T
SA/ / [w|?[N2|V|? + AAY] (02 — Avp)dxdt .
0 Q

(1-a)

T
3 2 2192
S5 [ [ PV eR @z - Avjdod

(1-a)
2

T
2 2 2
SA /0 /Q|w| AY(07Y — AY)dxdt .

In the same manner, we have
T
be= [ [ ~Aul=s¥pu(00f = [V0))dade.
-/ ' | (Vv =3 uout - [Vo)P)dsdr.
T

= —sx? / [ (oot - Vo) s

X2 / [ (VorTulpont - Vo) Pz

~o [ | (Vu)wev (ot - (Vo) Pydear

T
— o / / V(0] — V)2 dadt
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2
A / / V(W) V(0] — |V)|2)dedt

SAQ/ /v o (V0| d;z:dt+—/ /v o(V|V|2)dadt .

2
= N / / V(|0 V) )t~ 2 / / w2 D102 |V)|2)ddt

SAQ/ /!w\ Vo (V6] )d:vdt+—/ /!w\ Vo (VIVY[?)dwdt |
N / / Vule(|a ] — V) P)dadt
5[ [ ePeiwu  aaviaw? - ey

X [ wpvptowyaa -2 [ [ wrvweviowti

S” S [wrveeveeia -2 [ [ peuevvory.
e / | [vuleowP ~ 90 )dade + NG00l — (V) dade
Ay / | WPl = [v6) st - ¥ / [ 1ufeni( vz

5[ [ wPeavowysa -5 [ [ jwpoav(eeyi.
= —s)? / | [wuleow = 190 dade + U0l — (V) dade
Ry / | twienvqom ~ [90)R)dadt + - / | 1w eaion o

—s)\s/ /|w|2g0A¢(\V¢|2dxdt.
0

By using the notion that w|jq.r) = 0, we obtain, on Q2 x (0,T) ,Vw = (J,w)v,

which results in |w|* = |9, w|*. Consequently, we have the ability to obtain
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T
Iy = / / —Aw(—25\p(Oywopp — Vw.V)))dzdt .
0o Jo
T
= / / —VwV (Qwdp — Vw.Vh))dxdt .
0o Jo
T
= 25)\/ /(Vw)(Vgo)(@twﬁtw — Vw.V))dzdt
0o Jo
T T
+25>\/ /(Vw)goV(@twatw)dazdt—Qs)\/ /(Vw)goV(Vw.Vw)da:dt.
Q Q
0 i 0
= 23)\2/ /(Vw)govw(ﬁtwﬁtw — Vw.V))dzdt
0o Jo
T T
—23)\/0 /Q(Vw)QOV(Vw)VzbdmdtJrQS)\/o /Q(Vw)QOV(atw)atzbda:dt
T T
—25)\/0 /Q(Vw)go((‘?tw)V(@W)dxdt—25)\/0 /Q(Vw)gp(Vw)V(V@b)dxdt.
T
= 25)\2/0 /Q(Vw)gOVg/J(é)twﬁtw)dxdt
T T
—925)\2 2
25\ /0 /Q(Vw)goV@D(Vw.Vw)da:dt—FsA/O /Q\Vw\ e Apdxdt
T T
)2 2 2 92
25\ /0 /Q|Vw| @V@DdxdtJrQs)\/o /Q|Vw| ©O; Ydxdt
T T
— 2 _ 2 2 2
23>\/0 /Q]Vw| eAYdrdt — 25\ /0 /Q|Vw| o|V|*dxdt .
T
—s)\/o /Qgp\Vw] (07 — Av))dxdt
T T
2 2 92
+2sA /0 /Q]Vzb.Vw\ dxdt — 2s)\ /0 /ng&ngWVw.V@/}dajdt
T T
2 2 2 2 _ 2
+sA /0 /Qgp\Vw\ (|0w)|” — |V|*)dzdt s)\/o /Fogp\ﬁyw| Vip.v(x)dl'dt

T
+2s\ / / ©D*)|Vw|*dxdt .
0 Q

where the matrix D%y is symetric
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As for the following, we can easily write
T
= [ [ #0u(awh - [96)(a - Dsrow(@b - Av))dode
0 Jo

T
— (a— 1)\ / / w0 — Ap) (80P — Vo) Pdadt

as well

T
Iy = / / AP (10 — V) (—sNpw(|0a? — [V [2)dadt
0 Q

T
S / /Q P00 — [Vl dedt |
0

In conclusion,using integrations by parts we have

T
I33 = /0 /Qsz)\zg02w(|8t¢|2 — VY1) (=28 @ (Oswdp — Vw.Vap))dadt .
T T
= —233)\3/ /gp?’w\ﬁtwlz(ﬁtw@tzp)dxdt+283)\3/ /gpswl@wz(Vw.Vw)dxdt
0 Q 0 Q
T T
+253)\3 / / 3w VY2 (wdp))dadt — 253N\ / / O3w| VY2 (Vw.Vep)dadt .
—s°\? 35 2opb| O P dadt + 53N\
t t t X + s A Vw ]8t¢| dxdt
45323 / / 030 (w?)Oph | V[P dadt — s\ / / 2) (V)| Vap|Adadt .
_ /0 /Q 1w [20,(P Ol O 2) dadt + $°23 /0 /Q w2V (6 (V)| 0| 2) dadt
T T
+53A3/0 L\w\Qﬁt(¢38tw|V¢\2)dxdt—53)\3/0 L\w\2V(¢3(v¢)|v¢|2)dxdt.
T T
= 5°\° / / [w|*30%(0rp) 0x)| O | ddt + s*N° / / \w |20 |Opp|*dadt
45323 / / lw|*¢? (0p))2(00) 02 pdxdt — s>\ / / lw|*30* (V) Vo |0ph|*dadt

—s3\3 / / w2V (V) |0 | dudt — s> N / / w0 (V) 2V (0,4)) Oppddt
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N / ' / 0[280%(9,0) Oy | Vb 2t + 55X / ' / |202 | Vo Pdadt
T / / 0[26 (V) 204000y (V) dclt—-5X° / / w[2802 (Vo) V| Vb [Pt
45323 / / lw|**V (V) [V P dadt + 53\ / / lw|*¢* (V) 2Vap(Av)dadt .

— 35 / | oo o s + 3 / [ 1wieatvlow s
+25°\3 / ' / lw|** 024 |0y |*dxdt — 353 N\* / ' / w|?p*| Vb |20 | *dadt
Ot / |t aiioPdut - 355 / [ 1wl ean v Paod
—53)\3/0 /Q\w\2a§¢|w\2dxdt+3s3A4/O /Q|w|2g03|V¢\2|V¢\2dxdt
+5°\? /0 ' /Q lw | Ay | Vo[> dadt + 253\ /O ' /Q [w|*p* Ay |Vap|Adadt .

- | ' | Sk - 80 (0f - (Vo)

v [ [ lupeorviont) + Vev (Ve

T
+353)\4/0 /Qgp?’\wP(WﬂﬁP— V[ dadt

Adding together all of the calculated terms, we obtain

T
/ / PiwPywdzdt
0 Jo

T T
= 25)\/ /ng\fﬂtw\26t2wd:pdt — ozsA/ /Qg0|8tw|2(8fzb — AvY)dzdt
0 0
T
—1—25)\2/ / (10w 10 |* — 20,wo VWV + |VwVah|?)dadt
0o Jo

T T
—s)\/ /gp\@,,w\2v¢.u(a:)dfdt—l—2$)\/ /@D2¢|Vw|2dycdt (2.11)
0 Q 0 Q
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T T
2092, 314 3112 2 2
Tash /0 /Q V(P — Ag)dudt + 25°A /O /Q Pl (00 — Vo))
T
500 [ [ PluPEatulow) + Vo (Vo)) dsds
0 Q
T
Lty / / Sl (020 — A0l — Vo)) darde
0 Q
+X .

Where X is the sum of the remaining termes. then, utilizing the regularity of v
and that ¢ > 1 means A\ < eV = o.

T
| X4 | < Cs)\s/ /@3|w|2dxdt (2.12)
0o Jo

with C' > 0 denotes a generic constant that is independent of s and \ but at least

dependent on T and (2 .

The Second step : Bounding each terme from below

First, as we can see that

T
2512 / /Q (|0 2|0 — 20000V + [V Ve|?)dedt
0

T
= 23)\2/ / ©(Orwos) — VwVi)2dzdt > 0 (2.13)
0o Jo

Furthermore, taking the terms in s\ which now has to give the dominant terms
in |9;w|?* and |Vw|? and so they must be strictly positive, One may assume that

we need
2021) — (0% — AY) > 0 and 2D*) + a(0%) — AY) > 0 (2.14)

In the definition (2.7) of Pw, this will limit the value of the undefined constant
a > 0. Through explicit computations, where 5 € (0, 1) and that o must satisfy
28 2

B—I—n<a<ﬁ—|—n (2.15)
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Consequently, we are able to write
T T
28)\/ /gplﬁtw\Q@fzde:dt — ozs)\/ /g0|8tw|2((9t2w — Av)dxdt
0o Jo 0o Jo
T T
+25A / / ©D*)|Vw|*dzdt + ash / / ©|Vw|? (0} — Avp)dwdt
0o Jo 0o Jo

T T
> C's)\/ /cp\@tw\dedt—i—CS)\/ /cp\Vw\dedt (2.16)
0o Jo 0o Jo

we can note that

T
253\ / [ Pl ot - 1vo)Pad
T
30 [ [ PP otvlowP + VoV (e ) dod
0 Q
T
rasth [ [ Plulpe - so)(owP - [V6))dod
0 Q

T
= 553 Slw|*G(v)dxdt .
3 [ [ PG daat
such that
GA(¥) = 2M(|0:0 [P = V) *) 2+ (2070 |0 PNV OV ([VY) ) +a(07p—A¢) (|00 [ = V) )
= 32\ — |z — m0]?)? — 16(B%t? — |z — x0|?) — 8a(B + n)(B*? — |z — x0|?)
= 32\(B* — |z —m0|?)? = 8(a(B+n) +28)(B** — |z —10|?) +16(1 — B) |2 — 20 |* .

Since xq ¢ , we have 16(1 — 3)|z — xg|> > ¢+ > 0. Therefore, Let’s consider a
polynome P(X) = 32AX? — 8(a(B8 +n) + 28)X + c*x and A > 0 large enough, the

minimum of P will be strictly positive. Thus,

T T
53)\3/ /903|w|2G,\(¢)d3:dt > 083>\3/ /gp?’\w\dedt (2.17)
0o Jo 0o Jo

Consequently, by entering (2.13), (2.16), and (2.17) into equation (2.11), we
get
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T T
/ /(lePQw)dxdt + 23/\/ / o0, wl*(x — z).v(2)dldt — X,
0o Jo 0o Jr,

T T
> Cs)\/ / o(|0w]* + |Vw) |*)dzdt + 033)\3/ / o’ |w|*dxdt .
0 Jo 0 Ja

also, we have easily

T T T
/ /]Pw—Rw|2d:Udt< 2/ /\Pw!zdxdt—FZ/ /]Rw\Qda:dt
0o Jo 0o Jo 0o Jo

T T
<C’/ /\Pw|2dxdt+032)\2/ /902\w|2da:dt.
0o Jo 0o Ja

using (2.10) and (2.12) we obtain

T T
8)\/ /gp(\&gw|2+\Vw)|2)d:pdt+83)\3/ /903|w|2dxdt
0 Jo 0o Jo

T
+/ /(]P1w|2+\P2w|2)d:cdt
0o Jo
T T
<C/ /|Pw\2d$dt+C’s}\/ /golayw\Q(x—xo).V(az)dth
0 JQ 0 JIy

T T
+C'3)\3/ /903|w|2d:cdt+032/\2/ /902\w\2da:dt.
0o Jo 0o Jo

We now take s, large enough such that the terms (taken from X; and |Rw|?) in
the final line are absorbed as soon as s > sy by the dominant term in s> \3|w|??>.
Finally, we get for some positive constant C' = C(sg, Ao, m, €2, 3, z) by using the

condition (2.8) on I'y as well.

T T
S)\/ /gp(\@tw|2+!Vw)|2)d:1:dt+83)\3/ /¢3|w|2dazdt
0 Jo 0o Jo

T T
-|-/ /|P1w|2da:dt+/ /\P2w\2d$dt (2.18)
0 JO 0 JOQ

T T
< C/ /]Pw|2dxdt+08)\/ / |0, w|*dxdt
0o Jo 0 Jr,
Vs > So,V/\ > \.
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The Third step : Ruturn to the variable z

Setting w = ze*¢ allows for all z € Q and ¢t € (0, 7).

Orw = (0pz)e*? + s(Opp)ze®™
|0w|* = |(8,2)e*¢ + s(0yp)ze*¢|? .
10w|* > |0,22€? + %0,/ |2|%e*7 .
10,2%e*¢ < |0awl|? + %[0, |2|%e*7 .
[0u2]e? < ow]® + 5°[ Dl *w]? .
|0,2]2e% < 2|0aw]* + 25%|0rp*w]? .
In the same manner we have
|V 2|2e*? < 2|Vw|? + 28| V| |w]? .
and on 0f)
18,2265 = [H,w]? .

Considering therefore we can return to the variable z in (2.18) and determine
that there exists some positive constant C' = C'(sg, Ao, m, €2, 8, x) such that for

any Vs > sp and VA > \g. by construction Pw = e*?Lz.

SA/ / 22|02 |* + |V 2)[? )dxdt+s3)\3/ /\z|2 250 dadt
/ / | P (ze*? dajdt+/ / | Py(2e%) |} dadt (2.19)
<C’/ /628¢|Lz|2da7dt—|—08)\/ / ©0e*%|0, z|*dwdt
0o Jo 0 Jr,

For the operator L = 9? — A, it completes the demonstration of a Carleman

estimate.
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The fourth step : Wave operator with potential

As we put at the beginning that L = 97 — A and L, = 9} — A + p with

p € LZ,, () we can conclude L,z = Lz + p, So we can say that
Lz < |Lpz — pz? < |Lpz|* + pl?|2)? .
L2 < Lyl + ol 2 < 20Ly2 ] + 2llpl s [212
The Carleman estimate (2.9) for the operator
|Lz? < 2|Lp2|* + 2||pll 1, o |2[° < 2[Lp2|* + 2m] 2>

In fact, if one chooses s, (or )\y) large enough,one can have the term

T
QCm/ /\z|2e2wdxdt.
0o Jo

on the left side of (2.19) and obtain (2.9), using somewhat different

constants.Finaly, Theorem 2.1 proof is now complete.
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Application to some controllability of
hyperbolic PDES

This last chapter will be devoted to the proof of the null control of some
hyperbolic equations , that is it is associated with the use of the already
presented Carlman estimates Chapter 2 in the proof of coercivity , finally ,we
will prove the equivalence between Controllability problem and Variational

problem.

3.1 Null controllability of linear wave equation with mixed

boundary condition

Let QO C RY be a bounded, open domain with a smooth border I',I'; a subset that
is non-empty of I', denote Q) = Q x (0,7) , X =T x (0,7) , X9 =Ty x (0,7) and
T > 0.

Consider the following wave equation given by :

p

V' —Ay+py=f in Q,

qy(z,0)=0, y/(z,0) =0 in QQ, (3.1)
y(x7t) =0 on Z,

\

29



Chapter 3. Application to some controllability of hyperbolic PDES

e —

e

0 =

—

FIGURE 3.1 — The space-time cylinder

Theorem 3.1 [14] Denote the operator L, =(9?/0t*) — A + p in the distribution
sense, there exists a C* weighted positive function p defined on Q such that 1/p is
bounded in ) and C = C(, T, Ty, p) > 0 such that :

T rq T r1 T 1
/ /—2\z|2d:cdt<0 / /—2\Lpz\2dxdt+/ / —
0o JaP 0o JaP 0 Jry P

And this is the space that we will be working in :

0z

on

2
dth] (3.2)

V= {ue L0,T, H)(Q), Lyu € L(Q), 6—2\20: 0} .

Taking [Theorem 2.1] in the following form, which represents the Carleman

estimates
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S)\/6285"(\8t2|2+\Vz\Q)dxdtJrS?’)\?’/628‘p|z\2dxdt+/ | Py (e 2)|*dadt
Q Q Q
+/ |Py(e%¢2)|?dwdt
Q

< C’/ 62390‘Lp2|2d$dt+08)\/ ©0e**|0, z|?dldt .
Q 2o

we notice that all sides are positives so we can write :
53)\3/ | 2|2 dxdt < C’/ e**?| Lyz|*dxdt + CS/\/ ©0e**?10, 2|2 dTdt .
Q Q 2o

For now, it’s enough to note that 1/p* = ¢*%,we take

8A/1wéwWﬂPﬂﬂt<CH/‘¥wmﬂPﬂﬂt
%o

X

because s > sy > 0 and C > 0 and By taking C' = max(C, C) we obtain

CS)\/ ©0e*#10,z|2dldt < C/ e*%10, 2|2 dldt .
EO 2O

then

T rq T r1 T 1
o Jap o Jap o Jr, p* On

3.1. Null controllability of linear wave equation with mixed boundary condition

31]



Chapter 3. Application to some controllability of hyperbolic PDES

On the other hand let’s consider a null controllability problem for the following

wave equation :

y' — Ay +py=f in Q,
) y(x,0) =0,9(z,0) =g in €,
v on X,
y(x,t) = (3.3)
\ 0 on X/,
or :
Ly=f in Q (3.4)

with y(z,T) = y'(2,T) =0in 2.

Where v € L?(3,) boundary control .

Ty
yf:[:.!]l £

0
I'/Ty

FIGURE 3.2 — Boundary control action
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Let’s start by multiplying the preceding equation in the function ¢ € V to

produce the weak formulation of the subsequent equation (3.4) then integrate

on( :

/OT/Qpr.¢ dxdt:/OT/Qf¢ dedt  inQ (3.5)

All of this demonstrates the controllability property by condition

y(z,T) =9y (z,T) =0 on Q (3.6)

Using integration by parts and the Green Formula in(3.5),we have

/OT/Q(y”—Ayﬂpr).qﬁ dxdt:/OT/Qf.gb dudt
/OT/Qy”¢ dwdt_/OT/QAyﬁb dxdt%—/OT/pr.qﬁ dxdt:/OT/Qf-¢ dudt

/ / Wd dt+[9%¢daz— ¢dx] / /yAgbdxdt+/ / Y5 arat
/ / —dI‘dt+/T/pr.gbda:dt:/OT/Qf.</>dxdt.
/OT/ (gif A¢+p¢) da:dt+/ﬂ%(x,T)gb(a:,T) dg;—/g%(x,ow(g;,()) dz

_/Qy(x )% (2 7) d:r:+/ﬂ (2.0 22,0 da +/ /anqbdl“dtJr/ / 9 irar

3.1. Null controllability of linear wave equation with mixed boundary condition
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:/()T/Qf.gbdxdt.
/OT/QZ/.Lp¢ dxdt — /Qg.¢(a:,0) dx + /OT /Fo g—‘z(ﬁ dl'dt — /OT . g_qy?(b dTdt
[ [ ara= [ [ powa
/()T/Qy.Lp¢ dxdt + /OT /Fovg—f; dl’dt = /()T/Qf.¢ dﬂ?dt-l—/gg.¢(x,0) dr .

We consider that y=1/p*Lr and v=1/p*(0r/0T") with r €V, we obtain

T r1 T 1 Orde T
—L,r.L d:vdt+/ /———dth:/ / . d:(:dt—i—/ p(x,0) dx .
/0 /Qp2 pr-Lo? o Jr, p>Onon 0 Qf¢ Qg¢( )
we take

T T
a(r, @) :/0 /Q%Lpr.l}p¢ da:dt—lr/o /1“ %g—;g—i dl'dt .

() =/0T/Qf.gz5 dxdt+/gg.¢(:c,0) dx

and

Our problem with null controllability turns into

a(r,¢) =1(p) ,VopeV (3.7)

3.1. Null controllability of linear wave equation with mixed boundary condition
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We treat the following subspace V as a Hilbert space for the associated norm and

the scaler product a(r, ¢).

¢ = 1ol = Val(e; 9) .

and V be the completion of V.

Remark 3.1 : We can characterize the structure of V as a subspace of a weighted

sobolev space.
Indeed, let H,(()) be the weighted Hilbert space defined by

H,(Q) = {u € L*(Q) such that / %|u|2rdrdt < 00}.
Q

endowed with the natural norm
1 5 1/2
- a0 = (Sl Pdwdt)

This shows that V' is embedded continuously in H,(Q) as :

3C > 0 [|ul|, @) < Cllul|y for every u € V. (3.8)

By the boundedness of 1/p* on @), we also see that L?(Q) is continuously
embedded in H,(Q).
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By applying Lax-Miligram Theorem (see[Theorem 1.2]) in the form (3.7),we
check

1.Vr,p € V,3M > 0: |a(r,¢)| < M||r||v]|o]]v -

1 Ordo
L6 dedt — T ardt
Lt d +/ /ro p? On On ‘

1 Or Os
22 ar
/ /1“0 2877577d dt‘

( 7¢) <C’auchy shwartz HTHVH¢||V

1 Ordo
= L ————drI’
o)y / / Lyr.L,o dxdt—i—/ /1“0 200 01 dl'dt .

the inner product in space V. Then a(r, s) is continous and M=1 .
2.¥VreV,.3a>0:|a(r,r)| = o|r]?.

Lr d:z:dt+/ /i<&> dldt
FOP
/ /—]Lr| dxdt+/ / (%
Ty P

Using the Carleman estimates [Theorem 3.1] we get :

1 T ri

—|Lr|*dxdt + dldt > — —|rl2dzdt | .
2
ry P C\Jo Jar

Lyr.L,¢ da:dt‘
P

Q0

With

a(r,r)| =

dl'dt .

67"
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and the norm in space V takes the following form :

\|7~\|%/:/T/i|r\2dxdt.
0 902

From this we conclude

1
> —||r||% .
a(r,r) CHTHV

Then a(r, ) coercive .

Consequently, the condition of continuity is realized by using the Lax-Miligram
([Theorem 1.2]) with the use of the Carleman inequality (3.2), and there is
then a unique and weak solution r € V.

Finaly , equation (3.6) is null controllable by the Carleman estimate.

3.2 Equivalente between Controllability problem and Variatio-

nal problem

In this section , We will prove the equivalence between Controllability problem
and Variational problem.

First , let’s start by introducing the Variational problem :

a(r,¢) =1(¢p) VeV (3.9)

where

T T
1
a(r, ¢) = /O /Q %Lpr.Lpgb dzdt + /O /F ?g—;g—jdl“dt (3.10)

and

T
l((b)z/o /Qfgb dxdt—l—/Qg.(/b(x,O) dx (3.11)
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Considering that y = 1/p*Lr and v = 1/p*(0r/0T") with r € V,we have :

/ /yL gbd:vdt+/ /Fo%g—;g—idf‘dt /OT/Qf.gb d:cdt+/Qg.qb(:c,O) dx
/ / (¢" — A¢ + po) y+/ /Fov—dth /OT/Qf.qﬁdxdt%—/Qg.qb(x,O) dx

/OT/ng”.y d:cdt—/OT/QAgb.y dxdt+/OT/Qp¢-y dxdth/OT/Fovg_(dedt
:/OT/Qf.gb dxdt+/Qg.¢(x,0) dx

by integration by parts (see [Theorem 1.3]),and the Green Formula (see
[Theorem 1.4]) . We get :

//gb—ddt [ ?ydx— %qﬁdaz]:—/oT/ng.Ayd:cdt

/ /8—ndedt+/ /¢—dth+/ /pgbyda:dt+/ /POU—dth
:/o /Qf¢ dxdt—l—/gg.¢(x,0) dx

/ / <5t2 Ay+py> drdt + g¢(x T)y(x,T) d _/a (z,0)y(z,0) dx

dy y Tl oo
—/Q¢(x,T)§(x,T) dx+/9¢(x,0)§(x,0) d:z:+/0 /ra_ﬁy dl'dt

//cb— dldt + //Fv—dth
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:/OT/Qf-(bdxdtJr/Qg.gb(x,O) dx
// (@tQ Ay + py — f) dmdt+/a (x, T)y(z,T) dx— /¢$Tg(:rT)dx

68¢(x 0)y(x,0) da:+/ /877 v —y) dldt + / /qb—dth
+/Q<%_ >.¢(x,0)dx:0.

Since ¢ € V dense space,we conclude that :

82y

o
In the same way, we can conclude that both :

—Ay+py—f=0 ae inQ.

dy
= Q.
Fn =g in
dy .
—0, % = Q.
y(z,0) =0, B g in

and

y(x,t) =v onTy.
y(x,t) =0 on T/

Aswell as y(z,T) = y/(x,T) = 0 in Q2.Which brings us to the Controllability
problem (3.3).
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Biography of T. Carleman

FIGURE 3.3 — T. Carleman, 1892-1949

Tage Gillis Torsten carleman was born in 1892 in Sweden and died on January
11, 1949 in Stockholm , he completed his studies at Uppsala university2 ,first
studied in 1923-1924 at Lund University, then in 1924 he was appointed
professor at Stockholm university2, 3.

Among his most important achievements :

Carleman inequality, Carleman matrix, Denjoy Carleman—Ahlfors theorem,

Carleman equation,Carleman condition.
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