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Abstract 

 
The increasing demand for energy efficiency and sustainability in smart 
home environments has spurred the development of advanced energy 
management systems (EMS). This thesis proposes a novel approach 
integrating multi-agent reinforcement learning (MARL) with fuzzy logic for 
efficient energy management in smart homes. The system employs a 
distributed architecture where autonomous agents interact with various 
smart devices to optimize energy consumption while considering user 
preferences and comfort levels. 

The use of MARL enables the system to adapt and learn from dynamic 
environments, allowing for real-time decision-making and optimization of 
energy usage. Each agent operates independently, yet collaboratively, to 
achieve the overarching goal of minimizing energy consumption and costs 
while maintaining user comfort. Fuzzy logic is incorporated to handle 
uncertainties and imprecise data inherent in smart home environments, 
providing robustness and flexibility to the decision-making process. 

The proposed system demonstrates significant improvements in energy 
efficiency compared to traditional approaches. Furthermore, the integration 
of fuzzy logic enhances the system's ability to handle complex and uncertain 
environments, resulting in more reliable and adaptive energy management 
solutions for smart homes. This research contributes to advancing the field 
of smart home automation by offering a scalable and intelligent energy 
management system capable of optimizing energy usage while ensuring user 
satisfaction and comfort. 

Key Words: Smart homes, Energy management system, Reinforcement 
learning, Q-learning, Fuzzy logic.



Resumé 

 
La demande croissante d’efficacité énergétique et de durabilité dans les 
environnements de maison intelligente a stimulé le développement de 
systèmes avancés de gestion de l’énergie (EMS). Ce memoire propose une 
nouvelle approche intégrant l'apprentissage par renforcement multi-agents 
(MARL) avec une logique floue pour une gestion efficace de l'énergie dans 
les maisons intelligentes. Le système utilise une architecture distribuée dans 
laquelle des agents autonomes interagissent avec divers appareils intelligents 
pour optimiser la consommation d'énergie tout en tenant compte des 
préférences des utilisateurs et des niveaux de confort. 

L'utilisation de MARL permet au système de s'adapter et d'apprendre des 
environnements dynamiques, permettant une prise de décision en temps réel 
et une optimisation de la consommation d'énergie. Chaque agent fonctionne 
de manière indépendante, mais en collaboration, pour atteindre l'objectif 
primordial de minimiser la consommation d'énergie et les coûts tout en 
maintenant le confort des utilisateurs. La logique floue est incorporée pour 
gérer les incertitudes et les données imprécises inhérentes aux 
environnements de maison intelligente, offrant ainsi robustesse et flexibilité 
au processus de prise de décision. 

Le système proposé démontre des améliorations significatives en termes 
d'efficacité énergétique par rapport aux approches traditionnelles. De plus, 
l'intégration de la logique floue améliore la capacité du système à gérer des 
environnements complexes et incertains, ce qui donne lieu à des solutions de 
gestion de l'énergie plus fiables et adaptatives pour les maisons intelligentes. 
Cette recherche contribue à faire progresser le domaine de la domotique 
intelligente en proposant un système de gestion de l’énergie évolutif et 
intelligent capable d’optimiser la consommation d’énergie tout en 
garantissant la satisfaction et le confort des utilisateurs. 

Mots clés : Maisons intelligentes, Système de gestion de l'énergie, 
Apprentissage par renforcement, Q-Learning, Logique floue. 

 



 ملخص 

 
أدى الطلب المتزايد على كفاءة الطاقة واستدامتها في البيئات المنزلية الذكية إلى تحفيز تطوير أنظمة  

التعلم المعزز متعدد العوامل .(EMS) إدارة الطاقة المتقدمة  تقترح هذه الأطروحة نهجًا جديدًا يدمج 
(MARL)   بكفاءة في المنازل الذكية. يستخدم النظام بنية موزعة  مع المنطق الغامض لإدارة الطاقة

مراعاة  مع  الطاقة  استهلاك  لتحسين  الذكية  الأجهزة  من  العديد  مع  المستقلون  الوكلاء  يتفاعل  حيث 
 .تفضيلات المستخدم ومستويات الراحة

النظام من التكيف والتعلم من البيئات الديناميكية، مما يسمح باتخاذ القرار في   MARL يمكّن استخدام
الوقت الفعلي وتحسين استخدام الطاقة. يعمل كل وكيل بشكل مستقل، ولكن بشكل تعاوني، لتحقيق الهدف  

طق الشامل المتمثل في تقليل استهلاك الطاقة والتكاليف مع الحفاظ على راحة المستخدم. تم دمج المن
الغامض للتعامل مع حالات عدم اليقين والبيانات غير الدقيقة المتأصلة في بيئات المنزل الذكي، مما يوفر  

 .القوة والمرونة لعملية صنع القرار

يوضح النظام المقترح تحسينات كبيرة في كفاءة استخدام الطاقة مقارنة بالطرق التقليدية. علاوة على 
المؤكدة، مما  ذلك، فإن تكامل المنطق الغامض يعزز قدرة النظام على التعامل مع البيئات المعقدة وغير  

يؤدي إلى حلول أكثر موثوقية وتكيفًا لإدارة الطاقة للمنازل الذكية. يساهم هذا البحث في تطوير مجال  
أتمتة المنزل الذكي من خلال تقديم نظام ذكي وقابل للتطوير لإدارة الطاقة قادر على تحسين استخدام 

 .الطاقة مع ضمان رضا المستخدم وراحته

 ، المنطق الضبابي  Q-المنازل الذكية، نظام إدارة الطاقة، التعلم المعزز، التعلم الكلمات المفتاحية:
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General Introduction 
 
Context:  

The contemporary world is witnessing a significant transformation in the way energy is 

consumed and managed, driven by the advent of smart technologies and the urgent need 

for sustainable practices. Smart homes, equipped with advanced sensors, smart devices, 

and interconnected systems, present a unique opportunity to optimize energy 

consumption, reduce costs, and enhance user comfort. However, the inherent complexity 

and dynamic nature of residential environments pose considerable challenges for 

effective energy management. 

Traditional energy management systems (EMS) often rely on centralized control 

mechanisms or simplistic heuristic approaches, which may not be sufficiently adaptive to 

the fluctuating demands and diverse preferences of smart home inhabitants. To address 

these limitations, there has been growing interest in leveraging artificial intelligence (AI) 

techniques, particularly multi-agent reinforcement learning (MARL), to create more 

flexible and responsive EMS. MARL provides a decentralized framework where multiple 

autonomous agents interact with the environment and each other, learning to make 

optimal decisions through continuous feedback and adaptation. 

Problem Statement 

Traditional energy management systems typically operate on fixed schedules, meaning 

they follow predetermined plans for energy usage without considering real-time changes 

in factors like demand, pricing, or the availability of renewable energy sources. This lack 

of adaptability can lead to various problems: 

1. Without adjusting to actual energy needs, these systems may waste energy or use it 

less effectively than possible, leading to inefficiencies. 

2. Inefficient energy usage often translates to higher costs for users, as they may need 

to purchase more expensive energy during peak demand periods or rely on less 

efficient sources. 
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3. When demand for electricity surpasses the capacity of the grid to deliver it, the 

system experiences strain. This can lead to issues like power outages or voltage 

fluctuations, impacting reliability and stability 

4. Traditional systems may prioritize energy savings over user comfort, leading to 

situations where users of appliances experience discomfort due to inflexible 

optimization strategies. 

5. Traditional systems have difficulty adjusting to dynamic factors like fluctuating 

energy prices, variable renewable energy generation, or unpredictable user 

behavior. This lack of adaptability hinders their ability to optimize energy usage 

effectively. 

The shortcomings of traditional energy management systems underscore the need for 

more flexible, adaptive, and data-driven approaches to better address the complexities of 

modern energy consumption and production. 

Objectives  

The primary objective of this thesis is to develop a system that enhances comfort and 

energy efficiency in buildings, aligning with consumer trends emphasizing energy 

conservation and improved home comfort. 

Research Focus, Objectives & Contributions 

The proposed system in this thesis focuses on enhancing comfort, reducing costs, and 

saving energy within a smart home environment. It aligns with current consumer trends 

where energy conservation and improved home comfort are the primary motivations 

for adopting smart home technology. The main objective of this thesis is to assist users 

in enhancing both comfort and energy efficiency in their buildings while ensuring 

usability. To achieve this goal, the system is designed to meet the following specific 

objectives: 

1. Implement a reinforcement learning framework using a multi-agent Q-learning 

algorithm  

2. Employ a demand response mechanism to reduce or schedule power-shiftable or 

time-shiftable loads to off-peak periods. 

3. Utilize an ELM-based Neural Network to effectively handle unpredictable factors, 

unlike traditional methods that assume perfect predictions. 
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4. Enable each agent (representing different loads) to independently learn and make 

decisions, leading to an efficient and adaptive energy management system in a 

smart home. 

5. Use the dissatisfaction coefficient to measure user comfort. 

6. Integrate fuzzy logic with MARL to handle uncertainties and imprecise data 

inherent in smart home environments. 

The proposed approach will be evaluated through a series of simulation experiments and 

real-world implementations, assessing its performance in terms of energy savings, user 

comfort, and system reliability. By demonstrating the effectiveness of this integrated 

approach, this thesis aims to contribute to the advancement of smart home technologies, 

offering innovative solutions for achieving sustainable and energy-efficient living spaces. 

Organization  

We organized this thesis into three chapters: 

 Chapter 1: In this chapter, we present a general overview on smart homes and energy 

management systems. 

 Chapter 2: In this chapter, we present a data-driven approach for energy management 

in smart homes using multi-agent reinforcement learning. 

 Chapter 3: In this chapter, we extend the module to include a fuzzy Q learning 

approach for multi-agent energy management in smart homes. 



Chapter 1 
State of the art 
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1 Introduction 
In recent years, the concept of smart homes has evolved from a futuristic fantasy to a tangible 
reality, revolutionizing the way we interact with our living spaces. At the heart of this 
revolution lies the integration of cutting-edge technology into everyday household functions, 
creating environments that are not only more convenient and efficient but also environmentally 
sustainable. Smart homes are equipped with interconnected devices and systems that enable 
homeowners to remotely monitor and control various aspects of their homes, from temperature 
and lighting to security and entertainment, using smartphones or other devices. 

One of the key components driving the advancement of smart homes is energy management 
systems (EMS). These systems utilize sophisticated algorithms and sensors to optimize energy 
usage within the home, resulting in reduced consumption, lower utility bills, and minimized 
environmental impact. By intelligently managing heating, cooling, lighting, and other energy-
intensive processes, EMS empowers homeowners to make informed decisions about their 
energy usage and adopt more sustainable practices without sacrificing comfort or convenience. 

In this chapter, we’ll explore the fundamental principles of smart homes and energy 
management systems, delve into the technologies that make them possible, and examine the 
benefits they offer to homeowners. From increased efficiency and cost savings to enhanced 
comfort and environmental stewardship, the potential of smart homes and EMS to reshape the 
way we live and interact with our surroundings is boundless. 

2 Smart homes 
Smart homes are becoming increasingly popular as advancements in technology allow for 
automation and improved control over various aspects of household activities [1]. From 
controlling appliances to enhancing security measures, smart home systems provide 
convenience, efficiency, and enhanced living experiences for residents.[2] 

2.1 Definition: 
B. K. Sovacool and D. D. Furszyfer [3] define smart homes as “technologies refer to devices 
that provide some degree of digitally connected or enhanced services to occupants”, which is 
now a big concept in discussion and innovation. 

These days, this idea serves as a platform for combining amenities and gadgets for daily lives 
by utilizing a variety of methods, of which are networks, controllers, media and security 
systems to create intelligent and effective residential buildings.[4] 

Rasha El-Azab [5] defines smart homes as “any residential buildings using different 
communication schemes and optimization algorithms to predict, analyze, optimize and control 
its energy-consumption patterns according to preset users’ preferences to maximize home-
economic benefits while preserving predefined conditions of a comfortable lifestyle”.  

This term has been widely used to refer to homes with regulated energy systems. Compared to 
typical unautomated homes, this automation technique validates easier lifestyles for 
homeowners, particularly for the elderly or disabled.it has recently expanded to encompass a 
variety of technological uses in one location[5]. 
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2.2 Motivations for smart homes adoption 
In a systematic review conducted by li et al.[4] they figured that smart homes can provide a set 
of services to give motivation for smart home adoption : 

 efficient energy management by having transparent usage on energy and flexibility, 
also reduce consumption and be considerable on environmental impact. 

 better financial spending through lowering energy consumption and so expenses. 
 better living quality with its control abilities, enhanced security and provide fun and 

comfortable experiences. 
 better health care with the improvements on the quality of life and home care and 

security. 

 

Figure 1 A map showing different countries interest in smart homes (taken from trends.google.com) 

2.3 Barriers and challenges for smart homes adoption 
While the concept of smart homes promises increased convenience and automation, there are 
potential drawbacks and concerns associated with this technology. One of the main concerns 
is the issue of privacy and security. With the integration of various smart devices and sensors, 
there is an increased risk of potential security breaches and data privacy infringements. Hackers 
could potentially gain access to personal data and exploit vulnerabilities in the smart home 
systems, leading to significant privacy concerns for the residents.[6] 

In another review by Balta-Ozkan et al.[7] which was conducted on smart homes considers the 
potential drawbacks and concerns associated with this technology, such as privacy and security 
risks, environmental impact, and potential loss of traditional skills. 

 Resistance to changing lifestyles consumers and homeowners are less likely to be 
drawn to technology that deviates from established norms, surroundings, or knowledge 
and may even give them a sense of being "out of control." The house is a representation 
of who you are.  



Chapter 1 – State of the Art 

 20 

 Users’ information may be collected by smart homes; thus, it is important to properly 
protect personal data and ensure that control over critical network systems is well 
managed and hard top penetrate by hackers. 

 High upfront costs, complexity in installation and setup, compatibility issues with 
existing devices, and the learning curve for users to understand and navigate the 
features and functionalities of smart home systems. 

 The reliance on technology in smart homes could lead to a loss of traditional skills and 
knowledge related to household maintenance and management. As users become more 
dependent on automated systems, they may become less proficient in manual household 
tasks and repairs, potentially leading to a decreased sense of self-sufficiency. 

Moreover, there is a growing concern about the environmental impact of smart home 
technology. The production and disposal of electronic devices and smart home components 
contribute to electronic waste, which poses environmental challenges. Additionally, the 
constant connectivity and power usage of smart devices may lead to increased energy 
consumption, contradicting the goal of sustainability and energy conservation.[8] 

2.4 Potentials and benefits: 
Despite these concerns and challenges, the potential benefits of smart homes cannot be ignored. 
They have the potential to greatly enhance convenience, comfort, energy efficiency, and safety 
in our daily lives.[9] 

Residents of smart houses enjoy cozy, completely managed, and safe lifestyles. In addition, 
smart homes have the potential to generate revenue by selling clean, renewable energy to the 
grid, saving both energy and money. On the other hand, several governments are encouraged 
to develop potential smart-home technologies due to the likely decline in overall residential 
energy loads. To promote the integration of smart homes, several nations have already passed 
numerous laws, regulations, and subsidy programs. One such program encourages the heating 
system to be optimized.[5] 

Sovacool & Furszyfer[3] ushered a review that estimated a 7% of global household being smart 
with a $44 billion in revenue and 22 billion of that revenue placed in Europe. And overseeing 
a 30% growth of smart homes, mainly in western Europe.[5]and powering it with sufficient 
green energy will pose a significant improvement on climate change and global warming.[10] 

Moving forward, further research and development are necessary to address the identified 
concerns and challenges. Future studies should focus on enhancing smart home security, 
minimizing environmental impact, and exploring the social and ethical implications of smart 
homes. By critically evaluating the implications of smart home technology and considering the 
trade-offs between convenience and associated risks, the future development of smart homes 
can be aligned with the broader goals of sustainability, security, and user well-being.[11] 

2.5 Practical Applications of Smart Homes 
Smart home technology has a wide range of practical applications that can significantly 
improve the way we live. One of the most popular applications is in the realm of energy 
management. Smart homes allow for the efficient control of lighting, heating, cooling, and 
other energy-consuming devices, resulting in reduced energy consumption and lower utility 
bills. By integrating smart thermostats, automated lighting systems, and energy-efficient 
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appliances, homeowners can optimize their energy usage and contribute to a more sustainable 
living environment.[12] 

Another practical application of smart homes is in enhancing home security. With the use of 
smart surveillance cameras, motion sensors, and smart locks, homeowners can remotely 
monitor and secure their properties. They receive real-time alerts and can even take immediate 
action to address any potential security threats, providing peace of mind whether they are at 
home or away.[13] 

Smart homes also offer practical solutions for aging in place and independent living. By 
incorporating smart home technology such as automated medication reminders, fall detection 
sensors, and emergency response systems, elderly individuals can maintain their independence 
while receiving necessary support and assistance. This enables them to live comfortably and 
safely in their own homes for as long as possible.[14] 

In the realm of entertainment and lifestyle, smart homes provide practical applications for 
seamless connectivity and convenience. Integrating smart entertainment systems, voice 
assistants, and smart appliances allows for effortless control and management of home 
entertainment and daily tasks. From streaming music and videos to setting reminders and 
managing schedules, smart homes enhance the overall quality of life for occupants.[15] 

Furthermore, smart homes offer practical applications in health and wellness. By incorporating 
smart health monitoring devices and sensors, individuals can track their health metrics and 
receive personalized insights for maintaining a healthy lifestyle. This proactive approach to 
health management can lead to improved well-being and early detection of health issues.[16] 

As smart home technology continues to advance, the practical applications of smart homes will 
expand even further, offering innovative solutions for various aspects of daily living. With the 
increasing integration of artificial intelligence and machine learning capabilities, smart homes 
will be able to anticipate and adapt to the needs and preferences of occupants, further enhancing 
the practicality and efficiency of home management.[17] 

3 Smart homes energy management systems (SHEMS) 
Many countries are facing the problem of managing their energy supply while taking into 
account the ecological and environmental effects of increased energy output.[18] 

Recent advancements in EMS for smart homes leverage AI algorithms to analyze energy 
consumption patterns and optimize energy usage in real-time. IoT-enabled devices, such as 
smart meters, sensors, and actuators, facilitate seamless communication and coordination 
among various appliances and energy sources within the home. Machine learning techniques 
enable EMS to learn from historical data and adapt to changing preferences and external 
factors, thus enhancing energy efficiency.[19] [20] 

The future of EMS in smart homes holds promising opportunities for innovation and 
improvement. Integration with renewable energy sources, such as solar panels and wind 
turbines, can further enhance sustainability and reduce dependence on traditional energy 
grids.[21] Additionally, advancements in AI and machine learning algorithms will enable EMS 
to provide more personalized and adaptive energy management solutions, tailored to individual 
user preferences and lifestyle patterns.[20] 
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Figure 2 Home energy management systems 

3.1 Hybridized intelligent home renewable energy management (HIHREM) 
As smart home technology continues to advance, the concept of Hybridized Intelligent Home 
Renewable Energy Management emerges as a cutting-edge solution for optimizing energy 
usage and promoting sustainability within residential environments. HIHREM integrates 
advanced HEMS with renewable energy sources and intelligent algorithms to create a 
comprehensive and efficient energy management system.[22] 

To seamlessly incorporate renewable energy sources, such as solar panels, wind turbines, and 
energy storage systems, into the overall energy management strategy of a smart home. By 
leveraging renewable energy, homeowners can significantly reduce their reliance on traditional 
grid power and contribute to a cleaner and more sustainable environment.[23] 

Moreover, HIHREM utilizes intelligent algorithms and machine learning capabilities to 
autonomously manage energy usage based on user behavior, environmental factors, and energy 
production from renewable sources. This proactive approach not only ensures optimal energy 
efficiency but also maximizes the utilization of clean energy, further reducing the carbon 
footprint of the home. HIHREM also incorporates real-time monitoring and control features, 
allowing homeowners to access detailed insights into energy consumption and production. 
Through connected platforms and smart devices, occupants can remotely adjust energy 
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settings, monitor renewable energy generation, and receive personalized recommendations for 
optimizing energy usage.[24] [25] 

HIHREM is designed to facilitate seamless integration with smart grid technologies and 
demand response capabilities. This enables the system to automatically adjust energy usage 
based on peak demand periods, pricing fluctuations, and grid conditions, further enhancing 
energy efficiency and cost savings.[26] 

3.2 HEMS in relation to smart homes and IoT 
In the context of smart homes, the concept of the Internet of Things plays a significant role in 
enabling seamless connectivity and interoperability among various devices and systems. IoT 
technology facilitates the integration of diverse smart home devices, such as thermostats, 
lighting systems, security cameras, and appliances, into a unified network that can be centrally 
controlled and managed. This interconnected ecosystem of smart devices, enabled by IoT, 
provides homeowners with a comprehensive and cohesive platform for monitoring and 
controlling various aspects of their home environment.[27] 

IoT technology in smart homes goes beyond simple connectivity, as it enables devices to 
communicate and interact with each other autonomously. For example, a smart thermostat can 
communicate with smart lighting systems and motion sensors to adjust temperature and 
lighting based on occupancy patterns, thereby optimizing energy usage and enhancing user 
comfort. This level of automation and intelligence, driven by IoT, enhances the overall 
efficiency and convenience of smart home systems.[28] 

The integration of HEMS into the IoT framework further enhances the capabilities of smart 
homes by providing real-time energy consumption data and facilitating automated energy 
management. With HEMS leveraging IoT technology, homeowners gain the ability to remotely 
monitor and control energy usage through a unified interface, allowing for precise adjustments 
and optimizations based on energy consumption patterns and user preferences. The integration 
of HEMS into the IoT framework further enhances the capabilities of smart homes by providing 
real-time energy consumption data and facilitating automated energy management. With 
HEMS leveraging IoT technology, homeowners gain the ability to remotely monitor and 
control energy usage through a unified interface, allowing for precise adjustments and 
optimizations based on energy consumption patterns and user preferences. As IoT technology 
continues to advance, the potential for smart homes to adapt and evolve based on dynamic 
environmental and user-specific factors becomes even more pronounced. The integration of 
IoT and HEMS lays the foundation for a future where smart homes intelligently respond to 
changes in energy demand, external conditions, and user behavior, ultimately leading to greater 
energy savings and enhanced sustainability.[27] [29] [30] 

The integration of IoT with smart home energy management systems not only fosters seamless 
connectivity and intelligent automation but also enables data-driven decision-making, 
ultimately contributing to the efficient and sustainable management of energy within residential 
environments. As smart home technology and IoT continue to converge, the potential for 
innovative and interconnected solutions in energy management and sustainability remains 
promising.[31] 
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Figure 3 Worldwide shopping interest of "smart homes" "IoT" "Antiviruses" (taken from trends.google.com) 

3.3 Energy benefits of smart home technologies 
The integration of smart home technologies, particularly Home Energy Management Systems 
and the Internet of Things, brings significant benefits to energy management within residential 
environments. These smart technologies offer multiple advantages that contribute to energy 
efficiency, reduced energy costs, and enhanced sustainability for homeowners and 
occupants.[32] 

Optimizing Energy Usage: Smart homes energy management systems, such as HEMS, enable 
homeowners to optimize their energy usage effectively. By providing real-time energy 
consumption data and remote access to energy-consuming devices, HEMS allows for precise 
control and adjustments to minimize wastage. This capability not only leads to lower utility 
bills but also promotes more sustainable energy practices within the home environment.[33] 

Integrating Renewable Energy Sources: such as solar panels or wind turbines, into the 
overall energy management strategy. Smart home systems can effectively harness and 
maximize the use of clean energy while reducing reliance on traditional grid power, thereby 
promoting a more sustainable and eco-friendly energy consumption model.[34] 

Data-Driven Decision-Making: The combination of IoT-enabled sensors and HEMS 
facilitates comprehensive data collection and analysis, leading to actionable insights for 
improving energy efficiency and sustainability. These insights empower homeowners to make 
informed decisions regarding energy usage and conservation, ultimately contributing to more 
effective energy management within the smart home environment.[32] 

Achieving Greater Energy Savings: Ultimately, the integration of smart home technologies 
results in greater energy savings for homeowners. By leveraging advanced features such as 
demand response capabilities and personalized recommendations for energy optimization, 
smart homes ensure that energy resources are utilized efficiently, leading to significant cost 
savings and reduced environmental impact.[35] 
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3.4 Infrastructure of HEMS 
A home energy management system consists of several interconnected components designed 
to monitor, control, and optimize energy usage within the home. These components work 
together to collect data, analyze consumption patterns, and implement energy-saving 
strategies.[36] 

Central controller: a device or component that serves as the central point of control and 
coordination for various connected devices and systems within the home. It acts as the brain of 
the smart home ecosystem, facilitating communication, data processing, and decision-making 
to optimize energy usage and enhance overall home automation.[37] It communicates with all 
connected devices, sensors, and appliances within the smart home ecosystem. This 
communication can be facilitated through wired or wireless protocols such as Wi-Fi, Zigbee, 
Z-Wave, or Bluetooth.[38] 

 

Figure 4 An example of a central controller for HEMS (taken from www.smart4energy.com) 

IoT devices & appliances: Internet of Things (IoT) devices, such as smart thermostats, smart 
lighting systems, and smart appliances, are integrated into the home's infrastructure. These 
devices can communicate with the EMS, enabling remote control and automation of energy-
consuming devices based on predefined rules and user preferences.[37] 

Equipped with connectivity features, enabling them to communicate, interact, and be controlled 
remotely via a network, typically the internet. These appliances integrate advanced 
technologies such as sensors, microprocessors, and wireless communication protocols to offer 
enhanced functionality, automation, and convenience for homeowners.[39] 
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Figure 5 An example of different IoT devices (taken from www.wnbfinancial.com/IoT) 

Sensors & Smart Meters: Sensors are deployed throughout the home to collect real-time data 
on energy consumption, environmental conditions, and occupancy patterns. Smart meters 
provide detailed information on electricity usage, allowing for accurate monitoring and 
analysis. Unlike traditional analog meters, smart meters are equipped with digital technology 
and communication capabilities, enabling them to transmit energy usage data remotely to utility 
companies in near real-time.[40] 

Energy Sources and Grid: In advanced EMS setups, integration with renewable energy 
sources (e.g., solar panels, wind turbines, battery storage) and utility grid interfaces enables 
dynamic energy management strategies, such as demand response and peak shaving. These 
integrations enable homeowners to optimize energy usage, reduce costs, and contribute to a 
more sustainable energy ecosystem.[41] Energy storage devices plays a crucial role in 
balancing supply and demand, stabilizing the grid, and enabling the integration of intermittent 
renewable energy sources.[36] 

User Interface: A user-friendly interface, such as a mobile app or web portal, allows 
homeowners to interact with the EMS, monitor energy usage in real-time, and adjust settings 
remotely. The interface may also provide energy consumption insights, personalized 
recommendations, and energy-saving tips to encourage behavior change and promote energy 
efficiency.[40] 

Communication Network: A network that can be wired or wireless, depending on the specific 
requirements of the home. Wi-Fi, Zigbee, Z-Wave, and Bluetooth are common communication 
protocols used in smart home environments. effective communication is essential for the 
seamless operation and optimization of a smart home EMS, enabling efficient energy 
management, enhanced user experience, and integration with external systems for a more 
sustainable and resilient energy ecosystem.[36] [38] 

Computational embedded controllers, local-area network communication middleware, and 
transmission control protocol/internet protocol (TCP/IP) communication for wide-area 
integration with the utility company using wide-area network communication are the three 
main components needed for home energy management systems.[5] 

 PLC: refers to the use of Power Line Communication (PLC) technology to transmit 
data and commands over existing electrical power lines within a home's wiring 
infrastructure. PLC allows devices and systems to communicate with each other 
without the need for dedicated communication cables or wireless networks, leveraging 
the electrical wiring already present in the building.[5] 

 Zigbee: is a wireless communication protocol commonly used in smart home 
environments to enable devices to communicate with each other. It operates on the 
IEEE 802.15.4 standard and is designed for low-power, short-range wireless 
communication between devices.[42]  
Zigbee technology provides a reliable, low-power, and interoperable wireless 
communication solution for smart home environments, enabling seamless connectivity 
and control of devices and systems within the home. Its mesh networking capabilities, 
low power consumption, and standardized approach make it a popular choice for 
building robust and scalable smart home ecosystems.[38] [43] 
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 Wi-Fi: is a widely used wireless communication technology that follows the IEEE 
802.11 standard that enables devices to connect to the internet and local networks 
wirelessly. In the context of smart homes, Wi-Fi plays a significant role in enabling 
connectivity, control, and communication among various devices and systems.[38] 

 

Figure 6 Communication Technologies of HEMS [36] 

A smart home load: refers to the total electrical load or energy demand of all devices and 
appliances within a smart home environment. This includes any electrical equipment, such as 
lighting, heating, cooling, entertainment systems, kitchen appliances, and other electronic 
devices, that consume electricity.[18] and it can be classified based on its nature of operation 
schedulable and nonschedulable.[5] 

 Schedulable Loads: devices or appliances that can be programmed or scheduled to 
operate at specific times or under certain conditions. These loads typically have 
adjustable settings or programmable features that allow users to set timers, schedules, 
or automation rules for their operation, such as washing machines, dish washers and 
lighting systems.[5] 

 Nonschedulable Loads: devices or appliances that operate independently of user 
schedules or are not easily adjustable in terms of timing or operation. These loads 
typically have fixed or unpredictable usage patterns and cannot be easily controlled or 
scheduled for specific times, such as refrigerators and servers.[5] Nonschedulable loads 
may still benefit from energy management strategies such as load prioritization, 
demand response, or adaptive control algorithms to optimize their operation and 
minimize energy waste without compromising their essential functions.[39] 
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Figure 7 Typical architecture of a representative HEMS[36] 

3.5 Challenges with SHEMS 
Smart homes energy management systems face several challenges in their quest to optimize 
energy consumption. One major challenge is the complexity of the residential energy 
ecosystem, which includes a wide range of interconnected devices and appliances with varying 
energy requirements. Coordinating and optimizing the operation of these diverse components 
in real time requires sophisticated algorithms and decision-making processes.[44] 

The unpredictable nature of human behavior and occupancy patterns poses a significant 
challenge for smart homes energy management systems. It is essential for these systems to 
accurately predict and adapt to the changing energy needs of occupants to avoid any discomfort 
while still maximizing energy efficiency.[45] 

Integrating renewable energy sources, such as solar panels or wind turbines, into the energy 
management system presents technical challenges. These systems must effectively balance the 
intermittent availability of renewable energy with the fluctuating energy demands of the 
household.[46] 

Cybersecurity is another critical challenge As these systems rely on interconnected devices and 
data collection, protecting against potential cyber threats and ensuring data privacy is 
crucial.[47] 

3.6 Demand response (DR) 
Demand response programs allow utilities to manage energy consumption during peak hours 
by incentivizing consumers to reduce their electricity usage or shift it to off-peak times. This 
is achieved through automated signals from the utility company to the smart home energy 
management system, which then adjusts energy usage based on preset preferences and 
optimization algorithms. By participating in demand response programs, smart homes can 
contribute to grid stability and reliability while potentially benefiting from financial incentives 
or reduced electricity costs. Reinforcement learning algorithms[19] [48] 

3.7 Challenges with DR 
One of the primary challenges faced by demand response systems is the variability and 
unpredictability of energy demand. Occupants' behavior, as well as their energy usage patterns, 
can fluctuate significantly, making it challenging for smart homes to accurately anticipate and 
respond to demand response signals in a timely and efficient manner. Moreover, the integration 
of renewable energy sources presents technical hurdles for demand response systems. The 
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intermittent nature of renewable energy generation, such as solar and wind power, requires 
sophisticated algorithms and predictive models to balance energy supply and demand 
effectively, especially during peak demand periods. Furthermore, the security and privacy of 
data processed and communicated within demand response systems are paramount. As these 
systems rely on communication between smart devices and utility providers, robust 
cybersecurity measures must be in place to safeguard against potential cyber threats and ensure 
the integrity and confidentiality of sensitive energy consumption data.[49] 

3.8 Economic values 
One of the key considerations in implementing smart home energy management systems is 
ensuring a financial return for the customer's investment. Smart home energy management 
systems offer a variety of ways to achieve a financial return on investment. Through the 
optimization of energy usage, these systems can lead to significant savings on electricity bills 
over time.[50] Additionally, some utility companies offer incentives and rebates for customers 
who implement energy-saving technologies, further improving the financial outlook for smart 
home energy management systems. To make smart home energy management systems more 
accessible to a wider range of customers, it is important for the regulatory market to limit the 
current prices of smart home devices, making them more affordable for consumers.[51] 

The integration of smart home energy management systems with renewable energy sources, 
such as solar panels or battery storage, can lead to even greater financial returns by reducing 
reliance on the traditional grid and potentially generating income through excess energy 
production.[23] 

Emphasizing the financial benefits of smart home energy management systems is crucial for 
encouraging widespread adoption and ensuring a positive impact on both household budgets 
and overall energy conservation efforts. By focusing on and promoting the economic benefits 
of smart home energy management systems, it becomes more likely that consumers will be 
willing to invest in and adopt these systems, leading to a more sustainable and energy-efficient 
future.[52] 

 

Figure 8 smart homes expected market growth for 2032(taken from www.precedenceresearch.com) 
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3.9 Related works 
A Home 
Energy 
Management 
System With 
Renewable 
Energy and 
Energy 
Storage 
Utilizing Main 
Grid and 
Electricity 
Selling[53] 

Contributions - Proposed a novel Home Energy Management System (HEMS) 
architecture integrating Renewable Energy Sources (RES), Energy 
Storage Systems (ESS). 
- Utilized particle swarm optimization (PSO) and binary particle swarm 
optimization (BPSO) algorithms to optimize the energy cost and PAR. 

Objective Functions - Minimization of Daily Energy Cost. 
- Reduction of Peak-to-Average Ratio (PAR) 

Advantage -The integration of Renewable Energy Sources (RES) and Energy Storage 
Systems (ESS) into the HEMS provides a comprehensive solution for 
managing energy in households. 

Limitations -  Model assumptions may not fully capture real-world complexities. 
-  Data accuracy and availability are crucial, and inaccurate data could 
lead to suboptimal outcomes 

Low-cost 
fuzzy logic-
controlled 
home energy 
management 
system[54] 

Contributions -  Cost-effective real-time energy management for residences. 
- Utilization of fuzzy logic inference engines for intelligent decision-
making. 
- Integration of multiple sensors for precise control. 

Objective Functions -Minimization of Energy Consumption 
-Optimize Energy Distribution. 

Advantage -Flexibility with Fuzzy Logic 
Controller 
- Improved Energy Utilization 

-Cost Savings 
-Flexibility and Adaptability 

Limitations - Sensor Accuracy and Reliability 
- Complexity and Maintenance 

- Data Privacy and Security 
- Limited Adaptability 

Demand 
Response 
Strategy 
Based on 
Reinforcement 
Learning and 
Fuzzy 
Reasoning for 
Home Energy 
Management 
[55] 

Contributions - Integrating Reinforcement Learning (RL) and Fuzzy Reasoning (FR) 
techniques. 
- Utilizes Q-learning to schedule smart home appliances, shifting 
electricity usage from peak to off-peak hours while maintaining user 
preferences. 

Objective Functions - Minimize electricity costs by shifting consumption to off-peak periods. 
- Optimize battery energy storage usage for cost and efficiency. 

Advantage - Effective control in complex systems. 
- Learning and adaptation capabilities. 
-  Shifts appliance usage from peak to off-peak hours, reducing electricity 
costs. 

Limitations - Learning Time: RL algorithms require significant training time, 
impacting quick decision-making. 
- User Cooperation: Success depends on user cooperation and reliable 
feedback, which may not always be guaranteed. 
- Complexity in rule design. 

Table 1 A comparative analysis of different contributions or approaches to home energy management systems (HEMS)
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Application of 
Predictive 
Control in 
Scheduling of 
Domestic 
Appliances[56] 

Contributions - Development of an appliance scheduling algorithm for reducing energy 
costs and peak-power consumption. 
- Utilized a Model Predictive Control (MPC) strategy for real-time 
operation of appliances within the HEMS. 
- Formulation of appliance dynamics into a Mixed-Integer Linear 
Programming (MILP) problem. 

Objective Functions . Minimize Total Electricity Cost 
. Minimize Peak Power Consumption 
. Dynamic Appliance Scheduling 
. Adaptation to Real-time Market Conditions 
. Balance Load Distribution 

Advantage - The Model Predictive Control (MPC) strategy enables real-time 
decision-making for efficient appliance management. 
-  Reduced energy costs by optimizing appliance scheduling based on 
real-time electricity market conditions. 

Limitations -  The computational complexity of the mixed-integer linear 
programming optimization used in real-time scheduling may limit 
scalability. 
- Possible impact on user comfort and convenience. 
- Potential scalability issues with larger and more complex household 
setups 

Demand 
Response in 
HEMSs Using 
DRL and the 
Impact of Its 
Various 
Configurations 
and 
Environmental 
Changes[57] 

Contributions - Development of an appliance scheduling algorithm for reducing energy 
costs and peak-power consumption. 
- Utilized a Model Predictive Control (MPC) strategy for real-time 
operation of appliances within the HEMS. 
- Formulation of appliance dynamics into a Mixed-Integer Linear 
Programming (MILP) problem. 

Objective Functions . Minimize Total Electricity Cost 
. Minimize Peak Power Consumption 
. Dynamic Appliance Scheduling 
. Adaptation to Real-time Market Conditions 
. Balance Load Distribution 

Advantage - The Model Predictive Control (MPC) strategy enables real-time 
decision-making for efficient appliance management. 
-  Reduced energy costs by optimizing appliance scheduling based on 
real-time electricity market conditions. 

Limitations -  The computational complexity of the mixed-integer linear 
programming optimization used in real-time scheduling may limit 
scalability. 
- Possible impact on user comfort and convenience. 
- Potential scalability issues with larger and more complex household 
setups 

Table 2 A comparative analysis of different contributions or approaches to home energy management systems (HEMS) (continues) 
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In[53]: Integration of Renewable Energy Sources (RES) and Energy Storage Systems (ESS) 
provides a comprehensive solution for managing energy in households. However, model 
assumptions may not fully capture real-world complexities, and inaccurate data could lead to 
suboptimal outcomes. 

In[54]: Cost-effective real-time energy management leads to potential cost savings. The 
utilization of fuzzy logic inference engines enables precise control. However, dependence on 
sensors may pose accuracy and reliability challenges, and fuzzy logic systems might be 
complex to maintain and manage. 

In[55]: Integration of Reinforcement Learning (RL) and Fuzzy Reasoning (FR) offers effective 
control in complex systems, and adaptation capabilities allow systems to adjust to user 
preferences and environmental changes. However, RL algorithms may require significant 
training time, and success depends on consistent user cooperation and feedback. 

In[56]: Model Predictive Control (MPC) enables quick responses to changing conditions, and 
optimization based on real-time market conditions reduces energy costs. However, mixed-
integer linear programming (MILP) may limit scalability, and optimization might prioritize 
cost over user comfort. 

In[57]: Deep Reinforcement Learning (DRL) offers real-time optimization for demand 
response, and DRL systems provide scalable and adaptable solutions. However, large amounts 
of data are needed for effective training of DRL models, and DRL models may struggle to 
adapt quickly to new conditions not encountered during training. 

After reviewing the findings from the related works, we have decided to utilize Reinforcement 
Learning (RL) and fuzzy reasoning in our approach. These techniques have consistently proven 
to be optimal solutions for addressing the complexities of home energy management systems, 
as highlighted in the literature. Their effectiveness in providing effective control in complex 
systems, adapting to user preferences and environmental changes, and offering scalable 
solutions aligns well with our project objectives. 

4 Conclusion 
As we conclude from this chapter, it becomes clear that these innovations are not just about 
convenience or efficiency; they represent a fundamental shift in the way we think about and 
interact with our living spaces. By harnessing the power of technology to automate and 
optimize energy usage, smart homes offer a glimpse into a future where sustainability and 
comfort go hand in hand. 

The potential of smart homes and EMS to revolutionize the way we live is vast. From reducing 
our carbon footprint and easing the strain on our planet's resources to enhancing our quality of 
life and saving money on utility bills, the benefits are undeniable. However, realizing this 
potential requires not only technological advancements but also widespread adoption and 
awareness among homeowners, businesses, and policymakers. 

In the next chapter we’ll look at intelligent approaches. 
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1 Introduction 
Smart homes equipped with an array of interconnected devices and sensors, offer a promising 
avenue for optimizing energy consumption. However, harnessing the full potential of these 
technologies requires sophisticated approaches that go beyond simple automation. Enter multi-
agent reinforcement learning (MARL), a data-driven methodology that leverages artificial 
intelligence to orchestrate energy usage across diverse smart home environments. 

In order to achieve effective home-based demand response (DR), this chapter suggests a 
revolutionary reinforcement learning-based paradigm for home energy management (HEM). 
The hourly energy consumption scheduling problem at hand is appropriately expressed as a 
discrete time step with finite Markov decision process (FMDP). In order to address this issue, 
a data-driven approach built on neural networks (NN) and the Q-learning algorithm is created, 
which produces better results on budget-friendly scheduling for the HEM system. In particular, 
actual energy pricing and solar photovoltaic (PV) generation data are analyzed in real time for 
extreme learning machine (ELM) uncertainty prediction in rolling time windows. The test 
findings show that the suggested data-driven based HEM framework is effective. 

2 Contribution statement 
The system proposed in this chapter does not aim to address all the issues within a smart home 
environment. Instead, its primary focus lies on enhancing comfort, reducing costs, and saving 
energy. This emphasis is based on the current consumer trends where the primary motivation 
for adopting smart home technology is energy conservation and improved home comfort. 
Consequently, the main objective of this thesis is to assist users in enhancing both the comfort 
and energy efficiency of their buildings while ensuring usability. To achieve this overarching 
goal, the system is designed to accomplish the following specific objectives: 

 Provide an approach that utilizes a reinforcement learning framework based on a multi-
agent Q-learning algorithm to make decisions regarding energy consumption one hour 
ahead. 

 Use a demand response mechanism to reduce or schedule power-shiftable or time-
shiftable loads to off-peak periods. 

 The proposed model utilizes an Extreme Learning Machine (ELM) based Neural 
Network (NN) to effectively handle unpredictable factors, unlike traditional methods 
that assume perfect predictions. It incorporates Q-learning to continuously improve 
decision-making, enabling optimal Demand Response (DR) decisions and ensuring 
efficient energy management despite uncertainties. This combination of ELM and Q-
learning allows for more accurate and reliable energy consumption strategies in smart 
homes. 

 In the proposed system, each agent (representing different loads) can independently 
learn and make decisions, leading to an efficient and adaptive energy management 
system in a smart home. 

 Use the dissatisfaction coefficient to measure user comfort. This coefficient varies 
based on an individual's reliance on a specific device. If someone heavily relies on a 
particular appliance and prefers it to start quickly, the dissatisfaction coefficient for that 
appliance will be higher. Conversely, if they can tolerate waiting longer without much 
inconvenience, the coefficient will be lower. 
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3 Multi-Agent Reinforcement Learning 
3.1 The Reinforcement Learning Framework 
Reinforcement learning have emerged as promising solutions for optimizing energy 
consumption in residential buildings. These systems leverage reinforcement learning 
algorithms to learn and adapt to the energy needs and usage patterns of occupants, ultimately 
maximizing energy efficiency while maintaining user comfort. By continuously monitoring 
and analyzing factors such as weather conditions, occupancy patterns, and energy consumption 
data, these systems can make intelligent decisions regarding the operation of home appliances, 
HVAC systems, and energy storage devices.[58] Through the use of reinforcement learning, 
these systems can learn optimal strategies for scheduling energy usage, such as when to charge 
electric vehicles, when to run appliances, and when to use renewable energy sources.[59] By 
using real-time data, these systems can also take advantage of dynamic pricing models and 
energy demand response programs to further optimize energy consumption.[60] Overall, smart 
homes energy optimization systems using reinforcement learning are designed to strike a 
balance between energy cost and user comfort by making data-driven decisions and adapting 
to changing circumstances. They offer significant potential for reducing energy consumption, 
lowering costs, and promoting sustainability in residential buildings.[59] 

The state of the art in smart homes energy optimization systems using reinforcement learning 
is constantly evolving with advancements in machine learning and data analytics. One recent 
development is the integration of deep reinforcement learning, which allows for more complex 
decision-making processes and improved energy optimization outcomes. This approach has 
shown promising results in adapting to dynamic and unpredictable environments, further 
enhancing energy efficiency and user comfort.[59] 

There has been a growing focus on the use of multi-agent reinforcement learning, it enables 
coordination and collaboration between different devices and appliances within a smart home, 
leading to more holistic and integrated energy management strategies.[61] The use of multi-
agent reinforcement learning has the potential to optimize energy consumption at a broader 
scale and address interconnected energy needs within a household. Additionally, advancements 
in AI-driven smart home technology have paved the way for enhanced user comfort and energy 
efficiency. These systems can learn user preferences and adapt energy usage patterns based on 
individual needs, schedules, and comfort levels.[62] 

One of the key advantages of MARL is its ability to facilitate cooperation and communication 
between different agents, allowing them to work together towards common energy 
management goals. For example, agents can learn to schedule the operation of appliances in a 
way that minimizes peak energy demand and takes advantage of off-peak pricing, leading to 
cost savings for the household.[63] 

MARL can adapt to changing conditions and user preferences by continuously learning and 
updating its strategies. For instance, if a new energy-efficient appliance is added to the smart 
home, the MARL system can learn to integrate it into the overall energy management 
framework, maximizing its benefits while minimizing its impact on energy costs.[63] 

MARL can address the challenge of distributed energy resources, such as solar panels or energy 
storage systems, by optimizing their utilization in conjunction with other energy-consuming 
devices. This holistic approach to energy management ensures that the smart home operates as 
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an integrated system, leveraging both energy-efficient technologies and intelligent decision-
making to achieve optimal energy consumption patterns.[64] 

The integration of multi-agent reinforcement learning in smart homes energy optimization 
systems represents a significant advancement in the pursuit of sustainable and efficient 
residential energy usage. As research in this field continues to progress, the potential for MARL 
to revolutionize energy management in smart homes is increasingly evident, offering scalable 
and adaptive solutions for diverse energy optimization challenges.[65] 

 

Figure 9 A recursive representation of the Agent-Environment interface.  

Cooperative multi-agent systems with partial observability offer a promising approach to 
addressing the challenges of smart homes energy management. In the context of energy 
optimization, the concept of partial observability refers to the limited visibility agents have into 
the state of the environment, which is common in real-world scenarios. This limitation 
necessitates collaborative decision-making among agents to effectively manage energy 
consumption and promote sustainability within a smart home environment.[66] 

It can be designed to enable communication and collaboration among different devices and 
appliances. By leveraging partial observability, these systems can adapt to the dynamic and 
uncertain nature of energy usage patterns, human behavior, and the availability of renewable 
energy sources. With interconnected agents, each responsible for controlling specific 
components, cooperative multi-agent systems have the potential to optimize overall energy 
consumption while considering user comfort, cost-effectiveness, and sustainability.[67] 

We may create a comprehensive method to optimize energy consumption in smart homes by 
utilizing data-driven approaches and Multi-Agent Reinforcement Learning (MARL). We can 
suggest such a procedure as follows:  
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Figure 10 Our proposed architecture of a home energy management system 

As depicted in Figure 10, this study addresses a HEMS comprising three agents, representing 
non-shiftable appliance load, power-shiftable appliance load, time-shiftable appliance load, 
respectively. The envisioned HEMS in this thesis incorporates multiple agents, each 
responsible for controlling various types of smart home appliances in a decentralized manner. 

It's important to note that smart meters are presumed to be installed on smart home appliances 
to monitor their usage and receive control commands from the agents. Within each time slot, 
we establish hour-ahead energy consumption actions for home appliances 

4 Proposed Multi-agent Q-learning method for Decision-making  
Multi-agent Q-learning (MAQL) is a reinforcement learning technique that enables multiple 
agents to learn optimal policies for decision-making in cooperative or competitive 
environments. In MAQL, agents interact with the environment, observe the outcomes of their 
actions, and update their Q-values based on the observed rewards and state transitions. Here's 
how we can propose a MAQL method for decision-making: 

Sophisticated reinforcement learning techniques are utilized by MARL agents to maneuver 
over the intricate terrain of energy management. These agents are encouraged to conduct 
behaviors that result in energy conservation while lowering expenses and preserving occupant 
comfort by specifying suitable reward functions. To ensure efficient energy usage without 
compromising comfort, a smart thermostat agent might be trained to modify temperature 
settings in response to occupancy patterns and outside temperature forecasts. 

Within the data-driven framework, we introduce a unique and flexible HEM technique that 
does not rely on a specific model. This method is based on the combination of the extreme 
learning machine (ELM) and the Q-learning algorithm. The test findings demonstrate that the 
proposed HEM approach is capable of achieving favorable performance in terms of reducing 
power costs for householders, as well as enhancing computational efficiency. The traditional 
HEM methods rely on optimization algorithms assuming accurate prediction of uncertainty. 
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Nevertheless, this assumption is impractical and illogical given that the inaccuracies in 
predictions cannot be avoided. In contrast, our proposed model-free data-driven HEM 
technique can effectively address future uncertainties by utilizing the ELM based NN and 
determine the optimal DR decisions through the learning capabilities of the Q-learning 
algorithm. To address the issue of managing numerous loads in a residential dwelling, such as 
non-shiftable loads, power-shiftable loads, time-shiftable loads, a multi-agent Q-learning 
algorithm based on reinforcement learning (RL) is created. This technique aims to solve the 
Home Energy Management (HEM) problem associated with these loads. By using a fully 
decentralized approach, it is possible to acquire optimal scheduling decisions for different 
home appliances and electric vehicle charging, ensuring efficient energy consumption. 

ITEM STATE ACTION 
 1=ON/0=OFF 

REWARD 
EQUATION 

REF ൛൫Ƥ௧
ீ , Ƥ௧ାଵ

ீ , … , Ƥ்
ீ൯, (ƛ௧

 , ƛ௧ାଵ
 , … , ƛ்

)ൟ 1 (1) 

AS ൛൫Ƥ௧
ீ , Ƥ௧ାଵ

ீ , . . . , Ƥ்
ீ൯, (ƛ௧

 , ƛ௧ାଵ
 , . . . , ƛ்

)ൟ 1 (1) 

AC1 ൛൫Ƥ௧
ீ , Ƥ௧ାଵ

ீ , . . . , Ƥ்
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)ൟ {0.7, 0.8, …, 1.4} (2) 

HTR ൛൫Ƥ௧
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Table 3 Table representing state/action/reward of each agent 

 

Figure 11  multi-agent home energy management system 
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4.1 PROBLEM MODELLING 
a. Agent Representation: Each appliance or energy-consuming device in the smart home is 
represented as an agent within the MARL framework. Agents interact with the environment by 
adjusting their operational settings, such as temperature, power consumption levels, or 
scheduling. 

 Ƥ௧ : Electricity prices in time slot t. 
 ƛ௧

 : Solar generation in time slot t. 

 𝑟௧
ேௌ/𝑟௧

ௌ/𝑟௧
்ௌ : Reward of non-shiftable appliances/Power shiftable appliances/Time 

shiftable appliances. 

 𝐸௧
ேௌ/𝐸௧

ௌ/𝐸௧
்ௌ: Energy consumption of non-shiftable appliances/Power shiftable 

appliances /Time shiftable appliances. 

 𝑖 𝜖 𝛺ேௌ  the index of non-shiftable appliances. 

 𝑗 𝜖 𝛺ௌ the index of power shiftable appliances. 

 𝑚 𝜖 𝛺்ௌ the index of time shiftable appliances. 

b. State Representation: The state (𝑠௧) in a time slot 𝑡 of the environment encompasses 
various factors, including current energy consumption levels, external weather conditions, 
occupancy patterns, and energy prices. Data from sensors installed throughout the home 
provide real-time information about these variables, forming the basis for state representation, 
which consists of two vectors. 

𝑠௧ = {(Ƥ௧
ீ , Ƥ௧ାଵ

ீ , . . . , Ƥ்
ீ), (ƛ௧

, ƛ௧ାଵ
 , . . . , ƛ்

)} 

 (Ƥ௧, Ƥ௧ାଵ, . . . , Ƥ்) current electricity price. 
 (ƛ௧

, ƛ௧ାଵ
 , . . . , ƛ்

) current solar panel output (solar generation). 

c. Action Space: Agents have a discrete action space corresponding to the available actions 
they can take, such as adjusting thermostat settings, turning appliances on/off, or scheduling 
energy-intensive tasks during off-peak hours. The action space can also include cooperation 
actions, such as coordinating usage to minimize peak demand. 

 Action set for non-shiftable appliance agent: like refrigerator and alarm systems high 
dependability is necessary to guarantee everyday ease and security, so their needs must 
be met immediately and cannot be planned. Therefore, the non-shiftable appliance 
agent can only do one action: turning it "on". 

 Action set for power-shiftable appliance agent: like heating and light it can function 
with flexibility by using energy within a set range. Therefore, discrete actions, denoted 
by 1, 2, 3..., which represent the power ratings at various levels, can be selected by 
power-shiftable agents. 

 Action set for time-shiftable appliance agent: To lower electricity costs and prevent 
peak energy consumption, time-shiftable loads can be scheduled from peak to off-peak 
times. Time-shiftable appliances feature two modes of operation: "on" and "off," such 
as the dishwasher and washing machine. 
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d. Reward Design: The reward function incentivizes energy-efficient behavior while 
considering user comfort and cost savings. Rewards can be based on factors such as reducing 
overall energy consumption, avoiding peak demand periods, adhering to user preferences, and 
minimizing deviations from optimal energy usage patterns. 

 The reward of non-shiftable appliance agent: 

𝑟௧
ேௌ = −Ƥ௧ൣ𝐸௧

ேௌ − ƛ௧
௦൧

ା
𝑖 𝜖 𝛺ேௌ 𝑡 = {1,2, . . . , 𝑇}                          (1) 

Since non-shiftable loads are immutable, the non-shiftable appliance agent's reward 
solely relates to power costs. 

 The reward of power-shiftable appliance agent 

𝑟௧
ௌ = −Ƥ௧ൣ𝐸௧

ௌ − ƛ௧
௦൧

ା
− 𝛼

ௌ(𝐸,௫
ௌ − 𝐸௧

ௌ)ଶ 𝑗 𝜖 𝛺ௌ  𝑡 = {1,2, . . . , 𝑇}  (2) 

Where the cost of electricity is shown in the first term and the cost of unhappiness 
resulting from power-shiftable appliances' lower power ratings is shown in the second. 
A quadratic function with an application-dependent coefficient[68], 𝛼𝑗 𝑃𝑆, defines this 
dissatisfaction cost. It can be modified to create a trade-off between the cost of power 
and the degree of satisfaction. 

 

 The reward of time-shiftable appliance agent 

𝑟௧
்ௌ = −Ƥ௧[𝑢௧𝐸௧

்ௌ − ƛ௧
௦]ା − 𝛼

்ௌ(𝑡
௦ − 𝑡

)ଶ 𝑚 𝜖 𝛺்ௌ 𝑡 = [𝑡
 , 𝑡

ௗ]     (3) 

Where 𝒖𝒎𝒕 is the binary variable that denotes the time-shiftable appliance 𝑚's operating 
position in time slot 𝑡, 𝒖𝒎𝒕 = 1 (on) or 𝒖𝒎𝒕 = 0 (off). The waiting period for time-
shiftable loads to begin would increase homeowner discontent costs when they are 
scheduled. Thus, while using time-shiftable equipment, the electricity expense (first 
term) and the discontent cost (second term) should be considered concurrently. The 
dissatisfaction coefficient, or 𝜶𝒎

𝑻𝑺, is based on an individual's dependence on devices 
and describes the tolerance of waiting time for the appliance. Therefore, a larger 𝜶𝒎

𝑻𝑺 
indicates a higher likelihood of discontent when waiting for the appliance to start. Keep 
in mind that the time-shiftable appliance 𝑚 should begin operating during its regular 
operating hours [𝒕𝒎

𝒊𝒏𝒊, 𝒕𝒎
𝒆𝒏𝒅]. 

 Total Reward of HEM System 
The total reward 𝑅 can be obtained by giving the rewards (see Eqs. (1 – 3)) of each 
agent in the suggested HEM system. 

R = -∑ ൝
Ƥ൬ൣா

ಿೄିƛ
ುೇೞ൧

శ
ିቂாೕ

ುೄିƛೕ
ುೇೞቃ

శ
ିൣ௨ா

ೄିƛ
ುೇೞ൧

శ
൰

ି൬ఈೕ
ುೄቀாೕ,ೌೣ

ುೄ ିாೕ
ುೄቁ

మ
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ೄ൫௧
ೞ ି௧

൯
మ

൰
ൡఢ்             (4) 

 Action-value Function 
The predicted sum of future rewards for the horizon of 𝐾 time steps can be used to 

assess the quality of action 𝒂𝒕 under state  𝒔𝒕, or energy consumption scheduling in 
time slot 𝑡. 
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Ϙగ(𝑠, 𝑎) = ƛగൣ∑ 𝛾 . 𝑟௧ାଵ | 𝑠௧ = 𝑠, 𝑎௧ = 𝑎
ୀ ൧                    (5) 

Where 𝜋 is the policy mapping from a system state to an energy consumption schedule, 

and Ϙ𝝅(𝒔, 𝒂) is the action-value function. The discount rate, represented by 𝛍 ∈ 
[0,1], indicates the proportional significance of present rewards in relation to future 
ones. When 𝛾 = 0, the agent appears to be myopic since it is solely concerned with the 
reward that is being offered now, but 𝛾 = 1 shows that the agent is foresighted and takes 
future rewards into account. A fraction in the range [0,1] for 𝛾 is recommended in order 
to balance the trade-off between the present reward and the future reward. 
Finding the ideal policy 𝜋, or a series of ideal operating actions for each household 
appliance, is the goal of the energy consumption scheduling issue in order to maximize 
the action-value function. 

e. Decentralized Decision-Making: Agents make decisions autonomously based on their local 
observations and interactions with the environment. Decentralized MARL algorithms, such as 
Q-learning, Deep Q-Networks (DQN), or Policy Gradient methods, enable agents to learn 
optimal policies independently while coordinating their actions to achieve collective goals. 

f. Learning from Data: Data-driven techniques play a crucial role in initializing agent policies, 
learning from historical data, and updating models over time. Machine learning algorithms, 
such as supervised learning or reinforcement learning, can be used to train initial policies or 
improve agent performance based on feedback from the environment. 

g. Adaptation to Dynamic Environments: The MARL framework enables agents to adapt to 
changes in the environment, such as fluctuations in occupancy patterns, weather conditions, or 
energy prices. Agents continuously learn from new data and adjust their policies accordingly, 
ensuring robust performance in dynamic scenarios. 

h. Evaluation and Optimization: The performance of the MARL-based energy management 
system is evaluated based on metrics such as energy efficiency, cost savings, and user comfort. 

4.2 The Markov decision process (MDP) 
A paradigm for making decisions sequentially is the Markov Decision Process (MDP). 

MDP M = (S, A, T, γ, R) typically consists of the following: 

 S: is the state space. 
 A: is the action space. 
 T: S × A × S → [0, 1] is the transition probability model. 
 γ: is the discount factor. 
 R: S × A × S → R is the reward function. 
 a policy is a set of functions π (a|s): S → A. 

The aim of MDP is to find a policy that maximizes ∑ 𝑬[𝛄𝒕𝑹( 𝒔𝒕, 𝒂𝒕,  𝒔𝒕+𝟏)]ஶ
𝒕ୀ𝟎 . The Markov 

property is satisfied by the state transition since just the previous state and the current action 
are needed for the future state to occur. States are not always observable in the real world. For 
instance, the position of the PV panel and the weather have an impact on PV generation. The 
condition that is hidden from us is made up of this latent data. What we see is that the Markov 
property does not hold for the PV generating value in the past.[69] This research presents an 
innovative approach to data-driven HEM (Home Energy Management) using multi-agent 
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reinforcement learning. The challenge of scheduling household energy usage one hour in 
advance is defined as a finite Markov decision process (FMDP) with discrete time intervals. 

4.3 The ELM based feedforward neural networks for uncertainty prediction 
ELM based feedforward neural networks offer an alternative approach for uncertainty 
prediction in the context of multi-agent energy optimization. ELM is a type of neural network 
that is particularly suited for real-time learning and prediction tasks.[70] 

In the context of renewable energy management, ELM-based feedforward neural networks can 
be utilized to predict uncertainty associated with energy generation and consumption patterns. 
By leveraging historical data on renewable energy production, weather fluctuations, and user 
behavior, these networks can forecast uncertain scenarios and variability in energy supply and 
demand. This predictive capability can aid agents in making informed decisions to optimize 
energy dispatch and storage strategies, thereby mitigating the impact of uncertainty on smart 
home energy management.[71] 

4.3.1 Advantages of ELM-Based Feedforward Neural Networks 
ELM-based neural networks offer fast learning capabilities, making them suitable for 
processing large volumes of data in real-time. This aspect is particularly beneficial for 
applications in smart home environments where rapid adaptation to changing conditions is 
essential.[72] Additionally, it requires minimal tuning of parameters, reducing the complexity 
associated with traditional neural networks and enhancing their efficiency in uncertainty 
prediction tasks.it also excel in their ability to handle non-linear problems and high-
dimensional data. This makes them well-suited for capturing the complex and dynamic nature 
of energy optimization tasks within smart home environments. The network's feedforward 
architecture enables efficient and straightforward information flow, resulting in expedited 
prediction and decision-making processes.[73] And it exhibits robust generalization 
performance, allowing them to effectively adapt to diverse and evolving patterns in energy 
consumption and production. This robustness is instrumental in ensuring reliable uncertainty 
predictions and facilitating adaptive energy management strategies that align with changing 
environmental and user dynamics.[74] Furthermore, the simplicity of ELM-based networks 
contributes to their computational efficiency, reducing the computational burden associated 
with uncertainty prediction tasks. This efficiency is particularly advantageous in scenarios 
where real-time responsiveness and low-latency decision-making are essential for effective 
energy optimization and smart home management.[75] 

4.3.2 Integration of ELM-Based Networks with data-driven solution 
Since the input weights and biases of the hidden layer are randomly generated and free to be 
modified further when employing ELM algorithm, various special features can be acquired, 
e.g., fast learning speed and strong generalization. To deal with the uncertainties of energy 
pricing and solar generations, we present an ELM based feedforward NN to dynamically 
anticipate future trends of these two uncertainties. Specifically, at each hour, the inputs of the 
trained feedforward NN are past 24-hour energy price data and solar generation data, and its 
outputs are the anticipated future 24-hour trends of electricity prices and solar generations. This 
expected information will be supplied into the decision-making process of energy consumption 
scheduling, as explained in the following subsection. 
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Figure 12 ELM-Based Networks with data-driven solution 

The diagram in figure 12 illustrates a reinforcement learning (RL) based data-driven Home 
Energy Management (HEM) system. 

 The system collects historical data on electricity prices and solar generation over the past 
24 hours. This data is used as input for the predictive model. 

 A feedforward neural network is employed to predict future trends based on the past data. 
The input layer takes in the past 24-hour data, processes it through hidden layers, and 
produces output representing the future 24-hour trends of electricity prices and solar 
generation. 

 The predicted future trends are fed into the Q-learning module. The Q-learning algorithm 
maintains a Q-table, which stores the expected rewards for state-action pairs. 

 he environment is updated based on the actions taken by the RL agent. This interaction 
continuously informs the Q-learning algorithm, allowing it to learn and optimize the 
scheduling of home appliances to reduce costs and improve efficiency. 

In summary, the system uses past data to predict future trends with a neural network, which 
then informs an RL-based decision-making process to optimize the operation schedules of 
home appliances. This integration aims to enhance energy management by making informed, 
cost-effective decisions. 

4.4 Reinforcement Learning (RL Algorithms) 
The proposed reinforcement learning-based data-driven method consists of two main 
components an ELM-based feedforward neural network trained to predict future trends of 
electricity prices and solar generations, and a multi-agent Q-learning algorithm used to make 
hour-ahead energy consumption decisions. 

Algorithm 1: Demonstrates the proposed data-driven solution approach for energy 
management in a smart home. The algorithm starts by setting up parameters and then proceeds 
to cycle through time slots. During each iteration, it runs the home energy management system, 
gathers data on future electricity prices and solar generation, and guides agents' actions 
according to their dissatisfaction coefficients. 
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Algorithm 1: Proposed Data-driven Solution Approach 

1. Initialization: Begin by setting up initial parameters like power rating, 
time considerations, dissatisfaction coefficient 𝛼, discount factor 𝛾, and 
learning rate 𝜃. 

2. Loop over time slots: Iterate over each time slot 𝑡 from 1 to 𝑇. 
3. HEMS execution: For the HEMS, execute Algorithm 2. 
4. Receive information: Obtain extracted information about future 

electricity prices and solar generations. 
5. Agent processing: For each agent, perform the following steps: 

o Sort agents in descending order based on dissatisfaction 
coefficient 𝛼. 

o Execute Algorithm 3. 
6. End loop: End the loop over time slots. 

Algorithm 2: Involves updating the input data for past electricity prices and solar generation, 
then using a feedforward neural network to predict future electricity prices and solar generation 
trends. The initial weights and biases of the network, along with past data, are used as inputs 
to forecast future values, which are then presented as the output. 

 

Algorithm 2: Feedforward neural network (NN) used for feature extraction 
1. Update Data: 

o Update the input data for electricity prices {Ƥ௧ିଶଷ … … Ƥ௧} and 
solar generation {ƛ௧ିଶଷ

ௌ … … . ƛ௧
ௌ}. 

2. Input: 
o Initial weights and biases of the network 
o Past electricity price data {Ƥ௧ିଶଷ … … Ƥ௧}. 
o Past solar generation data {ƛ௧ିଶଷ

ௌ … … . ƛ௧
ௌ}. 

3. Extract Future Trends: 
o For electricity prices: 
o Predict future electricity prices  {Ƥ௧ାଵ Ƥ௧ାଶ Ƥ௧ାଷ . . .  Ƥ்} using the 

neural network with input features  {Ƥ௧ିଶଷ … … Ƥ௧} 
o For solar generations: 
o Predict future solar generations {ƛ௧ାଵ

ௌ  ƛ௧ାଶ
ௌ  ƛ௧ାଷ

ௌ  . . .  ƛ்
ௌ}using the 

neural network with input features {ƛ௧ିଶଷ
ௌ … … . ƛ௧

ௌ}.. 
4. Output Extracted Information: 

o Present the forecasted future trends of electricity prices and solar 
generations as the output. 

 

Algorithm 3: Initialize parameters and Q-values, then iterate through episodes by selecting 
actions based on a greedy policy, observing rewards and next states, and updating Q-values 
until convergence is achieved, ultimately outputting the optimal policy for energy management. 
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Algorithm 3: Optimizing HEM with Q-Learning Algorithm 
1. Initialization: 

Set 𝜸, 𝜶 parameters and environment rewards in matrix. 
Initialise Ϙ( 𝒔𝒕, 𝒂𝒕), ∀𝒔 ∈ 𝑺, ∀𝒂 ∈ 𝑨 

2. Repeat for each episode 𝜎: 
Initialize the starting state 𝑠 

3. Repeat: 
 Choose the action 𝑎𝑡: Based on the current state 𝑠𝑡, the agent selects an 

action 𝑎𝑡 using Ɛ-greedy policy 
 Observe the current reward 𝒓𝒕( 𝒔𝒕, 𝒂𝒕), and the next state  𝒔𝒕ା𝟏: Interact 

with the environment by taking the chosen action 𝒂𝒕 and observe the 
resulting reward and the next state 

 Update the Q-value Ϙ( 𝒔𝒕, 𝒂𝒕), based on Eq. (8) 
4. Until 𝒔𝒕ା𝟏 is terminal: Continue the loop until reaching a terminal state, 

where the episode ends 
5. If | Ϙ(𝛔) − Ϙ(𝛔ି𝟏)| ≤ 𝜏 then 𝝈 = 𝝈 + 𝟏 . 
6. Else Exit loop. 
7. Output the best policy   𝝅∗ 𝒊. 𝒆. , {𝒂𝒕

∗ , 𝒂𝒕ା𝟏 
∗ , 𝒂𝒕ା𝟐 

∗ , 𝒂𝒕ା𝟑
∗  , 𝒂𝑻

∗ }. 
8. Implement the optimal action 𝒂௧

∗ for the current time slot t. 

5 Experimental results 
5.1 Data Set 
In this study, we used actual data to train our proposed feedforward neural network. 
Specifically, we collected hourly data on electricity prices and solar generation over a period 
of two years, from May 1, 2024, to May 4, 2024. This data, covering 4 days, was obtained from 
PJM, an organization that operates a regional transmission organization in the United 
States.[76] The use of this real-world data ensures that our model is trained on accurate and 
relevant information, which improves its ability to predict future trends and make reliable 
decisions. 

5.2 Experimental environment 
Python: Is a high-level, interpreted programming language 
known for its readability, simplicity, and versatility. It is a 
Programming language having properties like it is interpreted, 
object-oriented and it is high-level too. created in 1980s by 
Guido van Rossum during his research at the National 
Research Institute for Mathematics and Computer Science in 
the Netherlands and first released in 1991. It is widely used in 
machine learning due to its extensive libraries and frameworks, 
such as TensorFlow, Keras, and scikit-learn, which provide 
powerful tools for building and deploying machine learning 
models efficiently.[77] 

 
Figure 13 Python’s logo (taken 
from www.freebiesupply.com) 
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Google colab: short for Google Colaboratory, is 
a free, cloud-based platform provided by Google 
that allows users to write and execute Python 
code in a Jupyter Notebook environment. It is 
particularly popular for machine learning, data 
analysis, and education due to its ease of use and 
accessibility.[78] 
We use google colab to train our program and test 
our data with the help of , processing all this data 
can require powerful hardware, which is where 
Google’s cloud comes in. 

 
Figure 14 Google Colab’s logo (taken from 

www.stickpng.com) 

 
TensorFlow: is an open-source machine learning 
framework developed by the Google Brain team. It is 
widely used for building and deploying machine learning 
and deep learning models. TensorFlow assists with all 
stages of the process, from data preparation all the way 
through to running the models.[79] 
 
We use it  to build our models and train the data-intense 
neural networks. 

 
Figure 15 TensorFlow’s logo (taken from 

albertfattal.com) 

 

Pandas: is an open-source data 
manipulation and analysis library for 
the Python programming language. It 
provides data structures and 
functions needed to work with 
structured data seamlessly and 
efficiently. It simplifies the process 
of data manipulation and analysis, 
making it an essential library for 
anyone working with data in 
Python.[80] 

 
Figure 16 Pandas’s logo (taken from www.freecodecamp.org) 

 

 
 
 
NumPy (Numerical Python): is a fundamental 
library for numerical computing in Python. It 
provides support for large, multi-dimensional 
arrays and matrices, along with a collection of 
mathematical functions to operate on these 
arrays.[81]  

Figure 17 NumPy’s logo (taken from 
branditechture.agency) 
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Matplotlib: is a comprehensive library for creating 
static, animated, and interactive visualizations in 
Python. It is widely used in data science, machine 
learning, and scientific research for its ability to 
generate a wide variety of plots and graphs.[82] 

 
Figure 18 matplotlib’s logo (taken from 

seeklogo.com) 

 
 
PyTorch: is an open-source machine learning library 
developed by Facebook's AI Research lab (FAIR). It is 
widely used for deep learning applications due to its 
flexibility, ease of use, and dynamic computational 
graph capabilities.[83]  

Figure 19 PyTorch’s logo (taken from 
http://softscients.com) 

5.3 Experimental parameters 
In experimental setups, both cost evaluation and the dissatisfaction coefficient are key 
parameters that need to be defined and adjusted to evaluate the performance of the MARL-
based SHEMS: 

5.3.1 Cost evaluation  
Cost evaluation is a critical aspect of SHEMS as it directly relates to the financial impact of 
energy consumption and the effectiveness of the energy management strategies implemented 
by the system. The primary cost component, representing the total monetary expense incurred 
by consuming electricity. 

Energy consumption cost is calculated as the product of the amount of electricity consumed 
(measured in kilowatt-hours, kWh) and the electricity price (cents per kWh). when the 
electricity price varies with time (e.g., peak vs. off-peak rates), the cost calculation needs to 
consider these fluctuations. 

The reward function in MARL incorporates cost-related metrics to guide the learning process. 
A typical reward function might be: 

R= −(Energy Consumption Cost + Peak Demand Charges) − α⋅User Dissatisfaction 

5.3.2 User comfort 
The dissatisfaction coefficient α: This coefficient essentially quantifies the level of user 
dissatisfaction resulting from deviations from their preferred comfort settings, such as 
temperature or appliance usage schedules. 

α represents a numerical value that quantifies the discomfort or dissatisfaction experienced by 
users when the system's actions do not align with their preferences. 
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It is used in the reward function to penalize the system for actions that lead to user discomfort, 
thereby encouraging the system to find a balance between optimizing energy consumption and 
maintaining user comfort. 

Incorporation in Reward Function: In a typical MARL setup for SHEMS, the reward 
function is designed to reflect both the energy consumption and the level of user satisfaction. 
A common form of the reward function 𝑅 might include terms for both energy savings 𝐸 and 
user satisfaction 𝑆:  R=−E−α⋅S  

Here, 𝐸 represents the energy consumed (or cost associated with it), and 𝑆 represents the 
dissatisfaction or deviation from user preferences. The coefficient α scales the dissatisfaction 
term, effectively controlling its impact on the overall reward. 

Impact on System Behavior: A higher value of 𝛼 increases the penalty for user dissatisfaction, 
making the system more conservative in making energy-saving decisions that would 
significantly affect user comfort. Conversely, a lower value of 𝛼 reduces the emphasis on user 
satisfaction, allowing the system to prioritize energy savings more aggressively, even at the 
cost of some user discomfort. 

The dissatisfaction coefficient 𝛼 in SHEMS with MARL is a critical parameter that helps 
balance the trade-off between energy efficiency and user comfort. By appropriately 
tuning 𝛼, the system can ensure that energy-saving measures do not excessively 
compromise user satisfaction, thereby achieving a more optimal and user-friendly home 
energy management solution. 

5.4 Results and discussion 

5.4.1 Case Study setup 
Name Diss. Coeff Type Power Rating 

(kWh) 
Time Slot 

REF 100 NS 0.5 [1, 8] 
AS 100 NS 0.1 [1, 8] 

AC1 0.05 PS [0.7, 1.4, 0.1] [1, 8] 
AC2 50 PS [0.7, 1.4, 0.1] [1, 8] 
HTR 0.12 PS [0.5, 1.5, 0.1] [1, 8] 
L1 20 PS [0.2, 0.6, 0.1] [5, 7] 
L2 0.03 PS [0.2, 0.6, 0.1] [5, 7] 

WM 0.10 TS 0.7 [6, 8] 
DW 0.06 TS 0.3 [6, 8] 

Table 4 Parameters of each house appliances 

This chapter involves conducting simulations using a total of nine appliances, including two 
solar panels, two non-shiftable appliances (REF and AS), five power-shiftable appliances 
(AC1, AC2, HTR, L1, L2), and two time-shiftable appliances (WM, DW). The specifications 
of these household appliances are shown in Table 4. In addition, our proposed HEMS approach 
is applicable to Buildings that have a greater number of home appliances and renewable 
resources. Python is utilized to implement all simulations in Google Colab, and graphs are 
drawn with PyTorch. 
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5.4.2 Feedforward NN performance 

 

Figure 20 Comparison of the electricity price and the actual electricity price 

 

Figure 21 Comparison of the predicted solar generation and  the actual solar generation 

Figure 22 , and 23 demonstrate the efficacy of the proposed feedforward neural network in 
extracting features from energy prices and solar generations. The blue line in both of these 
figures reflects the projected future values, whereas the orange line represents the actual 
numbers. It is evident that the extracted trends of power prices and solar generations closely 
resemble the actual trends, although there may be slight discrepancies in some cases. 
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5.4.3 Q-learning algorithm performance 
 

 

Figure 22 Electricity cost with and without DR 

Figure 22 provides the daily electricity cost of individual household appliances under two 
scenarios: with and without demand response (DR).The analysis of electricity expenses in these 
two scenarios demonstrates that the implementation of Demand Response (DR) can lead to a 
substantial reduction in electricity expenditures. 

6 Conclusion 
In conclusion, a data-driven approach to energy management in smart homes using multi-agent 
reinforcement learning holds tremendous potential for maximizing efficiency, reducing costs, 
and promoting sustainability. By harnessing the power of artificial intelligence and leveraging 
vast amounts of data, MARL empowers smart home ecosystems to adapt, learn, and evolve in 
pursuit of optimal energy usage. As we strive towards a more energy-efficient future, MARL 
stands as a beacon of innovation and progress in the realm of smart home technology.



 

Chapter 3 
A fuzzy Q learning approach for multi-

agent energy management in smart 
homes 
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1 Introduction 
MARL offers a decentralized framework where autonomous agents interact with the 
environment and each other to learn optimal energy usage strategies. This distributed nature 
enables scalability and adaptability, crucial for handling the diversity of devices and user 
preferences in smart homes. 

Fuzzy logic, on the other hand, provides a mechanism for dealing with uncertainties and 
imprecise data—a common characteristic of residential environments. By capturing and 
reasoning with vague or ambiguous information, fuzzy logic enhances the robustness and 
flexibility of decision-making processes in energy management systems. 

In this chapter, we explore the synergies between MARL and fuzzy logic, aiming to develop a 
comprehensive approach for intelligent home energy management. By integrating these two 
techniques, we seek to harness the collective intelligence of autonomous agents while 
leveraging the nuanced reasoning capabilities of fuzzy logic. This integration promises to 
overcome the limitations of traditional methods and unlock new opportunities for optimizing 
energy usage in smart homes. 

Through theoretical analysis, simulation studies, and real-world experiments, we aim to 
demonstrate the effectiveness of our proposed approach. We anticipate that our research will 
contribute to advancing the state-of-the-art in smart home automation, offering scalable, 
adaptive, and intelligent solutions for energy management. Ultimately, our goal is to pave the 
way towards sustainable and energy-efficient living environments that prioritize both 
environmental conservation and user comfort. 

2 Contribution statement 
Fuzzy logic contributes significantly to the efficiency, robustness, and adaptability of a multi-
agent reinforcement learning (MARL) home energy management system (HEMS). Its 
integration addresses several key challenges and enhances the overall performance of the 
system. 

 We’ll integrate fuzzy logic with MARL to handle uncertainties and imprecise data 
inherent in smart home environments. Fuzzy logic provided a robust mechanism for 
making nuanced decisions under uncertainty, enhancing the agents' ability to manage 
energy effectively. 

 Fuzzy logic incorporates human-like reasoning through a set of fuzzy rules that map 
inputs to outputs in a way that is intuitive and interpretable. These rules help agents 
make better decisions in complex, uncertain environments. 

 Fuzzy membership functions can be dynamically adjusted based on real-time data, 
enabling our system to adapt to changing conditions and user preferences. 
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3 Fuzzy Reinforcement Learning 
In recent years, the adoption of fuzzy reinforcement learning in multi-agent systems has 
garnered significant attention in the field of smart homes energy optimization. It offers a unique 
approach to decision-making under uncertainty, allowing agents to navigate complex and 
dynamic environments with imprecise information.[84] 

One of the key advantages of fuzzy reinforcement learning is its capability to handle partial 
observability and uncertain data, which is particularly relevant in the context of smart homes 
energy management. By incorporating fuzzy sets and fuzzy logic, agents can effectively deal 
with vague or indeterminate information, enabling them to make robust decisions in scenarios 
where traditional crisp modeling may fall short.[85] It can enhance the adaptability of multi-
agent systems in smart homes by enabling agents to learn from imprecise feedback and 
progressively improve their decision-making processes. This adaptive learning mechanism is 
essential in addressing the dynamic nature of energy usage patterns and accommodating user 
preferences, thereby contributing to more personalized and efficient energy management 
solutions.[86] 

With its integration in multi-agent systems, it extends to the optimization of distributed energy 
resources within smart homes. By leveraging fuzzy logic-based control mechanisms, agents 
can dynamically adjust the utilization of energy-producing devices, such as solar panels, based 
on varying environmental conditions and user requirements. This flexibility in decision-
making contributes to maximizing the overall energy efficiency and resilience of the smart 
home ecosystem.[87] 

The application of fuzzy reinforcement learning in multi-agent systems aligns with the 
overarching goal of achieving sustainable and efficient residential energy usage. By enabling 
agents to reason and act in uncertain and ambiguous environments, fuzzy reinforcement 
learning contributes to the development of robust and adaptive energy optimization strategies 
that can effectively balance comfort, cost-effectiveness, and environmental impact.[88] 

As research and development in the field of smart homes energy optimization progress, the 
integration of fuzzy reinforcement learning in multi-agent systems is poised to play a pivotal 
role in addressing the inherent uncertainties and complexities associated with energy 
management. The combination of fuzzy logic principles and reinforcement learning techniques 
offers a promising avenue for creating intelligent, adaptable, and user-centric energy 
optimization solutions within smart home environments.[89] [90] 

3.1 Fuzzy sets and Fuzzy systems 
Fuzzy sets and fuzzy systems are mathematical frameworks used to represent and reason with 
uncertain or vague information in decision-making processes. Developed by Lotfi A. Zadeh in 
the 1960s as an extension of classical set theory and logic, fuzzy logic provides a means of 
capturing and processing imprecise or qualitative information, which is prevalent in many real-
world applications.[91] 
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3.1.1 Fuzzy Sets 
 Extension of Classical Sets: In classical set theory, an element either belongs to a set 

or does not. Fuzzy set theory relaxes this crisp boundary by allowing elements to belong 
to a set to varying degrees, represented by membership grades between 0 and 1. 

 Membership Functions: A fuzzy set is defined by a membership function that assigns 
a degree of membership to each element of the universe of discourse. This membership 
function can take various forms, such as triangular, trapezoidal, or Gaussian, depending 
on the characteristics of the fuzzy set. 

 Representation of Uncertainty: Fuzzy sets provide a flexible and intuitive way to 
model uncertainty, ambiguity, or imprecision in data or knowledge representation. 
They are particularly useful in domains where quantitative measurements may be 
subjective or qualitative in nature.[92] [93] 

 Fuzzy sets provide a mathematical framework for representing and reasoning with 
vague or ambiguous information, allowing for a more expressive and flexible modeling 
of energy optimization variables and objectives.[94] 

3.1.2 Fuzzy Systems 
 Fuzzy Logic: Fuzzy logic is a formalism for reasoning under uncertainty, where 

linguistic variables and fuzzy rules are used to express knowledge and make decisions. 
Fuzzy logic extends classical Boolean logic by allowing intermediate truth values 
between true and false. 

 Fuzzy Inference: Fuzzy inference is the process of deriving fuzzy conclusions from 
fuzzy premises using fuzzy rules and fuzzy reasoning mechanisms. It involves 
fuzzification (converting crisp inputs into fuzzy sets), rule evaluation (applying fuzzy 
rules), and defuzzification (converting fuzzy outputs into crisp values). 

 Applications: Fuzzy systems find applications in a wide range of fields, including 
control systems, pattern recognition, decision support systems, expert systems, artificial 
intelligence, and robotics. They are particularly well-suited for tasks involving 
uncertainty, approximation, and human-like reasoning. 

 Type-1 Fuzzy Systems: In Type-1 fuzzy systems, each fuzzy set has a crisp 
membership function that maps elements of the universe of discourse to degrees of 
membership. Type-1 fuzzy logic operates on single-valued fuzzy sets and is relatively 
straightforward to implement and interpret. 

 Type-2 Fuzzy Systems: Type-2 fuzzy systems generalize Type-1 fuzzy logic by 
allowing the membership function of a fuzzy set to itself be fuzzy. This introduces a 
higher level of uncertainty and complexity but can provide more expressive power and 
better handling of uncertainty in certain applications.[95] [96]   

4 Proposed fuzzy Q learning (FQL) 
We utilize the Q-learning technique to leverage the knowledge we have obtained about the 
expected future pricing of power and the outputs from solar panels to identify the best policy, 
and we integrate fuzzy logic into the Q-learning framework by incorporating fuzzy evaluations 
into the reward function. This enhancement enables the system to account for the uncertainties 
and imprecision inherent in the environment, leading to more nuanced and effective energy 
management decisions. Specifically, fuzzy logic is used to evaluate the rewards associated with 
the operation of various appliances, balancing energy efficiency, cost, and user comfort. 
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4.1 Fuzzy Logic Control approach 
Fuzzy logic (FL) is founded on the notion that many ideas and variables in the physical world 
cannot be accurately specified using precise numerical values. In our case this phenomenon 
occurs because some phrases, such as "hot," might have varying interpretations and may not 
be directly linked to a specific temperature that represents the concept of "hot." Consequently, 
FL offers us a more flexible and sophisticated approach in describing these notions by 
assigning degrees of membership to values that encapsulate them. 
Fuzzy logic (FL) has found applications in diverse fields including control systems, decision-
making, pattern recognition, and data modeling. In our systems, fuzzy logic can be employed 
to modify the system's output by considering various input variables, such as temperature and 
humidity, and their levels of membership in fuzzy sets. we can  utilize it to assess the ambiguity 
in decision-making. and the lack of accuracy in the data, leading to decisions being made using 
vague guidelines. 
FL operates with approximations rather than precise values. A Fuzzy Inference System (FIS) 
facilitates the transformation of inputs into outputs by utilizing a collection of fuzzy rules and 
their corresponding fuzzy Membership Functions (MFs). Figure 23 shows a diagram of FL 
controller.[97] 

 
Figure 23 Fuzzy logic control (FLC) 

 We Define the variable for the input and the output of the system. 
 Determine the fuzzy sets with their membership function (Membership bell function 

and triangular membership function) for each input and output variable. 
 We’ll define the rules that’ll produce the outputs of the system. 
 Fuzzification entails assessing the level of membership of each input variable to each 

fuzzy set. 
 Fuzzy inference involves utilizing the rules to assess the degree of membership of each 

output variable to each fuzzy set based on the fuzzified input variables. 
 Finally, the defuzzification process entails evaluating the level of membership of each 

output variable to each fuzzy set and consolidating them to derive a singular crisp value 
for each output variable. 
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4.1.1 Inputs and outputs of the system 
Input variables: Input fuzzy variables are variables that take input values in the fuzzy 
inference system. These variables are typically characterized by membership functions that 
describe how each input value belongs to different fuzzy sets. 

 
In our system, the input fuzzy variables represent 
the electricity_Price, solar_Generation and 
power_Demand: 
a. Electricity price: In figure 24 he generalized 
bell membership function (gbellmf) is used to 
define cheap and expensive fuzzy sets for the 
Electricity price with a universe discourse of [0 
100] (DA/kWh). 

 
Figure 24 Electricity price 

 
Figure 25 Solar Power generation 

 
Figure 26 Power Demand 

b. Solar generation: In figure 25 the triangular 
membership function (trimf) is used to define 
cold, medium and hot fuzzy sets for the Solar 
generation with a universe discourse of [0 100] 
(DA/kWh). 

c. Power demand: In figure 26 the triangular 
membership function (trimf) is used to define low, 
average and high for the fuzzy sets of the power 
demand with a universe discourse of [0 6000] 
(watt). 

Output variables: These output rewards guide the decision-making process within our HEMS, 
helping users or the automated systems make choices that align with energy efficiency goals, 
cost savings, or other predefined criteria. The specific actions associated with each reward level 
can be customized based on the context and objectives of the HEMS implementation. 

Evaluating the degree to which the action made at is appropriate for a certain state is the goal 
of this reward. This is an example of fuzzy logic in action evaluation in a given state. 
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The system's outputs, which are shown in 
figures 27, 28, and 29, are an assessment 
of the random action that was specified in 
Q-learning. The fuzzy sets are classified as 
Very Good Action (VGA), Good Action 
(GA), and Bad Action (BA) for each action 
performed (output). With a triangular 
membership function (trimf) and a 
universal discourse of [0 100], which uses 
values out of 100 to assess every action 
that is conceivable. 

 
Figure 27 Reward of Non-shiftable appliances 

 

 
Figure 28 Reward of Power-shiftable appliances 

 
Figure 29 Reward of Time-shiftable appliances 

4.1.2 Membership functions 
The generalized Bell Membership Function: is a type of membership function used in fuzzy 
logic to define fuzzy sets, it has a bell-shaped curve and is characterized by three parameters 
that control its shape and position. And it’s defined by the following formula[98]:  

𝑔𝑏𝑒𝑙𝑙𝑚𝑓(𝑧; 𝑎, 𝑏, 𝑐) =
1

1 + ൬
|𝑥 − 𝑐|

𝑎 ൰
ଶ 

 x: is the input value. 
 a: is the width parameter (control the width of the bell curve). 
 b: is the slope parameter (control the slope of the curve). 
 c: is the center parameter (defines the center of the bell curve). 

The triangular membership function: is commonly used in fuzzy logic systems to represent 
the degree of membership of a variable to a fuzzy set, it’s defined by three parameters: the left 
endpoint a, the peek b and the right endpoint c. The function increases linearly from a to band 
decreases linearly from b to c ( in the shape of a triangle). Mathematically, the triangular 
membership function is given by[98] : 
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Certainly! In the fuzzy logic system, the trimf function is used to create triangular membership 
functions for the output variables Reward_NS, Reward_PS, and Reward_TS. Triangular 
membership functions are a common choice in fuzzy logic because they are simple yet effective 
in modeling fuzzy sets with a clear peak and linear decrease on both sides. 

Here's how the trimf function is used to define the triangular membership functions for each 
output variable: 

Reward of NS appliances: 

a. Bad Action: fuzz.trimf (Reward_NS.universe, [0, 0, 50]) creates a triangular 
membership function with a peak at 0 and a base ranging from 0 to 50 on the x-axis. 
This represents a low reward or negative outcome for non-shiftable appliances. 

b. Good Action: fuzz.trimf (Reward_NS.universe, [35, 50, 65]) creates a triangular 
membership function with a peak at 50 and a base ranging from 35 to 65 on the x-axis. 
This represents a moderate reward or positive outcome for non-shiftable appliances. 

c. Very Good Action: fuzz.trimf (Reward_NS.universe, [50, 100, 100]) creates a 
triangular membership function with a peak at 100 and a base ranging from 50 to 100 
on the x-axis. This represents a high reward or very positive outcome for non-shiftable 
appliances. 

Reward of PS appliances: 

a. Bad Action: fuzz.trimf (Reward_PS.universe, [0, 0, 50]) creates a triangular 
membership function with a peak at 0 and a base ranging from 0 to 50 on the x-axis, 
similar to Reward_NS. This represents a low reward or negative outcome for power-
shiftable appliances. 

b. Good Action: fuzz.trimf (Reward_PS.universe, [35, 50, 65]) creates a triangular 
membership function with a peak at 50 and a base ranging from 35 to 65 on the x-axis, 
similar to Reward_NS. This represents a moderate reward or positive outcome for 
power-shiftable appliances. 

c. Very Good Action: fuzz.trimf (Reward_PS.universe, [50, 100, 100]) creates a 
triangular membership function with a peak at 100 and a base ranging from 50 to 100 
on the x-axis, similar to Reward_NS. This represents a high reward or very positive 
outcome for power-shiftable appliances. 

Reward of TS appliances:  

a. Bad Action: fuzz.trimf (Reward_TS.universe, [0, 0, 50]) creates a triangular 
membership function with a peak at 0 and a base ranging from 0 to 50 on the x-axis, 
similar to Reward_NS and Reward_PS. This represents a low reward or negative 
outcome for time-shiftable appliances. 
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b. Good Action: fuzz.trimf(Reward_TS.universe, [35, 50, 65]) creates a triangular 
membership function with a peak at 50 and a base ranging from 35 to 65 on the x-axis, 
similar to Reward_NS and Reward_PS. This represents a moderate reward or positive 
outcome for time-shiftable appliances. 

c. Very Good Action: fuzz.trimf(Reward_TS.universe, [50, 100, 100]) creates a 
triangular membership function with a peak at 100 and a base ranging from 50 to 100 
on the x-axis, similar to Reward_NS and Reward_PS. This represents a high reward or 
very positive outcome for time-shiftable appliances. 

4.1.3 Fuzzy rules  
Power 

demand 
Electricity 

price 
Solar 

generation 
NS PS TS 

Low Cheap Cold GA GA GA 
Low Expensive Cold BA GA GA 

Average Cheap Cold BA GA GA 
Average Expensive Cold BA BA GA 

High Cheap Cold BA BA BA 
High Expensive Cold BA BA BA 

Low Cheap Moderate VGA VGA VGA 
Low Expensive Moderate GA VGA VGA 

Average Cheap Moderate GA VGA VGA 
Average Expensive Moderate GA GA VGA 

High Cheap Moderate BA GA GA 
High Expensive Moderate BA GA GA 

Low Cheap Hot VGA VGA VGA 
Low Expensive Hot VGA VGA VGA 

Average Cheap Hot VGA VGA VGA 
Average Expensive Hot GA VGA VGA 

High Cheap Hot GA GA VGA 
High Expensive Hot GA GA GA 

Table 5 Fuzzy rules table, BA=Bad Action, GA=Good action, VGA=Very good action 

Rules define the behavior of the fuzzy logic system based on combinations of input conditions, 
leading to specific outputs in terms of reward levels for different actions or decisions. Each 
rule captures a different scenario or combination of factors that influence the system's response. 

4.2 Fuzzy Q learning method 
The flow chart in figure 30 illustrates the systematic integration of fuzzy logic with a Q-
learning algorithm within a home energy management system. It highlights the sequence of 
processing, fuzzy logic application, reinforcement learning and decision making, 
demonstrating how these components interact to achieve optimized energy management in 
smart homes. 
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Fuzzy Logic Implementation to obtain a 
current reward:  
The mapping of inputs (Electricity price, 
Solar generation and Power demand) to 
outputs (Reward of NS appliances, PS 
appliances and TS appliances) is provided 
by a fuzzy inference system (FIS), which is 
based on a collection of fuzzy rules and 
related fuzzy membership functions (MFs). 
 
Q-learning implementation to make an 
optimal decision:  

 Initialize the Q-learning agent 
responsible for controlling smart 
home devices. 

 The agent selects actions based on 
the current state, Q-values, and ε-
greedy strategy. 

 Define reward functions to evaluate 
the performance of actions in terms 
of the outputs provided by the FIS. 

 Update the Q-values using the Q-
learning algorithm based on the 
observed reward and the maximum 
future reward 

 The ideal Q-values will be 
discovered, upon the Q-matrix 
achieving convergence. 

 Execute the selected actions to 
adjust the operation of smart home 
devices (e.g., turning off lights, 
adjusting thermostat settings). 

 
Assess the system's performance using 
metrics such as energy consumption, cost 
savings, and user comfort levels. 
 
Refine the fuzzy logic rules, Q-learning 
parameters, and system configurations to 
improve overall performance. 

 
Figure 30 Implementation of fuzzy logic and Q-learning in 

the system's operation 
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Figure 31 flow chart of FQL algorithm 
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Detailed Steps of FQL algorithm: 

Step 1: Initialize the fuzzy logic system along with other parameters. 

Step 2: For each time step t : 

 Use the fuzzy logic system to determine rewards based on current inputs (Electricity 
Price, Solar Energy, and Power Demand). 

 Choose an action 𝑎𝑡 for the current state 𝑠𝑡 using the ϵ-greedy policy. 
 Observe the rewards RtNS , RtTS , and RtPS  from the fuzzy logic system. 
 Update the Q-values (𝑠𝑡,𝑎𝑡) using the observed rewards and the Bellman equation. 

Step 3: Check for convergence and repeat the process until optimal policies are learned. 

Step 4: Execute the optimal actions over each hour, ensuring efficient power management. 

5 Experimental results 
5.1 Experimental environment  
In addition to the experimental environment of the previous chapter we’ll also use : 

SciKit fuzzy: (often abbreviated as sklearn) 
which is an open-source machine learning 
library for Python. It is built on top of other 
popular Python libraries like NumPy, SciPy, 
and matplotlib, providing simple and 
efficient tools for data analysis and 
modeling. 
Scikit-learn is widely used for both academic 
research and practical machine learning 
applications.[99] 
 

 
Figure 32 Scikit's logo (logosdownload.com) 

5.2 Experimental parameter  
Cost evaluation: It involves assessing the financial implications of energy consumption and 
management strategies to ensure that the system not only optimizes energy usage and maintains 
user comfort but also minimizes energy costs considering some key Elements:  

 Analyze usage patterns to identify peak consumption periods and high-energy devices. 
 Calculate the total cost of energy consumed over a specific period. 
 Use fuzzy logic to manage uncertainties in energy prices and consumption patterns. 

Fuzzy rules can help adjust the energy consumption dynamically based on the fuzzy 
input variables. 

 Convert precise cost-related inputs into fuzzy values to account for imprecise and 
uncertain factors affecting energy costs. 

Dissatisfaction coefficient: often denoted as α, is a parameter used in optimization problems 
to quantify the level of dissatisfaction or penalty associated with certain decisions or actions. 
It is particularly useful in applications like Home Energy Management Systems (HEMS) where 
multiple objectives must be balanced, such as minimizing energy cost while ensuring user 
comfort and appliance scheduling preferences. In the context of our system, the dissatisfaction 
coefficient α could be used for: 
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 Optimize Energy Usage: Balance between minimizing energy costs and maintaining 
user comfort. A higher α might indicate a higher priority on user comfort over cost 
savings, while a lower α might prioritize cost savings even if it slightly affects user 
comfort. 

 Appliance Scheduling: It can penalize schedules that are inconvenient for users, even if 
they are energy-efficient. 

 Penalty Factor: Act as a penalty factor in an optimization problem. If the energy usage 
deviates from a preferred pattern or exceeds certain limits, α can be used to penalize these 
deviations. 

 Quantify User Comfort: Reflect how much a user is dissatisfied with the operation of 
their appliances. For example, turning off or delaying the operation of certain appliances 
to save energy may increase user dissatisfaction... 

Objective Function: This objective function is used in optimization problems related to energy 
management, where the goal is to find a schedule or strategy that minimizes both the direct 
energy costs (related to energy consumption) and the indirect costs associated with user 
dissatisfaction (related to the timing or pattern of energy usage). Adjusting the dissatisfaction 
coefficient 𝜶 allows balancing between cost optimization and user satisfaction, as a higher 𝜶 
value implies a higher penalty for user dissatisfaction in the optimization process. 

 

where: 

 𝑪𝒕: is the cost of energy at time t. 
 𝑷𝒕: is the power consumption at time t. 
 𝑫𝒕: is the dissatisfaction level at time t. 
 α: is the dissatisfaction coefficient. 
 T: is the total time period. 

The dissatisfaction cost refers to the monetary value associated with user dissatisfaction in a 
given system or scenario. It is calculated by multiplying the dissatisfaction level by a 
coefficient that represents its importance relative to other factors, such as energy cost. This 
dissatisfaction cost is then combined with other costs, such as energy usage, to determine the 
overall cost or expense incurred. 
Here's a step-by-step explanation of how to calculate the dissatisfaction cost: 

1. Define the dissatisfaction coefficient; it determines the weight of dissatisfaction in the 
total cost calculation 

2. Generate dissatisfaction levels 
3. Calculate the dissatisfaction cost. 

Modelling of the dissatisfaction levels on non-shiftable Appliances 

Dissatisfaction levels are generated randomly for each of the 24 time slots using two methods: 
Controlled and Non-Controlled Dissatisfaction Level. 
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1. Non-Controlled Dissatisfaction Level(D1) 
Uses non-shiftable agent. Q_Table to determine the upper limit for dissatisfaction 
levels, focusing on the power consumption without considering energy cost. 

2. Controlled Dissatisfaction Level (D2) 
Uses Q_Table cost to determine the upper limit for dissatisfaction levels, 
incorporating energy costs into the calculation, which reflects a controlled scenario. 

Modelling of the dissatisfaction levels on time-shiftable Appliances 

Dissatisfaction levels are generated randomly for each of the 24 time slots using two methods: 
Controlled and Non-Controlled Dissatisfaction Level. 

1. Non-Controlled Dissatisfaction Level (D1): 
generates dissatisfaction levels based on power consumption values from time-shiftable 
agent. Q_Table, ignoring energy costs. This represents a scenario without control 
measures. 

2. Controlled Dissatisfaction Level (D2): 
generates dissatisfaction levels based on energy costs from Q_Table cost, incorporating 
energy costs into the calculation, which represents a controlled scenario. 

Modelling of the dissatisfaction levels on power-shiftable Appliances 

Dissatisfaction levels are generated randomly for each of the 24 time slots using two methods: 
Controlled and Non-Controlled Dissatisfaction Level. 

3. Non-Controlled Dissatisfaction Level (D1): 
generates dissatisfaction levels based on Energy consumption (WH) values from 
power-shiftable agent. Q_Table, ignoring energy costs. This represents a scenario 
without control measures. 

4. Controlled Dissatisfaction Level (D2): 
generates dissatisfaction levels based on Electricity Price (Centime/Wh) from Q_Table 
cost, incorporating energy costs into the calculation, which represents a controlled 
scenario. 

6 Results and discussion 
6.1.1 Case Study setup 

APPLIANCES TYPE DISSATISFACTION 
COEFFICIENT 

POWER(WH) TIME SLOT 

REF NS 0.03 500 [1, 24] 
AS NS 0.02 100 [1, 24] 

AC1 PS 0.05 [700, 1400, 100] [1, 24] 
AC2 PS 0.06 [700, 1400, 100] [1, 24] 
HTR PS 0.12 [500, 1500, 100] [1, 24] 
L1 PS 0.5 [200, 600, 100] [1, 24] 
L2 PS 0.03 [200, 600, 100] [1, 24] 

WM TS 0.1 700 [6, 8] 
DW TS 0.06 300 [6, 8] 

Table 6 Parameters of each house appliances 
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This chapter involves conducting simulations using a total of nine appliances also, with a main 
difference in the number of time slots. The specifications of these household appliances are 
shown in Table 6. 

6.2 Energy consumption and electricity price 

 
Figure 33 Energy consumption of REF throughout the day 

 
Figure 34 Energy consumption of AS throughout the day 

 

 
Figure 35 Energy consumption of AC1 throughout the day 

 
Figure 36 Energy consumption of AC2 throughout the day 

 

 
Figure 37 Electricity cost for the REF throughout the day 

 
Figure 38  Electricity cost for the AS throughout the day 

 

 
Figure 39  Electricity cost for the AC1 throughout the day 

 
Figure 40  Electricity cost for the AC2 throughout the day 
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Figure 41 Energy consumption of HTR throughout the day 

 
Figure 42 Energy consumption of L1 throughout the day 

 
Figure 43 Energy consumption of L2 throughout the day 

 
Figure 44 Energy consumption of WM throughout the day 

 
Figure 46  Electricity cost for the HTR throughout the day 

 
Figure 47  Electricity cost for the L1  throughout the day 

 
Figure 48  Electricity cost for the L2 throughout the day 

 
Figure 49  Electricity cost for the WM throughout the day 
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Figure 45 Energy consumption of DW throughout the day 

 
Figure 50  Electricity cost for the DW throughout the day 

6.3 User comfort 
The following figures provide a comprehensive view of how energy and dissatisfaction costs 
vary over a 24-hour period for non-shiftable, power-shiftable, and time-shiftable appliances. 

 
Figure 51 cost and user comfort of all appliances throughout the day 
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Figure 52 cost and user comfort of all appliances throughout the day (continues) 

The total cost is particularly high during certain time slots, likely due to the combined effect of 
high energy and dissatisfaction costs 

The Total Cost in energy management considers both energy costs and dissatisfaction costs, 
aiming for an optimal balance to minimize overall expenses while maintaining consumer 
satisfaction. 

Adjusting the value of α allows for tuning the trade-off between cost optimization and user 
satisfaction according to specific preferences or constraints. 

6.4 Comparison between the FQL approach and the MAQL approach 
The figures show that with MAQL approach, the total cost (red line) exhibits sharp peaks and 
valleys, indicating more rigid decision boundaries and higher sensitivity to small changes. In 
contrast, with FQL approach, the smoother variations suggest that costs are averaged out over 
time, reducing the impact of extreme values and making the system more robust. 

With MAQL approach, dissatisfaction costs (orange bars) are lower with clear, distinct values, 
whereas in with FQL approach the higher overall dissatisfaction costs indicate a more nuanced 
understanding of user preferences and dissatisfaction levels, resulting in a better-balanced cost 
structure. 

The integration of fuzzy logic in FQL approach produces smoother, more realistic, and adaptive 
representations of costs and operating hours. This approach minimizes abrupt changes and 
effectively manages uncertainty, leading to a more robust and practical decision-making 
framework. Consequently, it aligns more closely with real-world scenarios where data is 
frequently imprecise and decisions must accommodate varying degrees of uncertainty. 



Chapter 3 - A fuzzy Q learning approach for multi-agent energy management in smart 
homes 

 69 

 

 

 

 
Figure 53 the cost and user comfort of some appliances in 

the MAQL approach 

 

 

 

 
Figure 54 the cost and user comfort of some appliances in 

the FQL approach 

7 Conclusion 
Despite the promising potential of MARL, it faces significant challenges in handling the 
uncertainties and imprecise data typical of real-world scenarios. This is where fuzzy logic, an 
approach designed to model and reason with vagueness and ambiguity, becomes valuable. 
By incorporating fuzzy logic into MARL, we can enhance the decision-making capabilities of 
autonomous agents, enabling them to process imprecise information and make more robust 
and nuanced energy management decisions.
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General Conclusion 
 
The integration of fuzzy logic into a multi-agent reinforcement learning framework for home 
energy management has proven to be a powerful approach for optimizing energy consumption 
in smart homes. By combining the strengths of both techniques, we have developed a system 
that is not only efficient and adaptive but also capable of handling the complexities and 
uncertainties of real-world environments. This research contributes to the advancement of 
smart home technologies, offering innovative solutions that promote sustainable and energy-
efficient living while prioritizing user comfort and satisfaction. 

By employing Q-learning within the MARL framework, our system demonstrated the 
capability to learn optimal energy management policies through continuous interaction with 
the environment. This enabled real-time adaptation to changing energy demands and dynamic 
pricing models. 

The incorporation of user preferences and comfort levels into the decision-making process 
ensured that the energy management strategies were aligned with the occupants' needs. The 
system balanced energy efficiency with user satisfaction, leading to practical and acceptable 
solutions for smart home residents. 

Through extensive simulations, we demonstrated that our integrated fuzzy logic and MARL-
based HEMS significantly outperformed traditional energy management systems. The system 
achieved notable improvements in energy savings, cost reduction, and user comfort, validating 
the effectiveness of our approach.  

While this thesis has laid a solid foundation for intelligent energy management in smart homes, 
several avenues for future research remain, like explore advanced reinforcement learning 
algorithms, such as deep reinforcement learning, to enhance learning efficiency and decision-
making capabilities, thereby enabling the system to handle more complex and high-
dimensional state spaces. Incorporate direct user feedback mechanisms to continually refine 
and tailor energy management strategies to evolving user needs and preferences, potentially 
developing user-friendly interfaces for real-time feedback and adjustments. Develop strategies 
to improve the system's scalability for application in larger buildings, commercial complexes, 
and multi-unit residential areas, possibly through hierarchical or distributed control 
mechanisms. Explore user-centric adaptations that account for diverse behaviors and 
preferences, including personalized energy management plans and adaptive learning 
algorithms tailored to individual user profiles.
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