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Abstract 

The Industrial Internet of Things (IIoT) has transformed industrial processes by seamlessly 

integrating a vast network of interconnected devices. These intelligent devices equipped with sensors 

and network capabilities collect and transmit critical data to enable remote monitoring and control. 

However, this interconnectedness creates a complex ecosystem susceptible to cyberattacks. 

Distributed Denial-of-Service (DDoS) attacks specifically pose a significant threat to IIoT systems, as 

they can cripple operations by overwhelming them with a flood of malicious traffic. Traditional 

security methods often struggle with the evolving nature and sophistication of these attacks. 

This work proposes a novel approach to enhance cybersecurity in IIoT by focusing on the 

development of a robust and efficient DDoS detection system. By leveraging the transformative power 

of deep learning techniques, specifically a Convolutional Neural Network (CNN) model, the system 

aims to identify and mitigate DDoS attacks in real time. The comprehensive Edge-IIoTset dataset 

provides a valuable resource for training and validating the proposed CNN model. The system's 

performance is evaluated using established machine learning metrics. The obtained results will be 

analyzed to assess the effectiveness of the CNN model in detecting DDoS attacks within the IIoT 

environment. 

Keywords: Cybersecurity, Industrial Internet of Things (IIoT), Deep Learning, Convolutional 

Neural Network (CNN), DDoS Attack Detection, Edge-IIoTset Dataset. 
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Résumé 

L'Internet industriel des objets (IIoT) a transformé les processus industriels en intégrant de 

manière transparente un vaste réseau d'appareils interconnectés. Ces appareils intelligents, équipés de 

capteurs et de capacités réseau, collectent et transmettent des données critiques, permettant une 

surveillance et un contrôle à distance. Cependant, cette interconnectivité crée un écosystème complexe 

vulnérable aux cyberattaques. Les attaques par déni de service distribué (DDoS), en particulier, 

constituent une menace importante pour les systèmes IIoT, car elles peuvent paralyser les opérations 

en les submergeant d'un flot de trafic malveillant. Les méthodes de sécurité traditionnelles sont souvent 

confrontées à la nature évolutive et à la sophistication de ces attaques. 

Ce travail propose une nouvelle approche pour améliorer la cybersécurité dans l'IIoT en se 

concentrant sur le développement d'un système de détection DDoS robuste et efficace. En tirant parti 

du pouvoir transformateur des techniques d'apprentissage profond, en particulier d'un modèle de réseau 

neuronal convolutif (CNN), le système vise à identifier et à atténuer les attaques DDoS en temps réel. 

L'ensemble de données complet Edge-IIoTset fournit une ressource précieuse pour la formation et la 

validation du modèle CNN proposé. Les performances du système sont évaluées à l'aide de mesures 

d'apprentissage automatique établies. Les résultats obtenus seront analysés pour évaluer l'efficacité du 

modèle CNN dans la détection des attaques DDoS dans l'environnement IIoT. 

Mots-clés : cybersécurité, Internet industriel des objets (IIoT), apprentissage profond, réseau 

neuronal convolutif (CNN), détection d'attaques DDoS, ensemble de données Edge-IIoTset. 
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 ملخص 

  من   واسعة  لشبكة  السلس  التكامل  خلال  من  الصناعية  العمليات  في  تحولً  (IIoT) الصناعية  الأشياء  إنترنت  أحدثت  لقد

 المراقبة   يتيح  مما  ونقلها،  الهامة  البيانات  بجمع  شبكية،  وقدرات  استشعار  بأجهزة  ةزودالم  الذكية،  الأجهزة  هذه  تقوم.  المترابطة  الأجهزة

 الموزعة  الخدمة  رفض  هجمات  تشكل.  الإلكترونية  للهجمات  عرضة   معقداً  بيئيًا  نظامًا  يخلق  الترابط  هذا  فإن  ذلك،  ومع.  بعد  عن  والتحكم

(DDoS)،  الصناعية  الأشياء   إنترنت  لأنظمة  كبيرًا  تهديداً  التحديد،  وجه  على (IIoT)،  إغراقها  خلال  من  العمليات  تشل  أن  يمكن  لأنها 

 .وتعقيدها الهجمات لهذه المتطورة الطبيعة مع التعامل في صعوبة التقليدية الأمن أساليب تواجه ما غالبًا. الضارة البيانات من بسيل

 تطوير  على  التركيز  خلال  من (IIoT) الصناعية  الأشياء  إنترنت  في  السيبراني  الأمن  لتعزيز  جديداً  نهجًا  العمل  هذا  يقترح

 العصبية   الشبكة  نموذج  وتحديداً  العميق،  التعلم  لتقنيات  التحويلية  القوة  من  الستفادة  خلال  ومن .DDoS عن  للكشف  وفعال  قوي  نظام

 Edge-IIoTset بيانات  مجموعة توفر. الفعلي  الوقت  في  منها  والتخفيف DDoS هجمات  تحديد  إلى  النظام  يهدف  ،(CNN) ةمعقدال

. بها  المعمول  الآلي  التعلم  مقاييس  باستخدام  النظام  أداء  تقييم  يتم.  المقترح CNN نموذج  صحة  من  والتحقق  للتدريب  قيمًا  مورداً  الشاملة

 .IIoT بيئة داخل DDoS هجمات اكتشاف في CNN نموذج فعالية لتقييم عليها الحصول تم التي النتائج تحليل سيتم

  ، (CNN) التلافيفية  العصبية  الشبكة  العميق،  التعلم  ،(IIoT) الصناعي  الأشياء  إنترنت  السيبراني،  الأمن:  المفتاحية  الكلمات

   .Edge-IIoTset بيانات مجموعة ،DDoS هجمات اكتشاف
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General Introduction: 

The Internet of Things (IoT) has revolutionized the interaction between physical objects 

and the digital world by enabling devices embedded with sensors, software, and other 

technologies to exchange data over the internet [1]. The Industrial Internet of Things (IIoT) 

extends this concept further by integrating industrial machinery with sensors and actuators, 

facilitating real-time monitoring and control over the internet. This integration allows for the 

collection, processing, and analysis of vast amounts of data related to industrial processes, 

which can be used to optimize operations, predict future behavior, and ultimately improve 

efficiency [2]. 

As the number of interconnected devices in IIoT systems expands, so do security 

concerns. Protecting critical infrastructure (CI), particularly Internet Industrial Control 

Systems (IICSs), is paramount for businesses. Distributed Denial-of-Service (DDoS) attacks 

are a significant threat, often employing botnets to overwhelm systems with traffic, thereby 

hindering authorized access or slowing operations [3]. 

This thesis proposes an approach to secure IIoT networks: An Intrusion Detection 

System (IDS) built upon an optimized Convolutional Neural Network (CNN) model. CNNs 

are a type of deep learning algorithm particularly adept at processing structured data, such as 

time series, making them ideal for analyzing network traffic patterns. By learning complex 

features that differentiate normal and malicious activities, CNNs can effectively detect 

anomalies indicative of attacks [4]. The proposed model will be trained on a comprehensive 

dataset, such as the Edge-IIoTset dataset, which realistically reflects real-world IIoT 

environments with data from various devices, protocols, and simulated attacks. 

This thesis is divided into four chapters: 

Chapter 1: Fundamentals of IoT, IIoT, Cyber Security: This chapter lays the groundwork 

by introducing the fundamentals of IoT and IIoT, analyzing common attacks targeting IIoT 

environments, and exploring the realm of cybersecurity within this domain. It will also delve 

into the integration of artificial intelligence (AI) for enhanced IIoT security. 

Chapter 2: Cybersecurity Solutions for IIoT: This chapter identifies and categorizes the 

prevailing cybersecurity challenges in IIoT environments. It will conduct a state-of-the-art 
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analysis to examine various approaches and methods currently used to address these 

challenges. 

Chapter 3: Methodology of Training a DL Model: This chapter focuses on the proposed 

solution. It will detail the novel approach for securing IIoT networks using a CNN-based deep 

learning model. The optimization of the CNN model for effective analysis of complex network 

traffic patterns and anomaly detection specific to DDoS attacks will be explained. 

Chapter 4: Development Environment and Simulation: This chapter will present the 

implementation of the Intrusion Detection System (IDS) within the architecture of an industrial 

company's IT and OT (Operational Technology) network and showcase how the trained model 

can be deployed within the IIoT environment, it will also discuss the performance and the 

obtained results of the proposed model, analyzing its effectiveness in detecting DDoS attacks 

within IIoT environments. 
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Chapter 1 

Fundamentals of IoT, IIoT, Cyber Security 

 

 

 

1. Introduction: 

Security is a vital aspect in the domains of Internet of Things (IoT) and Industrial Internet of Things 

(IIoT), deeply ingrained in the structure of interconnected systems. This chapter provides a 

foundational examination, elucidating the fundamental principles governing the fusion of IoT, IIoT, 

and cyber security. Our journey starts with exploring the essence of IoT and IIoT. Clear distinctions 

between these domains emerge, highlighting their unique attributes. Cyber security emerges as a focal 

point, emphasizing its critical role in protecting IIoT operations and navigating the intricate array of 

threats and attacks in these interconnected environments. Advanced security methodologies, ranging 

from Intrusion Detection Systems to Artificial Intelligence, serve as our tools for comprehension and 

defense in this constantly evolving landscape. Through this examination, we establish the groundwork 

for a deeper comprehension of the complexities and interactions within these pivotal domains. 
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2. Basics of Iot & IIot: 

2.1. Internet of Things (IoT): 

The Internet of Things (IoT) comprises a network of physical devices, appliances, vehicles, 

and objects embedded with sensors, software, and connectivity for data collection and sharing. These 

"smart objects" range from basic home gadgets to complex industrial systems, with visions of entire 

smart cities driven by IoT innovations. IoT enables seamless communication between devices and 

internet-enabled entities, creating a vast interconnected network capable of autonomous data exchange 

and task execution. Its applications span diverse sectors such as agriculture, transportation, healthcare, 

and manufacturing, with IoT poised to reshape how we live, work, and interact as internet-connected 

devices proliferate. In enterprises, IoT devices monitor parameters like temperature and energy 

consumption, aiding in operational optimization through real-time data analysis.[5] 

 

Figure 1.1.  Diversity of Iot applications [6] 

2.2. Industrial internet of things (IIoT): 

The industrial internet of things (IIoT) refers to the utilization of smart sensors, actuators, and 

various devices, including radio frequency identification tags, to improve manufacturing and industrial 

operations. These interconnected devices enable data collection, exchange, and analysis, leading to 

insights that enhance efficiency and reliability. IIoT finds applications across diverse industries such 
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as manufacturing, energy management, utilities, and oil and gas. it harnesses the capabilities of smart 

machines and real-time analytics to leverage data generated by traditional machines in industrial 

settings. Its fundamental premise lies in the notion that smart machines excel not only in capturing and 

analyzing data in real time but also in communicating vital information swiftly and accurately, 

facilitating faster and more informed business decisions. Through connected sensors and actuators, 

companies can identify inefficiencies and issues earlier, thereby saving time and resources while 

bolstering business intelligence initiatives. In manufacturing, IIoT holds promise for enhancing quality 

control, promoting sustainable practices, enabling supply chain traceability, and optimizing overall 

supply chain efficiency. Crucially, IIoT plays a pivotal role in industrial processes such as predictive 

maintenance, enhanced field service, energy management, and asset tracking.[7] 

2.3.  Comparisons between Iot & IIot:  

The primary distinction between IoT and IIoT lies in their scope and focus. IoT encompasses 

various connected devices and systems designed to enhance consumer lifestyles, such as smart home 

systems and wearable technology, emphasizing user-friendliness and convenience. In contrast, IIoT 

has a narrower focus, targeting industrial sectors like manufacturing, transportation, and energy. IIoT 

aims to enhance efficiency, productivity, and safety through automation, data analysis, and predictive 

maintenance, enabling businesses to make data-driven decisions and optimize processes.[8] 

 

Figure 1.2.  The Differences between IoT and IIoT [9] 
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ATTRIBUTES 
Industrial Internet of Things – 

IIoT  
Internet of Thing – IoT 

Focus Segment Industrial applications. Domestic/commercial applications. 

Interest 
Complex industrial processes 

optimization via smart devices. 

Daily task automation through 

consumer’s devices. 

Objective 

Aimed at automating machinery to 

ensure safety, efficiency and 

sustainability. 

Aimed at rendering convenience. 

Simply making the user’s life easy. 

Connectivity Both wired and wireless. Usually wireless. 

Cybersecurity 
More advanced and robust 

cybersecurity protocols. 

Generally less sophisticated 

cybersecurity protocols (utility-

centric). 

Interoperability 

CPS-integrated – interoperations with 

new and legacy technologies like 

ERP, warehousing solution etc., and 

must operate reliably with these 

technologies. 

Autonomous – devices usually 

operate individually, sometimes 

with one or two different devices. 

Sensor Utilisation 

Sophisticated sensors e.g., pressure 

sensors, torque sensors, speed sensors, 

radio-frequency identification (RFID) 

sensors etc. 

Basic sensors e.g., motion sensors, 

temperature sensors, moisture 

sensors etc. 

Precision & 

Accuracy 

Precise and accurate enough to 

manage various synchronized 

industrial processes down to 

milliseconds. 

Typically accurate enough to 

gather limited amount of data for a 

specific activity. 

Data Quantity High to very high. Medium to high. 

Maintenance Properly scheduled and planned. Preference of the users. 

                                              Table 1.1. Comparisons table between Iot & IIot [9] 
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2.4. Importance and applications of IIot: 

2.4.1.  Importance of IIot: 

  IIoT devices employed in the manufacturing industry offer several advantages: 

• Predictive maintenance: Real-time data from IIoT systems enables organizations to predict when 

machines require servicing, allowing proactive maintenance to prevent costly breakdowns, 

particularly on production lines where machine failure can lead to work stoppages and significant 

expenses. Addressing maintenance issues pre-emptively enhances operational efficiency.  

• More efficient field service: IIoT technologies aid field service technicians in identifying potential 

equipment issues before they escalate, facilitating timely repairs to prevent customer disruptions. 

These technologies also provide technicians with information on required parts for repairs, 

ensuring they have the necessary components during service calls.  

• Asset tracking: Asset management systems enable suppliers, manufacturers, and customers to 

monitor product location, status, and condition throughout the supply chain. Instant alerts notify 

stakeholders of potential damage risks, allowing immediate or preventive action to mitigate issues.  

• Increased customer satisfaction: IoT-connected products enable manufacturers to gather and 

analyze data on customer usage, empowering them to create more customer-centric product 

designs and roadmaps.[7] 

2.4.2.  Applications of IIot: 

Most industrial organizations have adopted IIoT solutions to improve monitoring, 

maintenance, and remote operations. Knowing the main IIoT applications and how to implement the 

system to access this competitive advantage would be wise. [10] 
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Figure 1.3. IIot applications [7] 

• Industrial Automation: it is one of the Internet of Things' most significant and standard 

applications. Machine and tool automation enables companies to operate efficiently with the latest 

software tools to monitor and make improvements for the following process iterations. 

• Autonomous Vehicles: Autonomous vehicles don't just imply self-driving cars or trucks. Many 

examples of warehouses have deployed robots that work without human intervention. These also 

include autonomous robots.  

• Futuristic Farming: IIoT makes a big difference in agriculture. By implementing connected IIoT 

projects in farms, the farmers can keep track of the yield from the field to the market. 

• Quality Control: Another essential IIoT application is their ability to monitor the quality of the 

manufactured products at any stage-from the raw materials used in the process to how they are 

transported to the reactions of the end customer once the product is received.  

• Energy Networks: Energy is the most crucial resource and must be used to the maximum without 

waste. There are various IIoT applications in the energy sector. One such application is Smart 

Meters, which monitors energy consumption at specific times and reports back. The oil and gas 

industries also use IIoT with smart sensors. Whenever sensors detect oil or gas leakage in any of 

its pipelines, inform immediately to the maintenance teams. This helps avert any dangers and 

ensures a steady supply at all times. [10] 
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2.5. Components of IIoT: 

• Smart Machines: Machines are an integral part of any manufacturing or processing industry. 

Ordinary machines are programmed to do one thing, and they do it with high efficiency. They are 

an improvement over regular machines as they can communicate with other machines.  

• Sensors: Sensors are an integral part of both IoT and IIoT. it detects the changes in the physical 

environment and convert them into electrical signals. These electrical signals are the data that helps 

us understand the physical quantity measured by the sensor.  

• Infrastructure: Infrastructure concerning IIoT is the network through which all digital 

communication happens. Without a secure and fast communication platform, data transfer will face 

obstructions that will make the entire setup futile.  

• Software, Radios, and Controllers: An industry setup is very different from what we are 

accustomed to with the traditional IoT. In industries, a piece of machinery receives support from 

many other devices to create a system. Hence, a machine will have controllers or radios, and they 

run over custom software. With IIoT, these subunits should also support IIoT standards.[11] 

2.6. IIot Architecture: 

  While IIoT systems vary widely, they have similar architectural features. 

Figure 1.4. Architecting for IIoT [12] 
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The data gathered by IoT devices in the manufacturing and logistics areas flow through 

gateways to the Operations Management area, Supervisory Control and Data Acquisition systems 

(SCADA), and Manufacturing Execution Systems (MES). These consolidate and convert the raw data 

into information for analysis by applications locally at the edge, are sent to cloud-based data centers, 

or a combination of both. 

Traditional operational technology (OT) systems that managed and controlled operations were 

“air-gapped” environments, meaning that they were not connected to external networks. However, 

across industries today, the lines have blurred between information technology (IT) and OT, bringing 

connected IT systems that handle email and data processing together with self-contained OT systems. 

There are many benefits of this convergence, from lowering operating costs by giving manufacturers 

greater transparency into performance and helping energy utility providers offer consumer engagement 

systems based on real-time usage and rates. [12] 

3.  Cyber security in IIoT: 

3.1.  Definition of cyber security:   

Cybersecurity involves safeguarding systems, networks, and programs from digital attacks, 

which aim to access, alter, or compromise sensitive information and disrupt business operations. IIoT 

security serves as a protective barrier for smart devices and machinery in industries, employing tools 

and practices to ward off hackers and digital threats. It includes techniques such as strong passwords, 

encryption, and specialized software to detect suspicious activities. Crucially, IIoT security prevents 

production disruptions, safeguards sensitive data, and ensures smooth and secure industrial 

operations.[14] 

3.2. Objectives of cyber security in IIoT: 

Cybersecurity plays a critical role in the Industrial Internet of Things (IIoT), ensuring the safety, 

reliability, and integrity of industrial systems and processes. The objectives of IIoT cybersecurity 

encompass several crucial areas: 

• Protection of Data: IIoT security measures aim to safeguard sensitive information, ensuring its 

integrity and confidentiality.  

• Prevention of Disruptions: By shielding industrial operations from cyber threats, IIoT security 

helps prevent disruptions and downtime.  

• Assurance of Safety: IIoT security protocols work to maintain a safe environment for both 

machinery and personnel, preventing unauthorized access.  
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• Maintenance of Reliability: IIoT security strategies aim to uphold the reliability of IIoT systems, 

minimizing the risk of security breaches that could lead to operational interruptions.  

• Privacy Preservation: IIoT security protocols prioritize the protection of user data and sensitive 

information from potential cyber threats, preserving privacy.  

• Restriction of Unauthorized Access: IIoT security measures ensure that only authorized 

individuals can access and control IIoT devices and systems.  

• Protection of Critical Infrastructure: IIoT security efforts extend to safeguarding essential 

infrastructure, such as power grids and transportation systems, from cyberattacks. 

• Reduction of Risk: By mitigating the risk of cyber threats, IIoT security enhances confidence in 

industrial operations and minimizes potential vulnerabilities.  

• Enhancement of Trust: IIoT security initiatives build trust among users and consumers by 

demonstrating the reliability and security of interconnected systems.  

• Facilitation of Growth: IIoT security measures enable the expansion of IIoT networks without 

compromising security, thereby fostering industry growth and innovation.[14] 

3.3. Threats and attacks in IIoT: 

The adoption of Industrial IoT (IIoT) systems exposes industries to an evolving threat landscape, 

with attackers targeting these environments to cause disruptions and compromise data integrity, posing 

physical risks. Implementing robust cybersecurity measures and remaining vigilant against emerging 

threats is crucial for safeguarding critical infrastructure and maintaining operational resilience in IIoT 

environments. 

3.3.1. Types of attacks in IIoT: 

IIoT systems face susceptibility to diverse attack types, which can undermine their integrity, 

disrupt operations, and pose threats to essential infrastructure. Understanding these prevalent IIoT 

attack methodologies is pivotal for crafting robust cybersecurity strategies. Let's explore some of the 

primary attack vectors prevalent in the IIoT domain: 

• Denial-of-Service (DoS) Attacks: Denial-of-Service attacks aim to overwhelm IIoT systems with 

a flood of requests, rendering them unavailable to legitimate users. By overloading the system's 

resources, attackers can disrupt operations, causing financial losses and impacting productivity.  

• Man-in-the-Middle (MitM) Attacks: MitM attacks involve intercepting and altering the 

communication between IIoT devices, gaining unauthorized access to sensitive data or injecting 

malicious code. Attackers can exploit vulnerabilities in the network infrastructure or devices to 

eavesdrop, manipulate, or inject malicious commands.  
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• Device Exploitation: Attackers target the vulnerabilities present in IIoT devices to gain 

unauthorized control or access. By exploiting security weaknesses, such as default or weak 

credentials, outdated firmware, or unpatched software, they can compromise the device's 

functionality and potentially gain control over the entire IIoT system. 

• Physical Attacks: Physical attacks involve tampering with IIoT devices or infrastructure 

components. Attackers may physically access the devices to manipulate sensors, inject malicious 

code, or disrupt the operation of critical equipment. Physical attacks pose a significant risk to the 

integrity and safety of industrial processes.  

• Data Interception and Tampering: IIoT systems rely on the seamless exchange of data between 

devices, networks, and cloud platforms. Attackers may intercept and manipulate the data 

transmitted across the IIoT ecosystem, leading to data breaches, unauthorized access to sensitive 

information, or the manipulation of critical operational data.  

• Supply Chain Attacks: Supply chain attacks occur when attackers compromise the integrity of 

IIoT devices or components during the manufacturing or distribution process. By injecting 

malicious code or tampering with the devices, they can gain unauthorized access or control over 

the IIoT system, posing significant risks to the entire infrastructure.  

• Firmware and Software Vulnerabilities: IIoT devices often rely on firmware and software to 

operate effectively. Vulnerabilities within the firmware or software can be exploited by attackers 

to gain unauthorized access, manipulate device functionality, or inject malicious code into the 

system.[15] 

3.3.2.  DDoS Attack in IIoT: 

To effectively detect and mitigate DDoS attacks in Industrial IoT (IIoT) environments we must 

have a deep understanding of their mechanisms. DDoS attacks, as illustrated in figure 1.5 above unfold 

in distinct phases, each offering valuable insights for early detection. 
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Figure 1.5. DDoS in an IIoT environment 

  In the botnet creation phase, attackers, also known as botmasters, scan IIoT networks for 

exploitable weaknesses. This might involve targeting weak passwords on Programmable Logic 

Controllers (PLCs) responsible for automating specific tasks, unpatched vulnerabilities in SCADA 

(Supervisory Control and Data Acquisition) systems that monitor and control industrial processes, or 

open ports on industrial networking devices. Once a vulnerability is identified, the attacker leverages 

it to gain control of the device, transforming it into a malicious bot. 

These compromised devices can encompass a wide range of IIoT components critical for 

industrial operations.  This can include sensors and actuators that collect and control physical 

equipment, Human-Machine Interfaces (HMI) used for operator interaction, or even entire Industrial 

Control Systems (ICS) themselves. The collection of these compromised IIoT devices forms a botnet, 

essentially an army of devices under the attacker's control. 

With the botnet established, the botmaster designates a compromised device within the network 

or an external server hidden behind anonymity services as the Command and Control (C&C) server. 

This C&C server acts as the central control point, issuing commands to the botnet to launch the attack. 

In the attack phase, the bots bombard the target IIoT system or service with a flood of malicious traffic, 

overwhelming its resources and potentially disrupting critical industrial processes. 
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To achieve this early detection, our model will utilize a Convolutional Neural Network (CNN) 

to automatically extract relevant features from the captured IIoT network traffic data. 

3.4. Advanced Security Approaches: 

The best defense against cyber-attacks in an industrial IoT environment is to ensure that proper 

security measures are taken on all levels. Establishing a secure approach and using it as the foundation 

for secure products, advanced security features and functions, and comprehensive security 

management. 

 

Figure 1.6. A layered approach to security for Industrial IOT [16] 

3.4.1. Intrusion Detection Systems (IDS): 

An intrusion detection system (IDS) serves as a network security mechanism, actively 

monitoring network traffic and devices for any indication of malicious activity, suspicious behavior, 

or breaches of security policies. By swiftly detecting known threats or potential risks, an IDS aids in 

expediting and automating threat identification, notifying security personnel promptly through alerts 

or interfacing with centralized security tools like security information and event management (SIEM) 

systems. These systems amalgamate data from various sources to bolster security teams in identifying 

and responding to cyber threats that might evade conventional security measures. Whether in the form 
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of software applications installed on endpoints, dedicated hardware devices connected to the network, 

or cloud-based services, IDSs employ either signature-based or anomaly-based detection methods to 

fulfil their protective role effectively. [18] 

 

Figure 1.7. Representation of intrusion detection system [17] 

3.4.2. Intrusion Prevention Systems (IPS): 

An intrusion prevention system (IPS) actively monitors network traffic to detect potential 

threats and promptly intervenes by alerting the security team, terminating hazardous connections, 

removing malicious content, or activating other security devices. IPS solutions evolved from intrusion 

detection systems (IDSs), which initially served to detect and report threats. An IPS integrates the 

threat detection and reporting functions of IDSs with automated threat prevention capabilities, hence 

earning the designation "intrusion detection and prevention systems" (IDPS). As an IPS can directly 

block malicious traffic, it serves to alleviate the workload for security teams and security operations 

centers (SOCs), enabling them to focus on addressing more complex threats. Additionally, IPSs play 

a crucial role in enforcing network security policies by preventing unauthorized actions by legitimate 

users and supporting compliance efforts, such as meeting the intrusion detection measures mandated 

by the Payment Card Industry Data Security Standard (PCI-DSS).[19] 

 

Figure 1.8. Representation of intrusion prevention system [17] 
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3.4.3. Virtual Private Networks (VPNs): 

A VPN (virtual private network) is a service that establishes a secure, encrypted online 

connection, offering users increased privacy and anonymity, and enabling them to bypass geographical 

restrictions and censorship. By extending a private network over the public internet, VPNs facilitate 

secure data transmission. Typically employed over less secure networks like the public internet, VPNs 

shield users from the prying eyes of ISPs and potential attackers exploiting unsecured Wi-Fi access 

points. Through VPNs, users can conceal browsing history, IP addresses, geographic locations, web 

activity, and device details, ensuring privacy even on shared networks. Employing tunneling protocols, 

VPNs encrypt data transmission from the sender to the recipient, enhancing online security for 

users.[20] 

 

Figure 1.9. How Virtual Private Networks works [21] 

3.5. Utilization of Artificial Intelligence for IIoT Security: 

The industrial sector is currently undergoing a true revolution, and the key catalyst for this 

transformation is the integration of the Internet of Things (IoT) and artificial intelligence (AI) systems. 

The combination of these two technological worlds opens up new horizons for businesses and provides 

them with unique tools to optimize production processes, increase efficiency, and reduce operational 

costs. 

This is how AI has already transformed the industry by making many processes faster, more 

efficient, and safer: 

• Anomaly detection in equipment operation 

• Vibration analysis 

• Optimization of production processes 

• Quality control 

• Resource Management 

• Security.[22] 
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3.6. Deep Learning for IIoT security: 

Smart manufacturing in the IIoT offers numerous advantages, making production processes 

intelligent and enhancing productivity and profitability. Data collected from sensors and devices 

enables smarter production, necessitating intelligent data analysis techniques. Deep Learning (DL) 

stands out as a powerful AI technique, upgrading smart manufacturing with its multi-layer architecture 

and automatic feature learning capabilities. Its integration in IIoT industries facilitates pattern 

identification and smart decision-making, contributing to highly optimized environments. [23] 

3.6.1.  Deep Feedforward Neural Networks: 

This is the most fundamental type of deep neural network (DNN), in which the connections 

between nodes move forward. As compared to shallow networks, the multiple hidden layers in DNN 

can be very helpful to model complex nonlinear relations. This architecture is very popular in all fields 

of engineering because of its simplicity and robust training process. [23] 

 

                      Figure 1.10. The architecture of the deep feedforward neural network (DFNN) [23] 
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3.6.2.  Convolutional Neural Networks (CNNs): 

CNNs are a powerful type of deep learning architecture particularly well-suited for image and 

signal analysis tasks, including anomaly detection in intrusion detection systems (IDS). Their strength 

lies in their ability to automatically extract relevant features from raw input data, such as network 

traffic patterns. Any CNN algorithm simply shown in Figure 11, it consists of multiples layers: input 

layer, convolutional layers, pooling layers, fully connected layer and output layer, the deepness of the 

CNN dependence on the number of layers used, the more layers used the more deepness we have. 

 

Figure 1.11. Convolutional Neural Networks Architecture [24] 

• Convolutional and activation function layers: extract the features from the data that coming 

from input layer using some filters based on certain activation function.  

• Pooling layer: responsible for reduction of the matrix size by using one of the following 

techniques: max pooling or average pooling to increase the speed of learning process and prevent 

overfitting problem.  

• Fully connected layer: receive the data from the final pooling layer after arranging it in 1D array 

then produce 1D array which represent the classes (normal, DDoS attack). [25] 

3.6.3.  Recurrent Neural Network (RNN): 

An RNN is a type of ANN that exhibits temporal dynamic behavior by forming connections 

between nodes along a temporal sequence. Unlike conventional neural networks, RNNs remember 

previous data using a hidden layer, allowing them to predict future data points. This hidden state retains 

sequence information, reducing parameter complexity by using the same parameters for all inputs and 

hidden layers to generate outputs. [23] 
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Figure 1.12. The architecture of the Recurrent Neural Network (RNN) [23] 

 

4. Conclusion 

In this chapter, we extensively examined the fundamentals of IoT (Internet of Things) and IIoT 

(Industrial Internet of Things), defining their concepts, key characteristics, and essential differences. 

We also explored the crucial significance and diverse applications of IIoT across various industrial 

sectors, detailing its essential components and architecture. Subsequently, we delved into the realm of 

cybersecurity within IIoT, understanding its definition, objectives, and the array of threats and attacks 

it encounters. We thoroughly analyzed common types of attacks in IIoT environments. Additionally, 

we scrutinized advanced security approaches such as Intrusion Detection Systems (IDS), Intrusion 

Prevention Systems (IPS), and Virtual Private Networks (VPNs) as critical tools for safeguarding IIoT 

infrastructures. Furthermore, we investigated the integration of artificial intelligence (AI) into IIoT 

security and the application of deep learning methods and specific techniques utilized to fortify IIoT 

systems against evolving threats. This comprehensive exploration underscores the pivotal role of 

cybersecurity in preserving the resilience and integrity of IIoT ecosystems, paving the way for safer 

and more efficient industrial operations in an interconnected world. 
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Chapter 2 

Cyber Security Solutions for the IIoT 

 

 

 

1. Introduction: 

Traditionally, Industrial Control Systems (ICSs) operated in closed networks, shielded from 

cyberattacks by independent protocols and physical isolation from the Internet and corporate networks. 

However, recent advancements like big data and the Internet of Things (IoT) have driven companies 

to integrate ICSs with broader networks to optimize production and minimize downtime, inadvertently 

exposing them to increased cyber threats. Despite this heightened risk, research on ICS security 

remains insufficient.  

Chapter 2 explores the Industrial Internet of Things (IIoT) security, offering insights into 

specialized cybersecurity solutions tailored for IIoT environments, prevalent threat modeling 

methodologies, and curated datasets essential for evaluating security challenges. It proceeds by 

exploring the cyber security challenges inherent in IIoT, detailing existing solutions implemented to 

address these challenges. Furthermore, the chapter examines related works in the field, analyzing 

different approaches and methodologies employed to tackle IIoT security concerns. By delving into 

the existing literature and identifying gaps, the chapter aims to pinpoint the specific problem it will 

address, laying the groundwork for the subsequent discussion on the proposed solution. 
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2. Cyber security challenges & Solutions in IIoT Environments: 

2.1. Cyber security challenges for IIoT in the Industry 4.0 era: 

In the transformative landscape of Industry 4.0, where smart factories and supply chains are 

increasingly interconnected through the Industrial Internet of Things (IIoT), cybersecurity emerges as 

a critical concern. This interconnectedness, while fostering efficiency and innovation, also exposes 

industrial systems to a myriad of cyber threats. Addressing these challenges requires a multifaceted 

approach that encompasses robust security measures, vigilant monitoring, and proactive risk mitigation 

strategies.[26] 

Fundamentally, these smart factories face the following challenges when it comes to 

cybersecurity: 

 

Figure 2.1. Cyber Security challenges in IIot 

A. Device Security: 

• Vulnerabilities in IIoT devices 

• Unauthorized access risks 

• Physical security concerns 

B. Communication Security: 

• Insecure protocols 

• Data integrity issues 

• Risk of interception 

C. Data Security: 

• Data privacy requirements 

• Confidentiality measures 

• Encryption techniques 

D. Access Control Security: 

• Authentication mechanisms 

• Authorization controls 
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• Identity management practices 

2.2. Cyber security Solutions in IIoT: 

Cybersecurity solutions are essential pillars in defending against the ever-evolving landscape of 

cyber threats. Over the years, numerous research efforts have been dedicated to developing innovative 

solutions to combat cyberattacks and protect digital assets. These solutions span various domains, from 

network security to data protection, and encompass a wide array of methodologies and techniques. 

This section discusses previous works that have contributed to the advancement of cybersecurity 

solutions, exploring notable research papers and their approaches in addressing cybersecurity 

challenges. 

1) Device Security: 

Paper 1 : " A Graph-Based Security Framework for Securing Industrial IoT Networks from 

Vulnerability Exploitations" by G. George & S. M. Thampi.[27] 

• Approach: The article proposes a novel approach for securing IIoT networks by: 

a. Vulnerability Relation Modeling: It represents the relationships between vulnerabilities in the 

network using a graphical model. 

b. Risk Assessment Formulation: This model allows formulating security issues as graph-

theoretic problems. 

c. Risk Mitigation Strategies: 

o Detecting and removing high-risk, short attack paths. 

o Identifying and addressing "hot-spots" - strongly connected vulnerabilities. 

• Methods: Graph theory, Risk assessment techniques 

Paper 2 :" RDAF-IIoT: Reliable Device-Access Framework for the Industrial Internet of Things " by 

Hisham Alasmary.[28] 

• Approach: Develop an Access Key Agreement (AKA) scheme named "Reliable Device-

Access Framework for the Industrial IoT (RDAF-IIoT)" to improve data security in Industrial 

IoT (IIoT). 

• Methods: 

a.  User Authentication: RDAF-IIoT verifies user identity before granting access to real-time data 

from IIoT devices.  
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b. Session Key Establishment: Once authenticated, the user and the IIoT device establish a 

temporary session key for secure communication.  

2) Communication Security: 

Paper 1: " A Robust ECC-Based Provable Secure Authentication Protocol With Privacy Preserving 

for Industrial Internet of Things" by X. Li, J. Niu, M. Z. A. Bhuiyan, F. Wu, M. Karuppiah, & S. 

Kumari.[29]  

• Approach: develop a user authentication protocol scheme with privacy protection specifically 

tailored for Wireless Sensor Networks (WSNs) in the Industrial Internet of Things (IIoT) 

environment. 

• Methods: 

a. Designing a user authentication protocol scheme that incorporates privacy protection measures 

to secure communication in IIoT environments.  

b. Proving the security of the proposed scheme under a random oracle model, which serves as a 

theoretical framework for cryptographic proofs. 

c. Conducting simulations using NS-3, a widely used network simulation tool, to assess the 

security and efficiency of the proposed protocol in IIoT scenarios. 

Paper 2: " Hopper: Per-Device Nano Segmentation for the Industrial IoT " by P. De Vaere, A. 

Tulimiero, & A. Perrig.[30] 

• Approach: an industrial IoT security protocol that places each network host in its own access-

controlled nano segment. 

• Methods: 

a. Nano segmentation: Each IIoT device is placed in its own access-controlled "nano segment," 

significantly reducing the attack surface exposed by connected devices. 

b. In-fabric enforcement: Hopper enforces nano segmentation directly within the network 

infrastructure, eliminating the need for modifications to how data packets are routed. 

c. Packet verification: Every network node verifies each data packet it processes to ensure that 

the packet belongs to a pre-authorized communication channel and originated from a legitimate 

device within the network. 

3) Data Security: 
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Paper 1: " A Trustworthy Privacy-Preserving Framework for Machine Learning in Industrial IoT 

Systems " by P. C. M. Arachchige, P. Bertok, I. Khalil, D. Liu, S. Camtepe, & M. Atiquzzaman.[31] 

• Approach: Develop a secure framework named PriModChain to address privacy concerns in 

Machine Learning (ML) for Industrial IoT (IIoT) data within Industry 4.0.  

• Methods: 

a. Federated Learning: This approach trains the ML model collaboratively across multiple 

devices without sharing the raw data itself. Each device trains a local model on its own data 

and then shares only the model updates with a central server for aggregation. 

b. Ethereum Blockchain: This work proposes using the Ethereum blockchain to store and 

manage the training process securely. 

Paper 2: " Privacy-Preserving Microservices in Industrial Internet-of-Things-Driven Smart 

Applications " by N. Bugshan, I. Khalil, N. Moustafa, & M. S. Rahman [32] 

• Approach: Develop a privacy-preserving Machine Learning (ML) framework utilizing 

microservices for healthcare applications within the Industrial IoT (IIoT) domain.  

• Methods:  

a. Microservice Architecture. 

b. Distributed Privacy-Preserving Technique. 

c. Differential Privacy (DP). 

d. Radial Basis Function Network (RBFN). 

4) Access Control Security: 

Paper 1: " DHACS: Smart Contract-Based Decentralized Hybrid Access Control for Industrial 

Internet-of-Things " by R. Saha & al.[33] 

• Approach: Develop a novel Decentralized Hybrid Access Control System (DHACS) for secure 

access management in Industrial Internet of Things (IIoT) leveraging smart contracts on a 

blockchain. 

• Methods:  

a. Role-Based Access Control (RBAC): Permissions are granted based on predefined roles 

within the system. 

b. Rule-Based Access Control: Access is determined by specific rules or conditions defined for 

resources or actions. 
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c. Organization-Based Access Control: Permissions are controlled based on organizational 

affiliations of users or devices. 

Paper 2: " BSeIn: A blockchain-based secure mutual authentication with fine-grained access control 

system for industry 4.0" by C. Lin, D. He, X. Huang, K.-K. R. Choo, & A. V. Vasilakos.[34] 

• Approach: Develop a secure mutual authentication system named BSeIn using blockchain 

technology to address security concerns arising from the vertical integration of industries in the 

"Industry 4.0" era. 

• Methods:  

a. Attribute Signature: This allows for verification of user attributes without revealing the actual 

attribute values, enhancing privacy. 

b. Multi-Receiver Encryption: Enables secure communication where a message can be 

decrypted by multiple authorized recipients. 

c. Message Authentication Code (MAC): Provides data integrity verification, ensuring 

messages have not been tampered with during transmission. 

3. Overview of Existing Threat Modeling Methodologies: 

3.1. Threat modeling: 

Threat modeling is a proactive strategy for evaluating cybersecurity threats. It involves 

identifying potential threats, and developing tests or procedures to detect and respond to those threats. 

This involves understanding how threats may impact systems, classifying threats and applying the 

appropriate countermeasures.[35] 

3.2. Steps of the threat modeling process: 

When performing threat modeling, several processes and aspects should be included. Failing 

to include one of these components can lead to incomplete models and can prevent threats from 

being properly addressed. 



Chapter 2                                                                                                   Cyber Security Solutions for the IIot 

 

26 

 

 

 

 
Figure 2.2. Steps of threat modeling process [36] 

a. Utilize Threat Intelligence: This step involves leveraging information on various threat types, 

affected systems, detection techniques, exploitation tools, and attacker motivations. Continuous 

collection of this intelligence is vital, preferably automated through security tools wherever 

feasible.  

b. Identify Assets: Teams must maintain a dynamic inventory of components, credentials, and 

data, along with their locations and associated security measures. This inventory facilitates 

tracking assets with known vulnerabilities and monitoring the status of passwords and 

permissions.  

c. Evaluate Mitigation Capabilities: Mitigation capabilities encompass technology solutions for 

protection, detection, and response to specific threats, as well as an organization's security 

expertise and processes. Assessing existing capabilities helps determine the need for additional 

resources to mitigate threats effectively.  

d. Conduct Risk Assessments: Risk assessments correlate threat intelligence with asset 

inventories and vulnerability profiles to understand the current security posture and develop 

mitigation strategies. These assessments are crucial for identifying and addressing 

vulnerabilities effectively.  

e. Perform Threat Mapping: Threat mapping traces the potential pathways of threats through an 

organization's systems, modeling how attackers could navigate from one resource to another. 

This process aids in anticipating areas where defences can be strengthened or applied more 

effectively. [35] 
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3.3. Threat modeling methodologies and techniques:  

In the realm of threat modeling, various methodologies are available for security teams to employ. The 

selection of the appropriate model for an organization hinge on the types of threats being analyzed and 

the intended objectives. 

• STRIDE Threat Modeling: This model, devised by Microsoft engineers, serves to uncover 

threats within a system and is typically utilized alongside a model of the target system. 

Particularly effective for evaluating individual systems, STRIDE encompasses threats 

categorized as Spoofing, Tampering, Repudiation, Information Disclosure, Denial of Service 

(DoS), and Elevation of Privilege.  

• Process for Attack Simulation and Threat Analysis (PASTA): Following an attacker-

centric approach, PASTA comprises seven sequential steps aimed at aligning business 

objectives with technical requirements. It facilitates the identification, quantification, and 

prioritization of threats. 

• Common Vulnerability Scoring System (CVSS): This standardized method for scoring 

known vulnerabilities, developed by the National Institute of Standards and Technology 

(NIST) and maintained by the Forum of Incident Response and Security Teams (FIRST), 

assigns security scores to vulnerabilities. It aids security teams in assessing threats, prioritizing 

patches, and implementing countermeasures. [35] 

4. Existing Datasets for IIoT Security: 

In recent years, the Industrial Internet of Things (IIoT) has transformed industrial landscapes. By 

enabling seamless automation, improved efficiency, and robust connectivity, IIoT has revolutionized 

operations across various sectors. However, this interconnectedness and digitalization introduce 

significant cybersecurity challenges. To effectively combat these threats, researchers, practitioners, 

and organizations require high-quality datasets specifically designed for IIoT security. These datasets 

act as the cornerstone for developing and validating robust security solutions. They enable realistic 

simulations, allowing researchers to benchmark performance against real-world scenarios. As the 

complexity and scale of IIoT deployments across diverse industries like manufacturing, energy, and 

transportation continue to surge, the demand for comprehensive and diverse datasets becomes ever 

more critical. By providing insights into the challenges and dynamics of securing IIoT ecosystems, 

these datasets play a crucial role in safeguarding the future of industrial operations. 
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• ToN-IoT: 

The ToN-IoT dataset is intended to collect and analyze mixed data sources from the IoT and IIoT, 

and it contains heterogeneous data collected from different sources, including telemetry data from 

connected devices, Windows and Linux system logs, and system network traffic. The Internet of 

Things is compiled from a realistic network. To evaluate the accuracy and efficiency of various cyber 

security applications based on artificial intelligence, the ToN-IoT dataset is designed to connect many 

virtual machines, cloud layers, blur, edges, and physical systems. It dynamically bulletins these 

interactions using NVF, SDN technology, and service coordination. It also contains simultaneous sets 

of legitimate and offensive events in network systems, operating systems, and IoT services. 

Furthermore, the ToN-IoT dataset is represented in CSV format with a categorized column 

representing the attack or normal behavior and the type of attack subclass, which refers to nine different 

kinds of attacks (XSS, DDoS, DoS, password cracking attacks, reconnaissance or verification, MITM, 

ransomware, backdoors, and injection attacks). Because the data are imbalanced, we use class weights, 

as they give all classes approximately equal priority in gradient changes no matter how many samples 

we have from each class in the training data.[37] 

 

Table 2.1. Table of types and numbers of records in ToN-IoT dataset [37] 

• Edge-IIoTset:  

The cybersecurity dataset for Internet of Things (IoT) and industrial Internet of Things (IIoT) 

applications is used in intrusion-detection systems based on machine learning. IoT data are collected 

from more than 10 different types of devices, such as low-cost digital sensors for sensing temperature 
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and humidity, pH sensor meters, ultrasonic sensors, heart rate sensors, water-level detection sensors, 

soil moisture sensors, flame sensors, etc. In this database, 14 different types of attacks involving IoT 

and IIoT protocols are analyzed and classified into five threats, including DoS and DDoS attacks, 

information gathering, injection attacks, an-in-the-middle attacks, and malware attacks. Out of 1176 

characteristics, 61 are highly correlated. The 20,952,648 usual attack statistics in Edge-IIoTset include 

11,223,940 normal and 9,728,708 attacks. this dataset is split into 20% for tests and 80% for training, 

with a stratification option to keep the percentages static for all classes. A total of 1,909,671 samples 

were taken from the dataset: 1,527,736 for the training set and 381,935 for the test set. [37] 

 

                           Table 2.2. Table of types of records in the Edge-IIoTset dataset [38] 

• UNSW-NB15: 

The UNSW-NB15 computer network security dataset was released in 2015 (Moustafa & 

Slay,2015). This dataset is comprised of 2,540,044 realistic modern normal and abnormal (also known 

as attack) network activities. These records were gathered by IXIA traffic generator using three virtual 

servers. Two servers were configured to distribute the normal network traffic and the third one was 

configured to generate the abnormal network traffic. 

A total of 49 features including packet-based and flow-based features were extracted from the raw 

network packets by Argus and Bro-IDS tools. Packet-based features are extracted from the packet 
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header and its payload (also called packet data). In contrast, flow-based features are generated using 

the sequencing of packets, from a source to a destination, traveling in the network.[38] 

 

Table 2.3. Table of the total numbers of records in the UNSW-NB15 dataset [37] 

5. Previous Work in Attack Detection in IIot: 

The field of Industrial Internet of Things (IIoT) security is experiencing a surge in research aimed 

at developing robust defense mechanisms against cyber threats. Various techniques have emerged as 

promising tools for intrusion detection and anomaly detection in IIoT environments due to their ability 

to analyze large volumes of complex data effectively. In this context, a comparative analysis of 

previous work becomes essential to evaluate the effectiveness of different approaches and their 

performance in detecting attacks. 

The following table provides a comparative overview of academic articles focusing on attack 

detection in IIoT environments. Each article presents a proposed approach, methods or classifiers used, 

datasets employed for evaluation, and performance accuracy achieved. This comparative analysis aims 

to highlight the diversity of approaches and datasets utilized in the field, shedding light on the 

advancements made and the challenges that remain in securing industrial IoT ecosystems. 
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Article/ Proposed 

approach  

Techniques 

Used 

Dataset Performance 

Accuracy/ 

Results 

Implications for 

Future research 

Deep learning-based 

intrusion detection 

approach for securing 

industrial Internet of 

Things,2023 [39]  

singular value 

decomposition 

(SVD) and 

synthetic 

minority over-

sampling 

(SMOTE) 

ToN_IoT 99.82% Expanding Attack 

Detection 

Capabilities, 

Integration with 

Decision-Making 

Unit, Advanced 

Feature Selection 

Techniques 

Identification of 

malicious activities in 

industrial internet of 

things based on deep 

learning models,2018 

[40] 

deep feedforw

ard neural 

networks and 

deep autoenco

ders 

NSLKDD 

and UNSW-

NB15 

achieved a 

higher 

detection rate 

and lower 

false positive 

rate  

standardized data 

collection and sharing 

practices to facilitate 

the development and 

training of machine 

learning models for 

ICS security 

DRaNN: A Deep 

Random Neural 

Network Model for 

Intrusion Detection in 

Industrial IoT,2020 [41] 

deep random 

neural network 

UNSW-

NB15 

99.54% Enhanced Model 

Robustness 

lids-sioel: intrusion 

detection framework 

for iot-based smart 

environments security 

using ensemble 

learning,2020 [42] 

ensemble 

learning 

IoT-23,  

BoT-IoT, 

Edge-IOT 

99.98%, 

99.99%, 

100% 

multi-class 

classification and an 

intrusion detection 

model using deep 

learning algorithms 

Differential evolution-

based convolutional 

neural networks: an 

automatic architecture 

 differential 

evolution 

SWaT and 

WADI  

/  Real-World 

Application 

https://www.sciencedirect.com/topics/engineering/feedforward
https://www.sciencedirect.com/topics/engineering/feedforward
https://www.sciencedirect.com/topics/engineering/autoencoder
https://www.sciencedirect.com/topics/engineering/autoencoder
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design method for 

intrusion detection in 

industrial control 

systems,2023 [43] 

Deep-IFS: Intrusion 

Detection Approach for 

Industrial Internet of 

Things Traffic in Fog 

Environment,2020 [44] 

Local Gated 

Recurrent Unit 

(LocalGRU), 

Multihead 

Attention 

(MHA), Fog 

Computing 

 

Bot-IIoT 99.94% federated learning and 

privacy-protection 

techniques in Multi-

Access Edge 

Computing (MEC) or 

blockchain-enabled 

fog/edge computing 

for improved data 

security. 

Anomaly detection in 

industrial control 

system: a hybrid deep 

learning approach,2023 

[45] 

 

Long Short-

Term Memory 

(LSTM), 

Gated 

Recurrent Unit 

(GRU), 

Bidirectional 

LSTM (Bi-

LSTM), 

Bidirectional 

GRU (Bi-

GRU) 

Secure Water 

Treatment 

(SWaT)  

88%  performing root cause 

analysis on identified 

anomaly points 

Intrusion Detection in 

Industrial Internet of 

Things Network-Based 

on Deep Learning 

Model with Rule-Based 

Feature Selection,2021 

[46] 

Deep 

Feedforward 

Neural 

Network 

(DCNN), Deep 

Autoencoder 

(DAE), 

NSL-KDD, 

UNSW-

NB15 

99.0% 

98.9% 

 

the use of real-world 

data gathered by the 

IIoT system to 

determine the 

effectiveness of its 

operation 
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Genetic search 

engine 

An Ensemble Learning 

Based Intrusion 

Detection Model for 

IndustrialIoT 

Security,2023 [47] 

Random Forest 

(RF), 

Pearson’s 

Correlation 

Coefficient 

(PCC), 

Isolation 

Forest (IF) 

Bot-IoT,  

NF-UNSW-

NB15-v2 

99.99% 

99.30% 

Overcome dataset 

imbalance, reduce 

time costs, and 

improve model 

performance 

Robust Attack 

Detection Approach for 

IIoT Using Ensemble 

Classifier,2021 [48] 

Support Vector 

Machines 

(SVMs), 

Naive Bayes 

classifiers, 

Artificial 

Neural 

Network 

(ANN) 

WUSTL_IIO

T-2018, 

N_BaIoT, 

Bot_IoT 

99% development of more 

advanced trust-based 

attack identification 

models for networks 

                                   Table 2.4. Previous Work in Attack Detection in IIot 

6. Synthesis:     

The field of Industrial IoT (IIoT) cybersecurity has seen significant advancements in recent years, 

with various studies exploring diverse techniques for attack detection. These approaches, ranging from 

statistical methods to support vector machines, have demonstrated success in detecting malicious 

activities. However, limitations exist, including a lack of adaptability to evolving threats, scalability 

concerns for large datasets. 

To address these limitations, we propose a CNN-based Intrusion Detection System (IDS) for 

enhanced IIoT cybersecurity. Convolutional Neural Networks (CNNs) are a powerful deep learning 

architecture adept at analyzing sequential data like network traffic. Unlike traditional methods, CNNs 

offer several advantages: 
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• Adaptability: CNNs can learn complex patterns from data, making them adaptable to the 

constantly changing threat landscape and network traffic characteristics of IIoT environments. 

• Scalability: CNNs can be efficiently implemented on modern hardware, enabling them to handle 

the large datasets and complex deployments that are increasingly common in IIoT. 

• Feature Extraction: CNNs automatically learn relevant features from the data, reducing the need 

for manual feature engineering and potentially leading to more robust detection capabilities. 

This proposed CNN-based IDS offers a promising approach for addressing the challenges faced 

by existing methods in securing IIoT environments. Its adaptability, scalability, and potential for 

improved threat detection make it a valuable tool for organizations looking to strengthen their IIoT 

security posture. 

7.  Conclusion: 

In this chapter, we've explored the complexities of Industrial Internet of Things (IIoT) security. 

We began by identifying cybersecurity challenges and categorized them into different classes. Through 

analysis of real-life solutions presented in scholarly articles, we highlighted various approaches and 

methods utilized to address these challenges. Additionally, we discussed the importance of threat 

methodology as a cyber security solution, emphasizing its role in proactive measures. Furthermore, we 

examined famous datasets used in IIoT security research to facilitate empirical evaluations. A 

comparative analysis of previous work, illustrated in a table, provided insights into the efficacy of 

different attack detection methods. Lastly, we synthesized our findings, emphasizing the critical 

importance of securing interconnected industrial systems amidst escalating cyber threats. Our 

exploration laid the groundwork for proactive measures and contributed to advancing cyber resilience 

in IIoT ecosystems. 
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Chapter 3  

Methodology of training a DL model 

 

 

 

1. Introduction:  

The communication and data exchange between physical devices and the digital world introduces 

new security vulnerabilities. One particularly concerning threat is Distributed Denial-of-Service 

(DDoS) attacks, which can cripple critical IIoT infrastructure by overwhelming systems with a flood 

of malicious traffic. 

This chapter proposes a novel approach to secure IIoT networks from DDoS attacks using Deep 

Learning, Convolutional Neural Network (CNN) algorithm that offers a powerful way to analyze 

complex network traffic patterns and identify anomalies indicative of DDoS attacks. 

Our approach involves training a CNN model on pre-processed network traffic data. This data will 

be prepared and transformed into a format that is suitable for deep learning. then the model will learn 

to extract relevant features from the traffic data that distinguish between legitimate network activity 

and DDoS attacks.  
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2. Proposition:  

In Chapter 1, we discussed the two-stage process of a DDoS attack: the attacker first builds a botnet 

by compromising a large number of devices, and then uses those devices to launch a coordinated attack 

against a target system. In an IIoT environment, a critical target for attackers is the SCADA system, 

which controls and monitors industrial processes. Since traditional methods cannot detect the DDoS 

attack during botnet creation or launch, we propose implementing an Intrusion Detection System (IDS) 

model before it reaches the SCADA system. As illustrated in the figure below, this means the IDS 

would be positioned to detect the attack packets sent from the compromised devices within the system. 

 

Figure 3.1. Detection of DDoS in an IIoT environment 

Furthermore, to optimize detection accuracy within the environment of an IIoT network, we 

recommend employing a Convolutional Neural Network (CNN) algorithm trained on a specialized 

dataset known as Edge-IIoTset. This dataset is specifically designed for IIoT environments, ensuring 

the IDS model possesses the necessary knowledge to effectively distinguish between legitimate and 

malicious traffic patterns within the industrial network. 

 

3. Model Structure:  

Our model utilizes a 1D Convolutional Neural Network (CNN) architecture designed to 

automatically classify different types of Distributed Denial-of-Service (DDoS) attacks by analyzing 

network traffic patterns. The model takes sequences of network traffic data as input. 
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Three convolutional layers with varying filter sizes and numbers of feature maps (32, 64, and 128) 

are employed to extract informative features from these sequences. These convolutional layers 

typically use the ReLU (Rectified Linear Unit) activation function, which introduces non-linearity and 

helps the network learn more complex patterns. To combat overfitting, dropout layers with a dropout 

rate of 0.5 are added after each pooling layer. Dropout randomly sets a fraction of input units to zero 

during training, which helps to prevent the network from becoming too dependent on any particular 

features. Additionally, L2 regularization is applied to the convolutional layers to penalize large weights 

and further reduce overfitting. 

Pooling layers then reduce the dimensionality of the data while preserving the most critical 

information for attack classification. This process allows the network to capture intricate relationships 

within the traffic patterns at different levels of complexity. Following the convolutional layers, a 

flattening step transforms the multi-dimensional output into a 1D vector suitable for feeding into fully 

connected layers. These fully-connected layers refine the extracted features and learn even more 

complex relationships between them. A dropout layer is also added after the dense layer to further 

ensure the model generalizes well to new data. 

Finally, the output layer with 5 neurons and a softmax activation function predicts the probability 

distribution of the input sequence belonging to one of the 5 DDoS attack classes. The softmax function 

ensures the output probabilities sum to 1, making it suitable for multi-class classification. 

To optimize the training process and minimize the error between the predicted and actual labels, 

the model utilizes the Adam (Adaptive Moment Estimation) optimizer. Additionally, the 

"categorical_crossentropy" function is used as the loss function, which measures the difference 

between the predicted probability distribution and the true distribution of the attack class. This 

combination of optimizer and loss function helps the model learn effectively and improve its 

classification accuracy. By incorporating dropout layers and L2 regularization, the model is better 

equipped to handle overfitting, thus enhancing its robustness and generalization to unseen data. 
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Figure 3.2. The Convolutional Neural Networks model used 
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4. Methodology: 

This methodology focuses on building a Convolutional Neural Network (CNN) model to detect 

Distributed Denial-of-Service (DDoS) attacks within IIoT network traffic data. 

It outlines a multi-step process that involves pre-processing the raw IIoT traffic data, splitting it 

into training and testing sets, training the CNN model to identify attack patterns, and finally evaluating 

the model's performance on unseen data. 

 

 Figure 3.3. Methodology of the proposed Model 

4.1. Edge-IIoTset Dataset:  

For the realization of our model, we chose the Edge-IIoTsetset-2022 data-set. which can be 

used by machine learning based intrusion detection systems in two different modes, namely, 

centralized and federated learning. 
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The data of this dataset is collected from a testbed consisting of sophisticated seven 

interconnected layers namely: cloud computing layer, NFV layer, Blockchain layer, fog layer, SDN 

layer, edge layer, and IoT/IIoT perception layer, It captures the intricacies of network traffic generated 

by various IoT devices (more than 10 types) such as Low-cost digital sensors (for sensing temperature 

and humidity, Ultrasonic sensor, Water level detection sensor, pH Sensor Meter, Soil Moisture sensor, 

Heart Rate Sensor, Flame Sensor, etc. It includes 14 IoT and IIoT protocol related attacks as shown in 

figure 3.4 . 

 

 Figure 3.4. Distribution of Attacks in the dataset  

The data encompasses normal communication patterns alongside examples of malicious 

activity, particularly Distributed Denial-of-Service (DDoS) attacks. Crucially, the Edge-IIoTset 

dataset is pre-labeled. This means each data point is meticulously categorized, indicating whether it 

represents normal behavior or a specific type of DDoS attack.  This pre-labeled nature eliminates the 

need for extensive manual labeling, saving significant time and resources during the model training 

process. 
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In addition, the extracted features obtained from different sources, including alerts, system 

resources, logs, network traffic, and propose new 61 features with high correlations from 1176 found 

features. 

 

Table 3.1. Dataset features and their type [49] 
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4.2.  Data pre-processing: 

In the initial stages of preparing the dataset for our CNN model, we took a two-pronged 

approach to ensure its quality. First, we performed basic cleaning tasks by removing any NaN values 

that might be present. These missing data points could hinder the model's learning process. 

Additionally, we eliminated duplicate entries within the dataset. 

Next, since our primary focus is on DDoS detection, we went a step further and filtered the 

attack labels within the dataset. We'll only include data points labeled as DDoS attacks, along with the 

specific type of DDoS attack employed.  This targeted selection allows the CNN model to concentrate 

on learning the characteristics unique to DDoS attacks, ultimately enhancing its ability to differentiate 

between malicious and legitimate IIoT traffic. 

 

Figure 3.5. Normal Vs DDoS Traffic Distribution 

Attack type Count 

DDoS_UDP 121567 

DDoS_ICMP 67939 

DDoS_TCP 50062 

DDoS_HTTP 48544 

Normal 1363998 

Table 3.2. DDoS types distribution 
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4.3. Feature selection: 

Building a robust CNN model for network traffic classification requires high-quality data with 

the right features. While more data can generally improve performance, not all features are equally 

valuable. Certain features, like "frame.time", "ip.src_host", "ip.dst_host", "arp.src.proto_ipv4", 

"arp.dst.proto_ipv4", "http.file_data", "http.request.full_uri", "icmp.transmit_timestamp", 

"http.request.uri.query", "tcp.options", "tcp.payload", "tcp.srcport", "tcp.dstport", "udp.port", 

"mqtt.msg", might be irrelevant or even hinder classification accuracy. so to keep only traffic features 

that matter we have to drop them as shown in table 3.3 to ensure the efficiency of the application. 

In this case, we can essentially "teach" the CNN model to focus on the most relevant aspects 

of the data. This eliminates noise and allows the CNN to learn more meaningful patterns from the 

remaining features. 

 

 

 

 

 

 

 

 

 

Table 3.3. Choice of dropped features 

4.4.  Train/Test data split: 

In the first step, we divided our initial dataset into two crucial parts using a library called scikit-

learn and its train_test_split function. This function essentially splits the data into training and testing 

data, the training data is used by the CNN model to learn patterns and relationships between features 

and target variables. The testing data is used later to evaluate the model's performance on unseen 

examples. We set the test size parameter to 0.2, ensuring that 20% of the data is dedicated to testing, 

while the remaining 80% becomes the training data. 

Operation  Drop 

1 frame.time 

2 ip.src_host 

3 ip.dst_host 

4 arp.src.proto_ipv4 

5 arp.dst.proto_ipv4 

6 http.file_data 

7 http.request.full_uri 

8 icmp.transmit_timestamp 

9 http.request.uri.query 

10 tcp.options 

11 tcp.payload 

12 tcp.srcport 

13 tcp.dstport 

14 udp.port 

15 mqtt.msg 
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Next, we tackled the categorical features within the training and testing data. These features 

might have text labels, like different attack types. To make them more suitable for our CNN, we 

employed a technique called label encoding. Label encoding assigns a unique numerical label to each 

category. We used the LabelEncoder class for this task. By fitting it on the training labels, we created 

a mapping that translates each category (attack type) into a corresponding numerical label. This 

mapping was then applied to both the training and testing labels, effectively converting them from 

descriptive text labels to numerical labels that the CNN can understand and process more efficiently. 

Finally, we focused on preparing the numerical features for training the CNN. Since features 

can have varying scales, it can create an uneven playing field during training. To address this, we 

performed feature scaling using a technique called MinMaxScaler. This essentially standardizes all 

features to a range between 0 and 1. We scaled both the training data and the testing data using the 

same scaler to maintain consistency. This ensures all features contribute proportionally during the 

training process, leading to a more effective model. 

The last step involved reshaping the training and testing data. CNNs are designed to work with 

3D data. To accommodate this, we reshaped the data to have an additional dimension of size 1. This 

additional dimension doesn't contain any new information, but it allows CNN to process the data in 

the format it expects. 

4.5.  Training the model:  

We built the model architecture layer by layer using a library called TensorFlow.keras. This 

library provides pre-built neural network building blocks. Our model is a "Sequential" model, meaning 

the layers are stacked sequentially. 

It utilizes a convolutional neural network (CNN) architecture specifically designed for 1D data 

like ours. The CNN extracts features from the data through multiple convolutional layers, each 

equipped with filters that act like scanners to identify patterns. Following each convolutional layer, 

pooling layers reduce the data size while capturing significant features. Finally, the model uses fully 

connected layers to learn complex relationships between the extracted features and classify the traffic 

patterns, with the final layer using a softmax activation to provide probabilities for different attack 

types. 

The next step is compilation. This process equips the model with the necessary tools for 

learning. We compile the model with two crucial components, an optimizer that adjusts its internal 

parameters to minimize errors, and a loss function that measures prediction errors. 
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Once compiled, we can finally train the model. This involves feeding the preprocessed training data to 

the model in mini-batches. During each training step, the model makes predictions based on the current 

state of its weights and biases. The loss function then calculates the error between these predictions 

and the actual labels. The optimizer leverages this error signal to adjust the weights and biases in a 

way that minimizes the overall loss.   

5. Evaluation and Results:  

Our CNN model achieved remarkable results in classifying the five DDoS attack classes on the 

Edge-IIoTset dataset. The model exhibited an exceptional accuracy of 99.88%, indicating its ability to 

correctly classify all data points during testing. This remarkable performance is visually represented 

in Figure 3.6, the confusion matrix, where ideally, all values align along the diagonal, signifying 

correct classifications, while zeros elsewhere denote instances of misclassification. 

 

Figure 3.6. confusion matrix of the model’s performance 

Analyzing the results obtained in the training and validation accuracy provides valuable 

insights into the model's performance during the training process. Figure 3.7 illustrates the trends in 

training and validation accuracy over epochs, offering a comprehensive view of how the model's 

accuracy evolves with training. A high training accuracy signifies the model's effective learning from 

the training data, while a comparable validation accuracy indicates strong generalization to unseen 
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data. Both training and validation accuracies in our case exhibit a consistent upward trend over epochs, 

reflecting the model's continuous improvement and robust learning. The close alignment between 

training and validation accuracies suggests that the model avoids overfitting, achieving robust 

generalization capabilities. 

 

Figure 3.7. Training and validation accuracy 

Additionally, while assessing the model's training process, Figure 3.8 provides valuable 

information about the minimum validation loss. This metric complements the analysis of accuracy by 

evaluating the model's generalization ability and susceptibility to overfitting. The observed minimum 

validation loss signifies the model's effective learning from the training data without overfitting, 

contributing to its high accuracy on the test set. The absence of an increasing validation loss while the 

training loss decreases indicates that the model avoids overfitting, further reinforcing its reliability and 

robustness in real-world scenarios. 
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Figure 3.8. minimum validation loss 

Furthermore, diving into the class-wise performance metrics enhances our understanding of 

the model's effectiveness in distinguishing between different DDoS attack classes. The precision, 

recall, and F1-score for each class, as shown in the classification report, offer detailed insights into the 

model's performance across specific attack types. In our evaluation, all five classes demonstrate 

exceptional precision, recall, and F1-score, with values close to 1.0. This indicates that the model 

accurately identifies instances of each DDoS attack type, such consistent and high-performance 

metrics across all classes highlight the model's proficiency in classifying DDoS attacks on the Edge-

IIoTset dataset, underscoring its reliability for real-world deployment in industrial IoT systems. 

Figure 3.9. performance metrics of each class 
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Precision Recall  F1 Score 

Class 0 1.00 1.00 1.00 

Class 1 0.97 1.00 0.99 

Class 2 1.00 1.00 1.00 

Class 3 1.00 0.98 0.99 

Class 4 1.00 1.00 1.00 

      Table 3.4. Classification report 

6. Conclusion: 

This chapter presented the development and evaluation of a deep learning model for DDoS attack 

detection in Edge-IIoTset networks. The model achieved a perfect accuracy of 1.0 on the Edge-IIoTset 

dataset, demonstrating its exceptional ability to distinguish between normal and attack traffic within a 

controlled environment. This outcome is particularly encouraging compared to existing work on Edge-

IIoTset DDoS detection, which often utilizes various machine learning algorithms and achieves lower 

accuracy scores. 

However, it's crucial to acknowledge that controlled testing environments might not fully capture 

the complexities of real-world network traffic. Future work should explore the model's performance 

in more realistic scenarios to assess its generalizability and robustness in practical Edge-IIoTset 

deploy.
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1. Introduction:  

The previous chapter presented a DL model with promising results for DDoS attack detection in 

Edge-IIoTset networks. However, real-world IIoT security involves complex interactions between 

various components. This chapter explores a simulation that reflects a typical industrial environment 

to assess the model's effectiveness in a more practical setting. 

We will test the model's generalizability by deploying it within a scenario that reflects an industrial 

network. Here, we will utilize the same dataset used for training, but we will remove the attack labels 

and types. This forces the model to identify potential attacks based solely on the network traffic 

patterns, simulating a real-world situation where attackers might try to evade detection. 

We will delve into the implementation of an Intrusion Detection System (IDS) within the 

architecture of an industrial company's IT and OT (Operational Technology) network. We will explore 

how these components interact and how potential attackers might target them to launch DDoS attacks. 

The scenario will showcase how the trained deep learning model can be deployed within the IIoT 

environment to continuously monitor network traffic for malicious activities associated with DDoS 

attacks.  

        Finally, this chapter will also shed light on the development environment used to create the model. 

We will discuss the programming languages, libraries, and tools that facilitated the model's 

development and training. 
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2. Development Environment:  

In this section, we present the software environment and the language used for the 

development and implementation of our scenario. We'll detail the specific tools employed for 

coding and project management. 

2.1. Software environment: 

• Spyder IDE: 

Spyder is a free and open-source scientific environment written in Python and designed by and 

for scientists, engineers, and data analysts. It features a unique combination 

of the advanced editing, analysis, debugging, and profiling functionality of 

a comprehensive development tool with the data exploration, interactive 

execution, deep inspection, and beautiful visualization capabilities of a 

scientific package. [50] 

• Python (programming language): 

Python is a high-level, general-purpose programming language. Its design philosophy 

emphasizes code readability with the use of significant indentation. it is dynamically typed and 

garbage-collected. It supports multiple programming paradigms, including 

structured (particularly procedural), object-oriented, and functional 

programming. It is often described as a "batteries included" language due 

to its comprehensive standard library. Python consistently ranks as one of 

the most popular programming languages and has gained widespread use 

in the machine-learning community.[51] 

• Lucidchart:  

Lucidchart is a web-based diagramming application that allows users to 

visually collaborate on drawing, revising, and sharing charts and 

diagrams, and improve processes, systems, and organizational 

structures.[52] 

 

 

 

https://www.spyder-ide.org/
https://www.spyder-ide.org/
https://www.spyder-ide.org/
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2.2. Python libraries used:  

• Pandas: 

Pandas is a software library written for the Python programming language 

for data manipulation and analysis. In particular, it offers data structures and 

operations for manipulating numerical tables and time series. It is free 

software released under the three-clause BSD license.[53] 

• NumPy: 

NumPy is the fundamental package for scientific computing in Python. It 

is a Python library that provides a multidimensional array object, various 

derived objects (such as masked arrays and matrices), and an assortment 

of routines for fast operations on arrays, including mathematical, logical, 

shape manipulation, sorting, selecting, I/O, discrete Fourier transforms, 

basic linear algebra, basic statistical operations, random simulation and much more.[54] 

• Scikit-learn: 

scikit-learn (formerly scikits.learn and also known as sklearn) is a free 

and open-source machine learning library for the Python programming 

language, It features various classification, regression, and clustering 

algorithms including support-vector machines, random forests, gradient 

boosting, k-means and DBSCAN, and is designed to interoperate with the 

Python numerical and scientific libraries NumPy and SciPy.[55] 

• Matplotlib: 

Matplotlib is a plotting library for the Python programming language and its numerical 

mathematics extension NumPy. It provides an object-oriented API for embedding plots into 

applications using general-purpose GUI toolkits like Tkinter, wxPython, Qt, or GTK. There is 

also a procedural "pylab" interface based on a state machine (like 

OpenGL), designed to closely resemble that of MATLAB, 

though its use is discouraged. SciPy makes use of matplotlib.[56] 
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• Tensorflow.keras: 

Keras is the high-level API of the TensorFlow platform. It provides 

an approachable, highly-productive interface for solving machine 

learning (ML) problems, with a focus on modern deep learning. 

Keras covers every step of the machine learning workflow, from 

data processing to hyperparameter tuning to deployment. It was developed with a focus on 

enabling fast experimentation.[57] 

3. Network architecture of the IIoT environment:  

This section explores the network architecture designed to evaluate the effectiveness of 

our Convolutional Neural Network (CNN) based Intrusion Detection System (IDS) within an 

IIoT environment. This architecture serves as a controlled testbed that replicates key 

characteristics of real-world IIoT networks, where Operational Technology (OT) and 

Information Technology (IT) systems converge. 

By capturing and analyzing a comprehensive set of traffic patterns observed in IIoT 

deployments, the IDS establishes a baseline understanding of legitimate network behavior.  

Industrial IoT networks present unique challenges for network architecture design due to the 

convergence of OT and IT systems. OT systems, responsible for controlling physical processes 

(e.g., industrial equipment), often have different communication protocols and security 

requirements compared to IT systems, which manage data and information flow. Additionally, 

the real-time nature of industrial processes necessitates reliable and low-latency 

communication. 

To address these challenges, IIoT network architectures typically employ a layered 

approach. This approach segregates the network into distinct segments, such as Device Layer, 

Field Layer, and Control Layer. 

This layered architecture ensures secure and manageable communication between 

diverse devices and systems within the IIoT environment. The IDS, strategically positioned 

within this architecture, can monitor network traffic and identify potential threats that could 

disrupt OT operations or compromise sensitive IT data. 
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Figure 4.1. Network architecture of the IIoT environment 
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The scenario depicts a DDoS attack launched by a malicious actor. The attacker’s goal 

is to disrupt and disable the Supervisory Control and Data Acquisition (SCADA) system, 

ultimately compromising the integrity of the connected IIoT devices. The IDS is strategically 

placed within the network to act as a guardian and identify such malicious activity. 

Here's a breakdown of the elements within the IIoT network architecture: 

• Field Network (Level 0): This level consists of various industrial sensors and actuators that 

gather and control physical data. These sensors and actuators are spread across the industrial 

environment. 

• Control Network (Level 1): This network connects the field-level devices to controllers 

which act as intelligent devices that gather data from various sensors (temperature, pressure, 

flow, etc.) and send control signals to actuators (valves, motors, etc.) based on pre-

programmed logic or instructions received from higher-level systems (PLCs in the Control 

Network). 

• Supervisory network (Level 2): The supervisory network carries data collected by PLCs 

and other controllers on the Control Network (Level 1) to The SCADA system on Level 3 

that can aggregate and filter the incoming data stream from multiple controllers, presenting 

a consolidated view of the overall process. Then connects the SCADA system to the 

Human-Machine Interface (HMI) which is the user interface that allows human operators 

to interact with the SCADA system for centralized monitoring and control. 

•  Operational and Control Center Network (Level 3): it focuses on centralized 

monitoring and control of industrial processes where a Manufacturing Execution System 

(MES) is integrated. It is primarily used in discrete manufacturing and connects to the 

SCADA system to receive real-time production data and sensor information. 

• Enterprise Network (Level 4): This network acts as the bridge between the Operational & 

Control Center Network (Level 4) and the broader corporate network. It facilitates the 

exchange of data between industrial control systems and various enterprise IT resources, 

potentially providing access to the Internet. 

• Distributed Denial-of-Service (DDoS) Attacker: a DDoS attack launched by a botnet that 

overwhelms the target system with traffic, causing denial-of-service that targets Level 2 

(Supervisory network) to disrupt the SCADA system. 
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• Intrusion Detection System (IDS): our CNN-based IDS is positioned on the SCADA 

system (Level 3) and continuously monitors traffic to distinguish legitimate communication 

from DDoS attack patterns and protects the SCADA system and connected IIoT devices. 

4. Scenario : 

This section explores the experimental setup designed to evaluate the effectiveness of our 

Convolutional Neural Network (CNN) model within an Intrusion Detection System (IDS) for 

an Industrial Internet of Things (IIoT) environment. This scenario utilizes the Edge-IIoTset 

dataset to assess the IDS's ability to detect anomalies in network traffic without relying on 

predefined attack labels or types.  

The experiment unfolds in distinct stages: 

• Simulated Attack: An attacker launches a targeted attack against the IIoT network, sending 

malicious traffic towards the connected devices. 

• Network Traffic Capture: A network sniffer captures all network traffic on the IIoT 

network. This captured traffic includes both the attacker's malicious packets and legitimate 

communication. 

• Data Collection and Preprocessing: The captured network traffic, containing a mix of 

benign and potentially malicious data packets from the same Edge-IoT dataset, is saved in 

the "CSV" file format for analysis by the IDS. 

• CNN-based Anomaly Detection: The IDS employs our CNN model, trained on the 

preprocessed Edge-IoT dataset minus the attack labels and types, to analyze the traffic. The 

CNN, trained to recognize patterns in network traffic, identifies anomalies that deviate from 

the expected behavior of legitimate communication within the IIoT environment. 

• Anomaly Detection and Alert Generation: Upon detecting anomalies in the traffic, the 

IDS triggers an alert notification. This alert informs security personnel about the suspicious 

activity, allowing them to investigate further and determine if a malicious attack is 

underway. 

5. Evaluating the CNN-based IDS performance:  

Having established a robust Convolutional Neural Network (CNN) model through the 

training process, we now shift our focus to the critical phase of evaluating its performance as 

an Intrusion Detection System (IDS) within an IIoT environment. This evaluation process is 



Chapter 4                                                                                 Development Environment and Scenario 

54 

 

 

 

crucial for assessing the model's effectiveness in identifying real-world DDoS attacks and 

ensuring its generalizability beyond the training data. The key steps involved in this testing 

scenario are: 

1. Attack Label and Type Removal: The original Edge-IoT dataset is modified by removing 

the "attack label" and "attack type" columns. This forces the model to rely solely on the 

network traffic characteristics for anomaly detection, simulating a scenario where the IDS 

encounters unseen attack patterns. 

2. Model Loading: The pre-trained CNN model, developed during the training phase, is 

loaded into the testing environment. This model is trained to recognize patterns in network 

traffic that deviate from normal behavior. 

3. Preprocessing The New Traffic Data: A new dataset containing network traffic data 

(without attack labels or types) is loaded for testing. The loaded traffic data undergoes 

preprocessing steps similar to those used during training. The pre-processing includes 

standardization, a technique used during training to normalize the data's statistical 

properties. This step ensures the data aligns with the model's expectations and allows the 

model to understand the data format it was trained on. 

4.  Reshaping the Data: The pre-processed traffic data is reshaped into a format compatible 

with the CNN model's input layer. This reshaping involves converting the data into a 

specific number of channels, rows, and columns. 

5.  Model Prediction: Once the data is prepared, the loaded CNN model makes predictions 

on the new traffic data. The model analyzes the network traffic patterns and identifies 

instances that deviate from its understanding of normal behavior within the IIoT 

environment. 

6. Anomaly Detection Analysis and Results: 

The evaluation of the model reveals several key insights into its performance and potential 

for real-world application. Below is a detailed discussion of the results: 
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• Accuracy: The model achieved an accuracy of approximately 92%. This indicates that the 

model correctly classifies around 92% of the samples in the dataset. 

Figure 4.2. Accuracy test 

• Precision: The precision scores are uniformly high across all classes, with Class 1 having 

the highest precision, followed closely by Classes 3, 4, 2, and 0. This indicates that the 

model performs consistently well in predicting all classes, with a very high accuracy rate 

when it makes predictions. The nearly perfect precision across all classes suggests that the 

model is highly effective in correctly identifying samples for each class. 

Figure 4.3. Precision test 

• Recall: The recall for each class varies, indicating the model's differing ability to identify 

true positive samples across classes. Class 0 has a relatively high recall of about 80%, 

showing that the model correctly identifies the majority of true positive samples for this 
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class. Class 1, however, has a lower recall of approximately 50%, indicating that the model 

only identifies half of the true positives for this class. Classes 2, 3, and 4 have recall values 

around 70%, 80%, and 60%, respectively, suggesting that the model is reasonably effective 

in identifying true positives for these classes, but still leaves room for improvement. 

Figure 4.4. Recall test 

• F1 Score: The F1 scores, which are the harmonic means of precision and recall, show 

variability across different classes. Class 0 has an F1 score of approximately 0.85, indicating 

a strong balance between precision and recall for this class. Class 1 has a lower F1 score of 

about 0.65, reflecting some difficulty in balancing precision and recall effectively. Classes 

2, 3, and 4 have F1 scores around 0.75, 0.85, and 0.80, respectively, suggesting that the 

model performs fairly well in achieving a balance between precision and recall for these 

classes, but with slight variations in performance. 

Figure 4.5. F1 Score test 
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        The model's predictions were further analyzed to identify potential anomalies within 

the network traffic data. These anomalies could signify potential DDoS attacks, even though 

the model wasn't explicitly trained on attack labels or types. This demonstrates the model's 

capability to generalize and identify deviations from normal traffic patterns that might 

indicate unseen threats. 

         The model identified a significant number of potential DDoS attacks, with a total of 

1,651,770 detections. This high number of detections suggests that the model is effectively 

capturing anomalies in the traffic data that deviate from what it has learned as normal 

behavior.      

 

Figure 4.6. Number of DDoS attacks and normal traffic detected 

 

Figure 4.7. Distribution of anomaly scores 

The bimodal distribution observed in the anomaly score graph shown in Figure 26 

suggests promising results for the model's ability to detect anomalies in the IoT environment. 

This distribution indicates that the model has effectively separated the data into two 

distinct clusters, The clear separation between these two peaks signifies the model's capability 

to distinguish between normal and anomalous traffic. This characteristic allows for setting a 
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threshold anomaly score to classify data points. Any data point exceeding this threshold would 

be flagged as an anomaly. 

       The results indicate that while the model shows promise, particularly in terms of precision 

for certain traffic classes, there are significant areas for improvement. The low recall and zero 

performance on some classes highlight the need for a more balanced and comprehensive 

dataset. 

Overall, the results are promising and demonstrate the model's potential in detecting 

potential DDoS attacks. Further analysis and exploration of new datasets can refine the model 

and lead to a more robust and reliable Intrusion Detection System. 

7. Limitations and future work:  

This research effort, while successful in deploying a CNN-based IDS for evaluation, 

encountered limitations due to practical constraints. Launching a real DDoS attack on a 

functional IIoT system was not possible due to ethical and safety considerations. Additionally, 

gaining access to a wide range of real-world industrial IoT devices for data collection proved 

challenging. 

Despite these limitations, the project offers valuable insights and paves the way for future 

advancements. The simulated environment provides a solid foundation for further model 

development and testing. Here's how we envision future work: 

• incorporating a wider variety of simulated and real-world (when ethically possible) attack 

scenarios into the training dataset to enhance the model's ability to identify diverse threats. 

• Techniques like transfer learning can be explored to leverage the knowledge gained from 

the simulated environment and adapt the model to real-world IIoT network data when it 

becomes available. 

• Optimizing the CNN model for resource-constrained industrial devices is crucial for 

practical implementation within IIoT environments. 

• Partnering with industrial organizations can provide access to real-world data and physical 

IIoT setups for more comprehensive testing and refinement of the model. 

By addressing these limitations and pursuing these future directions, this research can 

contribute significantly to the development of robust and adaptable CNN-based intrusion 

detection systems for safeguarding IIoT environments from ever-evolving cyber threats. 
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8. Conclusion:  

In Chapter 4, we successfully tested our CNN-based intrusion detection system (IDS) within 

an IIoT environment. This virtualized IDS monitored network traffic for anomalies, showcasing 

its potential for safeguarding IIoT systems. While limitations like ethical constraints on real-

world attacks and access to diverse industrial devices existed, this chapter lays a strong 

foundation for future advancements. By expanding the training data, exploring transfer 

learning, developing lightweight models, and collaborating with industry, we can refine the 

CNN-based IDS for real-world deployment, ultimately strengthening the security of IIoT 

environments. 
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General Conclusion: 

The dynamic nature of cyber threats, particularly DDoS attacks targeting the Industrial 

Internet of Things (IIoT), necessitates constant innovation in security measures. Traditional 

intrusion detection methods often struggle to keep pace with the evolving strategies of attackers. 

This thesis addresses this challenge by proposing a deep learning-based Intrusion Detection 

System (IDS) tailored for detecting DDoS attacks in IIoT environments. 

Through this research, we've underscored the critical significance of cybersecurity in 

the IIoT realm, which serves as the backbone for essential industrial operations. Our choice to 

delve into this theme stems from the growing integration of IoT devices in industrial setups, 

introducing new vulnerabilities that require robust security measures. It's crucial to recognize 

the pivotal role of cybersecurity in industrial IoT, as breaches can lead to severe operational 

disruptions, financial losses, and safety hazards. 

Our study highlights the transformative potential of Artificial Intelligence (AI) in 

fortifying IIoT security. AI, particularly deep learning, offers sophisticated capabilities for 

analyzing intricate data patterns and identifying complex cyber threats. This thesis starts with 

laying the groundwork by elucidating IIoT concepts, scrutinizing prevalent attacks on IIoT 

systems, and emphasizing the indispensable role of robust cybersecurity. It further explores the 

integration of AI to enhance IIoT security, providing a theoretical framework for the research 

endeavor. 

Furthermore, A comprehensive state-of-the-art study delves into recent advancements 

in deep learning methodologies for intrusion detection in IoT and IIoT networks. This study led 

us to opt for the Convolutional Neural Network (CNN) due to its adaptability, scalability, and 

proficiency in feature extraction. Additionally, we selected the Edge-IIoT dataset because of its 

extensive collection of traffic data encompassing various IIoT devices and sensors. 

The proposed CNN model in this work was trained on pre-processed IIoT traffic data 

from the Edge-IIoT dataset, segmented into training and testing sets. The model showcases 

exceptional performance, achieving a remarkable accuracy of 99% in distinguishing normal 

traffic from DDoS attacks. This outcome outperforms other machine learning algorithms tested 

on the Edge-IIoT dataset for DDoS detection. 

In the final section, we propose a practical scenario for deploying the proposed IDS 

within the IT/Operational Technology (OT) network architecture of an industrial company. We 
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demonstrate how the trained model can be seamlessly integrated into an IIoT environment, 

discuss its performance and results, and analyze its effectiveness in real-world DDoS attack 

detection within IIoT settings. 

This thesis makes a significant contribution to the cybersecurity field by introducing a 

robust deep learning-based solution for DDoS detection in IIoT environments. It presents both 

theoretical advancements and practical insights, paving the way for enhanced security in the 

ever-expanding IIoT landscape. By incorporating dropout layers and L2 regularization, we 

effectively mitigate overfitting, ensuring the model's resilience and generalization to new, 

unseen data. 

Perspectives: 

Looking ahead, there's vast potential for further refinement and expansion of the deep 

learning-based IDS for broader applications within the IIoT domain. Future research endeavors 

could explore the integration of real-time anomaly detection systems, capable of adapting to 

evolving attack patterns and reducing latency in detection. Additionally, expanding the dataset 

to encompass a wider variety of attack types and normal traffic patterns will bolster the model's 

robustness and reliability. 

Moreover, collaborative efforts with industry partners can facilitate the deployment of 

these advanced IDS models in real-world IIoT environments, offering valuable feedback and 

insights for continual improvement. The convergence of AI and IIoT presents a fertile ground 

for innovation, heralding significant advancements in securing industrial operations against 

sophisticated cyber threats. By staying ahead of the evolving threat landscape, we can safeguard 

the safety, efficiency, and resilience of industrial systems in the digital era. 
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