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قال رسول الله صلى الله عليه وسلم

 ( من لم يشكر الناس لم يشكر الله )
 صدق رسول الله صلى الله عليه وسلم. 

الحمد لله على إحسانه والشكر له على توفيقه وامتنانه ونشهد 

أن لا إله إلا الله وحده لا شريك له تعظيما لشأنه ونشهد أن 

سيدنا ونبينا محمد عبده ورسوله صلى الله عليه وعلى آله 
وأصحابه وأتباعه وسلم.

 بعد شكر الله سبحانه وتعالى على توفيقه لنا لإتمام هذه البحث 
المتواضع أتقدم بجزيل الشكر إلى من شرفني بإشرافه 

على مذكرة بحثي الأستاذ ذياب زهير الذي لن تكفي حروف 

هذه المذكرة لإيفائه حقه لمجهوداته الكبيرة معي. و لتوجيهاته 
العلمية التي لا تقدر بثمن. و التي ساهمت بشكر كبير في إتمام 

هذا العمل. 
كما أتوجه بالشكر لأعضاء اللجنة المناقشة كل من الأستاذ 

حناشي فارح والأستاذ جدي نذير لتوجيهاتهم القيمة 

وملاحظاتهم السديدة. وكذلك جميع أساتذة قسم الرياضيات 

والاعلام الآلي.

كما أتوجه بخالصي شكري وتقديري إلى كل من ساعدني 

من قريب أو من بعيد في إتمام هذا العمل.

 ”ربي أوزعني أن أشكر نعمتك التي أنعمت عليا
 وعلى والدي وأن أعمل صالحا ترضاه

 وأدخلني برحمتك في عبادك الصالحين“ 

شكر وتقدير



الحمد لله حبا و شكرا وامتنانا على البدء والختام 

(وآخر دعواهم أن الحمد لله ربي العالمين )
 وبكل حب أهدي ثمرة نجاحي وتخرجي إلى الذي أحمل اسمه 

بكل فخر. إلى الذي كان ولا زال قدوتي في الحياة. إلى الذي 

وهبني كل ما يملك حتى أحقق له آماله. أبي الغالي على 

قلبي رحمه الله.

إلى التي وهبتني كل العطاء والحنان. إلى المرأة التي جعلت مني 

فتات طموحة وسهلت عليا بدعائها أمي حفظها الله.

إلى رفقاء دربي وأصدقائي وقرة عيني والأغلى على قلبي

 أخوي ضرار ومحمد حفظهم الله.
إلى جميع عائلتي وخاصة أعمامي حفظهم الله.

إلى كل الأصدقاء والزملاء. خصوصا صديقاتي اللواتي عرفتني 

عليهن الجامعة وكانوا لي السند ونعم الصحبة الصالحة 

(بخوش رحمة, قتال وئام, عويشات جيهان)
أدام الله صحبتنا.

إلى كل من نساه قلمي ولم ينساه قلبي.

إلى كل من تصفح مذكرتي وإنتفع بها وتذكرنا بدعائه.

إليكم جميعا أهدي هذا العمل 

الإهداء 



Abstract 
 

The objective of this work is to study the existence of bifurcations of 

zero-Hopf type at the so-called Chen–Wang differential system 















.3

,

,

22 ayxzxyz

zy

yx







 

The main tool up to now for studying a zero-Hopf bifurcation is to 

pass the system to the normal form of a zero-Hopf bifurcation. Our 

analysis of the zero-Hopf bifurcation is different; we study them 

directly using the averaging theory. 

In the second part of this work, we study the existence of zero-Hopf 

bifurcations of a Lorenz-Haken system in 4R . The main tool used is 

the averaging theory. 

 

keywords : Zero-Hopf bifurcation, Periodic orbit, Differential system,  

Averaging theory. 

 

 

 



Résumé  
 

L’objectif de ce travail est d'étudier l'existence de bifurcations du type 

zéro-Hopf d'un système différentiel de Chen–Wang de la forme 
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L’outil principal pour étudier une bifurcation de zéro-Hopf est de 

passer le système différentiel à la forme normale d’une bifurcation de 

zéro-Hopf. Notre analyse de la bifurcation de zéro-Hopf est différente; 

nous les étudions directement en utilisant la méthode de 

moyennisation. 

Dans la deuxième partie de ce travail, nous étudions l’existence de 

bifurcation de zéro-Hopf d’un système de Lorenz-Haken dans 4R . 

L’outil principal utilisé est la méthode de moyennisation. 

 

Mots clés: Bifurcation de zéro-Hopf, Orbite périodique, Système 

différentiel, Méthode de moyennisation. 

 



 : ملخص

 هوبف صفر نوع من اتــــتشعب وجود دراسة هو العمل هذا الهدف من

 :الآتي بالشكل المعرف وانغ تشين لنظام
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 إلى النظام تحويل هي هوبف صفر اتـــــــتشعب لدراسة الرئيسية الأداة

دراستنا طريقة في هذا العمل  .هوبف صفر لتشعب قانونيال الشكل

 باستخدام مباشرة بدراستها نقومحيث أننا  ؛ةمختلف هوبف صفر اتــــلتشعب

 .المتوســــط طريقة

 هوبف صفر اتــــــتشعب وجود ندرس العمل، هذا من الثاني الجزء في

 .متوسطال طريقة هي المستخدمة الرئيسية الأداة. 4Rفي هاكن-لورنز لنظام

 

 

حل دوري، نظام تفاضلي، ، هوبف-صفر شعبت : الكلمات المفتاحية

 .المتوسط ةــــــــطريق
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Introduction

Consider the class of polynomial di¤erential systems of degree n. The maximum
number of isolated periodic orbits, the so-called limit cycles, that a polynomial
di¤erential system of degree n can have is called Hilbert number, H(n). It is well
known that linear systems have no limit cycles, then H(1) = 0. For n = 2, the
problem of estimating H(2) has been studied intensively during the last century.
Lower bounds for H(2) can be given by providing concrete examples of polynomial
di¤erential systems of degree 2. Up to now, the best result was given by Shi in
[21], where he proved the existence of a quadratic system with 4 limit cycles, that is
H(2) � 4. We call by M(n) the maximum number of limit cycles bifurcating from
a singular point via a degenerate Hopf bifurcation. Clearly, M(n) is a lower bound
for H(n). Bautin showed in [4] that M(2) = 3; in [25, 26], ·Zoladek proved that
M(3) � 11; a simpler proof was provided by Christopher in [8]. For n = 3, Li, Liu,
and Yang proved in [14] that H(3) � 13.
This thesis is divided into four chapters as follows:

In the �rst chapter, we present elementary de�nitions, techniques and notations
about dynamical systems that we need in this work.
In the second chapter, we present the averaging theory for studying the periodic
solutions of di¤erential systems.
In the third chapter, we study the zero-Hopf bifurcation of a Chen�Wang di¤erential
system in R3.
In the last chapter, we study the zero-Hopf bifurcations of a Lorenz-Haken di¤eren-
tial system in R4.
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1

Preliminaries

In this chapter, we present some preliminary concepts, de�nitions, and results that
we shall require throughout this work.

1.1 First order di¤erential equations

De�nition 1.1.1 A �rst order di¤erential equations is any di¤erential equation of
the form

_x = f(t; x)

where f is a continuous function on I � U with values in Rn; I � R being an open
interval and U being an open of Rn.

1.2 Polynomial di¤erential system in the plane

De�nition 1.2.1 Consider a di¤erential system of the form�
_x = P (x; y)
_y = Q(x; y)

(1.1)

where P and Q are polynomials in the variables x and y with real coe¢ cients, system
(1.1) is called a planar polynomial di¤erential system. We say that system (1.1) has
degree d if d = max (degP; degQ).

2



Chapter 1. Preliminaries

1.3 Dynamical systems

De�nition 1.3.1 A dynamical system on Rn is a map ' : R� Rn ! Rn such that

(1) ' (:; x) : Rn ! Rn is continuous,
(2) ' (t; :) : R! Rn is continuous,
(3) ' (0; x) = x,
(4) ' (t+ s; x) = ' (t; ' (s; x)) 8t; s 2 R;8x 2 Rn.

1.4 Autonomous di¤erential system

De�nition 1.4.1 A di¤erential system in which the independent variable does not
appear explicitly, i.e. a system of the form

_x = f (x) ; x 2 Rn,

is an autonomous di¤erential system.

1.5 Critical point and hyperbolic critical point

De�nition 1.5.1 A point x0 2 Rn is called a critical point, equilibrium point, sin-
gular point or �xed point of the nonlinear system

_x = f(x); x 2 Rn, (1.2)

if f(x0) = 0:

De�nition 1.5.2 Let x0 be a critical point of (1.2). Consider the linear system

_x = Ax with A = Df (x0)

A is called the linearization of (1.2) at x0, a critical point x0 is called a hyperbolic
critical point of (1.2) if none of the eigenvalues of the matrix A have zero real part.

1.6 Degenerate and nondegenerate critical points

De�nition 1.6.1 A critical point of the system (1.2) at which A = Df (x0) has no
zero eigenvalues is called a nondegenerate critical point of the system, otherwise, it
is called a degenerate critical point of the system.

3



Chapter 1. Preliminaries

1.7 Stability of the solution and its asymptotic
stability

De�nition 1.7.1 Consider the non autonomous di¤erential system

dx

dt
= f(t; x) ; x 2 Rn; t 2 R (1.3)

We assume that f(t; x) satis�es the conditions of the theorem of existence and
uniqueness of solutions. A solution �(t) of the system (1.3) such that �(t0) = �0 is
called stable in the sense of Lyapunov if :
8" > 0 ; 9 � > 0 such that for any solution x(t) whose initial value x(t0) satis�es:

kx(t0)� �0k < � ) kx(t)� �(t)k < ";8t � t0:

If in addition : lim
t!+1

kx(t)� �(t)k = 0, then the solution �(t) is asymptotically

stable.

1.8 Flow of the nonlinear di¤erential system

De�nition 1.8.1 Consider the nonlinear di¤erential system

_x = f(x); (1.4)

and the initial value problem

_x = f(x); with x(0) = x0,

with x 2 Rn, E an open subset of Rn and f 2 C1 (E). For x0 2 E and � (t; x0) the
solution of the initial value problem, the set of mappings �t de�ned by

�t (x0) = � (t; x0) ;

is called the �ow of the di¤erential system (1.4) or the �ow de�ned by the di¤erential
system (1.4).

1.9 Flow of the linear di¤erential system

De�nition 1.9.1 Consider the linear di¤erential system

_x = Ax (1.5)

and the initial value problem

_x = Ax; x(0) = x0 with x 2 Rn; (1.6)

4



Chapter 1. Preliminaries

where A is a constant matrix (n� n), the solution of the problem (1.6) is x(t) =
eAtx0, the set of mappings eAt : Rn ! Rn can be considered as describing the
movement of points x0 2 Rn along the trajectories of (1.5). This set of mappings is
called the �ow of the linear system (1.5).

1.10 Phase plane and phase portrait

De�nition 1.10.1 Consider the planar system�
_x = P (x; y) ;
_y = Q (x; y) ;

(1.7)

a phase portrait is the set of trajectories in phase space. In particular, for autonom-
ous systems of di¤erential equations in two variables. The solutions (x (t) ; y (t))
of the system (1.7) represent curves called orbits in the plane (xoy) . The critical
points of this system are constant solutions and the complete �gure of the orbits of
this system as well as these critical points represent the phase portrait and the plane
(xoy) is the phase plane..

1.11 Stability conditions for the linear
di¤erential system

Consider the linear di¤erential system x
0
= Ax; where x 2 Rn and A is an (n� n)-

square matrix with constant real coe¢ cients.

De�nition 1.11.1 If all eigenvalues of matrix A have strictly negative real parts,
then all solutions of the system x

0
= Ax tend to 0 as t tends to +1 and the origin

is a stable equilibrium point.
If the matrix A has at least one eigenvalue with a positive real part, the origin is an
unstable equilibrium point.
If the matrix A is diagonalizable and all its eigenvalues have negative or zero real
parts, then the origin is a stable equilibrium point.

1.12 Periodic solution

De�nition 1.12.1 Any solution 't (x) of the non-linear di¤erential system (1.2) is
periodic if there exists a number T > 0 such that

' (t+ T; x) = ' (t; x) for all t 2 R:

The smallest positive real number T > 0 satisfying the above formula is called the
period.

5



Chapter 1. Preliminaries

1.13 Limit cycle

De�nition 1.13.1 A limit cycle of a di¤erential system is a periodic orbit isolated
in the set of all periodic orbits of the system.

1.14 Gradient and hamiltonian systems

De�nition 1.14.1 Let E be an open subset of R2n and let H 2 C2 (E) where H =
H (x; y) with x; y 2 Rn:
A system of the form 8><>:

_x =
@H

@y
;

_y = �@H
@x
;

where

@H

@x
=

�
@H

@x1
; :::::;

@H

@xn

�T
;

@H

@y
=

�
@H

@y1
; :::::;

@H

@yn

�T
;

is called a Hamiltonian system with n degrees of freedom on E.

De�nition 1.14.2 Let E be an open subset of Rn and let V 2 C2 (E). A system of
the form

_x = � gradV (x) ;
where

gradV (x) =

�
@V

@x1
; :::::;

@V

@xn

�T
;

is called a gradient system on E:

1.15 Classi�cation of critical points of linear
systems

Consider the linear system of the form�
_x = ax+ by
_y = cx+ dy

; with A =
�
a b
c d

�
,

6



Chapter 1. Preliminaries

We assume det A 6= 0; The origin is the only critical point of this linear system.
The eigenvalues of A are given by the characteristic equation

det (A� �I) = (�� �1) (�� �2) ;

Case 1. Real eigenvalues
If A has two negative eigenvalues �1,�2 with �1 6= �2. The origin is stable

improper node. (see Figure 1:1)

Fig 1:1: Phase portrait with a stable improper node.

If A has two positive eigenvalues �1,�2 with �1 6= �2. The origin is unstable
improper node. (see Figure 1:2:)

Fig 1:2. Phase portrait with an unstable improper node

7



Chapter 1. Preliminaries

If A has two real eigenvalues of opposite sign �1; �2 with �1 6= �2. The origin is
saddle point that is always unstable. ( See Figure 1:3: )

Fig 1:3. Phase portrait with a saddle point

If A has repeated eigenvalues �1 = �2 = �. Two cases are possible
(a) A is diagonalizable. The origin is proper node: stable if � < 0 and unstable

if � > 0. ( See Figure 1:4: and 1:5 )

Fig 1:4. Phase portrait with a stable proper node.

8



Chapter 1. Preliminaries

Fig 1:5. Phase portrait with an unstable proper node.

(b) A is non-diagonalizable. The origin is degenerate node: stable if � < 0 and
unstable if � > 0. ( See Figure 1:6: and 1:7 )

Fig 1:6. Phase portrait with a stable degenerate node.

9



Chapter 1. Preliminaries

Fig 1:7. Phase portrait with an unstable degenerate
node.

Case 2. Complex eigenvalues
(a) If A has a pair of complex conjugate eigenvalues with nonzero real part �1 =
�+ i� and �2 = �� i�. The origin is degenerate node : stable if � < 0 and unstable
if � > 0. ( See Figure 1:8: and 1:9 ).

Fig 1:8. Phase portrait with a stable spiral point.

10



Chapter 1. Preliminaries

Fig 1:9. Phase portrait with an unstable spiral point

(b) If A has a pair of pure imaginary complex conjugate eigenvalues �1 = �i�. The
origin is center. ( See Figure 1:10 ).

Fig 1:10. Phase portrait with a center.

1.16 First integral of the di¤erential system

De�nition 1.16.1 We consider the autonomous di¤erential system

_x = f (x) ; x 2 Rn

11



Chapter 1. Preliminaries

where f : U ! Rn is C2; x 2 U is an open subset of Rn.
Let F : U ! R be a non-constant function of class C1 such that

rF (x) � f(x) = 0;

where

rF (x) =
�
@F (x)

@x1
; :::;

@F (x)

@xn

�
:

Then F is called a �rst integral of the di¤erential system _x = f (x), because F is
constant on the solutions this system.

1.17 Roots of a cubic polynomial

We recall that the discriminant � of the polynomial

ax3 + bx2 + cx+ d

is
� = 18abcd� 4b3d+ b2c2 � 4ac3 � 27a2d2:

It is known that
�If � > 0, then the equation has three distinct real roots.
�If � = 0, then the equation has a root of multiplicity 2 and all its roots are real.
�If � < 0, then the equation has one real root and two non�real complex conjugate
roots.
For more details see [1].

12
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2

The averaging theory

We also present a result from the averaging theory that we shall need for proving
theorem 3.1.1 in the chapter 3 and theorem 4.1.1 in the chapter 4, for a general
introduction to the averaging theory see the book of Sanders, Verhulst and Murdock
[19].

2.1 The averaging theory of �rst order

We consider the initial value problems

_x = "F1 (t; x) + "
2F (t; x; ") ; x (0) = x0; (2.1)

and
_y = "g (y) ; y (0) = x0; (2.2)

with x; y and x0 in some open subset of Rn; t 2 [0;1), " 2 (0; "0]. We assume that
F1 and F2 are periodic of period T in the variable t, and we set

g (y) =
1

T

TZ
0

F1 (t; y) dt: (2.3)

We will also use the notation Dxg for all the �rst derivatives of g, and Dxxg for all
the second derivatives of g.
For a proof of the next result, see [23].

Theorem 2.1.1 Assume that F1, Dx F1 ,Dxx F1and Dx F2are continuous and
bounded by a constant independent of " in [0;1)�
� (0; "0], and that y(t) 2 
 for

13



Chapter 2. The averaging theory

t 2
�
0;
1

"

�
. Then, the following statements hold:

1: For t 2
�
0;
1

"

�
, we have x(t)� y(t) = O(") as "! 0.

2: If p 6= 0 is a singular point of system (2.2) such that

detDyg(p) 6= 0; (2.4)

then there exists a periodic solution x (t; ") of period T for system (2.1) which is
close to p and such that x (0; ")� p = O (") as "! 0.
3: The stability of the periodic solution x (t; ") is given by the stability of the singular
point.

Example 2.1.1 Consider the di¤erential system�
_x = y;
_y = �x+ " (3x+ 7y � 4x2y + 5xy2 + x4 + y4) : (2.5)

We write the system (2.5) in the polar coordinates (r; �) de�ned by x = r cos �,
y = r sin �, and we obtain the di¤erential system8>><>>:
_r = �r sin(�)(�2r3 cos(�)4 � 3 cos(�)� 5r2 cos(�)� r3 + 2r3 cos(�)2 + 5 cos(�)3r2

�7 sin(�) + 4r2 cos(�)2 sin(�))";
_� = �1 + (7 cos(�) sin(�)� 4r2 cos(�)3 sin(�) + 5r2 cos(�)2 + 2r3 cos(�)5 + 3 cos(�)2

�5 cos(�)4r2 + cos(�)r3 � 2 cos(�)3r3)";

or equivalently

dr

d�
= r sin(�)(�2r3 cos(�)4 � 3 cos(�)� 5r2 cos(�)� r3 + 2r3 cos(�)2 + 5 cos(�)3r2

�7 sin(�) + 4r2 cos(�)2 sin(�))"+O("2):

We compute the averaged function and we get

f(r) =
1

2�

R 2�
0
(r sin(�)(�2r3 cos(�)4 � 3 cos(�)� 5r2 cos(�)� r3 + 2r3 cos(�)2

+5 cos(�)3r2 � 7 sin(�) + 4r2 cos(�)2 sin(�))d�

=
r (�7 + r2)

2
:

The unique positive root of f(r) is r =
p
7. Since

�
df(r)

dr

�
(
p
7) = 7, by statement

2 of Theorem 2.1.1, it follows that system (2.5) has for j"j 6= 0 su¢ ciently small a
limit cycle bifurcating from the periodic orbit of radius

p
7 of the unperturbed system

(2.5) with " = 0. Moreover since
�
df(r)

dr

�
(
p
7) = 7 > 0, by statement 3 of Theorem

2.1.1, this limit cycle is unstable. ( See Figure 2:1: )
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Chapter 2. The averaging theory

Fig 2:1. The limit cycle for the di¤erential system (2.5) with
" = 0:001.
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On the zero-Hopf bifurcation of a Chen�Wang
di¤erential system

The objective of this chapter is to show that Chen�Wang di¤erential system

_x = y;
_y = z;
_z = �y � x2 � xz + 3y2 + a;

exhibits two small-amplitude periodic solutions for a > 0 su¢ ciently small that
bifurcate from a zero-Hopf equilibrium point localized at the origin of coordinates
when a = 0.

3.1 Introduction and statement of the main
result

In the qualitative theory of di¤erential equations, it is important to know whether
a given di¤erential system is chaotic or not. One might think that it is not possible
to generate a chaotic system without equilibrium points. The answer to this ques-
tion was given by Chen and Wang [24] where the authors introduce the following
polynomial di¤erential system in R3

_x = y;
_y = z;
_z = �y � x2 � xz + 3y2 + a;

(3.1)

where a 2 R is a parameter. They observe that when a > 0 system (3.1) has two
equilibria (�

p
a; 0; 0), when a = 0 the two equilibria collide at the origin (0; 0; 0)

16
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and for a < 0 system (3.1) has no equilibria but still generates a chaotic attractor,
see for more details again [24]. The Chen�Wang [24] di¤erential system is relevant,
because it seems that it is the �rst example of a di¤erential system in R3 which
exhibits chaotic motion and has no equilibria, as the authors of claimed.
The objective of this work is to study the zero-Hopf bifurcation which exhibits

the polynomial di¤erential system (3.1). The main tool up to now for studying
a zero-Hopf bifurcation is to pass the system to the normal form of a zero-Hopf
bifurcation, later on in this introduction we provide references about this. Our
analysis of the zero-Hopf bifurcation is di¤erent; we study them directly using the
averaging theory, see the chapter 2.
The main objective of this work is to show that system (3.1) exhibits two small

amplitude periodic solutions for a > 0 su¢ ciently small that bifurcate from a zero-
Hopf equilibrium point localized at the origin of coordinates when a = 0. See [15].
We recall that an equilibrium point is a zero-Hopf equilibrium of a 3-dimensional

autonomous di¤erential system, if it has a zero real eigenvalue and a pair of purely
imaginary eigenvalues. We know that generically a zero-Hopf bifurcation is a two
parameter unfolding (or family) of a 3-dimensional autonomous di¤erential system
with a zero-Hopf equilibrium. The unfolding can exhibit di¤erent topological type of
dynamics in the small neighborhood of this isolated equilibrium as the two paramet-
ers vary in a small neighborhood of the origin. This theory of zeroHopf bifurcation
has been analyzed by Guckenheimer, Han, Holmes, Kuznetsov, Marsden, and Sch-
eurle in [9, 10, 12, 13, 20]. In particular, they show that some complicated invariant
sets of the unfolding could bifurcate from the isolated zero-Hopf equilibrium under
convenient conditions, showing that in some cases the zero-Hopf bifurcation could
imply a local birth of �chaos�, see for instance the articles [2, 3, 5, 7, 20] of Baldomá
and Seara, Broer and Vegter, Champneys and Kirk, Scheurle, and Marsden.
Note that the di¤erential system (3.1) only depends on one parameter so it

cannot exhibit a complete unfolding of a zero-Hopf bifurcation. For studying the
zero-Hopf bifurcation of system (3.1), we shall use the averaging theory in a similar
way at it was used in [6] by Castellanos, Llibre and Quilantán.
In the next result, we characterize when the equilibrium points of system (3.1)

are zero-Hopf equilibria.

Proposition 3.1.1 The di¤erential system (3.1) has a unique zero-Hopf equilibrium
localized at the origin of coordinates when a = 0. The main result of this paper
characterizes the Hopf bifurcation of system (3.1). For a precise de�nition of a
classical Hopf bifurcation in R3 when a pair of complex conjugate eigenvalues cross
the imaginary axis and the third real eigenvalue is not zero, see for instance [16].

Theorem 3.1.1 The following statements hold for the di¤erential system (3.1)
(a) This system has no classical Hopf bifurcations.
(b) This system has a zero-Hopf bifurcation at the equilibrium point localized at the

17
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origin of coordinates when a = 0 producing two small periodic solutions for a > 0
su¢ ciently small of the form

x (t) = �
p
a+O (a) ;

y (t) = O (t) ;
z (t) = O (a) :

Both periodic solutions have two invariant manifolds, one stable and one unstable,
each of them formed by two cylinders. See Figure 3:1: for the zero Hopf periodic

solution with initial conditions near (
p
a; 0; 0) with a =

1

10; 000
. The other Hopf

periodic orbit is symmetric of this under the symmetry (x; y; z; t)! (�x; y;�z;�t)
which leaves the di¤erential system (3.1) invariant.

Fig 3:1. The Hopf periodic orbit for with initial conditions near

(
p
a; 0; 0) for a =

1

10; 000

In this section, we prove Proposition 3.1.1 and Theorem 3.1.1.

3.2 Zero-Hopf bifurcation

Proof of Proposition 3.1.1. System (3.1) has two equilibrium points e� =
(�
p
a; 0; 0)when a > 0, which collide at the origin when a = 0. The proof is
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made computing directly the eigenvalues at each equilibrium point. Note that the
characteristic polynomial of the linear part of system (3.1) at the equilibrium point
e� is

p (�) = �3 �
p
a�2 + �� 2

p
a:

As p (�) is a polynomial of degree 3, it has either one, two (then one has multiplicity
2), or three real zeros.
Using the discriminant of p (�), it follows that p (�) has a unique real root, see [1].
Imposing the condition

p (�) = (�� �)
�
�2 � "� i�

�
(�� "+ i�) ;

with �; "; � 2 R and � > 0, we obtain a system of three equations that correspond
to the coe¢ cients of the terms of degree 0, 1 and 2 in � of the polynomial

p (�) = (�� �) (�� "� i) (�� "+ i�) :

This system has only two solutions in the variables (a; �; �) , which are 
1� 24"2 + 32"4 �

p
1� 32"2 + 8"2

p
1� 32"2

8"2
;

p
3� 2"2 �

p
1� 32"2p

2
;

�2"�

vuut
�
�8�4 + 2

�
6� 4�2 � 2

p
1� 32�2

�
"2 � 1

2
+

p
1� 32"2
2

"2

2

1CCCCCCA ;
= (4"2 +O ("4) ; 1 +O ("2) ;�4"+O ("3)) ;

and  
1� 24"2 + 32"4 +

p
1� 32"2 � 8"2

p
1� 32"2

8"2
;

p
3� 2"2 �

p
1� 32"2p

2
;

�2"�

vuuuuut��8"
4 + 2

�
6� 4"2 + 2

p
1� 32"2

�
"2 � 1

2
�
p
1� 32"2
2

"2
2

1CCCCCCA ;

=

�
1

4"2
+O (1) ;

p
2 +O ("2) ;� 1

2"
+O (")

�
;

Clearly, at " = 0, only the �rst solution is well de�ned and gives (a; �; �) = (0; 1; 0).
Hence, there is a unique zero-Hopf equilibrium point when a = 0 at the origin of
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coordinates with eigenvalues 0 and �i. This completes the proof of Proposition
3.1.1.
Proof of Theorem 3.1.1. It was proven in Proposition 3.1.1 that when a = 0
the origin is zero-Hopf equilibrium point. We want to study if from this equilibrium
it bifurcates some periodic orbit moving the parameter a of the system. We shall
use the averaging theory of �rst order described in chapter 2 (see Theorem 2.1.1)
for doing this study. But for applying this theory, there are three main steps that
we must solve in order that the averaging theory can be applied for studying the
periodic solutions of a di¤erential system.
Step 1 Doing convenient changes of variables we must write the di¤erential system
(3.1) as a periodic di¤erential system in the independent variable of the system, and
the system must depend on a small parameter as it appears in the normal form (2.1)
for applying the averaging theory. To �nd these changes of variables sometimes is
the more di¢ cult step.
Step 2 We must compute explicitly the integral (2.2) related with the periodic dif-
ferential system in order to reduce the problem of �nding periodic solutions to a
problem of �nding the zeros of a function g(y), see (2.2).
Step 3 We must compute explicitly the zeros of the mentioned function, in order to
obtain periodic solutions of the initial di¤erential system (3.1).
In order to �nd the changes of variables for doing the step 1 and write our di¤eren-
tial system (3.1) in the normal form for applying the averaging theory, �rst we write
the linear part at the origin of the di¤erential system (3.1) when a = 0 into its real
Jordan normal form, i.e., into the form0@ 0 �1 0

1 0 0
0 0 0

1A
To do this, we apply the linear change of variables

(x; y; z)! (u; v; w) ;where x = �u+ w; y = v; z = u:
In the new variables (u; v; w), the di¤erential system (3.1) becomes

_u = a� v + uw + 3v2 � w2;
_v = u;
_w = a+ uw + 3v2 � w2:

(3.2)

Now,we write the di¤erential system (3.2) in cylindrical coordinates(r; �; w) doing
the change of variable

u = r cos �; v = r sin �; w = w;

and system (3.2) becomes

_r = cos �
�
a� w2 + rw cos � + 3r2 sin2 �

�
;

_� = 1 +
1

r
(w2 � a) sin � � w cos � sin � � 3r sin3 �;

_w = a� w2 + rw cos � + 3r2 sin2 �:
(3.3)
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Now, we do a rescaling of the variables through the change of coordinates

(r; �; w)! (R; �;W ) ;

where r =
p
a

2
R;w =

p
a

2
W:

After this, rescaling system (3.3) becomes

_R =

p
a

2
cos �

�
4� w2 +RW cos � + 3R2 sin2 �

�
;

_� = 1�
p
a

2R
sin �

�
4�W 2 +RW cos � + 3R2 sin2 �

�
;

_W =

p
a

2

�
4�W 2 +RW cos � + 3R2 sin2 �

�
:

(3.4)

This system can be written as

dR

d�
=

p
a

2
F11 (�; R;W ) +O (a) ;

dW

d�
=

p
a

2
F12 (�;R;W ) +O (a) ;

(3.5)

where
F11 (�; R;W ) = cos �

�
4�W 2 +RW cos � + 3R2 sin2 �

�
;

F12 (�; R;W ) =
�
4�W 2 +RW cos � + 3R2 sin2 �

�
:

Using the notation of the averaging theory described in chapter 2, we have that if
we take t = �; T = 2�; " =

p
a; x = (R;W )T and

F1 (t; x) = F1 (�;R;W ) =

�
F11 (�;R;W )
F12 (�;RW )

�
;

"2F2 (t; x) = O (a) ;

it is immediate to check that the di¤erential system (3.5) is written in the normal
form (2.1) for applying the averaging theory and that it satis�es the assumptions of
Theorem 2:1:1. This completes the step 1. Now, we compute the integral in (2.3)
with y = (R;W )T , and denoting

g (y) = g (R;W ) =

�
g11 (R;W )
g12 (R;W )

�
;

we obtain
g11 (R;W ) =

1

4
RW;

g12 (R;W ) =
1

4
(8 + 3R2 � 2W 2) ;
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so the step 2 is done. The system g11 (R;W ) = g12 (R;W ) = 0 has the unique real
solutions (W;R) = (�2; 0) : The jacobian (2.4) is�������

1

4
W

1

4
R

3

2
R �W

������� = �
1

8

�
3R2 + 2W 2

�
;

and evaluated at the solutions (R;W ) = (0;�2) takes the value �1 6= 0. Then,
by Theorem 2.1.1, it follows that for any a > 0 su¢ ciently small system (3.4) has
a periodic solution x(t; ") = (R(�; a);W (�; a)) such that (R(0; a);W (0; a)) tends to
(0;�2) when a tends to zero. We know that the eigenvalues of the Jacobian matrix
at the solution (0;�2) are 2;�1=2 and the eigenvalues of the Jacobian matrix at the
solution (0; 2) are �2; 1=2. This shows that both periodic orbits are unstable having
a stable manifold and an unstable manifold both formed by two cylinders. Going
back to the di¤erential system (3.3), we get that such a system for a > 0 su¢ ciently
small has two periodic solutions of period approximately 2� of the form

r (�) = O (a) ;
w (�) = �

p
a+O (a) ;

these two periodic solutions become for the di¤erential system (3.2) into two periodic
solutions of period also close to 2� of the form

u (t) = O (a) ;
v (t) = O (a) ;
w (t) = �

p
a+O (a) ;

for a > 0 su¢ ciently small. Finally, we get for the di¤erential system (3.1) the two
periodic solutions

x (t) = �
p
a+O (a) ;

y (t) = O (a) ;
z (t) = O (a) ;

of period near 2� when a > 0 is su¢ ciently small. Clearly, these periodic orbits tend
to the origin of coordinates when a tends to zero. Therefore, they are small amp-
litude periodic solutions starting at the zeroHopf equilibrium point. This concludes
the proof of theorem 3.1.1.
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Four-dimensional bifurcation for a Lorenz-Haken
system

In this chapter, we study the periodic orbits which bifurcate from a zero-Hopf equi-
librium point that a Lorenz-Haken system in R4 can exhibit.

4.1 Introduction and statement of the main
results

The Lorenz�Haken equation named after the �uid dynamist Lorenz and laser theorist
Haken [11] describe the dynamics of a homogeneously broadened gain medium in
an unidirectional ring cavity. In the notation given in the Reference [?], the Lorenz-
Haken equations is given by

_x = �� (x� y) + iqx jxj2 ;
_y = � (1� i�) y + (r � z)x;
_z = �bz +Re (xy) ;

(4.1)

where x, y and z are complex variables, and �,b, q, r, � are the real parameters. In
2019, Hayder Natiq [17] derived a new 4D chaotic laser system with three equilibrium
points from (4.1), since both x and z can be chosen to be real and y a complex
variable.
In this work, we study a four-dimensional system of di¤erential equations which

is a generalization of the system introduced in [17]. We want to study the periodic
orbits of the Lorenz-Haken systems of R4 with �ve parameters, in which bifurcate
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Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

in the zero-Hopf bifurcations of the singular points given by

_x = a (y � x) ;
_y = �cy � dz + (e� w)x;
_z = dy � cz;
_w = �bw + xy;

(4.2)

where x, y, z, we are state variables and a, b, c, d and e are real parameters. See
[18].
In the �rst instance we are going to compute the equilibrium points of Lorenz�

Haken system (4.2).

Proposition 4.1.1 Let � =
(ec� c2 � d2)

c
and c 6= 0. The following statements

are true :
(1) If � � 0 and b 6= 0, system (4.2) has an unique equilibrium point

p0 6= (0; 0; 0; 0):

(2) If � > 0 and b 6= 0, we have two equilibrium points

p� =
 
�
p
b�;�

p
b�;�d

p
b�

c
;�

!
:

(3) If b = 0 and � 6= 0 we has a straight line of equilibria

p = (0; 0; 0;�):

Proposition 4.1.1 follows easily by direct computations.
We observe that the two equilibria p� tends to the equilibrium point p when

b ! 0. In short, the equilibrium point of system (4.2) can be p+, p�, p and the
origin. Additionally, the system (4.2) has invariance under the coordinate transform-
ation (x; y; z; w) ! (�x;�y;�z; w). Consequently, the system (4.2) has rotational
symmetry around the w-axis.
Due to that, in what follows we consider the only equilibrium p+ in order to verify

its possibility of being a zero�Hopf equilibrium for some values of the parameter,
and clearly the same will occur for the other equilibrium p�.
In the next result we characterize when the equilibrium p, p� and the origin are

zero�Hopf equilibrium of the system (4.2).

Proposition 4.1.2 For the hyperchaotic system (4.2), the following statements hold:

(i) p0 is a zero-Hopf equilibrium if only if a = �2c, b = 0, d = �
p
c2 + !2p
3

and

e =
4c2 + !2

3c
.

(ii) p is a zero-Hopf equilibrium if only if a = �2c, b = 0 and 3d2 � c2 > 0,

(iii) p+ and p� are zero-Hopf equilibrium if only if a = �2c, b = 0, d = �
p
c2 + !2p
3

.

24



Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

In the rest of this section, we will study the zero-Hopf bifurcation and periodic
solutions of the hyperchaotic system (4.2) at all the equilibrium points.

Theorem 4.1.1 For the hyperchaotic system (4.2). The following statements hold.
(i) Let

(a; b; d; e) =

 
�2c+ "a1; "b1;�

p
c2 + !2

3
+ "d1;

4c2 + !2

3c
+ "e1

!
where ! > 0 and " > 0 are su¢ ciently small parameters. If a1 6= 0, b1 6= 0,
c 6= 0, � = 3ce1 + 2

p
3d1
p
c2 + !2 6= 0 and �1 = 3a1!2 � 2c� 6= 0, then for " > 0

su¢ ciently small, the hyperchaotic system (4.2) has a zero-Hopf bifurcation at the
equilibrium point located at p0, and at most four periodic orbits can bifurcate from
this equilibrium when " = 0. Moreover, the periodic solutions are stable if a1 > 0,
b1 > 0, 16� + 3b1!2 < 0 and 4�1 + 3b1!

2 < 0.
(ii) Let

(a; b) = (�2c+ "a1; "b1);
where ! > 0 and " > 0 are su¢ ciently small parameter. If a1 6= 0, b1 6= 0, c 6= 0
and 3d2 � c2 > 0, then for " > 0 su¢ ciently small, the hyperchaotic system (4.2)
has a zero-Hopf bifurcation at the equilibrium point located at p, and at most four
periodic orbits can bifurcate from this equilibrium when " = 0. Moreover, the periodic
solutions are unstable if a1 < 0, b1 (ec� c2 � d2) > 0 and c > 0.
(iii) Let

(a; b; d) =

 
�2c+ "a1; "b1;�

p
c2 + !2p
3

+ "d1

!
;

where ! > 0 and " > 0 are su¢ ciently small parameter. If c 6= 0, a1 6= 0, and
� = b1(4c

2 � 3ce + 3!2) < 0, then for " > 0 su¢ ciently small, the hyperchaotic
system (4.2) has a zero-Hopf bifurcation at the equilibrium point located at p�, and
at most two periodic orbits can bifurcate from this equilibrium when " = 0. Moreover,
the periodic solutions are unstable if a1 > 0 and � < 0.

4.2 Proof of results

In this section we will provide the proofs of Proposition 4.1.2 and Theorem 4.1.1.
Proof of Proposition 4.1.2. The characteristic polynomial P (�) of the linear
part of the di¤erential systems (4.2) at the equilibrium point p0 = (0; 0; 0; 0) is

P (�) = �4 + A�3 +B�2 + C�+D; (4.3)

where
A = a+ b+ 2c;
B = 2bc+ c2 + d2 + a(b+ 2c� e);
C = b(c2 + d2) + a(2bc+ c2 + d2 � (b� c)e);
D = ab(c2 + d2 � ce):
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The equilibrium point p0 is a zero hopf equilibrium if and only if P (�) = �
2(�2+!2)

with ! > 0, the parameter must be satis�ed, a = �2c, b = 0, d = �
p
c2 + !2p
3

,

and e =
4c2 + !2

3c
,

(ii) The characteristic polynomial P (�) of the linear part of the di¤erential systems
(4.2) at the equilibrium point p is

P (�) = �4 + (a+ 2c)�3 +

�
c2 + d2 + a

�
c� d

2

c

��
�2 (4.4)

The equilibrium point p is a zero hopf equilibrium if and only if P (�) = �2(�2+!2)
with ! > 0, the parameter must be satis�ed,

a = �2c; b = 0;

in this case, Eq. (4.4) has roots �1;2 = 0, �3;4 = �
p
3d2 � c2i.

(iii) The Jacobian matrix of systems (4.2) evaluated at p+ is0BBBBBB@

�a a 0 0

c+
d2

c
�c �d �

p
b(ce� c2 � d2)p

c
0 d �c 0p

b(ce� c2 � d2)p
c

p
b(ce� c2 � d2)p

c
0 �b

1CCCCCCA
and its characteristic polynomial is

(3:3) P (�) = �4 + A�3 +B�2 + C�+D; (4.5)

where
A = a+ b+ 2c;

B = c2 + d2 + a(b+ c� d
2

c
) + b

�
c� d2

c
+ e
�
;

C = b

�
ce+ a

�
�c� 3d

2

c
+ 2e

��
;

D = �2ab(c2 + d2 � ce):

The equilibrium point p+ is a zero hopf equilibrium if and only if P (�) = �
2(�2+!2)

with ! > 0, the parameter must be satis�ed,

a = �2c; b = 0; d = �
p
c2 + !2p
3

:

This completes the Proof of Proposition 4.1.2.
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Proof. of statement (i) of Theorem 4.1.1. Let

(a; b; d; e) =

 
�2c+ "a1; "b1;�

p
c2 + !2

3
+ "d1;

4c2 + !2

3c
+ "e1

!
where ! > 0 and " > 0 are su¢ ciently small parameters. Then, the di¤erential
systems (4.2) becomes

_x = 2c(x� y)� a1(x� y)";

_y = (e1x� d1z)"�
�4c2x+ 3c!x+ 3c2y � x!2 �

p
3cz
p
c2 + !2

3c
;

_z = d1y"+
1

3
(�3cz �

p
3y
p
c2 + !2);

_w = xy � b1w":

(4.6)

Performing the rescaling of variables

(x; y; z; w) 7! ("x; "y; "z; "w)

system (4.6) can be written as

_x = 2c(x� y)� a1(x� y)";

_y = (e1x� !x� d1z)"�
�4c2x+ 3c2y � x!2 �

p
3cz
p
c2 + !2

3c
;

_z = d1y"+
1

3
(�3cz �

p
3y
p
c2 + !2);

_w = (�b1w + xy)":

(4.7)

Now we shall write the linear part at the origin of the system (4.7) when " = 0 into
its real Jordan normal form, i.e. as0BB@

0 �! 0 0
! 0 0 0
0 0 0 0
0 0 0 0

1CCA
For doing that we consider the linear change (x; y; z; w) 7! (X; Y; Z;W )

x =
2c(
p
3cY ! +

p
3X!2 � 3cZ

p
c2 + !2

3!2
p
c2 + !2

;

y =

p
3cX!2 +

p
3Y !3 + 2c2

�p
3Y ! � 3Z

p
c2 + !2

�
3!2

p
c2 + !2

;

z =
1

3

 
X +

c
�
�2Y ! + 2

p
3Z
p
c2 + !

�
!2

!
;

w = W:
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By using the new variables (X; Y; Z;W ), the system (4.7) can be written as follows

_X = �Y ! + 1
3
"

�
a1

�
�X + Y !

c

�
+

d1

!2
p
c2 + !2

�
�6c2

p
c2 + !Z

+
p
3!(2c2Y + cX! + Y !2))

�
;

_Y = X! +
"

3!3
p
c2 + !2

�
6
p
3c4 (�e1 +W )Z � 6c2 (e1 �W )!(

p
3Z!

�Y
p
c2 + !2)� !3

�p
3d1X! + 2a1Y

p
c2 + !2

�
+ 4c3d1(

p
3Y !

�3Z
p
c2 + !2) + c!2(2 (a1 + 3e1 � 3W )X

p
c2 + !2 + 3d1(

p
3Y !

�2Z
p
c2 + !2))

�
;

_Z =
"

18c2!2
p
c2 + !2

�
�24

p
3c5d1Z � 4

p
3a1c

2Y !3 �
p
3a1Y !

5

+c!3
�p
3a1X! + 6d1Y

p
c2 + !2

�
+ 4c3!

�p
3((a1 + 3e1

�3W )X � 6d1Z)! + ed1Y
p
c2 + !2 + 12c2 (e1 �W ) (

p
3Y !

�3Z
p
c2 + !2)

�
:

_W = "

�
�b1W +

2c

9!4 (c2 + !2)

�p
3 (cY ! + Z!2)� 3cZ

p
c2 + !2

�
p
3(cX!2 + Y !3) + 2c2

�p
3Y ! � 3Z

p
c2 + !2

���

(4.8)

Then we use the cylindrical coordinates X = r cos �, Y = r sin �, and obtain

_r =
"

3c!3
p
c2 + !2

(cr!3(
p
3cd1 � a1

p
c2 + !2 cos2 �)

+c sin �6cZ(�(2
p
3)d1

p
c2 + !2 �

p
3c (e1 �W ) (c2 + !2))

+r!(
p
3 (4c3 + 3c!2) d1 + (6c

2 (e1 �W )� 2a1!2)
p
c2!2 sin �)

+! cos �(�6c3d1Z
p
c2 + !2 + r!(2

p
3c3d1

+2c2 (a1 + 3e1 � 3W )
p
c2 + !2 + a1!

2
p
c2 + !2) sin �));

_� =
"

3cr!3
p
c2 + !2

(cr!2
p
c2 + !2 (2c (a1 + 3e1 � 3W ) "+ 3!2) cos2 �

+c" cos �(6cZ(� (2c2 + !) d1
p
c2 + !2 �

p
3c (e1 �W ) (c2 + !2))

+r!(4
p
3c3d1 + 6c

2 (e1 �W )
p
c2 + !2 � 2a1!2

p
c2 + !2) sin �);

_Z =
"

18c2!2
p
c2 + !2

(�12c3(Z2
p
3 (c2 + !2) d1 + 3c (e1 �W )

p
c2 + !2)

+
p
3cr!2 (4c2 (a1 + 3e1 � 3W ) + a1!2) cos � + r!((24c3 + 6c!2) d1

p
c2 + !2

�
p
3 (12c4 (e1 +W ) + 4a1c

2!2 + a1!
4)) sin �);

_W =
"

32!4 (c2 + !2)
((12c4Z2 + 2c2r2!2 � 3b1W!4) (c2 + !2)

+cr!(�2c3r! cos 2� � 2
p
3cZ

p
c2 + !2 (3c! cos � + (4c2 + !2) sin �)

+3c2r!2 sin 2� + r!4 sin 2�)):
(4.9)
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We take � as a new independent variable and obtain the system

dr

d�
=

"

3c!4
p
c2 + !2

(cr!3(
p
3cd1 � a1

p
c2 + !2) cos2 �

+!
p
c2 + !2 cos � (�6c3d1Z + r! (6c2 (e1 �W ) + a1!2) sin �)

+c sin �((6cz(� (2c2 + !2) d1
p
c2 + !2 �

p
3c (e1 �W ) (c2 + !2))

+r!(2c!(
p
3cd1 + a1

p
c2 + !2) cos � + ((4c3 + 3c!2)

p
3d1

+(6c2 (e1 �W )� 2a1!2)
p
c2 + !2) sin �))) +O ("2)

= "F1 (�; r; Z;W ) +O ("2) :
dZ

d�
=

"

18c2!2
p
c2 + !2

(�12c3Z(2
p
3 (c2 + !2) d1

+3c (e1 �W )
p
c2 + !2) +

p
3cr!2(4c2 (a1 + 3e1 � 3W )

+a1!
2) cos � + r!(6 (4c3 + c!2) d1

p
c2 + !2

�
p
3(12c4 (�e1 +W ) + 4a1c2!2 + a1!4)) sin �) +O ("2) ;

= "F2 (�; r; Z;W ) +O ("2) :
dW

d�
=

"

3!5 (c2 + !2)
((c2 + !2) (12c4Z2 + 2c2r2!2 � 3b1W!2)

+cr!(�2c3r! cos 2� � 2
p
3cZ

p
c2 + !2(3c! cos �

+(4c2 + !2) sin �) + 3c2r!2 sin 2� + r!4 sin 2�)) +O ("2) ;

= "F3 (�; r; Z;W ) +O ("2) :

(4.10)

Using the notation of averaging theory introduced in chapter 2, we get t = �,
T = 2�, x = (r; Z;W ) and

F (�; r; Z;W ) =

0@ F1 (�; r; Z;W )
F2 (�; r; Z;W )
F3 (�; r; Z;W )

1A ; and f (r; Z;W ) =

0@ f1 (r; Z;W )
f2 (r; Z;W )
f3 (r; Z;W )

1A :
Then we compute the integrals, i.e.

f1 (r; Z;W ) =
1

2�

R 2�
0
F1 (�; r; Z;W ) d�

=
r
�
6c2 (e1 �W )� 3a1!2 + 4

p
3cd1

p
c2 + !2

�
6!3

;

f2 (r; Z;W ) =
1

2�

R 2�
0
F1 (�; r; Z;W ) d�

= �
2cZ

�
3c (e1 �W ) + 2

p
3d1
p
c2 + !2

�
3!3

;

f3 (r; Z;W ) =
1

2�

R 2�
0
F1 (�; r; Z;W ) d�

=
12c2Z2 + 2c2r2!2 � 3b1W!4

3!5
:
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Solving the equations f1(r; Z;W ) = f2(r; Z;W ) = f3(r; Z;W ) = 0, we can get the
following �ve solutions :

s0 = (0; 0; 0);

s1;2 =

0@0;�
q
b1!4

�
3ce1 + 2

p
3d1
p
c2 + !2

�
2
p
3c5=2

; e1 +
2d1
p
c2 + !2p
3c

1A ;
s3;4 =

0@�
q
b1!2

�
6c2e1 � 3a1!2 + 4

p
3cd1

p
c2 + !2

�
2c2

; 0;

+
1

6c2
�
�3a1!2 + 4

p
3cd1

p
c2 + !2

��
:

The �rst solution s0 corresponds to the equilibrium at the origin. For other four
solutions, we get (I) For the solution s1 and s2 when c 6= 0, s1;2 are real solutions.
The Jacobian of solution s1;2 is

det

�
@f

@x
(s1)

�
= det

�
@f

@x
(s2)

�
=
2a1b1c

�
3ce1 + 2

p
3d1
p
c2 + !2

�
3!5

:

(II) For the solution s3 and s4 when c 6= 0, s3;4 are real solutions. The Jacobian of
solution s3;4 is

det

�
@f

@x
(s3)

�
= det

�
@f

@x
(s4)

�
=
a1b1

�
�6c2e1 + 3a1!2 � 4

p
3cd1

p
c2 + !2

�
3!5

:

When a1 6= 0, b1 6= 0, c 6= 0, � = 3ce1+2
p
3d1
p
c2 + !2 6= 0 and �1 = 3a1!2� 2c� 6=

0, then

det

�
@f

@x
(sj)

�
6= 0; j = 1; :::; 4:

Then according to Theorem 2.1.1, we see that the system (4.10) has one periodic
solution xj(�; ") such that xj(�; ") = sj +O("), j = 1; :::; 4. Bring the solution back
to the system , and we have one periodic solution

�j(�; ") = (Xj(�; "); Yj(�; "); Zj(�; ");Wj(�; ")) :

Then the system (4.6) has the periodic solution "�j(�; "), j = 1; :::; 4.
To determine the stability of the periodic solution "�j(�; "), j = 1; :::; 4, one needs

to calculate eigenvalues of the Jacobian matrix
@f

@x
(s2;3)

P (�) = c0�
3 + c1�

2 + c2�+ c3; (4.11)
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where c0, c1,c2 and c3 are

c0 = �1;

c1 = �
a1 + 2b1
2!

;

c2 = �
b1
�
�3a1!2 + 8c

�
3ce1 + 2

p
3d1
p
c2 + !2

��
6!4

;

c3 =
2a1b1c

�
3ce1 + 2

p
3d1
p
c2 + !2

�
3!5

:

The eigenvalues are given as follows

�1 = �
a1
2!
; �2;3 = �

3b1 �

s
b1
�
48c2e1 + 3b1!

2 + 32
p
3cd1

p
c2 + !2

�
!4

6!3
:

On the other hand the characteristic polynomial and its eigenvalues of the jacobian

matrix
@f

@x
(s3;4) are

P (s3;4) = c0�
3 + c1�

2 + c2�+ c3 (4.12)

where c0, c1, c2 and c3 are

c0 = �1;

c1 = �
a1 + 2b1
2!

;

c2 = �
b1
�
�3ce1 + 2

p
3d1
p
c2 + !2

�
3!4

;

c3 =
a1b1

�
�6c2e1 + 3a1!2 � 4

p
3cd1

p
c2 + !2

�
3!5

:

The eigenvalues are given as follows

~�1 = �
a1
!
; ~�2;3 = �

3b1!
3 �

p
3
q
b1!4

�
3 (4a1 + b1)!2 � 8c

�
3ce1 + 2

p
3d1
p
c2 + !2

��
6!3

:

We have that �1, ~�1 is real and �2;3, ~�2;3 are complex numbers if 16� + 3b1!2 < 0
and 4�1 + 3b1!

2 < 0. In this case, the periodic solution "�j(�; ") is stable if a1 > 0,
b1 > 0.
Proof. of statement (ii) of Theorem 4.1.1.
Let

(a; b) = (�2c+ "a1; "2b1);
where ! > 0 and " > 0 are su¢ ciently small parameter. Them, we translate p to
the origin the coordinates doing system (4.2) becomes (x; y; z; w) = (�x; �y; �z; �w) + p,
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then we introduce the scaling of variables (x; y; z; w) = ("x; "y; "z; "w), with these
changes of variables system (4.2) can be written as

_x = 2c (x� y)� a1 (x� y) ";

_y =
c2x+ d2x� c2y � cdz

c
� wx";

_z = dy � cz;

_w =
"b1 (c

2 + d2 � ce)
c

+ (�"b1w + xy) ";

(4.13)

After the linear change in variables (x; y; z; w) 7! (X; Y; Z;W ),

x =
(�6d2 + 2c2)X
3c2 + 9d2

� 2c
p
�c2 + 3d2Y
3c2 + 9d2

+
6c2W

3c2 � 9d2 ;

y =
(�3 d2 + c2)X
3c2 + 9d2

�
p
�c2 + 3d2Y

3c
+

6c3W

3c3 � 9cd2 ;

z =
d (3d2 � c2)X
3c (c2 + 3d2)

� 2d
p
�c2 + 3d2Y
3c2 + 9d2

+
6dc2W

3 c3 � 9cd2 ;

w = Z:

(4.14)

the linear part at the origin of system (4.13) for " = 0 can be transformed into its
real Jordan normal form,0BB@

0 �
p
3d2 � c2 0 0p

3d2 � c2 0 0 0
0 0 0 0
0 0 0 0

1CCA
Under the change in variable (4.14), the system (4.13) can be written as

_X = � 1
3c

�
cXa1 �

p
�c2 + 3d2Y a1

�
"�

p
�c2 + 3d2Y;

_Y =
1

3
(�18Zc2

p
�c2 + 3d2Y d2 � 54ZcXd4 + 36Zc3Xd2

+6Zc4
p
�c2 + 3d2Y � 54Zc3Wd2 � 18Zc5W � 6Zc5W � 6Zc5X

+2Xc5a1 + 12c
2
p
�c2 + 3d2Y a1d2 � 12Xc3d2a1 + 18Xcd4a1

�2c4
p
�c2 + 3d2Y a1 � 18

p
�c2 + 3d2Y d4a1)"= (�c2 + 3d2)(5=2)

+
p
�c2 + 3d2X;

_Z = �1
9

(9b1Zc
9 � 162b1Zc5d4 + 729b1Zcd8) "2

(c2 + 3d2)2 (�3d2 + c2) c
� 1
9
(162b1c

5ed4

�162c2Wd6
p
�c2 + 3d2Y + 2c9Y 2 � 30Xd2c2

p
�c2 + 3d2Y
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+54Xd4
p
�c2 + 3d2Y c4 + 54Xd6c2

p
�c2 + 3d2Y

+18c6
p
�c2 + 3d2Y d2W � 162c4

p
�c2 + 3d2Y d4W

�12c7Y 2d2 + 108c3Y 2d6 � 162cY 2d8 + 729b1ced8

�162Xd8
p
�c2 + 3d2Y + 4Xc8

p
�c2 + 3d2Y

+18c8
p
�c2 + 3d2YW + 162Xd4c5W � 486Xd6c3W

+54Xd2c7W � 2X2c9 � 36c9W 2 � 9b1c10 � 729b1d10

+162b1c
4d6 � 9b1c8d2 + 162b1c6d4 + 9b1c9e� 729b1c2d8

�162X2d8c+ 216X2d6c3 � 108X2d4c5 + 24X2d2c7 � 18Xc9W
�216c7W 2d2 � 324c5W 2d4)"=

�
(c2 + 3d2)

2
(�3d2 + c2)2 c

�
;

_W =
1

6
"(�5Xc5d2a1 � 12Zc4

p
�c2 + 3d2Y d2 + 3Xc3d2a1 + 9Xcd6a1

+Xc7a1 �
p
�c2 + 3d2Y c6a1 � 9

p
�c2 + 3d2Y d6a1

�3c2
p
�c2 + 3d2Y d4a1 + 5

p
�c2 + 3d2Y c4a1d2 � 12Zc7W

�4Zc7X + 4Zc6
p
�c2 + 3d2Y + 24Zc5Xd2 � 36Zc3Xd4

�36Zc5Wd2)= (c3 (c4 � 9d4)) ;

(4.15)

Performing the cylindrical change of variables

(x; y; Z;W ) 7! (r cos �; r sin �; Z;W ) (4.16)

the system (4.15) becomes

dr

d�
=
1

3
(�27r cos �a1 sin �d6 + 54 sin �c2Zr cos �d4 � 36 sin �c4Zr cos �d2

� sin �c2r cos �a1 + 54 sin �c4ZW + 6 sin �c6Zr cos � + 3 sin �c4r cos �d2a1

+9 sin �c2r cos �d4a1 � c5
p
�c2 + 3d2ra1 cos2 �

+6c3
p
�c2 + 3d2ra1d2 cos2 � � 9c

p
�c2 + 3d2rd4a1 cos2 �

+6c5Z
p
�c2 + 3d2r cos2 � � 6c5Z

p
�c2 + 3d2r � 12c3

p
�c2 + 3d2ra1d2

+2c5
p
�c2 + 3d2ra1 + 18c

p
�c2 + 3d2rd4a1)� 18c3Z

p
�c2 + 3d2rd2 cos2 �

+18c3Z
p
�c2 + 3d2rd2= (c (�9c4d2 + 27c2d4 � 27d6 + c6)) "+O ("2)

= "F1 (�; r; z; !) +O ("2) ;
dZ

d�
=
1

9

p
�c2 + 3d2(�162b1c5ed4 � 4r2 cos2 �c9 + 162r cos �d4c5W

�186r cos �d6c3W + 54r cos �d2c7W � 162c2Wd6
p
�c2 + 3d2r sin �

+54r2 cos �d4
p
�c2 + 3d2 sin �c4 � 30r2 cos �d2c2

p
�c2 + 3d2 sin �

33



Chapter 4. Four-dimensional bifurcation for a Lorenz-Haken system

+54r2 cos �d6c2
p
�c2 + 3d2 sin � � 162r2 cos �d8

p
�c2 + 3d2 sin �

+4r2 cos �c8
p
�c2 + 3d2 sin � + 18c6

p
�c2 + 3d2r sin �d2W

+36r2 cos2 �d2c7 � 108r2 cos2 �d4c5 + 108r2 cos2 �d6c3 � 18r cos �c9W
�162c4

p
�c2 + 3d2r sin �d4W + 18c8

p
�c2 + 3d2r sin �W + 729b1ced

8

�36c9W 2 � 9b1c10 � 729b1d10 + 2c9r2 + 162b1c4d6 � 9b1c8d2 + 162b1c6d4

+9b1c
9e� 729b1c2d8 � 216c7W 2d2 � 324c5W 2d4 � 12c7r2d2 � 162cr2d8

+108c3r2d6)=
�
(�9c4d4 + 27c2d4 � 27d6 + c6) c (c2 + 3d2)2

�
"+O ("2) ;

= "F2 (�; r; z; !) +O ("2) ;
dW

d�
= �1

6
(�5r cos �c5d2a1 � 12Zc4

p
�c2 + 3d2r sin �d2 + 3r cos �c3d4a1

+9r cos �cd9a1 + r cos �c
7a1 �

p
�c2 + 3d2r sin �c6a1 � 9

p
�c2 + 3d2r sin �d6a1

�3c2
p
�c2 + 3d2r sin �d4a1 + 5

p
�c2 + 3d2r sin �c4a1 � 12Zc7W � 4Zc7r cos �

+4Zc6
p
�c2 + 3d2r sin � + 24Zc5r cos �d2 � 36Zc3r cos �d4

�36Zc5Wd2)
p
�c2 + 3d2= ((c4 � 6c2d2 + 9d4) (c2 + 3d2) c3) "+O ("2) ;

= "F3 (�; r; z; !) +O ("2) ;
(4.17)

System (4.17) is written in the normal form (2.1) for applying the averaging theory
and satis�es all the assumptions of Theorem 2.1.1. Then, using the notations of the
averaging theory described in Chapte 2, we have t = �, T = 2�, x = (r; Z;W ),

F (�; r; Z;W ) =

0@ F1 (�; r; Z;W )
F2 (�; r; Z;W )
F3 (�; r; Z;W )

1A ; and f(r; z; w) =

0@ f1(r; Z;W )
f2(r; Z;W
f3(r; Z;W )

1A
Then we compute the integrals, i.e.

f1(r; Z;W ) =
1

2�

R 2�
0
F1 (�; r; Z;W ) d�

= �(�c
2a1 + 2c

2Z + 3c2Z + 3d2a1)
p
�c2 + 3d2r

2 (c4 � 6c2d2 + 9d4) ;

f2(r; Z;W ) =
1

2�

R 2�
0
F2�; r; Z;W )d�

= �1
3
(3b1c

10 + 12c9W 2 � 3b1c9e+ 3b1c8d2 � 2c7r2d2

+72c7W 2d2 � 54b1c6d4 + 108c5W 2d4 + 54b1c
5ed4

+18r2d4c5 � 54b1c4d6 � 54c3r2d6 + 243b1c2d8

�243b1ced8 + 54cr2d8 + 243b1d10)
p
�c2 + 3d2=(c(�3c8d2

�18c6d4 + 54c4d6 + 81c2d8 � 243d10 + c10));
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f3(r; Z;W ) =
1

2�

R 2�
0
F3 (�; r; Z;W ) d�

=
2
p
�c2 + 3d2c2ZW
c4 � 6c2d2 + 9d4 ;

Solving the equations f1(r; Z;W ) = f2(r; Z;W ) = f3(r; Z;W ) = 0, we can get the
following four solutions :

s1;2 =

0BB@0; 0;�
r
b1 (�c2 + ec� d2)

4c
(�3d2 + c2)

c2

1CCA ;

s3;4 =

0BB@�
r
3b1 (�c2 + ec� d2)

6d2c� 2c3 (c2 + 3d2)

d
;
1

2

a1 (�3d2 + c2)
c2

; 0

1CCA :
The solution sj, j = 1; :::; 4 exist if only if c 6= 0, d 6= 0. On the other hand, the
solutions s1;2 and s3;4 are real if only if b1 (ec� c2 � d2) > 0, c > 0 and 3d2�2c2 > 0.
For the four solutions, we get

det

�
df

dx
(s1)

�
= det

�
df

dx
(s2)

�
= �2a1cb1 (c

2 + d2 � ce)
(3d2 � c2)

5
2

;

det

�
df

dx
(s3)

�
= det

�
df

dx
(s4)

�
=
2a1cb1 (c

2 + d2 � ce)
(3d2 � c2)

5
2

:

When a1 6= 0, b1 6= 0, c 6= 0 and 3d2 � c2 > 0 then det
�
df

dx
(sj)

�
6= 0, for each

j = 1; :::; 4. Then according to Theorem 2.1.1, we see that the system (4.17) has
one periodic solution xj(�; ") such that xj(0; ") = sj +O("), for each j = 1; :::; 4.
Bring the solution back to the system (4.15), and we have one periodic solution
�j(t; ") = Xj(t; "), Yj(t; "), Zj(t; "), Wj(t; ") . Then the system (4.13) has the
periodic solution "�j(t; "), j = 1; :::; 4.
To determine the stability of the periodic solution one needs to calculate eigenvalues
of the Jacobian matrix @F (sj) =@x, j = 1; :::; 4.
The Jacobian matrices @F (s1) =@x and @F (s2) =@x have the same characteristic
equation

�3 +�1�
2 +�2�+�3
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where �1, �2 and �3 are

�1 =
a1

2
p
�c2 + 3 d2

;

�2 =
4cb1 (c

2 + d2 � ce)
c4 � 6 c2d2 + 9d4 ;

�3 =
2b1ca1 (c

2 + d2 � ce)
(3 d2 � c2)

5
2

;

The eigenvalues are given as follows

�1 =
a1

2
p
�c2 + 3d2

;

�2 = �
2
p
�cb1 (c2 + d2 � ce)
c2 � 3 d2 ;

�3 =
2
p
�cb1 (c2 + d2 � ce)
c2 � 3 d2 :

The Jacobian matrices @F (s3) =@x and @F (s4) =@x have the same characteristic
equation,

�3 + �1�
2 + �2�+ �3;

where �1, �2 and �3 are

�1 =
a1p

3 d2 � c2
;

�2 = �
2cb1 (c

2 + d2 � ce) c
(3 d2 � c2)2

;

�3 = �
2b1a1 (c

2 + d2 � ce) c
(3 d2 � c2)

5
2

;

The eigenvalues are given as follows

�̂1 = �
a1p

�c2 + 3d2
;

�̂2 = �
p
2b1 (c2 + d2 � ce) c

c2 � 3 d2 ;

�̂3 =

p
2b1 (c2 + d2 � ce) c

c2 � 3 d2

We have that �1, �̂1and �2;3 are real numbers and �̂2;3 are complex numbers. In this
case, since that a1 < 0, b1 (ec� c2 � d2) > 0 and c > 0, then this implies that the
periodic orbits "�(t; "), j 2 f1; :::; 4g are unstable.
Proof. of statement (iii) of Theorem 4.1.1.
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Let

(a; b; d) =

 
�2c+ "a1; "b1;�

p
c2 + !2p
3

+ "d1

!
;

where ! > 0 and " > 0 are su¢ ciently small parameter. Them, we translate p� to the
origin of the coordinates doing system (4.2) becomes (x; y; z; w) = (�x; �y; �z; �w) + p�,
then we introduce the scaling of variables (x; y; z; w) = ("x; "y; "z; "w), with these
changes of variables system (4.2) can be written as

_x = (x� y) (2c� a1") ;

_y =
1

3

0@�"3x�p3
s
"b1
�
�4 c2 � !2 + 2

p
c2 + !2

p
3" d1 � 3"2d12 + 3 ec

�
c

1Aw
+

�
c
p
c2 + !2

p
3� 3 c" d1

�
z

3c
+

�
3 "2d1

2 + 4 c2 + !2 � 2
p
c2 + !2

p
3"d1

�
x

3c
� cy;

_z = �cz + d1y"�
y
p
c2 + !2p
3

;

_w = �" b1w + "xy +
p
3x

3

s
"b1
�
�4 c2 � !2 + 2

p
c2 + !2

p
3"d1 � 3"2d12 + 3 ec

�
c

+

p
3

3

s
" b1

�
�4 c2 � !2 + 2

p
c2 + !2

p
3" d1 � 3 "2d12 + 3 ec

�
c

y;

(4.18)
After the linear change in variables (x; y; z; w) 7! (X; Y; Z;W ),

x =
2 c
p
3X

3
+
2c2
p
3Y

3!
� 2c2Z

!2
;

y =
c
p
3X

3
+
(!3 + 2! c2)

p
3Y

3!2
� 2c

2Z

!2
;

z =

p
c2 + !2X

3
� 2c

p
c2 + !2Y

3!
+
2c
p
c2 + !2

p
3Z

3!2
;

w = W;

(4.19)

the linear part at the origin of system (4.18) for " = 0 can be transformed into its
real Jordan normal form, 0BB@

0 �! 0 0
! 0 0 0
0 0 0 0
0 0 0 0

1CCA :
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Under the change in variable (4.19), the system (4.18) can be written as

_X = �Y ! + 1
3

 
a1

�
�X + Y !

c

�
+
�6c2d1Z +

p
3d1! (2c

2Y + cX! + Y !2)

!2
p
c2 + !2

!
;

_Y =
1

3!3
(3(�2cW + !2)X!2 + 6c2W (

p
3Z � Y !) + 6d21"2(�

p
3cZ + cY ! +X!2)

�3W!
2

p
c

q
�b1"(4c2 � 3ce+ !2 + d1(3d1"� 2

p
3
p
c2 + !2))

� "!2p
c2 + !2

(4
p
3c2d1X + c(�6d1Z +

p
3d1Y ! � 2a1X

p
c2 + !2)

+!(5
p
3d1X! + 2a1Y

p
c2 + !2)));

_Z = �2cWXp
3

+
2c2WZ

!2
+
2c2WYp
3!

+
2d21"

�
�3cZ +

p
3! (cY +X!)

�
3!2

+
"

18c2
�
6cd1 (�4cX + Y !)

p
c2 + !2 +

p
3a1 (cX � Y !) (4c2 + !2)

�
�Wp

c

vuuut�b1"
0@c2 � ce+ d1"� pc2 + !2p

3

!21A ;
_W = �b1W"+

1

3
p
c

 
2c5=2

 
X2 + Y

 
Y �

p
3Z

!

!!
+ 2c3=2XY !

+
6c7=2X

�
�
p
3Z + Y !

�
!2

+
4c9=2

!4
�
3Z2 � 2

p
3Y Z! + Y 2!2

�
(4.20)

+3cX
q
�b1"

�
4c2 � 3ce+ !2 + d1"

�
3d1"� 2

p
3
p
c2 + !2

��
+Y !

q
�b1"

�
4c2 � 3ce+ !2 + d1"

�
3d1"� 2

p
3
p
c2 + !2

��
+
4c2
�
�
p
3Z + Y !

�
!2

q
�b1"

�
4c2 � 3ce+ !2 + d1"

�
3d1"� 2

p
3
p
c2 + !2

��!
:

Performing the cylindrical change of variables,

(X; Y; Z;W ) 7! (r cos �; r sin �; Z;W )
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system (4.20) becomes

dr

d�
=

1

3cr!4
p
c2 + !2

(�a1cr2
p
c2 + !2 cos2 � + cos �(�6c3d1rZ! + (�2

p
3d1r

2!2

+!2
p
c2 + !2 (3b1W

2 + a1r
2!2) + 2c2

p
c2 + !2 (6b1W

2 + r2 (a1 � 3W )!2)
�c(4

p
3d1r

2!2 + 9b1eW
2
p
c2 + !2)) sin �) + cr(

p
3cd1r!

3 cos 2� + 6cZ(d1!
2

+
p
3cW

p
c2 + !2) sin � � 2r!

p
c2 + !2 (3c2W + a1!

2) sin2 �))"+O ("2) ;
dZ

d�
=

1

18c2r!3
(c(6

p
3b1!

2 (4c2 � 3ce+ !2) + r2!2(�24cd1
p
c2 + !2

+
p
3 (2c2 (a1 � 3W ) + a1!2))) cos � + r(36c4WZ + r!(6cd1!2

p
c2 + !2

�
p
3 (12c4W + 4a1c

2!2 + a1!
4)) sin �))"+O ("2) ;

dW

d�
=

1

3cr!5
(12c5rZ2 + cr (2c2r2 � 3b1W )!4 + c2r2!(6c2! cos �(�

p
3Z

+r! sin �)cZ (4c2 + !2) + r!4 cos � + 2c3r! sin �)"+O ("2)
�b1W (4c2 � 3ce+ !2) cos �(�4

p
3c2Z + r! (3c! cos � + (4c2 + !2) sin �))):

(4.21)
System (4.21) is written in the normal form (2.1) for applying the averaging theory
and satis�es all the assumptions of Theorem 2.1.1. Then, using the notations of the
averaging theory described in chapter 2, we have t = �, T = 2�, x = (r; Z;W ),

F (�; r; Z;W ) =

0@ F1 (�; r; Z;W )
F2 (�; r; Z;W )
F3 (�; r; Z;W )

1A ; and f(r; z; w) =

0@ f1(r; Z;W )
f2(r; Z;W )
f3(r; Z;W )

1A :
Then we compute the integrals, i.e.

f1(r; Z;W ) =
1

2�

R 2�
0
F1 (�; r; Z;W ) d� = �

r (2c2W + a1!)

2!3
;

f2(r; Z;W ) =
1

2�

R 2�
0
F2 (�; r; Z;W ) d� =

2c2WZ

2!3
;

f3(r; Z;W ) =
1

2�

R 2�
0
F3 (�; r; Z;W ) d�

=
24c2Z2 + c (4c3r2 � 12b1cW + 9b1eW )!

2 + (4c2r2 � 9b1W )!
6!5

:

Solving the equations f1(r; Z;W ) = f2(r; Z;W ) = f3(r; Z;W ) = 0, we can get the
following three solutions

s0 = (0; 0; 0) ;

s1;2 =

 
� 1

2c2

r
3

2

p
a1"

r
b1 (�4c2 + 3ce� 3!2)

c2 + !2
; 0;�a1!

2

2c2

!
:
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For two solutions, we get

det

�
df

dx
(s1)

�
= det

�
df

dx
(s2)

�
=
a21b1 (4c

2 � 3ce+ 3!2)
2!5

:

When c 6= 0, a1 6= 0, and � = b1 (4c2 � 3ce+ 3!2) < 0 then

det

�
@f

@x
(sj)

�
6= 0; j = 1; 2:

Then according to Theorem 2.1.1, we see that the system (4.21) has one periodic
solution xj(�; ") such that xj(0; ") = sj +O("), j = 1; 2. Bring the solution back to
the system (4.20), and we have one periodic solution

�j(�; ") = Xj(t; "); Yj(t; "); Zj(t; ");Wj(t; "):

Then the system (4.18) has the periodic solution "�j(�; "), j = 1; 2.
The Jacobian matrices @F (s1) =@x have the same characteristic equation,

�3 +
b1c(4c� 3e) + (2a1 + 3b1)!2

2!3
�2 � a

2
1b1 (4c

2 � 3ce+ 3!2)
2!5

:

The eigenvalues are given as follows

�1 = �a1
!
;

�2 = � 1

4!3
�
b1
�
4c2 � 3ce+ 3!2

�
+
p
b1 (4c2 � 3ce+ 3!2) (b1c(4c� 3e) + (8a1 + 3b1)!2)

�
;

�3 = � 1

4!3
�
b1
�
4c2 � 3ce+ 3!2

�
�
p
b1 (4c2 � 3ce+ 3!2) (b1c(4c� 3e) + (8a1 + 3b1)!2)

�
:

We have that �1 and �2;3 = �
1

4!3

�
��

p
� (�+ 8a1!2)

�
are reals, if a1 > 0; � < 0

and regardless of the sign assumed by � (�+ 8a1!2), at least one of the eigenvalues
has a positive real part. In this case, the periodic solution "�j(t; "); j = 1; 2 is
unstable.
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Conclusion

The averaging theory is one a well known and important perturbation method to
study the existence and stability of periodic solutions for some ordinary di¤erential
equation systems. It is a powerful tool and it has been proven its e¤ectiveness many
times in the literature by examining the existence and stability of isolated periodic
orbits of dynamical systems with applications to physics and engineering sciences.
The aim of the present work has been to perform an analytical analysis of the

periodic solutions of the so called Chen�Wang di¤erential system in R3 and the
Lorenz-Haken system in R4. These two systems exhibit some small�amplitude peri-
odic solutions that bifurcate from a zero�Hopf equilibrium point.
Our future work plan will consist to study zero�Hope bifurcations of some dif-

ferential systems in Rn, where n � 4.
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