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Abstract

The objective of this work is to study the existence of bifurcations of

zero-Hopf type at the so-called Chen—Wang differential system
X=Y,

y =1,

2=—y—x*—xz+3y® +a.
The main tool up to now for studying a zero-Hopf bifurcation is to
pass the system to the normal form of a zero-Hopf bifurcation. Our
analysis of the zero-Hopf bifurcation is different; we study them
directly using the averaging theory.
In the second part of this work, we study the existence of zero-Hopf
bifurcations of a Lorenz-Haken system inR*. The main tool used is

the averaging theory.

keywords : Zero-Hopf bifurcation, Periodic orbit, Differential system,

Averaging theory.



Résume

L’objectif de ce travail est d'étudier I'existence de bifurcations du type
zéro-Hopf d'un systéme différentiel de Chen—Wang de la forme

X=Y,

y=z,

2=-y—x*—xz+3y*+a.
L’outil principal pour étudier une bifurcation de zéro-Hopf est de
passer le systéme différentiel a la forme normale d’une bifurcation de
zero-Hopf. Notre analyse de la bifurcation de zéro-Hopf est différente;
nous les étudions directement en utilisant la méthode de
moyennisation.
Dans la deuxiéme partie de ce travail, nous étudions I’existence de
bifurcation de zéro-Hopf d’un systéme de Lorenz-Haken dans R*.

L’outil principal utilisé est la méthode de moyennisation.

Mots clés: Bifurcation de zéro-Hopf, Orbite périodique, Systeme
différentiel, Méthode de moyennisation.
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Introduction

Consider the class of polynomial differential systems of degree n. The maximum
number of isolated periodic orbits, the so-called limit cycles, that a polynomial
differential system of degree n can have is called Hilbert number, H(n). It is well
known that linear systems have no limit cycles, then H(1) = 0. For n = 2, the
problem of estimating H(2) has been studied intensively during the last century.
Lower bounds for H(2) can be given by providing concrete examples of polynomial
differential systems of degree 2. Up to now, the best result was given by Shi in
[21], where he proved the existence of a quadratic system with 4 limit cycles, that is
H(2) > 4. We call by M(n) the maximum number of limit cycles bifurcating from
a singular point via a degenerate Hopf bifurcation. Clearly, M (n) is a lower bound
for H(n). Bautin showed in [4] that M (2) = 3; in [25, 26], Zoladek proved that
M (3) > 11; a simpler proof was provided by Christopher in [8]. For n = 3, Li, Liu,
and Yang proved in [14] that H(3) > 13.

This thesis is divided into four chapters as follows:
In the first chapter, we present elementary definitions, techniques and notations
about dynamical systems that we need in this work.
In the second chapter, we present the averaging theory for studying the periodic
solutions of differential systems.
In the third chapter, we study the zero-Hopf bifurcation of a Chen—Wang differential
system in R3.
In the last chapter, we study the zero-Hopf bifurcations of a Lorenz-Haken differen-
tial system in R*.



Chapter

Preliminaries

In this chapter, we present some preliminary concepts, definitions, and results that
we shall require throughout this work.

1.1] First order differential equations

Definition 1.1.1 A first order differential equations is any differential equation of
the form

i':f(t,l‘)

where f is a continuous function on I x U with values in R™, I C R being an open
interval and U being an open of R™.

1.2| Polynomial differential system in the plane

Definition 1.2.1 Consider a differential system of the form

&= P(z,y)

where P and Q) are polynomials in the variables x and y with real coefficients, system
(1.1) is called a planar polynomial differential system. We say that system (1.1) has
degree d if d = max (deg P, deg ().
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|1.3] Dynamical systems

Definition 1.3.1 A dynamical system on R™ is a map ¢ : R x R" — R" such that

(1) ¢(.,z): R* = R™ is continuous,

(2) ¢(t,.): R — R" is continuous,

(3) 0(0,2) = 2,

(4) p(t+s,x2)=p(t,p(s,x)) Vt,s € R,Vz € R"

1.4| Autonomous differential system

Definition 1.4.1 A differential system in which the independent variable does not
appear explicitly, i.e. a system of the form

t=f(x), xzeR",

18 an autonomous differential system.

Critical point and hyperbolic critical point

Definition 1.5.1 A point xo € R™ is called a critical point, equilibrium point, sin-
gular point or fixed point of the nonlinear system

= f(x), ze€R", (1.2)
if f(0) = 0.
Definition 1.5.2 Let zg be a critical point of (1.2). Consider the linear system
&= Az with A = Df (zo)
A is called the linearization of (1.2) at xg, a critical point xy is called a hyperbolic

critical point of (1.2) if none of the eigenvalues of the matriz A have zero real part.

Degenerate and nondegenerate critical points

Definition 1.6.1 A critical point of the system (1.2) at which A = Df (zq) has no
zero eigenvalues is called a nondegenerate critical point of the system, otherwise, it
18 called a degenerate critical point of the system.
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1.77) Stability of the solution and its asymptotic
stability

Definition 1.7.1 Consider the non autonomous differential system

d
d—f:f(t,a:),a:eR”,teR (1.3)

We assume that f(t,z) satisfies the conditions of the theorem of existence and
uniqueness of solutions. A solution ¢(t) of the system (1.3) such that ¢(ty) = ¢, is
called stable in the sense of Lyapunov if :

Ve > 0,33 >0 such that for any solution z(t) whose initial value x(ty) satisfies:

[2(to) — doll <0 = l[x(t) = o(B)]| <&Vt > to.

If in addition : lim ||z(t) — ¢(t)|| = 0, then the solution ¢(t) is asymptotically

t——+o00
stable.

|1.8] Flow of the nonlinear differential system
Definition 1.8.1 Consider the nonlinear differential system
&= f(x), (1.4)
and the initial value problem
= f(z), with 2(0) = xo,

with = € R", E an open subset of R™ and f € C* (E). For zy € FE and ¢ (t,zg) the
solution of the initial value problem, the set of mappings ¢, defined by

¢y (x0) = & (t,70)

is called the flow of the differential system (1.4) or the flow defined by the differential
system (1.4).

|1.9] Flow of the linear differential system

Definition 1.9.1 Consider the linear differential system
T = Ax (1.5)
and the initial value problem

&= Az, 2(0) = o with x € R", (1.6)

4
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where A is a constant matriz (n X n), the solution of the problem (1.6) is z(t) =
ey, the set of mappings et : R® — R" can be considered as describing the
movement of points xo € R"™ along the trajectories of (1.5). This set of mappings is

called the flow of the linear system (1.5).

Phase plane and phase portrait

Definition 1.10.1 Consider the planar system

&= P(z,y),
{ QIQ(IJJ), (17)

a phase portrait is the set of trajectories in phase space. In particular, for autonom-
ous systems of differential equations in two variables. The solutions (x (t),y (1))
of the system (1.7) represent curves called orbits in the plane (xoy) . The critical
points of this system are constant solutions and the complete figure of the orbits of
this system as well as these critical points represent the phase portrait and the plane
(xoy) is the phase plane..

Stability conditions for the linear

differential system

Consider the linear differential system 2" = Az, where z € R” and A is an (n x n)-
square matrix with constant real coefficients.

Definition 1.11.1 If all eigenvalues of matriz A have strictly negative real parts,
then all solutions of the system & = Ax tend to 0 as t tends to +oo and the origin
18 a stable equilibrium point.

If the matriz A has at least one eigenvalue with a positive real part, the origin is an
unstable equilibrium point.

If the matriz A is diagonalizable and all its eigenvalues have negative or zero real
parts, then the origin is a stable equilibrium point.

Periodic solution

Definition 1.12.1 Any solution ¢, (x) of the non-linear differential system (1.2) is
periodic if there exists a number T > 0 such that

e(t+T,z)=¢(t,x) foralteR.

The smallest positive real number T > 0 satisfying the above formula is called the
period.
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Limit cycle

Definition 1.13.1 A limit cycle of a differential system is a periodic orbit isolated
i the set of all periodic orbits of the system.

1.14| Gradient and hamiltonian systems

Definition 1.14.1 Let E be an open subset of R*" and let H € C? (E) where H =
H (z,y) with z,y € R™.
A system of the form

. _0H
==,
~ on

T

where

OH (aH a_H)T

% 61'1 7 8fL‘n
on _ (o oy’
ay = ayl, ..... ayn ,

18 called a Hamiltonian system with n degrees of freedom on E.

Definition 1.14.2 Let E be an open subset of R™ and let V € C*(E). A system of
the form
&= —gradV (x),

where .
ov oV
gradV(w) = (8_1‘1, ..... s 8_%> s

15 called a gradient system on E.

Classification of critical points of linear
systems

Consider the linear system of the form

ooty g o000,
y=cx+dy c d
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We assume det A # 0; The origin is the only critical point of this linear system.
The eigenvalues of A are given by the characteristic equation

det (A= A) = (A —A\) (A= Aa),

Case 1. Real eigenvalues
If A has two negative eigenvalues Aj,\s with A\ # Ag. The origin is stable
improper node. (see Figure 1.1)

AR AR EREREERY I IEEN! A A
e N e N N WA 14 £
RRRRR R RN YV L i ar
e N N N N N {4 A
et e N N N NN N b L ¥ i
e e e R R LRI RN o
e W T T W ¥ ¥ A g e at—
e, " e e — W . o,

et i e, o e e e — e
L il ™, - w0 .- . e
— el e e B ol A B W T
i e 4 W e e e e e e T

Pl v A | R L e T e T D s
et o A A B R S S e S e e
vy YN i | e S e e e e T
R A B A | AR e e e e
PG E S BB R BEE SEENY

ArArY A B -5 RO NN
Fig 1.1. Phase portrait with a stable improper node.

If A has two positive eigenvalues A;,Ay with A\ # Ay. The origin is unstable
improper node. (see Figure 1.2.)
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———— X P o - -
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2 i A T G [t ey o oW
P e ko e et et et e
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A O O N T e
o o S A i 1) N N
r o o S VAT I I Y v w e

P A AP o arar/ s ¢ P L T
Fig 1.2. Phase portrait with an unstable improper node
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If A has two real eigenvalues of opposite sign Ay, Ay with A; £ \5. The origin is
saddle point that is always unstable. ( See Figure 1.3. )

rrredy I NS
a—«rrrrf{/l \\\"‘“‘l““‘l‘%‘i"b
b / PRFCICN e e
ettt e |y —p—p—p
et o S R e o i e e
R E RS S ‘ f S AR

S S LY \ r JAAAAS

creryvy ) H RN S CHE
#-o—t—o—o—-llt«-o—a—-ﬂ\ﬂ-u-s-r—t-u-r-n?

. Phase portrait with a saddle point

If A has repeated eigenvalues A\; = Ay = A\. Two cases are possible
(a) A is diagonalizable. The origin is proper node: stable if A < 0 and unstable
if A > 0. ( See Figure 1.4. and 1.5 )

e w w e \llzt—lliff{{(‘
e T WALV MEd L ST
*mtwm e e e N W X S e
e N NN Y ME S ST
e te ™ iy VW M T e
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— il B It Fly ., S, S, e, e
- e A4 1Y - R e w e

oVl A0 A | 2 T T W i N s
VY B I R R NN
Rt ol ol ol A A A § B T T N e N Wi N e B
Rl ol iV s FFHT A b e e e S
PPl ol sl s P S B e e - T e e e e

PV A P E2HT I YA o W L

Fig 1.4. Phase portrait with a stable proper node.
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Fig 1.5. Phase portrait with an unstable proper node.

(b) A is non-diagonalizable. The origin is degenerate node: stable
unstable if A > 0. ( See Figure 1.6. and 1.7 )
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Fig 1.6. Phase portrait with a stable degenerate node.

if A < 0 and
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F by vy vy
"

f f J Py

f B ol iy oy
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Fig 1.7. Phase portrait with an unstable degenerate

node.

Case 2. Complex eigenvalues

(a) If A has a pair of complex conjugate eigenvalues with nonzero real part A; =

a+18 and Ay = a—if3. The origin is degenerate node :

if &« > 0. ( See Figure 1.8. and 1.9 ).

stable if @ < 0 and unstable

3% =
— M, W W,
LR .
Wy ) — e, W, W
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Fig 1.8. Phase portrait with a stable spiral point.
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(b) If A has a

1.16
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Fig 1.9. Phase portrait with an

pair of pure imaginary complex conjugate eigenvalues \; = £+i3. The

origin is center. (
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See Figure 1.10 ).
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Fig 1.10. Phase portrait with a center.

First integral of the differential system

Definition 1.16.1 We consider the autonomous differential system

&= f(x)

, x€R"

11
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where f: U — R" is C?, x € U is an open subset of R™.
Let F : U — R be a non-constant function of class C' such that

VF (2)- f(z) =0,

where

VF (z) = (a§;f>,..., ag;;)) .

Then F' is called a first integral of the differential system & = f (), because F' is
constant on the solutions this system.

1.17) Roots of a cubic polynomial

We recall that the discriminant A of the polynomial
3 2
ar® + bz +cx +d

is
A = 18abed — 4b3d + b*c? — dac® — 27ad>.
It is known that
—If A > 0, then the equation has three distinct real roots.
— If A =0, then the equation has a root of multiplicity 2 and all its roots are real.
—If A <0, then the equation has one real root and two non-real complex conjugate
roots.
For more details see [1].

12



Chapter

The averaging theory

We also present a result from the averaging theory that we shall need for proving
theorem 3.1.1 in the chapter 3 and theorem 4.1.1 in the chapter 4, for a general
introduction to the averaging theory see the book of Sanders, Verhulst and Murdock
[19].

2.1| The averaging theory of first order

We consider the initial value problems

& =ch (t,x) +*F (t,2,¢), z (0) = xy, (2.1)
and
y=¢eg(y), y(0)=ux, (2.2)

with x,y and z( in some open subset of R ¢ € [0,00), € € (0,g]. We assume that
Fy and F; are periodic of period 7T in the variable ¢, and we set

9) =7 [ Rty)dr (23)

We will also use the notation D,g for all the first derivatives of g, and D,,g for all
the second derivatives of g.
For a proof of the next result, see [23].

Theorem 2.1.1 Assume that Fy, D, Fy ,D,, Fiand D, Fyare continuous and
bounded by a constant independent of € in [0,00) x  x (0,&¢], and that y(t) € Q for

13
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1
te [0, g} . Then, the following statements hold:

1
1. Fort e {O, g}, we have x(t) — y(t) = O(e) as e — 0.

2. If p # 0 is a singular point of system (2.2) such that

det D, g(p) # 0, (2.4)

then there ezists a periodic solution x (t,e) of period T for system (2.1) which is
close to p and such that x (0,e) —p =0 (¢) ase — 0.

3. The stability of the periodic solution x (t,€) is given by the stability of the singular
point.

Example 2.1.1 Consider the differential system

{ =y, (2.5)

= —x+¢ (3w + Ty — 42y + dzy? + 24 + ).

We write the system (2.5) in the polar coordinates (r,0) defined by x = rcosé,
y = rsinf, and we obtain the differential system
7 = —rsin()(—2r cos(0)* — 3cos() — 5r? cos(f) — r® + 273 cos(0)? + 5 cos(0)>r?
—T7sin(f) + 4r? cos(#)? sin(0))e,
6 = —1+ (7cos(f) sin(0) — 4r? cos(6)? sin(#) + 512 cos(0)? + 2r° cos(6)° + 3 cos(6)?
—5cos(0)*r? + cos(0)r® — 2 cos(0)3r?)e,
or equivalently

% = rsin(0)(—2r cos(0)* — 3 cos(0) — 5r? cos(0) — r3 + 213 cos(#)? + 5 cos(0)3r?

—T7sin(f) + 4r? cos(#)? sin(F) )e + O(£?).

We compute the averaged function and we get

f(r) = % fo%(?" sin(0)(—2r3 cos(0)* — 3 cos(0) — 5r% cos(0) — r3 + 213 cos(9)?
+5 cos(0)3r? — Tsin(6) + 4r? cos(6)? sin(6))do
r(=T7+7?)
—

d

The unique positive root of f(r) is r = \/7. Since ];(T) (V7) = 7, by statement
r

2 of Theorem 2.1.1, it follows that system (2.5) has for |e| # 0 sufficiently small a

limit cycle bifurcating from the periodic orbit of radius \/7 of the unperturbed system

d
(2.5) with e = 0. Moreover since <%) (V7) =7 > 0, by statement 3 of Theorem

2.1.1, this limit cycle is unstable. ( See Figure 2.1. )
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Chapter

On the zero-Hopf bifurcation of a Chen—Wang
differential system

The objective of this chapter is to show that Chen—Wang differential system

T =1y,
Y=z,
i=—y—a2?—z2+3y% +a,

exhibits two small-amplitude periodic solutions for a > 0 sufficiently small that
bifurcate from a zero-Hopf equilibrium point localized at the origin of coordinates
when a = 0.

3.1| Introduction and statement of the main

result

In the qualitative theory of differential equations, it is important to know whether
a given differential system is chaotic or not. One might think that it is not possible
to generate a chaotic system without equilibrium points. The answer to this ques-
tion was given by Chen and Wang [24] where the authors introduce the following
polynomial differential system in R3

T =1y,
Yy =z, (3.1)
i=—y—2a®—z2+3y%+a,

where a € R is a parameter. They observe that when a > 0 system (3.1) has two
equilibria (4+/a,0,0), when a = 0 the two equilibria collide at the origin (0,0, 0)

16



Chapter 3. On the zero-Hopf bifurcation of a Chen—Wang differential system

and for a < 0 system (3.1) has no equilibria but still generates a chaotic attractor,
see for more details again [24]. The Chen—Wang [24] differential system is relevant,
because it seems that it is the first example of a differential system in R3 which
exhibits chaotic motion and has no equilibria, as the authors of claimed.

The objective of this work is to study the zero-Hopf bifurcation which exhibits
the polynomial differential system (3.1). The main tool up to now for studying
a zero-Hopf bifurcation is to pass the system to the normal form of a zero-Hopf
bifurcation, later on in this introduction we provide references about this. Our
analysis of the zero-Hopf bifurcation is different; we study them directly using the
averaging theory, see the chapter 2.

The main objective of this work is to show that system (3.1) exhibits two small
amplitude periodic solutions for a > 0 sufficiently small that bifurcate from a zero-
Hopf equilibrium point localized at the origin of coordinates when a = 0. See [15].

We recall that an equilibrium point is a zero-Hopf equilibrium of a 3-dimensional
autonomous differential system, if it has a zero real eigenvalue and a pair of purely
imaginary eigenvalues. We know that generically a zero-Hopf bifurcation is a two
parameter unfolding (or family) of a 3-dimensional autonomous differential system
with a zero-Hopf equilibrium. The unfolding can exhibit different topological type of
dynamics in the small neighborhood of this isolated equilibrium as the two paramet-
ers vary in a small neighborhood of the origin. This theory of zeroHopf bifurcation
has been analyzed by Guckenheimer, Han, Holmes, Kuznetsov, Marsden, and Sch-
eurle in [9, 10, 12, 13, 20]. In particular, they show that some complicated invariant
sets of the unfolding could bifurcate from the isolated zero-Hopf equilibrium under
convenient conditions, showing that in some cases the zero-Hopf bifurcation could
imply a local birth of “chaos”, see for instance the articles [2, 3, 5, 7, 20] of Baldoma
and Seara, Broer and Vegter, Champneys and Kirk, Scheurle, and Marsden.

Note that the differential system (3.1) only depends on one parameter so it
cannot exhibit a complete unfolding of a zero-Hopf bifurcation. For studying the
zero-Hopf bifurcation of system (3.1), we shall use the averaging theory in a similar
way at it was used in [6] by Castellanos, Llibre and Quilantan.

In the next result, we characterize when the equilibrium points of system (3.1)
are zero-Hopf equilibria.

Proposition 3.1.1 The differential system (3.1) has a unique zero-Hopf equilibrium
localized at the origin of coordinates when a = 0. The main result of this paper
characterizes the Hopf bifurcation of system (3.1). For a precise definition of a
classical Hopf bifurcation in R® when a pair of complex conjugate eigenvalues cross
the imaginary axis and the third real eigenvalue is not zero, see for instance [16].

Theorem 3.1.1 The following statements hold for the differential system (3.1)
(a) This system has no classical Hopf bifurcations.
(b) This system has a zero-Hopf bifurcation at the equilibrium point localized at the

17



Chapter 3. On the zero-Hopf bifurcation of a Chen—Wang differential system

origin of coordinates when a = 0 producing two small periodic solutions for a > 0
sufficiently small of the form

z(t) =tva+ O (a),
y () =0(1),
z2(t)=01(a).

Both periodic solutions have two invariant manifolds, one stable and one unstable,
each of them formed by two cylinders. See Figure 3.1. for the zero Hopf periodic

. T H
10,000 he other Hopf

periodic orbit is symmetric of this under the symmetry (z,y, z,t) — (—x,y, —z, —t)
which leaves the differential system (3.1) invariant.

solution with initial conditions near (y/a,0,0) with a =

1-0.0001

1 o.0o0o

Fig 3.1. The Hopf periodic orbit for with initial conditions near

1
0,0) f =
(\/67 ) ) ora 107 000

In this section, we prove Proposition 3.1.1 and Theorem 3.1.1.

|3.2| Zero-Hopf bifurcation

Proof of Proposition 3.1.1.  System (3.1) has two equilibrium points eL =
(£y/a,0,0)when a > 0, which collide at the origin when a = 0. The proof is

18



Chapter 3. On the zero-Hopf bifurcation of a Chen—Wang differential system

made computing directly the eigenvalues at each equilibrium point. Note that the
characteristic polynomial of the linear part of system (3.1) at the equilibrium point
ey is

p(\) =N £ a\? + )£ 2va.
As p()) is a polynomial of degree 3, it has either one, two (then one has multiplicity
2), or three real zeros.
Using the discriminant of p (1)), it follows that p (A) has a unique real root, see [1].
Imposing the condition

p(A) =\ =p) (V¥ —ec—iB) (A —c+iB),

with p,e, 8 € R and 8 > 0, we obtain a system of three equations that correspond
to the coefficients of the terms of degree 0, 1 and 2 in A of the polynomial

pPA)=A=p)A—e—i)(A—c+if).

This system has only two solutions in the variables (a, 3, p) , which are

1—24e2 +326% — /1T — 3222 + 82\/T — 3262 /3 — 222 — /1 — 322

82 V2 ’
1 VI- 32
—8el +2(6— de? — 2T —32) &% — -+
—2e — _ e?

2

=42+ 0 (e*),1+ O (%), —4e + O (%)),

and

(1 — 242 4+ 3264 + /1 — 3262 — 8e2y/1 — 32e2 /3 — 2e2 — /T — 322

8e? V2 ’
1 V1- 322
8! +2 (6 — 4% + 2T = 827) &% — 5 — "
B 2
(L y0) vVE+0(E), =400
-\ 4e? ’ T 2 ’

Clearly, at € = 0, only the first solution is well defined and gives (a, 3, p) = (0, 1,0).
Hence, there is a unique zero-Hopf equilibrium point when a = 0 at the origin of
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Chapter 3. On the zero-Hopf bifurcation of a Chen—Wang differential system

coordinates with eigenvalues 0 and +i. This completes the proof of Proposition
3.1.1. m

Proof of Theorem 3.1.1. It was proven in Proposition 3.1.1 that when a = 0
the origin is zero-Hopf equilibrium point. We want to study if from this equilibrium
it bifurcates some periodic orbit moving the parameter a of the system. We shall
use the averaging theory of first order described in chapter 2 (see Theorem 2.1.1)
for doing this study. But for applying this theory, there are three main steps that
we must solve in order that the averaging theory can be applied for studying the
periodic solutions of a differential system.

Step 1 Doing convenient changes of variables we must write the differential system
(3.1) as a periodic differential system in the independent variable of the system, and
the system must depend on a small parameter as it appears in the normal form (2.1)
for applying the averaging theory. To find these changes of variables sometimes is
the more difficult step.

Step 2 We must compute explicitly the integral (2.2) related with the periodic dif-
ferential system in order to reduce the problem of finding periodic solutions to a
problem of finding the zeros of a function ¢(y), see (2.2).

Step 3 We must compute explicitly the zeros of the mentioned function, in order to
obtain periodic solutions of the initial differential system (3.1).

In order to find the changes of variables for doing the step 1 and write our differen-
tial system (3.1) in the normal form for applying the averaging theory, first we write
the linear part at the origin of the differential system (3.1) when a = 0 into its real
Jordan normal form, i.e., into the form

0 -1 0
1 0 0
0 0 0

To do this, we apply the linear change of variables
(z,y,2) — (u,v,w),where x = —u 4w, y=v, z =u.
In the new variables (u,v,w), the differential system (3.1) becomes

U =a—v+uw+ 32— w?

U =u, (3.2)

W= a+ uw + 3v? — w?.

Now,we write the differential system (3.2) in cylindrical coordinates(r, 6, w) doing
the change of variable

u=rcosf, wv=rsinf, w=uw,
and system (3.2) becomes
i =cosf (a — w? + rwcosf + 3r?sin0)
9:1+%(w2—a)sin@—wcos@sine—3rsin3€, (3.3)

w=a—w?+ rwcosfh + 3r2sin46.
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Chapter 3. On the zero-Hopf bifurcation of a Chen—Wang differential system

Now, we do a rescaling of the variables through the change of coordinates
<T7 07 w) - <R7 67 W) )

where r = gR,w = ?W

After this, rescaling system (3.3) becomes

R= \/750080(4—w2+RWCOSG+3RQSin29),

9:1—;/—gsinﬁ(él—W2+RWCOSH+3RQSin29), (3.4)
W= g (4 — W2+ RW cos + 3R?sin®§) .

This system can be written as

d
d—?:\/TaFll (6,R,W)+O(CL>, (35)
aw  a ’
W = 7F12 (9,R,W)+O(a),
where

Fi1 (0, R,W) =cosf (4 — W?+ RW cosf + 3R?sin*f) ,

Fi2 (0, R,W) = (4 — W2+ RW cos 0 + 3R?sin? 9) )

Using the notation of the averaging theory described in chapter 2, we have that if
we take t =0,T = 2m,e = \/a,z = (R,W)" and

Fy(t,x)=F (0,R, W) = (
2R, (1,2) = O (a),
it is immediate to check that the differential system (3.5) is written in the normal
form (2.1) for applying the averaging theory and that it satisfies the assumptions of

Theorem 2.1.1. This completes the step 1. Now, we compute the integral in (2.3)
with y = (R, W)T , and denoting

we obtain

1
gJi2 (R, W) = Z (8 + 3PL2 — 2W2) s
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Chapter 3. On the zero-Hopf bifurcation of a Chen—Wang differential system

so the step 2 is done. The system g11 (R, W) = g12 (R, W) = 0 has the unique real
solutions (W, R) = (£2,0) . The jacobian (2.4) is

1 1

FRE 1

5 =3 (3R* +2W?),
§R -W

and evaluated at the solutions (R, W) = (0,+2) takes the value —1 # 0. Then,
by Theorem 2.1.1, it follows that for any a > 0 sufficiently small system (3.4) has
a periodic solution z(t,e) = (R(0,a), W(0,a)) such that (R(0,a), W (0,a)) tends to
(0, £2) when a tends to zero. We know that the eigenvalues of the Jacobian matrix
at the solution (0, —2) are 2, —1/2 and the eigenvalues of the Jacobian matrix at the
solution (0, 2) are —2,1/2. This shows that both periodic orbits are unstable having
a stable manifold and an unstable manifold both formed by two cylinders. Going
back to the differential system (3.3), we get that such a system for a > 0 sufficiently
small has two periodic solutions of period approximately 27 of the form

r(0) =0O(a),
w(f) =+va+ 0O (a),

these two periodic solutions become for the differential system (3.2) into two periodic
solutions of period also close to 27 of the form

u(t) =0(a),
v(t)=0(a),
w(t) =+va+ O (a),

for a > 0 sufficiently small. Finally, we get for the differential system (3.1) the two

periodic solutions

z(t) =+va+ O (a),
y(t) =0O(a),
z(t) = O (a),
of period near 27 when a > 0 is sufficiently small. Clearly, these periodic orbits tend
to the origin of coordinates when a tends to zero. Therefore, they are small amp-
litude periodic solutions starting at the zeroHopf equilibrium point. This concludes
the proof of theorem 3.1.1. m
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Chapter

Four-dimensional bifurcation for a Lorenz-Haken
system

In this chapter, we study the periodic orbits which bifurcate from a zero-Hopf equi-
librium point that a Lorenz-Haken system in R* can exhibit.

4.1| Introduction and statement of the main

results

The Lorenz—Haken equation named after the fluid dynamist Lorenz and laser theorist
Haken [11] describe the dynamics of a homogeneously broadened gain medium in
an unidirectional ring cavity. In the notation given in the Reference [?], the Lorenz-
Haken equations is given by

:'U:—U(a:—y)+iq:v\a:]2,
y=—-1=id)y+(r—2)z, (4.1)
Z = —bz + Re(zy),

where z, y and z are complex variables, and ¢,b, ¢, r, § are the real parameters. In
2019, Hayder Natiq [17] derived a new 4D chaotic laser system with three equilibrium
points from (4.1), since both = and z can be chosen to be real and y a complex
variable.

In this work, we study a four-dimensional system of differential equations which
is a generalization of the system introduced in [17]. We want to study the periodic
orbits of the Lorenz-Haken systems of R* with five parameters, in which bifurcate
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

in the zero-Hopf bifurcations of the singular points given by

t=a(y—x),

y=—cy—dz+ (e —w)x,

Z=dy— cz, (4.2)
w = —bw + zy,

where x, y, z, we are state variables and a, b, ¢, d and e are real parameters. See
[18].

In the first instance we are going to compute the equilibrium points of Lorenz—
Haken system (4.2).

Proposition 4.1.1 Let A =

are true :
(1) If A<0 andb#0, system (4.2) has an unique equilibrium point

Po 7é (07 07 Oa O)
(2) If A >0 and b # 0, we have two equilibrium points

(i\/M VDA, :t@ A)

_ 2 d2
lec—c—d) .. + 0. The following statements
C

(3) If b =0 and A # 0 we has a straight line of equilibria
p=(0,0,0,A).

Proposition 4.1.1 follows easily by direct computations.

We observe that the two equilibria pi tends to the equilibrium point p when
b — 0. In short, the equilibrium point of system (4.2) can be p,, p_, p and the
origin. Additionally, the system (4.2) has invariance under the coordinate transform-
ation (z,y,z,w) — (—z, —y, —z,w). Consequently, the system (4.2) has rotational
symmetry around the w-axis.

Due to that, in what follows we consider the only equilibrium p, in order to verify
its possibility of being a zero—Hopf equilibrium for some values of the parameter,
and clearly the same will occur for the other equilibrium p_.

In the next result we characterize when the equilibrium p, p+ and the origin are
zero—Hopf equilibrium of the system (4.2).

Proposition 4.1.2 For the hyperchaotic system (4.2), the following statements hold:

2 2
(1) po is @ zero-Hopf equilibrium if only if a = ~2¢, b= 0, d = —YC L 4

V3

4c® + w?

3¢
(i1) p is a zero-Hopf equilibrium if only if a = —2c, b =0 and 3d* — ¢* > 0,

-

e =

(1ii) py and p_ are zero-Hopf equilibrium if only ifa = —2¢, b =10, d =
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

In the rest of this section, we will study the zero-Hopf bifurcation and periodic
solutions of the hyperchaotic system (4.2) at all the equilibrium points.

Theorem 4.1.1 For the hyperchaotic system (4.2). The following statements hold.
(1) Let

\/ 2 2 4c2 2
(a’ b’ d’ e) = (—26 —+ 5“1751717 _C—w ﬂ + 861)

d
5 el

where w > 0 and € > 0 are sufficiently small parameters. If a; # 0, by # 0,
c# 0,1 =3ce; +2v3dVe+w? # 0 and n, = 3a,w? — 2cn # 0, then for e > 0
sufficiently small, the hyperchaotic system (4.2) has a zero-Hopf bifurcation at the
equiltbrium point located at py, and at most four periodic orbits can bifurcate from
this equilibrium when ¢ = 0. Moreover, the periodic solutions are stable if a; > 0,
by > 0, 161 + 3b1w? < 0 and 4n, + 3bjw? < 0.
(7i) Let

(a,b) = (—2c+ eay,eby),
where w > 0 and € > 0 are sufficiently small parameter. If a; # 0, by # 0, ¢ # 0
and 3d*> — ¢ > 0, then for ¢ > 0 sufficiently small, the hyperchaotic system (4.2)
has a zero-Hopf bifurcation at the equilibrium point located at p, and at most four
periodic orbits can bifurcate from this equilibrium when ¢ = 0. Moreover, the periodic
solutions are unstable if a; < 0, by (ec — * —d*) > 0 and ¢ > 0.

(iii) Let
—— ted; |,
N

where w > 0 and ¢ > 0 are sufficiently small parameter. If ¢ # 0, a; # 0, and
Kk = by(4c* — 3ce + 3w?) < 0, then for ¢ > 0 sufficiently small, the hyperchaotic
system (4.2) has a zero-Hopf bifurcation at the equilibrium point located at p+, and
at most two periodic orbits can bifurcate from this equilibrium when e = 0. Moreover,
the periodic solutions are unstable if a; > 0 and k < 0.

(a,b,d) = (—20 + eay, eby, —

4.2| Proof of results

In this section we will provide the proofs of Proposition 4.1.2 and Theorem 4.1.1.
Proof of Proposition 4.1.2. The characteristic polynomial P()) of the linear
part of the differential systems (4.2) at the equilibrium point pg = (0,0, 0,0) is
P(\) =M+ AN 4 BN? + O\ + D, (4.3)

where

A=a+b+2c,

B =2bc+ 4+ d*+a(b+2c—e),

C =b(c?+ d*) + a(2bc + 2 + d* — (b — c)e),

D = ab(® + d?* — ce).
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

The equilibrium point py is a zero hopf equilibrium if and only if P(\) = A\*(\? +w?)
Ve 4 w?
\/g )

with w > 0, the parameter must be satisfied, a = —2¢, b = 0, d = —
4 2 2
and e = Cgl,
c
(77) The characteristic polynomial P(A) of the linear part of the differential systems
(4.2) at the equilibrium point p is

d2
PQ%:%+@HQ@A%%G?+f+a<o——)>v (4.4)
c
The equilibrium point p is a zero hopf equilibrium if and only if P(\) = A*(\? + w?)
with w > 0, the parameter must be satisfied,

a=—2c, b=0,

in this case, Eq. (4.4) has roots A; 5 = 0, A34 = £v/3d? — ¢?i.
(#7i) The Jacobian matrix of systems (4.2) evaluated at p, is

—a a 0 0
2 blce — 2 — 42
e+ L —e a Vlee= =)

c Ve

0 d —c 0
Vb(ce = —d?)  /b(ce — 2 — d?)

0 —b
Ve Ve
and its characteristic polynomial is
(33) PN =X+AN+BN+CA+D, (4.5)

where
A=a+b+2c,
2

d
B:c2+d2+a(b+c——)+b(c—%+e>,
2
C’zb(ce—i—a —c—%—l—Qe)),
c
D = —2ab(c* + d* — ce).

The equilibrium point p, is a zero hopf equilibrium if and only if P(\) = A*(A\*4w?)
with w > 0, the parameter must be satisfied,

a=—-2c,b=0,d=—
V3

This completes the Proof of Proposition 4.1.2. m
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Proof. of statement (i) of Theorem 4.1.1. Let

A/ 2 2 4 2 2
(a,b,d,e) = (—2c+ gay, by, —CTW + edy, ngl + 861>
c

where w > 0 and £ > 0 are sufficiently small parameters. Then, the differential
systems (4.2) becomes
T =2c(r —y) —a1(x —y)e,
—4c%x 4 3ewr + 3y — 2w? — V3ezV @ + W?
3¢ ’ (4.6)

y = (erx — dyz)e —
z2 = dyye + %(—302 —V3yVe? + w?),
w = xy — bywe.
Performing the rescaling of variables
(x,y, z,w) — (ex, ey, ez, ew)
system (4.6) can be written as

T =2c(x —y) —a1(x —y)e,

—4c2x 4 3y — 2w? — V3ezx /2 + w?
3¢ ’ (4.7)

Y= (e1x —wz —dyz)e —

1
2 =dyye + g(—3cz — 3y + w?),

W= (—bhw + xy)e.

Now we shall write the linear part at the origin of the system (4.7) when ¢ = 0 into
its real Jordan normal form, i.e. as

0 —w 0 0
w 0 00
0O 0 00
0 0 00

For doing that we consider the linear change (x,y, z,w) — (X,Y, Z, W)

_ 2c(vV3cYw + V3Xw? — 3cZV/c? + w?
v 3wV + w? ’
V3eXw? 4+ V3Yw? + 262 (\/§Yw — 3Z\/m)
V= 3w2v/c2 + w? ’
(X N c (—2Yw + 2372 + w))
5 ;

w
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By using the new variables (X,Y, Z, W), the system (4.7) can be written as follows

o 1 Yw dl 9 5
X——Yw—l—gg (al (_X+T) +m(—60 Vet +wZz

+V3w(2?Y + cXw + Yw?))),
. €
Y =Xw+— (63t (—e; + W) Z — 6% (e1 — W) w(V3Zw
3w3‘/c2+w2( ( 1 ) (1 ) (

YV +w?) - w? (\/glew + 20, YV + w?) + 4c3dy (V3Y w
—32Vc 4+ w?) + cw?(2 (a1 + 3er — 3W) X2 + w? + 3d,(V3Y w
=22V +w?))),

Z = TN 6—02 — (—24\/§c5dlZ — 4v/3a,?Y w? — V/3a Y WP
+cw? (\/gale +6d1Y V2 + w2) +4cPw (\/g((al + 3e;
—3W)X —6d12)w + ed Y V2 + w? +12¢% (e1 — W) (V3Yw
=32V + w?)) .

2c

W=e (—b1W + 9 (2 1Y) (V3(cYw + Zw?) — 3¢Z/ 2 + w?)
V3(eXw? + Yw?) + 26 (V3Yw — 3ZV2 + w?)))

Then we use the cylindrical coordinates X = rcosf, Y = rsinf, and obtain

P = m(mw?’(ﬁcdl — a1V + w? cos? 0)
+esin 06¢Z(—(2v/3)diV e + w? — V3c (e — W) (2 + w?))
+rw(v3 (4 + 3cw?) dy + (6¢2 (61 — W) — 2a1w?) vV 2w? sin )
+wcos O(—6c3d1 Z+/c? + w? + rw(2V/3c3d,
+2¢% (a1 + 3ey — 3W) V2 + w? + a1w?Ve? + w?)sin h)),

- £

0 = crw?vc? + w? (2¢ (a1 + 3e; — 3W) e + 3w?) cos? 6
3crw3\/m( (2e(a ' ) )
+ce cos 0(6¢Z(— (2¢2 + w) divVe? +w? — V3 (e — W) (2 + w?))
+rw(4v3c3dy 4 6¢2 (e — W) V2 + w? — 20,0V 4 w?) sin b)),

: 5

7 = —123(Z2vV3 (¢ + w?) dy + 3c (e — W) Ve? + w?
1802w2\/m( (22¢3( )& (@ ) )

+v/3crw? (4¢% (a1 + 3ey — 3W) + a1w?) cos 0 + rw((24¢® + 6cw?) div/c? + w?
—V/3(12c* (61 + W) + 4a, 2w? + a;w?)) sin ),

5
— m((l%‘lZz + 2c2r%w? — 3 Ww?) (2 + w?)

+erw(—2¢%rw cos 20 — 2v/3¢ 2/ + w2 (3cw cos O + (4¢% 4 w?) sin 0)

+3c*rw? sin 20 + rw* sin 26)).
(4.9)
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We take 6 as a new independent variable and obtain the system
dr €

B = seyas (e (V3edy — a1V + w?) cos”

w2+ w?cos O (—6c¢3dy Z + rw (6¢% (e; — W) + ayw?) sin §)
+esin 0((6c2(— (2¢% + w?) dive? + w? — V3e (e — W) (2 + w?))
+rw(2ew(v/3edy + a1V + w?) cos 0 + ((4c + 3ew?) V/3d,

+(6¢% (e1 — W) — 2a,wH)V 2 + w?)sin 0))) + O (¢2)

=ely (0,r,Z, W)+ O (£%).

dz €
- = —12¢3Z(2v/3 (2 + w?) d
d0  18c2w2\/2 + w2( (2v3( ) dy
+3c(er — W) V2 + w?) + V3erw?(4c2 (ay + 3ey — 3W) (4.10)

+a1w?) cos 0 4+ rw(6 (4¢® + cw?) divV/? + w?
—V/3(12¢* (—ey + W) + 4a,%w? + a1w?)) sin ) + O (£2),
=k (0,r, Z, W)+ O ().
aw €
A9~ 3w (2 4+ w?)
+erw(—2c3rw cos 20 — 2\/§ch(3&) cos 6
+ (4c® + w?) sin 0) + 3c?rw?sin 20 + rwsin 26)) + O (£2) ,
=els(0,r,Z, W)+ O (e%).

((¢® + w?) (12¢* 22 + 2¢%r*w? — 30, Ww?)

Using the notation of averaging theory introduced in chapter 2, we get t = 0,
T =2m,x=(r,Z,W) and

F1(97T7Z7W) fl(r’Z’W)
FO,r,ZW)=| F@,r,ZW) |, and [f(r,ZW)=| fo(r,Z,W)
Fs(0,r, 2, W) fs(r, Z,W)
Then we compute the integrals, i.e.
L on
fi(r ZW) = TR (0,7, Z, W) df
0
T (602 (e — W) — 3a1w? + 4/3edy\ 2 + wz)
N 6w3 ’
1

fa(r, ZW) = o TR (0,7, Z, W) df
2¢Z (3c(er — W) +2¢/3d1 V2 + w?)
3w3 ’
fs(r, Z,W) = % TR (0,7, Z, W) df
12227 4 2¢%r?w? — 3 Ww!
3wd ’
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

Solving the equations fi(r, Z, W) = fo(r, Z, W) = f3(r, Z,W) = 0, we can get the
following five solutions :

S0 = (07 07 O)?
\/b1w4 (3cer + 2v3diVe? + w?) 20V T o
0, £ e+ ——— |,
2/3¢5/2 V3e
\/b1w2 (66261 — 3a3w? + 4v/3ed VA + w2)
+

2c2

1
—|—6—2 (—3a1w2 + 4v/3cdi VA2 + w2)) )
c

S1,2 =

534 = ) Oa

The first solution sy corresponds to the equilibrium at the origin. For other four
solutions, we get (I) For the solution s; and s when ¢ # 0, s; 5 are real solutions.
The Jacobian of solution s; g is

ox - 3wb

det <(‘9_£ (31)> — det (ﬁ (32)> 2a1by¢ (3cer + 2v/3dy V@ + WP)

(1) For the solution s3 and s4 when ¢ # 0, s34 are real solutions. The Jacobian of
solution s34 is

b1 (—6c%e1 + 3a1w? — 4v/3edy V2 + w?
det(g(83)>:det(%(s4))—al1( cat ““;M Viedive +u?)

When a; # 0, by # 0, ¢ # 0, 1 = 3ceq +2v3d1V 2 + w? # 0 and 1, = 3a;w? — 2cn #
0, then
of .
det (% (sj)) #£0,7=1,...4.

Then according to Theorem 2.1.1, we see that the system (4.10) has one periodic
solution z;(6, ) such that z;(0,¢) = s; + O(e), j = 1, ..., 4. Bring the solution back
to the system , and we have one periodic solution

(I)j(ev 5) = (Xj(ev 5)7 Y;(@, 5)7 Zj(‘gv 5)> ij(ev 5)) :

Then the system (4.6) has the periodic solution e®,(0,¢), j =1, ..., 4.
To determine the stability of the periodic solution e®;(6,¢), j = 1,...,4, one needs

to calculate eigenvalues of the Jacobian matrix —= (s23)

ox
P(A) = coX? + 1 A + o) + 3, (4.11)
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

where cg, c1,co0 and c3 are

Co = _17

ap + 261
o =—-——",

2w

by (—3a1w2 + 8¢ (3061 + 24/3d1 V2 + wz))

Cy = — s
6wt
2a1b;c (3061 +24/3d1V/ 2 + w2)

C3 — .

3w?

The eigenvalues are given as follows

N \/b1 (480261 + 3byw? + 32v/3cdi V2 + w2)

wi

U s U
! 20’2 6w3

On the other hand the characteristic polynomial and its eigenvalues of the jacobian
of
trix —
matrix = (s34) are
P(s34) = oA’ + 1A + A + 3 (4.12)

where ¢y, c1, co and c3 are

Co = —1,

ay + 2b1
S

by (—Bcer + 2V3d VP + w?)
2= 3w ’
aiby (—6c%e; + 3a1w? — 4v/3cdi VP + w?)
C3 = X
3w?

The eigenvalues are given as follows

s 3b10® % /3y /byt (3 (dar + by) w2 — Se (3ce + 2v/3dh V2 + 7))

At = % Aoz = — 60

We have that Aq, 5\1 is real and Ay 3, 5\273 are complex numbers if 161 + 3bjw? < 0
and 47, + 3byw? < 0. In this case, the periodic solution e®,(6, €) is stable if a; > 0,
bl >0. m
Proof. of statement (ii) of Theorem 4.1.1.
Let
(a,b) = (—2c + eay, %y ),

where w > 0 and € > 0 are sufficiently small parameter. Them, we translate p to
the origin the coordinates doing system (4.2) becomes (x,y, z,w) = (T, ¥, Z, W) + p,
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

then we introduce the scaling of variables (z,y, z,w) = (ex, ey, ez, ew), with these
changes of variables system (4.2) can be written as

T=2c(x—y)—a(x—y)e,

r + d?z — Ay — cdz
= — waze,

¢ (4.13)

Z=dy — cz,
_eby (¢ + d* — ce)

. + (—ebyw + zy) &,

After the linear change in variables (z,y, z,w) — (X,Y, Z, W),

(—6d* +2c%) X 2cv/—c? + 3d?Y 6 W

PT T30 32108 320
(=3 +A)X V= +3d2Y 6c3W
32+ 9d? T35 9 (4.14)
_d(3d* =) X 2dv —02 + 3d?Y 6dc*W
= 3c(@ 1 38) 32198 36 — 0l
w= 4.

the linear part at the origin of system (4.13) for ¢ = 0 can be transformed into its
real Jordan normal form,

0 —V3d?—¢c® 0 0
3d? — ¢? 0 0 0
0 0 0 0
0 0 00

Under the change in variable (4.14), the system (4.13) can be written as

. 1
X = ~ 3 (cXay — V= +3d?Ya) e — V=2 + 3d?Y,
c

.1
Y = g(—18202\/—c2 + 3d?Yd® — 54ZcXd + 36 Z* X d®

+6Zc* =2+ 3d2Y — 54Z3Wd? — 182 W — 6Z°W — 622X
+2XAay + 123V =2 + 32Y a1 d® — 12X Ad2aq + 18X edtay
—2¢4/ =@ + 3d%Y ay — 18V = + 32Y d*ay e/ (—c* + 3d2)?)
+v—c + 32X,
s 1 (90, Z¢° — 162b1Z2c5d4 + 7290, Zed®) e* 1(162blc5€d4
9 (2 +3d2)° (=3d2 +2)c 9
—162AW dSv/—c2 + 3d2Y + 2¢%Y? — 30X 22/ —2 + 3d2Y
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+54X d*/—c2 + 3d2Y ¢* + 54X d°c?\/—c2 + 3d2Y

+18c5v/—c2 + 3A2Y d*W — 162¢*V/—c2 + 3d2Y d*W

—12¢"Y2d? + 108¢Y 2d® — 162¢Y2d® + 729D, ced®

—162X d®/—c2 + 3d%Y + 4X BV —c2 + 3d%Y

+18¢3/ =2 + 3RY W + 162X d* W — 486 X d° AW

+54X d?cTW — 2X2¢ — 36°W?2 — 9by 'V — 729b,d*°

+162b,c*d8 — 9b,c3d? + 162b,c8d* + 9b,Pe — 729b; 2 d®

—162X2d8¢ + 216 X2d5c® — 108 X 2d4c® + 24 X242 — 18X AW (4.15)
“216¢TW2d? — 3245 W2d4)e ((c2 4 3d2)% (=3 + 2)° c) ,

W = ég(—5Xc5d2a1 — 127/ =2 + 3d2Y d? + 3X Ad%a; + 9X edbay
+Xc"a; — V= + 3d2Y Bay — 9V —c2 + 3d2Y d%ay
—3c2/ =2 + 3d2Y d*a; + 5V =2 + 32Y rayd? — 12ZW
—AZTX + 425V =2 +3RY + 24725 Xd? — 3623 X d
—36ZWd?)/ (3 (c* — 9d%)),

Performing the cylindrical change of variables
(x,y, Z, W)+ (rcosf,rsinf, Z, W) (4.16)

the system (4.15) becomes

% = %(—277’ cos fay sin 0d® + 54 sin 0c2 Zr cos 0d* — 36 sin Oc* Zr cos Od?
—sinOc?r cos fay + 54 sin Oc* ZW + 6sin 0c8 Zr cos 0 + 3 sin Oc*r cos Od?a,
+9sin Oc2r cos Od*a; — P/ —c2 + 3d%raq cos? 0
463/ —2 + 3d2ra d? cos? 0 — 9e/—c2 + 3d2rd*a; cos? 0
+6c5Z/—c% + 3d%r cos? 0 — 6P Z\/—c2 + 3d2r — 12¢3/—2 + 3d?ra d?
1426/~ 4 3d?ray + 18c/—c2 + 3d?rd*ay) — 18¢3 Z/—c% + 3d?rd? cos? §
+18c3Z+/—c2 + 3d2rd?/ (c (—9c*d? + 27c2d* — 27d + ¢5)) e + O (€?)
=eF (0,r,z,w) + O (¢?),

% = %x/m(—w%lc%d‘l — 4r? cos? 0c® + 162r cos Od* W
—1867 cos 0d° AW + 54r cos Od2c™W — 162c2W dS/—c2 + 3d2rsin @
+54r2 cos 0d*/—c2 + 3d2 sin Oc* — 3072 cos Od2*/—c2 + 3d2 sin
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+54712 cos 0d®c*v/—c? + 3d2 sin § — 16212 cos 0d®\/—c? + 3d? sin @

+4r2 cos 0c®/—c2 + 3d2 sin 0 + 18¢5v/—c2 + 3d2r sin Od*W

+3672 cos? Od?c” — 10812 cos? Od*c® + 10872 cos? 0d8c® — 18r cos OPW
—162c*/—c2 4 3d?r sin Od*W + 18¢3v/—c2 + 3d?r sin OW + 7290, ced®
—36c°W?2 — 9b,c'® — 7290, d"° + 2¢°12% + 162b,c*d — 9b,c3d? + 162b,8d*
+9b,%e — 729, 2d® — 216" W2d? — 324PW?2d* — 12¢7r2d? — 162¢r2d®
+108c*r2d®) / <(—964d4 +27c2d* — 27d5 + B) ¢ (® + 3d2)2> e+ 0 (e?),
=eFy (0,r,2,w) + O (%),

d 1
d—I;V = —6(—57“ cos 0cd?a, — 12Zc*/—c? + 3d2r sin Od? + 3r cos Occd*a,

+9r cos fcd®aq + 1 cosOcTay — /—c2 + 3d%rsin 0ca; — 9vV/—c® + 3d?r sin 8d8a,
—3c2/ =2 + 3d%rsin 0d*a; + 5V —c + 3d?rsinOctay — 12Z2"W — 4Z¢™r cos 0
+4Z5 =2 + 3d2r sin 0 + 24Z¢Pr cos Od? — 36 Zc3r cos Od*
—36ZWd?)V/—c2 + 3d2/ ((c* — 6c2d? + 9d*) (4 3d?) ) e + O (€2),
=eF3(0,r z,w)+ O (?),
(4.17)
System (4.17) is written in the normal form (2.1) for applying the averaging theory

and satisfies all the assumptions of Theorem 2.1.1. Then, using the notations of the
averaging theory described in Chapte 2, we have t =0, T = 27, x = (r, Z, W),

Fl (07T7 Z7W) fl(rv Za W)
FO,r,ZW)=1| F0,r,Z,W) |, and f(r,z,w)= fa(r, Z, W
Fg (0,7", Z, W) f3(7’, Z, W)

Then we compute the integrals, i.e.

1 o
fi(r, Z, W) = TR (0,7, Z, W) df

(=c?ay + 227 + 3c2Z + 3d%ay)v/ —c2 + 3d2r
2 (c* — 6c¢2d? + 9d*) ’
L on
folr, Z,W) = o 2T B0, r, Z,W)dd

1
—§(3b1010 + 12¢°W? — 3byPe + 3byBd? — 2¢Tr2d?

+72¢"W2d? — 54b,c8d* + 108> W2d* + 54b,cPed?
+187r2d*c® — 54b,c*dS — 54c3r?dS + 243byc2d®
—243byced® + 54er?d® + 243byd'0)/—c2 + 3d%/(c(—3c3d?
—18c%d* + 54ctd® + 81c2d® — 243d"° + 1Y),
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L on
fo(r, Z, W) = o~ 2Ty (0,1, 2, W) df

2V +3d2PZW

A —6c2d? +9d4
Solving the equations fi(r, Z, W) = fo(r, Z, W) = f3(r, Z, W) = 0, we can get the
following four solutions :

by (—c + ec — d?
\/ B ) gy o
81,2 - Oa()?:l: ) )
c
3by (=2 +ec—d?) , , )
_ \/ 6d2c — 2¢3 (434 ay (—3d* + ?)
53,4 = + ' 70
’ d 2 c?

The solution s;, j = 1,...,4 exist if only if ¢ # 0, d # 0. On the other hand, the
solutions s o and s34 are real if only if b; (ec — 2 —d*) > 0,c>0and 3d*—2c% > 0.
For the four solutions, we get

det (% (31)) = det (% (82))

~ 2a1¢hy (2 + d?* — ce)
(3d2 _ 62)%

det (% (53)) = det (% (54))

_ 2a1¢by (¢® + d® — ce)
(B2 — )3

)

dx
j = 1,...,4. Then according to Theorem 2.1.1, we see that the system (4.17) has

one periodic solution z;(6,¢) such that z;(0,¢) = s; + O(e), for each j = 1,..., 4.
Bring the solution back to the system (4.15), and we have one periodic solution
Qi(t,e) = Xj(t,e), Yj(t,e), Z;(t,e), Wj(t,e) . Then the system (4.13) has the
periodic solution e®;(¢,¢), j =1, ..., 4.

To determine the stability of the periodic solution one needs to calculate eigenvalues
of the Jacobian matrix 0F (s;) /0x, j = 1,...,4.

The Jacobian matrices OF (s1) /Ox and OF (s3) /Ox have the same characteristic
equation

When a; # 0, by # 0, ¢ # 0 and 3d*> — ¢ > 0 then det (ﬁ (sj)) # 0, for each

A2 4 0107 + O\ + O3
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where ©1, ©, and O3 are

a1
0 = ——,
Lo/ —2 3
o, — 4cby (2 + d? — ce)
2T A6+ 944
2bycay (¢ + d* — ce)
@3 = 5 ’
(3d? — ¢?)2
The eigenvalues are given as follows
P —
Lo/ 13
N 24/ —cby (¢ + d? — ce)
2T 2 —3d? ’
e 24/ —cby (¢ + d? — ce)
s 2 —3d?

The Jacobian matrices OF (s3) /Ox and OF (s4) /Ox have the same characteristic
equation,
N TN + TN+ 1y,

where I'y, I'y and I's are

A
' V3d2 =%’

. — ~ 2cby (2 +d*—ce)c
? (3d? — )° 7

r 2b1ay (2 + d* — ce) ¢
3= —

(3 4z — 02)3
The eigenvalues are given as follows
N aq

h=
L g 7
h V20 (2 +d? —ce) c

T 2 —3d? ’
5. = V20 (2 +d? —ce)c
T 2 —3d?

We have that Ay, jxland Ag,3 are real numbers and 5\273 are complex numbers. In this
case, since that a; < 0, b; (ec — ¢ — d?) > 0 and ¢ > 0, then this implies that the
periodic orbits e®(¢,¢), j € {1,...,4} are unstable. m

Proof. of statement (iii) of Theorem 4.1.1.
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Let

V3

where w > 0 and € > 0 are sufficiently small parameter. Them, we translate p to the
origin of the coordinates doing system (4.2) becomes (x,y, z,w) = (T, 7, Z, W) + px,
then we introduce the scaling of variables (z,y, z,w) = (ex, ey, ez, ew), with these
changes of variables system (4.2) can be written as

JZ L2
(a,b,d) = (—20—{—5@1,5191, _verer +5d1> :

= (x—1y)(2c— ase),

(ng B \/g\/dh (-4 —w+2V+ w2\/3edy — 3e2d,% + 3 ec)

w
C

V2 + w3 —3ce dl) z
3c
YVt w?
\/§ )
3z \/5[)1 (—4 A — W2+ 2V + wi/3ed, — 32,2 + 3 ec)

3e2d 2 +4 +w? -2V + w2\/§5d1) T

(
+ 3¢ -y,

Z = —cz+ dyye —

W= —cbw+ecry+

3 c
+\/§ eby (-4 —w? + 2V +w?V3ed; — 3e%d;” + 3ec)
3 c y7
(4.18)
After the linear change in variables (z,y, z,w) — (X, Y, Z, W),
2¢v3X  2¢2V/3Y 2¢27
T = + — ,
3 3w w?
_ v/3X N (WP +2wP)V3Y 2727
=3 32 o2 (4.19)
V2 +wrX o 2ev/c2 4+ w?Y N 2e\/ 2 + w37
z= —
3 3w 3w? ’
w=W,

the linear part at the origin of system (4.18) for € = 0 can be transformed into its
real Jordan normal form,

0 —w 0 0
w 0 00
0 0 00
0 0 00
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Under the change in variable (4.19), the system (4.18) can be written as

X=-Yw+ -
3 w2«’02—|—w2

1
— ﬁ(3(—2CVV + W) Xw? 4+ 62W (V327 — Yw) + 6d3e*(—/3cZ + cYw + Xw?)
w

_ 3Ww?
Ve

cw?

s (WVACAX + (607 +VBhY = 20 XVE )

+w(5V3di Xw + 2a; Y V2 + w?))),

QWX 22WZ  2EWY  2die (—3cZ + V3w (Y + Xw))
7 s+ N + 2
TR (6cdy (—4eX + Yw) Ve + w? +V3ay (cX — Yw) (4¢? + w?))

18¢2
 \2
—— | —bie | 2 —ce+ ds—M
\/E 1 1 \/§ )

W = —b,We + % <2c5/2 (XZ +Y (Y - @» + 232X Yw

C w

. 1 <G1 (_X . &) L 027 + Vadiw (2 + cXuw+ Yw2)> |

Y

\/—b15(4c2 — 3ce +w? + dy(3die — 23V + w?))

7 =

w

672X (—V3Z +Yw) 492
+ +

(32% = 2V/3Y Zw + Y?w?)
w? w?

(4.20)

—|—3cX\/—b15 (402 — 3ce + w? + die (3d15 — 23V + w2))
+Yw\/—b15 (42 — 3ce + w? + die (3die — 23V + w?))

2 (_
+4c ( V3Z Yw) \/—blg (402 — 3ce +w? + dye (3d1€ — 23V + wQ))> )

2
Performing the cylindrical change of variables,

(X,Y, Z, W)+ (rcos@,rsinf, Z, W)
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system (4.20) becomes

% = 3crw4\/1m(—alcr2\/m cos? 0 + cos O(—6c3dyr Zw + (—2v/3dyr?w?
w2 + w2 (30 W2 + ayr?w?) + 22V + w? (60 W2 412 (ay — 3W) w?)
—0(4\/§d17‘2w2 + 9b16W2\/m)) sin ) + cr(\/gcdlrw:)’ cos 20 + 6¢Z (dyw?
V3V 4+ w?)sinf — 2rwy/ e + w? (3EW + ayw?) sin?0))e + O (£2),

Z—g = m(c(ﬁﬁbloﬂ (4c? — 3ce + w?) + r’w?(—24cd, /2 + W?
+v/3(2¢% (a3 — 3W) + ayw?))) cos 0 + r(36c*W Z + rw(6ediw?V/ e + w?
—V/3(12¢*W + day2w? 4 aqw?)) sinh))e + O (€2),

% = 307105 (1265722 + er (2¢%r? — 36, W) w* + 2r?w(6cw cos O(—/32
+rwsin0)cZ (4% + w?) + rwt cos 6 + 2c3rwsin f)e + O (¢2)

—by W (4¢® — 3ce 4+ w?) cos O(—4V/3c*Z + rw (3cw cos § + (4c? 4 w?) sinh))).
(4.21)

System (4.21) is written in the normal form (2.1) for applying the averaging theory
and satisfies all the assumptions of Theorem 2.1.1. Then, using the notations of the
averaging theory described in chapter 2, we have t = 0, T' =27, x = (r, Z, W),

F1 (6,7", Z, W) fl(’/’, Z, W)
F(@,’I",Z,W): FQ(@,T,Z,W) ) and f(Tvsz): f2(T7Z7W)
F3<(97T7Z7W) f3(T7ZaW)

Then we compute the integrals, i.e.

1 on r (2AW + ajw)
fl(T,Z,W):Q— 0 F1 (H,T,Z,W)d(gz— 903 5

1 2°W 7
fg(’l“, Z,W): 2 F2 (09 r, Z W)d& 2w3 s

1 on
falr, ZW) = o 02 F3(0,r,Z,W)db

T

24377 4 ¢ (4P — 121 W 4 9b1eW) w? + (4c%r® — 9 W) w

6wd

Solving the equations fi(r, Z, W) = fo(r, Z,W) = f3(r, Z,W) = 0, we can get the
following three solutions

= (0,0,0),
by (—4c? + 3ce — 3w?) a w?
= Ja 0,—— 1.
1.2 = ( 2c2 \/> g\/ 2 + w? T 2¢?
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For two solutions, we get

det (;Lf <31)> — det (ﬁ (52)> _ a2by (4c® — 3ce + 3w2).

T dx w5

When ¢ # 0, a; # 0, and k = by (4¢® — 3ce + 3w?) < 0 then

of N
det <% (sj)) #0,7=1,2.

Then according to Theorem 2.1.1, we see that the system (4.21) has one periodic
solution z;(6, ) such that z;(0,e) = s; + O(e), j = 1, 2. Bring the solution back to
the system (4.20), and we have one periodic solution

Q;(0,e) = X;(t,e),Y;(t,e), Zi(t,e), W,(t,¢).

Then the system (4.18) has the periodic solution e®,(0,¢), j =1, 2.
The Jacobian matrices OF (s1) /Ox have the same characteristic equation,

XN bic(4e — 3e) + (2a; + 3by) w? 2 a?by (4¢* — 3ce + 3w?)
2uw3 2wP

The eigenvalues are given as follows

No= -2
w
1
>\2 = _ﬁ (bl (402 — 3ce + 3w2)
/b1 (42 — 3ce + 3w?) (brc(dc — 3¢) + (8ar + 3b1) w2)> ,
1
)\3 = —m (bl (462 — 3ce + 3w2)

|
<
=
—

4¢? — 3ce + 3w?) (bic(4e — 3e) + (8ay + 3by) oﬂ)) :

1
We have that A\; and Ao 35 = 1 (H + kK (k+ 8a1w2)> are reals, if a1 > 0,k <0
w

and regardless of the sign assumed by « (x + 8a;w?), at least one of the eigenvalues
has a positive real part. In this case, the periodic solution e¢®;(t,¢),7 = 1,2 is
unstable. m
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Conclusion

The averaging theory is one a well known and important perturbation method to
study the existence and stability of periodic solutions for some ordinary differential
equation systems. It is a powerful tool and it has been proven its effectiveness many
times in the literature by examining the existence and stability of isolated periodic
orbits of dynamical systems with applications to physics and engineering sciences.

The aim of the present work has been to perform an analytical analysis of the
periodic solutions of the so called Chen—Wang differential system in R? and the
Lorenz-Haken system in R*. These two systems exhibit some small-amplitude peri-
odic solutions that bifurcate from a zero-Hopf equilibrium point.

Our future work plan will consist to study zero-Hope bifurcations of some dif-
ferential systems in R”, where n > 4.
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