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Abstract 
 

 

 

 

The emergence of smart grids has revolutionized the power sector, fostering interconnected 

and intelligent electricity networks. These advancements offer enhanced monitoring and control 

capabilities, but also introduce challenges in anomaly detection, a critical aspect for grid stability and 

security. Traditional methods, while effective at identifying anomalies, often lack interpretability, 

making it difficult to understand the root cause and formulate an effective response. Here, Large 

Language Models (LLMs) offer a promising approach. By generating human-friendly descriptions of 

anomalies, LLMs can bridge the gap between raw data and actionable insights. 

This dissertation investigates the potential of LLMs for anomaly detection in smart grids. We 

leverage the CICIDS2017 dataset to explore how LLMs can be harnessed to improve the 

interpretability of anomaly detection systems.  Specifically, we examine the effectiveness of using 

SHAP (SHapley Additive exPlanations) values to guide the LLM towards generating more accurate 

descriptions of the detected anomalies. Notably, our research demonstrates that even with minimal 

fine-tuning, the Llama3 8B LLM achieves remarkable results when prompted effectively. This 

highlights the crucial role of prompt engineering in unlocking the full potential of LLMs for this 

domain. By incorporating SHAP values within our prompting strategy, we are able to bridge the gap 

between anomaly detection and actionable insights. This empowers decision-making experts with 

valuable information to respond to anomalies effectively, ensuring the continued reliability of smart 

grid operations. 

Keywords: Smart Grids, Smart City, Machine Learning, Large Language Models, Decision 

Support Systems, Cyber Security, CICIDS2017, Llama3, SHAP values.  
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Résumé 
 

 

 

 

L'émergence des réseaux électriques intelligents a révolutionné le secteur de l'énergie, créant 

des réseaux électriques interconnectés et intelligents. Ces progrès facilitent la surveillance et le 

contrôle, mais posent également des défis en matière de détection des anomalies, essentielle pour la 

stabilité et la sécurité du réseau. Si efficaces pour identifier les anomalies, les méthodes 

traditionnelles manquent souvent d'interprétabilité, compliquant la compréhension de la cause 

première et la formulation d'une réponse efficace. 

En générant des descriptions compréhensibles des anomalies, les modèles de langage 

volumineux (LLM) offrent une approche prometteuse.  Cette étude explore leur potentiel pour la 

détection des anomalies dans les réseaux électriques intelligents. Nous utilisons le jeu de données 

CICIDS2017 pour analyser comment les LLM peuvent améliorer l'interprétabilité des systèmes de 

détection. Plus précisément, on examine l'efficacité des valeurs SHAP pour guider le LLM vers des 

descriptions plus précises.  Nos recherches démontrent que même avec très peu de fine-tuning, le 

Llama3 8B LLM obtient des résultats remarquables avec un prompt efficace. Cela souligne le rôle 

crucial de l'ingénierie des invites (prompt engineering) pour libérer le plein potentiel des LLM. En 

intégrant SHAP dans notre stratégie d'invite, on comble le fossé entre détection et informations 

exploitables. Cela permet aux experts de réagir efficacement aux anomalies, garantissant la fiabilité 

du smart grid. 

Mots clés: Réseaux électriques intelligents, Ville intelligente, Apprentissage automatique, 

Grands modèles de langage, Systèmes d'aide à la décision, Cybersécurité, CICIDS2017, Llama3, 

valeurs SHAP. 
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 مختصر ال 
 

 

 

 

ظهور الشبكات الذكية أحدث ثورة في قطاع الطاقة، حيث أدى إلى شبكات كهرباء مترابطة وذكية. تقدم  

اكتشاف   مجال  في  تحديات  تطرح  أيضًا  ولكنها  محسنة،  وتحكم  مراقبة  قدرات  التطورات  الشبكة  هذه  نشاط 

شاط  ن، وهو جانب مهم لاستقرار الشبكة وأمنها. على الرغم من فعالية الأساليب التقليدية في تحديد    به  المشبوه

المشبوه الجذري    به  الشبكة  السبب  فهم  الصعب  من  يجعل  مما  التفسير،  قابلية  إلى  تفتقر  ما  غالباً  أنها  إلا   ،

الكبيرة  اللغة  نماذج  تقدم  هنا،  فعالة.  استجابة  أوصاف سهلة   (LLMs) وصياغة  إنشاء  واعدًا. من خلال  نهجًا 

 .الفهم للتشوهات، يمكن لنماذج اللغة الكبيرة أن تسد الفجوة بين البيانات الأولية والرؤى العملية

يبحث هذا القسم في إمكانات نماذج اللغة الكبيرة للكشف عن نشاط الشبكة المشبوه به. نحن نستفيد من  

بيانات   أنظمة    CICIDS2017مجموعة  تفسير  قابلية  لتحسين  الكبيرة  اللغة  نماذج  تسخير  كيفية  لاستكشاف 

عن   المشبوهالكشف  الشبكة  قيم  به  نشاط  استخدام  فعالية  نفحص  التحديد،  وجه  على   .SHAP   تفسيرات(

SHapley  نشاط الشبكة المشبوه التراكمية الإضافية( لتوجيه نموذج اللغة الكبيرة نحو إنشاء أوصاف أكثر دقة ل 

أنه    به  تظُهر  أبحاثنا  أن  إلى  للنموذج  المكتشفة. تجدر الإشارة  الدقيق  الضبط  الأدنى من  الحد  ، يحقق  حتى مع 

لهندسة    Llama3 8B LLMنموذج   المحوري  الدور  يبرز  فعالة. وهذا  استخدام مطالبات  نتائج ملحوظة عند 

  SHAPالمطالبات في إطلاق العنان للإمكانات الكاملة لنماذج اللغة الكبيرة في هذا المجال. من خلال دمج قيم  

والرؤى القابلة    به نشاط الشبكة المشبوهفي استراتيجية المطالبات الخاصة بنا، نتمكن من سد الفجوة بين اكتشاف  

مع   للتعامل  قيمة  معلومات  الحصول على  القرار من  ِّن خبراء صنع  يمك  وهذا  المشبوهللتنفيذ.  الشبكة    به  نشاط 

 .بشكل فعال، مما يضمن استمرار موثوقية عمليات الشبكة الذكية.

شبكات ذكية, مدينة ذكية, التعلم الآلي, نماذج لغة كبيرة, أنظمة دعم القرار, الأمن    الكلمات الرئيسية:

 . SHapley, تفسيرات   CICIDS2017  ,Llama3الإلكتروني,  
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General Introduction  
  

The power industry has undergone a significant transformation with the emergence of smart 

grids. These intelligent and interconnected electricity networks boast real-time monitoring, dynamic 

control, and improved efficiency thanks to advanced sensors and communication technologies. 

However, this increased complexity also introduces challenges, particularly in anomaly detection. 

Anomalies in smart grids represent deviations from normal operating patterns, often signifying 

underlying faults, cyberattacks, or other critical events. Timely and accurate detection of these 

anomalies is essential for ensuring grid stability, preventing power outages, and safeguarding against 

security threats. 

Traditional anomaly detection methods, primarily based on statistical and machine learning 

techniques, have shown promise in identifying anomalies. However, a crucial limitation remains: the 

lack of interpretability. These methods often struggle to provide comprehensive and human-

understandable explanations, hindering their usefulness for decision-making support. 

Large Language Models (LLMs) have emerged as powerful tools with the potential to bridge 

this gap. Their ability to process and generate human-quality text makes them well-suited for 

providing meaningful descriptions of anomalies, enhancing the interpretability of anomaly detection 

systems. This thesis explores the potential of LLMs to improve anomaly detection in smart grids by 

generating informative and human-friendly explanations for detected anomalies. 

This research focuses on leveraging a well-established dataset, CICIDS2017, which provides 

a comprehensive collection of labeled anomaly scenarios in smart grids. By utilizing this dataset, we 

can explore how LLMs can be harnessed to improve the interpretability of anomaly detection 

systems specifically within the context of smart grid data. 

One key approach we explore is the integration of SHAP (SHapley Additive exPlanations) 

values. SHAP values offer a means to explain the internal workings of machine learning models, 

highlighting the features that contribute most significantly to a specific prediction. In our case, we 

can leverage SHAP values to guide the LLM towards generating more accurate descriptions of the 

detected anomalies. Notably, by focusing on effective prompt engineering – the art of crafting 

specific instructions for the LLM – we aim to unlock its full potential for this domain. 
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Our research demonstrates that even without extensive fine-tuning, a powerful LLM like 

Llama3 8B achieves remarkable results when prompted effectively. This highlights the crucial role 

of crafting compelling prompts that leverage domain knowledge and insights like SHAP values. By 

incorporating SHAP values within our prompting strategy, we aim to bridge the gap between raw 

anomaly data and actionable insights. This empowers decision-making experts with valuable 

information to respond to anomalies effectively, ensuring the continued reliability of smart grid 

operations. 

Structure: 

Chapter 1: Context and Research Question 

This chapter lays the foundation for understanding the context of the research. It delves into 

the concept of smart grids, exploring their key features, functionalities, and the role they play in the 

power industry. The chapter also highlights the challenges associated with anomaly detection in 

these complex systems, emphasizing its importance for grid stability and security. Additionally, this 

chapter will introduce the research question that will guide the investigation into the potential of 

LLMs for anomaly detection in smart grids. 

Chapter 2: Literature Review 

This merged chapter provides a comprehensive overview of the relevant background for your 

research. It will first explore existing research on anomaly detection for smart grids, examining 

traditional machine learning techniques and discussing their limitations, particularly the lack of 

interpretability. This section will then shift focus to Large Language Models (LLMs), introducing 

their concept, capabilities in natural language processing and understanding, and their potential 

applications. The chapter will then explore how LLMs can be leveraged for anomaly detection in 

smart grids, highlighting existing research on integrating LLMs with these systems and pinpointing 

potential areas for further exploration. 
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Chapter 3: Proposed Approach 

Building upon the groundwork established in the previous chapters, this chapter focuses on 

the specific contributions of your thesis. It details the research methodology employed, including the 

chosen dataset (CICIDS2017) and the LLM utilized (Llama3 8B).  This chapter will delve into the 

proposed approach, outlining the specific techniques and methods used to leverage LLMs for 

anomaly detection in smart grids.  The chapter will emphasize the importance of prompt engineering 

in unlocking the full potential of LLMs for this task. 

Chapter 4: Experiments 

This chapter focuses on the experimental validation of your proposed approach. It details the 

experimental setup, including the evaluation metrics used. The chapter will then present the core 

findings of your research, demonstrating the effectiveness of the LLM-based approach in generating 

accurate and informative descriptions of anomalies detected in smart grids.  This includes a detailed 

analysis of the experimental results, highlighting the strengths and limitations of the proposed 

approach. 
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1.1.  Introduction 

The modern power grid is evolving towards interconnected "smart grids" for increased 

efficiency and sustainability. These integrate advanced technologies with traditional infrastructure, 

enabling real-time monitoring and control. This chapter sets the context by exploring key features of 

smart grids and their benefits, including improved grid stability and integration of renewable energy. 

However, smart grids also introduce challenges, particularly in anomaly detection. Anomalies, 

deviations from normal operating patterns, can indicate equipment malfunctions or cyberattacks. 

Effective anomaly detection is crucial for maintaining grid stability and security. Traditional 

methods often lack interpretability, hindering effective responses. This research explores the 

potential of Large Language Models (LLMs) for anomaly detection in smart grids. 

1.2. The Smart City 

With increasingly large populations in urban areas, cities are now forced to adapt to this 

growth in a thoughtful manner by adopting policies planned for the long term. It is from this 

obligation that the status of “smart city” was born. So, what is a smart city? 

1.2.1. Definition of a Smart City 

A smart city is an urban area that uses information and communication technologies (ICT) 

and the Internet of Things (IoT) to improve the efficiency and sustainability of city operations and 

enhance the quality of life for its citizens. 

The key characteristics of a smart city encompass the utilization of digital technologies and 

data collection to optimize various city services and infrastructure, spanning transportation, energy 

management, waste disposal, and public safety. Additionally, smart cities strive to enhance 

environmental sustainability by implementing initiatives such as smart lighting, advanced waste 

management systems, and the integration of renewable energy sources. Moreover, these cities aim to 

elevate citizen engagement and overall quality of life through amenities like interactive kiosks, 

widespread access to free public Wi-Fi, and real-time data sharing platforms. Furthermore, smart 

cities seek to foster economic growth by leveraging advanced infrastructure and services to attract 

businesses and talent, thereby creating a conducive environment for innovation and prosperity. 
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While there is no universally accepted definition, the overarching goal of a smart city is to 

leverage technology and data to make urban areas more efficient, livable, and sustainable. The 

specific smart city initiatives and technologies implemented can vary widely between cities based on 

their unique needs and priorities. [1] 

 

 

Figure 1: visual representation of a smart city and components [2] 

1.2.2. The Smart Aspects of a Smart City 

The concept of a “smart city” is a multi-faceted one, encompassing various aspects that 

leverage technology and data-driven solutions to enhance the quality of life for its residents and 

promote sustainable urban development. [1] 

1.2.2.1. Smart People 

Refers to citizens who are actively engaged in the city's digital ecosystem, utilizing 

technology to access services, participate in decision-making processes, and contribute to the overall 

development of the city. Smart people are empowered individuals who leverage digital tools to 

enhance their quality of life and interact with the urban environment in innovative ways. 
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1.2.2.2. Smart Living 

Encompasses the use of technology and data-driven solutions to create a high-quality, 

convenient, and sustainable lifestyle for residents. Smart living involves smart homes, efficient 

public services, access to real-time information, and personalized experiences that enhance comfort 

and well-being. 

1.2.2.3. Smart Environment 

Focuses on leveraging technology to monitor, protect, and enhance the natural surroundings 

within a city. This includes initiatives to improve air quality, reduce pollution, conserve resources, 

promote green spaces, and create a sustainable urban ecosystem that prioritizes environmental health 

and well-being. 

1.2.2.4. Smart Mobility 

Involves the integration of intelligent transportation systems, innovative mobility solutions, 

and data-driven approaches to optimize transportation networks, reduce congestion, enhance 

accessibility, and promote sustainable modes of travel within the city. Smart mobility aims to 

improve the efficiency and safety of urban transportation while reducing environmental impact. 

1.2.2.5. Smart Economy 

Refers to the use of technology and innovation to drive economic growth, foster 

entrepreneurship, attract investment, and create job opportunities within the city. A smart economy 

focuses on digital transformation, knowledge-based industries, and sustainable business practices to 

ensure long-term prosperity and competitiveness. 

1.2.2.6. Smart Government 

Involves the adoption of digital governance practices, data-driven decision-making, and 

citizen-centric services to enhance transparency, efficiency, and accountability in city administration. 

Smart government initiatives aim to improve public services, engage citizens, and optimize resource 

allocation through the effective use of technology and information systems. 
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Figure 2: the smart city and its smart aspects 

1.3. Smart grid the Intelligent electricity 

network 

Current electricity networks are inevitably destined to experience a profound change in the 

coming years. Indeed, in a context of development of intermittent and probably diffuse renewable 

energies, development of new electrical uses and the need to optimize the efficiency of networks, it 

will be necessary continue to ensure the best possible balance between production and consumption. 

There solution to these difficulties is the use of new infrastructures called Smart Grid (network smart 

electric). 

1.3.1. Definition of smart grids 

There are currently several definitions of smart grids and also several objectives for the same 

definition of smart electricity networks. However, all definitions agree that bidirectional 

communication is a key to future smart networks. 
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Definition 1: An electricity distribution network that uses computer technologies to optimize 

production, distribution, and consumption is referred to as "intelligent." The goal of this type of 

network is to optimize every segment of the electricity supply chain, from all producers to all 

consumers, in order to maximize energy efficiency and overall energy quality. 

Definition 2: An electrical network whose operations have switched from using analog 

technology to standard technology is referred to as a "smart grid" by the Carnegie Mellon University 

Software Engineering Institute. integrated digital technology that makes detection, prediction, 

control, and communication possible.  

1.3.1. Different types of electrical networks 

The electricity network can be broadly divided into three main components, understanding the 

characteristics and functionalities of these electricity network types is fundamental for developing 

effective anomaly detection strategies in smart grid systems: [3] 

1.3.1.1. Transport Network 

The transport network in the context of electricity refers to the high-voltage network 

responsible for transmitting electricity over long distances from power plants to substations. This 

network operates at high voltages to minimize energy losses during transmission and is crucial for 

delivering electricity from large power generation facilities to distribution points. 

1.3.1.2. Distribution Network 

The distribution network is the intermediary network that receives electricity from the 

transmission network at lower voltages and distributes it to end-users, such as residential, 

commercial, and industrial consumers. This network includes transformers that step down the 

voltage for safe delivery to homes and businesses. 

1.3.1.3. Local Distribution Network 

The local distribution network, also known as the secondary distribution network, is the final 

stage of electricity distribution that delivers power directly to consumers' premises. It consists of 

power lines, transformers, and meters that regulate and measure electricity consumption at the 

individual level. This network ensures reliable and efficient electricity supply to end-users within a 

specific area. 
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1.3.2. Key Features of Smart Grids Relevant to Anomaly Detection 

Effective anomaly detection in smart grids hinges on exploiting the unique data landscape 

they generate: 

1.3.2.1. Two-Way Communication Infrastructure (Advanced Metering 

Infrastructure - AMI) 

Smart grids are characterized by an advanced metering infrastructure that enables two-way 

communication between utility providers and consumers. This allows for real-time monitoring and 

collection of granular data from smart meters, which can be analyzed for anomaly detection. [4] 

1.3.2.2. Integration of Renewable Energy Sources and Distributed Generation 

Smart grids incorporate renewable energy sources and distributed generation, such as solar 

panels and wind turbines, which introduce new data streams that can be monitored for anomalies. 

Detecting anomalies in the generation, distribution, and consumption of renewable energy is crucial 

for maintaining grid stability and reliability. [5] 

1.3.2.3. Sensors and Real-Time Monitoring Capabilities 

Smart grids are equipped with a network of sensors that continuously monitor various 

parameters, including voltage, current, power flow, and grid performance. This real-time data can be 

analyzed to detect anomalies that may indicate equipment failures, cyber-attacks, or other issues that 

could compromise the grid's security and reliability. [5] 

1.3.2.4. Cyber-Security Considerations 

Smart grids rely on digital infrastructure and communication networks, which introduces 

potential vulnerabilities to cyber-attacks. Anomaly detection techniques can be employed to identify 

and mitigate cyber-security threats, such as data manipulation, unauthorized access, and malware 

intrusion. [4] 

1.3.2.5. Electricity Theft and Fraud Detection 

Smart grid data can be analyzed to detect anomalies in energy consumption patterns, which 

may indicate electricity theft or fraudulent activities. Identifying these anomalies is crucial for 

maintaining the grid's financial viability and ensuring fair billing for consumers. [4] 
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1.3.2.6. Fault Detection and Grid Resilience 

Anomaly detection in smart grid data can help identify equipment malfunctions, grid failures, 

and other issues that could compromise the grid's reliability and resilience. Prompt detection of these 

anomalies can enable proactive maintenance and rapid response to minimize disruptions. [5] 

1.3.3. Smart Grid Development Challenges  

The transition towards smart electricity networks presents a multifaceted set of challenges 

that must be addressed for successful implementation. These challenges span across industrial, 

social, economic, and environmental domains, each requiring careful consideration and strategic 

planning. In this section, we will delve into the key development issues associated with the 

deployment of smart grid technologies. [6] 

1.3.3.1. Industrial Challenges 

The development of smart grids relies heavily on the availability and integration of advanced 

materials and technological advancements. Ensuring the functionality and compatibility of all 

components within the smart grid system is of paramount importance. Continuous developments, 

improvements, and compliance with industry standards are necessary to address the industrial 

challenges. 

1.3.3.2. Social Challenges 

The integration of smart grid technologies involves the active participation and engagement 

of consumers. The introduction of smart meters empowers consumers to manage their energy 

consumption more effectively, fostering a new dynamic between the grid and the end-user. 

Addressing the social implications of this shift and ensuring a seamless transition for consumers is a 

crucial aspect of smart grid development. 

1.3.3.3. Economic Challenges 

The modernization of electricity networks requires new forms of cooperation among the 

major economic players in the sector. Additionally, the role of the state in the development of smart 

grid infrastructure as a public service is a critical economic consideration. 

1.3.3.4. Environmental Challenges 

Smart grids aim to integrate renewable and decentralized energy sources, which can 

contribute to minimizing the environmental impact of electricity generation and distribution. 
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Addressing the challenges of integrating these new energy sources and mitigating the effects on 

climate change and environmental disturbances is a key priority in smart grid development. 

1.3.1. Types of smart grids: 

We can distinguish three categories of “smart network” approaches 

1.3.1.1. Smart Grid at the Transport Network Level 

At the level of transmission system operators (TSOs), the smart grid approach involves 

enhancing planning, surveillance, and remote-control capabilities. This entails leveraging technical 

advancements to better manage the evolving needs of the transmission network, particularly in light 

of the increasing integration of decentralized power generation, which can pose challenges for 

network balancing and security. 

1.3.1.2. Smart Grid at the Distribution Network Level 

Distribution network operators (DNOs) must deploy technologies traditionally used in the 

transmission network, such as bidirectional protection and balancing management, to support the 

growth of decentralized power production. The decreasing cost of these technologies has facilitated 

this development, allowing for the accelerated installation of long-available solutions. 

1.3.1.3. Smart Grid at the Local Level 

The most significant change in the smart grid paradigm may occur at the local level, where 

the convergence of electronics, IT, and telecommunications has opened new horizons for the 

management of local consumption and production. This specific area is often referred to as the 

"smart home" or, more broadly, the “smart consumer”. 

1.4. Iot and how it ties in to Smart Grids 

The integration of the Internet of Things (IoT) into smart grid infrastructure has emerged as a 

pivotal advancement in enhancing the interconnectedness and efficiency of modern electricity 

networks. By enabling seamless communication between various grid components, IoT technologies 

facilitate real-time data exchange and decision-making processes, ultimately optimizing energy flow 

and consumption. 

IoT sensors have been deployed extensively throughout smart grids, collecting vast amounts 

of data pertaining to energy usage, grid performance metrics, and environmental conditions. Through 
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the application of advanced data analysis techniques, these sensor-generated data streams are 

transformed into valuable insights, allowing for the identification of anomalies and the optimization 

of energy distribution, thereby enhancing the overall efficiency of the grid infrastructure. 

Furthermore, IoT technologies have enabled remote monitoring and control capabilities, 

empowering grid operators to promptly manage energy flow, detect faults, and respond to potential 

disturbances in a timely manner. This enhanced level of control and responsiveness has been 

instrumental in ensuring the stability and reliability of smart grid systems. 

By leveraging IoT for real-time monitoring and control, smart grids have demonstrated 

increased resilience in the face of potential disruptions. IoT devices, equipped with advanced 

anomaly detection algorithms, can swiftly identify and respond to grid irregularities, rerouting 

energy flow and optimizing operations to minimize downtime and enhance overall performance. 

Moreover, the integration of IoT has facilitated the seamless incorporation of renewable 

energy sources into the grid infrastructure. By monitoring generation and consumption patterns in 

real-time, IoT technologies enable efficient utilization of renewable resources, contributing to the 

development of a more sustainable and eco-friendly energy ecosystem. [7] 

1.5. The Cyber-security principles on smart 

grids  

With the integration of advanced technologies and digital systems in modern smart grids 

comes the critical challenge of ensuring the cyber-security of smart grid infrastructures. 

Understanding and addressing cyber-security anomalies within smart grids are paramount to 

safeguarding against potential threats and vulnerabilities that could compromise the integrity and 

functionality of the grid. In this section, we explore a range of cyber-security anomalies that smart 

grids may encounter, from attacks on data integrity to network infrastructure issues, highlighting the 

importance of proactive measures and robust strategies to mitigate risks and protect the smart grid 

ecosystem. 
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1.5.1. Attacks on Data Integrity 

Attacks on data integrity within smart grids represent deliberate and malicious efforts to 

manipulate the information transmitted across the network. These attacks can manifest in various 

forms, such as altering readings from smart meters, injecting false data to disrupt grid operations, or 

deleting critical information to conceal evidence of a cyber-attack. Ensuring the integrity of data in 

smart grids is paramount to maintaining the reliability and security of the entire system. [3] 

1.5.2. Unusual Measurements and Consumptions 

Anomalies related to unusual measurements and consumptions in smart grids can stem from 

diverse sources. Malfunctioning equipment may report incorrect data, external interferences like 

power surges or physical obstructions can distort readings, and fraudulent activities such as 

electricity theft can lead to irregular consumption patterns. Detecting and addressing these anomalies 

is crucial for ensuring the accuracy and efficiency of energy distribution within the smart grid. [3] 

1.5.3. Intrusions 

Intrusions into the smart grid's network infrastructure involve unauthorized access to critical 

components such as control systems, data storage, or communication channels. Intruders gaining 

entry into these systems can disrupt operations, compromise sensitive information, or execute 

malicious activities that threaten the grid's functionality and security. Preventing and mitigating 

intrusions is essential to safeguarding the integrity and confidentiality of smart grid operations. [3] 

1.5.4. Network Infrastructure Issues 

Issues with the network infrastructure of smart grids can arise from hardware failures, 

software bugs, or connectivity problems. Hardware failures like broken sensors or downed power 

lines, software glitches in control systems, or network connectivity issues such as lost wireless 

connections can impede the smooth operation of the grid. Addressing and resolving these 

infrastructure issues promptly is vital to maintaining the reliability and performance of the smart 

grid. [3] 
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1.5.5. Electrical Data Anomalies 

Electrical data anomalies in smart grids can result from various issues within the electrical 

components of the system. For instance, a short circuit causing a sudden surge in current or a 

malfunctioning transformer leading to a voltage drop can disrupt the normal functioning of the grid. 

Monitoring and addressing these electrical anomalies are essential to prevent potential safety hazards 

and ensure the efficient delivery of electricity. [3] 

1.5.6. Identification of Cyber-attacks 

The identification of cyber-attacks in smart grids involves the detection of suspicious 

activities aimed at compromising the system's cybersecurity. This process includes recognizing 

patterns of malicious behavior, identifying malware or other harmful software, and understanding 

common attack strategies to proactively defend against cyber threats. Early detection and response to 

cyber-attacks are critical to maintaining the security and resilience of smart grid operations. [3] 

1.5.7. Use of Detection Devices 

Detection devices play a crucial role in identifying anomalies within smart grids. For 

example, smart meters can detect unusually high electricity usage patterns, while network monitors 

can identify abnormal data transmission volumes. Leveraging these specialized devices enhances the 

ability to detect and respond to anomalies promptly, contributing to the overall security and 

efficiency of the smart grid infrastructure. [3] 

  



  Chapter 01: Context and research question 

16 

 

1.6. Research question: 

In the evolving landscape of smart grid technology, where efficiency and resilience are 

paramount, the growing complexity and interconnectivity within these systems have introduced new 

challenges in safeguarding against cyber security anomalies. While the field of anomaly detection 

has been extensively explored using various machine learning techniques, yielding promising results, 

the advent of Large Language Models (LLMs) presents a novel opportunity for further advancement. 

This thesis aims to investigate the potential of LLMs in enhancing anomaly detection within 

the context of cyber security threats in smart grids. Considering the existing landscape of machine 

learning-based anomaly detection techniques, the research will focus on leveraging the unique 

capabilities of LLMs to comprehend textual data related to smart grid operations and security. By 

exploring this approach, the study seeks to determine how LLMs can aid experts in making informed 

decisions for system improvement, ultimately contributing to the betterment of smart grid systems. 

In essence, how can Large Language Models (LLMs) be effectively leveraged to enhance 

anomaly detection in smart grids by comprehending textual data related to smart grid operations and 

security, thereby aiding experts in making informed decisions for system improvement, considering 

the existing landscape of anomaly detection techniques in machine learning that have shown 

promising results? 
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2.1. Introduction 

The rapid evolution of artificial intelligence has brought forth a new generation of powerful 

tools: Large Language Models (LLMs). These models, trained on massive datasets of text and code, 

have revolutionized tasks like natural language understanding, question answering, and text 

generation. As AI continues to shape various industries, exploring the potential of LLMs in the 

context of complex systems like smart grids becomes increasingly critical. 

Smart grids necessitate real-time decision-making amidst intricate interconnected systems 

and continuous data streams. Traditional methods often struggle to adapt to this dynamic 

environment. This chapter serves as the foundation for understanding how LLMs can be leveraged to 

enhance decision-making in smart grids. We delve into the core principles and capabilities of LLMs, 

setting the stage for exploring their application in anomaly detection, predictive maintenance, and 

energy optimization. The insights gained here will pave the way for subsequent chapters detailing the 

practical implementation of LLMs within smart grid environments. 

However, the challenge of anomaly detection in smart grids necessitates a close examination 

of existing approaches. This chapter delves into a comprehensive review of current research 

endeavors relevant to our central theme: utilizing LLMs for anomaly detection in smart grids. By 

scrutinizing existing methodologies, outcomes, and limitations, we aim to build a solid foundation 

for the development of our proposed LLM-based method. This review will unearth crucial insights, 

identify gaps in existing knowledge, and reveal opportunities for further exploration in the following 

chapters. 

The chapter commences with a meticulous analysis of "Related Works" – existing research 

closely related to our thesis. This analysis will be followed by a comprehensive table encapsulating 

key facets of the reviewed works, including their methods, datasets, and results. We will then delve 

into a detailed discussion of the collective insights derived, highlighting the strengths, weaknesses, 

and untapped potential for further investigation within this field. By meticulously examining the 

current state of the art, this chapter not only prepares the ground for the innovative LLM-based 

method proposed here, but also situates it within the broader context of smart grid anomaly detection 

research. This comprehensive foundation will streamline the execution and assessment of our 

proposed approach in the forthcoming chapters. 
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2.1.  Machine Learning  

Machine learning, situated within the broader domain of artificial intelligence, represents a 

scientific discipline characterized by the utilization of algorithms to discern patterns within datasets. 

These patterns, which may manifest as recurrent structures or relationships, are identified across 

various forms of data, encompassing numerical values, textual information, images, statistical 

metrics, and more. The versatility of machine learning is underscored by its capacity to leverage any 

form of digital data for analysis and learning purposes. 

Central to the essence of machine learning is the process of pattern recognition, wherein 

algorithms are tasked with uncovering underlying structures within datasets to enhance their 

performance in executing specific tasks. Through the iterative analysis of data, these algorithms 

acquire the ability to discern intricate patterns, correlations, and trends, thereby refining their 

predictive capabilities and decision-making processes. This iterative learning process enables 

machines to autonomously adapt and improve their performance over time, culminating in the 

development of sophisticated models capable of addressing complex problems across diverse 

domains. 

By harnessing the power of machine learning, researchers and practitioners can unlock 

valuable insights, automate decision-making processes, and drive innovation in fields ranging from 

healthcare and finance to marketing and robotics. The transformative potential of machine learning 

lies in its ability to extract meaningful information from vast and diverse datasets, enabling 

organizations to make data-driven decisions, optimize operations, and unlock new opportunities for 

growth and advancement. [8] 

Some of the popular machine learning classification algorithms include: 

2.1.1. Support Vector Machine (SVM) 

SVM is a classification method that plots data points in an n-dimensional space and aims to 

find the optimal hyperplane that best separates the data into different classes. It works by identifying 

the hyperplane that maximizes the margin between classes, allowing for effective classification of 

new data points based on their position relative to this hyperplane. [9] 
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Figure 3: SVM visual example diagram [10] 

2.1.2. K-Nearest Neighbors (KNN) 

KNN is a simple instance-based algorithm that makes predictions based on nearby data 

points, where the class of a new data point is determined by the majority vote of its k nearest 

neighbors. KNN operates by storing all available cases and classifying new cases based on the 

majority class of their nearest neighbors, measured using distance functions like Euclidean or 

Manhattan distance. [9] 

 

Figure 4: KNN visual example diagram [11] 
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2.1.3. AdaBoost 

AdaBoost is a boosting ensemble model that works well with decision trees. It focuses on 

learning from previous mistakes by increasing the weight of misclassified data points. This algorithm 

adapts by iteratively training decision trees, calculating weighted error rates, updating weights of 

misclassified points, and combining the predictions of multiple trees to make the final prediction. [9] 

 

Figure 5: AdaBoost visual representation diagram [12] 
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2.1.4. Random Forest 

Random Forest is an ensemble model that uses bagging as the ensemble method and decision 

trees as individual models. It leverages the concept of randomness to build a collection of decision 

trees. Random Forest operates by training multiple decision trees on random subsets of the training 

set, with each tree providing a classification vote that is aggregated to make the final prediction. [9] 

 

Figure 6: Random Forest (RF) visual representation diagram [13] 

 

2.1.5. Naive Bayes 

Naive Bayes is a probabilistic classifier based on Bayes' theorem, assuming independence 

between features. It calculates the probability of an event occurring given the presence of certain 

features. Naive Bayes operates by computing the likelihood of each class based on the feature values 

and selecting the class with the highest probability as the predicted outcome for a new data point. [9] 
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2.1.6. K-Means 

K-Means is an unsupervised clustering algorithm used to partition data into k clusters based 

on similarity. It aims to minimize the variance within clusters and maximize the variance between 

clusters. K-Means operates by iteratively assigning data points to the nearest cluster centroid and 

updating the centroids based on the mean of the data points in each cluster until convergence is 

reached. [9] 

 

Figure 7: K-Means visual diagram example [14] 

2.1.7. Decision Tree 

Decision Tree is a supervised 

learning algorithm used for classification 

and regression tasks. It creates a tree-like 

structure of decisions based on feature 

values to predict the target variable. 

Decision Tree operates by recursively 

splitting the data based on feature attributes 

to maximize information gain or minimize 

impurity, resulting in a tree structure where 

each leaf node represents a class or 

regression value. [9] 

 

Figure 8: Binary Decision Tree visual diagram 

example [39] 
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2.1.8. Linear Regression 

Linear Regression is a simple and widely used regression algorithm that models the 

relationship between independent variables and a continuous dependent variable using a linear 

equation. Linear Regression operates by fitting a line that best represents the relationship between 

the independent and dependent variables, aiming to minimize the sum of squared differences 

between the observed and predicted values. It predicts continuous outcomes based on the input 

features. [9] 

2.1. Deep Learning  

Deep learning is a subset of machine learning and artificial intelligence that utilizes multi-

layered artificial neural networks to perform complex tasks with a high degree of accuracy. These 

deep neural networks have shown significant advancements in various domains, outperforming 

traditional machine learning methods, especially when handling unstructured and large datasets. 

Deep learning has a profound impact across diverse fields such as speech recognition, healthcare, 

autonomous vehicles, cybersecurity, predictive analytics, and more. 

The core concept of deep learning revolves around the use of artificial neural networks 

inspired by the biological structure of the human brain. These networks analyze incoming data, 

identify patterns, and classify information to produce desired outputs. Unlike the human brain, 

artificial neural networks operate through discrete layers, connections, and data propagation 

directions. 

One of the distinguishing features of deep learning is its ability to automatically extract 

features for classification, eliminating the need for manual feature engineering as required in 

traditional machine learning approaches. This feature extraction process is data-driven and relies on 

large datasets for training to achieve high accuracy in output predictions. 

Due to the complexity of its algorithms, deep learning necessitates powerful computational 

resources, often utilizing high-performance CPUs or GPUs, especially in cloud-based environments. 

Various types of artificial neural networks are employed in deep learning applications, such as 

Convolutional Neural Networks (CNNs) for image classification and object recognition, and 

Generative Adversarial Networks (GANs) for creating realistic yet synthetic data. [15] 



  Chapter 02: Literature Review 

25 

 

 

Figure 9: Visual illustration of the distinction between deep learning and traditional machine 

learning in terms of feature extraction and learning 

2.2.  Definition of large language models 

A large language model (LLM) is a deep learning algorithm that can perform a range of 

natural language processing (NLP) tasks. Large language models use transformer models and are 

trained on large datasets. They can thus recognize, translate, predict or generate texts or other 

content. 

Large language models are also referred to as neural networks (NN), which are computer 

systems inspired, by the human brain. These neural networks are based on a network of nodes, 

arranged in layers, like neurons. 

In addition to teaching human languages to artificial intelligence (AI) applications, large 

language models can also be trained to perform different tasks, such as understanding protein 

structures, writing software code, and many more. Others just like the human brain, large language 

models must be trained beforehand, then refined, so that they can classify or generate text, answer 

questions, or even summarize a document. Their abilities to solve the problems submitted to them 

can be used in different fields, such as health, finance and entertainment. Large language models can 

support different applications of NLP, including translation, Chabot’s, AI assistants, and more. 

Large language models also have a large number of parameters, which are similar to the 

memories that memory collects when it is learning. Think of these parameters as the model's 

knowledge bank. 

In 2024, some popular examples of Large Language Models include: 
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• GPT-3 and GPT-4 (OpenAI): OpenAI's Generative Pre-trained Transformer 

(GPT) series, particularly GPT-3 and GPT-4, are renowned for their language generation 

capabilities and have been widely used in applications like ChatGPT and Microsoft 

Copilot. 

• LLaMA (Meta): Meta's LLaMA family of models is another notable example 

of LLMs that excel in language understanding and generation tasks. 

• PaLM2 (Google): Google's PaLM2 is a powerful Large Language Model 

known for its ability to comprehend and generate human-like text, contributing to various 

natural language processing applications. 

These LLMs are built on transformer-based architectures, utilizing a vast number of 

parameters and advanced deep learning techniques to process and generate text in a human-like 

fashion. They have revolutionized the field of natural language processing and are widely recognized 

for their ability to understand context, generate coherent responses, and adapt to various language-

related tasks with remarkable accuracy and efficiency. 

2.3. What is a transformer model? 

A transformer model is the most common architecture of a large language model. This 

consists of an encoder and a decoder. A transformer model processes data by converting inputs into 

tokens and then performing simultaneous mathematical equations to discover the relationships that 

exist between the tokens. The computer can thus see the patterns that a human would determine if the 

same query were submitted to it. 

Transformer models rely on self-attention mechanisms, which allow them to learn faster than 

traditional models, such as long short-term memory (LSTM) models. A self-attentive transformer 

model can look at different parts of a sequence, or the entire context of a sentence, to generate 

predictions. 

2.4. Main components of large language models 

Large language models consist of multiple layers of neural networks. Recurrent layers, 

feedforward layers, embedding layers, and attention layers work together to process input text and 

generate output content. 
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The embedding layer creates embeddings from the input text. This part of the large language 

model captures the semantic and syntactic meaning of the input, so that the model can understand the 

context. 

The feed-forward layer (FFN) of a large language model consists of several fully connected 

layers that transform input embeddings. By doing this, these layers allow the model to glean general 

concepts, that is, to understand the user's intent with the input text. 

The recurrent layer interprets the words of the input text in order. It captures the relationship 

between words in a sentence. 

The attention mechanism allows a large language model to focus on single parts of the input 

text appropriate for the task at hand. This layer allows the model to generate the most accurate 

outputs. 

2.5. The three main types of large language 

models: 

• Generic or raw language models predict the next word based on the language used in 

the training data. These language models perform information retrieval tasks. 

• Instruction-matched language models are trained to predict responses based on the 

instructions provided in the input. They can therefore carry out sentiment analysis or generate text or 

code. 

• Dialogue-friendly language models are trained to dialogue and predict the next 

response. Think about chatbots or conversational AI. 

2.6. What is the difference between large 

language models and generative AI? 

In academic writing, the distinction between large language models (LLMs) and generative 

AI lies in their fundamental functions and applications within the realm of artificial intelligence. 

Large language models, such as OpenAI's GPT-4 and Google's PaLM, are specialized AI systems 
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designed to work specifically with language. These models utilize natural language processing 

(NLP) techniques to comprehend and generate human-like text. The term "large" in LLMs signifies 

the trend towards training models with an increasing number of parameters, leading to enhanced 

performance through the processing of vast amounts of data. 

On the other hand, generative AI serves as a broader category encompassing various AI tools 

focused on content creation. Generative AI models, like ChatGPT and DALL-E, are built to generate 

original content across different domains, including images, music, and text. These models leverage 

complex machine learning algorithms, such as recurrent neural networks (RNNs) and generative 

adversarial networks (GANs), to understand patterns and produce output. While LLMs are 

specifically tailored for language-related tasks, generative AI models have a wider scope of 

applications, extending beyond text generation to include image and audio creation. 

The interplay between LLMs and generative AI is evident in their collaborative roles, where 

LLMs provide the foundational text-generating capabilities that power generative AI tools like 

ChatGPT. As LLMs evolve to accept various inputs beyond text, such as audio and imagery, they 

contribute to the development of multimodal content generation. While generative AI models have 

the potential to revolutionize industries through applications like 3D modeling and voice assistants, 

LLMs primarily focus on text-based content creation, with the capacity to enhance voice assistants 

and other text-centric applications. 

2.7. How do large language models work? 

A large language model is based on a transformer model. It works as follows: it receives an 

input, encodes it, then decodes it to produce an output prediction. But before a large language model 

can receive text input and generate an output prediction, it must be trained so that it can perform 

general functions, and it must be fine-tuned so that it can perform specific tasks. 

Training: Large language models are pre-trained using large text datasets from sites like 

Wikipedia, GitHub, etc. These datasets include billions of words, the quality of which will impact 

the performance of large language models. At this point, large language models begin unsupervised 

learning, meaning they process the provided datasets without special instructions. During this 

process, the LLM AI algorithm can learn the meaning of words and understand the relationships 

between them. He also learns to make the distinction at the level of meaning depending on the 
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context. For example, it will determine whether "left" means the opposite of "right" or being 

"clumsy." 

Tuning: For a large language model to be able to perform a specific task, such as translation, 

it must be tuned for that activity. The adjustment optimizes performance of specific tasks. 

Prompt tuning: This is a function similar to prompt tuning, where a model is trained to 

perform a specific task via a few-prompting prompt. Shot or zero-shot prompting. A prompt is an 

instruction provided to an LLM. Few-shot prompting teaches the model to predict outputs by giving 

it a few examples. For example, in this sentiment analysis, a few-shot prompt would look like this: 

Customer review: This plant is so beautiful! 

Customer sentiment: positive 

Customer review: This plant is so hideous! 

Customer sentiment: negative 

Based on the semantic meaning of "hideous" and the example provided in opposition, the 

language model will understand that the customer's sentiment in the second example is "negative." 

Conversely, zero-shot prompting does not provide any examples to the language model to 

teach it how to respond to input. Instead, he frames the question by defining the sentiment that 

applies to the sentence. It clearly states the task the language model should perform, but does not 

provide problem-solving examples. 

2.8. Use cases for large language models 

Large language models can serve different purposes: 

• Information retrieval: consider Bing or Google. When you use their search function, 

you rely on a large language model to produce information in response to a query. This is capable of 

retrieving information, summarizing it and communicating the response conversationally. 

• Sentiment analysis: As applications of natural language processing, large language 

models enable businesses to analyze the sentiment of text data. 
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• Text generation: Large language models underpin generative AI, like ChatGPT, and 

can generate text based on inputs. They can produce a sample text when prompted. For example: 

“Write me a poem about palm trees in the style of Emily Dickinson.” 

• Code generation: Like text generation, code generation is an application of generative 

AI. LLMs understand diagrams, which allows them to generate code. 

• Chatbots and conversational AI: thanks to large language models, chatbots or 

conversational AI of a customer service are able to interact with customers, interpret the meaning of 

their questions or their answers, and often their provide answers in turn. 

In addition to these use cases, large language models can complete sentences; answer 

questions, and summarize text. 

With such a wide range of applications, major language models can be found in a multitude 

of domains: 

• Technology: Large language models have many uses, such as enabling search engines 

to answer queries, helping developers write code, and much more. 

• Health and science: Large language models are capable of understanding proteins, 

molecules, DNA and RNA. As a result, they can help in the development of vaccines, in the 

identification of treatments for diseases and in the improvement of preventive medicine. LLMs are 

also used as medical chatbots to carry out patient admissions or basic diagnostics. 

• Customer service: LLMs are used across industries in customer service, in the form of 

chatbots or conversational AI for example. 

• Marketing: Marketing teams can use LLMs to run sentiment analysis to quickly 

generate campaign ideas or copy, like synopses, and more. 

• Legal: From searching large text data sets to generating legalese, large language 

models can help lawyers, paralegals, and legal staff. 

• Banking LLMs can help banking institutions detect fraud. 
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2.9. Prompt Engineering  

Prompt engineering is a specialized discipline within the field of artificial intelligence that 

focuses on refining and optimizing prompts to effectively interact with language models (LMs) and 

generative AI systems. The practice involves designing prompts that guide AI models to produce 

specific responses or outputs. A well-crafted prompt serves as the interface between human intent 

and machine-generated content, influencing the quality and relevance of the AI-generated output. 

The process of prompt engineering entails creating clear and unambiguous prompts that align 

with the desired outcome, avoiding jargon and leading questions that may bias the model's response. 

It involves an iterative approach where initial prompts are tested, evaluated based on the generated 

output, refined as needed, and repeated until the desired quality of the response is achieved. This 

iterative refinement process ensures that the prompts effectively guide the AI model to produce 

accurate and contextually relevant outputs. 

Prompt engineering is essential for enhancing the capabilities of large language models 

(LLMs) and other AI systems across various tasks such as question answering, text generation, and 

reasoning. By refining prompts, researchers and developers can improve the performance and 

accuracy of AI models, enabling them to better understand user intent and generate more tailored 

responses. [16] 

2.9.1. Conversational Prompts  

2.9.1.1. System Prompt 

A system prompt is an instruction or query provided to the AI model that guides its behavior 

or response. It is typically predefined by the system or application and serves as the initial input to 

prompt the AI model to generate a specific output or perform a particular task. System prompts are 

designed to elicit desired responses from the AI model based on the system's requirements or 

objectives. [17] 

2.9.1.2. User Prompt 

A user prompt is an input provided by a user to interact with the AI model. It can be in the 

form of a question, command, or statement that conveys the user's intent or request to the AI system. 

User prompts play a crucial role in guiding the AI model's responses and influencing the quality and 

relevance of the generated output based on the user's input. [17] 
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2.9.1.3. Assistant Prompt 

An assistant prompt is a specific type of prompt used in conversational AI systems or virtual 

assistants. It involves providing instructions or queries to an AI assistant to perform tasks, provide 

information, or engage in a dialogue with the user. Assistant prompts are tailored to the context of 

the interaction and are designed to facilitate effective communication between the user and the AI 

assistant, ensuring accurate and helpful responses. [17] 

2.9.2. Types of Prompt Engineering 

2.9.2.1. Zero-Shot Prompting 

This technique involves providing the LLM with a prompt that is entirely novel and not 

included in its training data. The model leverages its internal knowledge and comprehension to 

generate the desired output based solely on the prompt's instructions. While zero-shot prompting can 

be highly effective in managing LLM outputs, it presents challenges in guaranteeing consistent and 

accurate results across all instances. [16] 

2.9.2.2. Few-Shot Prompting 

Similar to zero-shot prompting, few-shot prompting utilizes prompts. However, it furnishes 

the LLM with a limited number of illustrative examples showcasing the desired output format or 

content. This approach enhances the LLM's ability to produce more precise and consistent outputs 

compared to zero-shot prompting, effectively guiding the model towards the intended outcome. [16] 

2.9.2.3. Chain-of-Thought (CoT) Prompting 

This technique involves deconstructing the desired outcome into a series of sequential steps. 

The LLM is then instructed to generate the text corresponding to each step in the sequence. CoT 

prompting can be a powerful tool for managing LLM outputs, particularly for tasks requiring a 

logical flow of information. However, its implementation can be intricate and time-consuming, 

requiring careful consideration of the specific task at hand. [16] 

2.9.2.4. Generated Knowledge Prompting 

This approach leverages the LLM's own output to create the prompt for subsequent 

generations. By incorporating the model's previously generated text into the prompt, this technique 

can improve the precision and uniformity of the overall output.  The LLM's familiarity with the 

concepts used in the prompt fosters a more focused and consistent generation process. [16] 
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2.9.2.5. Self-Consistency Prompting 

This technique instructs the LLM to ensure its subsequent output aligns with its prior 

responses. This approach is particularly beneficial for tasks requiring coherence and continuity, such 

as generating a narrative or dialogue.  By prompting the LLM for self-consistency, the overall output 

maintains a cohesive and logical flow throughout the generation process. [16] 

2.10. LLM’s affinity to Text-based data 

Large Language Models (LLMs) have demonstrated remarkable performance in processing 

and generating text-based data due to their unique architectural design and training approach. These 

advanced AI systems excel in tasks such as natural language processing, text generation, and 

language understanding, making them highly effective in working with textual information.  

The core of an LLM's success in handling text-based data lies in its ability to capture and 

model the complex relationships and patterns present in natural language. LLMs are typically built 

upon transformer-based architectures, which utilize attention mechanisms to identify and learn from 

relevant parts of the input sequence. This allows the model to understand the context and semantics 

of words and phrases, enabling more accurate and coherent text generation.  

Furthermore, LLMs are trained on vast amounts of textual data, often comprising billions of 

words from various sources, including books, articles, websites, and social media. This extensive 

training process enables the models to learn the nuances of language, including grammar, syntax, and 

common idioms. By exposure to a diverse range of textual data, LLMs develop a deep understanding 

of the structure and flow of language, which translates into their ability to generate human-like text 

and engage in meaningful conversations.  

One of the key advantages of LLMs in working with text-based data is their capacity for 

transfer learning. These models can be fine-tuned or adapted to specific domains or tasks by training 

them on smaller, task-specific datasets. This allows LLMs to leverage their general language 

understanding capabilities and apply them to more specialized contexts, such as legal documents, 

medical reports, or technical manuals. Fine-tuning enables LLMs to capture domain-specific 

vocabulary, jargon, and writing styles, further enhancing their performance in handling text-based 

data within specific fields. 
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Moreover, LLMs exhibit impressive performance in tasks that require reasoning, inference, 

and contextual understanding. By leveraging their attention mechanisms and deep learning 

capabilities, these models can identify and extract relevant information from large volumes of text, 

making them valuable tools for tasks such as question answering, summarization, and information 

retrieval.  

However, it is important to note that while LLMs excel in working with text-based data, they 

may face challenges in handling tasks that require external knowledge, common sense reasoning, or 

factual accuracy. As language models, they are trained to generate plausible text based on patterns in 

the training data, but they may not always have a deep understanding of the real-world implications 

or truthfulness of the generated content. [18] 
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2.11. Related works 

Understanding the landscape of related works is paramount to contextualizing the current 

state of research and innovation. This section delves into a comprehensive review of existing studies 

that are closely aligned with the subject matter of the thesis. By examining the methodologies 

employed and the outcomes achieved in these works, we aim to establish a foundation for evaluating 

and advancing the proposed LLM-based approach for anomaly detection in smart grids. Through this 

exploration, we seek to identify key insights, gaps, and opportunities that will inform and enrich the 

research landscape in the domain of smart grid security. 

2.11.1. Anomaly Detection using Random Forest Classifier 

The Random Forest classifier has been widely used in anomaly detection tasks, including 

those related to smart grids and network security. In  [22], Nebrase et al demonstrated the 

effectiveness of this method, achieving an impressive accuracy rate of 99.90% across three 

benchmark datasets: CICIDS-2017, UNSW-NB15, and ICS cyber-attack datasets. Similarly, 

Kurniabudi et al in  [27] used Random Forest to detect anomalies in smart grid data, reporting an 

accuracy rate of 99.71%. The authors also employed Information Gain technique for feature 

selection, highlighting the importance of this approach in overcoming class imbalance challenges. 

In another study, Ziadoon et al in [23] compared the performance of various machine learning 

algorithms, including Random Forest, on the CICIDS-2017 dataset. Their results showed that 

Random Forest achieved an accuracy rate of 99.30%, outperforming other methods such as SVM and 

CNN. 

2.11.2. Deep Learning-based Anomaly Detection 

Deep learning techniques have been increasingly used in anomaly detection tasks, particularly 

those involving neural networks. In  [19], S. Huang et al proposed a novel Imbalanced Generative 

Adversarial Network (IGAN) model for intrusion detection, achieving an impressive accuracy rate of 

99.70%. The authors also demonstrated the effectiveness of their IGAN-IDS approach on three 

benchmark datasets. 

In another study, JooHwa et al in  [21] used a hybrid approach combining a Generative 

Adversarial Network (GAN) with a Random Forest classifier to detect anomalies in smart grid data, 
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reporting an accuracy rate of 99.83%. The authors highlighted the advantages of their integrated 

GAN-RF framework. 

2.11.3. Autoencoder-based Anomaly Detection 

Autoencoders have been used as a dimensionality reduction technique in anomaly detection 

tasks. In [17], R. Abdulhamme et al proposed an autoencoder-based approach for detecting 

anomalies in smart grid data, reporting an accuracy rate of 99.60%. The authors employed Principal 

Component Analysis (PCA) to further improve the performance of their method. 

2.11.4. Support Vector Machine (SVM)-based Anomaly Detection 

SVM has been widely used as a classification algorithm in anomaly detection tasks. In  [19], 

S. Huang et al reported an accuracy rate of 96.97% using SVM on the CICIDS-2017 dataset. 

However, their results also showed that Random Forest outperformed SVM by a significant margin. 

In another study, Ziadoon et al in [23] compared the performance of various machine learning 

algorithms, including SVM, on the CICIDS-2017 dataset. Their results showed that SVM achieved 

an accuracy rate of 75.21%, which was lower than other methods such as Random Forest and CNN. 

2.11.5. Convolutional Neural Network (CNN)-based Anomaly 

Detection 

CNN has been used in anomaly detection tasks, particularly those involving image or time-

series data. In  [19], S. Huang et al reported an accuracy rate of 99.48% using CNN on the CICIDS-

2017 dataset. 

2.11.6. Adaboost-based Anomaly Detection 

Adaboost has been used as a classification algorithm in anomaly detection tasks. In  [18], 

Yulianto et al proposed an AdaBoost-based approach for detecting anomalies in smart grid data, 

reporting an accuracy rate of 81.83%. The authors employed Synthetic Minority Oversampling 

Technique (SMOTE) to address the issue of class imbalance. 

Federated Learning (FL)-based Anomaly Detection 
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Federated learning has been used in anomaly detection tasks to maintain user privacy while 

still achieving high accuracy rates. In  [27], Jithish et al proposed a FL-based approach for detecting 

anomalies in smart grid data, reporting an accuracy rate of 99% on two benchmark datasets. 

2.11.7. Large Language Model (LLM)-based Anomaly Detection 

LLMs have been used in anomaly detection tasks to provide human-understandable 

explanations for detected anomalies. In  [29], Abderrazak et al proposed a novel approach using 

SHAP values with LLMs to generate explanations for detected anomalies, reporting an accuracy rate 

of 80% on the CICIDS-2017 dataset. 

2.11.8. Generative Adversarial Network (GAN)-based Anomaly 

Detection 

GAN has been used in anomaly detection tasks to generate synthetic data that closely 

resembles the existing dataset. In  [21], JooHwa et al proposed a hybrid approach combining GAN 

with Random Forest classifier to detect anomalies in smart grid data, reporting an accuracy rate of 

99.83%. 

2.11.9. Intrusion Detection Systems (IDS) using SHAP and LLMs 

Intrusion detection systems have been used to detect malicious activities in networks. In  [29], 

Abderrazak et al proposed a novel approach using SHAP values with LLMs to generate explanations 

for detected anomalies, reporting an accuracy rate of 80% on the CICIDS-2017 dataset. 
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2.12. State of the art Summary  

 For illustration purposes, the following figure briefly summarizes all the works on 

interest mentioned in this chapter: [Accuracy, Precision, Recall, F-score] 

 

  Study Year Approach Dataset Acc Prec Rec 
F-

score 

[18] Yulianto et al 2018 Adaboost CICIDS2017 81.83 81.83 100 90.01 

[17] 
R. Abdulhamme 

et al 
2019 

Auto Encoder + 

PCA 
CICIDS2017 99.60 98.90 98.80 98.80 

[21] JooHwa et al 2019 GAN RF CICIDS2017 99.83 98.68 92.76 95.04 

[19] S. Huan et al 2020 SVM CICIDS2017 96.97 / / 96.99 

[19] S. Huan et al 2020 Random Forest CICIDS2017 99.79 / / 99.78 

[19] S. Huan et al 2020 CNN CICIDS2017 99.48 / / 99.44 

[19] S. Huan et al 2020 IGAN-IDS CICIDS2017 99.70 / / 99.70 

[22] Nebrase et al 2020 Random Forest CICIDS2017 99.90 99.70 99.70 99.70 

[27] Kurniabudi et al 2021 
Random 

Forest 
CICIDS2017 99.71 99.80 99.90 99.90 

[23] 
Ziadoon et al 

[23] 
2021 Random Forest CICIDS2017 99.30 99.09 99.30 99.12 

[23] 
Ziadoon et al 

[23] 
2021 SVM CICIDS2017 75.21 99.16 75.21 76.60 

[23] 
Ziadoon et al 

[23] 
2021 CNN CICIDS2017 99.47 99.43 99.46 99.44 

[27] Guastalla et al 2024 GPT-3.5 
CICIDS2017 

(DDoS) 
96.00 / / / 

[27] Guastalla et al 2024 GPT-4 
CICIDS2017 

(DDoS) 
92.00 / / 93.00 

[29] Abderrazak et al 2024 Random Forest 
CICIDS2017 

(Web Attacks) 
/ 80 62 67 

Table 1: State of the art summary table 
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2.13. Synthesis 

The related works presented in this chapter demonstrate the effectiveness of various machine 

learning approaches for anomaly detection in smart grids. However, upon closer examination, it 

becomes apparent that these methods have limitations. Specifically, they lack the ability to provide 

detailed descriptions of detected anomalies, making them inaccessible to non-machine learning 

experts who may be responsible for implementing and interpreting the results. 

Most studies focus solely on achieving high accuracy rates, often neglecting the importance 

of anomaly description. For instance, Random Forest classifiers, which achieved impressive 

accuracy rates (e.g., [22], [27]), do not provide insight into the specific data points contributing to 

anomalies. Similarly, Autoencoder-based approaches (e.g., [17]) and Support Vector Machine (SVM) 

methods (e.g., [19]) lack descriptive capabilities. 

Moreover, the lack of standardization in anomaly detection metrics and evaluation procedures 

hinders direct comparison between studies. This highlights the need for a more comprehensive 

understanding of anomalies, beyond mere accuracy rates. The use of Large Language Models 

(LLMs), such as SHAP values, can provide this nuance by describing detected anomalies in a 

human-understandable manner. 

The current landscape of anomaly detection methods in smart grids suggests that there is a 

pressing need for approaches that balance high accuracy with descriptive capabilities. Our research 

aims to address this gap by combining traditional machine learning techniques with LLMs, enabling 

grid operators to not only detect anomalies but also gain insights into their underlying causes." 
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2.14. Discussion 

 The studies reviewed in the table showcase the effectiveness of various machine learning 

approaches for anomaly detection in smart grids. Notably, several studies employing Random Forest 

classifiers achieved accuracy exceeding 99% ([22], [22]). With Kurniabudi even reaching 99.90% 

accuracy in his 2021 study [22]. 

While this high level of accuracy is commendable, it also suggests that further improvement 

in anomaly detection using traditional machine learning techniques might yield diminishing returns. 

This paves the way for exploring alternative approaches that focus on aspects beyond raw accuracy. 

Our research takes a different approach to anomaly detection in smart grids. Our primary 

focus is not on achieving the highest possible detection accuracy, but rather on providing a more 

nuanced understanding of the anomalies that are detected. Here, Large Language Models (LLMs) 

offer a unique advantage. By leveraging SHAP values, we can not only identify anomalies but also 

gain insights into the specific data points that contribute to those anomalies. This detailed description 

of the anomaly can be crucial for grid operators to diagnose and address the underlying issues. 

Therefore, while Random Forest remains a strong choice for initial anomaly detection due to 

its high accuracy (as evidenced in the table), our research will utilize this established method to 

identify potential anomalies. We will then employ an LLM, empowered by SHAP values, to delve 

deeper and provide a comprehensive description of the detected anomalies, aiding in faster and more 

precise troubleshooting within the smart grid. 
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2.15. Conclusion 

This chapter established a foundation for using Large Language Models (LLMs) to enhance 

decision-making in smart grids, addressing the limitations of traditional methods in dynamic, data-

intensive environments. LLMs offer powerful analytical capabilities, extracting valuable insights 

from complex data sets. 

A thorough review of the state-of-the-art in anomaly detection for smart grids, with a focus 

on LLMs, identified critical gaps and opportunities for further exploration. This review sets the stage 

for the proposed LLM-based method, highlighting LLMs' potential to address current shortcomings 

by generating informative anomaly descriptions and improving interpretability and decision-support. 

Chapter 3, "Proposed Approach," will detail the research methodology, dataset, and LLM 

used. It will emphasize the importance of prompt engineering in maximizing LLMs' effectiveness for 

anomaly detection in smart grids. The chapter will conclude with the practical implications of the 

research, underscoring its contribution to enhancing interpretability and decision-support in anomaly 

detection systems for smart grids. 



 

 

 

 

 

 

  

 

 

 

 

Chapter 03: Proposed Approach 
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3.1.  Introduction 

This chapter delves into the core of our research – the proposed LLM-based approach for 

anomaly detection and description in smart grids. As highlighted in the abstract, traditional anomaly 

detection methods often lack interpretability, making it difficult to pinpoint the root cause of the 

issue. Here, we bridge this gap by leveraging the power of Large Language Models (LLMs). 

This chapter will present a comprehensive understanding of the methodology employed in 

our research. We delve deeper into each component in subsequent sections, providing insights into 

the system's design and implementation. 
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3.2. Proposed System Architecture  

 

1.2. Online Data 6.      Detected anomaly 

3. Offline Data 7.   LLM Descriptive Output 

4. Processed Data (numeric) 8.   Anomaly detection system revision 

5. Processed Data (textual) 9. .  Feeding the system with new data 

 Internal data stream   

 External data stream   

Figure 10: proposed system architecture   
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3.2.1. System Architecture Description 

The proposed system architecture aims to detect anomalies in smart grids using a large 

language model (LLM)-based approach. The system consists of four layers: data collection, data pre-

processing, anomaly detection, and decision. The data collection layer gathers raw data from various 

sources, such as edge devices, in the form of CSV files, JSON, XML, or text formats, and transfers it 

to the data server in the pre-processing layer. In the data pre-processing layer, online data is 

processed using data processing algorithms, while offline data stored in the data server is also 

processed alongside the online data.  

The data processing algorithms generate two versions of the traffic data: one in numeric 

format and one in textual format. The numeric data is sent to the anomaly detection algorithm, while 

the textual data is passed to the LLM. The anomaly detection layer utilizes machine learning 

techniques to identify anomalies in the numeric data. The output of the anomaly detection algorithm 

is then combined with the processed textual data and sent to the LLM for further analysis. The LLM 

uses both the output of the anomaly detection algorithm and the textual data to generate a detailed 

but brief description of the anomaly, along with suggested solutions.  

The decision layer receives the LLM's output and presents it to decision-making experts 

through a system interface. These experts review the output and make informed decisions based on 

the provided information. If the anomaly detection system outputs a false negative, the experts may 

decide to revise the system. If the system's output is correct, the experts may choose to retroactively 

feed the system to improve its performance for future anomaly detection.  

By integrating an LLM-based approach with anomaly detection algorithms, the proposed 

system aims to enhance the readability of anomaly detection systems in smart grids, ultimately 

contributing to improved grid reliability and efficiency. 

 

3.2.2. System Architecture Layers: 

Within the framework of our thesis, the system architecture is structured into distinct layers to 

facilitate efficient anomaly detection processes. [29] 
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3.2.2.1. Data Collection Layer  

The data collection layer is responsible for gathering raw data from various sources, such as 

edge devices, in the form of CSV files, JSON, XML, or text formats. This layer ensures that the 

necessary data is collected and transferred to the data server located in the pre-processing layer. 

3.2.2.2. Data Pre-processing Layer 

The data pre-processing layer is responsible for cleaning, transforming, and preparing the 

collected data for further analysis. It includes a data server that stores the offline data and processes 

both online and offline data using data processing algorithms. The processed data is then converted 

into numeric and textual formats for use in the anomaly detection layer. 

3.2.2.3. Anomaly Detection Layer  

This layer receives the numeric format version of the processed traffic data and uses anomaly 

detection algorithms to identify potential anomalies. The output of the anomaly detection algorithm 

is then sent to the large language model (LLM) alongside the processed textual data. 

3.2.2.4. Decision Layer  

This layer is where decision-making experts review the LLM output and make informed 

decisions based on the detailed descriptions of anomalies and suggested solutions provided by the 

LLM. 

3.2.3. Involved Actors: 

Various actors play crucial roles in the efficient functioning of the anomaly detection system 

architecture across different layers: [29] 

3.2.3.1. System Admins:  

System admins operate in the Edge Layer of the smart grid system. Their responsibilities 

include providing support, troubleshooting, and maintaining the computer servers and networks 

where initial data collection occurs. They ensure the smooth operation of data collection processes at 

the system's edge. 

3.2.3.2. Data Scientists:  

Data scientists are primarily situated in the Data Processing Layer. Their main tasks involve 

developing and implementing data processing algorithms for both online and offline data analysis. 

They play a key role in processing and analyzing the collected data to extract valuable insights. 
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3.2.3.3. Cybersecurity Experts:  

Cybersecurity experts are essential actors operating across all layers of the smart grid system. 

They focus on maintaining the security and integrity of the system's data and processes, with a 

particular emphasis on securing the Edge Layer and Data Processing Layer against potential threats 

and vulnerabilities 

3.2.3.4. Machine Learning Engineers:  

Machine learning engineers are predominantly located in the LLM Layer of the smart grid 

system. Their primary responsibilities revolve around developing, training, and fine-tuning the LLM 

model specifically designed for anomaly detection and learning purposes. They play a critical role in 

enhancing the system's anomaly detection capabilities. 

 

3.3. Methodology overview 

This section outlines the methodology employed for the proposed LLM-based anomaly 

detection and description system. 

The approach leverages machine learning for anomaly classification, drawing critical 

inspiration from the work of Abderrazak et al. (2024) [29]. This research on anomaly detection in 

smart grids informed our decision to employ a machine learning model for classification. 

Additionally, a Large Language Model (LLM) is integrated into the system for generating 

informative descriptions of the detected anomalies. We delve into the details of the anomaly 

detection component, including the chosen model and feature selection techniques. 

 

Figure 11: methodology overview diagramme 

3.3.1. Anomaly Detection 

The anomaly detection component employs a random forest classifier to identify anomalous 

traffic data within the smart grid. The data undergoes preprocessing steps including missing value 

imputation, categorical encoding, and feature scaling to ensure compatibility with the machine 
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learning model. To address potential class imbalance favoring normal data, the XGBoost classifier 

with adjusted hyperparameters is also evaluated. 

 

Figure 12: Anomaly detection process overview 

3.3.2. Feature Selection 

While both Random Forest and XGBoost can handle a high number of features, feature 

selection is implemented to improve model interpretability and potentially enhance performance. 

SHAP values are utilized to identify the most influential features for each anomaly type. Only the top 

3 most impactful features, as determined by SHAP analysis, are retained for the final model. 

 

Figure 13: SHAP values powered feature selection process overview 
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3.3.3. Anomaly Description with LLM 

The LLM serves as the anomaly description component. The system feeds the anomaly label, 

a textual representation of the original traffic data, and the top 3 most influential features to the 

LLM. This combination of information allows the LLM to generate a comprehensive description of 

the detected anomaly, aiding in understanding the root cause of the issue within the smart grid. 

 

Figure 14: LLM powered Anomaly description process overvuew 
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3.4. Data set used 

The CICIDS2017 dataset serves as an important reference point for intrusion detection 

systems (IDS) and intrusion prevention systems (IPS). It comprises labeled network flows, complete 

packet payloads in pcap format, profiles, and labeled flows. This dataset fills the gap of dependable 

test and validation datasets for anomaly-based intrusion detection methods. It encompasses benign 

traffic and prevalent attacks carried out over five days, encapsulating a variety of attacks like Brute 

Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet, and DDoS. The 

dataset records authentic background traffic using a B-Profile system to profile human interactions 

and produce naturalistic benign traffic. It’s crafted to mirror real-world network data and includes 

features such as comprehensive network configuration, diverse traffic, complete interaction 

scenarios, and attack diversity. The dataset is all-encompassing, covering a range of network 

configurations, traffic scenarios, and attack types, making it a crucial resource for assessing and 

developing anomaly detection systems in smart grid settings. [30] 

Attack label  Flow count 

Benign 2273097 

DoS Hulk 231073 

Port Scan 158930 

DDoS 128027 

DoS GoldenEye 10293 

DoS Slowloris 5796 

DoS Slowhttptest 5499 

FTP-Patator 7938 

SSH-Patator 5897 

Botnet 1966 

Web Attack: Brute Force 1507 

Web Attack: XSS 652 

Web Attack: SQL Injection 21 

Infiltration 36 

Heartbleed 11 

Total 2830743 

Table 2: CICIDS2017 Dataset summary 
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3.4.1. Description of the Attack Scenarios 

Here in this dataset, six attack profiles are covered based upon the most updated list of 

commonly used attack families, which can be explained as follows: [31] 

3.4.1.1. Web Attack: 

The dataset includes three types of web attacks. Firstly, SQL Injection, a security 

vulnerability where an attacker manipulates the queries that an application sends to its database, 

allowing unauthorized users to view data. Secondly, Cross-Site Scripting (XSS), which occurs when 

the attacker injects malicious code into the victim’s web application. Lastly, Brute Force, which 

involves trying all possible passwords to decode the administrator’s password. 

3.4.1.2. Botnet Attack: 

This refers to a group of internet-connected devices, such as those in a home, office, or public 

systems, infected by harmful malware. This malware allows the attacker to access the device and its 

connection for theft, network disruption, and IT environment damage. Botnet attacks are remotely 

controlled by cybercriminals and have become one of today’s most significant security threats. 

3.4.1.3. Heartbleed Attack: 

This is a serious bug in the OpenSSL implementation, an open-source implementation of the 

Transport Layer Security (TLS) and Secure Sockets Layer (SSL) protocols. This vulnerability allows 

malicious hackers to read and steal data from the memory of the victim server. Brute Force Attack is 

a dictionary attack method that generates many successive guesses to access encrypted data. This 

attack is commonly used for cracking passwords, finding hidden web pages or content, and decoding 

Data Encryption Standard (DES) keys. 

3.4.1.4. DDoS Attack: 

This is one of the most common cyber weapons, which aims to deplete the resources of an 

online service and network by overwhelming it with traffic from multiple compromised systems, 

denying legitimate users access to the service. 

3.4.1.5. DoS Attack: 

This is a type of cyber-attack on a network designed to temporarily prevent legitimate users 

from accessing computer systems, devices, or other network resources due to malicious cyber 

activities. 
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3.4.1.6. Infiltration Attack: 

This is a malicious attempt to enter or damage the interior of the network, typically by 

exploiting vulnerable software like Adobe Acrobat/Reader. 

3.5. Data Pre-processing 

3.5.1. Handling Missing Values: KNN Imputation with Outlier Handling 

Missing values are a common challenge in network traffic data analysis, often arising from 

sensor malfunctions or network errors. To address this issue, researchers have explored various 

imputation techniques, including K-Nearest Neighbors (KNN) imputation. This approach leverages 

the similarity between data points to estimate missing values, while also considering potential 

outliers that may skew the imputation process. 

3.5.1.1. KNN Imputation for Flow Bytes/s 

KNN imputation works by identifying the k nearest neighbors of a data point with a missing 

value and using their values to estimate the missing entry. This method assumes that similar data 

points are likely to have similar values, making it suitable for network traffic data where patterns and 

correlations exist between features. Several studies have investigated the application of KNN 

imputation in network traffic data analysis. For instance, Liao et al. (2014) [33] proposed a KNN-

based imputation method for missing values in network traffic data, demonstrating its effectiveness 

in improving the accuracy of network anomaly detection. Similarly, Ding et al. (2016) [34] 

employed KNN imputation to handle missing values in network traffic data, highlighting its ability 

to preserve the underlying data distribution and improve the performance of machine learning 

models. 

In the case of CICIDS2017 we noticed all of the missing valued are resigned to the Flow 

Bytes/s feature, where we find 1294 missing values. However, before proceeding with the 

imputation method, we need to first deal with the outliers. 

3.5.1.2. Outlier Handling 

Network traffic data may contain outliers, which are data points that deviate significantly 

from the majority. These outliers can negatively impact the imputation process by skewing the 

distribution of the data and leading to inaccurate estimates of missing values. To mitigate this issue, 



  Chapter 04: Experiments 

53 

 

researchers have proposed various outlier handling techniques. One approach is to identify and 

remove outliers before applying imputation methods. Gupta et al (2018) [35] developed a framework 

for outlier detection and removal in network traffic data, which involved using statistical measures 

and machine learning algorithms to identify and remove a Liao et al. (2014) [33] anomalous data 

points. By removing outliers, the authors were able to improve the accuracy of KNN imputation and 

enhance the overall quality of the network traffic data. Another approach is to incorporate outlier 

handling directly into the imputation process Ding et al. (2016) [34] proposed a modified KNN 

imputation algorithm that assigns lower weights to outliers during the imputation process, effectively 

reducing their influence on the estimated values. This approach helped to improve the robustness of 

KNN imputation in the presence of outliers. 

3.5.2. Feature Engineering for Network Traffic Data Analysis 

This section details a feature engineering approach employed to prepare network traffic data 

for analysis using Large Language Models (LLMs). LLMs excel at processing and extracting 

knowledge from textual information. However, network traffic data is typically stored in a tabular 

format with numerical and categorical features as is the case for the CICIDS2017 dataset. 

LLMs are inherently designed to work with sequential text data. Their internal 

representations and processing mechanisms are optimized for understanding the relationships and 

patterns within natural language. Thus, directly feeding raw network traffic data (numerical features 

like port numbers or durations) into an LLM results in suboptimal performance. LLMs generally 

struggle to grasp the underlying relationships and semantics within the non-textual format. [36] 

To address this challenge, we employ a feature engineering technique called concatenation. 

Here, we combine all descriptive features (excluding the label) into a single, continuous string within 

a new column named "traffic data." This transformation aims to create a more text-like 

representation that LLMs can effectively process. [36] 

Benefits for LLMs: By concatenating features with delimiters, we essentially create a textual 

description of each network traffic flow. This allows the LLM to leverage its ability to understand 

language structure and relationships between words to analyze the combined features in the "traffic 

data" column. 
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Preserving Label Information: The original label column (e.g., "BENIGN" or "DDoS" …etc.) 

is kept separate. This ensures that the crucial classification information remains accessible for 

supervised learning tasks within the LLM framework. 

Overall, feature concatenation serves as a bridge between the non-textual nature of network 

traffic data and the text-based processing capabilities of LLMs. By transforming the data into a more 

LLM-friendly format, we can leverage the power of these models for network traffic analysis tasks 

like anomaly detection or traffic classification. 

Traffic Data Traffic Label 

Destination Port: 53 | Flow Duration: 312 | Total Fwd Packets: 2 | ………. | Idle Min: 0 BENING 

………….. ….. 

Table 3: example of data post feature engineering 

3.6. Data Splitting for Generalizability: 

We leverage stratified 10-fold cross-validation to split the smart grid dataset. This technique 

ensures balanced representation of classes (normal and anomalous data points) within each training 

and testing fold.  By iteratively training on nine folds and testing on the remaining fold, this method 

provides a robust evaluation of model performance across diverse subsets of the data, promoting 

generalizability to unseen data. 

3.7. Anomaly detection 

The core challenge of anomaly detection in smart grids lies in identifying and classifying 

deviations from normal system behavior.  This research leverages the well-established capabilities of 

Random Forest (RF) classifiers for this critical task.  Drawing upon the insights gleaned from the 

state-of-the-art review (Chapter 2), we recognize that RF models have consistently demonstrated 

superior performance in anomaly detection tasks within smart grid environments compared to other 

classification algorithms [Reference studies from State-of-the-Art chapter]. 

Here's a breakdown of the key factors that make Random Forests a compelling choice for our 

anomaly detection system: 
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Ensemble Learning: An RF classifier is not a singular model, but rather an ensemble of 

multiple decision trees. This ensemble approach mitigates the overfitting risks associated with single 

decision tree models, leading to more robust and generalizable anomaly detection capabilities. 

High Accuracy: As highlighted in the state-of-the-art review, previous research has 

consistently demonstrated the high accuracy of RF classifiers in identifying anomalies within smart 

grid data. This established track record provides strong justification for our selection. 

Interpretability: The decision-making process within an RF model is relatively transparent 

compared to more complex black-box models. This interpretability allows us to gain insights into the 

features and data points that contribute to anomaly classification, facilitating a deeper understanding 

of the identified anomalies within the smart grid. 

Computational Efficiency: Training and deploying RF models are computationally efficient, 

making them suitable for real-time anomaly detection within resource-constrained smart grid 

environments. 

By integrating a Random Forest classifier into our anomaly detection system, we harness its 

strengths in ensemble learning, high accuracy, interpretability, and computational efficiency.  This 

selection aligns with the findings of the state-of-the-art review and positions our research to achieve 

robust and interpretable anomaly detection within smart grids 

3.8. Evaluation Metrics for Comprehensive 

Assessment: 

To comprehensively evaluate the performance of the trained models, we employ a 

combination of metrics: 

3.8.1. Accuracy:  

This metric measures the overall proportion of correctly classified instances (normal and 

anomalous) within the testing set. It provides a high-level overview of the model's effectiveness. [15] 



  Chapter 04: Experiments 

56 

 

3.8.2. Confusion Matrix:  

This visual tool provides a detailed breakdown of the model's performance on each class. It 

categorizes instances into true positives (correctly identified anomalies), false positives (normal 

instances classified as anomalies), true negatives (correctly identified normal instances), and false 

negatives (anomalies missed by the model). This detailed breakdown allows for targeted analysis of 

the model's strengths and weaknesses in identifying different types of anomalies. [38] 

3.8.3. Classification Report:  

Building upon the confusion matrix, a classification report summarizes key metrics like 

precision (proportion of true positives among all positive classifications), recall (proportion of true 

positives out of all actual positive cases), F1-score (harmonic mean of precision and recall), and 

support (total number of instances in each class). These metrics offer a deeper understanding of the 

model's performance beyond just overall accuracy, allowing for a more nuanced evaluation of its 

ability to accurately detect anomalies. [15] 

By employing a combination of stratified 10-fold cross-validation, model selection based on 

the state-of-the-art review, and comprehensive evaluation metrics, we establish a robust framework 

for training and evaluating our anomaly detection system. This approach promotes generalizability, 

facilitates a comparative assessment of different models, and provides a multifaceted analysis of the 

model's effectiveness in identifying anomalies within the smart grid data. 

3.9. Large Language Model Selection 

When selecting a Large Language Model (LLM) for research or practical applications, it is 

crucial to consider various factors such as performance, resource requirements, accessibility, and 

licensing. In this context, Meta's Llama3 8B emerges as a compelling choice [40], offering a 

compelling balance of state-of-the-art performance and resource efficiency, while also being 

freely available for both research and commercial use cases. [33] 

One of the key advantages of Llama3 8B is its impressive performance across a wide range of 

benchmarks, despite having a relatively smaller parameter count compared to other leading LLMs. 

This is a testament to Meta's advancements in pretraining and instruction-tuning processes, which 

have resulted in improved alignment and output quality. Llama3's 8B and 70B parameter models 
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demonstrate state-of-the-art performance, outperforming even larger commercial models like GPT-3 

on various industry benchmarks. [34] 

Furthermore, Llama3 excels in terms of resource efficiency, making it a viable option for 

deployment in resource-constrained environments. Unlike some of its commercial counterparts, 

which often require significant computational resources and infrastructure, Llama3 can be effectively 

deployed on a wide range of hardware configurations, from cloud-based solutions to on-premises 

setups. This flexibility and scalability allow for cost-effective integration into existing workflows 

and systems, reducing the barrier to entry for organizations and researchers.  [33] 

Another significant advantage of Llama3 is its open-source nature and licensing terms. 

Unlike proprietary models like ChatGPT, which are subject to usage restrictions and licensing fees, 

Llama3 is freely available for both research and commercial use cases, provided the user has less 

than 700 million monthly active users. This open-source approach fosters collaboration, 

transparency, and innovation within the AI community, enabling researchers and developers to build 

upon and extend the capabilities of Llama3 without the constraints imposed by proprietary models.  

[34] 
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3.10. Llama3, Mistral, and Gemma comparison 

Feature Llama3 8b Mistral7b Gemma7b 

Architecture 
Decoder-only Transformer 

(efficient) 

Transformer (encoder-decoder 

possible, potentially higher 

resource requirements) 

Transformer (encoder-decoder 

possible, potentially higher 

resource requirements) 

Training Data 
Massive text & code dataset 

(potentially adaptable) 

Text, code, potentially smart 

grid-specific data (details might 

be limited) 

Text, code, potentially smart grid-

specific data (details might be 

limited) 

Strengths for 

Anomaly 

Detection 

Excellent fluency for clear and 

concise anomaly descriptions 

Potential for understanding 

languages (if encoder-decoder), 

uncertain level of domain-

specific knowledge 

Potential for understanding 

languages (if encoder-decoder), 

uncertain level of domain-specific 

knowledge 

Potential 

Drawbacks 

Limited transparency regarding 

training data for smart grid 

applications 

Limited availability of 

information regarding training 

data and potential mismatch for 

smart grid domain 

Limited availability of 

information regarding training 

data and potential mismatch for 

smart grid domain 

Addressing 

Drawbacks 

Effective prompt engineering 

can bridge the gap between 

general training data and smart 

grid anomaly descriptions 

Difficulty in achieving same 

level of adaptation through 

prompt engineering 

Difficulty in achieving same level 

of adaptation through prompt 

engineering 

Overall 

Suitability for 

Anomaly 

Detection 

Strong candidate due to fluency 

and potential for adaptation 

with effective prompt 

engineering 

Potential suitability depends on 

confirmation of domain-specific 

knowledge and successful 

adaptation through prompting 

Potential suitability depends on 

confirmation of domain-specific 

knowledge and successful 

adaptation through prompting 

Availability & 

Cost 

Might have associated access 

and computational costs 

depending on platform 

Availability and cost might vary 

depending on provider 

Availability and cost might vary 

depending on provider 

Table 4: comparison table between Llama3, Mistral, and Gemma 
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3.11. Conclusion 

This chapter has outlined the proposed LLM-based approach for anomaly detection and 

description in smart grids. Key components include anomaly detection with machine learning 

models, feature selection using SHAP values, and anomaly description generation with LLMs. The 

chosen dataset, CICIDS2017, and data pre-processing techniques have also been discussed. 

The next chapter, "Experiments," delves into the practical implementation of this approach, 

detailing the execution environment, software libraries, and training methodology. We will examine 

the results of the anomaly detection model training, focusing on different classification algorithms 

and the role of SHAP values in feature selection. Chapter 4 will also showcase the LLM integration 

and its performance in generating anomaly descriptions, analyzing the impact of system and user 

prompts and SHAP values on the quality and accuracy of the descriptions. Finally, the chapter will 

discuss the overall findings, compare results with and without SHAP, and highlight the importance 

of effective prompt engineering. 
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4.1. Execution environment 

In this section we detail the hardware and software used for all training done in the context of 

this thesis: 

4.1.1. Hardware 

All trainings and data processing were done in google colab’s 

execution environment, and as of the time of this thesis, the free 

version of Google’s colab provides a Tesla T4 gpu or equivalent with 

16gb of vram. 2 threads of an Intel Xeon cpu with 15gb of system 

ram. And approximately 107.72gb of cloud disk storage available for 

6 hours a day. The gpu however is only available for 3 hours. 

LLM execution was done on a local machine with a Ryzen 5 

3600 and 16gb of ram running windows 10. 

4.1.2. Programming language used 

Python is a high-level, interpreted programming language known for its simplicity, 

readability, and versatility. Its importance in the machine learning field lies in its ability to facilitate 

rapid prototyping, efficient development, and effective deployment of complex algorithms. Python's 

ease of use, extensive libraries, and robust visualization capabilities make it an ideal choice for 

machine learning applications. [43] 

Python's popularity in machine learning can be attributed to several key factors. Firstly, its 

syntax is designed to be intuitive and straightforward, allowing developers to focus on solving 

problems rather than understanding the intricacies of the language. Secondly, Python's extensive 

library ecosystem, including NumPy, scikit-learn, and TensorFlow, provides a wide range of tools 

for various machine learning tasks. This reduces the time and effort required to implement 

algorithms, making it easier for developers to concentrate on the actual problem-solving. [43] 

Furthermore, Python's cross-platform compatibility and flexibility enable developers to create 

machine learning models that can be executed on multiple platforms without requiring significant 

modifications. Additionally, Python's strong community support and extensive documentation make 

it easier for developers to find help and resources when needed. [43] 

Figure 15: google colab 

logo 
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4.1.3. Python Libraries  

4.1.3.1. Scikit-learn (sklearn) 

A comprehensive library offering a wide range of machine learning algorithms for 

classification, regression, clustering, model selection, and more. It provides a user-friendly interface 

for building, training, and evaluating machine learning models. 

4.1.3.2. Pandas 2.0.3 

A powerful data analysis and manipulation library. It offers data structures like DataFrames 

and Series that facilitate efficient handling of tabular data, including loading, cleaning, transforming, 

and analyzing datasets. 

4.1.3.3. NumPy 1.25.2 

The foundation for numerical computing in Python. It provides efficient multidimensional 

arrays and linear algebra operations, enabling high-performance data manipulation and numerical 

computations essential for machine learning tasks. 

4.1.3.4. XGBoost 2.0.3 

A scalable implementation of gradient boosting known for its efficiency and effectiveness in 

various classification tasks. It excels at handling complex datasets and offers features like 

regularization to prevent overfitting. 

4.1.3.5. Seaborn 0.13.1 

A library built on top of Matplotlib that simplifies creating statistical graphics. It provides a 

high-level interface for generating informative and aesthetically pleasing visualizations of data, 

particularly suited for exploring relationships and distributions within datasets. 

4.1.3.6. Matplotlib.pyplot 

A fundamental plotting library in Python. It offers extensive functionality for creating various 

static, animated, and interactive visualizations, including line plots, scatter plots, histograms, and 

more. It provides a finer level of control over plot elements compared to Seaborn. 

4.1.3.7. SHAP (SHapley Additive exPlanations) 0.44.1 

Shap is a Python library for interpreting machine learning models, particularly focusing on 

feature attribution. It leverages game theory concepts to calculate SHAP values, which explain how 

each feature contributes to a model's prediction for a specific instance.it provides SHAP's 
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visualizations, like force plots and summary plots, aid in interpreting complex models and enhancing 

their transparency. 

4.1.4.  LM Studio (0.2.22) 

LM Studio is a desktop application designed to facilitate the local execution of large language 

models (LLMs) and provide a user-friendly interface for experimenting with these models. The 

software features a convenient and intuitive graphical user interface that simplifies the process of 

running LLMs locally, allowing users to easily manage and interact with their models. LM Studio 

includes local server API functionalities that emulate OpenAI's API calls, enabling users to interact 

with their local LLMs as if they were accessing OpenAI's services. The software is available on 

multiple platforms, including Windows, Linux, and macOS, ensuring cross-platform compatibility. 

LM Studio is freely available for anyone to use, making it an accessible tool for researchers, 

developers, and anyone interested in experimenting with LLMs. [44] 

 

Figure 16: LM Studio (0.2.22) Home interface 
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4.2. Training Methodology 

This section details the training methodology employed for the anomaly detection system. 

The chosen classification algorithms and their respective training parameters are outlined, followed 

by the validation method used to assess model performance. 

4.2.1. Data Preprocessing and Feature Engineering 

Prior to model training, the data undergoes several preprocessing steps to ensure its suitability 

for machine learning algorithms. These steps address missing values, categorical variables, and 

continuous variables. 

4.2.2. Data Cleaning 

Missing values are a common challenge in real-world datasets. In this study, K-Nearest 

Neighbors (KNN) imputation is employed to address missing values. This approach identifies the k 

nearest neighbors (data points) for each instance with missing values and utilizes the values of those 

neighbors to predict the missing value. This technique is advantageous when missing values are 

likely to be similar to the values of nearby data points. Alternative strategies for missing value 

imputation, such as replacing with the mean or median, could be explored in future work, 

particularly if the missingness is suspected to be non-random. 

4.2.3. Label Encoding 

Categorical variables, which represent data with discrete labels, need to be converted into 

numerical representations suitable for machine learning algorithms. This is achieved using Label 

Encoder, which assigns a unique integer value to each unique category. 

Label Code 

BENIGN 0 

Web Attack - Brute Force 1 

Web Attack - XSS 2 

Web Attack - Sql Injection 3 

Table 5: encoded features 
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4.2.4. Feature Scaling 

Continuous variables can have varying scales, potentially hindering the performance of some 

machine learning algorithms. To address this, MinMaxScaler is employed to normalize all 

continuous features within a range of 0 and 1. This ensures that all features contribute equally to the 

model's decision-making process. 

4.2.5. Classification Algorithms 

Two ensemble learning algorithms were selected for anomaly detection: Random Forest 

Classifier (RandomForestClassifier) and XGBoost Classifier (XGBClassifier). Ensemble methods 

are known for their robustness and ability to handle complex datasets [cite source on ensemble 

methods]. 

Random Forest Classifier: This widely used algorithm combines multiple decision trees, 

resulting in improved accuracy and reduced overfitting compared to single decision trees [cite source 

on Random Forest].  For the Random Forest classifier, the default hyperparameters were employed 

in this study. 

XGBoost Classifier: XGBoost is a scalable implementation of gradient boosting, known for 

its efficiency and effectiveness in various classification tasks [cite source on XGBoost]. To address 

potential class imbalance in the dataset, the scale_pos_weight parameter was set to 98.720402. This 

assigns a higher weight to the minority class (anomalous data points) during training, mitigating the 

impact of class imbalance. 

4.2.6. Validation Method 

Stratified 10-fold cross-validation was utilized for model evaluation. This method partitions 

the data into ten equally sized folds, ensuring a balanced distribution of classes across folds. In each 

iteration, nine folds are used for training, and the remaining fold is used for testing. This process is 

repeated ten times, and the final model performance is calculated as the average across all folds [cite 

source on stratified k-fold cross validation]. The train_test_split function from the scikit-learn library 

[Pedregosa et al., 2011] was employed for this purpose, with a test size of 0.2 (20% of the data) and a 

random state of 42 for reproducibility. 
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The chosen evaluation metrics include accuracy, confusion matrix, and classification report. 

These metrics provide insights into the model's ability to correctly classify both normal and 

anomalous grid behavior. 

4.2.1. Feature Selection 

While the Random Forest and XGBoost classifiers can handle a large number of features, 

selecting the most informative ones can improve model performance. In this study, SHAP values are 

utilized for feature selection. SHAP values explain the impact of each feature on the model's 

predictions. The top 5 most important features for each anomaly type, as identified by SHAP values, 

are retained for model training. This reduces the dimensionality of the data and potentially improves 

model interpretability. 

4.3. Anomaly detection results 

Due to time and resource constrains we were only able to perform training and classification 

on the Web Attacks portion of the CICIDS2017 dataset (Thursday-WorkingHours-Morning-

WebAttacks.pcap_ISCX.csv). 

Table 6: CICIDS2017 webattacks data sample count (Thursday WorkingHours Morning 

WebAttacks. 

0 BENIGN    168186 

1 Web Attack - Brute Force 1507 

2 Web Attack - XSS 652 

3 Web Attack - Sql Injection 21 

/ Total 170366 

 

After cleaning and pre-processing the data, we used XGBoost to elevate the massive 

imbalance in this data set as we saw in [29]. By having the scale_pos_weight parameter set to 

98.720402 we are able assign higher weights to minority classes so they can have a higher impact on 

the classification procedure regardless of their small sample size. 

In the end we managed to achieve an accuracy of 99% 

n Classes Precision Recall F1-Score 
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0 BENIGN    1.00 1.00 1.00 

1 Web Attack - Brute Force 0.74 0.75 0.74 

2 Web Attack - XSS 1.00 0.40 0.57 

3 Web Attack - Sql Injection 0.46 0.36 0.40 

Table 7: random forest classifier results 

We deemed these results satisfactory as anomaly detection is not the focus of this study but 

rather a means to an end. 

4.3.1.  Generating shap values 

Using the shap library we are able to see what values have the most effect in out 

classification: 

 

Table 8: visual representation of the SHAP values post classification 

We were able to extract the most influential features as well the least influential features 

using shap feature mapping with those being: 

The Five least influential features: Min-Active-Min-IAT-Flow-Max-IAT-Flow-Length-

Packet-Max-min_seg_size_forward. 

The Five most influential features: Flow Duration - Bwd IAT Mean-Fwd IAT Min - Fwd 

Packet Length Std - Init_Win_bytes_backward. 

 

4.4. LLM parameters 

4.4.1.1. Llama3 8B q4_k_m 

As previously stated, we opted to use Llama3 as our description LLM. 8B indicates that the 

model has 8 billion parameters. The "B" stands for billion, which is a unit of measurement for the 

number of parameters in a model. A higher number of parameters generally means a more complex 

and powerful model.  
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• Q4 refers to the quantization level of the model. Quantization is a technique used to 

reduce the memory usage and computational requirements of a model by reducing the 

precision of its weights. Smaller Q numbers indicate heavier quantization, which 

means a greater loss of quality but reduced memory usage. In this case, Q4 indicates a 

relatively high level of quantization.  

• K stands for the type of quantization used. In this case, K refers to the K-type 

quantization method, which is a specific technique used to reduce the precision of the 

model's weights.  

• M stands for the size of the quantization. In this case, M likely indicates a medium-

sized quantization, which is a balance between quality and memory usage. This could 

be compared to S for small or L for large quantization sizes. 

4.4.1.2. Temperature 0.7 

The temperature parameter controls the randomness and creativity of the generated text. It is 

used to scale the logit values (the raw output of the language model before applying the softmax 

function) before converting them into probabilities. [40] 

4.4.1.3. Context length 

The context length refers to the maximum number of tokens (roughly equivalent to words) 

that the model can process at once. It is a predefined hyperparameter set when loading the model. 

Llama3 has a max context length of 8192. [41] 

4.5. System Prompt 

The formulation of the system prompt plays a pivotal role in imbuing contextual awareness 

within our Large Language Model (LLM). To achieve this, several prerequisites had to be satisfied. 

Primarily, it was imperative to acquaint the LLM with its designated purpose and obligations as a 

traffic analyzer, entrusted with scrutinizing labeled anomalous network traffic and furnishing 

supplementary details regarding the identified anomaly. Furthermore, the model was assigned the 

responsibility of proposing potential resolutions for the detected anomalies. Equally critical was the 

integration of the LLM with the existing anomaly detection system. Finally, it is preferable if the 

system output is limited to select set of characters in order keep things brief and to avoid uncertainty 

drag. In pursuit of these objectives, a series of system prompts and model configurations were 
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systematically explored, each yielding marginally distinct outcomes through empirical 

experimentation. 

System Prompt 01: 

“You are a traffic analyzer that works alongside an already existing anomaly detection 

system. You are given an instance of anomalous traffic data, along with the label of said anomaly. 

Your role is to provide a brief explanation as to why this traffic instance was labeled as the given 

anomaly, based on the traffic data that you are given. Additionally, you need to suggest a solution 

to the anomaly. Your outputs should have a max character limit of 500.” 

System Prompt 02: 

 “You are a traffic analyzer that works alongside our existing rule-based anomaly detection 

system that flags any traffic exhibiting anomalous characteristics with the proper label. You are 

given an instance of anomalous traffic data, along with the label of said anomaly (determined by 

our existing rule-based detection system). Your role is to provide a brief explanation as to why this 

traffic instance was labeled as the given anomaly. Additionally, you need to suggest a solution to 

the anomaly, be as specific as possible in your suggestions. Your outputs should have a max 

character limit of 700 (do not declare the character count at the end of the output).” 

System Prompt 03: 

“You are a traffic analyzer that works alongside our existing rule-based anomaly detection 

system that flags any traffic exhibiting anomalous characteristics with the proper label. You are 

given an instance of anomalous traffic data, along with the label of said anomaly (determined by 

our existing rule-based detection system). Your role is to provide a brief explanation as to why this 

traffic instance was labeled as the given anomaly. Additionally, you need to suggest a solution to 

the anomaly, be as specific as possible in your suggestion. Your job is focused primarily on 

describing the anomaly and suggesting solutions, the detection of anomalous traffic is taken care 

of by the pre-existing detection system that provided you with the label. Your outputs should have 

a max character limit of 700 (do not declare the character count at the end of the output).” 
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4.6. User Prompt 

To ensure the efficacy of the LLM in analyzing network traffic data, it was crucial to 

consistently provide the traffic data samples alongside their corresponding labels. This approach is 

exemplified in the following illustration: 

User Prompt 01: 

The Following traffic was labeled as "DoS Hulk": 

"Destination Port: 80 |  Flow Duration: 85155048 |  Total Fwd Packets: 10 |  Total Backward 

Packets: 5 | Total Length of Fwd Packets: 310 |  Total Length of Bwd Packets: 11595 |  Fwd Packet 

Length Max: 304 |  Fwd Packet Length Min: 0 |  Fwd Packet Length Mean: 31.0 |  Fwd Packet Length 

Std: 95.94095406 | Bwd Packet Length Max: 7240 |  Bwd Packet Length Min: 0 |  Bwd Packet Length 

Mean: 2319.0 |  Bwd Packet Length Std: 3331.638186 | Flow Bytes/s: 139.8038082 |  Flow Packets/s: 

0.176149275 |  Flow IAT Mean: 6082503.429 |  Flow IAT Std: 22700000.0 |  Flow IAT Max: 85000000 |  

Flow IAT Min: 0 | Fwd IAT Total: 85000000 |  Fwd IAT Mean: 9446177.444 |  Fwd IAT Std: 28300000.0 |  

Fwd IAT Max: 85000000 |  Fwd IAT Min: 0 | Bwd IAT Total: 155406 |  Bwd IAT Mean: 38851.5 |  Bwd 

IAT Std: 67300.07415 |  Bwd IAT Max: 139174 |  Bwd IAT Min: 65 | Fwd PSH Flags: 0 |  Bwd PSH Flags: 

0 |  Fwd URG Flags: 0 |  Bwd URG Flags: 0 |  Fwd Header Length: 316 |  Bwd Header Length: 168 | 

Fwd Packets/s: 0.11743285 |  Bwd Packets/s: 0.058716425 |  Min Packet Length: 0 |  Max Packet 

Length: 7240 |  Packet Length Mean: 744.0625 |  Packet Length Std: 2041.607944 |  Packet Length 

Variance: 4168162.996 | FIN Flag Count: 0 |  SYN Flag Count: 0 |  RST Flag Count: 0 |  PSH Flag Count: 

0 |  ACK Flag Count: 1 |  URG Flag Count: 0 |  CWE Flag Count: 0 |  ECE Flag Count: 0 |  Down/Up 

Ratio: 0 |  Average Packet Size: 793.6666667 |  Avg Fwd Segment Size: 31.0 |  Avg Bwd Segment 

Size: 2319.0 |  Fwd Header Length.1: 316 | Fwd Avg Bytes/Bulk: 0 |  Fwd Avg Packets/Bulk: 0 |  Fwd 

Avg Bulk Rate: 0 |  Bwd Avg Bytes/Bulk: 0 |  Bwd Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | 

Subflow Fwd Packets: 10 |  Subflow Fwd Bytes: 310 |  Subflow Bwd Packets: 5 |  Subflow Bwd 

Bytes: 11595 | Init_Win_bytes_forward: 251 |  Init_Win_bytes_backward: 235 |  act_data_pkt_fwd: 2 |  

min_seg_size_forward: 20 | Active Mean: 1996.0 |  Active Std: 0.0 |  Active Max: 1996 |  Active Min: 

1996 | Idle Mean: 85000000.0 |  Idle Std: 0.0 |  Idle Max: 85000000 |  Idle Min: 85000000" 

User Prompt 02: 

The Following traffic was labeled as "PortScan": 

"Destination Port: 7911 |  Flow Duration: 52 |  Total Fwd Packets: 1 |  Total Backward Packets: 

1 | Total Length of Fwd Packets: 0 |  Total Length of Bwd Packets: 6 |  Fwd Packet Length Max: 0 |  
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Fwd Packet Length Min: 0 |  Fwd Packet Length Mean: 0.0 |  Fwd Packet Length Std: 0.0 | Bwd 

Packet Length Max: 6 |  Bwd Packet Length Min: 6 |  Bwd Packet Length Mean: 6.0 |  Bwd Packet 

Length Std: 0.0 | Flow Bytes/s: 115384.6154 |  Flow Packets/s: 38461.53846 |  Flow IAT Mean: 52.0 |  

Flow IAT Std: 0.0 |  Flow IAT Max: 52 |  Flow IAT Min: 52 | Fwd IAT Total: 0 |  Fwd IAT Mean: 0.0 |  Fwd 

IAT Std: 0.0 |  Fwd IAT Max: 0 |  Fwd IAT Min: 0 | Bwd IAT Total: 0 |  Bwd IAT Mean: 0.0 |  Bwd IAT Std: 

0.0 |  Bwd IAT Max: 0 |  Bwd IAT Min: 0 | Fwd PSH Flags: 0 |  Bwd PSH Flags: 0 |  Fwd URG Flags: 0 |  

Bwd URG Flags: 0 |  Fwd Header Length: 40 |  Bwd Header Length: 20 | Fwd Packets/s: 19230.76923 

|  Bwd Packets/s: 19230.76923 |  Min Packet Length: 0 |  Max Packet Length: 6 |  Packet Length 

Mean: 2.0 |  Packet Length Std: 3.464101615 |  Packet Length Variance: 12.0 | FIN Flag Count: 0 |  SYN 

Flag Count: 0 |  RST Flag Count: 0 |  PSH Flag Count: 1 |  ACK Flag Count: 0 |  URG Flag Count: 0 |  

CWE Flag Count: 0 |  ECE Flag Count: 0 |  Down/Up Ratio: 1 |  Average Packet Size: 3.0 |  Avg Fwd 

Segment Size: 0.0 |  Avg Bwd Segment Size: 6.0 |  Fwd Header Length.1: 40 | Fwd Avg Bytes/Bulk: 0 

|  Fwd Avg Packets/Bulk: 0 |  Fwd Avg Bulk Rate: 0 |  Bwd Avg Bytes/Bulk: 0 |  Bwd Avg 

Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow Fwd Packets: 1 |  Subflow Fwd Bytes: 0 |  Subflow 

Bwd Packets: 1 |  Subflow Bwd Bytes: 6 | Init_Win_bytes_forward: 29200 |  Init_Win_bytes_backward: 

0 |  act_data_pkt_fwd: 0 |  min_seg_size_forward: 40 | Active Mean: 0.0 |  Active Std: 0.0 |  Active 

Max: 0 |  Active Min: 0 | Idle Mean: 0.0 |  Idle Std: 0.0 |  Idle Max: 0 |  Idle Min: 0" 

By consistently pairing the traffic data with its respective label, the LLM was able to establish 

a robust association between the traffic patterns and the identified anomalies. This facilitated the 

model's ability to accurately recognize and classify anomalous traffic instances, while also enabling 

it to provide relevant insights and potential solutions based on the labeled data. 
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4.7. Experimental results without SHAP values 

4.7.1. Output of System prompt 01 

System prompt 01 

User Prompt 01 

Output Based on the traffic data, this instance was labeled as a "PortScan" 

because it exhibits characteristics of a port scanning activity. Here's why: 

 

• The destination port is 7911, which is an unusual and potentially suspicious port 

number. 

• The flow duration is very short (52 seconds), indicating that the connection 

was quickly established and terminated. 

• There is only one forward packet and one backward packet, suggesting a 

single packet exchange. 

• The packet lengths are mostly small (0-6 bytes), with no significant data being 

transmitted. 

• The packet length mean is 2.0, which is unusually low for normal traffic. 

 

Given these features, it's likely that this instance represents an attempted 

port scan or reconnaissance activity, where the attacker is scanning the network 

for open ports to potentially exploit. 

 

To address this anomaly, I suggest implementing a rule-based detection 

system that flags any traffic exhibiting similar characteristics as potential port 

scans. This could involve monitoring for unusual destination ports, short-lived 

connections, and small packet sizes. Additionally, consideration should be given to 

implementing controls such as firewall rules or intrusion prevention systems to 

prevent these types of activities from occurring in the future. 

 

Output character limit: 495 
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System prompt 01 

User Prompt 02 

Output Based on the traffic data, this instance was labeled as a "DoS Hulk" 

because it exhibits characteristics of a Distributed Denial-of-Service (DDoS) 

attack: 

 

• The flow duration is extremely long (85155048 seconds), indicating that the 

connection has been open for an unusually extended period. 

• The total forward packets and backward packets are small, but the packet 

lengths are significantly larger than average, with some packets reaching up 

to 7240 bytes. This suggests a large amount of data being transmitted in a 

short period. 

• The flow IAT mean is very high (6082503.429 seconds), indicating that there 

has been a significant delay between packets. 

• The packet length mean and standard deviation are also unusually high, 

suggesting that the attacker is using a specific protocol or technique to flood 

the network with large packets. 

• The FIN flag count is 0, indicating that no connection closure was attempted, 

which is unusual for normal traffic. 

 

Given these features, it's likely that this instance represents a DDoS attack, 

specifically the "Hulk" variant, which uses a combination of TCP and UDP packets 

to overwhelm the targeted system. The attacker may be attempting to saturate the 

network bandwidth or exhaust system resources. 

 

To address this anomaly, I suggest implementing a rule-based detection 

system that flags any traffic exhibiting similar characteristics as potential DDoS 

attacks. This could involve monitoring for unusual flow durations, packet sizes, 

and inter-arrival times. Additionally, consideration should be given to 

implementing controls such as rate limiting, IP blocking, or intrusion prevention 

systems to prevent these types of activities from occurring in the future. 

 

Output character limit: 495 
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We can notice three issues here, the main issue being that the model still seems unaware of 

the existence of the anomaly detection system. Going as far to suggest to the user to implement one. 

Furthermore, the model is explicitly declaring the character output limit every time. 

4.7.2. Output of System prompt 02 

System prompt 02 

User Prompt 01 

Output Based on the provided traffic data, I would explain that this instance was 

labeled as "DoS Hulk" because it exhibits characteristics typical of a Denial of 

Service (DoS) attack. Specifically: 

 

1. High packet rate: The flow has an extremely high packet rate, with 10 

packets being sent in a very short duration (85155048 ms). This indicates a rapid 

and intense traffic generation. 

2. Unbalanced packet lengths: The forward packet length mean is 31.0, 

while the backward packet length mean is 2319.0. This suggests that the attacker 

is sending small packets to saturate the connection, making it difficult for the 

system to respond normally. 

3. Low average packet size: The average packet size is 793.67 bytes, which 

is relatively small compared to typical network traffic. This indicates that the 

attacker is using a large number of small packets to flood the system. 

4. High flow duration: The flow duration is extremely long (85155048 ms), 

indicating that the attack has been ongoing for an extended period. 

 

To mitigate this DoS Hulk attack, I would suggest implementing the 

following solutions: 

 

1. Implement rate limiting: Set up rate limits on incoming traffic to prevent 

a single source from sending excessive packets. 

2. Use packet filtering: Filter out small packets and packets with unusual 

lengths to reduce the impact of the attack. 

3. Utilize SYN cookies: Enable SYN cookie protection to prevent attackers 

from consuming system resources by sending large amounts of SYN requests. 

4. Monitor traffic patterns: Continuously monitor network traffic patterns to 
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detect anomalies and respond quickly to potential attacks. 

 

By implementing these measures, it should be possible to reduce the 

impact of this DoS Hulk attack and prevent similar incidents in the future. 

 

System prompt 02 

User Prompt 02 

Output Based on the provided traffic data, I would explain that this instance was 

labeled as "DoS Hulk" because it exhibits characteristics typical of a Denial of 

Service (DoS) attack. Specifically: 

1. High packet rate: The flow has an extremely high packet rate, with 10 

packets being sent in a very short duration (85155048 ms). This indicates a 

rapid and intense traffic generation. 

2. Unbalanced packet lengths: The forward packet length mean is 31.0, while 

the backward packet length mean is 2319.0. This suggests that the attacker 

is sending small packets to saturate the connection, making it difficult for 

the system to respond normally. 

3. Low average packet size: The average packet size is 793.67 bytes, which is 

relatively small compared to typical network traffic. This indicates that the 

attacker is using a large number of small packets to flood the system. 

4. High flow duration: The flow duration is extremely long (85155048 ms), 

indicating that the attack has been ongoing for an extended period. 

To mitigate this DoS Hulk attack, I would suggest implementing the 

following solutions: 

1. Implement rate limiting: Set up rate limits on incoming traffic to prevent a 

single source from sending excessive packets. 

2. Use packet filtering: Filter out small packets and packets with unusual 

lengths to reduce the impact of the attack. 

3. Utilize SYN cookies: Enable SYN cookie protection to prevent attackers 

from consuming system resources by sending large amounts of SYN 

requests. 

4. Monitor traffic patterns: Continuously monitor network traffic patterns to 

detect anomalies and respond quickly to potential attacks. 

By implementing these measures, it should be possible to reduce the 

impact of this DoS Hulk attack and prevent similar incidents in the future. 
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We immediately notice that all the issues we faced with the previous system prompt seem to 

have been largely mitigated. The model is now suggesting detailed and precise solutions tailored too 

each anomaly. With a few shared solutions, given the field of networking and the denoted anomalies 

in question. 

4.7.3. Output of System prompt 03 

System prompt 03 

User Prompt 01 

Output Based on the provided traffic data, I would explain that this instance was 

labeled as "DoS Hulk" because it exhibits characteristics typical of a Distributed 

Denial-of-Service (DDoS) attack. The key indicators include: 

 

• An unusually long flow duration of 85155048 seconds, which is likely to be an 

anomaly. 

• A high number of packets sent in the forward direction (10), with a relatively 

low number of packets sent in the backward direction (5). 

• A large difference between the maximum and minimum packet lengths, 

indicating potential manipulation or tampering with packets. 

• The presence of a single ACK flag count, which is unusual for normal traffic. 

• The high average packet size and bulk rates, suggesting that the attacker may 

be sending large packets to overwhelm the target system. 

 

The "DoS Hulk" label suggests that this attack is likely to be a powerful and 

aggressive DDoS attack, possibly using multiple machines or compromised 

devices to flood the target with traffic. This type of attack can cause significant 

disruptions to network services and impact business operations. 

 

To mitigate this anomaly, I would suggest implementing the following 

solutions: 

1. Implement rate limiting on incoming traffic to prevent overwhelming the 

system. 

2. Enable IP blocking or source address filtering to block suspicious IP 
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addresses. 

3. Implement packet filtering or content inspection to detect and drop 

malicious packets. 

4. Increase logging and monitoring capabilities to quickly identify and 

respond to DDoS attacks. 

5. Consider implementing a cloud-based DDoS mitigation service to help 

absorb traffic and reduce the load on the target system. 

 

By implementing these measures, we can help prevent the impact of this 

DoS Hulk attack and ensure continued network availability and security. 

 

System prompt 03 

User Prompt 02 

Output Based on the provided traffic data, I would explain that this instance was 

labeled as "PortScan" because it exhibits characteristics typical of a port scanning 

activity. The key indicators include: 

 

• A short flow duration of 52 seconds, which is relatively brief for normal 

network communication. 

• A small number of packets sent in both forward and backward directions (1 

each), with a low total length of packets. 

• The presence of a single PSH flag count, which suggests that the attacker 

may be sending packets to probe or test specific ports. 

• The high packet rate and flow bytes per second rates, indicating rapid-fire 

packet transmission. 

• The short IAT mean and standard deviation, suggesting that the packets 

were sent in quick succession. 

• The low average packet length and segment size, indicating that the 

attacker may be sending small packets to test port availability. 

• The presence of a single FIN flag count, which is unusual for normal traffic. 

 

The "PortScan" label suggests that this activity is likely an attempt to 

gather information about the network or system by scanning open ports. This type 

of activity can help attackers identify vulnerabilities and potential entry points for 

future attacks. 
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To mitigate this anomaly, I would suggest implementing the following 

solutions: 

 

1. Implement rate limiting on incoming traffic to prevent overwhelming the 

system. 

2. Enable IP blocking or source address filtering to block suspicious IP 

addresses. 

3. Implement packet filtering or content inspection to detect and drop 

malicious packets. 

4. Increase logging and monitoring capabilities to quickly identify and 

respond to port scanning activities. 

5. Consider implementing a cloud-based DDoS mitigation service to help 

absorb traffic and reduce the load on the target system. 

By implementing these measures, we can help prevent the impact of this 

PortScan activity and ensure continued network availability and security. 

  

In this third experiment we attempted to emphasize the contextual awareness of the model in 

the system architecture. Doubling down on the existence of anomaly detection system but that did 

not seem to have any effect on the LLM output. 

4.8. Using SHAP 

We opted to highlight the top 3 features (that corresponds to the highest SHAP values) in our 

prompt, this information will be given to our LLM along with the traffic data. But before we do that, 

we first need to inform our model of the inclusion of SHAP values in our rule-based detection 

system via the system prompt: 

4.8.1. SHAP powered system prompt 

“You are a traffic analyzer that works alongside our existing rule-based anomaly detection 

system that flags any traffic exhibiting anomalous characteristics with the proper label and uses 

SHAP values to determine the features that had the most effect on the prediction. You are given 

an instance of anomalous traffic data, along with the label of said anomaly (determined by our 
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existing rule-based detection system) as well as the top 3 features that had the most effect on the 

final decision. Your role is to provide a brief explanation as to why this traffic instance was labeled 

as the given anomaly. Additionally, you need to suggest a solution to the anomaly, be as specific as 

possible in your suggestion. Your outputs should have a max character limit of 700 (do not declare 

the character count at the end of the output).” 

4.8.2. SHAP powered user prompts 

4.8.2.1. User prompt01 

“The following traffic was labeled as Web Attack � Brute Force: 

Destination Port: 88 | Flow Duration: 1133 | Total Fwd Packets: 9 | Total Backward Packets: 6 

| Total Length of Fwd Packets: 3150 | Total Length of Bwd Packets: 3152 | Fwd Packet Length Max: 

1575 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 350.0 | Fwd Packet Length Std: 

694.5097192 | Bwd Packet Length Max: 1576 | Bwd Packet Length Min: 0 | Bwd Packet Length Mean: 

525.3333333 | Bwd Packet Length Std: 813.8429005 | Flow Bytes/s: 5562224.184 | Flow Packets/s: 

13239.188 | Flow IAT Mean: 80.92857143 | Flow IAT Std: 204.1750622 | Flow IAT Max: 787 | Flow IAT 

Min: 2 | Fwd IAT Total: 1133 | Fwd IAT Mean: 141.625 | Fwd IAT Std: 294.4199806 | Fwd IAT Max: 868 | 

Fwd IAT Min: 2 | Bwd IAT Total: 1032 | Bwd IAT Mean: 206.4 | Bwd IAT Std: 325.5046851 | Bwd IAT 

Max: 787 | Bwd IAT Min: 45 | Fwd PSH Flags: 0 | Bwd PSH Flags: 0 | Fwd URG Flags: 0 | Bwd URG 

Flags: 0 | Fwd Header Length: 304 | Bwd Header Length: 208 | Fwd Packets/s: 7943.512798 | Bwd 

Packets/s: 5295.675199 | Min Packet Length: 0 | Max Packet Length: 1576 | Packet Length Mean: 

393.875 | Packet Length Std: 704.585067 | Packet Length Variance: 496440.1167 | FIN Flag Count: 0 | 

SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 | 

CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up Ratio: 0 | Average Packet Size: 420.1333333 | Avg 

Fwd Segment Size: 350.0 | Avg Bwd Segment Size: 525.3333333 | Fwd Header Length.1: 304 | Fwd 

Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd Avg Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd 

Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow Fwd Packets: 9 | Subflow Fwd Bytes: 3150 | 

Subflow Bwd Packets: 6 | Subflow Bwd Bytes: 3152 | Init_Win_bytes_forward: 29200 | 

Init_Win_bytes_backward: 2081 | act_data_pkt_fwd: 2 | min_seg_size_forward: 32 | Active Mean: 0.0 | 

Active Std: 0.0 | Active Max: 0 | Active Min: 0 | Idle Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0  

According to our SHAP powered anomaly rule-based detection system, the top 3 features 

that had the most effect on the final decision are: 

Flow Duration, Fwd Avg Bytes/Bulk, Fwd Header Length.1” 
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4.8.2.2. User prompt02 

“The following traffic was labeled as Web Attack � Sql Injection: 

Destination Port: 443 | Flow Duration: 60261928 | Total Fwd Packets: 9 | Total Backward 

Packets: 7 | Total Length of Fwd Packets: 2330 | Total Length of Bwd Packets: 4221 | Fwd Packet 

Length Max: 1093 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 258.8888889 | Fwd Packet 

Length Std: 409.7021615 | Bwd Packet Length Max: 1460 | Bwd Packet Length Min: 0 | Bwd Packet 

Length Mean: 603.0 | Bwd Packet Length Std: 653.5941656 | Flow Bytes/s: 108.7087688 | Flow 

Packets/s: 0.265507602 | Flow IAT Mean: 4017461.867 | Flow IAT Std: 15500000.0 | Flow IAT Max: 

60000000 | Flow IAT Min: 1 | Fwd IAT Total: 60300000 | Fwd IAT Mean: 7532741.0 | Fwd IAT Std: 

21200000.0 | Fwd IAT Max: 60000000 | Fwd IAT Min: 311 | Bwd IAT Total: 211947 | Bwd IAT Mean: 

35324.5 | Bwd IAT Std: 27504.33405 | Bwd IAT Max: 57109 | Bwd IAT Min: 48 | Fwd PSH Flags: 0 | 

Bwd PSH Flags: 0 | Fwd URG Flags: 0 | Bwd URG Flags: 0 | Fwd Header Length: 192 | Bwd Header 

Length: 152 | Fwd Packets/s: 0.149348026 | Bwd Packets/s: 0.116159576 | Min Packet Length: 0 | Max 

Packet Length: 1460 | Packet Length Mean: 385.3529412 | Packet Length Std: 532.0940872 | Packet 

Length Variance: 283124.1176 | FIN Flag Count: 0 | SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag 

Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 | CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up 

Ratio: 0 | Average Packet Size: 409.4375 | Avg Fwd Segment Size: 258.8888889 | Avg Bwd Segment 

Size: 603.0 | Fwd Header Length.1: 192 | Fwd Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd Avg 

Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow 

Fwd Packets: 9 | Subflow Fwd Bytes: 2330 | Subflow Bwd Packets: 7 | Subflow Bwd Bytes: 4221 | 

Init_Win_bytes_forward: 8192 | Init_Win_bytes_backward: 513 | act_data_pkt_fwd: 8 | 

min_seg_size_forward: 20 | Active Mean: 0.0 | Active Std: 0.0 | Active Max: 0 | Active Min: 0 | Idle 

Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0  

According to our SHAP powered anomaly rule-based detection system, the top 3 features 

that had the most affect on the final decision are: 

Flow Duration, Fwd Avg Bytes/Bulk, Fwd Header Length.1” 

4.8.2.3. User prompt03 

“The following traffic was labeled as Web Attack � Sql Injection: 

Destination Port: 443 | Flow Duration: 60261928 | Total Fwd Packets: 9 | Total Backward 

Packets: 7 | Total Length of Fwd Packets: 2330 | Total Length of Bwd Packets: 4221 | Fwd Packet 

Length Max: 1093 | Fwd Packet Length Min: 0 | Fwd Packet Length Mean: 258.8888889 | Fwd Packet 

Length Std: 409.7021615 | Bwd Packet Length Max: 1460 | Bwd Packet Length Min: 0 | Bwd Packet 

Length Mean: 603.0 | Bwd Packet Length Std: 653.5941656 | Flow Bytes/s: 108.7087688 | Flow 
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Packets/s: 0.265507602 | Flow IAT Mean: 4017461.867 | Flow IAT Std: 15500000.0 | Flow IAT Max: 

60000000 | Flow IAT Min: 1 | Fwd IAT Total: 60300000 | Fwd IAT Mean: 7532741.0 | Fwd IAT Std: 

21200000.0 | Fwd IAT Max: 60000000 | Fwd IAT Min: 311 | Bwd IAT Total: 211947 | Bwd IAT Mean: 

35324.5 | Bwd IAT Std: 27504.33405 | Bwd IAT Max: 57109 | Bwd IAT Min: 48 | Fwd PSH Flags: 0 | 

Bwd PSH Flags: 0 | Fwd URG Flags: 0 | Bwd URG Flags: 0 | Fwd Header Length: 192 | Bwd Header 

Length: 152 | Fwd Packets/s: 0.149348026 | Bwd Packets/s: 0.116159576 | Min Packet Length: 0 | Max 

Packet Length: 1460 | Packet Length Mean: 385.3529412 | Packet Length Std: 532.0940872 | Packet 

Length Variance: 283124.1176 | FIN Flag Count: 0 | SYN Flag Count: 0 | RST Flag Count: 0 | PSH Flag 

Count: 1 | ACK Flag Count: 0 | URG Flag Count: 0 | CWE Flag Count: 0 | ECE Flag Count: 0 | Down/Up 

Ratio: 0 | Average Packet Size: 409.4375 | Avg Fwd Segment Size: 258.8888889 | Avg Bwd Segment 

Size: 603.0 | Fwd Header Length.1: 192 | Fwd Avg Bytes/Bulk: 0 | Fwd Avg Packets/Bulk: 0 | Fwd Avg 

Bulk Rate: 0 | Bwd Avg Bytes/Bulk: 0 | Bwd Avg Packets/Bulk: 0 | Bwd Avg Bulk Rate: 0 | Subflow 

Fwd Packets: 9 | Subflow Fwd Bytes: 2330 | Subflow Bwd Packets: 7 | Subflow Bwd Bytes: 4221 | 

Init_Win_bytes_forward: 8192 | Init_Win_bytes_backward: 513 | act_data_pkt_fwd: 8 | 

min_seg_size_forward: 20 | Active Mean: 0.0 | Active Std: 0.0 | Active Max: 0 | Active Min: 0 | Idle 

Mean: 0.0 | Idle Std: 0.0 | Idle Max: 0 | Idle Min: 0  

According to our SHAP powered anomaly rule-based detection system, the top 3 features 

that had the most affect on the final decision are: 

Flow Duration, Fwd Avg Bytes/Bulk, Fwd Header Length.1” 

 

4.9. Experimental results with SHAP values 

4.9.1. Output of User prompt01 

SHAP powered system prompt 

User Prompt 01 

Output Based on the provided network traffic data and the output from your 

SHAP-powered anomaly rule-based detection system, it appears that a Web 

Attack - Brute Force is detected. 

The top 3 features that contributed the most to the final decision are: 

1. Flow Duration: This feature measures the length of time the flow has been 
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active in seconds. A longer duration may indicate a prolonged and 

suspicious activity. 

2. Fwd Avg Bytes/Bulk: This feature calculates the average number of bytes 

sent per bulk packet in the forward direction. A low value may suggest that 

the traffic is not transmitting significant data, which could be indicative of 

brute-force attempts. 

3. Fwd Header Length.1: This feature measures the length of the forward 

header in bytes. An unusual or inconsistent header length may indicate 

tampering or manipulation of packets. 

These features, along with others, contributed to the detection of a Web 

Attack - Brute Force, which is a type of cyberattack that involves trying to guess 

passwords or credentials using automated software. 

It's essential to investigate this traffic further to determine the source and 

potential impact of this attack. You may want to consider analyzing additional 

features, such as packet captures, DNS queries, or system logs, to gain a deeper 

understanding of the incident. 

 

4.9.2. Output of User prompt02 

SHAP powered system prompt 

User Prompt 02 

Output Based on the provided network traffic data and the output from your 

SHAP-powered anomaly rule-based detection system, it appears that a Web 

Attack - SQL Injection is detected. 

The top 3 features that contributed the most to the final decision are: 

1. Flow Duration: This feature measures the length of time the flow has been 

active in seconds. A very long duration (60261928 seconds) may indicate a 

prolonged and suspicious activity, which could be indicative of an SQL 

injection attack. 

2. Fwd Avg Bytes/Bulk: This feature calculates the average number of bytes 

sent per bulk packet in the forward direction. A low value (0) suggests that 

the traffic is not transmitting significant data, which could be indicative of 

an attack attempting to inject malicious SQL code into a database. 

3. Fwd Header Length.1: This feature measures the length of the forward 
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header in bytes. An unusual or inconsistent header length (192 bytes) may 

indicate tampering or manipulation of packets, which is common in SQL 

injection attacks. 

These features, along with others, contributed to the detection of an SQL 

Injection attack, which involves injecting malicious code into a database to extract 

sensitive data or disrupt the system. 

It's essential to investigate this traffic further to determine the source and 

potential impact of this attack. You may want to consider analyzing additional 

features, such as packet captures, DNS queries, or system logs, to gain a deeper 

understanding of the incident. 

 

4.9.3. Output of User prompt03 

SHAP powered system prompt 

User Prompt 03 

Output Based on the provided network traffic data and the output from your 

SHAP-powered anomaly rule-based detection system, it appears that a Web 

Attack - SQL Injection is detected. 

The top 3 features that contributed the most to the final decision are: 

1. Flow Duration: This feature measures the length of time the flow has been 

active in seconds. A very long duration (60261928 seconds) may indicate a 

prolonged and suspicious activity, which could be indicative of an SQL 

injection attack. 

2. Fwd Avg Bytes/Bulk: This feature calculates the average number of bytes 

sent per bulk packet in the forward direction. A low value (0) suggests that 

the traffic is not transmitting significant data, which could be indicative of 

an attack attempting to inject malicious SQL code into a database. 

3. Fwd Header Length.1: This feature measures the length of the forward 

header in bytes. An unusual or inconsistent header length (192 bytes) may 

indicate tampering or manipulation of packets, which is common in SQL 

injection attacks. 

These features, along with others, contributed to the detection of an SQL 

Injection attack, which involves injecting malicious code into a database to extract 

sensitive data or disrupt the system. 
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It's essential to investigate this traffic further to determine the source and 

potential impact of this attack. You may want to consider analyzing additional 

features, such as packet captures, DNS queries, or system logs, to gain a deeper 

understanding of the incident. 

Additionally, you can use this information to fine-tune your detection rules 

and improve the accuracy of your SHAP-powered anomaly rule-based detection 

system. 

  

4.10. Results discussion 

4.10.1. Comparison between results without SHAP and with SHAP 

The two approaches demonstrated distinct differences in their output quality and accuracy. 

Without SHAP values, the LLM struggled to provide actionable insights, often suggesting general 

solutions that did not take into account the specific context of the anomaly. The model's responses 

were generic and lacked precision, failing to effectively explain the characteristics of each anomaly. 

In contrast, incorporating SHAP values significantly improved the quality and accuracy of the 

LLM's output. The model was able to generate detailed and precise explanations of each anomaly, 

highlighting key indicators that contributed to its classification. The solutions proposed by the LLM 

were tailored to each specific anomaly, demonstrating a better understanding of the context in which 

they occurred. 

The integration of SHAP values also enabled the LLM to recognize the existence of an 

anomaly detection system, allowing it to provide more effective and targeted suggestions for 

mitigating the anomalies. This demonstrated that the model was able to learn from its environment 

and adapt to its role within the system architecture. 

4.10.2. Importance of Prompt Engineering 

Prompt engineering plays a crucial role in unlocking the full potential of Large Language 

Models (LLMs) like the one used in this study. The quality of the output generated by the LLM is 
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heavily dependent on the effectiveness of the prompt, which serves as a guide for the model to 

generate human-friendly descriptions of anomalies. 

A well-crafted prompt can enable the LLM to provide accurate and actionable insights, while 

a poorly designed prompt can lead to generic or irrelevant responses. The importance of prompt 

engineering lies in its ability to bridge the gap between raw data and actionable insights. 

In this study, the integration of SHAP values within the prompting strategy demonstrated the 

significant impact that careful design of prompts can have on the quality of output generated by 

LLMs. By incorporating contextual information and specific indicators, the prompt enabled the 

model to generate detailed explanations and targeted solutions for each anomaly. 

Moreover, the effectiveness of the prompt engineering approach used in this study highlights 

the importance of considering the role of the LLM within a larger system architecture. By designing 

prompts that take into account the existence of an anomaly detection system, the model was able to 

provide more effective suggestions for mitigating anomalies, demonstrating its ability to learn from 

and adapt to its environment. 

In conclusion, prompt engineering is a critical component of any LLM-based approach, as it 

enables the model to generate high-quality output that is tailored to specific use cases. The careful 

design of prompts can significantly impact the accuracy and effectiveness of the LLM's responses, 

making it an essential consideration in any AI-powered anomaly detection system. 
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4.11. Conclusion 

The introduction of SHAP values has significantly improved the model's ability to explain its 

predictions and provide meaningful insights into the features that contributed most to the final 

decision. The top 3 features identified by SHAP, such as Flow Duration, Fwd Avg Bytes/Bulk, and 

Fwd Header Length, provide valuable information about the characteristics of the detected 

anomalies. The experimental results show that the LLM-based approach can accurately identify and 

classify different types of anomalies, including Web Attacks - Brute Force and SQL Injection. The 

model's ability to extract relevant features from the network traffic data and use them to make 

informed decisions is impressive. 



 

General Conclusion 
 

This thesis has explored the potential of Large Language Models (LLMs) to enhance anomaly 

detection in smart grids by providing interpretable explanations for identified anomalies. Our 

research addressed the critical limitation of traditional methods – their lack of interpretability – 

which hinders effective decision-making in response to grid anomalies. 

The investigation leveraged the well-established CICIDS2017 dataset, a comprehensive 

collection of labeled anomaly scenarios in smart grids. We explored how LLMs, specifically the 

powerful Llama3 8B model, could be harnessed to improve the interpretability of anomaly detection 

systems within this specific domain. 

A key approach involved the integration of SHAP (SHapley Additive exPlanations) values. 

By incorporating SHAP values within our prompting strategy, we aimed to bridge the gap between 

raw anomaly data and actionable insights. SHAP values provide a means to explain the internal 

workings of machine learning models, highlighting the features that contribute most significantly to a 

specific prediction. In our case, these values guided the LLM towards generating more accurate and 

informative descriptions of the detected anomalies. 

The experimental results were highly encouraging. Even without extensive fine-tuning, the 

Llama3 8B LLM achieved remarkable results when prompted effectively. This underscores the 

crucial role of prompt engineering – crafting specific instructions for the LLM – in unlocking its full 

potential for anomaly detection in smart grids. By leveraging domain knowledge and insights like 

SHAP values within our prompts, we were able to significantly improve the interpretability of the 

anomaly detection system. 

The LLM-based approach successfully identified and classified different types of anomalies, 

including web attacks like brute force and SQL injection. The model's ability to extract relevant 

features from network traffic data and use them to make informed decisions is a significant 

advancement. However, some limitations remain. While SHAP values provide valuable information 

about the contributing factors to an anomaly, there is a need for even more detailed explanations. 

Future research could explore incorporating additional context or visualizations to help grid analysts 

better understand the nature of the attack and its potential impact on the smart grid's operation. 
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Limitations 

While this study demonstrates the potential of LLMs for improving interpretability in smart 

grid anomaly detection, there are limitations to consider for future research. 

Data Availability and Specificity 

The effectiveness of LLMs hinges on the quality and quantity of training data. This study 

relied on the CICIDS2017 dataset, which is not specifically designed for smart grid anomalies.  

Future work should explore the impact of domain-specific datasets containing descriptions of real-

world smart grid anomalies. This will likely lead to more nuanced and accurate descriptions 

generated by the LLM. 

Generalizability and False Positives 

The study focused on a single LLM (Llama3 8B) and may not generalize to other 

architectures or sizes. Further research is needed to explore the performance of different LLMs on 

diverse smart grid anomaly datasets. Additionally, the interpretability of LLM explanations might 

not be universally reliable. Future work should investigate methods to quantify the confidence of 

LLM explanations and develop mechanisms to reduce false positives. 

Explainability vs. Actionability 

While LLMs offer human-readable descriptions, the actionable nature of these explanations 

requires further exploration. This study focused on using SHAP values for prompting, but other 

interpretability techniques like attention mechanisms could be explored to highlight specific data 

points influencing the LLM's reasoning. Additionally, research into how to translate LLM 

descriptions into concrete actions for grid operators is crucial for real-world implementation. 

Computational Cost and Scalability 

Training and running large LLMs can be computationally expensive. This study used a 

limited fine-tuning approach to balance performance and resource constraints. Future research should 

investigate techniques for efficient LLM training and inference specifically for smart grid 
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applications. Additionally, exploring smaller, more focused LLMs tailored for anomaly detection in 

smart grids could be a promising avenue for achieving scalability. 

Perspective and Future work 

This research paves the way for further exploration of LLMs in smart grid anomaly detection. 

Here are key areas for advancement: 

Exploring More Powerful LLMs 

Experimenting with cutting-edge LLMs could provide even more insightful explanations, but 

with increased computational demands. 

Fine-tuning on Anomaly Descriptions 

Developing a dataset of real-world smart grid anomalies paired with detailed human 

explanations would significantly improve the LLM's ability to generate accurate descriptions. 

Collaboration with domain experts would be crucial. 

Enhancing Prompt Engineering 

Incorporating intricate domain knowledge like specific anomaly types and potential 

consequences into prompts can guide the LLM towards more precise explanations. 

Visualizations and Context 

Integrating visualizations alongside LLM descriptions and including information on historical 

occurrences and mitigation strategies could further enrich the explanations provided. 
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