

People's Democratic Republic of Algeria

Larbi Tebessi University

Faculty of exact sciences and natural and life sciences

Department: Mathematics and

Computer Science

MASTER’s dissertation

Field: Mathematics and Computer Science

Sector: Computer science

Option: Information systems

LLM Based Approach for Anomaly

Detection in Smart Grids

Author:

GATTAL Rogaia

Supervisors:

Dr.khediri Abderrazak Thesis supervisor

Dr.YAHIAOUI Ayoub Co-supervisor

defended on 10/06/2024 in front of the jury composed of:

Dr. Bourougaa Salima President (MCA)

Dr. Slimi hamda Examiner (MCB)

2023/ 2024

I

Dedication

 بسم الله الرحمن الرحيم

I dedicate this modest work as a sign of respect, recognition, and thanks

TO MY DEAR PARENTS

Who have always been by my side and always supported me throughout these

long years of study. As a sign of recognition, may they find here the expression of my

deep gratitude for all the efforts and resources they have made to see me succeed in

my studies.

TO MY DEAR BROTHERS

That they were always present for me.

II

Acknowledgment

First of all, I would like to thank ALLAH for giving me the courage and patience to

accomplish this work.

I would like to thank all the people who, directly or indirectly, contributed to the

accomplishment of this work.

I would particularly like to thank Dr.Khediri Abderrazak and Dr.Yahiaoui Ayoub for

supervising this dissertation and for the trust they placed in me, their help, their support, their

presence, and their valuable advice.

A big thank you to all my family, especially my parents, who helped me to follow my studies

in the best conditions and who have always supported and encouraged me without limit.

Finally, a big thank you to our teachers for the quality of the teaching that they were kind

enough to provide us with during our studies in order to provide us with efficient training.

Thanks to you all.

III

Abstract

The emergence of smart grids has revolutionized the power sector, fostering interconnected

and intelligent electricity networks. These advancements offer enhanced monitoring and control

capabilities, but also introduce challenges in anomaly detection, a critical aspect for grid stability and

security. Traditional methods, while effective at identifying anomalies, often lack interpretability,

making it difficult to understand the root cause and formulate an effective response. Here, Large

Language Models (LLMs) offer a promising approach. By generating human-friendly descriptions of

anomalies, LLMs can bridge the gap between raw data and actionable insights.

This dissertation investigates the potential of LLMs for anomaly detection in smart grids. We

leverage the CICIDS2017 dataset to explore how LLMs can be harnessed to improve the

interpretability of anomaly detection systems. Specifically, we examine the effectiveness of using

SHAP (SHapley Additive exPlanations) values to guide the LLM towards generating more accurate

descriptions of the detected anomalies. Notably, our research demonstrates that even with minimal

fine-tuning, the Llama3 8B LLM achieves remarkable results when prompted effectively. This

highlights the crucial role of prompt engineering in unlocking the full potential of LLMs for this

domain. By incorporating SHAP values within our prompting strategy, we are able to bridge the gap

between anomaly detection and actionable insights. This empowers decision-making experts with

valuable information to respond to anomalies effectively, ensuring the continued reliability of smart

grid operations.

Keywords: Smart Grids, Smart City, Machine Learning, Large Language Models, Decision

Support Systems, Cyber Security, CICIDS2017, Llama3, SHAP values.

IV

Résumé

L'émergence des réseaux électriques intelligents a révolutionné le secteur de l'énergie, créant

des réseaux électriques interconnectés et intelligents. Ces progrès facilitent la surveillance et le

contrôle, mais posent également des défis en matière de détection des anomalies, essentielle pour la

stabilité et la sécurité du réseau. Si efficaces pour identifier les anomalies, les méthodes

traditionnelles manquent souvent d'interprétabilité, compliquant la compréhension de la cause

première et la formulation d'une réponse efficace.

En générant des descriptions compréhensibles des anomalies, les modèles de langage

volumineux (LLM) offrent une approche prometteuse. Cette étude explore leur potentiel pour la

détection des anomalies dans les réseaux électriques intelligents. Nous utilisons le jeu de données

CICIDS2017 pour analyser comment les LLM peuvent améliorer l'interprétabilité des systèmes de

détection. Plus précisément, on examine l'efficacité des valeurs SHAP pour guider le LLM vers des

descriptions plus précises. Nos recherches démontrent que même avec très peu de fine-tuning, le

Llama3 8B LLM obtient des résultats remarquables avec un prompt efficace. Cela souligne le rôle

crucial de l'ingénierie des invites (prompt engineering) pour libérer le plein potentiel des LLM. En

intégrant SHAP dans notre stratégie d'invite, on comble le fossé entre détection et informations

exploitables. Cela permet aux experts de réagir efficacement aux anomalies, garantissant la fiabilité

du smart grid.

Mots clés: Réseaux électriques intelligents, Ville intelligente, Apprentissage automatique,

Grands modèles de langage, Systèmes d'aide à la décision, Cybersécurité, CICIDS2017, Llama3,

valeurs SHAP.

V

 مختصر ال

ظهور الشبكات الذكية أحدث ثورة في قطاع الطاقة، حيث أدى إلى شبكات كهرباء مترابطة وذكية. تقدم

اكتشاف مجال في تحديات تطرح أيضًا ولكنها محسنة، وتحكم مراقبة قدرات التطورات الشبكة هذه نشاط

شاط ن، وهو جانب مهم لاستقرار الشبكة وأمنها. على الرغم من فعالية الأساليب التقليدية في تحديد به المشبوه

المشبوه الجذري به الشبكة السبب فهم الصعب من يجعل مما التفسير، قابلية إلى تفتقر ما غالباً أنها إلا ،

الكبيرة اللغة نماذج تقدم هنا، فعالة. استجابة أوصاف سهلة (LLMs) وصياغة إنشاء واعدًا. من خلال نهجًا

 .الفهم للتشوهات، يمكن لنماذج اللغة الكبيرة أن تسد الفجوة بين البيانات الأولية والرؤى العملية

يبحث هذا القسم في إمكانات نماذج اللغة الكبيرة للكشف عن نشاط الشبكة المشبوه به. نحن نستفيد من

بيانات أنظمة CICIDS2017مجموعة تفسير قابلية لتحسين الكبيرة اللغة نماذج تسخير كيفية لاستكشاف

عن المشبوهالكشف الشبكة قيم به نشاط استخدام فعالية نفحص التحديد، وجه على .SHAP تفسيرات(

SHapley نشاط الشبكة المشبوه التراكمية الإضافية(لتوجيه نموذج اللغة الكبيرة نحو إنشاء أوصاف أكثر دقة ل

أنه به تظُهر أبحاثنا أن إلى للنموذج المكتشفة. تجدر الإشارة الدقيق الضبط الأدنى من الحد ، يحقق حتى مع

لهندسة Llama3 8B LLMنموذج المحوري الدور يبرز فعالة. وهذا استخدام مطالبات نتائج ملحوظة عند

 SHAPالمطالبات في إطلاق العنان للإمكانات الكاملة لنماذج اللغة الكبيرة في هذا المجال. من خلال دمج قيم

والرؤى القابلة به نشاط الشبكة المشبوهفي استراتيجية المطالبات الخاصة بنا، نتمكن من سد الفجوة بين اكتشاف

مع للتعامل قيمة معلومات الحصول على القرار من ِّن خبراء صنع يمك وهذا المشبوهللتنفيذ. الشبكة به نشاط

 .بشكل فعال، مما يضمن استمرار موثوقية عمليات الشبكة الذكية.

شبكات ذكية, مدينة ذكية, التعلم الآلي, نماذج لغة كبيرة, أنظمة دعم القرار, الأمن الكلمات الرئيسية:

 . SHapley, تفسيرات CICIDS2017 ,Llama3الإلكتروني,

VI

List of Acronyms

LLM Large Language model

ML Machine Learning

CNN Convolutional Neural Network

SHAP SHapley Additive exPlanations

SVM Support Vector Machine

KNN K-Nearest Neighbors

GPU Graphical Processing Unit

RF Random Forest

NLP Natural Language Processing

GPT Generative Pre-trained Transformer

LLaMA Large Language Model Meta AI (stylized as LLaMA)

LSTM Long Short-Term Memory

FFN Feed-Forward Layer

RNN Recurrent neural networks

GAN Generative Adversarial Networks

Cot Chain-of-Thought

DDoS Distributed Denial-of-Service

DoS Denial-of-Service

CSV Comma-Separated Value

JSON JavaScript Object Notation

XML Extensible Markup Language

VII

Table of Contents

Dedication ...I

Acknowledgment .. II

Abstract ... III

Résumé ... IV

مختصر ال ... V

List of Acronyms ... VI

General Introduction .. 1

Structure: .. 2

Chapter 1: Context and Research Question .. 2

Chapter 2: Literature Review .. 2

Chapter 3: Proposed Approach ... 3

Chapter 4: Experiments .. 3

Chapter 01: Context and research question 4

1.1. Introduction .. 5

1.2. The Smart City ... 5

1.2.1. Definition of a Smart City ... 5

1.2.2. The Smart Aspects of a Smart City ... 6

1.2.2.1. Smart People .. 6

1.2.2.2. Smart Living ... 7

1.2.2.3. Smart Environment ... 7

1.2.2.4. Smart Mobility .. 7

1.2.2.5. Smart Economy ... 7

VIII

1.2.2.6. Smart Government .. 7

1.3. Smart grid the Intelligent electricity network .. 8

1.3.1. Definition of smart grids ... 8

1.3.1. Different types of electrical networks ... 9

1.3.1.1. Transport Network.. 9

1.3.1.2. Distribution Network .. 9

1.3.1.3. Local Distribution Network .. 9

1.3.2. Key Features of Smart Grids Relevant to Anomaly Detection ... 10

1.3.2.1. Two-Way Communication Infrastructure (Advanced Metering Infrastructure

- AMI) 10

1.3.2.2. Integration of Renewable Energy Sources and Distributed Generation 10

1.3.2.3. Sensors and Real-Time Monitoring Capabilities ... 10

1.3.2.4. Cyber-Security Considerations .. 10

1.3.2.5. Electricity Theft and Fraud Detection .. 10

1.3.2.6. Fault Detection and Grid Resilience .. 11

1.3.3. Smart Grid Development Challenges ... 11

1.3.3.1. Industrial Challenges ... 11

1.3.3.2. Social Challenges ... 11

1.3.3.3. Economic Challenges ... 11

1.3.3.4. Environmental Challenges ... 11

1.3.1. Types of smart grids: .. 12

1.3.1.1. Smart Grid at the Transport Network Level ... 12

1.3.1.2. Smart Grid at the Distribution Network Level ... 12

1.3.1.3. Smart Grid at the Local Level .. 12

1.4. Iot and how it ties in to Smart Grids .. 12

1.5. The Cyber-security principles on smart grids 13

1.5.1. Attacks on Data Integrity .. 14

1.5.2. Unusual Measurements and Consumptions .. 14

1.5.3. Intrusions ... 14

IX

1.5.4. Network Infrastructure Issues ... 14

1.5.5. Electrical Data Anomalies .. 15

1.5.6. Identification of Cyber-attacks ... 15

1.5.7. Use of Detection Devices .. 15

1.6. Research question: ... 16

Chapter 02: Literature Review .. 17

2.1. Introduction .. 18

2.1. Machine Learning .. 19

2.1.1. Support Vector Machine (SVM) ... 19

2.1.2. K-Nearest Neighbors (KNN) .. 20

2.1.3. AdaBoost ... 21

2.1.4. Random Forest .. 22

2.1.5. Naive Bayes .. 22

2.1.6. K-Means .. 23

2.1.7. Decision Tree .. 23

2.1.8. Linear Regression ... 24

2.1. Deep Learning .. 24

2.2. Definition of large language models .. 25

2.3. What is a transformer model? .. 26

2.4. Main components of large language models 26

2.5. The three main types of large language models: 27

2.6. What is the difference between large language models and generative

AI? 27

2.7. How do large language models work? ... 28

2.8. Use cases for large language models ... 29

2.9. Prompt Engineering ... 31

2.9.1. Conversational Prompts .. 31

X

2.9.1.1. System Prompt .. 31

2.9.1.2. User Prompt ... 31

2.9.1.3. Assistant Prompt ... 32

2.9.2. Types of Prompt Engineering ... 32

2.9.2.1. Zero-Shot Prompting .. 32

2.9.2.2. Few-Shot Prompting ... 32

2.9.2.3. Chain-of-Thought (CoT) Prompting... 32

2.9.2.4. Generated Knowledge Prompting .. 32

2.9.2.5. Self-Consistency Prompting ... 33

2.10. LLM’s affinity to Text-based data ... 33

2.11. Related works ... 35

2.11.1. Anomaly Detection using Random Forest Classifier.. 35

2.11.2. Deep Learning-based Anomaly Detection .. 35

2.11.3. Autoencoder-based Anomaly Detection ... 36

2.11.4. Support Vector Machine (SVM)-based Anomaly Detection .. 36

2.11.5. Convolutional Neural Network (CNN)-based Anomaly Detection 36

2.11.6. Adaboost-based Anomaly Detection .. 36

2.11.7. Large Language Model (LLM)-based Anomaly Detection .. 37

2.11.8. Generative Adversarial Network (GAN)-based Anomaly Detection 37

2.11.9. Intrusion Detection Systems (IDS) using SHAP and LLMs .. 37

2.12. State of the art Summary.. 38

2.13. Synthesis .. 39

2.14. Discussion .. 40

2.15. Conclusion ... 41

Chapter 03: Proposed Approach ... 42

3.1. Introduction .. 43

3.2. Proposed System Architecture ... 44

3.2.1. System Architecture Description .. 45

XI

3.2.2. System Architecture Layers: ... 45

3.2.2.1. Data Collection Layer .. 46

3.2.2.2. Data Pre-processing Layer .. 46

3.2.2.3. Anomaly Detection Layer ... 46

3.2.2.4. Decision Layer.. 46

3.2.3. Involved Actors: .. 46

3.2.3.1. System Admins: ... 46

3.2.3.2. Data Scientists: ... 46

3.2.3.3. Cybersecurity Experts: ... 47

3.2.3.4. Machine Learning Engineers: .. 47

3.3. Methodology overview .. 47

3.3.1. Anomaly Detection ... 47

3.3.2. Feature Selection ... 48

3.3.3. Anomaly Description with LLM .. 49

3.4. Data set used .. 50

3.4.1. Description of the Attack Scenarios ... 51

3.4.1.1. Web Attack: .. 51

3.4.1.2. Botnet Attack: ... 51

3.4.1.3. Heartbleed Attack:.. 51

3.4.1.4. DDoS Attack: .. 51

3.4.1.5. DoS Attack: ... 51

3.4.1.6. Infiltration Attack: .. 52

3.5. Data Pre-processing ... 52

3.5.1. Handling Missing Values: KNN Imputation with Outlier Handling 52

3.5.1.1. KNN Imputation for Flow Bytes/s .. 52

3.5.1.2. Outlier Handling .. 52

3.5.2. Feature Engineering for Network Traffic Data Analysis .. 53

3.6. Data Splitting for Generalizability:.. 54

3.7. Anomaly detection ... 54

XII

3.8. Evaluation Metrics for Comprehensive Assessment: 55

3.8.1. Accuracy: .. 55

3.8.2. Confusion Matrix: ... 56

3.8.3. Classification Report: .. 56

3.9. Large Language Model Selection .. 56

3.10. Llama3, Mistral, and Gemma comparison .. 58

3.11. Conclusion ... 59

Chapter 04: Experiments ... 60

4.1. Execution environment .. 61

4.1.1. Hardware ... 61

4.1.2. Programming language used ... 61

4.1.3. Python Libraries .. 62

4.1.3.1. Scikit-learn (sklearn) .. 62

4.1.3.2. Pandas 2.0.3 ... 62

4.1.3.3. NumPy 1.25.2 ... 62

4.1.3.4. XGBoost 2.0.3 ... 62

4.1.3.5. Seaborn 0.13.1 .. 62

4.1.3.6. Matplotlib.pyplot .. 62

4.1.3.7. SHAP (SHapley Additive exPlanations) 0.44.1 .. 62

4.1.4. LM Studio (0.2.22) ... 63

4.2. Training Methodology ... 64

4.2.1. Data Preprocessing and Feature Engineering ... 64

4.2.2. Data Cleaning .. 64

4.2.3. Label Encoding ... 64

4.2.4. Feature Scaling .. 65

4.2.5. Classification Algorithms ... 65

4.2.6. Validation Method .. 65

4.2.1. Feature Selection ... 66

XIII

4.3. Anomaly detection results ... 66

4.3.1. Generating shap values ... 67

4.4. LLM parameters ... 67

4.4.1.1. Llama3 8B q4_k_m ... 67

4.4.1.2. Temperature 0.7 ... 68

4.4.1.3. Context length ... 68

4.5. System Prompt ... 68

4.6. User Prompt ... 70

4.7. Experimental results without SHAP values ... 72

4.7.1. Output of System prompt 01 ... 72

4.7.2. Output of System prompt 02 ... 74

4.7.3. Output of System prompt 03 ... 76

4.8. Using SHAP ... 78

4.8.1. SHAP powered system prompt ... 78

4.8.2. SHAP powered user prompts .. 79

4.8.2.1. User prompt01 .. 79

4.8.2.2. User prompt02 .. 80

4.8.2.3. User prompt03 .. 80

4.9. Experimental results with SHAP values .. 81

4.9.1. Output of User prompt01 .. 81

4.9.2. Output of User prompt02 .. 82

4.9.3. Output of User prompt03 .. 83

4.10. Results discussion .. 84

4.10.1. Comparison between results without SHAP and with SHAP ... 84

4.10.2. Importance of Prompt Engineering ... 84

4.11. Conclusion ... 86

General Conclusion ... 87

Limitations ... 88

XIV

Data Availability and Specificity.. 88

Generalizability and False Positives ... 88

Explainability vs. Actionability .. 88

Computational Cost and Scalability ... 88

Perspective and Future work ... 89

Exploring More Powerful LLMs .. 89

Fine-tuning on Anomaly Descriptions.. 89

Enhancing Prompt Engineering .. 89

Visualizations and Context ... 89

Bibliography .. 90

Table of figures .. 96

 General Introduction

1

General Introduction

The power industry has undergone a significant transformation with the emergence of smart

grids. These intelligent and interconnected electricity networks boast real-time monitoring, dynamic

control, and improved efficiency thanks to advanced sensors and communication technologies.

However, this increased complexity also introduces challenges, particularly in anomaly detection.

Anomalies in smart grids represent deviations from normal operating patterns, often signifying

underlying faults, cyberattacks, or other critical events. Timely and accurate detection of these

anomalies is essential for ensuring grid stability, preventing power outages, and safeguarding against

security threats.

Traditional anomaly detection methods, primarily based on statistical and machine learning

techniques, have shown promise in identifying anomalies. However, a crucial limitation remains: the

lack of interpretability. These methods often struggle to provide comprehensive and human-

understandable explanations, hindering their usefulness for decision-making support.

Large Language Models (LLMs) have emerged as powerful tools with the potential to bridge

this gap. Their ability to process and generate human-quality text makes them well-suited for

providing meaningful descriptions of anomalies, enhancing the interpretability of anomaly detection

systems. This thesis explores the potential of LLMs to improve anomaly detection in smart grids by

generating informative and human-friendly explanations for detected anomalies.

This research focuses on leveraging a well-established dataset, CICIDS2017, which provides

a comprehensive collection of labeled anomaly scenarios in smart grids. By utilizing this dataset, we

can explore how LLMs can be harnessed to improve the interpretability of anomaly detection

systems specifically within the context of smart grid data.

One key approach we explore is the integration of SHAP (SHapley Additive exPlanations)

values. SHAP values offer a means to explain the internal workings of machine learning models,

highlighting the features that contribute most significantly to a specific prediction. In our case, we

can leverage SHAP values to guide the LLM towards generating more accurate descriptions of the

detected anomalies. Notably, by focusing on effective prompt engineering – the art of crafting

specific instructions for the LLM – we aim to unlock its full potential for this domain.

 General Introduction

2

Our research demonstrates that even without extensive fine-tuning, a powerful LLM like

Llama3 8B achieves remarkable results when prompted effectively. This highlights the crucial role

of crafting compelling prompts that leverage domain knowledge and insights like SHAP values. By

incorporating SHAP values within our prompting strategy, we aim to bridge the gap between raw

anomaly data and actionable insights. This empowers decision-making experts with valuable

information to respond to anomalies effectively, ensuring the continued reliability of smart grid

operations.

Structure:

Chapter 1: Context and Research Question

This chapter lays the foundation for understanding the context of the research. It delves into

the concept of smart grids, exploring their key features, functionalities, and the role they play in the

power industry. The chapter also highlights the challenges associated with anomaly detection in

these complex systems, emphasizing its importance for grid stability and security. Additionally, this

chapter will introduce the research question that will guide the investigation into the potential of

LLMs for anomaly detection in smart grids.

Chapter 2: Literature Review

This merged chapter provides a comprehensive overview of the relevant background for your

research. It will first explore existing research on anomaly detection for smart grids, examining

traditional machine learning techniques and discussing their limitations, particularly the lack of

interpretability. This section will then shift focus to Large Language Models (LLMs), introducing

their concept, capabilities in natural language processing and understanding, and their potential

applications. The chapter will then explore how LLMs can be leveraged for anomaly detection in

smart grids, highlighting existing research on integrating LLMs with these systems and pinpointing

potential areas for further exploration.

 General Introduction

3

Chapter 3: Proposed Approach

Building upon the groundwork established in the previous chapters, this chapter focuses on

the specific contributions of your thesis. It details the research methodology employed, including the

chosen dataset (CICIDS2017) and the LLM utilized (Llama3 8B). This chapter will delve into the

proposed approach, outlining the specific techniques and methods used to leverage LLMs for

anomaly detection in smart grids. The chapter will emphasize the importance of prompt engineering

in unlocking the full potential of LLMs for this task.

Chapter 4: Experiments

This chapter focuses on the experimental validation of your proposed approach. It details the

experimental setup, including the evaluation metrics used. The chapter will then present the core

findings of your research, demonstrating the effectiveness of the LLM-based approach in generating

accurate and informative descriptions of anomalies detected in smart grids. This includes a detailed

analysis of the experimental results, highlighting the strengths and limitations of the proposed

approach.

Chapter 01: Context and research
question

 Chapter 01: Context and research question

5

1.1. Introduction

The modern power grid is evolving towards interconnected "smart grids" for increased

efficiency and sustainability. These integrate advanced technologies with traditional infrastructure,

enabling real-time monitoring and control. This chapter sets the context by exploring key features of

smart grids and their benefits, including improved grid stability and integration of renewable energy.

However, smart grids also introduce challenges, particularly in anomaly detection. Anomalies,

deviations from normal operating patterns, can indicate equipment malfunctions or cyberattacks.

Effective anomaly detection is crucial for maintaining grid stability and security. Traditional

methods often lack interpretability, hindering effective responses. This research explores the

potential of Large Language Models (LLMs) for anomaly detection in smart grids.

1.2. The Smart City

With increasingly large populations in urban areas, cities are now forced to adapt to this

growth in a thoughtful manner by adopting policies planned for the long term. It is from this

obligation that the status of “smart city” was born. So, what is a smart city?

1.2.1. Definition of a Smart City

A smart city is an urban area that uses information and communication technologies (ICT)

and the Internet of Things (IoT) to improve the efficiency and sustainability of city operations and

enhance the quality of life for its citizens.

The key characteristics of a smart city encompass the utilization of digital technologies and

data collection to optimize various city services and infrastructure, spanning transportation, energy

management, waste disposal, and public safety. Additionally, smart cities strive to enhance

environmental sustainability by implementing initiatives such as smart lighting, advanced waste

management systems, and the integration of renewable energy sources. Moreover, these cities aim to

elevate citizen engagement and overall quality of life through amenities like interactive kiosks,

widespread access to free public Wi-Fi, and real-time data sharing platforms. Furthermore, smart

cities seek to foster economic growth by leveraging advanced infrastructure and services to attract

businesses and talent, thereby creating a conducive environment for innovation and prosperity.

 Chapter 01: Context and research question

6

While there is no universally accepted definition, the overarching goal of a smart city is to

leverage technology and data to make urban areas more efficient, livable, and sustainable. The

specific smart city initiatives and technologies implemented can vary widely between cities based on

their unique needs and priorities. [1]

Figure 1: visual representation of a smart city and components [2]

1.2.2. The Smart Aspects of a Smart City

The concept of a “smart city” is a multi-faceted one, encompassing various aspects that

leverage technology and data-driven solutions to enhance the quality of life for its residents and

promote sustainable urban development. [1]

1.2.2.1. Smart People

Refers to citizens who are actively engaged in the city's digital ecosystem, utilizing

technology to access services, participate in decision-making processes, and contribute to the overall

development of the city. Smart people are empowered individuals who leverage digital tools to

enhance their quality of life and interact with the urban environment in innovative ways.

 Chapter 01: Context and research question

7

1.2.2.2. Smart Living

Encompasses the use of technology and data-driven solutions to create a high-quality,

convenient, and sustainable lifestyle for residents. Smart living involves smart homes, efficient

public services, access to real-time information, and personalized experiences that enhance comfort

and well-being.

1.2.2.3. Smart Environment

Focuses on leveraging technology to monitor, protect, and enhance the natural surroundings

within a city. This includes initiatives to improve air quality, reduce pollution, conserve resources,

promote green spaces, and create a sustainable urban ecosystem that prioritizes environmental health

and well-being.

1.2.2.4. Smart Mobility

Involves the integration of intelligent transportation systems, innovative mobility solutions,

and data-driven approaches to optimize transportation networks, reduce congestion, enhance

accessibility, and promote sustainable modes of travel within the city. Smart mobility aims to

improve the efficiency and safety of urban transportation while reducing environmental impact.

1.2.2.5. Smart Economy

Refers to the use of technology and innovation to drive economic growth, foster

entrepreneurship, attract investment, and create job opportunities within the city. A smart economy

focuses on digital transformation, knowledge-based industries, and sustainable business practices to

ensure long-term prosperity and competitiveness.

1.2.2.6. Smart Government

Involves the adoption of digital governance practices, data-driven decision-making, and

citizen-centric services to enhance transparency, efficiency, and accountability in city administration.

Smart government initiatives aim to improve public services, engage citizens, and optimize resource

allocation through the effective use of technology and information systems.

 Chapter 01: Context and research question

8

Figure 2: the smart city and its smart aspects

1.3. Smart grid the Intelligent electricity

network

Current electricity networks are inevitably destined to experience a profound change in the

coming years. Indeed, in a context of development of intermittent and probably diffuse renewable

energies, development of new electrical uses and the need to optimize the efficiency of networks, it

will be necessary continue to ensure the best possible balance between production and consumption.

There solution to these difficulties is the use of new infrastructures called Smart Grid (network smart

electric).

1.3.1. Definition of smart grids

There are currently several definitions of smart grids and also several objectives for the same

definition of smart electricity networks. However, all definitions agree that bidirectional

communication is a key to future smart networks.

 Chapter 01: Context and research question

9

Definition 1: An electricity distribution network that uses computer technologies to optimize

production, distribution, and consumption is referred to as "intelligent." The goal of this type of

network is to optimize every segment of the electricity supply chain, from all producers to all

consumers, in order to maximize energy efficiency and overall energy quality.

Definition 2: An electrical network whose operations have switched from using analog

technology to standard technology is referred to as a "smart grid" by the Carnegie Mellon University

Software Engineering Institute. integrated digital technology that makes detection, prediction,

control, and communication possible.

1.3.1. Different types of electrical networks

The electricity network can be broadly divided into three main components, understanding the

characteristics and functionalities of these electricity network types is fundamental for developing

effective anomaly detection strategies in smart grid systems: [3]

1.3.1.1. Transport Network

The transport network in the context of electricity refers to the high-voltage network

responsible for transmitting electricity over long distances from power plants to substations. This

network operates at high voltages to minimize energy losses during transmission and is crucial for

delivering electricity from large power generation facilities to distribution points.

1.3.1.2. Distribution Network

The distribution network is the intermediary network that receives electricity from the

transmission network at lower voltages and distributes it to end-users, such as residential,

commercial, and industrial consumers. This network includes transformers that step down the

voltage for safe delivery to homes and businesses.

1.3.1.3. Local Distribution Network

The local distribution network, also known as the secondary distribution network, is the final

stage of electricity distribution that delivers power directly to consumers' premises. It consists of

power lines, transformers, and meters that regulate and measure electricity consumption at the

individual level. This network ensures reliable and efficient electricity supply to end-users within a

specific area.

 Chapter 01: Context and research question

10

1.3.2. Key Features of Smart Grids Relevant to Anomaly Detection

Effective anomaly detection in smart grids hinges on exploiting the unique data landscape

they generate:

1.3.2.1. Two-Way Communication Infrastructure (Advanced Metering

Infrastructure - AMI)

Smart grids are characterized by an advanced metering infrastructure that enables two-way

communication between utility providers and consumers. This allows for real-time monitoring and

collection of granular data from smart meters, which can be analyzed for anomaly detection. [4]

1.3.2.2. Integration of Renewable Energy Sources and Distributed Generation

Smart grids incorporate renewable energy sources and distributed generation, such as solar

panels and wind turbines, which introduce new data streams that can be monitored for anomalies.

Detecting anomalies in the generation, distribution, and consumption of renewable energy is crucial

for maintaining grid stability and reliability. [5]

1.3.2.3. Sensors and Real-Time Monitoring Capabilities

Smart grids are equipped with a network of sensors that continuously monitor various

parameters, including voltage, current, power flow, and grid performance. This real-time data can be

analyzed to detect anomalies that may indicate equipment failures, cyber-attacks, or other issues that

could compromise the grid's security and reliability. [5]

1.3.2.4. Cyber-Security Considerations

Smart grids rely on digital infrastructure and communication networks, which introduces

potential vulnerabilities to cyber-attacks. Anomaly detection techniques can be employed to identify

and mitigate cyber-security threats, such as data manipulation, unauthorized access, and malware

intrusion. [4]

1.3.2.5. Electricity Theft and Fraud Detection

Smart grid data can be analyzed to detect anomalies in energy consumption patterns, which

may indicate electricity theft or fraudulent activities. Identifying these anomalies is crucial for

maintaining the grid's financial viability and ensuring fair billing for consumers. [4]

 Chapter 01: Context and research question

11

1.3.2.6. Fault Detection and Grid Resilience

Anomaly detection in smart grid data can help identify equipment malfunctions, grid failures,

and other issues that could compromise the grid's reliability and resilience. Prompt detection of these

anomalies can enable proactive maintenance and rapid response to minimize disruptions. [5]

1.3.3. Smart Grid Development Challenges

The transition towards smart electricity networks presents a multifaceted set of challenges

that must be addressed for successful implementation. These challenges span across industrial,

social, economic, and environmental domains, each requiring careful consideration and strategic

planning. In this section, we will delve into the key development issues associated with the

deployment of smart grid technologies. [6]

1.3.3.1. Industrial Challenges

The development of smart grids relies heavily on the availability and integration of advanced

materials and technological advancements. Ensuring the functionality and compatibility of all

components within the smart grid system is of paramount importance. Continuous developments,

improvements, and compliance with industry standards are necessary to address the industrial

challenges.

1.3.3.2. Social Challenges

The integration of smart grid technologies involves the active participation and engagement

of consumers. The introduction of smart meters empowers consumers to manage their energy

consumption more effectively, fostering a new dynamic between the grid and the end-user.

Addressing the social implications of this shift and ensuring a seamless transition for consumers is a

crucial aspect of smart grid development.

1.3.3.3. Economic Challenges

The modernization of electricity networks requires new forms of cooperation among the

major economic players in the sector. Additionally, the role of the state in the development of smart

grid infrastructure as a public service is a critical economic consideration.

1.3.3.4. Environmental Challenges

Smart grids aim to integrate renewable and decentralized energy sources, which can

contribute to minimizing the environmental impact of electricity generation and distribution.

 Chapter 01: Context and research question

12

Addressing the challenges of integrating these new energy sources and mitigating the effects on

climate change and environmental disturbances is a key priority in smart grid development.

1.3.1. Types of smart grids:

We can distinguish three categories of “smart network” approaches

1.3.1.1. Smart Grid at the Transport Network Level

At the level of transmission system operators (TSOs), the smart grid approach involves

enhancing planning, surveillance, and remote-control capabilities. This entails leveraging technical

advancements to better manage the evolving needs of the transmission network, particularly in light

of the increasing integration of decentralized power generation, which can pose challenges for

network balancing and security.

1.3.1.2. Smart Grid at the Distribution Network Level

Distribution network operators (DNOs) must deploy technologies traditionally used in the

transmission network, such as bidirectional protection and balancing management, to support the

growth of decentralized power production. The decreasing cost of these technologies has facilitated

this development, allowing for the accelerated installation of long-available solutions.

1.3.1.3. Smart Grid at the Local Level

The most significant change in the smart grid paradigm may occur at the local level, where

the convergence of electronics, IT, and telecommunications has opened new horizons for the

management of local consumption and production. This specific area is often referred to as the

"smart home" or, more broadly, the “smart consumer”.

1.4. Iot and how it ties in to Smart Grids

The integration of the Internet of Things (IoT) into smart grid infrastructure has emerged as a

pivotal advancement in enhancing the interconnectedness and efficiency of modern electricity

networks. By enabling seamless communication between various grid components, IoT technologies

facilitate real-time data exchange and decision-making processes, ultimately optimizing energy flow

and consumption.

IoT sensors have been deployed extensively throughout smart grids, collecting vast amounts

of data pertaining to energy usage, grid performance metrics, and environmental conditions. Through

 Chapter 01: Context and research question

13

the application of advanced data analysis techniques, these sensor-generated data streams are

transformed into valuable insights, allowing for the identification of anomalies and the optimization

of energy distribution, thereby enhancing the overall efficiency of the grid infrastructure.

Furthermore, IoT technologies have enabled remote monitoring and control capabilities,

empowering grid operators to promptly manage energy flow, detect faults, and respond to potential

disturbances in a timely manner. This enhanced level of control and responsiveness has been

instrumental in ensuring the stability and reliability of smart grid systems.

By leveraging IoT for real-time monitoring and control, smart grids have demonstrated

increased resilience in the face of potential disruptions. IoT devices, equipped with advanced

anomaly detection algorithms, can swiftly identify and respond to grid irregularities, rerouting

energy flow and optimizing operations to minimize downtime and enhance overall performance.

Moreover, the integration of IoT has facilitated the seamless incorporation of renewable

energy sources into the grid infrastructure. By monitoring generation and consumption patterns in

real-time, IoT technologies enable efficient utilization of renewable resources, contributing to the

development of a more sustainable and eco-friendly energy ecosystem. [7]

1.5. The Cyber-security principles on smart

grids

With the integration of advanced technologies and digital systems in modern smart grids

comes the critical challenge of ensuring the cyber-security of smart grid infrastructures.

Understanding and addressing cyber-security anomalies within smart grids are paramount to

safeguarding against potential threats and vulnerabilities that could compromise the integrity and

functionality of the grid. In this section, we explore a range of cyber-security anomalies that smart

grids may encounter, from attacks on data integrity to network infrastructure issues, highlighting the

importance of proactive measures and robust strategies to mitigate risks and protect the smart grid

ecosystem.

 Chapter 01: Context and research question

14

1.5.1. Attacks on Data Integrity

Attacks on data integrity within smart grids represent deliberate and malicious efforts to

manipulate the information transmitted across the network. These attacks can manifest in various

forms, such as altering readings from smart meters, injecting false data to disrupt grid operations, or

deleting critical information to conceal evidence of a cyber-attack. Ensuring the integrity of data in

smart grids is paramount to maintaining the reliability and security of the entire system. [3]

1.5.2. Unusual Measurements and Consumptions

Anomalies related to unusual measurements and consumptions in smart grids can stem from

diverse sources. Malfunctioning equipment may report incorrect data, external interferences like

power surges or physical obstructions can distort readings, and fraudulent activities such as

electricity theft can lead to irregular consumption patterns. Detecting and addressing these anomalies

is crucial for ensuring the accuracy and efficiency of energy distribution within the smart grid. [3]

1.5.3. Intrusions

Intrusions into the smart grid's network infrastructure involve unauthorized access to critical

components such as control systems, data storage, or communication channels. Intruders gaining

entry into these systems can disrupt operations, compromise sensitive information, or execute

malicious activities that threaten the grid's functionality and security. Preventing and mitigating

intrusions is essential to safeguarding the integrity and confidentiality of smart grid operations. [3]

1.5.4. Network Infrastructure Issues

Issues with the network infrastructure of smart grids can arise from hardware failures,

software bugs, or connectivity problems. Hardware failures like broken sensors or downed power

lines, software glitches in control systems, or network connectivity issues such as lost wireless

connections can impede the smooth operation of the grid. Addressing and resolving these

infrastructure issues promptly is vital to maintaining the reliability and performance of the smart

grid. [3]

 Chapter 01: Context and research question

15

1.5.5. Electrical Data Anomalies

Electrical data anomalies in smart grids can result from various issues within the electrical

components of the system. For instance, a short circuit causing a sudden surge in current or a

malfunctioning transformer leading to a voltage drop can disrupt the normal functioning of the grid.

Monitoring and addressing these electrical anomalies are essential to prevent potential safety hazards

and ensure the efficient delivery of electricity. [3]

1.5.6. Identification of Cyber-attacks

The identification of cyber-attacks in smart grids involves the detection of suspicious

activities aimed at compromising the system's cybersecurity. This process includes recognizing

patterns of malicious behavior, identifying malware or other harmful software, and understanding

common attack strategies to proactively defend against cyber threats. Early detection and response to

cyber-attacks are critical to maintaining the security and resilience of smart grid operations. [3]

1.5.7. Use of Detection Devices

Detection devices play a crucial role in identifying anomalies within smart grids. For

example, smart meters can detect unusually high electricity usage patterns, while network monitors

can identify abnormal data transmission volumes. Leveraging these specialized devices enhances the

ability to detect and respond to anomalies promptly, contributing to the overall security and

efficiency of the smart grid infrastructure. [3]

 Chapter 01: Context and research question

16

1.6. Research question:

In the evolving landscape of smart grid technology, where efficiency and resilience are

paramount, the growing complexity and interconnectivity within these systems have introduced new

challenges in safeguarding against cyber security anomalies. While the field of anomaly detection

has been extensively explored using various machine learning techniques, yielding promising results,

the advent of Large Language Models (LLMs) presents a novel opportunity for further advancement.

This thesis aims to investigate the potential of LLMs in enhancing anomaly detection within

the context of cyber security threats in smart grids. Considering the existing landscape of machine

learning-based anomaly detection techniques, the research will focus on leveraging the unique

capabilities of LLMs to comprehend textual data related to smart grid operations and security. By

exploring this approach, the study seeks to determine how LLMs can aid experts in making informed

decisions for system improvement, ultimately contributing to the betterment of smart grid systems.

In essence, how can Large Language Models (LLMs) be effectively leveraged to enhance

anomaly detection in smart grids by comprehending textual data related to smart grid operations and

security, thereby aiding experts in making informed decisions for system improvement, considering

the existing landscape of anomaly detection techniques in machine learning that have shown

promising results?

Chapter 02: Literature Review

 Chapter 02: Literature Review

18

2.1. Introduction

The rapid evolution of artificial intelligence has brought forth a new generation of powerful

tools: Large Language Models (LLMs). These models, trained on massive datasets of text and code,

have revolutionized tasks like natural language understanding, question answering, and text

generation. As AI continues to shape various industries, exploring the potential of LLMs in the

context of complex systems like smart grids becomes increasingly critical.

Smart grids necessitate real-time decision-making amidst intricate interconnected systems

and continuous data streams. Traditional methods often struggle to adapt to this dynamic

environment. This chapter serves as the foundation for understanding how LLMs can be leveraged to

enhance decision-making in smart grids. We delve into the core principles and capabilities of LLMs,

setting the stage for exploring their application in anomaly detection, predictive maintenance, and

energy optimization. The insights gained here will pave the way for subsequent chapters detailing the

practical implementation of LLMs within smart grid environments.

However, the challenge of anomaly detection in smart grids necessitates a close examination

of existing approaches. This chapter delves into a comprehensive review of current research

endeavors relevant to our central theme: utilizing LLMs for anomaly detection in smart grids. By

scrutinizing existing methodologies, outcomes, and limitations, we aim to build a solid foundation

for the development of our proposed LLM-based method. This review will unearth crucial insights,

identify gaps in existing knowledge, and reveal opportunities for further exploration in the following

chapters.

The chapter commences with a meticulous analysis of "Related Works" – existing research

closely related to our thesis. This analysis will be followed by a comprehensive table encapsulating

key facets of the reviewed works, including their methods, datasets, and results. We will then delve

into a detailed discussion of the collective insights derived, highlighting the strengths, weaknesses,

and untapped potential for further investigation within this field. By meticulously examining the

current state of the art, this chapter not only prepares the ground for the innovative LLM-based

method proposed here, but also situates it within the broader context of smart grid anomaly detection

research. This comprehensive foundation will streamline the execution and assessment of our

proposed approach in the forthcoming chapters.

 Chapter 02: Literature Review

19

2.1. Machine Learning

Machine learning, situated within the broader domain of artificial intelligence, represents a

scientific discipline characterized by the utilization of algorithms to discern patterns within datasets.

These patterns, which may manifest as recurrent structures or relationships, are identified across

various forms of data, encompassing numerical values, textual information, images, statistical

metrics, and more. The versatility of machine learning is underscored by its capacity to leverage any

form of digital data for analysis and learning purposes.

Central to the essence of machine learning is the process of pattern recognition, wherein

algorithms are tasked with uncovering underlying structures within datasets to enhance their

performance in executing specific tasks. Through the iterative analysis of data, these algorithms

acquire the ability to discern intricate patterns, correlations, and trends, thereby refining their

predictive capabilities and decision-making processes. This iterative learning process enables

machines to autonomously adapt and improve their performance over time, culminating in the

development of sophisticated models capable of addressing complex problems across diverse

domains.

By harnessing the power of machine learning, researchers and practitioners can unlock

valuable insights, automate decision-making processes, and drive innovation in fields ranging from

healthcare and finance to marketing and robotics. The transformative potential of machine learning

lies in its ability to extract meaningful information from vast and diverse datasets, enabling

organizations to make data-driven decisions, optimize operations, and unlock new opportunities for

growth and advancement. [8]

Some of the popular machine learning classification algorithms include:

2.1.1. Support Vector Machine (SVM)

SVM is a classification method that plots data points in an n-dimensional space and aims to

find the optimal hyperplane that best separates the data into different classes. It works by identifying

the hyperplane that maximizes the margin between classes, allowing for effective classification of

new data points based on their position relative to this hyperplane. [9]

 Chapter 02: Literature Review

20

Figure 3: SVM visual example diagram [10]

2.1.2. K-Nearest Neighbors (KNN)

KNN is a simple instance-based algorithm that makes predictions based on nearby data

points, where the class of a new data point is determined by the majority vote of its k nearest

neighbors. KNN operates by storing all available cases and classifying new cases based on the

majority class of their nearest neighbors, measured using distance functions like Euclidean or

Manhattan distance. [9]

Figure 4: KNN visual example diagram [11]

 Chapter 02: Literature Review

21

2.1.3. AdaBoost

AdaBoost is a boosting ensemble model that works well with decision trees. It focuses on

learning from previous mistakes by increasing the weight of misclassified data points. This algorithm

adapts by iteratively training decision trees, calculating weighted error rates, updating weights of

misclassified points, and combining the predictions of multiple trees to make the final prediction. [9]

Figure 5: AdaBoost visual representation diagram [12]

 Chapter 02: Literature Review

22

2.1.4. Random Forest

Random Forest is an ensemble model that uses bagging as the ensemble method and decision

trees as individual models. It leverages the concept of randomness to build a collection of decision

trees. Random Forest operates by training multiple decision trees on random subsets of the training

set, with each tree providing a classification vote that is aggregated to make the final prediction. [9]

Figure 6: Random Forest (RF) visual representation diagram [13]

2.1.5. Naive Bayes

Naive Bayes is a probabilistic classifier based on Bayes' theorem, assuming independence

between features. It calculates the probability of an event occurring given the presence of certain

features. Naive Bayes operates by computing the likelihood of each class based on the feature values

and selecting the class with the highest probability as the predicted outcome for a new data point. [9]

 Chapter 02: Literature Review

23

2.1.6. K-Means

K-Means is an unsupervised clustering algorithm used to partition data into k clusters based

on similarity. It aims to minimize the variance within clusters and maximize the variance between

clusters. K-Means operates by iteratively assigning data points to the nearest cluster centroid and

updating the centroids based on the mean of the data points in each cluster until convergence is

reached. [9]

Figure 7: K-Means visual diagram example [14]

2.1.7. Decision Tree

Decision Tree is a supervised

learning algorithm used for classification

and regression tasks. It creates a tree-like

structure of decisions based on feature

values to predict the target variable.

Decision Tree operates by recursively

splitting the data based on feature attributes

to maximize information gain or minimize

impurity, resulting in a tree structure where

each leaf node represents a class or

regression value. [9]

Figure 8: Binary Decision Tree visual diagram

example [39]

 Chapter 02: Literature Review

24

2.1.8. Linear Regression

Linear Regression is a simple and widely used regression algorithm that models the

relationship between independent variables and a continuous dependent variable using a linear

equation. Linear Regression operates by fitting a line that best represents the relationship between

the independent and dependent variables, aiming to minimize the sum of squared differences

between the observed and predicted values. It predicts continuous outcomes based on the input

features. [9]

2.1. Deep Learning

Deep learning is a subset of machine learning and artificial intelligence that utilizes multi-

layered artificial neural networks to perform complex tasks with a high degree of accuracy. These

deep neural networks have shown significant advancements in various domains, outperforming

traditional machine learning methods, especially when handling unstructured and large datasets.

Deep learning has a profound impact across diverse fields such as speech recognition, healthcare,

autonomous vehicles, cybersecurity, predictive analytics, and more.

The core concept of deep learning revolves around the use of artificial neural networks

inspired by the biological structure of the human brain. These networks analyze incoming data,

identify patterns, and classify information to produce desired outputs. Unlike the human brain,

artificial neural networks operate through discrete layers, connections, and data propagation

directions.

One of the distinguishing features of deep learning is its ability to automatically extract

features for classification, eliminating the need for manual feature engineering as required in

traditional machine learning approaches. This feature extraction process is data-driven and relies on

large datasets for training to achieve high accuracy in output predictions.

Due to the complexity of its algorithms, deep learning necessitates powerful computational

resources, often utilizing high-performance CPUs or GPUs, especially in cloud-based environments.

Various types of artificial neural networks are employed in deep learning applications, such as

Convolutional Neural Networks (CNNs) for image classification and object recognition, and

Generative Adversarial Networks (GANs) for creating realistic yet synthetic data. [15]

 Chapter 02: Literature Review

25

Figure 9: Visual illustration of the distinction between deep learning and traditional machine

learning in terms of feature extraction and learning

2.2. Definition of large language models

A large language model (LLM) is a deep learning algorithm that can perform a range of

natural language processing (NLP) tasks. Large language models use transformer models and are

trained on large datasets. They can thus recognize, translate, predict or generate texts or other

content.

Large language models are also referred to as neural networks (NN), which are computer

systems inspired, by the human brain. These neural networks are based on a network of nodes,

arranged in layers, like neurons.

In addition to teaching human languages to artificial intelligence (AI) applications, large

language models can also be trained to perform different tasks, such as understanding protein

structures, writing software code, and many more. Others just like the human brain, large language

models must be trained beforehand, then refined, so that they can classify or generate text, answer

questions, or even summarize a document. Their abilities to solve the problems submitted to them

can be used in different fields, such as health, finance and entertainment. Large language models can

support different applications of NLP, including translation, Chabot’s, AI assistants, and more.

Large language models also have a large number of parameters, which are similar to the

memories that memory collects when it is learning. Think of these parameters as the model's

knowledge bank.

In 2024, some popular examples of Large Language Models include:

 Chapter 02: Literature Review

26

• GPT-3 and GPT-4 (OpenAI): OpenAI's Generative Pre-trained Transformer

(GPT) series, particularly GPT-3 and GPT-4, are renowned for their language generation

capabilities and have been widely used in applications like ChatGPT and Microsoft

Copilot.

• LLaMA (Meta): Meta's LLaMA family of models is another notable example

of LLMs that excel in language understanding and generation tasks.

• PaLM2 (Google): Google's PaLM2 is a powerful Large Language Model

known for its ability to comprehend and generate human-like text, contributing to various

natural language processing applications.

These LLMs are built on transformer-based architectures, utilizing a vast number of

parameters and advanced deep learning techniques to process and generate text in a human-like

fashion. They have revolutionized the field of natural language processing and are widely recognized

for their ability to understand context, generate coherent responses, and adapt to various language-

related tasks with remarkable accuracy and efficiency.

2.3. What is a transformer model?

A transformer model is the most common architecture of a large language model. This

consists of an encoder and a decoder. A transformer model processes data by converting inputs into

tokens and then performing simultaneous mathematical equations to discover the relationships that

exist between the tokens. The computer can thus see the patterns that a human would determine if the

same query were submitted to it.

Transformer models rely on self-attention mechanisms, which allow them to learn faster than

traditional models, such as long short-term memory (LSTM) models. A self-attentive transformer

model can look at different parts of a sequence, or the entire context of a sentence, to generate

predictions.

2.4. Main components of large language models

Large language models consist of multiple layers of neural networks. Recurrent layers,

feedforward layers, embedding layers, and attention layers work together to process input text and

generate output content.

 Chapter 02: Literature Review

27

The embedding layer creates embeddings from the input text. This part of the large language

model captures the semantic and syntactic meaning of the input, so that the model can understand the

context.

The feed-forward layer (FFN) of a large language model consists of several fully connected

layers that transform input embeddings. By doing this, these layers allow the model to glean general

concepts, that is, to understand the user's intent with the input text.

The recurrent layer interprets the words of the input text in order. It captures the relationship

between words in a sentence.

The attention mechanism allows a large language model to focus on single parts of the input

text appropriate for the task at hand. This layer allows the model to generate the most accurate

outputs.

2.5. The three main types of large language

models:

• Generic or raw language models predict the next word based on the language used in

the training data. These language models perform information retrieval tasks.

• Instruction-matched language models are trained to predict responses based on the

instructions provided in the input. They can therefore carry out sentiment analysis or generate text or

code.

• Dialogue-friendly language models are trained to dialogue and predict the next

response. Think about chatbots or conversational AI.

2.6. What is the difference between large

language models and generative AI?

In academic writing, the distinction between large language models (LLMs) and generative

AI lies in their fundamental functions and applications within the realm of artificial intelligence.

Large language models, such as OpenAI's GPT-4 and Google's PaLM, are specialized AI systems

 Chapter 02: Literature Review

28

designed to work specifically with language. These models utilize natural language processing

(NLP) techniques to comprehend and generate human-like text. The term "large" in LLMs signifies

the trend towards training models with an increasing number of parameters, leading to enhanced

performance through the processing of vast amounts of data.

On the other hand, generative AI serves as a broader category encompassing various AI tools

focused on content creation. Generative AI models, like ChatGPT and DALL-E, are built to generate

original content across different domains, including images, music, and text. These models leverage

complex machine learning algorithms, such as recurrent neural networks (RNNs) and generative

adversarial networks (GANs), to understand patterns and produce output. While LLMs are

specifically tailored for language-related tasks, generative AI models have a wider scope of

applications, extending beyond text generation to include image and audio creation.

The interplay between LLMs and generative AI is evident in their collaborative roles, where

LLMs provide the foundational text-generating capabilities that power generative AI tools like

ChatGPT. As LLMs evolve to accept various inputs beyond text, such as audio and imagery, they

contribute to the development of multimodal content generation. While generative AI models have

the potential to revolutionize industries through applications like 3D modeling and voice assistants,

LLMs primarily focus on text-based content creation, with the capacity to enhance voice assistants

and other text-centric applications.

2.7. How do large language models work?

A large language model is based on a transformer model. It works as follows: it receives an

input, encodes it, then decodes it to produce an output prediction. But before a large language model

can receive text input and generate an output prediction, it must be trained so that it can perform

general functions, and it must be fine-tuned so that it can perform specific tasks.

Training: Large language models are pre-trained using large text datasets from sites like

Wikipedia, GitHub, etc. These datasets include billions of words, the quality of which will impact

the performance of large language models. At this point, large language models begin unsupervised

learning, meaning they process the provided datasets without special instructions. During this

process, the LLM AI algorithm can learn the meaning of words and understand the relationships

between them. He also learns to make the distinction at the level of meaning depending on the

 Chapter 02: Literature Review

29

context. For example, it will determine whether "left" means the opposite of "right" or being

"clumsy."

Tuning: For a large language model to be able to perform a specific task, such as translation,

it must be tuned for that activity. The adjustment optimizes performance of specific tasks.

Prompt tuning: This is a function similar to prompt tuning, where a model is trained to

perform a specific task via a few-prompting prompt. Shot or zero-shot prompting. A prompt is an

instruction provided to an LLM. Few-shot prompting teaches the model to predict outputs by giving

it a few examples. For example, in this sentiment analysis, a few-shot prompt would look like this:

Customer review: This plant is so beautiful!

Customer sentiment: positive

Customer review: This plant is so hideous!

Customer sentiment: negative

Based on the semantic meaning of "hideous" and the example provided in opposition, the

language model will understand that the customer's sentiment in the second example is "negative."

Conversely, zero-shot prompting does not provide any examples to the language model to

teach it how to respond to input. Instead, he frames the question by defining the sentiment that

applies to the sentence. It clearly states the task the language model should perform, but does not

provide problem-solving examples.

2.8. Use cases for large language models

Large language models can serve different purposes:

• Information retrieval: consider Bing or Google. When you use their search function,

you rely on a large language model to produce information in response to a query. This is capable of

retrieving information, summarizing it and communicating the response conversationally.

• Sentiment analysis: As applications of natural language processing, large language

models enable businesses to analyze the sentiment of text data.

 Chapter 02: Literature Review

30

• Text generation: Large language models underpin generative AI, like ChatGPT, and

can generate text based on inputs. They can produce a sample text when prompted. For example:

“Write me a poem about palm trees in the style of Emily Dickinson.”

• Code generation: Like text generation, code generation is an application of generative

AI. LLMs understand diagrams, which allows them to generate code.

• Chatbots and conversational AI: thanks to large language models, chatbots or

conversational AI of a customer service are able to interact with customers, interpret the meaning of

their questions or their answers, and often their provide answers in turn.

In addition to these use cases, large language models can complete sentences; answer

questions, and summarize text.

With such a wide range of applications, major language models can be found in a multitude

of domains:

• Technology: Large language models have many uses, such as enabling search engines

to answer queries, helping developers write code, and much more.

• Health and science: Large language models are capable of understanding proteins,

molecules, DNA and RNA. As a result, they can help in the development of vaccines, in the

identification of treatments for diseases and in the improvement of preventive medicine. LLMs are

also used as medical chatbots to carry out patient admissions or basic diagnostics.

• Customer service: LLMs are used across industries in customer service, in the form of

chatbots or conversational AI for example.

• Marketing: Marketing teams can use LLMs to run sentiment analysis to quickly

generate campaign ideas or copy, like synopses, and more.

• Legal: From searching large text data sets to generating legalese, large language

models can help lawyers, paralegals, and legal staff.

• Banking LLMs can help banking institutions detect fraud.

 Chapter 02: Literature Review

31

2.9. Prompt Engineering

Prompt engineering is a specialized discipline within the field of artificial intelligence that

focuses on refining and optimizing prompts to effectively interact with language models (LMs) and

generative AI systems. The practice involves designing prompts that guide AI models to produce

specific responses or outputs. A well-crafted prompt serves as the interface between human intent

and machine-generated content, influencing the quality and relevance of the AI-generated output.

The process of prompt engineering entails creating clear and unambiguous prompts that align

with the desired outcome, avoiding jargon and leading questions that may bias the model's response.

It involves an iterative approach where initial prompts are tested, evaluated based on the generated

output, refined as needed, and repeated until the desired quality of the response is achieved. This

iterative refinement process ensures that the prompts effectively guide the AI model to produce

accurate and contextually relevant outputs.

Prompt engineering is essential for enhancing the capabilities of large language models

(LLMs) and other AI systems across various tasks such as question answering, text generation, and

reasoning. By refining prompts, researchers and developers can improve the performance and

accuracy of AI models, enabling them to better understand user intent and generate more tailored

responses. [16]

2.9.1. Conversational Prompts

2.9.1.1. System Prompt

A system prompt is an instruction or query provided to the AI model that guides its behavior

or response. It is typically predefined by the system or application and serves as the initial input to

prompt the AI model to generate a specific output or perform a particular task. System prompts are

designed to elicit desired responses from the AI model based on the system's requirements or

objectives. [17]

2.9.1.2. User Prompt

A user prompt is an input provided by a user to interact with the AI model. It can be in the

form of a question, command, or statement that conveys the user's intent or request to the AI system.

User prompts play a crucial role in guiding the AI model's responses and influencing the quality and

relevance of the generated output based on the user's input. [17]

 Chapter 02: Literature Review

32

2.9.1.3. Assistant Prompt

An assistant prompt is a specific type of prompt used in conversational AI systems or virtual

assistants. It involves providing instructions or queries to an AI assistant to perform tasks, provide

information, or engage in a dialogue with the user. Assistant prompts are tailored to the context of

the interaction and are designed to facilitate effective communication between the user and the AI

assistant, ensuring accurate and helpful responses. [17]

2.9.2. Types of Prompt Engineering

2.9.2.1. Zero-Shot Prompting

This technique involves providing the LLM with a prompt that is entirely novel and not

included in its training data. The model leverages its internal knowledge and comprehension to

generate the desired output based solely on the prompt's instructions. While zero-shot prompting can

be highly effective in managing LLM outputs, it presents challenges in guaranteeing consistent and

accurate results across all instances. [16]

2.9.2.2. Few-Shot Prompting

Similar to zero-shot prompting, few-shot prompting utilizes prompts. However, it furnishes

the LLM with a limited number of illustrative examples showcasing the desired output format or

content. This approach enhances the LLM's ability to produce more precise and consistent outputs

compared to zero-shot prompting, effectively guiding the model towards the intended outcome. [16]

2.9.2.3. Chain-of-Thought (CoT) Prompting

This technique involves deconstructing the desired outcome into a series of sequential steps.

The LLM is then instructed to generate the text corresponding to each step in the sequence. CoT

prompting can be a powerful tool for managing LLM outputs, particularly for tasks requiring a

logical flow of information. However, its implementation can be intricate and time-consuming,

requiring careful consideration of the specific task at hand. [16]

2.9.2.4. Generated Knowledge Prompting

This approach leverages the LLM's own output to create the prompt for subsequent

generations. By incorporating the model's previously generated text into the prompt, this technique

can improve the precision and uniformity of the overall output. The LLM's familiarity with the

concepts used in the prompt fosters a more focused and consistent generation process. [16]

 Chapter 02: Literature Review

33

2.9.2.5. Self-Consistency Prompting

This technique instructs the LLM to ensure its subsequent output aligns with its prior

responses. This approach is particularly beneficial for tasks requiring coherence and continuity, such

as generating a narrative or dialogue. By prompting the LLM for self-consistency, the overall output

maintains a cohesive and logical flow throughout the generation process. [16]

2.10. LLM’s affinity to Text-based data

Large Language Models (LLMs) have demonstrated remarkable performance in processing

and generating text-based data due to their unique architectural design and training approach. These

advanced AI systems excel in tasks such as natural language processing, text generation, and

language understanding, making them highly effective in working with textual information.

The core of an LLM's success in handling text-based data lies in its ability to capture and

model the complex relationships and patterns present in natural language. LLMs are typically built

upon transformer-based architectures, which utilize attention mechanisms to identify and learn from

relevant parts of the input sequence. This allows the model to understand the context and semantics

of words and phrases, enabling more accurate and coherent text generation.

Furthermore, LLMs are trained on vast amounts of textual data, often comprising billions of

words from various sources, including books, articles, websites, and social media. This extensive

training process enables the models to learn the nuances of language, including grammar, syntax, and

common idioms. By exposure to a diverse range of textual data, LLMs develop a deep understanding

of the structure and flow of language, which translates into their ability to generate human-like text

and engage in meaningful conversations.

One of the key advantages of LLMs in working with text-based data is their capacity for

transfer learning. These models can be fine-tuned or adapted to specific domains or tasks by training

them on smaller, task-specific datasets. This allows LLMs to leverage their general language

understanding capabilities and apply them to more specialized contexts, such as legal documents,

medical reports, or technical manuals. Fine-tuning enables LLMs to capture domain-specific

vocabulary, jargon, and writing styles, further enhancing their performance in handling text-based

data within specific fields.

 Chapter 02: Literature Review

34

Moreover, LLMs exhibit impressive performance in tasks that require reasoning, inference,

and contextual understanding. By leveraging their attention mechanisms and deep learning

capabilities, these models can identify and extract relevant information from large volumes of text,

making them valuable tools for tasks such as question answering, summarization, and information

retrieval.

However, it is important to note that while LLMs excel in working with text-based data, they

may face challenges in handling tasks that require external knowledge, common sense reasoning, or

factual accuracy. As language models, they are trained to generate plausible text based on patterns in

the training data, but they may not always have a deep understanding of the real-world implications

or truthfulness of the generated content. [18]

 Chapter 02: Literature Review

35

2.11. Related works

Understanding the landscape of related works is paramount to contextualizing the current

state of research and innovation. This section delves into a comprehensive review of existing studies

that are closely aligned with the subject matter of the thesis. By examining the methodologies

employed and the outcomes achieved in these works, we aim to establish a foundation for evaluating

and advancing the proposed LLM-based approach for anomaly detection in smart grids. Through this

exploration, we seek to identify key insights, gaps, and opportunities that will inform and enrich the

research landscape in the domain of smart grid security.

2.11.1. Anomaly Detection using Random Forest Classifier

The Random Forest classifier has been widely used in anomaly detection tasks, including

those related to smart grids and network security. In [22], Nebrase et al demonstrated the

effectiveness of this method, achieving an impressive accuracy rate of 99.90% across three

benchmark datasets: CICIDS-2017, UNSW-NB15, and ICS cyber-attack datasets. Similarly,

Kurniabudi et al in [27] used Random Forest to detect anomalies in smart grid data, reporting an

accuracy rate of 99.71%. The authors also employed Information Gain technique for feature

selection, highlighting the importance of this approach in overcoming class imbalance challenges.

In another study, Ziadoon et al in [23] compared the performance of various machine learning

algorithms, including Random Forest, on the CICIDS-2017 dataset. Their results showed that

Random Forest achieved an accuracy rate of 99.30%, outperforming other methods such as SVM and

CNN.

2.11.2. Deep Learning-based Anomaly Detection

Deep learning techniques have been increasingly used in anomaly detection tasks, particularly

those involving neural networks. In [19], S. Huang et al proposed a novel Imbalanced Generative

Adversarial Network (IGAN) model for intrusion detection, achieving an impressive accuracy rate of

99.70%. The authors also demonstrated the effectiveness of their IGAN-IDS approach on three

benchmark datasets.

In another study, JooHwa et al in [21] used a hybrid approach combining a Generative

Adversarial Network (GAN) with a Random Forest classifier to detect anomalies in smart grid data,

 Chapter 02: Literature Review

36

reporting an accuracy rate of 99.83%. The authors highlighted the advantages of their integrated

GAN-RF framework.

2.11.3. Autoencoder-based Anomaly Detection

Autoencoders have been used as a dimensionality reduction technique in anomaly detection

tasks. In [17], R. Abdulhamme et al proposed an autoencoder-based approach for detecting

anomalies in smart grid data, reporting an accuracy rate of 99.60%. The authors employed Principal

Component Analysis (PCA) to further improve the performance of their method.

2.11.4. Support Vector Machine (SVM)-based Anomaly Detection

SVM has been widely used as a classification algorithm in anomaly detection tasks. In [19],

S. Huang et al reported an accuracy rate of 96.97% using SVM on the CICIDS-2017 dataset.

However, their results also showed that Random Forest outperformed SVM by a significant margin.

In another study, Ziadoon et al in [23] compared the performance of various machine learning

algorithms, including SVM, on the CICIDS-2017 dataset. Their results showed that SVM achieved

an accuracy rate of 75.21%, which was lower than other methods such as Random Forest and CNN.

2.11.5. Convolutional Neural Network (CNN)-based Anomaly

Detection

CNN has been used in anomaly detection tasks, particularly those involving image or time-

series data. In [19], S. Huang et al reported an accuracy rate of 99.48% using CNN on the CICIDS-

2017 dataset.

2.11.6. Adaboost-based Anomaly Detection

Adaboost has been used as a classification algorithm in anomaly detection tasks. In [18],

Yulianto et al proposed an AdaBoost-based approach for detecting anomalies in smart grid data,

reporting an accuracy rate of 81.83%. The authors employed Synthetic Minority Oversampling

Technique (SMOTE) to address the issue of class imbalance.

Federated Learning (FL)-based Anomaly Detection

 Chapter 02: Literature Review

37

Federated learning has been used in anomaly detection tasks to maintain user privacy while

still achieving high accuracy rates. In [27], Jithish et al proposed a FL-based approach for detecting

anomalies in smart grid data, reporting an accuracy rate of 99% on two benchmark datasets.

2.11.7. Large Language Model (LLM)-based Anomaly Detection

LLMs have been used in anomaly detection tasks to provide human-understandable

explanations for detected anomalies. In [29], Abderrazak et al proposed a novel approach using

SHAP values with LLMs to generate explanations for detected anomalies, reporting an accuracy rate

of 80% on the CICIDS-2017 dataset.

2.11.8. Generative Adversarial Network (GAN)-based Anomaly

Detection

GAN has been used in anomaly detection tasks to generate synthetic data that closely

resembles the existing dataset. In [21], JooHwa et al proposed a hybrid approach combining GAN

with Random Forest classifier to detect anomalies in smart grid data, reporting an accuracy rate of

99.83%.

2.11.9. Intrusion Detection Systems (IDS) using SHAP and LLMs

Intrusion detection systems have been used to detect malicious activities in networks. In [29],

Abderrazak et al proposed a novel approach using SHAP values with LLMs to generate explanations

for detected anomalies, reporting an accuracy rate of 80% on the CICIDS-2017 dataset.

 Chapter 02: Literature Review

38

2.12. State of the art Summary

 For illustration purposes, the following figure briefly summarizes all the works on

interest mentioned in this chapter: [Accuracy, Precision, Recall, F-score]

 Study Year Approach Dataset Acc Prec Rec
F-

score

[18] Yulianto et al 2018 Adaboost CICIDS2017 81.83 81.83 100 90.01

[17]
R. Abdulhamme

et al
2019

Auto Encoder +

PCA
CICIDS2017 99.60 98.90 98.80 98.80

[21] JooHwa et al 2019 GAN RF CICIDS2017 99.83 98.68 92.76 95.04

[19] S. Huan et al 2020 SVM CICIDS2017 96.97 / / 96.99

[19] S. Huan et al 2020 Random Forest CICIDS2017 99.79 / / 99.78

[19] S. Huan et al 2020 CNN CICIDS2017 99.48 / / 99.44

[19] S. Huan et al 2020 IGAN-IDS CICIDS2017 99.70 / / 99.70

[22] Nebrase et al 2020 Random Forest CICIDS2017 99.90 99.70 99.70 99.70

[27] Kurniabudi et al 2021
Random

Forest
CICIDS2017 99.71 99.80 99.90 99.90

[23]
Ziadoon et al

[23]
2021 Random Forest CICIDS2017 99.30 99.09 99.30 99.12

[23]
Ziadoon et al

[23]
2021 SVM CICIDS2017 75.21 99.16 75.21 76.60

[23]
Ziadoon et al

[23]
2021 CNN CICIDS2017 99.47 99.43 99.46 99.44

[27] Guastalla et al 2024 GPT-3.5
CICIDS2017

(DDoS)
96.00 / / /

[27] Guastalla et al 2024 GPT-4
CICIDS2017

(DDoS)
92.00 / / 93.00

[29] Abderrazak et al 2024 Random Forest
CICIDS2017

(Web Attacks)
/ 80 62 67

Table 1: State of the art summary table

 Chapter 02: Literature Review

39

2.13. Synthesis

The related works presented in this chapter demonstrate the effectiveness of various machine

learning approaches for anomaly detection in smart grids. However, upon closer examination, it

becomes apparent that these methods have limitations. Specifically, they lack the ability to provide

detailed descriptions of detected anomalies, making them inaccessible to non-machine learning

experts who may be responsible for implementing and interpreting the results.

Most studies focus solely on achieving high accuracy rates, often neglecting the importance

of anomaly description. For instance, Random Forest classifiers, which achieved impressive

accuracy rates (e.g., [22], [27]), do not provide insight into the specific data points contributing to

anomalies. Similarly, Autoencoder-based approaches (e.g., [17]) and Support Vector Machine (SVM)

methods (e.g., [19]) lack descriptive capabilities.

Moreover, the lack of standardization in anomaly detection metrics and evaluation procedures

hinders direct comparison between studies. This highlights the need for a more comprehensive

understanding of anomalies, beyond mere accuracy rates. The use of Large Language Models

(LLMs), such as SHAP values, can provide this nuance by describing detected anomalies in a

human-understandable manner.

The current landscape of anomaly detection methods in smart grids suggests that there is a

pressing need for approaches that balance high accuracy with descriptive capabilities. Our research

aims to address this gap by combining traditional machine learning techniques with LLMs, enabling

grid operators to not only detect anomalies but also gain insights into their underlying causes."

 Chapter 02: Literature Review

40

2.14. Discussion

 The studies reviewed in the table showcase the effectiveness of various machine learning

approaches for anomaly detection in smart grids. Notably, several studies employing Random Forest

classifiers achieved accuracy exceeding 99% ([22], [22]). With Kurniabudi even reaching 99.90%

accuracy in his 2021 study [22].

While this high level of accuracy is commendable, it also suggests that further improvement

in anomaly detection using traditional machine learning techniques might yield diminishing returns.

This paves the way for exploring alternative approaches that focus on aspects beyond raw accuracy.

Our research takes a different approach to anomaly detection in smart grids. Our primary

focus is not on achieving the highest possible detection accuracy, but rather on providing a more

nuanced understanding of the anomalies that are detected. Here, Large Language Models (LLMs)

offer a unique advantage. By leveraging SHAP values, we can not only identify anomalies but also

gain insights into the specific data points that contribute to those anomalies. This detailed description

of the anomaly can be crucial for grid operators to diagnose and address the underlying issues.

Therefore, while Random Forest remains a strong choice for initial anomaly detection due to

its high accuracy (as evidenced in the table), our research will utilize this established method to

identify potential anomalies. We will then employ an LLM, empowered by SHAP values, to delve

deeper and provide a comprehensive description of the detected anomalies, aiding in faster and more

precise troubleshooting within the smart grid.

 Chapter 02: Literature Review

41

2.15. Conclusion

This chapter established a foundation for using Large Language Models (LLMs) to enhance

decision-making in smart grids, addressing the limitations of traditional methods in dynamic, data-

intensive environments. LLMs offer powerful analytical capabilities, extracting valuable insights

from complex data sets.

A thorough review of the state-of-the-art in anomaly detection for smart grids, with a focus

on LLMs, identified critical gaps and opportunities for further exploration. This review sets the stage

for the proposed LLM-based method, highlighting LLMs' potential to address current shortcomings

by generating informative anomaly descriptions and improving interpretability and decision-support.

Chapter 3, "Proposed Approach," will detail the research methodology, dataset, and LLM

used. It will emphasize the importance of prompt engineering in maximizing LLMs' effectiveness for

anomaly detection in smart grids. The chapter will conclude with the practical implications of the

research, underscoring its contribution to enhancing interpretability and decision-support in anomaly

detection systems for smart grids.

Chapter 03: Proposed Approach

 Chapter 04: Experiments

43

3.1. Introduction

This chapter delves into the core of our research – the proposed LLM-based approach for

anomaly detection and description in smart grids. As highlighted in the abstract, traditional anomaly

detection methods often lack interpretability, making it difficult to pinpoint the root cause of the

issue. Here, we bridge this gap by leveraging the power of Large Language Models (LLMs).

This chapter will present a comprehensive understanding of the methodology employed in

our research. We delve deeper into each component in subsequent sections, providing insights into

the system's design and implementation.

 Chapter 04: Experiments

44

3.2. Proposed System Architecture

1.2. Online Data 6. Detected anomaly

3. Offline Data 7. LLM Descriptive Output

4. Processed Data (numeric) 8. Anomaly detection system revision

5. Processed Data (textual) 9. . Feeding the system with new data

 Internal data stream

 External data stream

Figure 10: proposed system architecture

 Chapter 04: Experiments

45

3.2.1. System Architecture Description

The proposed system architecture aims to detect anomalies in smart grids using a large

language model (LLM)-based approach. The system consists of four layers: data collection, data pre-

processing, anomaly detection, and decision. The data collection layer gathers raw data from various

sources, such as edge devices, in the form of CSV files, JSON, XML, or text formats, and transfers it

to the data server in the pre-processing layer. In the data pre-processing layer, online data is

processed using data processing algorithms, while offline data stored in the data server is also

processed alongside the online data.

The data processing algorithms generate two versions of the traffic data: one in numeric

format and one in textual format. The numeric data is sent to the anomaly detection algorithm, while

the textual data is passed to the LLM. The anomaly detection layer utilizes machine learning

techniques to identify anomalies in the numeric data. The output of the anomaly detection algorithm

is then combined with the processed textual data and sent to the LLM for further analysis. The LLM

uses both the output of the anomaly detection algorithm and the textual data to generate a detailed

but brief description of the anomaly, along with suggested solutions.

The decision layer receives the LLM's output and presents it to decision-making experts

through a system interface. These experts review the output and make informed decisions based on

the provided information. If the anomaly detection system outputs a false negative, the experts may

decide to revise the system. If the system's output is correct, the experts may choose to retroactively

feed the system to improve its performance for future anomaly detection.

By integrating an LLM-based approach with anomaly detection algorithms, the proposed

system aims to enhance the readability of anomaly detection systems in smart grids, ultimately

contributing to improved grid reliability and efficiency.

3.2.2. System Architecture Layers:

Within the framework of our thesis, the system architecture is structured into distinct layers to

facilitate efficient anomaly detection processes. [29]

 Chapter 04: Experiments

46

3.2.2.1. Data Collection Layer

The data collection layer is responsible for gathering raw data from various sources, such as

edge devices, in the form of CSV files, JSON, XML, or text formats. This layer ensures that the

necessary data is collected and transferred to the data server located in the pre-processing layer.

3.2.2.2. Data Pre-processing Layer

The data pre-processing layer is responsible for cleaning, transforming, and preparing the

collected data for further analysis. It includes a data server that stores the offline data and processes

both online and offline data using data processing algorithms. The processed data is then converted

into numeric and textual formats for use in the anomaly detection layer.

3.2.2.3. Anomaly Detection Layer

This layer receives the numeric format version of the processed traffic data and uses anomaly

detection algorithms to identify potential anomalies. The output of the anomaly detection algorithm

is then sent to the large language model (LLM) alongside the processed textual data.

3.2.2.4. Decision Layer

This layer is where decision-making experts review the LLM output and make informed

decisions based on the detailed descriptions of anomalies and suggested solutions provided by the

LLM.

3.2.3. Involved Actors:

Various actors play crucial roles in the efficient functioning of the anomaly detection system

architecture across different layers: [29]

3.2.3.1. System Admins:

System admins operate in the Edge Layer of the smart grid system. Their responsibilities

include providing support, troubleshooting, and maintaining the computer servers and networks

where initial data collection occurs. They ensure the smooth operation of data collection processes at

the system's edge.

3.2.3.2. Data Scientists:

Data scientists are primarily situated in the Data Processing Layer. Their main tasks involve

developing and implementing data processing algorithms for both online and offline data analysis.

They play a key role in processing and analyzing the collected data to extract valuable insights.

 Chapter 04: Experiments

47

3.2.3.3. Cybersecurity Experts:

Cybersecurity experts are essential actors operating across all layers of the smart grid system.

They focus on maintaining the security and integrity of the system's data and processes, with a

particular emphasis on securing the Edge Layer and Data Processing Layer against potential threats

and vulnerabilities

3.2.3.4. Machine Learning Engineers:

Machine learning engineers are predominantly located in the LLM Layer of the smart grid

system. Their primary responsibilities revolve around developing, training, and fine-tuning the LLM

model specifically designed for anomaly detection and learning purposes. They play a critical role in

enhancing the system's anomaly detection capabilities.

3.3. Methodology overview

This section outlines the methodology employed for the proposed LLM-based anomaly

detection and description system.

The approach leverages machine learning for anomaly classification, drawing critical

inspiration from the work of Abderrazak et al. (2024) [29]. This research on anomaly detection in

smart grids informed our decision to employ a machine learning model for classification.

Additionally, a Large Language Model (LLM) is integrated into the system for generating

informative descriptions of the detected anomalies. We delve into the details of the anomaly

detection component, including the chosen model and feature selection techniques.

Figure 11: methodology overview diagramme

3.3.1. Anomaly Detection

The anomaly detection component employs a random forest classifier to identify anomalous

traffic data within the smart grid. The data undergoes preprocessing steps including missing value

imputation, categorical encoding, and feature scaling to ensure compatibility with the machine

 Chapter 04: Experiments

48

learning model. To address potential class imbalance favoring normal data, the XGBoost classifier

with adjusted hyperparameters is also evaluated.

Figure 12: Anomaly detection process overview

3.3.2. Feature Selection

While both Random Forest and XGBoost can handle a high number of features, feature

selection is implemented to improve model interpretability and potentially enhance performance.

SHAP values are utilized to identify the most influential features for each anomaly type. Only the top

3 most impactful features, as determined by SHAP analysis, are retained for the final model.

Figure 13: SHAP values powered feature selection process overview

 Chapter 04: Experiments

49

3.3.3. Anomaly Description with LLM

The LLM serves as the anomaly description component. The system feeds the anomaly label,

a textual representation of the original traffic data, and the top 3 most influential features to the

LLM. This combination of information allows the LLM to generate a comprehensive description of

the detected anomaly, aiding in understanding the root cause of the issue within the smart grid.

Figure 14: LLM powered Anomaly description process overvuew

 Chapter 04: Experiments

50

3.4. Data set used

The CICIDS2017 dataset serves as an important reference point for intrusion detection

systems (IDS) and intrusion prevention systems (IPS). It comprises labeled network flows, complete

packet payloads in pcap format, profiles, and labeled flows. This dataset fills the gap of dependable

test and validation datasets for anomaly-based intrusion detection methods. It encompasses benign

traffic and prevalent attacks carried out over five days, encapsulating a variety of attacks like Brute

Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, and DDoS. The

dataset records authentic background traffic using a B-Profile system to profile human interactions

and produce naturalistic benign traffic. It’s crafted to mirror real-world network data and includes

features such as comprehensive network configuration, diverse traffic, complete interaction

scenarios, and attack diversity. The dataset is all-encompassing, covering a range of network

configurations, traffic scenarios, and attack types, making it a crucial resource for assessing and

developing anomaly detection systems in smart grid settings. [30]

Attack label Flow count

Benign 2273097

DoS Hulk 231073

Port Scan 158930

DDoS 128027

DoS GoldenEye 10293

DoS Slowloris 5796

DoS Slowhttptest 5499

FTP-Patator 7938

SSH-Patator 5897

Botnet 1966

Web Attack: Brute Force 1507

Web Attack: XSS 652

Web Attack: SQL Injection 21

Infiltration 36

Heartbleed 11

Total 2830743

Table 2: CICIDS2017 Dataset summary

 Chapter 04: Experiments

51

3.4.1. Description of the Attack Scenarios

Here in this dataset, six attack profiles are covered based upon the most updated list of

commonly used attack families, which can be explained as follows: [31]

3.4.1.1. Web Attack:

The dataset includes three types of web attacks. Firstly, SQL Injection, a security

vulnerability where an attacker manipulates the queries that an application sends to its database,

allowing unauthorized users to view data. Secondly, Cross-Site Scripting (XSS), which occurs when

the attacker injects malicious code into the victim’s web application. Lastly, Brute Force, which

involves trying all possible passwords to decode the administrator’s password.

3.4.1.2. Botnet Attack:

This refers to a group of internet-connected devices, such as those in a home, office, or public

systems, infected by harmful malware. This malware allows the attacker to access the device and its

connection for theft, network disruption, and IT environment damage. Botnet attacks are remotely

controlled by cybercriminals and have become one of today’s most significant security threats.

3.4.1.3. Heartbleed Attack:

This is a serious bug in the OpenSSL implementation, an open-source implementation of the

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. This vulnerability allows

malicious hackers to read and steal data from the memory of the victim server. Brute Force Attack is

a dictionary attack method that generates many successive guesses to access encrypted data. This

attack is commonly used for cracking passwords, finding hidden web pages or content, and decoding

Data Encryption Standard (DES) keys.

3.4.1.4. DDoS Attack:

This is one of the most common cyber weapons, which aims to deplete the resources of an

online service and network by overwhelming it with traffic from multiple compromised systems,

denying legitimate users access to the service.

3.4.1.5. DoS Attack:

This is a type of cyber-attack on a network designed to temporarily prevent legitimate users

from accessing computer systems, devices, or other network resources due to malicious cyber

activities.

 Chapter 04: Experiments

52

3.4.1.6. Infiltration Attack:

This is a malicious attempt to enter or damage the interior of the network, typically by

exploiting vulnerable software like Adobe Acrobat/Reader.

3.5. Data Pre-processing

3.5.1. Handling Missing Values: KNN Imputation with Outlier Handling

Missing values are a common challenge in network traffic data analysis, often arising from

sensor malfunctions or network errors. To address this issue, researchers have explored various

imputation techniques, including K-Nearest Neighbors (KNN) imputation. This approach leverages

the similarity between data points to estimate missing values, while also considering potential

outliers that may skew the imputation process.

3.5.1.1. KNN Imputation for Flow Bytes/s

KNN imputation works by identifying the k nearest neighbors of a data point with a missing

value and using their values to estimate the missing entry. This method assumes that similar data

points are likely to have similar values, making it suitable for network traffic data where patterns and

correlations exist between features. Several studies have investigated the application of KNN

imputation in network traffic data analysis. For instance, Liao et al. (2014) [33] proposed a KNN-

based imputation method for missing values in network traffic data, demonstrating its effectiveness

in improving the accuracy of network anomaly detection. Similarly, Ding et al. (2016) [34]

employed KNN imputation to handle missing values in network traffic data, highlighting its ability

to preserve the underlying data distribution and improve the performance of machine learning

models.

In the case of CICIDS2017 we noticed all of the missing valued are resigned to the Flow

Bytes/s feature, where we find 1294 missing values. However, before proceeding with the

imputation method, we need to first deal with the outliers.

3.5.1.2. Outlier Handling

Network traffic data may contain outliers, which are data points that deviate significantly

from the majority. These outliers can negatively impact the imputation process by skewing the

distribution of the data and leading to inaccurate estimates of missing values. To mitigate this issue,

 Chapter 04: Experiments

53

researchers have proposed various outlier handling techniques. One approach is to identify and

remove outliers before applying imputation methods. Gupta et al (2018) [35] developed a framework

for outlier detection and removal in network traffic data, which involved using statistical measures

and machine learning algorithms to identify and remove a Liao et al. (2014) [33] anomalous data

points. By removing outliers, the authors were able to improve the accuracy of KNN imputation and

enhance the overall quality of the network traffic data. Another approach is to incorporate outlier

handling directly into the imputation process Ding et al. (2016) [34] proposed a modified KNN

imputation algorithm that assigns lower weights to outliers during the imputation process, effectively

reducing their influence on the estimated values. This approach helped to improve the robustness of

KNN imputation in the presence of outliers.

3.5.2. Feature Engineering for Network Traffic Data Analysis

This section details a feature engineering approach employed to prepare network traffic data

for analysis using Large Language Models (LLMs). LLMs excel at processing and extracting

knowledge from textual information. However, network traffic data is typically stored in a tabular

format with numerical and categorical features as is the case for the CICIDS2017 dataset.

LLMs are inherently designed to work with sequential text data. Their internal

representations and processing mechanisms are optimized for understanding the relationships and

patterns within natural language. Thus, directly feeding raw network traffic data (numerical features

like port numbers or durations) into an LLM results in suboptimal performance. LLMs generally

struggle to grasp the underlying relationships and semantics within the non-textual format. [36]

To address this challenge, we employ a feature engineering technique called concatenation.

Here, we combine all descriptive features (excluding the label) into a single, continuous string within

a new column named "traffic data." This transformation aims to create a more text-like

representation that LLMs can effectively process. [36]

Benefits for LLMs: By concatenating features with delimiters, we essentially create a textual

description of each network traffic flow. This allows the LLM to leverage its ability to understand

language structure and relationships between words to analyze the combined features in the "traffic

data" column.

 Chapter 04: Experiments

54

Preserving Label Information: The original label column (e.g., "BENIGN" or "DDoS" …etc.)

is kept separate. This ensures that the crucial classification information remains accessible for

supervised learning tasks within the LLM framework.

Overall, feature concatenation serves as a bridge between the non-textual nature of network

traffic data and the text-based processing capabilities of LLMs. By transforming the data into a more

LLM-friendly format, we can leverage the power of these models for network traffic analysis tasks

like anomaly detection or traffic classification.

Traffic Data Traffic Label

Destination Port: 53 | Flow Duration: 312 | Total Fwd Packets: 2 | ………. | Idle Min: 0 BENING

………….. …..

Table 3: example of data post feature engineering

3.6. Data Splitting for Generalizability:

We leverage stratified 10-fold cross-validation to split the smart grid dataset. This technique

ensures balanced representation of classes (normal and anomalous data points) within each training

and testing fold. By iteratively training on nine folds and testing on the remaining fold, this method

provides a robust evaluation of model performance across diverse subsets of the data, promoting

generalizability to unseen data.

3.7. Anomaly detection

The core challenge of anomaly detection in smart grids lies in identifying and classifying

deviations from normal system behavior. This research leverages the well-established capabilities of

Random Forest (RF) classifiers for this critical task. Drawing upon the insights gleaned from the

state-of-the-art review (Chapter 2), we recognize that RF models have consistently demonstrated

superior performance in anomaly detection tasks within smart grid environments compared to other

classification algorithms [Reference studies from State-of-the-Art chapter].

Here's a breakdown of the key factors that make Random Forests a compelling choice for our

anomaly detection system:

 Chapter 04: Experiments

55

Ensemble Learning: An RF classifier is not a singular model, but rather an ensemble of

multiple decision trees. This ensemble approach mitigates the overfitting risks associated with single

decision tree models, leading to more robust and generalizable anomaly detection capabilities.

High Accuracy: As highlighted in the state-of-the-art review, previous research has

consistently demonstrated the high accuracy of RF classifiers in identifying anomalies within smart

grid data. This established track record provides strong justification for our selection.

Interpretability: The decision-making process within an RF model is relatively transparent

compared to more complex black-box models. This interpretability allows us to gain insights into the

features and data points that contribute to anomaly classification, facilitating a deeper understanding

of the identified anomalies within the smart grid.

Computational Efficiency: Training and deploying RF models are computationally efficient,

making them suitable for real-time anomaly detection within resource-constrained smart grid

environments.

By integrating a Random Forest classifier into our anomaly detection system, we harness its

strengths in ensemble learning, high accuracy, interpretability, and computational efficiency. This

selection aligns with the findings of the state-of-the-art review and positions our research to achieve

robust and interpretable anomaly detection within smart grids

3.8. Evaluation Metrics for Comprehensive

Assessment:

To comprehensively evaluate the performance of the trained models, we employ a

combination of metrics:

3.8.1. Accuracy:

This metric measures the overall proportion of correctly classified instances (normal and

anomalous) within the testing set. It provides a high-level overview of the model's effectiveness. [15]

 Chapter 04: Experiments

56

3.8.2. Confusion Matrix:

This visual tool provides a detailed breakdown of the model's performance on each class. It

categorizes instances into true positives (correctly identified anomalies), false positives (normal

instances classified as anomalies), true negatives (correctly identified normal instances), and false

negatives (anomalies missed by the model). This detailed breakdown allows for targeted analysis of

the model's strengths and weaknesses in identifying different types of anomalies. [38]

3.8.3. Classification Report:

Building upon the confusion matrix, a classification report summarizes key metrics like

precision (proportion of true positives among all positive classifications), recall (proportion of true

positives out of all actual positive cases), F1-score (harmonic mean of precision and recall), and

support (total number of instances in each class). These metrics offer a deeper understanding of the

model's performance beyond just overall accuracy, allowing for a more nuanced evaluation of its

ability to accurately detect anomalies. [15]

By employing a combination of stratified 10-fold cross-validation, model selection based on

the state-of-the-art review, and comprehensive evaluation metrics, we establish a robust framework

for training and evaluating our anomaly detection system. This approach promotes generalizability,

facilitates a comparative assessment of different models, and provides a multifaceted analysis of the

model's effectiveness in identifying anomalies within the smart grid data.

3.9. Large Language Model Selection

When selecting a Large Language Model (LLM) for research or practical applications, it is

crucial to consider various factors such as performance, resource requirements, accessibility, and

licensing. In this context, Meta's Llama3 8B emerges as a compelling choice [40], offering a

compelling balance of state-of-the-art performance and resource efficiency, while also being

freely available for both research and commercial use cases. [33]

One of the key advantages of Llama3 8B is its impressive performance across a wide range of

benchmarks, despite having a relatively smaller parameter count compared to other leading LLMs.

This is a testament to Meta's advancements in pretraining and instruction-tuning processes, which

have resulted in improved alignment and output quality. Llama3's 8B and 70B parameter models

 Chapter 04: Experiments

57

demonstrate state-of-the-art performance, outperforming even larger commercial models like GPT-3

on various industry benchmarks. [34]

Furthermore, Llama3 excels in terms of resource efficiency, making it a viable option for

deployment in resource-constrained environments. Unlike some of its commercial counterparts,

which often require significant computational resources and infrastructure, Llama3 can be effectively

deployed on a wide range of hardware configurations, from cloud-based solutions to on-premises

setups. This flexibility and scalability allow for cost-effective integration into existing workflows

and systems, reducing the barrier to entry for organizations and researchers. [33]

Another significant advantage of Llama3 is its open-source nature and licensing terms.

Unlike proprietary models like ChatGPT, which are subject to usage restrictions and licensing fees,

Llama3 is freely available for both research and commercial use cases, provided the user has less

than 700 million monthly active users. This open-source approach fosters collaboration,

transparency, and innovation within the AI community, enabling researchers and developers to build

upon and extend the capabilities of Llama3 without the constraints imposed by proprietary models.

[34]

 Chapter 04: Experiments

58

3.10. Llama3, Mistral, and Gemma comparison

Feature Llama3 8b Mistral7b Gemma7b

Architecture
Decoder-only Transformer

(efficient)

Transformer (encoder-decoder

possible, potentially higher

resource requirements)

Transformer (encoder-decoder

possible, potentially higher

resource requirements)

Training Data
Massive text & code dataset

(potentially adaptable)

Text, code, potentially smart

grid-specific data (details might

be limited)

Text, code, potentially smart grid-

specific data (details might be

limited)

Strengths for

Anomaly

Detection

Excellent fluency for clear and

concise anomaly descriptions

Potential for understanding

languages (if encoder-decoder),

uncertain level of domain-

specific knowledge

Potential for understanding

languages (if encoder-decoder),

uncertain level of domain-specific

knowledge

Potential

Drawbacks

Limited transparency regarding

training data for smart grid

applications

Limited availability of

information regarding training

data and potential mismatch for

smart grid domain

Limited availability of

information regarding training

data and potential mismatch for

smart grid domain

Addressing

Drawbacks

Effective prompt engineering

can bridge the gap between

general training data and smart

grid anomaly descriptions

Difficulty in achieving same

level of adaptation through

prompt engineering

Difficulty in achieving same level

of adaptation through prompt

engineering

Overall

Suitability for

Anomaly

Detection

Strong candidate due to fluency

and potential for adaptation

with effective prompt

engineering

Potential suitability depends on

confirmation of domain-specific

knowledge and successful

adaptation through prompting

Potential suitability depends on

confirmation of domain-specific

knowledge and successful

adaptation through prompting

Availability &

Cost

Might have associated access

and computational costs

depending on platform

Availability and cost might vary

depending on provider

Availability and cost might vary

depending on provider

Table 4: comparison table between Llama3, Mistral, and Gemma

 Chapter 04: Experiments

59

3.11. Conclusion

This chapter has outlined the proposed LLM-based approach for anomaly detection and

description in smart grids. Key components include anomaly detection with machine learning

models, feature selection using SHAP values, and anomaly description generation with LLMs. The

chosen dataset, CICIDS2017, and data pre-processing techniques have also been discussed.

The next chapter, "Experiments," delves into the practical implementation of this approach,

detailing the execution environment, software libraries, and training methodology. We will examine

the results of the anomaly detection model training, focusing on different classification algorithms

and the role of SHAP values in feature selection. Chapter 4 will also showcase the LLM integration

and its performance in generating anomaly descriptions, analyzing the impact of system and user

prompts and SHAP values on the quality and accuracy of the descriptions. Finally, the chapter will

discuss the overall findings, compare results with and without SHAP, and highlight the importance

of effective prompt engineering.

Chapter 04: Experiments

 Chapter 04: Experiments

61

4.1. Execution environment

In this section we detail the hardware and software used for all training done in the context of

this thesis:

4.1.1. Hardware

All trainings and data processing were done in google colab’s

execution environment, and as of the time of this thesis, the free

version of Google’s colab provides a Tesla T4 gpu or equivalent with

16gb of vram. 2 threads of an Intel Xeon cpu with 15gb of system

ram. And approximately 107.72gb of cloud disk storage available for

6 hours a day. The gpu however is only available for 3 hours.

LLM execution was done on a local machine with a Ryzen 5

3600 and 16gb of ram running windows 10.

4.1.2. Programming language used

Python is a high-level, interpreted programming language known for its simplicity,

readability, and versatility. Its importance in the machine learning field lies in its ability to facilitate

rapid prototyping, efficient development, and effective deployment of complex algorithms. Python's

ease of use, extensive libraries, and robust visualization capabilities make it an ideal choice for

machine learning applications. [43]

Python's popularity in machine learning can be attributed to several key factors. Firstly, its

syntax is designed to be intuitive and straightforward, allowing developers to focus on solving

problems rather than understanding the intricacies of the language. Secondly, Python's extensive

library ecosystem, including NumPy, scikit-learn, and TensorFlow, provides a wide range of tools

for various machine learning tasks. This reduces the time and effort required to implement

algorithms, making it easier for developers to concentrate on the actual problem-solving. [43]

Furthermore, Python's cross-platform compatibility and flexibility enable developers to create

machine learning models that can be executed on multiple platforms without requiring significant

modifications. Additionally, Python's strong community support and extensive documentation make

it easier for developers to find help and resources when needed. [43]

Figure 15: google colab

logo

 Chapter 04: Experiments

62

4.1.3. Python Libraries

4.1.3.1. Scikit-learn (sklearn)

A comprehensive library offering a wide range of machine learning algorithms for

classification, regression, clustering, model selection, and more. It provides a user-friendly interface

for building, training, and evaluating machine learning models.

4.1.3.2. Pandas 2.0.3

A powerful data analysis and manipulation library. It offers data structures like DataFrames

and Series that facilitate efficient handling of tabular data, including loading, cleaning, transforming,

and analyzing datasets.

4.1.3.3. NumPy 1.25.2

The foundation for numerical computing in Python. It provides efficient multidimensional

arrays and linear algebra operations, enabling high-performance data manipulation and numerical

computations essential for machine learning tasks.

4.1.3.4. XGBoost 2.0.3

A scalable implementation of gradient boosting known for its efficiency and effectiveness in

various classification tasks. It excels at handling complex datasets and offers features like

regularization to prevent overfitting.

4.1.3.5. Seaborn 0.13.1

A library built on top of Matplotlib that simplifies creating statistical graphics. It provides a

high-level interface for generating informative and aesthetically pleasing visualizations of data,

particularly suited for exploring relationships and distributions within datasets.

4.1.3.6. Matplotlib.pyplot

A fundamental plotting library in Python. It offers extensive functionality for creating various

static, animated, and interactive visualizations, including line plots, scatter plots, histograms, and

more. It provides a finer level of control over plot elements compared to Seaborn.

4.1.3.7. SHAP (SHapley Additive exPlanations) 0.44.1

Shap is a Python library for interpreting machine learning models, particularly focusing on

feature attribution. It leverages game theory concepts to calculate SHAP values, which explain how

each feature contributes to a model's prediction for a specific instance.it provides SHAP's

 Chapter 04: Experiments

63

visualizations, like force plots and summary plots, aid in interpreting complex models and enhancing

their transparency.

4.1.4. LM Studio (0.2.22)

LM Studio is a desktop application designed to facilitate the local execution of large language

models (LLMs) and provide a user-friendly interface for experimenting with these models. The

software features a convenient and intuitive graphical user interface that simplifies the process of

running LLMs locally, allowing users to easily manage and interact with their models. LM Studio

includes local server API functionalities that emulate OpenAI's API calls, enabling users to interact

with their local LLMs as if they were accessing OpenAI's services. The software is available on

multiple platforms, including Windows, Linux, and macOS, ensuring cross-platform compatibility.

LM Studio is freely available for anyone to use, making it an accessible tool for researchers,

developers, and anyone interested in experimenting with LLMs. [44]

Figure 16: LM Studio (0.2.22) Home interface

 Chapter 04: Experiments

64

4.2. Training Methodology

This section details the training methodology employed for the anomaly detection system.

The chosen classification algorithms and their respective training parameters are outlined, followed

by the validation method used to assess model performance.

4.2.1. Data Preprocessing and Feature Engineering

Prior to model training, the data undergoes several preprocessing steps to ensure its suitability

for machine learning algorithms. These steps address missing values, categorical variables, and

continuous variables.

4.2.2. Data Cleaning

Missing values are a common challenge in real-world datasets. In this study, K-Nearest

Neighbors (KNN) imputation is employed to address missing values. This approach identifies the k

nearest neighbors (data points) for each instance with missing values and utilizes the values of those

neighbors to predict the missing value. This technique is advantageous when missing values are

likely to be similar to the values of nearby data points. Alternative strategies for missing value

imputation, such as replacing with the mean or median, could be explored in future work,

particularly if the missingness is suspected to be non-random.

4.2.3. Label Encoding

Categorical variables, which represent data with discrete labels, need to be converted into

numerical representations suitable for machine learning algorithms. This is achieved using Label

Encoder, which assigns a unique integer value to each unique category.

Label Code

BENIGN 0

Web Attack - Brute Force 1

Web Attack - XSS 2

Web Attack - Sql Injection 3

Table 5: encoded features

 Chapter 04: Experiments

65

4.2.4. Feature Scaling

Continuous variables can have varying scales, potentially hindering the performance of some

machine learning algorithms. To address this, MinMaxScaler is employed to normalize all

continuous features within a range of 0 and 1. This ensures that all features contribute equally to the

model's decision-making process.

4.2.5. Classification Algorithms

Two ensemble learning algorithms were selected for anomaly detection: Random Forest

Classifier (RandomForestClassifier) and XGBoost Classifier (XGBClassifier). Ensemble methods

are known for their robustness and ability to handle complex datasets [cite source on ensemble

methods].

Random Forest Classifier: This widely used algorithm combines multiple decision trees,

resulting in improved accuracy and reduced overfitting compared to single decision trees [cite source

on Random Forest]. For the Random Forest classifier, the default hyperparameters were employed

in this study.

XGBoost Classifier: XGBoost is a scalable implementation of gradient boosting, known for

its efficiency and effectiveness in various classification tasks [cite source on XGBoost]. To address

potential class imbalance in the dataset, the scale_pos_weight parameter was set to 98.720402. This

assigns a higher weight to the minority class (anomalous data points) during training, mitigating the

impact of class imbalance.

4.2.6. Validation Method

Stratified 10-fold cross-validation was utilized for model evaluation. This method partitions

the data into ten equally sized folds, ensuring a balanced distribution of classes across folds. In each

iteration, nine folds are used for training, and the remaining fold is used for testing. This process is

repeated ten times, and the final model performance is calculated as the average across all folds [cite

source on stratified k-fold cross validation]. The train_test_split function from the scikit-learn library

[Pedregosa et al., 2011] was employed for this purpose, with a test size of 0.2 (20% of the data) and a

random state of 42 for reproducibility.

 Chapter 04: Experiments

66

The chosen evaluation metrics include accuracy, confusion matrix, and classification report.

These metrics provide insights into the model's ability to correctly classify both normal and

anomalous grid behavior.

4.2.1. Feature Selection

While the Random Forest and XGBoost classifiers can handle a large number of features,

selecting the most informative ones can improve model performance. In this study, SHAP values are

utilized for feature selection. SHAP values explain the impact of each feature on the model's

predictions. The top 5 most important features for each anomaly type, as identified by SHAP values,

are retained for model training. This reduces the dimensionality of the data and potentially improves

model interpretability.

4.3. Anomaly detection results

Due to time and resource constrains we were only able to perform training and classification

on the Web Attacks portion of the CICIDS2017 dataset (Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv).

Table 6: CICIDS2017 webattacks data sample count (Thursday WorkingHours Morning

WebAttacks.

0 BENIGN 168186

1 Web Attack - Brute Force 1507

2 Web Attack - XSS 652

3 Web Attack - Sql Injection 21

/ Total 170366

After cleaning and pre-processing the data, we used XGBoost to elevate the massive

imbalance in this data set as we saw in [29]. By having the scale_pos_weight parameter set to

98.720402 we are able assign higher weights to minority classes so they can have a higher impact on

the classification procedure regardless of their small sample size.

In the end we managed to achieve an accuracy of 99%

n Classes Precision Recall F1-Score

 Chapter 04: Experiments

67

0 BENIGN 1.00 1.00 1.00

1 Web Attack - Brute Force 0.74 0.75 0.74

2 Web Attack - XSS 1.00 0.40 0.57

3 Web Attack - Sql Injection 0.46 0.36 0.40

Table 7: random forest classifier results

We deemed these results satisfactory as anomaly detection is not the focus of this study but

rather a means to an end.

4.3.1. Generating shap values

Using the shap library we are able to see what values have the most effect in out

classification:

Table 8: visual representation of the SHAP values post classification

We were able to extract the most influential features as well the least influential features

using shap feature mapping with those being:

The Five least influential features: Min-Active-Min-IAT-Flow-Max-IAT-Flow-Length-

Packet-Max-min_seg_size_forward.

The Five most influential features: Flow Duration - Bwd IAT Mean-Fwd IAT Min - Fwd

Packet Length Std - Init_Win_bytes_backward.

4.4. LLM parameters

4.4.1.1. Llama3 8B q4_k_m

As previously stated, we opted to use Llama3 as our description LLM. 8B indicates that the

model has 8 billion parameters. The "B" stands for billion, which is a unit of measurement for the

number of parameters in a model. A higher number of parameters generally means a more complex

and powerful model.

 Chapter 04: Experiments

68

• Q4 refers to the quantization level of the model. Quantization is a technique used to

reduce the memory usage and computational requirements of a model by reducing the

precision of its weights. Smaller Q numbers indicate heavier quantization, which

means a greater loss of quality but reduced memory usage. In this case, Q4 indicates a

relatively high level of quantization.

• K stands for the type of quantization used. In this case, K refers to the K-type

quantization method, which is a specific technique used to reduce the precision of the

model's weights.

• M stands for the size of the quantization. In this case, M likely indicates a medium-

sized quantization, which is a balance between quality and memory usage. This could

be compared to S for small or L for large quantization sizes.

4.4.1.2. Temperature 0.7

The temperature parameter controls the randomness and creativity of the generated text. It is

used to scale the logit values (the raw output of the language model before applying the softmax

function) before converting them into probabilities. [40]

4.4.1.3. Context length

The context length refers to the maximum number of tokens (roughly equivalent to words)

that the model can process at once. It is a predefined hyperparameter set when loading the model.

Llama3 has a max context length of 8192. [41]

4.5. System Prompt

The formulation of the system prompt plays a pivotal role in imbuing contextual awareness

within our Large Language Model (LLM). To achieve this, several prerequisites had to be satisfied.

Primarily, it was imperative to acquaint the LLM with its designated purpose and obligations as a

traffic analyzer, entrusted with scrutinizing labeled anomalous network traffic and furnishing

supplementary details regarding the identified anomaly. Furthermore, the model was assigned the

responsibility of proposing potential resolutions for the detected anomalies. Equally critical was the

integration of the LLM with the existing anomaly detection system. Finally, it is preferable if the

system output is limited to select set of characters in order keep things brief and to avoid uncertainty

drag. In pursuit of these objectives, a series of system prompts and model configurations were

 Chapter 04: Experiments

69

systematically explored, each yielding marginally distinct outcomes through empirical

experimentation.

System Prompt 01:

“You are a traffic analyzer that works alongside an already existing anomaly detection

system. You are given an instance of anomalous traffic data, along with the label of said anomaly.

Your role is to provide a brief explanation as to why this traffic instance was labeled as the given

anomaly, based on the traffic data that you are given. Additionally, you need to suggest a solution

to the anomaly. Your outputs should have a max character limit of 500.”

System Prompt 02:

 “You are a traffic analyzer that works alongside our existing rule-based anomaly detection

system that flags any traffic exhibiting anomalous characteristics with the proper label. You are

given an instance of anomalous traffic data, along with the label of said anomaly (determined by

our existing rule-based detection system). Your role is to provide a brief explanation as to why this

traffic instance was labeled as the given anomaly. Additionally, you need to suggest a solution to

the anomaly, be as specific as possible in your suggestions. Your outputs should have a max

character limit of 700 (do not declare the character count at the end of the output).”

System Prompt 03:

“You are a traffic analyzer that works alongside our existing rule-based anomaly detection

system that flags any traffic exhibiting anomalous characteristics with the proper label. You are

given an instance of anomalous traffic data, along with the label of said anomaly (determined by

our existing rule-based detection system). Your role is to provide a brief explanation as to why this

traffic instance was labeled as the given anomaly. Additionally, you need to suggest a solution to

the anomaly, be as specific as possible in your suggestion. Your job is focused primarily on

describing the anomaly and suggesting solutions, the detection of anomalous traffic is taken care

of by the pre-existing detection system that provided you with the label. Your outputs should have

a max character limit of 700 (do not declare the character count at the end of the output).”

 Chapter 04: Experiments

70

4.6. User Prompt

To ensure the efficacy of the LLM in analyzing network traffic data, it was crucial to

consistently provide the traffic data samples alongside their corresponding labels. This approach is

exemplified in the following illustration:

User Prompt 01:

The Following traffic was labeled as "DoS Hulk":

"Destination Port: 80 | Flow Duration: 85155048 | Total Fwd Packets: 10 | Total Backward

Packets: 5 | Total Length of Fwd Packets: 310 | Total Length of Bwd Packets: 11595 | Fwd Packet

Length Max: 304 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 31.0 | Fwd Packet Length

Std: 95.94095406 | Bwd Packet Length Max: 7240 | Bwd Packet Length Min: 0 | Bwd Packet Length

Mean: 2319.0 | Bwd Packet Length Std: 3331.638186 | Flow Bytes/s: 139.8038082 | Flow Packets/s:

0.176149275 | Flow IAT Mean: 6082503.429 | Flow IAT Std: 22700000.0 | Flow IAT Max: 85000000 |

Flow IAT Min: 0 | Fwd IAT Total: 85000000 | Fwd IAT Mean: 9446177.444 | Fwd IAT Std: 28300000.0 |

Fwd IAT Max: 85000000 | Fwd IAT Min: 0 | Bwd IAT Total: 155406 | Bwd IAT Mean: 38851.5 | Bwd

IAT Std: 67300.07415 | Bwd IAT Max: 139174 | Bwd IAT Min: 65 | Fwd PSH Flags: 0 | Bwd PSH Flags:

0 | Fwd URG Flags: 0 | Bwd URG Flags: 0 | Fwd Header Length: 316 | Bwd Header Length: 168 |

Fwd Packets/s: 0.11743285 | Bwd Packets/s: 0.058716425 | Min Packet Length: 0 | Max Packet

Length: 7240 | Packet Length Mean: 744.0625 | Packet Length Std: 2041.607944 | Packet Length

Variance: 4168162.996 | FIN Flag Count: 0 | SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag Count:

0 | ACK Flag Count: 1 | URG Flag Count: 0 | CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up

Ratio: 0 | Average Packet Size: 793.6666667 | Avg Fwd Segment Size: 31.0 | Avg Bwd Segment

Size: 2319.0 | Fwd Header Length.1: 316 | Fwd Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd

Avg Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 |

Subflow Fwd Packets: 10 | Subflow Fwd Bytes: 310 | Subflow Bwd Packets: 5 | Subflow Bwd

Bytes: 11595 | Init_Win_bytes_forward: 251 | Init_Win_bytes_backward: 235 | act_data_pkt_fwd: 2 |

min_seg_size_forward: 20 | Active Mean: 1996.0 | Active Std: 0.0 | Active Max: 1996 | Active Min:

1996 | Idle Mean: 85000000.0 | Idle Std: 0.0 | Idle Max: 85000000 | Idle Min: 85000000"

User Prompt 02:

The Following traffic was labeled as "PortScan":

"Destination Port: 7911 | Flow Duration: 52 | Total Fwd Packets: 1 | Total Backward Packets:

1 | Total Length of Fwd Packets: 0 | Total Length of Bwd Packets: 6 | Fwd Packet Length Max: 0 |

 Chapter 04: Experiments

71

Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 0.0 | Fwd Packet Length Std: 0.0 | Bwd

Packet Length Max: 6 | Bwd Packet Length Min: 6 | Bwd Packet Length Mean: 6.0 | Bwd Packet

Length Std: 0.0 | Flow Bytes/s: 115384.6154 | Flow Packets/s: 38461.53846 | Flow IAT Mean: 52.0 |

Flow IAT Std: 0.0 | Flow IAT Max: 52 | Flow IAT Min: 52 | Fwd IAT Total: 0 | Fwd IAT Mean: 0.0 | Fwd

IAT Std: 0.0 | Fwd IAT Max: 0 | Fwd IAT Min: 0 | Bwd IAT Total: 0 | Bwd IAT Mean: 0.0 | Bwd IAT Std:

0.0 | Bwd IAT Max: 0 | Bwd IAT Min: 0 | Fwd PSH Flags: 0 | Bwd PSH Flags: 0 | Fwd URG Flags: 0 |

Bwd URG Flags: 0 | Fwd Header Length: 40 | Bwd Header Length: 20 | Fwd Packets/s: 19230.76923

| Bwd Packets/s: 19230.76923 | Min Packet Length: 0 | Max Packet Length: 6 | Packet Length

Mean: 2.0 | Packet Length Std: 3.464101615 | Packet Length Variance: 12.0 | FIN Flag Count: 0 | SYN

Flag Count: 0 | RST Flag Count: 0 | PSH Flag Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 |

CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up Ratio: 1 | Average Packet Size: 3.0 | Avg Fwd

Segment Size: 0.0 | Avg Bwd Segment Size: 6.0 | Fwd Header Length.1: 40 | Fwd Avg Bytes/Bulk: 0

| Fwd Avg Packets/Bulk: 0 | Fwd Avg Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd Avg

Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow Fwd Packets: 1 | Subflow Fwd Bytes: 0 | Subflow

Bwd Packets: 1 | Subflow Bwd Bytes: 6 | Init_Win_bytes_forward: 29200 | Init_Win_bytes_backward:

0 | act_data_pkt_fwd: 0 | min_seg_size_forward: 40 | Active Mean: 0.0 | Active Std: 0.0 | Active

Max: 0 | Active Min: 0 | Idle Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0"

By consistently pairing the traffic data with its respective label, the LLM was able to establish

a robust association between the traffic patterns and the identified anomalies. This facilitated the

model's ability to accurately recognize and classify anomalous traffic instances, while also enabling

it to provide relevant insights and potential solutions based on the labeled data.

 Chapter 04: Experiments

72

4.7. Experimental results without SHAP values

4.7.1. Output of System prompt 01

System prompt 01

User Prompt 01

Output Based on the traffic data, this instance was labeled as a "PortScan"

because it exhibits characteristics of a port scanning activity. Here's why:

• The destination port is 7911, which is an unusual and potentially suspicious port

number.

• The flow duration is very short (52 seconds), indicating that the connection

was quickly established and terminated.

• There is only one forward packet and one backward packet, suggesting a

single packet exchange.

• The packet lengths are mostly small (0-6 bytes), with no significant data being

transmitted.

• The packet length mean is 2.0, which is unusually low for normal traffic.

Given these features, it's likely that this instance represents an attempted

port scan or reconnaissance activity, where the attacker is scanning the network

for open ports to potentially exploit.

To address this anomaly, I suggest implementing a rule-based detection

system that flags any traffic exhibiting similar characteristics as potential port

scans. This could involve monitoring for unusual destination ports, short-lived

connections, and small packet sizes. Additionally, consideration should be given to

implementing controls such as firewall rules or intrusion prevention systems to

prevent these types of activities from occurring in the future.

Output character limit: 495

 Chapter 04: Experiments

73

System prompt 01

User Prompt 02

Output Based on the traffic data, this instance was labeled as a "DoS Hulk"

because it exhibits characteristics of a Distributed Denial-of-Service (DDoS)

attack:

• The flow duration is extremely long (85155048 seconds), indicating that the

connection has been open for an unusually extended period.

• The total forward packets and backward packets are small, but the packet

lengths are significantly larger than average, with some packets reaching up

to 7240 bytes. This suggests a large amount of data being transmitted in a

short period.

• The flow IAT mean is very high (6082503.429 seconds), indicating that there

has been a significant delay between packets.

• The packet length mean and standard deviation are also unusually high,

suggesting that the attacker is using a specific protocol or technique to flood

the network with large packets.

• The FIN flag count is 0, indicating that no connection closure was attempted,

which is unusual for normal traffic.

Given these features, it's likely that this instance represents a DDoS attack,

specifically the "Hulk" variant, which uses a combination of TCP and UDP packets

to overwhelm the targeted system. The attacker may be attempting to saturate the

network bandwidth or exhaust system resources.

To address this anomaly, I suggest implementing a rule-based detection

system that flags any traffic exhibiting similar characteristics as potential DDoS

attacks. This could involve monitoring for unusual flow durations, packet sizes,

and inter-arrival times. Additionally, consideration should be given to

implementing controls such as rate limiting, IP blocking, or intrusion prevention

systems to prevent these types of activities from occurring in the future.

Output character limit: 495

 Chapter 04: Experiments

74

We can notice three issues here, the main issue being that the model still seems unaware of

the existence of the anomaly detection system. Going as far to suggest to the user to implement one.

Furthermore, the model is explicitly declaring the character output limit every time.

4.7.2. Output of System prompt 02

System prompt 02

User Prompt 01

Output Based on the provided traffic data, I would explain that this instance was

labeled as "DoS Hulk" because it exhibits characteristics typical of a Denial of

Service (DoS) attack. Specifically:

1. High packet rate: The flow has an extremely high packet rate, with 10

packets being sent in a very short duration (85155048 ms). This indicates a rapid

and intense traffic generation.

2. Unbalanced packet lengths: The forward packet length mean is 31.0,

while the backward packet length mean is 2319.0. This suggests that the attacker

is sending small packets to saturate the connection, making it difficult for the

system to respond normally.

3. Low average packet size: The average packet size is 793.67 bytes, which

is relatively small compared to typical network traffic. This indicates that the

attacker is using a large number of small packets to flood the system.

4. High flow duration: The flow duration is extremely long (85155048 ms),

indicating that the attack has been ongoing for an extended period.

To mitigate this DoS Hulk attack, I would suggest implementing the

following solutions:

1. Implement rate limiting: Set up rate limits on incoming traffic to prevent

a single source from sending excessive packets.

2. Use packet filtering: Filter out small packets and packets with unusual

lengths to reduce the impact of the attack.

3. Utilize SYN cookies: Enable SYN cookie protection to prevent attackers

from consuming system resources by sending large amounts of SYN requests.

4. Monitor traffic patterns: Continuously monitor network traffic patterns to

 Chapter 04: Experiments

75

detect anomalies and respond quickly to potential attacks.

By implementing these measures, it should be possible to reduce the

impact of this DoS Hulk attack and prevent similar incidents in the future.

System prompt 02

User Prompt 02

Output Based on the provided traffic data, I would explain that this instance was

labeled as "DoS Hulk" because it exhibits characteristics typical of a Denial of

Service (DoS) attack. Specifically:

1. High packet rate: The flow has an extremely high packet rate, with 10

packets being sent in a very short duration (85155048 ms). This indicates a

rapid and intense traffic generation.

2. Unbalanced packet lengths: The forward packet length mean is 31.0, while

the backward packet length mean is 2319.0. This suggests that the attacker

is sending small packets to saturate the connection, making it difficult for

the system to respond normally.

3. Low average packet size: The average packet size is 793.67 bytes, which is

relatively small compared to typical network traffic. This indicates that the

attacker is using a large number of small packets to flood the system.

4. High flow duration: The flow duration is extremely long (85155048 ms),

indicating that the attack has been ongoing for an extended period.

To mitigate this DoS Hulk attack, I would suggest implementing the

following solutions:

1. Implement rate limiting: Set up rate limits on incoming traffic to prevent a

single source from sending excessive packets.

2. Use packet filtering: Filter out small packets and packets with unusual

lengths to reduce the impact of the attack.

3. Utilize SYN cookies: Enable SYN cookie protection to prevent attackers

from consuming system resources by sending large amounts of SYN

requests.

4. Monitor traffic patterns: Continuously monitor network traffic patterns to

detect anomalies and respond quickly to potential attacks.

By implementing these measures, it should be possible to reduce the

impact of this DoS Hulk attack and prevent similar incidents in the future.

 Chapter 04: Experiments

76

We immediately notice that all the issues we faced with the previous system prompt seem to

have been largely mitigated. The model is now suggesting detailed and precise solutions tailored too

each anomaly. With a few shared solutions, given the field of networking and the denoted anomalies

in question.

4.7.3. Output of System prompt 03

System prompt 03

User Prompt 01

Output Based on the provided traffic data, I would explain that this instance was

labeled as "DoS Hulk" because it exhibits characteristics typical of a Distributed

Denial-of-Service (DDoS) attack. The key indicators include:

• An unusually long flow duration of 85155048 seconds, which is likely to be an

anomaly.

• A high number of packets sent in the forward direction (10), with a relatively

low number of packets sent in the backward direction (5).

• A large difference between the maximum and minimum packet lengths,

indicating potential manipulation or tampering with packets.

• The presence of a single ACK flag count, which is unusual for normal traffic.

• The high average packet size and bulk rates, suggesting that the attacker may

be sending large packets to overwhelm the target system.

The "DoS Hulk" label suggests that this attack is likely to be a powerful and

aggressive DDoS attack, possibly using multiple machines or compromised

devices to flood the target with traffic. This type of attack can cause significant

disruptions to network services and impact business operations.

To mitigate this anomaly, I would suggest implementing the following

solutions:

1. Implement rate limiting on incoming traffic to prevent overwhelming the

system.

2. Enable IP blocking or source address filtering to block suspicious IP

 Chapter 04: Experiments

77

addresses.

3. Implement packet filtering or content inspection to detect and drop

malicious packets.

4. Increase logging and monitoring capabilities to quickly identify and

respond to DDoS attacks.

5. Consider implementing a cloud-based DDoS mitigation service to help

absorb traffic and reduce the load on the target system.

By implementing these measures, we can help prevent the impact of this

DoS Hulk attack and ensure continued network availability and security.

System prompt 03

User Prompt 02

Output Based on the provided traffic data, I would explain that this instance was

labeled as "PortScan" because it exhibits characteristics typical of a port scanning

activity. The key indicators include:

• A short flow duration of 52 seconds, which is relatively brief for normal

network communication.

• A small number of packets sent in both forward and backward directions (1

each), with a low total length of packets.

• The presence of a single PSH flag count, which suggests that the attacker

may be sending packets to probe or test specific ports.

• The high packet rate and flow bytes per second rates, indicating rapid-fire

packet transmission.

• The short IAT mean and standard deviation, suggesting that the packets

were sent in quick succession.

• The low average packet length and segment size, indicating that the

attacker may be sending small packets to test port availability.

• The presence of a single FIN flag count, which is unusual for normal traffic.

The "PortScan" label suggests that this activity is likely an attempt to

gather information about the network or system by scanning open ports. This type

of activity can help attackers identify vulnerabilities and potential entry points for

future attacks.

 Chapter 04: Experiments

78

To mitigate this anomaly, I would suggest implementing the following

solutions:

1. Implement rate limiting on incoming traffic to prevent overwhelming the

system.

2. Enable IP blocking or source address filtering to block suspicious IP

addresses.

3. Implement packet filtering or content inspection to detect and drop

malicious packets.

4. Increase logging and monitoring capabilities to quickly identify and

respond to port scanning activities.

5. Consider implementing a cloud-based DDoS mitigation service to help

absorb traffic and reduce the load on the target system.

By implementing these measures, we can help prevent the impact of this

PortScan activity and ensure continued network availability and security.

In this third experiment we attempted to emphasize the contextual awareness of the model in

the system architecture. Doubling down on the existence of anomaly detection system but that did

not seem to have any effect on the LLM output.

4.8. Using SHAP

We opted to highlight the top 3 features (that corresponds to the highest SHAP values) in our

prompt, this information will be given to our LLM along with the traffic data. But before we do that,

we first need to inform our model of the inclusion of SHAP values in our rule-based detection

system via the system prompt:

4.8.1. SHAP powered system prompt

“You are a traffic analyzer that works alongside our existing rule-based anomaly detection

system that flags any traffic exhibiting anomalous characteristics with the proper label and uses

SHAP values to determine the features that had the most effect on the prediction. You are given

an instance of anomalous traffic data, along with the label of said anomaly (determined by our

 Chapter 04: Experiments

79

existing rule-based detection system) as well as the top 3 features that had the most effect on the

final decision. Your role is to provide a brief explanation as to why this traffic instance was labeled

as the given anomaly. Additionally, you need to suggest a solution to the anomaly, be as specific as

possible in your suggestion. Your outputs should have a max character limit of 700 (do not declare

the character count at the end of the output).”

4.8.2. SHAP powered user prompts

4.8.2.1. User prompt01

“The following traffic was labeled as Web Attack � Brute Force:

Destination Port: 88 | Flow Duration: 1133 | Total Fwd Packets: 9 | Total Backward Packets: 6

| Total Length of Fwd Packets: 3150 | Total Length of Bwd Packets: 3152 | Fwd Packet Length Max:

1575 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 350.0 | Fwd Packet Length Std:

694.5097192 | Bwd Packet Length Max: 1576 | Bwd Packet Length Min: 0 | Bwd Packet Length Mean:

525.3333333 | Bwd Packet Length Std: 813.8429005 | Flow Bytes/s: 5562224.184 | Flow Packets/s:

13239.188 | Flow IAT Mean: 80.92857143 | Flow IAT Std: 204.1750622 | Flow IAT Max: 787 | Flow IAT

Min: 2 | Fwd IAT Total: 1133 | Fwd IAT Mean: 141.625 | Fwd IAT Std: 294.4199806 | Fwd IAT Max: 868 |

Fwd IAT Min: 2 | Bwd IAT Total: 1032 | Bwd IAT Mean: 206.4 | Bwd IAT Std: 325.5046851 | Bwd IAT

Max: 787 | Bwd IAT Min: 45 | Fwd PSH Flags: 0 | Bwd PSH Flags: 0 | Fwd URG Flags: 0 | Bwd URG

Flags: 0 | Fwd Header Length: 304 | Bwd Header Length: 208 | Fwd Packets/s: 7943.512798 | Bwd

Packets/s: 5295.675199 | Min Packet Length: 0 | Max Packet Length: 1576 | Packet Length Mean:

393.875 | Packet Length Std: 704.585067 | Packet Length Variance: 496440.1167 | FIN Flag Count: 0 |

SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 |

CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up Ratio: 0 | Average Packet Size: 420.1333333 | Avg

Fwd Segment Size: 350.0 | Avg Bwd Segment Size: 525.3333333 | Fwd Header Length.1: 304 | Fwd

Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd Avg Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd

Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow Fwd Packets: 9 | Subflow Fwd Bytes: 3150 |

Subflow Bwd Packets: 6 | Subflow Bwd Bytes: 3152 | Init_Win_bytes_forward: 29200 |

Init_Win_bytes_backward: 2081 | act_data_pkt_fwd: 2 | min_seg_size_forward: 32 | Active Mean: 0.0 |

Active Std: 0.0 | Active Max: 0 | Active Min: 0 | Idle Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0

According to our SHAP powered anomaly rule-based detection system, the top 3 features

that had the most effect on the final decision are:

Flow Duration, Fwd Avg Bytes/Bulk, Fwd Header Length.1”

 Chapter 04: Experiments

80

4.8.2.2. User prompt02

“The following traffic was labeled as Web Attack � Sql Injection:

Destination Port: 443 | Flow Duration: 60261928 | Total Fwd Packets: 9 | Total Backward

Packets: 7 | Total Length of Fwd Packets: 2330 | Total Length of Bwd Packets: 4221 | Fwd Packet

Length Max: 1093 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 258.8888889 | Fwd Packet

Length Std: 409.7021615 | Bwd Packet Length Max: 1460 | Bwd Packet Length Min: 0 | Bwd Packet

Length Mean: 603.0 | Bwd Packet Length Std: 653.5941656 | Flow Bytes/s: 108.7087688 | Flow

Packets/s: 0.265507602 | Flow IAT Mean: 4017461.867 | Flow IAT Std: 15500000.0 | Flow IAT Max:

60000000 | Flow IAT Min: 1 | Fwd IAT Total: 60300000 | Fwd IAT Mean: 7532741.0 | Fwd IAT Std:

21200000.0 | Fwd IAT Max: 60000000 | Fwd IAT Min: 311 | Bwd IAT Total: 211947 | Bwd IAT Mean:

35324.5 | Bwd IAT Std: 27504.33405 | Bwd IAT Max: 57109 | Bwd IAT Min: 48 | Fwd PSH Flags: 0 |

Bwd PSH Flags: 0 | Fwd URG Flags: 0 | Bwd URG Flags: 0 | Fwd Header Length: 192 | Bwd Header

Length: 152 | Fwd Packets/s: 0.149348026 | Bwd Packets/s: 0.116159576 | Min Packet Length: 0 | Max

Packet Length: 1460 | Packet Length Mean: 385.3529412 | Packet Length Std: 532.0940872 | Packet

Length Variance: 283124.1176 | FIN Flag Count: 0 | SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag

Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 | CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up

Ratio: 0 | Average Packet Size: 409.4375 | Avg Fwd Segment Size: 258.8888889 | Avg Bwd Segment

Size: 603.0 | Fwd Header Length.1: 192 | Fwd Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd Avg

Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow

Fwd Packets: 9 | Subflow Fwd Bytes: 2330 | Subflow Bwd Packets: 7 | Subflow Bwd Bytes: 4221 |

Init_Win_bytes_forward: 8192 | Init_Win_bytes_backward: 513 | act_data_pkt_fwd: 8 |

min_seg_size_forward: 20 | Active Mean: 0.0 | Active Std: 0.0 | Active Max: 0 | Active Min: 0 | Idle

Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0

According to our SHAP powered anomaly rule-based detection system, the top 3 features

that had the most affect on the final decision are:

Flow Duration, Fwd Avg Bytes/Bulk, Fwd Header Length.1”

4.8.2.3. User prompt03

“The following traffic was labeled as Web Attack � Sql Injection:

Destination Port: 443 | Flow Duration: 60261928 | Total Fwd Packets: 9 | Total Backward

Packets: 7 | Total Length of Fwd Packets: 2330 | Total Length of Bwd Packets: 4221 | Fwd Packet

Length Max: 1093 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 258.8888889 | Fwd Packet

Length Std: 409.7021615 | Bwd Packet Length Max: 1460 | Bwd Packet Length Min: 0 | Bwd Packet

Length Mean: 603.0 | Bwd Packet Length Std: 653.5941656 | Flow Bytes/s: 108.7087688 | Flow

 Chapter 04: Experiments

81

Packets/s: 0.265507602 | Flow IAT Mean: 4017461.867 | Flow IAT Std: 15500000.0 | Flow IAT Max:

60000000 | Flow IAT Min: 1 | Fwd IAT Total: 60300000 | Fwd IAT Mean: 7532741.0 | Fwd IAT Std:

21200000.0 | Fwd IAT Max: 60000000 | Fwd IAT Min: 311 | Bwd IAT Total: 211947 | Bwd IAT Mean:

35324.5 | Bwd IAT Std: 27504.33405 | Bwd IAT Max: 57109 | Bwd IAT Min: 48 | Fwd PSH Flags: 0 |

Bwd PSH Flags: 0 | Fwd URG Flags: 0 | Bwd URG Flags: 0 | Fwd Header Length: 192 | Bwd Header

Length: 152 | Fwd Packets/s: 0.149348026 | Bwd Packets/s: 0.116159576 | Min Packet Length: 0 | Max

Packet Length: 1460 | Packet Length Mean: 385.3529412 | Packet Length Std: 532.0940872 | Packet

Length Variance: 283124.1176 | FIN Flag Count: 0 | SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag

Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 | CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up

Ratio: 0 | Average Packet Size: 409.4375 | Avg Fwd Segment Size: 258.8888889 | Avg Bwd Segment

Size: 603.0 | Fwd Header Length.1: 192 | Fwd Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd Avg

Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow

Fwd Packets: 9 | Subflow Fwd Bytes: 2330 | Subflow Bwd Packets: 7 | Subflow Bwd Bytes: 4221 |

Init_Win_bytes_forward: 8192 | Init_Win_bytes_backward: 513 | act_data_pkt_fwd: 8 |

min_seg_size_forward: 20 | Active Mean: 0.0 | Active Std: 0.0 | Active Max: 0 | Active Min: 0 | Idle

Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0

According to our SHAP powered anomaly rule-based detection system, the top 3 features

that had the most affect on the final decision are:

Flow Duration, Fwd Avg Bytes/Bulk, Fwd Header Length.1”

4.9. Experimental results with SHAP values

4.9.1. Output of User prompt01

SHAP powered system prompt

User Prompt 01

Output Based on the provided network traffic data and the output from your

SHAP-powered anomaly rule-based detection system, it appears that a Web

Attack - Brute Force is detected.

The top 3 features that contributed the most to the final decision are:

1. Flow Duration: This feature measures the length of time the flow has been

 Chapter 04: Experiments

82

active in seconds. A longer duration may indicate a prolonged and

suspicious activity.

2. Fwd Avg Bytes/Bulk: This feature calculates the average number of bytes

sent per bulk packet in the forward direction. A low value may suggest that

the traffic is not transmitting significant data, which could be indicative of

brute-force attempts.

3. Fwd Header Length.1: This feature measures the length of the forward

header in bytes. An unusual or inconsistent header length may indicate

tampering or manipulation of packets.

These features, along with others, contributed to the detection of a Web

Attack - Brute Force, which is a type of cyberattack that involves trying to guess

passwords or credentials using automated software.

It's essential to investigate this traffic further to determine the source and

potential impact of this attack. You may want to consider analyzing additional

features, such as packet captures, DNS queries, or system logs, to gain a deeper

understanding of the incident.

4.9.2. Output of User prompt02

SHAP powered system prompt

User Prompt 02

Output Based on the provided network traffic data and the output from your

SHAP-powered anomaly rule-based detection system, it appears that a Web

Attack - SQL Injection is detected.

The top 3 features that contributed the most to the final decision are:

1. Flow Duration: This feature measures the length of time the flow has been

active in seconds. A very long duration (60261928 seconds) may indicate a

prolonged and suspicious activity, which could be indicative of an SQL

injection attack.

2. Fwd Avg Bytes/Bulk: This feature calculates the average number of bytes

sent per bulk packet in the forward direction. A low value (0) suggests that

the traffic is not transmitting significant data, which could be indicative of

an attack attempting to inject malicious SQL code into a database.

3. Fwd Header Length.1: This feature measures the length of the forward

 Chapter 04: Experiments

83

header in bytes. An unusual or inconsistent header length (192 bytes) may

indicate tampering or manipulation of packets, which is common in SQL

injection attacks.

These features, along with others, contributed to the detection of an SQL

Injection attack, which involves injecting malicious code into a database to extract

sensitive data or disrupt the system.

It's essential to investigate this traffic further to determine the source and

potential impact of this attack. You may want to consider analyzing additional

features, such as packet captures, DNS queries, or system logs, to gain a deeper

understanding of the incident.

4.9.3. Output of User prompt03

SHAP powered system prompt

User Prompt 03

Output Based on the provided network traffic data and the output from your

SHAP-powered anomaly rule-based detection system, it appears that a Web

Attack - SQL Injection is detected.

The top 3 features that contributed the most to the final decision are:

1. Flow Duration: This feature measures the length of time the flow has been

active in seconds. A very long duration (60261928 seconds) may indicate a

prolonged and suspicious activity, which could be indicative of an SQL

injection attack.

2. Fwd Avg Bytes/Bulk: This feature calculates the average number of bytes

sent per bulk packet in the forward direction. A low value (0) suggests that

the traffic is not transmitting significant data, which could be indicative of

an attack attempting to inject malicious SQL code into a database.

3. Fwd Header Length.1: This feature measures the length of the forward

header in bytes. An unusual or inconsistent header length (192 bytes) may

indicate tampering or manipulation of packets, which is common in SQL

injection attacks.

These features, along with others, contributed to the detection of an SQL

Injection attack, which involves injecting malicious code into a database to extract

sensitive data or disrupt the system.

 Chapter 04: Experiments

84

It's essential to investigate this traffic further to determine the source and

potential impact of this attack. You may want to consider analyzing additional

features, such as packet captures, DNS queries, or system logs, to gain a deeper

understanding of the incident.

Additionally, you can use this information to fine-tune your detection rules

and improve the accuracy of your SHAP-powered anomaly rule-based detection

system.

4.10. Results discussion

4.10.1. Comparison between results without SHAP and with SHAP

The two approaches demonstrated distinct differences in their output quality and accuracy.

Without SHAP values, the LLM struggled to provide actionable insights, often suggesting general

solutions that did not take into account the specific context of the anomaly. The model's responses

were generic and lacked precision, failing to effectively explain the characteristics of each anomaly.

In contrast, incorporating SHAP values significantly improved the quality and accuracy of the

LLM's output. The model was able to generate detailed and precise explanations of each anomaly,

highlighting key indicators that contributed to its classification. The solutions proposed by the LLM

were tailored to each specific anomaly, demonstrating a better understanding of the context in which

they occurred.

The integration of SHAP values also enabled the LLM to recognize the existence of an

anomaly detection system, allowing it to provide more effective and targeted suggestions for

mitigating the anomalies. This demonstrated that the model was able to learn from its environment

and adapt to its role within the system architecture.

4.10.2. Importance of Prompt Engineering

Prompt engineering plays a crucial role in unlocking the full potential of Large Language

Models (LLMs) like the one used in this study. The quality of the output generated by the LLM is

 Chapter 04: Experiments

85

heavily dependent on the effectiveness of the prompt, which serves as a guide for the model to

generate human-friendly descriptions of anomalies.

A well-crafted prompt can enable the LLM to provide accurate and actionable insights, while

a poorly designed prompt can lead to generic or irrelevant responses. The importance of prompt

engineering lies in its ability to bridge the gap between raw data and actionable insights.

In this study, the integration of SHAP values within the prompting strategy demonstrated the

significant impact that careful design of prompts can have on the quality of output generated by

LLMs. By incorporating contextual information and specific indicators, the prompt enabled the

model to generate detailed explanations and targeted solutions for each anomaly.

Moreover, the effectiveness of the prompt engineering approach used in this study highlights

the importance of considering the role of the LLM within a larger system architecture. By designing

prompts that take into account the existence of an anomaly detection system, the model was able to

provide more effective suggestions for mitigating anomalies, demonstrating its ability to learn from

and adapt to its environment.

In conclusion, prompt engineering is a critical component of any LLM-based approach, as it

enables the model to generate high-quality output that is tailored to specific use cases. The careful

design of prompts can significantly impact the accuracy and effectiveness of the LLM's responses,

making it an essential consideration in any AI-powered anomaly detection system.

 Chapter 04: Experiments

86

4.11. Conclusion

The introduction of SHAP values has significantly improved the model's ability to explain its

predictions and provide meaningful insights into the features that contributed most to the final

decision. The top 3 features identified by SHAP, such as Flow Duration, Fwd Avg Bytes/Bulk, and

Fwd Header Length, provide valuable information about the characteristics of the detected

anomalies. The experimental results show that the LLM-based approach can accurately identify and

classify different types of anomalies, including Web Attacks - Brute Force and SQL Injection. The

model's ability to extract relevant features from the network traffic data and use them to make

informed decisions is impressive.

General Conclusion

This thesis has explored the potential of Large Language Models (LLMs) to enhance anomaly

detection in smart grids by providing interpretable explanations for identified anomalies. Our

research addressed the critical limitation of traditional methods – their lack of interpretability –

which hinders effective decision-making in response to grid anomalies.

The investigation leveraged the well-established CICIDS2017 dataset, a comprehensive

collection of labeled anomaly scenarios in smart grids. We explored how LLMs, specifically the

powerful Llama3 8B model, could be harnessed to improve the interpretability of anomaly detection

systems within this specific domain.

A key approach involved the integration of SHAP (SHapley Additive exPlanations) values.

By incorporating SHAP values within our prompting strategy, we aimed to bridge the gap between

raw anomaly data and actionable insights. SHAP values provide a means to explain the internal

workings of machine learning models, highlighting the features that contribute most significantly to a

specific prediction. In our case, these values guided the LLM towards generating more accurate and

informative descriptions of the detected anomalies.

The experimental results were highly encouraging. Even without extensive fine-tuning, the

Llama3 8B LLM achieved remarkable results when prompted effectively. This underscores the

crucial role of prompt engineering – crafting specific instructions for the LLM – in unlocking its full

potential for anomaly detection in smart grids. By leveraging domain knowledge and insights like

SHAP values within our prompts, we were able to significantly improve the interpretability of the

anomaly detection system.

The LLM-based approach successfully identified and classified different types of anomalies,

including web attacks like brute force and SQL injection. The model's ability to extract relevant

features from network traffic data and use them to make informed decisions is a significant

advancement. However, some limitations remain. While SHAP values provide valuable information

about the contributing factors to an anomaly, there is a need for even more detailed explanations.

Future research could explore incorporating additional context or visualizations to help grid analysts

better understand the nature of the attack and its potential impact on the smart grid's operation.

 Chapter 04: Experiments

88

Limitations

While this study demonstrates the potential of LLMs for improving interpretability in smart

grid anomaly detection, there are limitations to consider for future research.

Data Availability and Specificity

The effectiveness of LLMs hinges on the quality and quantity of training data. This study

relied on the CICIDS2017 dataset, which is not specifically designed for smart grid anomalies.

Future work should explore the impact of domain-specific datasets containing descriptions of real-

world smart grid anomalies. This will likely lead to more nuanced and accurate descriptions

generated by the LLM.

Generalizability and False Positives

The study focused on a single LLM (Llama3 8B) and may not generalize to other

architectures or sizes. Further research is needed to explore the performance of different LLMs on

diverse smart grid anomaly datasets. Additionally, the interpretability of LLM explanations might

not be universally reliable. Future work should investigate methods to quantify the confidence of

LLM explanations and develop mechanisms to reduce false positives.

Explainability vs. Actionability

While LLMs offer human-readable descriptions, the actionable nature of these explanations

requires further exploration. This study focused on using SHAP values for prompting, but other

interpretability techniques like attention mechanisms could be explored to highlight specific data

points influencing the LLM's reasoning. Additionally, research into how to translate LLM

descriptions into concrete actions for grid operators is crucial for real-world implementation.

Computational Cost and Scalability

Training and running large LLMs can be computationally expensive. This study used a

limited fine-tuning approach to balance performance and resource constraints. Future research should

investigate techniques for efficient LLM training and inference specifically for smart grid

 Chapter 04: Experiments

89

applications. Additionally, exploring smaller, more focused LLMs tailored for anomaly detection in

smart grids could be a promising avenue for achieving scalability.

Perspective and Future work

This research paves the way for further exploration of LLMs in smart grid anomaly detection.

Here are key areas for advancement:

Exploring More Powerful LLMs

Experimenting with cutting-edge LLMs could provide even more insightful explanations, but

with increased computational demands.

Fine-tuning on Anomaly Descriptions

Developing a dataset of real-world smart grid anomalies paired with detailed human

explanations would significantly improve the LLM's ability to generate accurate descriptions.

Collaboration with domain experts would be crucial.

Enhancing Prompt Engineering

Incorporating intricate domain knowledge like specific anomaly types and potential

consequences into prompts can guide the LLM towards more precise explanations.

Visualizations and Context

Integrating visualizations alongside LLM descriptions and including information on historical

occurrences and mitigation strategies could further enrich the explanations provided.

90

Bibliography

[

1]

M. G. M. M. T. E. K. K. A. a. A. M. A. Almihat, "Energy and Sustainable Development

in Smart Cities: An Overview," Smart Cities, vol. 5, no. 4, pp. 1389-1408, 2022.

[

2]

S. Shea, "smart-city," techtarget, july 2020. [Online]. Available:

https://www.techtarget.com/iotagenda/definition/smart-city. [Accessed 03 05 2024].

[

3]

S. B. a. S. K. S. a. T. B. a. S. M. M. Hossain, "Anomaly Detection Techniques in Smart

Grid Systems: A Review," IEEE World AI IoT Congress (AIIoT), 2023.

[

4]

S. K. S. T. B. S. M. M. H. Shampa Banik, "Anomaly Detection Techniques in Smart

Grid Systems: A Review," 2023 IEEE World AI IOT Congress, 2023.

[

5]

S. C. B. B. a. T. P. F. o. I. M. U. B. C. R. Bruno Rossi, "Anomaly Detection in Smart

Grid Data: An Experience Report," 2016 IEEE International Conference on Systems, Man, and

Cybernetics • SMC, pp. 2313-2318, 2016.

[

6]

S. R. Salkuti, "Challenges, issues and opportunities for the development of smart grid,"

International Journal of Electrical and Computer Engineering (IJECE), vol. 10, p. 1179, 2020.

[

7]

"smart grids," iea, [Online]. Available: https://www.iea.org/energy-

system/electricity/smart-grids. [Accessed 20 5 2024].

[

8]

"machine learning," ibm, [Online]. Available: https://www.ibm.com/topics/machine-

learning. [Accessed 20 5 2024].

[

9]

R. Kanjee, "Different Types of Machine Learning Algorithms Popular Machine Learning

Algorithms," linkdin, 1 6 2017. [Online]. Available: https://www.linkedin.com/pulse/different-

types-machine-learning-algorithms-popular-ritesh-kanjee/. [Accessed 20 5 2024].

[

10]

W. Zhang, "Machine Learning Approaches to Predicting Company Bankruptcy,"

Journal of Financial Risk Management, vol. 6, pp. 364-374, 1 2017.

[A. saini, "Guide on support vector machines (svm)," 23 1 2024. [Online]. Available:

91

11] https://www.analyticsvidhya.com/blog/2021/10/support-vector-machinessvm-a-complete-guide-

for-beginners/. [Accessed 20 5 2024].

[

12]

S. a. P.-A. J. a. A. G. a. D. S. J. a. C.-P. D. a. K. C. a. F. D. a. B. D. a. G.-H. R. a. R. M.

a. G. M. a. C. Salcedo-Sanz, "Analysis, Characterization, Prediction and Attribution of Extreme

Atmospheric Events with Machine Learning: a Review," 2022.

[

13]

M. Y. a. Q. A. a. N. M. a. S. M. S. a. W. S. a. S. K.-U.-R. R. Khan, "Automated

Prediction of Good Dictionary EXamples (GDEX): A Comprehensive Experiment with Distant

Supervision, Machine Learning, and Word Embedding-Based Deep Learning Techniques,"

Complexity, 2021.

[

14]

F. A. Fitriani, "K-Means Clustering using RStudio," medium, 26 7 2021. [Online].

Available: https://farahayuf06.medium.com/k-means-clustering-using-rstudio-d4d941f0769c.

[Accessed 20 5 2024].

[

15]

F. M. S. a. T. P. a. N. M. a. R. Mohamed, "A Comprehensive Overview and

Comparative Analysis on Deep Learning Models: CNN, RNN, LSTM, GRU," no. 2305.17473,

2023.

[

16]

A. Raja, "Prompt Engineering and its Types," 3 9 2023. [Online]. Available:

https://www.linkedin.com/pulse/prompt-engineering-its-types-arivukkarasan-raja/. [Accessed 20

5 2024].

[

17]

P. S. a. A. K. S. a. S. S. a. V. J. a. S. M. a. A. Chadha, "A Systematic Survey of Prompt

Engineering in Large Language Models: Techniques and Applications," no. 2402.07927, 2024.

[

18]

L. a. D. R. Meteyard, "Best practice guidance for linear mixed-effects models in

psychological science," 2019.

[

19]

N. a. Z. F. a. L. F. a. Z. H. Elmrabit, "Evaluation of Machine Learning Algorithms for

Anomaly Detection," in 2020 International Conference on Cyber Security and Protection of

Digital Services (Cyber Security), 2020.

[

20]

M. a. L. Y. a. H. A. a. K. B. Guastalla, "Application of Large Language Models to DDoS

Attack Detection," pp. 83-99, 2024.

92

[

21]

R. Y. N. B. S. A. M. A. C. F. M. F. ZIADOON KAMIL MASEER, "Benchmarking of

Machine Learning for Anomaly Based Intrusion Detection Systems in the CICIDS2017

Dataset," vol. 9, 3 2 2021.

[

22]

S. H. a. K. Lei, "IGAN-IDS: An imbalanced generative adversarial network towards

intrusion detection system in ad-hoc networks," Ad Hoc Networks, vol. 105, 2020.

[

23]

J. L. &. K. Park, "GAN-based imbalanced data intrusion detection system," Springer

Nature, 2019.

[

24]

P. S. a. N. A. S. Arif Yulianto, "Improving AdaBoost-based Intrusion Detection System

(IDS) Performance on CIC IDS 2017 Dataset," in Content from this work may be used under the

terms of the Creative Commons Attribution 3.0 licence. Any further distribution.

[

25]

H. S. A. Y. M. D. H. B. C. E. G. Abderrazak Khedir, "Enhancing Machine Learning

Model Interpretability in Intrusion Detection Systems through SHAP Explanations and LLM-

Generated Desc," IEEE, 2024.

[

26]

M. F. a. M. J. a. V. I. F. P. Guato Burgos, "A Review of Smart Grid Anomaly Detection

Approaches Pertaining to Artificial Intelligence," Applied Sciences, vol. 14, no. 1194, 2024.

[

27]

UNB, "Intrusion detection evaluation dataset (CIC-IDS2017)," 25 4 2024. [Online].

Available: https://www.unb.ca/cic/datasets/ids-2017.html.

[

28]

F. A. a. Z. L. Mohammed Alrowaily, Security, Privacy, and Anonymity in Computation,

Communication, and Storage, vol. Effectiveness of Machine Learning Based Intrusion

Detection Systems, 2019, pp. 277-288.

[

29]

Y. V. R. R. &. C. V. Liao, "Imputation of missing values in sensor data using knn," in

SIAM International Conference on Data Mining, 2014.

[

30]

Z. F. M. &. Z. J. Ding, "An improved KNN-based missing value imputation algorithm

for time series data," in 2016 IEEE 18th International Conference on High Performance

Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd

International Conference on Data Science and Systems, 2016.

[M. G. J. A. C. C. &. H. J. Gupta, "Outlier detection for temporal data: A survey," in

93

31] IEEE Transactions on Knowledge and Data Engineering, 2018.

[

32]

S. I. a. L. D. a. H. Shrivastava, "MathPrompter: Mathematical Reasoning using Large

Language Models," 2023.

[

33]

B. M. A. a. A. A. Mossa, "Coffee disease classification using Convolutional Neural

Network based on feature concatenation," Informatics in Medicine Unlocked, vol. 39, no. 2352-

9148, p. 101245, 2023.

[

34]

L. Ali, C. Zhu, N. A. Golilarz, A. Javeed, M. Zhou and Y. Liu, "Reliable Parkinson’s

Disease Detection by Analyzing Handwritten Drawings: Construction of an Unbiased Cascaded

Learning System based on Feature Selection and Adaptive Boosting Model," IEEE Access, pp.

1-1, 2019.

[

35]

V. Team, "Llama 3 8B vs Mistral 7B: Small LLM Pricing Considerations," Vantage,

[Online]. Available: https://www.vantage.sh/blog/best-small-llm-llama-3-8b-vs-mistral-7b-cost.

[Accessed 30 5 2024].

[

36]

meta, "LLM Comparison: LLaMA vs. Llama 3," sapling.ai, [Online]. Available:

https://sapling.ai/llm/llama-vs-llama3. [Accessed 2 5 2024].

[

37]

W. H. a. X. M. a. H. Q. a. X. Z. a. C. L. a. H. C. a. J. L. a. X. Q. a. X. L. a. M. Magno,

"How Good Are Low-bit Quantized LLaMA3 Models? An Empirical Study," no. 2404.14047,

2024.

[

38]

T. Karl, "Reasons Why Is Python Used for Machine Learning," newhorizons, 17 8 2023.

[Online]. Available: https://www.newhorizons.com/resources/blog/why-is-python-used-for-

machine-learning. [Accessed 4 6 2024].

[

39]

Y. Burowski, "LM Studio Documentation," [Online]. Available: https://lmstudio.ai/docs.

[Accessed 4 6 2024].

[

40]

Y. Z. a. J. Y. a. Y. Y. a. A. C.-C. Yao, "Cumulative Reasoning with Large Language

Models," 2024.

[andrew, "Context length in LLMs: All you need to know," agi sphere, 23 4 2023.

94

41] [Online]. Available: https://agi-sphere.com/context-length/. [Accessed 10 5 2024].

[

42]

D. Powers, "Evaluation: From Precision, Recall and F-Factor to ROC, Informedness,

Markedness & Correlation," Mach. Learn. Technol., vol. 2, 2008.

[

43]

M. Guato Burgos, J. Morato and F. Vizcaino Imacaña, "A Review of Smart Grid

Anomaly Detection Approaches Pertaining to Artificial Intelligence," Appl. Sci., no. 14, p. 1194,

2024.

[

44]

Manoharanagi, "how Large Language model work with numerical data," medium, 20 jun

2023. [Online]. Available: https://medium.com/@manoharanagi99/how-large-language-model-

work-with-numerical-data-4c90b20792f6. [Accessed 26 4 2024].

[

45]

C. Samiullah, "The Technical User's Introduction to LLM Tokenization,"

ChristopherGS, 28 2 2024. [Online]. Available: https://christophergs.com/blog/understanding-

llm-tokenization. [Accessed 27 4 2024].

[

46]

J. a. A. B. a. M. N. a. Y. K. S. Jithish, "Distributed Anomaly Detection in Smart Grids: A

Federated Learning-Based Approach," sensors, vol. 11, pp. 7157-7179, 2023.

[

47]

M. a. T. U. a. I. M. a. A. N. A. a. M. M. Shaaban, "Data-Driven Detection of Electricity

Theft Cyberattacks in PV Generation," vol. 16, no. 2, pp. 3349-3359, 2022.

[

48]

S. a. D. S. K. Bhattacharjee, "Detection and Forensics against Stealthy Data Falsification

in Smart Metering Infrastructure," IEEE Transactions on Dependable and Secure Computing,

vol. 18, no. 1, pp. 356-371, 2021.

[

49]

M. Hentea, "Applying Security Principles to Smart Grid," in Building an Effective

Security Program for Distributed Energy Resources and Systems, 2021, pp. 129-164.

[

50]

M. a. L. Y. a. H. A. a. K. B. Guastalla, "Application of Large Language Models to DDoS

Attack Detection," pp. 83-99, 2024.

[

51]

D. S. D. M. Y. b. I. B. K. R. B. Kurniabudi Kurniabudi, "Important Features of CICIDS-

2017 Dataset For Anomaly Detection in High Dimension and Imbalanced Class Datase,"

Indonesian Journal of Electrical Engineering and Informatics (IJEEI), vol. 9, no. 2, 2021.

95

[

52]

unsloth, "unsloth team," unsloth, 5 5 2024. [Online]. Available:

https://github.com/unslothai/unsloth.

[

53]

I. a. T. G. a. B. N. Mollas, "LionForests: Local Interpretation of Random Forests through

Path Selection," 2019.

96

Table of figures
Table 1: State of the art summary table ... 38

Table 2: CICIDS2017 Dataset summary.. 50

Table 3: example of data post feature engineering .. 54

Table 4: comparison table between Llama3, Mistral, and Gemma .. 58

Table 5: encoded features ... 64

Table 6: CICIDS2017 webattacks data sample count (Thursday WorkingHours Morning

WebAttacks. ... 66

Table 7: random forest classifier results .. 67

Table 8: visual representation of the SHAP values post classification 67

Figure 1: visual representation of a smart city and components [2] .. 6

Figure 2: the smart city and its smart aspects .. 8

Figure 3: SVM visual example diagram [10] ... 20

Figure 4: KNN visual example diagram [11] ... 20

Figure 5: AdaBoost visual representation diagram [12] .. 21

Figure 6: Random Forest (RF) visual representation diagram [13] ... 22

Figure 7: K-Means visual diagram example [14] .. 23

Figure 8: Binary Decision Tree visual diagram example [39] ... 23

Figure 9: Visual illustration of the distinction between deep learning and traditional machine

learning in terms of feature extraction and learning .. 25

Figure 14: proposed system architecture .. 44

Figure 10: methodology overview diagramme .. 47

Figure 11: Anomaly detection process overview ... 48

Figure 12: SHAP values powered feature selection process overview 48

Figure 13: LLM powered Anomaly description process overvuew ... 49

Figure 15: google colab logo .. 61

Figure 16: LM Studio (0.2.22) Home interface ... 63

