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Abstract:

The objective of this memoire is to examine the intricacies of a reaction-diffusion (susceptible-
infectious-susceptible) SIS epidemic model featuring a nonlinear incidence rate, which characterizes
the spread of a contagious illness among people. We demonstrate that, given a single condition, the
suggested model has two steady states. We establish the local and global asymptotic stability of the
non-negative constant steady states subject to the basic reproduction number being greater than unity
and of the disease-free equilibrium subject to the basic reproduction number being smaller than or
equal to unity in the ODE case by analyzing the eigenvalues, and using an appropriately constructed
Lyapunov function. Through the application of a suitably constructed Lyapunov function, we
determine the global stability condition in the PDE scenario. This is done by comparing R, with one,
where in the case of 1 < R, we found that the system accepts global stability in the vicinity of the
point E*but in the case of 1 > R, the system accepts global stability in the vicinity of the point E .
Finally, we provide a few numerical examples that both illustrate and validate the analytical findings
that have been made throughout the work.

Keywords: Reproductive number R, epidemiological, equilibrium points, disease-free equilibria,
local and global stability , Lyapunov function -



Résumé :

L'objectif de cette mémoire est d'analyser les subtilités d'un modele épidémique de réaction-
diffusion SIS (susceptible-infectieux-susceptible) avec une incidence non linéaire, qui caractérise la
propagation d'une maladie contagieuse parmi les individus. On montre que, sous une seule
condition, le modéle suggéré présente deux états stables. On établit la stabilité asymptotique locale
et globale des systémes constants non négatifs lorsque le nombre de reproduction basique est
supérieur a un, ainsi que celle du systéme équilibré sans maladie lorsque le nombre de reproduction
basique est inférieur a un, dans le cas de I'ODE, en analysant les valeurs propres et en utilisant une
fonction Lyapunov appropriée. En utilisant une fonction Lyapunov appropriée, nous déterminons la
condition de stabilité globale dans le scénario PDE Cela se fait en comparant Ry avec un, ol dans le
cas de 1 < R, nous avons constaté que le systéme accepte une stabilité globale au voisinage du
point E*, mais dans le cas de 1 > Ry, le systeme accepte une stabilité globale au voisinage aux point.
Enfin Ey, nous présentons des exemples numériques qui illustrent et confirment les conclusions
analytiques qui ont été établies tout au long de I'action.

mots-clés: Nombre de reproduction R, épidémiologique, points d'équilibre, équilibres sans
maladies, stabilité local et globale, fonction de Lyapunov -
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General Introduction \

Throughout history, many epidemics have had major implications for human society, from killing
large proportions of the world’s population to making humans think of a solution to reduce them,
mathematical modeling has been the way to do so, by modeling problems and analyzing them
mathematically using non-linear differential equation systems, these illnesses now pose fresh
difficulties that need for mathematical modeling that combines medical and mathematical view
points Epidemiology, medicine, biology, and mathematical cross in the field of mathematical mod-
eling,which uses equations to show a condensed version of reality.

In recent years, scientists have worked to create mathematical models that are more and more
realistic and answer ever-more-complex issues. The nature of the problems under investigation
and the accessibility more detailed and the accurate data are the causes of this complexity.

In general, mathematical models provide a condensed understanding of reality by formalizing
complicated occurrences and making it easier to examine numerous factors and their relation-
ships.

Furthermore, mathematical models serve the primary purpose of predicting events across diverse
situations, finding particular use in the field of communicable disease epidemiology through var-
ious models based on differential equation equations or probabilistic approaches epidemiological
models play avital role in comprehending the spread of infectious diseases and predicting fu-
ture outcomes. Analytical studies of epidemiological models, involving the analysis of disease
transmission dynamics and considering factors such as population size and disease criteria, ex-
amine the mathematical behavior and characteristics of epidemics. Non-linear equations, Such
as reaction-diffusion models, describe the interaction between epidemiological variables like the
number of infected, susceptible, exposed, and recovered individuals.

The SIS epidemiology model has captured the interest of many researchers, so in this research, I
conducted an analytical study of an SIS epidemiological model specifically, targeted at HIV. The
study in modved involved a comprehensive analysis of the disease’s dynamics within a population,
wherein the SIS model represents individuals as susceptible to HIV infection or infected and
capable of transmitting the virus.

This analytical approach allowed for the exploration of equilibrium points, determination of their

stability, and prediction of long-term trends in HIV transmission.
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Chapter 1

Some mathematical definitions

1.1 Space L?

Definition 1.1 [6]Let 2 be a domain in R" and let p be a positive real number. We denote by L*((2)
the class of all measurable function U defined on ) for wich

/ \U(t,z)|" dz < oo,
Q

e, = ( [ |U<t,x>\f’dx);.

Corollary 1.1 L?(R) is a Hilbert space with respect to the inner product

if UeL? we define its norm

(UU)0 = V]2 = / U2,

1.1.1 Soboleve space

Definition 1.2 [18]The Sobolev space W*? (Q) consists of function u eLP(Q)such that for every

multi-index « with || < k, the weak derivatives D“u exists D*u eL*(Q2). Thus
WP (Q) = {u eLP(Q), D*u eL*(Q), |a| < k}.
Definition 1.3 We call Sobolev space of order 1 on ) the space

W2 (Q) = H' () = {veL*(Q), 0,,0eL*(Q),1 < i < d} .
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1.2 Basic theories

1.2.1 Gronwall’s Inequality
Theorem 1.1 [2]Let N(t) be a continuous nonnegative function such that
t
N(t) < a—l—/ (BN(s) +y)ds,ont > tg,
to
where a > 0,3 > 0 and v > 0.Then for t > to.N(t) satisfies

N(t) < aexp(B(t — to)) + %(exp(ﬁ(t — 1)) — 1).

1.2.2 Non-negativity of solutions

Definition 1.4 [24] Let F:CR? — R™
Then F is essentially nonnegative if f;(U) > 0, for all i = 1...n and UeR" such that w; = 0.

where u; denotes the i component of U.

Proposition 1.1 [?] Suppose I C R .Then R is an invariant set with respect to ODEs system

if and only if F is essentially nonnegative.

1.2.3 Intermediate value theorem

Theorem 1.2 [20] Let h be a real-valued function which is continuous on the closed interval [a, ] .
If k is any number between h(a) and h(b), then there exists at least one number c €[a,b] such that
hic) =k .

The Intermediate value theorem can be used to determine whether there exists a solution to the

equation h(x) = k when h(x) is a continuous function on a closed interval [a, b] .

Corollary 1.2 [20]Let h be a real-valued function which is continuous on the closed interval [a, b].

If h(a) x h(b) < 0, then there exists at least one number c €[a, b] such that h(c) = 0.

Remark 1.1 [4] if the function h is strictly monotonic and continuous on |a, b] (i.e. strictly increasing

or strictly decreasing) then the equation h(x) = k, has a unique solution.

1.2. Basic theories [J
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1.2.4 Green Formula

[1] Let u,v be two functions such that ueH? (Q2) and ve H' () then we have

/ uvdr = @vds — /vu v vdzx.
Q a0 On

1.2.5 Eigenfunction

Definition 1.5 In mathematics, an eigenfunction of a linear operator P defined on some function
space is any non-zero function Win that space that, when acted upon by B is only multiplied by some

scaling factor called an eigenvalue. As an equation, this condition can be written as
PU = \U.

for some scalar eigenvalue \ The solutions to this equation may also be subject to boundary conditions

that limit the allowable eigenvalues and eigenfunctions.

1.3 Equilibrium points

An equilibrium point, or a steady state, is a point in a system where the system remains unchanged
at the equilibrium point. In other words, the net change in the system’s state variables is zero,

many stability problems are naturally formulated with respect to equilibrium points [7]

Definition 1.6 A state z*is an equilibrium state (or equilibrium point) of the system if once x(t) is

equal to x*, it remains equal to x* for all future time. This means
f(z*)=0.

After we solve this nonlinear algebraic equations we can found the equilibrium points. A linear

time-invariant system

T = Ax.

If A is nonsingular that is mean the system has a single equilibrium point. If A is singular; it has
an infinity of equilibrium point. A nonlinear system can have several (or infinitely many) isolated

equilibrium points.

1.3. Equilibrium points
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1.3.1 Disease-free equilibria

It is a special state in which the entire population is free from the infectious disease under con-
sideration, meaning that it refers to a state in which the disease is completely eradicated from the
population, and there are no infected individuals present. It represents a stable equilibrium point

at which the number of infected individuals is zero (/ = 0).

1.4 Some basic results about reaction-diffusion equations

In this section, we will present the most important ndings about reaction-diusion
systems (2.9)-(2.10), represented in local existence & uniqueness of solution, comparaison

principle, and positivity of solution.

Local existence of solutions

The following basic assumptions on system (2.9)-(2.10) are assumed to hold:
f =), : Qx Ryx R — R™ is locally Lipschitz in each variable.

Uy = <U0z>;11€LOO(Q,Rm)

Before declaring the main result in this subsection we will need this definition:

Definition 1.7 A function u := (uy, ..., u,,)is a classical solution to (2.9)-(2.10) on
(0,T) if, fori =1, ...,m, we have:

ueC*H(Q x (0, 7)) N C ([0,T); L¥(€),
and u satisfies (2.9)-(2.10).
The local existence of solution of systems (2.9)-(2.10) follows from classical results, as follows:

Theorem 1.3 [23]Suppose that (2.9)-(2.10) hold. Then the systems (2.9)-(2.10)
admit a unique, classical solution on 2 X [0, T},,4.)\Where

0 < Thae < coMoreover,

if Tnax < +o00, then lim z; i (-, )| oo 0y = F00

—dmax 7

1.4. Some basic results about reaction-diffusion equations [
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Comparaison principle and positivity of solutions

First, we will present an important theorem that helps in obtaining initial estimates for

solutions of reaction-diusion systems, known as the comparaison principle:
Theorem 1.4 [3]Let T > 0, if the functions

U= (U, ey Upn), U 1= (U1, e, Uy )€ [CPH(Q X (07T)”m’

satisfy
% — diAu; — fi(z,t,u) < % — d;Av; — fi(x,t,v), inQx (0,7),i=1,.,m,
ugi(x) < wvix), inQi=1,..,m,
(Z;:Z = % =0,0n 00 x (0,7),i=1,..,m.
Then

ui(2,t) < wviw,t),in Q x (0,T],i=1,..,m.

Since the properties of chemical concentration, density of population, number of
individuals, ... ect, are positive quantities (either in the initial stage or after a period of
time), then we need to elicit this property in system(2.9)-(2.10). Before showing the positivity

of solution of (2.9)-(2.10), we need the following precondition:

Definition 1.8 (Quasi-positive function) The nonlinearity f = (f;),
(in system (2.9)-(2.10)) is called quasi-positive if satisfies:

Vu = (uh e um>€RT7VZ = ]-7 ceey T, fz (Ul, oy Uj—1, 07 Uit1s -+ um) > 0.
According to the comparaison principle and the precondition stated above, we get

the following result about positivity of solution for system (2.9)-(2.10).

Corollary 1.3 [12]Suppose that (2.9)-(2.10)hold, moreover, the nonlinearity f = (f;)*,
is quasi-positive. Then the systems (2.9)-(2.10) admit a unique, classical

solution on €2 x [0, T'max) where, fori=1,....,m

Ve Q,up;(z) > 0= V(z,t) e Q x [0, Tmaz),u;(x,t) > 0.

1.4. Some basic results about reaction-diffusion equations [J
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Global existence of solutions for reaction-dffiusion equations

Consider the initial-boundary value problem (semilinear parabolic equation):

% —dAu:f (x,t,u) an X Rj—’
%(x,t) =0on N x R%, (a.1)
u(z,0) = up(z) in Q.

Where Q c RY (Q is bounded, simply connected and smooth), and d > 0. Furthermore
we assume:

f: Q2 xRix R — Ris locally Lipschitzian function of all its arguments.

ug € C (ﬁ) .

Under the above assumptions (2.1), The problem (2.1)admits a unique

classical solution on 2 x [0, T'max) where 0 < T'max < co. Moreover, we have the same

characterization of T'mazx.

1.5 Local stabillity
1.5.1 Local stability in case ODEs

To understand the fundamental theories pertaining to the stability of the system ODEs. First you
must find:

Jaccobian matrix, a matrix of partial derivatives of the first order. The approximation of non-
linear systems around equilibrium points is a crucial task for the Jacobian matrix in the context
of differential equations and dynamical systems. The localized behavior of a system of equations
near equilibrium is characterized by the Jacobian matrix when it involves many variables.

If we have this system of equations:

fl(xl»x% 7xn) -

fQ(l‘17$27 al‘n) -

fn(xl,l'Q, an> =0.

Its Jacobian Matrix denoted by .J is given by

1.5. Local stabillity
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ofi 9f oft
ox1 Oz Tt Oz
Ofs  Of Of2
J = ox1 Oxo 7 Ozn
Ofn  Ofn Ofn
o1 Ors " Oxn

By evaluating the Jacobian matrix at an equilibrium point, you can obtain valuable information

about the stability properties of the system by examining the eigenvalues of the matrix.[8]

Theorem 1.5 [2]1]The system Given is locally asymptotically stable at the equilibrium (u* ,v* ) if

and only if the trace of A is negative and its determinant is positive, i.e.

tr(J)=m < 0,YmeR
det(J)=n>0,VneR

1.5.2 Local stability in case PDEs

A popular technique for examining the PDEs system’s local asymptotic stability is the eigenfunc-
tion expansion method, It’s crucial to review some of the theory around the Laplace operator’s

eigenvalues.[22]

The Eigenvalues of the Laplace Operator

We have 0 = Ay < A\; < A2... < \; = 400 where are indefinite sequence of postive eigenvalues for
the Laplacien operator A over (2, with Neuman boundary condition where each \; has, multipicty
m; > 1, Also let (®;,), 1~ where 1 < p < m;, be the correspanding normalized eigenfunction,

that is ®;, and ); satisfy -A®;, = \; in Q with 8;}3” =0in 9Q and [, ®7 dz = 1.

1.6 Global stability

Proving global stability[7]in epidemiology is often more challenging than demonstrating local sta-
bility. global stability refers to demonstrating that an equilibrium point in an epidemiological
model is not only locally stable but also stable for all possible initial conditions and perturbations.
It ensures that the disease prevalence will converge to the equilibrium state from any starting
point in the system’s state space. It usually involves the use of Lyapunov functions, which are
scalar functions that measure the energy or "distance" of the system from the equilibrium. A Lya-
punov function is defined such that it decreases over time, reaching a minimum at the equilibrium

point.

1.6. Global stability
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So to establish global stability, the Lyapunov function must be definite positive (it is positive for
all points in the state space except at the equilibrium point where it is zero), and its derivate with
respect to time must be negative or zero.

We define this function as follow:

Theorem (Lyapunov function )

Theorem 1.6 [7] Let «* be an equilibrium solution of the equation.

Let ) be a neighborhood of z* contained in U, and let V : 2 — R be a C* class function such that:
>V (z*) = 0.

>V o e Q\{z*},V(z) > 0.

>V xeQV'(z)<O0.

Then, z* is stable.

V' named Lyapunov function.

Theorem ( Strict Lyapunov Function)

Theorem 1.7 [I6]Let z* be an equilibrium solution of the equation

o' = f(z(t)).
Let ) be a neighborhood of z* included in U, and let V : Q — R be a C* class function such that:
>V (z*) = 0.

>V o e Q\{z*},V(z) > 0.

>V xeQ V' (r)<O.

Then, x* is asymptotically stable.
V named Strict Lyapunov function.

The Negative Criteria:

Among the methods used to establish the global asymptotic stability of solutions are
Bendixson’s and Dulac’s criteria. Below is a summary of these criteria as described in [10].
It is important to note that (proposition of Bendixson’s criterion) is merely a special

case of Dulac’s (Proposition Dulac's).

1.6. Global stability
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Proposition 1.2 (Bendixson’s criterion)

Given the simply connected region) , if the expression

_OF  0G

C=%t o

is not zero for all (x,y) in > and does not change sign in > _, then there are

no limit cycles in ) .

Proposition 1.3 ( Dulac’s criterion)
Given the simply connected region >, if there exists a function

B(x,y) € Clsuch that
J(BF) N J(BG)
ox oy

is not zero for all (x,y) in Y and does not change sign in ), then there are

C =

no limit cyclesin ) .

The Poincare-Bendixson Theory

This theorem is based on the observation that two dimensional planes have some specific charac-
teristics that may not exist in higher dimensions. Particularly, any trajectory

may only have one of four limiting values: a critical point, a limit cycle, cycle graph, or

infinite xy values. Furthermore, if the trajectory is bounded, then it may only approach

a critical point or a cycle graph. This is basis of the Poincare-Bendixson theory, which

states that if a certain trajectory is bounded for ¢ > ¢, and does not tend to a singular

point, then it either is a limit cycle or tends to a limit cycle. For more on the theory, see[10]

The following theorem summarizes the Poincare-Benidixson theory:
Theorem 1.8 If an ODFE's system of the form

du

T _F

L~ F(),
where F'is locally Lipschitz in u, has a solution that is bounded for t > 0,
then either
>¢ is periodic,
>>¢ approaches a periodic solution,

>>¢ gets close to an equilibrium point infinitely often.

1.6. Global stability
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Theorem 1.9 [9](La Salle invariance theorem)
Let V : Q — RT be a function of C' and suppose that V (u) < 0 for all
u € §). Define

E={ueQ:V(u)=0}.

Let L be the largest invariant set contained in E. Then, any bounded
solution tends to L as the time goes to infinity. If, furthermore, L reduce to

u*, then u*is asymptotically stable.

Definition 1.9 (Global Stability)
Function u is globally asymptotically stable on S if for all ug € §2, the
solution u satisfies

tlim |lu(t) — u*|| = 0.

1.6. Global stability



Chapter 2

Introduction to epidemiology

2.1 Introduction

A mathematical model is an abstract representation or interpretation of reality in different do-
mains which is accessible to analysis and calculation based on a set of assumptions. Compartmen-
tal models are among the first mathematical models to have been used in epidemiology, which
plays an important role in studying the evolution of infectious diseases and eradicating them and,
at most, should make it possible to better understand epidemic phenomena and therefore better
control them.

The idea has become to study demographic variations in societies. To model, it is first necessary
to know the biology of the disease well [19] making a model of deterministic or stochastic com-
partments in discrete or continuous time depending on the disease to be studied, except the use
of stochastic models is more complicated than the other. In this chapter, we are interested in this
last type of model, which is based on two concepts: compartments and rules, compartments di-
vide the population into various possible states by disease(susceptible, infected, etc.), rules specify

the proportion of individuals moving from one compartment to another.

2.2 Concept of the epidemiology

2.2.1 Definition of epidemic

The term "epidemic" [16] is derived from the Greek words "epi", which means "on" or "among",
and "demos", which means "people" or "population". The Oxford English Dictionary states that

the word was first used in english in the late 16" century, specifically in 1580.
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The term epidemiology, which means "study of epidemics", was first used in 1830 by the french
physician Louis-René Villermé. Later, Dr. Pierre Charles Alexandre Louis popularized the term,
which was then gradually incorporated into the English language. While epidemiology is often

associated with medicine, it encompasses much more.
2.2.2 Definition of epidemiology

The term epidemiology, which means "study of epidemics", was first used in 1830 by the french
physician Louis-René Villermé. Later, Dr. Pierre Charles Alexandre Louis popularized the term,
which was then gradually incorporated into the English language. While epidemiology is often
associated with medicine, it encompasses much more.

It is a branch of medicine that studies the spread of diseases, their transmission factors, and their

impact on the human population, including risk factors, prevention, and control measures.

2.2.3 Descriptive of epidemiology

In descriptive epidemiology, data is analyzed to describe the patterns of occurrence by person,
place, and time, as well as the distribution of diseases or health-related events in communities.
The goal of this area of epidemiology is to determine the population impacted, the location and

timing of the incidents, and any patterns or contributing factors.[17]

2.3 Mathematical Epidemiology

Mathematical epidemiology is a branch of epidemiology that utilizes mathematical and statistical
models and methods to study the spread of diseases in populations, analyze factors influencing
this spread, and provide forecasts, preventive measures, and control strategies based on available
data and mathematical models.

In this definition, we will mention some famous examples used in this field.

2.3.1 The classic model in compartement

The SI, SIS model

The ST model is one of the classic models created by W. Hamar and developed in 1906 where

individuals can be divided into two compartments:

2.3. Mathematical Epidemiology
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O—O

Figure 2.1: SI model diagram

Q%

Figure 2.2: The SIS model

The compartment or box of susceptible (healthy) individuals are receptive to the infectious agent
who are not contaminated but can catch the disease and become contagious noted (5).

The compartment of infected individuals noted (/) are those affected and who are therefore
infectious.

The infection is spread by direct contact between the susceptible and the infected. We see that in
the SI model, there are no cures and is only relevant in incurable diseases or if the phenomenon
of acquired immunity can be neglected[25]. An individual changes state (either infected or sus-
ceptible... etc.) he therefore changes his compartment with outgoing or incoming flows which
indicate the rate of transfer between them. On the other hand, as the change in the number of
infected people occurs over time, compartment / includes /(¢) and the same for S(¢). By the

assumption of the constant of the size of the population the model is formed as follows :

The system of differential equations is written :

2.1

With :

( : is the infection rate per unit time.

~ : the rate of each infected heals.

N(t) :is total population.

With N(t) = S(t) + I(t) is the total population and is constant through time ¢. There are cases
where susceptible becomes infected and the infected are cured at the rate v but do not develop
immunity and become susceptible like the case of tuberculosis, the following graph concisely

summarizes the model :

2.3. Mathematical Epidemiology
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Figure 2.3: SIR model

The associated differential equations are :

{ B — _BI()S(t) + I (t). (2.2)

O — BI(4)S(t) — YI(t).

The SIR, SIRS model

The SIR model is the model proposed by kermack and MC Kendrick, consists of three categories
of population : healthy people S(t), infected people (), recovered or cured people R(t) who are
conferred

a immunization against reinfection or death.

The following figure schematizes the transfers of individuals between each group.

Mathematically, the SIR model is given by the following system :

B — _BI(t)S(t).
AO — 31(4)S(t) — vI(t). (2.3)
A = y1(t).
Where :
3 is the transmission rate.

~ is the recovery rate.

The term $1(t)S(t) represents the number of contacts between healthy and infected people. On
the other hand, we only encounter diseases, the individual has not acquired permanent immu-
nization,he los- es his immunity and returns to the S compartment at the rate 7, this is the SIRS
model schematizing as follows :

This model is formulated as follows :

T = BLBS(E) (1), (24)

2.3. Mathematical Epidemiology



Chapter 2. Introduction to epidemiology

Figure 2.4: The SIRS model
5 -@

Figure 2.5: SEI model

With :
[ : is the transmission rate.
~ : the rate of each infected heals.

7 : the rate of loss of immunity (each removed becomes healthy again).

The SEI, SEIR model

The constitution of these models are based on a subpopulation is already infected but not yet con-
tagious (non-infectious) i.e. susceptible subpopulations before go to class I, it requires spending
a period to make infectious s’calls the latency period or incubation at an intermediate compart-
ment denoted E(exposed), taking into account /3 the incubation rate of a disease. Schemes and

ED are developed as follows :

The model is translated as follows :

B = —BI(1)S(t).
G — BI(#)S(t) — aB(t). (2.5)

t
d
a0 — aB(t).

N2

As well as :

The EDO system is elaborated to the following :

2.3. Mathematical Epidemiology
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Figure 2.6: SEIR model

B — _BI()S(t).
4B — BI(1)S(t) — aB(t).

t

t
a0 — o B(t) — yI(t).

d
()}

(2.6)

2.4 The force of infection

The key parameter in all epidemiological models of infectious diseases is the force of infection.
The latter accounts for the contamination process by expressing the probability that a susceptible
individual will contract the disease so that each infected encounters at the rate C, each of these
encounters with a type C' individual causes contamination with the probability P, we score § =
CP. It is this force of infection which moves individuals from compartment S to compartment /
in the previous figures and which can be written in two different ways :

A is force of infection.

A= pI1. 2.7)
If disease transmission increases with population N density like (the influenza virus).
_ B8l

N
If the transmission does not depend on it as (HIV).

A (2.8)

2.5 Basic reproduction number R,

One of the first questions the epidemiologist asks is whether there is going to be an epidemic or
not. The answer to this question in a very simple way by examining the system of differential
equations. The first step is to translate our question into mathematical form. Then we calculate a

quantity that describes the average number of secondary cases, generated by a typical infectious

2.4. The force of infection
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individual durin his period of infectivity, when he is introduced into a population consisting en-
tirely of susceptible, this quantity is called basic reproduction number, noted by Ry, so the first
idea of this number was by Théophile Lotz (1980) (Nichiura, Dietz, Eichner 2006). He finds that
Ry is a threshold and after Ross describes the first differential model and gives the threshold
conditions as follows :

If Ry < 1, then the disease-free point is globally stable, i.e. an individual infects on average less
than one, which means that the disease disappears from the population. Conversely, if Ry > 1,
then the endemic point is globally stable, i.e. The disease can spread in the population. Note that
is determined according to the parameters of the model and later, it is used in the equilibrium
stability theorems of the disease of the population.|26]

Who want to calculate this number must follow this method It was created in the 1980s by

R. M. Anderson and R. M. May, and the discipline of infectious disease epidemiology makes

extensive use of it.

2.5.1 The Van Den Driessche and Watmough method

Either F,V two matrices

F: ( fl(SanUZ) ) .
f2(S, U1, Us)

Uy, U

vV — Ul( 1 2) ‘
UQ(U 1) Uz)

Derivatives of fi, fo with respect to U; and U, respectively:

0f1(S,U1,U2)  9f1(S,U1,U2)
F = oU; Uz

Af2(8,U1,U2)  9f2(S,U1,U2)
8U1 8U2

.Derivatives of v, v, with respect to U; and U, respectively:

8U1(U1,U2) 81)1(U1,U2)
V= oUy Uy

8U2(U1,U2) 8U2(U1,U2)
8U1 8U2

Then we calculate the inverse matrix of V.

1 Ov2(U,U2) 0wi1(U1,U2)
V_l — 8U2 BUQ
0v1(U1,U2) Ov2(U1,U2)  0w1(U1,Uz) dve(U1,Uz) _ Ow(U1,U2) Ov1(Uy,Us) )
Uy oUa Uz oUy Uy oUy

2.5. Basic reproduction number R
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Then we calculate the matrix (F'V~!).The basic reproductive number R is then defined as the
spectral radius of the Jacobian matrix. The spectral radius refers to the maximum absolute value

of the eigenvalues of the matrix (o is the eigenvalues of the matrix ).

p(FV_l) = maX{|)\,)\€a(FV_1)‘}
p(FV™') = R.

In the context of epidemiology, the eigenvalues represent the growth rates of different infection

states.

2.6 Reaction-diffusion

Reaction-diffusion systems of partial differential equations have long piqued the curiosity of sci-
entists, including Alan Turing, because they may be used to simulate practical situations, in 1952.
In essence, reaction-diffusion systems show how two processes result in the change of certain
physical attributes in space and time. Reaction is the first process in which a quantity changes

into another; diffusion is the second process in which the quantities spread out over space.

2.6.1 Model for reaction-diffusion

We study the population dynamic by merging both mechanisms after investigating different ap-
proaches to simulating dispersion and reproduction, either for infection, prey, or population in
isolation. Our goal is to track the population size’s temporal and spatial behavior while taking
various growth models, such logistic and exponential growth, into account. We concentrate in
diffusion-reaction systems, where populations can spread and expand at the same time

An example of a reaction-diffusion system in its most generic form is provided by

0

5:U(ta) = DAU(t,2) + F(U(t,2))x € 2.t > 0 (2.9)

where
Ult,z) = (ur(t, o), us(t, ), e e wtin(t, )" (2.10)

is the unknown vector function, D is an n x n matrix of diffusion coefficients, and

F(u) = (fi(w), f2(u), « oo fulw))" (2.11)

is a functional representing the interaction.

2.6. Reaction-diffusion



Chapter 2. Introduction to epidemiology

2.7 Stability in the general condition

In this section we will discuss an overview of stability.

2.7.1 Local stability generally

Equilibrium Point: An equilibrium point is a state where the system’s behavior does not change
over time. Mathematically, it's where the derivative of the system’s state with respect to time is
zZero.

Local Stability: Local stability refers to how the system behaves near an equilibrium point.
Specifically, it investigates whether small perturbations (changes) in the system’s state lead to
those perturbations eventually decreasing and the system returning to the equilibrium point, or
if they diverge, causing instability.

Linearization: One common method to analyze local stability is through linearization. This
involves approximating the behavior of the system near the equilibrium point using linear equa-
tions. Linear systems are often easier to analyze mathematically.

Eigenvalues: In linear systems, local stability is often determined by the eigenvalues of the
system’s Jacobian matrix evaluated at the equilibrium point. If all eigenvalues have negative real
parts, the system is locally stable. If any eigenvalue has a positive real part, the system is unstable.
Lyapunov Stability: Another approach to analyzing stability is Lyapunov stability theory. This
theory provides conditions under which a system remains close to an equilibrium point over time.
It involves finding a Lyapunov function, which is a scalar function that decreases along trajectories
of the system.

Applications: Local stability analysis is widely used in various fields, including control theory,
physics, biology, and economics. It helps predict the behavior of systems ranging from mechanical

systems to population dynamics.

2.7.2 Global stability

The notion of global stability encompasses not only the behavior of a system locally around equi-
librium points, but also the behavior of the system over its whole state space. Generally speaking:
Equilibrium Points: Similar to local stability, global stability often begins with identifying equi-
librium points of the system, where its dynamics are such that the state does not change over

time.

2.7. Stability in the general condition
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Lyapunov Functions: Global stability is often analyzed using Lyapunov functions. A Lyapunov
function is a scalar function of the system’s state variables that is positive definite, meaning it’s
always positive except possibly at the equilibrium point, and it decreases along system trajecto-
ries away from the equilibrium point. If a Lyapunov function can be found for the system that
decreases monotonically (or non-increasingly) along all trajectories, the system is globally stable.
LaSalle’s Invariance Principle: This principle is a powerful tool for establishing global stability.
It states that if there exists a Lyapunov function for a dynamical system, and if the derivative
of that Lyapunov function along the trajectories of the system tends to zero as time approaches
infinity, then the system’s trajectories will converge to the largest invariant set contained within
the region where the derivative of the Lyapunov function is zero. In simpler terms, trajectories
of the system eventually converge to the set where the Lyapunov function doesn’t change, even if
it’s not the entire state space.

Stability Analysis Techniques: Global stability analysis often involves more sophisticated tech-
niques than local stability analysis. These can include using tools from differential equations,
dynamical systems theory, nonlinear control theory, and optimization.

Applications: Global stability analysis is crucial for understanding the long-term behavior of
systems. It’s used in various fields including control theory, robotics, ecology, epidemiology, and
economics, where it helps predict whether a system will reach a steady state, oscillate, or exhibit
chaotic behavior across its entire state space.

Global stability analysis is often more challenging than local stability analysis because it requires
considering the behavior of the system across its entire state space ?, rather than just in the
neighborhood of equilibrium points. However, it provides deeper insights into the long-term

behavior and robustness of dynamical systems.

2.7. Stability in the general condition
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Analysis and inderstanding of the spread of

an epidemic model

Compartmental models have been instrumental in studying disease, offering simple equations to
assess outbreak impact and estimate susceptible population sizes locally and globally. Among
these, the S7S model serves as a cornerstone in mathematical epidemiology, portraying the fun-
damental spread of infectious diseases within a population. Unlike more intricate models, indi-
viduals in the S7.S model remain indefinitely infected without acquiring immunity or receiving
treatment, thus perpetually interacting with susceptible populations. This chapter delves into
an extended version of theSIS epidemic model proposed in [11], which introduces nonlinear

incidence dynamics captured by the function rV ().

In this chapter, we are studing a reaction-diffusion presented in [11], the system is a version of
the SIS model and described as :

o — dyAr = —0r —£&r¥(j),inRT x Q. 3.1
9 — dyAj = —aj + Er¥(j), inR* x Q. '
Where as the initial Condition:
T(J],O) :TO(I)7 j(l’,O) :jO(I)a in €2 (32)
And the homogeneous Neuman boundary conditions
or 95 . .
il inR™ x Q. (3.3)

25



Chapter 3. Analysis and inderstanding of the spread of an epidemic model

Where. The symbol A is the laplacien operator on 2 and d;, d, are postives constants. And
8,0, a,& > 0, constants parametres, we assume W to be a continuously differentible function on
R*satisfying

T(0) = 0. (3.4)
And

0 < W' (j) <U(y) forall j > 0. (3.5)

The considered system (3.1)-(3.3) describ the transmission of a communicable disease between
individuals such as HIV/AIDS.

3.1 Positivity of the solution

Let us assume that the initial condition (ry, jo) eR?.

We have
F(0,7) =8 —0(0) = £0)¥ (j) = 5 > 0.
G(r,0) = —a(0) + &{r¥(0) = 0.

Which makes the function (F, G)” essentially nonnegative.
Hence, the nonnegative quadrant R? > 0 is an invariant set in this section we cancel the spatial

variable, In order for us to have a system of (ODFEs).

I = F(r,7),in R*.
{ o = Fr.J),in (3.6)
a—i = G(r,j),in R*.
With intial conditions
ro(x) >0,  jo(z) >0 (3.7)

3.2 Invariant Regions

In this subsection we defined an invariant region for the system.
We let N = r + j and ap = min(«; 0).

D:{(r;j):r;jandr—i-jﬁﬁ}-

(%]

D is an invariant region of system (3.6)-(3.7).

3.1. Positivity of the solution
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Proposition 3.1 the region D is non-empty, attracting and positively invariant.

Proof. we have the equation of system (3.6)-(3.7)

Nt = (o) + 50
SNV = ) + i)
d d

d
Z (V) = —(r(t) + 2 (i(®)
B —Or — &r¥ (j) — aj + &V ()
b—0r—aj
B —ag(r,j) = B — ag(N(t))s

IA

So we integrate both ends

IA

/%N(s)ds /ﬁ — agN(s))ds
0(
N(#) - N(©0) < At —ap / N(s)ds

N(t) < N(O)—l—ﬂt—&o/]\/(s)ds

We apply of the Gronowall’s inequality, we implies

B

N(t) < Noe= " — — (e~ — 1),
Qo
So
(r+5)(t) < (r+j)(0)e " + aﬁ(l —e " fort > 0.
0
If the initial stales satisfy(r + j)(0) < aﬁothen (r+7)) < a% and
s

tlim sup N(t) < —.

The region D is positively invariant and attracting . m

3.3 Exictence of Equilibria

The aim of this section is study the solution of equation (3.1)-(3.2) and Extract the Basic repre-

duction Ry, we simplified the system of equition of (ODFESs).

3.3. Exictence of Equilibria
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{ o — B —Or — Er¥ (j),in RT x Q.

U= —aj+&rv(j), inRFxQ

r(0) =ro(z) >0, j(0)= jo(z)>0.

1.If Ry > 1 the system has equlibria pointsEj.
2.If Ry < 1 the system accepted two equlibria points £, and E*.
Proof. the postive equlibria of the system (3.6)-(3.7)

{ B —6r —&rv (j)) = 0.

—aj +&rv(j) =0.
If » = 0 the system has no equilibrium.
If j = 0 it implies.

{ f—0r—&rv(0) =0. 3.8)

Erv(0) — a(0) = 0.
B =0r sor = %.
Eo = (%70)

Now, we study endemic steady state condition, from the second part of (3.8),we have

GG —aj = 0.
() = aj

aj

EW(j)

From the first equation we make up r in the first equation in part "1" of (3.8),
oj
£ ()

— aj.

oj
£v(j)
_ 3_p. M
G
CU()  0E()j
Oaj Oaj

V() V()
O 2"

f—0r—¢r¥(j) = 60 & V().

- B 1.

— 3 1.

h(j) =0 forall j > 0, (3.9

3.3. Exictence of Equilibria
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h(j) it is continuous forj > 0, by applying the theory of the mean values,

BEVG) _ BE 1].

bo j  ba
— iy | w) - e 1.

Jj—0 Jj—0

limh(j) = lim [

j—0

_ BEy, o
= 2U(0)-1=FRo— L

And

lim h(j) = 1_>£ [g—j%\p(

i~
N

Qp

M\If(£)—1<0.

o p

B

Qg

) ) -1

Hence for Ry > 1, we have

% () = (>

Qg j—0 Q)

ey (2) o] Evo-n - o

Qo

(520 (2) (o0)- 520 (D) fomer -

If g = 6 do h(Z) (Ry—1) < 0. m

h(— )J(Ro—1) <0.

Then

By appling the intermediate value theorem , ther existe a real j*¢(0, O%) such that(3.9)holds, and
if the derivating of h is negative for all valus larger then zero the function is monotonically decrea

where using in (3.5)

5 - (oo

dj O j O
BE (V' (j)] —¥()) "
- %( 7 ) ga? U
BV - 00) 6V G)
Oaj? '

And, there existe a unique real j*, confind between (0, O%) knoing that h(j*) = 0, wich implies the

existence of r* = f\f',‘f]) (aﬁo, +oo) the scond equation of (3.8) has no solution.
Because
max h(j) < h(ﬁ) <0
J:s(o%,—i-oo) (&%)

3.3. Exictence of Equilibria
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3.3.1 Basic repreduction number R, of system

The R, can be defined as the spectral racins of this operator SV ~! the system (3.6)-(3.7) may be

rewritten in vector form

() - ()
- < 0 ) (—B+9r+§r\11(j))‘

The jacobian matrice identical to vector (1) and (2) at the (DFE) Ey = (%, 0) we proved by :

and

Calculating V!

We implies SV ! = K.
SVt = K= (%qf (0)> (ah) = L (0).

Ry = (SV71)==22W (0).

3.4 The local ODE stability

In this theorem study the local asymptotic stability of the previously defined E, and £E* points.

Theorem 3.1 for condition (3.6)-(3.7)

> if Ry < 1, the disase-free equilibrium solution E, = (§, 0), is the only steady state of the system
and is locally asymptotically stable.

>if Ry > 1, Ey is instable and E* = (r*, j*) is locally asymptotically stable.

3.4.  The local ODE stability
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Proof. we prove the local asymptotic stability,we calculate the Jacobian matrix :

T g) = (—gw W) =0 =& () ) |
V() v -a

we study the local stability asymptotic for Ry < 1,then

JEy = TGTO
’ 0 €0 (0)—a)

The eigenvalues of the matrix are A\; = —0, A\, = {50 (0) — o
> A >0,) > 0,50 Ry < 1, leading to the asymptotic stability.
> A <0,X2 >0,s0 Ry > 1, leading to instability .

and

> A =—0,) =0, s0 Ry =1, Ey is asymptomatically stable.
We study E* for Ry > 1, we have

* o (VG -0 e ()
J E = J r, = f )
(&) = J6.57) ( EU(7)  erv (j*)—a)

the determinant of the Jacobian matrix is
det (J (E*)) = £aW (§*) + o — 06T (5*) (3.10)

and the trace
tr(J(B") = = (€0 () +6) + (670 () —a)
and we have

Errv(jr) (3.11)

o = ; 5

{ B =&t () + 0r

using (3.5) and (3.11), we found.

det (J (E*)) = EM\PU*HG%—HET*‘PU*)-

Iz
8 (v () (20D g
- e {j* ‘I’(J)],
and
tr(J(E*) = v <j*):+97°*) _ (jj:)r* + &V (%) r.
_ B YU g
- e | B v ).

3.4, The local ODE stability
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from the condition (3.5) we obtain

det (J (E*)) > O,
tr(J(E*) < 0.

Then the equilibrium FE* is locally asymptomatically stable . m

3.5 Global existence of solution

Our goal in this section are to comput the fundamental reproduction and demonstrate the exis-

tence of equllirium solution for (3.1) — (3.2)

Lemma 3.1 condition (3.5) implies

0< # <V (§) forall j > 0. (3.12)

Proof. we have inequality
0<j¥ (j) <W(j) forall j >0,

divide both sides by j

0< W (5) v

J
We have ¥ (0) = 0,%' (0) existe, we use the mean value theorem because ¥ () is continuously
differentiable.

diveding by j, we have

— — ¥ (0),
; (0)
then .
0< 20 _ Y0 -v(0)
- J—=0
we get .
0< (j) < ‘I’Tj) < (0), (3.13)
|

3.5.  Global existence of solution
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Proposition 3.2 For any initial circumstances ro, jo € C () x C (Q). Then the solution (r, j) of
systems (3.1 — 3.3) existing both globally and uniquely across time. Furthermore, a positive constant
is present. C (1o, jo, 5,0, a, &) > 0, such that Vt > 0.

17l ooy + 17 G5B ooy < € forall > 0. (3.14)
Furthermore, there exists a positive constant C (3,6, «, €) such that for a large T > 0,

17 (Ol ooy + 1G] oo () < C forallt>T. (3.15)
Proof. Let use now consider the case r(¢, z)e(0, 7 max) x €2, when given by:

G — dyAr=—0r—&r¥(j) in (0,00) x Q.
r(0,z) = ro(x), on (. (3.16)
r =0 on 0.

for any nonnegative fonction j(t, z), there is an upper solution exists for (3.16), is provided by

Np := max {g, HTOHC<Q)} )

by using the comparison principle, we obtain w(t, z) < N; in [0, Tinay) X €2, 7 is uniformly bounded
in [0, Thax) X Q and by integration of equation (1) we attain

d

p Q(r(t,x) +j(t,z))dz = Q|8 — /9(97"(@%) + aj(t,x))dx. (3.17)

< 191800 [ (r(t.2) +(t2))ds,
Using the well-know Gronowall’ inequality, for oy = min(f, «) and ¢ = [0, Tryax) -
/Q(r(t,x) T j(ta))dr < N, (3.18)
where Ny > 0, for t = [0, Tiax) -
/Qj(tyx) < N, (3.19)

using the J(t, z)- equation, 3N3; > 0 depending on N, such that j(t,2) < N3 over [0, Tpay) XQ, j
is uniformly bounded in [0, Tiuay) X,
by using the standard theory of semilinear parabolic systems, we deduce T,., =00,

when T,,..=+0c the problem( 3.16) implies.

O —diAr = — 0r —&r¥ (j) < = Or in(0,00) x Q.

r(0,2) = ro(x) < ||r0||(5) on Q. (3.20)
=0 on  90.

3.5.  Global existence of solution
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By using the comparison principle , we obtain r(t, z) < w(t) for te [0, 00), where w(t) = ||ro||ge %+
(%) (1 — =) is the unique solution of the initial value problem :

w — 3 _Gw t>D0.
{dt f—tw t> (3.21)

w (0) = rollg-

Then , for z € Q, we have

r(t,z) < w(t) =° g.

Thus , we have an upper bound for ||r (¢, -)||also bounded by a positive constant independent of

the initial data for a large enough ¢. m

3.6 The local PDE stability

In this section, we exam the local stability of more general partial differential equation (PDFEs)
car (3.1) —(3.3).

Theorem 3.2 for system (3.1) — (3.3).

1. if Ry < 1,the (DF'E) Ej is locally asymptotically stable.
2.if Ry > 1, the endemic equilibrium E*is locally asymptotically stable.
Proof. we have the system in PDFEs, given by :

diAr+ —0r —&rv (j) =0.
deAj —aj +Er¥(y) =0.

The subject to the homogen Neuman boundry condition

or 05

— == =0,in R" x 9Q.

v v ’
We have 0 = Ay < A\; < A\g... < \; = +00 wher are indefinite sequence of postive eigenvalues for
the laplacien operator A over (2, with Neuman boundary condition where each ); has ,multipicty
m; > 1, Also let (®;,), 1~ where 1 < p < m;, be the correspanding normalized eigenfunction,

that is ®;, and ); satisfy -A®;, = \; in Q with 8;}3” =0in 9Q and [, ®7 dz = 1.

Linearizing system (3.1) — (3.3).
We start by the first equilibrum point £.

or (dlm -y —£50/(0) ) )

at 0 dAj+EEW(0)—a

3.6. The local PDE stability
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then the linearizing operator is given by

LBy = dyAr — 6 —£20'(0)
o 0 dBAj+ET(0)—a)’

let (®(x),p(z)) be an eigenfunction of L corssponding to an eigenvalues . By definition of
eigenfunction in the First Chapter,

we have

leading to

substiting for L yields

diAr—60—¢ —£2'(0) o\ (o0
0 dAj+ 8V (0)—a—¢) \p) \0J’

leading to :
i 0
> o= (or)ee= ()

0<i<oo,1<p<m; P 0

Where
¢ = Z aipq)ip > P = Z bipgpip'

0<i<oo0,1<p<m; 0<i<oo0,1<p<m;

And

Ji(Ep) = hAi =0 —f%\II'(OI) for i > 0,
0 da); + E2T(0)

the eigenvalues are
N = diA\; — 5
N9 = dg/\l —|— f%ll/([)).
Both n;; and n;, clearly have negative real parts for Ry < 1.

Now , we study the scond equilibrium E*, we get

L(E") = (—dm —0-gv() i) ) _
£v (j°) A — T (j)
We defined J;(E*)
(B = (—dmi —O-gv() i) ) |
§V (57) —do\; — a + &Y (57)

3.6. The local PDE stability
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trace of J;(E™*) is
tr(Ji(E*)) = —di\i — B — Er0 (5*) — dohi — o+ Er° 0 (%),

so trace (J;(E*)) < 0 foralli > 0,
determinant of J;(E*)

det(J(E®)) = (—dihi — 0 — &r¥ (j%) (—d2)\i —a+ 5r*\p'(j*)> 4 () () .
= dydy\} + \;Hp + det(J(r*, j%)), for all i > 0.

Where
Hy = —d &r*0' (5*) 4 dyo + dof U (5%) + 0ds,

using (3.5) and (3.11), we get

Hy > —d1f7‘*qj](fz )y d@*% T Ao () + Ods.
= dy (EV (") +0).
8

= do— >0
/r-*

Which is leading to det(J;(E*)) > 0.
Hence, E* is locally asymptomatically stable. m

3.7 Global asymptotic stability

In this section, we study the global asymptotic stabilty, using F, and E* that depends on the
reproduction Ry wich is why we decided to address scenarios Ry > 1 and R, < 1 spurately.

First, "but ", only, let as necessary lemma that will aid with the proofs to come.

Lemma 3.2 Given that VU satisfies criterion (3.5) and

L(z) =2 —1—In(x),forall x > 0. (3.22)
The inequality
V() ) ( J )
L : <L[(-=], (3.23)
(‘If (J%) J*
where j* is the second component of the equilibrium point E*, holds.

Proof. For j > 0, the function @ is a decreasing according to condition (3.5) this proof is separate

into two region. m

3.7.  Global asymptotic stability
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first region : suppose j > j*, we have

by condition (3.5) ¥ is non decreasing

then , ' '
1< 2U)
() gt
we have L(z) is increasing for © > 1, because L(x) is postive in [1, c0)
then ,
V() ) <J’ ) L
L _ <L(=]), forallj>j*.
<‘I’ (%) J*

second region : suppose 0 < j < j*, we have
V() J
VG 5

and given the non decreasing nature of ¥, we end up with

() <),

then

we have L(z) is deceasing for 0 < x < 1.
V() ) <]) L
L : <L|(=]),forallj>j*.
(‘1’0*) jo ) Jer ety =

3.7.1 Global asymptotic stability with R, < 1

We conseder Vj(t) the Lyapunov function. To construction the global asymptotic of Ey (DFE).

Then,
5 S|
v;;(t):/ Tj+—(r—é> Ny
Q «

2 0 2
Theorem 3.3 If Ry < 1, Ey is a globally asymptotically stable disease-free steady state for system
(3.1) — (3.3)

under the assumption

dx, where § > 0.

’ 0"‘05
T 0)< —————, (3.24)
R
with )
(dy + d3)
> =7 2
o> 1 d, (3.25)

3.7. Global asymptotic stability
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Proof. we prove V;(t) is a lyapunov function . in ordre to verfi E, is Global asymptotic stable.
Walt) < (), with resito time
avs(t)  d 9 B\* 1, 8.
i dt (/Q e\ Te) TR *aﬂ

We have Vj(t) > 0 and V;(t) = 0.
dx).
2

dV5
B or 0 617 8]

= 11+Ig+13.

We prove that

By replacing the values of the partial derivative 2 o and w1th their corresponding valus from

equation (3.1), we can obtain the following expressing :

87“ aj

- / (hAr + 5 — 6r — €00 ()] + 1 [doA] — aj + ErU()]) de

= dl/Arjdx—l—ﬁ/jdx—(9/rjdx—f/rj\ll(j)dx—i-dg/rAjdx
Q Q Q Q Q
—a/rjda:—l—f/rQ\II(j)dx
Q Q

we apply Green formula:

= d1+d2/Verdx+6/jdm—§/rj\I/ dx—{—f/ 2 (j

— 0+ «) /rjda:
Q

o= o[ (v 5) Gas

= ( )dlArJrﬁ Or — &rv (j)] dx

= (5d/7‘Ardw+§ﬁ/rd$—59/ 2dx—(5§/ W () da.
Q

—§9d1 Ardr — ¢ /dm+§ﬁ/rda:—|—5 §/T\IJ
Q

:—5d1/Q|Vr|2dx—05/Q<r——> d:):—f/ j)dx + 6 €/

3.7.  Global asymptotic stability
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/ ajd + = /ajd
= dy /]Ajdx—a/ 2dx—|—§/rj\11 dx+ﬁd2/A]d$—5/Jd$
+— {/T\I/

—dg/lejIZd:U—l—f/er\IJ(j)dx—a/Qdex—i-gﬁ/grlll(j)dx—ﬁ/gjdx.

we implies :
d‘f;t(t> = —5d1/ |V7“|2dx—(d1+d2)/V7“de$—d2/ |vj|2dx+§(6—5)/r2\lf(j)dx
0 Q Q @

—(oz—l—&)/ﬂrjd:t—%/g<r—§>2dx—a/ﬂj2dx
+¢ <5§—§)/Qr\11(j)dm

= I+ J

First part is:
1= —ody [ 190 da = (dy+ o) [ 9o —ds [ [ de
Q Q Q

Second part is:

J = 5(5—5)/Q7~2\1:(j)dx—(a+9)/9rjdx—95/g<r—§>2dx

. 5B .
—a/ﬂj2d$+§<55—a)/ﬂr\ﬂ(])dw.

We writing the first part

I = —/QQ(VT,Vj)d.r

= _/ (6dy [Vr[* + (dh + do) VIV + do |j]%) de
Q

Q(Vr, Vi) = (8dy|Vr|*+ (di + do) VIV + ds |575]%) -

Where @ (Vr, Vj) is a quadratic form.
As we know () is postive because §, d; and d, are satisfying the condition dd; and § > (di;‘fiz)
so:

I <0.

3.7.  Global asymptotic stability
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. . . (d1+d2)?
Now, the second part by using the inequality § > -2~ > 1, we have,

J = g(g-&)/gﬁql(j)dx—(a+0)/9rjdx—95/g<r—§>2dx

—a/ﬂdemﬁLf((S%—g)/ﬂr\I/(j)dx,

we appling (lemma 3.1) yields.

CANEARY - BY? .
JS/S]{ﬁ((SE—a)\I/ (0)—(9+a)]r]dx—95/9(7~_5) dw—a/gfdxg(). (3.26)

Hence,V;(t) is a Lyapunov functional and Fj is globally asymptotically stable . m

3.7.2 Global asymptotic stability with R, > 1

Theorem 3.4 If Ry > 1 .Then E* is a globally asymptotic stable endemic steady-state for system
(3.1) — (3.3).

Proof. to prove that we use Lyapunov function

V(t) = /Q [T*L (Ti) 4L (ji)] dz. (3.27)

Where it is positive and continously differentiable function, we have
L(Z)=%-1-m ().

dj(i>_i@_i@i_i LTy
dt \r=) rcdt r*dt r r*

d_L(i)_i<1_J_*
at \j7) i\

Now, we differentiate V'(¢) with respect to time

v [ .dL v dL
i /QTE<F>‘Z$+/Q] ;

So

we conclude

3.7. Global asymptotic stability
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by replacing the values of partial derivatives & and from equation (3.1):

vy

8 _ <1 )dlAr+5 br — &0 (j)] do

+/Q(1——) [daAj — o + Er¥(j)] dar
— d/(l—T—>Ardx+ﬁ/ (1——)dx
0 (1—%)dx—g/<1——>rqf j) da
+ds L(l—%)A]c&—@z/ﬂ(l—%)jdx—l—ﬁ/ <1——)7‘\If( da,

we use the Green formula and Neuman boundaries

d ) ) i
St = [ (=) s [ (1-F)are [ (1T ) v
_Q/T<1—7;>dl'
Q
—d2/9v<1—§)wdx+§ Q(l—‘g)rw(j)dm—&é(l—%*)ﬂdf

= I+ J

Where
I = —dl/V(l—i)vrdx—dg/V(l—j—*)VJdlL’ (3.28)
Q Q J
= —/ {le— [l +d2‘7—. |Vj|2} dz <0,
Q r J

and . .
J= / (1 - 1) 18— 0r — &r0 ()] dz + / <1 - L) [—aj + Er0(j)] da. (3.29)

Q r Q J

We simplifying the resulting equation, after using (3.11).

J - /9(1—5)&@( )dx+/g<1—%*)ej*dx—/9(1—7"—*>§r\1/<)
_/Q(1—7;—*)0rdx+/9(1—?)3@(;’)@—/{2&*;] 3(1—§>dx
_ /(1—7"*) {1—:$E‘>J§T*\P(‘j*)dw+/ﬂ{(1—%*) <1—T—>}9r*dm
o5t 2

- / 107" T, + €770 (%) Jo) . (3.30)
Q

3.7. Global asymptotic stability
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where
Jo= (1—%*)(1‘%)
- 1—%—i+1
r r
= 1—r£+ln<ﬁ>—1 (:*)+1_i+ln(r*)_ln(;)
ORIE
Then

w3 0-5)+ (-0) -]

n(2)

- () ) e (F) ()

We remplacing in .J we given

J = —97° ( )+L :*>dx+€7°*‘11( )/Q(—L(%»_L(]i)
1 (2)1(35) o

= o [1(D)re(E)w-erew [ () e (L))

+r W (57) [ <§ j))_L(j_;>}dx'

We have the postivity of L and applying (lemma 3.2) , thus J < 0 we prove £V (¢) < 0. Hence,

Vs(t) is a lyapunov functional and E* is globally asymptotically stable. m
Finally, our choice of a function rW¥ (j) was correct, and this has been proven throughout this

chapter.

3.7. Global asymptotic stability
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3.8 Numerical part

Example 3.1 we consider the function ¥ (j) = nj, and we obtain

—diAr=0—E&rnj—0r  in (0,400) x Q.

a] —dsAj = —aj 4+ &rng in (0,4+00) x . (3.31)
7“0(37) =1(z,0), jo(z) = j(=,0) in Q.
w=g=0 in (0,400) x €.

The imposed conditions may be verified as follows:

{ U(0)=0,V(j)=n=1.
JV' (j) =nj <nj=V(j).
The steady states of system (3.31) are given by Ey = (9, 0) and E* = (ﬁ Oa(Ry — 1)) with the
reproductive number Ry = 5/3 o=n > 1. In the table bollow, we use different sets of parameters to obtain

numerical solutions in the ODE .

Table: Simulation parameters for the Example 3.1

Set To jg dl dg f « 0 ﬁ
ODEset1 | 25| 7 - - 10803041 0.2
ODEset2 | 6 | 25| - - 108061 0.1} 0.3

The following is a description of the results:

Figure 1 : shows the solutions in the ODE case subject to set 1, with Ry = 1.33. In this case, as
Ry > 1, E* = (0.18,0.19) is globally asymptotically stable.

Figure 2 : shows the solutions in the ODE case subject to set 2, with Ry = 4. In this case, as
Ry > 1, E* = (0.63,0.52) is globally asymptotically stable.

nrj

T and we obtain

Example 3.2 we consider the function ¥ (j) =

—diAr =3 — &2 —0r in (0, +00) x Q.

ki ~
—doAj = —aj +E77 in (0, 4-00) x . (3.32)
ro(x) = r(x,0), jo(z) = j(z,0) in Q. '
w=5=0 in (0, +00) x €.

Verifying the function V (j) satisfies the requirements (3.4) and (3.5)

T (0) = 0.
U (J)>0.

U (J)= "5 n>0,T (0) =n.

(1+k j)

3.8. Numerical part
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Population Dynamics

a T T T T T r T
] ; ] — Susreptible
7k b i o s £ Infactad i

Fopuation

Figure 3.1: Numerical solutions ofsystem (3.31) (ODE case) subject to the first set

B T T
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Infactad
i ............... - i
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=
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H
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=
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Figure 3.2: Figure 2: Numerical solutions of system (3.31) (ODE case) subject to the scond set
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determining the system’s stable states (3.32)
> if r = 0, the system (3.32) has no equilibrium.
> if j =0, Ey = (£,0) is equilibrium.

Now, we find E*

* 3k

nr-j

— AT
implies that
. a(l+kj)
T = fn s

we have
B —0r—aj* =0,

o7 = -0 (20

we replace r* this equation

&n
we find
W OO ) e thar -~ (B0 1)
] = Wlmplles thatj = m,
So
o (00 k) 00— 1)
N &n " né+0k )

> E* exists and it is globally asymptotically stable provided that the reproduction
number Ry > 1.

> Ey is globally asymptotically stable when Ry < 1 with M <~y<? (9;—11& —
Table: Simulation parameters for the Example 3.2

g) when dy # d».

Set To Jo di|daf| §|[n|af B0k
ODE set 1 0.1 3.2 SO | (- 23_2 % !
ODE set 2 0.1 3.2 -l -3 g2 7|37
PDE set 1 02+% 43+& 32 LB z|3]|L
PDEset 2 || 0.2 + <3 L (- 2 I
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Population Dynamics

25 M ; : Infected [

Population
N

i L i i 1 i 1 i i
o 10 20 30 40 &0 B0 70 80 a0 100
Time

Figure 3: Numerical solutions of
system (3.32) (ODE case) subject
to the first

Population Dynamics

25

—— Susceptible
Infectad

Population

s

0

i I i I L i I i i
o 10 20 30 40 a0 B0 70 80 a0 100
Time

Figure 4 :Numerical solutions of
system (3.32) (ODE case) subject
to the scond
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Infected Papulation{r) Susceptible Population ((]}

|
I‘mM““}mWm}I\\I\\IIJ\I\\I}uWIIHIHIHIHIMIHI

HIH!\’#}J‘IHIHIHHHIHIHIHIHIIHHI

Figure 5: Numerical solutions of  Figure 6: Numerical solutions of
system (3.32) susceptible system (3.32) susceptible
population (PDE case) population (PDE case)

Infected Population(r), Susceptible Population \(j)

il i””“'iii
iHiii‘.i‘ﬁHiHiHiw il

i
IHHW‘”'” il

Figure 7: Numerical solutions of  Figure 8: Numerical solutions of
system (3.32) susceptible system (3.32) susceptible
population (PDE case) population (PDE case)

Figure 3: shows the solutions in the ODE case subject to set 1, with Ry, = 22.08. In this case, as
Ry > 1, E* = (2.696, 3.71) is globally asymptotically stable.

Figure 4 : shows the solutions in the ODE case subject to set 2, with Ry = 6.722. In this case, as
Ry > 1, E* = (2.13,0.4878) is globally asymptotically stable.

Figure 5,6 : depicts the solution in the PDE case subject to parameter set 1, where Ry = 5.205, means
that E* = (0.13,4.151) is globally asymptotically stable.

Figure 7,8: depicts the solution in the PDE case subject to parameter set 2, where Ry = 1.933, which
by Theorem (3-4) means that E* = (0.23,4.2) is globally asymptotically stable.

Example 3.3 The last example we consider the function ¥ (j) = —*~ with k = %,n = 1, The

ey

3.8. Numerical part
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resulting system is given by

(2 —dlArzﬁ—fHk(j%)r—Qr in (0, 400) x €.
%A g AT = —ai kj_ 0 Q.
ot 2 j O(] +€1+(%)7ﬂ n( 7+OO)>< (3.33)
TO('I> :T(l',O),jO(l’) :j(l',O) in Q.
[ =9 =0 in (0, 400) x €.
Verifying the function V¥ (j) satisfies the requirements (3.4)and (3.5)
( ¥ (0) = 0.
U (J)>0.
! _ k / o
()= —E 5 <V (J)= K
\j ( ) ](1+(%))2— ( ) 1+(%)
Determining the system’s stable states (3.33)
B— &L —0r =0
1+(£) o . (3.34)
—aj* + ¥
SR G

> if r = 0,the system (3.33) has no equilibrium .
>if j =0,E = (2,0) is equilibrium .
Now, we find E*.

We derive from the second equation
. a(n+Jv)
Enk

The first and second equations of (3.34) are added up.
g—0rt—aj* =0,

the value of r*
a(n+j%)

.y it =
5 nk aj’ =0,
we find
k
ACE
(nék +6) ~
we have Ry = k% o)
 (nék+0)

3.8. Numerical part
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Two of the system’s stable states (3.33) are provided by

E, = (£,0).

x _ [ a(nt+j*) On(Ro—1)
B _( &nk ) (nfko+9)

> F*exists and is globally asymptotically stable .

> E, is globally asymptotically stable if 4% < ~ < 5 (9*—“

4d1ds
Table: Simulation parameters for the Example 3.3

).

— g) when dy # ds.

Set To Jo di||da || £ « B |0 |n|k
ODE set 1 2 8 - - 12033035 5 [1]32
ODE set 2 6 3 - -3 g 0TS
PDEset1 |03+ <5 [154+25 |43 [z2f 2 [ 7 [1fs]s
PDEset2 || 03+ 28 o2+ 23 | g || B |1 2 | L |1 [3)s

wcted

=

Figure 9: Numerical solutions of system (3.33) (ODE

case) subject to the first set
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Population Dynamics

—— Susceptible
Ifected ||

Population
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a 10 20 30 40 &0 B0 70 80 a0 100
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Figure 10: Numerical solutions of
system (3.33) (ODE case) subject
to the scond set

Dhistance = Distance x

Figure 11: Numerical solutions of system (3.33)
susceptible population (PDE case)
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ritx)

Figure 12: Numerical solutions of system (3.33) susceptible
population (PDE case)

Figure 9: shows the solutions in the ODE case subject to set 1, with Ry = 2.6515. In this case, as
Ry > 1, E* = (1.1885, 2.4918) is globally asymptotically stable.

Figure 10: shows the solutions in the ODE case subject to set 2, with Ry = 1250. In this case, as
Ry > 1, E* = (0.42,13.31) is globally asymptotically stable.

Figure 11: depicts the solution in the PDE case subject to parameter set 1, where Ry = 0.2813. By

Theorem (3-3) and given 6 > 322 E, = (0.667,0) is globally asymptotically stable.
Figure 12 : depicts the solution in the PDE case subject to parameter set 2, where Ry = 0.2, which
by Theorem (3-3) and given 6 > % ,means that Ey = (1.1250,0) is globally asymptotically stable.

conclusion

We have reached the culmination of our mathematical scientific investigation, focusing on the sta-
bility analysis of an epidemic reaction-diffusion system. Our journey commenced by delving into
foundational concepts and theories pertaining to global and local asymptotic stability. We then
proceeded to introduce the most generalized form of a reaction-diffusion system before delving
into a specific model addressing the dynamics of an epidemiological system (comprising suscep-
tible and infectious populations) featuring a non-linear incidence function under the conditions
(3.4)and (3.5). Central to our discourse was the determination of Ry, the basic reproduction num-
ber, which served as the focal point for our discussions. In the realm of Ordinary Differential
Equations (ODEs), we established that the disease-free equilibrium attains asymptotic stability

when Ry is less than unity, whereas the endemic equilibrium achieves asymptotic stability when

3.8. Numerical part
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Ry exceeds unity. By applying the Lyapunov function, we extended our analysis to Partial Differen-
tial Equations (PDE's) to ascertain the global stability of the system, subsequently corroborating
our findings through numerical simulations.

And. If R, is equal to one, it requires studying in other ways.

3.8. Numerical part
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