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  _________________________________________________________________________ Abstract 

Abstract:  

In the era of digital piracy, securing digital content has become a paramount concern. 

This project explores the implementation of biometric-based image cryptography as a 

novel approach to enhance the security of digital images. By integrating biometric traits 

such as fingerprints or facial recognition into the cryptographic process, this method ensures a 

higher level of security compared to traditional cryptographic techniques. The study 

demonstrates how biometric-based encryption can effectively prevent unauthorized 

access and protect sensitive image data from digital theft. Through comprehensive analysis 

and experimentation, this project highlights the potential of biometric cryptography as a 

robust solution to combat digital piracy.

.  . 

Résumé :  

A l'ère du piratage numérique, la sécurisation du contenu numérique est devenue une 

préoccupation majeure. Ce projet explore la mise en œuvre de la cryptographie d'image basée 

sur la biométrie comme une nouvelle approche pour améliorer la sécurité des images 

numériques. En intégrant des traits biométriques tels que les empreintes digitales ou la 

reconnaissance faciale dans le processus cryptographique, cette méthode garantit un niveau de 

sécurité plus élevé par rapport aux techniques cryptographiques traditionnelles. L'étude 

démontre comment le cryptage basé sur la biométrie peut empêcher efficacement l'accès non 

autorisé et protéger les données d'images sensibles contre le vol numérique. Grâce à une 

analyse et des expérimentations approfondies, ce projet met en évidence le potentiel de la 

cryptographie biométrique en tant que solution robuste pour lutter contre le piratage 

numérique.

.  . 

  ملخص

عصر القرصنة الرقمية، أصبح تأمين المحتوى الرقمي قضية بالغة الأهمية. يستكشف هذا المشروع تنفيذ  في

تشفير الصور القائم على القياسات الحيوية كنهج جديد لتعزيز أمان الصور الرقمية. من خلال دمج السمات الحيوية مثل 

ير، تضمن هذه الطريقة مستوى أمان أعلى مقارنةً بالتقنيات بصمات الأصابع أو التعرف على الوجه في عملية التشف

التقليدية للتشفير. توضح الدراسة كيف يمكن للتشفير القائم على القياسات الحيوية أن يمنع الوصول غير المصرح به بشكل 

ذا المشروع إمكانيات فعال ويحمي بيانات الصور الحساسة من السرقة الرقمية. من خلال التحليل الشامل والتجارب، يبرز ه

.التشفير الحيوي كحل قوي لمكافحة القرصنة الرقمية
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Introduction 

In recent years, the proliferation of computer systems, which now permeate almost every 

aspect of our modern lives, has introduced new challenges to securing user data and ensuring 

the confidentiality and privacy of individuals. This increased need for data security is 

essential for maintaining user trust. Unfortunately, numerous studies indicate a significant rise 

in data theft, especially on the Internet, in recent years. Often, existing security systems fail to 

provide adequate protection for user data [1]. Traditional methods of identity verification, 

such as those based on possession (e.g., smart cards) and knowledge (e.g., passwords), are 

widely used but have inherent vulnerabilities that can be exploited by unauthorized 

individuals to steal user data and misuse it [2]. Recently, biometrics has emerged as a viable 

alternative to traditional security methods, leading to the development of various automatic 

human recognition systems that utilize physical, behavioral, or biological traits. Biometrics 

offers a significant advantage in safeguarding user data because biometric traits cannot be 

easily lost, forgotten, or stolen. This makes biometrics one of the most promising and 

ambitious methods for providing enhanced protection to user data [3]. 

Remote identity verification/identification is the process of confirming an individual's 

identity from a distance, without the need for physical presence [4]. This is typically done 

using digital technologies and various methods of authentication to ensure that the person is 

who they claim to be. It is widely used in scenarios such as online banking, remote work, 

telehealth, e-commerce, and other online services. The goal of remote identity 

verification/identification is to securely and accurately confirm identities, thereby preventing 

fraud and unauthorized access to sensitive information or services. In other hand, data 

encryption is a process of converting raw data into an incomprehensible data to prevent 

unauthorized access [5]. Encryption ensures that only authorized parties can understand the 

encryption data by using specific algorithms and keys. 
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Hybridization of biometrics and encryption for remote identity verification/identification 

combines the strengths of both technologies to enhance security and reliability in both 

authenticating individuals and data protection. Therefore, the hybridization of biometrics and 

encryption in remote identity verification provides a robust solution to the challenges of 

securing personal data and ensuring accurate authentication [6]. This approach leverages the 

unique, hard-to-fake nature of biometric data and the strong protection offered by encryption 

to create a secure and reliable verification system. 

Remote identity verification/identification and the protection of transmitted data are 

crucial. Thus, integrating biometrics with encryption is essential to safeguard both the data 

and the person's identity from theft. In this dissertation, a system was proposed to identify a 

person remotely and protect the transmission of images. The biometric system utilized a 

classifier based on deep learning principles, specifically Deep Rule Based (DRB)[7]. This 

classifier takes as inputs feature vectors extracted from palmprints using two well-known 

handcrafted methods: Histogram of Oriented Gradients (HOG) [8] and Local Phase 

Quantization (LPQ) [9]. For encrypting the images, chaos systems were employed to enhance 

security by dividing the image into several blocks and encrypting each block individually. 

To achieve our objective, this dissertation is organized into three chapters: 

The first chapter presents a general overview of biometrics, covering in detail the different 

biometric modalities as well as the structure and operation of biometric systems. 

The second chapter provides an overview of how biometric systems and encryption methods 

can be combined to enhance the security of the encryption process and safeguard biometric 

systems from hackers. This chapter details the proposed method, including comprehensive 

explanations of the system's design and implementation. Additionally, it covers the necessary 

prerequisites for the generated system, ensuring a clear understanding of the foundational 

components required for successful integration. 

The third chapter presents experimental results related to both the performance of the 

biometric system and security analysis with all necessary analyzes and discussions, using a 

database of 300 persons. 

Finally, a general conclusion with future perspectives is provided at the end of the 

dissertation. 



 
 

Biometrics for security  
 

 
Biometrics holds immense potential for enhancing information security.  This chapter begins by 

describing the fundamental principles of biometric systems. Furthermore, it examines how 

biometric systems operate, from the initial enrollment process to the recognition and verification 

phases. Additionally, the evolving landscape of biometric fusion, in which multimodal 

approaches leverage the synergistic potential of multiple biometric modalities to improve 

accuracy and resilience against fraudulent attempts, is explored... 
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Introduction 

    

Information security and biometrics complement each other in providing robust security 

solutions. By integrating biometric authentication with information security practices such 

as access control, data encryption, multi-factor authentication, and fraud detection, 

organizations can enhance the security of their systems and protect sensitive data more 

effectively. In this chapter, we will first introduce the fundamental concepts of biometrics. 

Next, we will discuss an overview of multimodal biometrics, as well as the associated 

scenarios and fusion levels. 

I.1 Information security and biometric 

In the era of digital transformation, safeguarding information systems is paramount for both 

organizations and individuals. This highlights the pressing requirement for precise user 

identification and identity verification. Consequently, researchers have dedicated significant 

efforts to developing effective methodologies to bolster safety across various processes. The 

primary aim of these methodologies is to control access to the system [10]. However, 

traditional methods have demonstrated vulnerabilities, including identity theft. To mitigate 

these security risks, traditional approaches are being replaced with alternatives that 

capitalize on a user's intrinsic characteristics or biometric traits. Thus, the integration of 

biometric systems with information security methods, such as encryption, is symbiotic and 

can be described as follows: 

I.1.1 Biometric as a service to cryptography 

Biometrics can play a crucial role in improving the security of encryption systems by 

providing unique and reliable methods of generating and sharing keys in symmetric 

encryption. 
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1) Key generation: Biometric traits can be used to generate encryption keys. For example, 

a fingerprint scans (see Fig. I.1) or iris pattern can be converted into a unique cryptographic 

key, which can then be used to encrypt and decrypt data [11]. 

 

Fig. I.1 Biometric key generation for symmetric cryptography 

Biometric key generation process leverages the unique and immutable characteristics of an 

individual's biometrics to enhance security. Therefore, any encryption system based on a 

key generated from biometrics has the following advantages [12]: 

- Enhanced Security: Biometric keys are highly secure because biometric traits are unique 

to each individual and difficult to replicate or steal. 

- Convenience: Users do not need to remember complex passwords or carry physical 

tokens. Their biometric traits are always with them and can be easily used to generate 

encryption keys. 

- Non-repudiation: Biometric keys provide non-repudiation, meaning that an individual 

cannot deny having accessed or encrypted the data, as the key is uniquely tied to their 

biometric data. 

- Reduction in Key Management Issues: Traditional key management can be complex, 

involving the storage, distribution, and protection of keys. Biometric key generation 

simplifies this process by tying the key generation to the user’s biometric traits. 

- Resistance to Brute Force Attacks: Since biometric data is highly complex and unique, it 

significantly increases the difficulty for attackers to generate the same key through brute 

force methods. 

It is important to note that biometric data can vary due to factors like age, injuries, or 

changes in the environment. Algorithms must be robust enough to account for these 

variations while still generating consistent keys. 
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2) Key embedding: Key embedding is a process where a cryptographic key is embedded 

into biometric data (for example fingerprint) or combined with it in such a way that the key 

can only be retrieved or used if the correct biometric input is provided (see Fig. I.2). Thus, 

this approach enhances security by ensuring that the cryptographic key is tightly bound to 

the user’s biometric traits[13]. 

 

Fig. I.2 key embedding process for symmetric cryptography 

By embedding cryptographic keys within biometric data, key embedding enhances the 

security and usability of cryptographic systems, providing a robust solution for protecting 

sensitive information and ensuring that only authorized users can access it. Therefore, any 

encryption system based on a key embedding in biometrics data has the following 

advantages: 

- Enhanced Security: Embedding the key within biometric data makes it highly secure, as 

the key cannot be extracted or used without the correct biometric input. 

- User Convenience: Users do not need to remember complex passwords or carry physical 

tokens. Their biometric traits serve as a natural and convenient way to access the 

cryptographic key. 

- Integrated Authentication and Encryption: Key embedding provides a seamless way to 

integrate authentication with encryption, enhancing the overall security architecture. 

- Reduced Risk of Key Exposure: Since the cryptographic key is not stored explicitly but is 

embedded within biometric data, the risk of key exposure through data breaches is reduced. 

In key embedding approach, two well-known techniques were used. Thus, in the key 

embedding approach, two well-known techniques were used: fuzzy vault and fuzzy 

commitment: In the fuzzy vault scheme approach, a cryptographic key is secured using the 

user’s biometric data by creating a vault of points. Some points are genuine (derived from 

the biometric data) and some are chaff points (random points). The correct biometric data 
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can help identify the genuine points and reconstruct the key, while the chaff points prevent 

an attacker from easily determining the key. In the fuzzy commitment scheme is a 

cryptographic technique that combines encryption key and biometric data to secure key 

cryptography. 

I.1.2 Cryptography as a service to Biometric 

Cryptography can significantly enhance biometric systems by providing security, privacy, 

and integrity to biometric data and processes [14]. Therefore, encryption processes can 

enhance biometric systems according to many ways, the most important of which can be 

described as follows: 

1) Biometric Data Protection: Cryptography ensures that biometric data, such as 

fingerprints or facial images, is securely stored and transmitted (see Fig. I.3). By encrypting 

this data, even if unauthorized access occurs, the data remains unreadable without the 

corresponding decryption key.[15] 

 

Fig. I.3 Biometric data protection 

Protecting biometric data offers numerous advantages that enhance security, privacy, and 

trust in biometric systems: 

- Personal Data Protection: Protecting biometric data helps ensure that individuals’ 

personal information is not misused or exposed, maintaining privacy and complying with 

data protection regulations. 

- Minimized Risk of Identity Theft: Since biometric data is unique and intrinsic to 

individuals, protecting it minimizes the risk of identity theft and unauthorized use. 

- Protection Against Data Breaches: Encrypting and securely storing biometric data helps 

protect against data breaches and cyberattacks, reducing the potential damage and costs 

associated with such incidents. 
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- Resilience to Spoofing: Advanced biometric protection mechanisms, such as liveness 

detection and multi-modal biometrics, make it harder for attackers to spoof or bypass 

biometric systems. 

By leveraging these advantages, organizations can ensure that their biometric systems not 

only provide secure and reliable authentication but also protect the privacy and integrity of 

users' biometric data, fostering a safer and more trustworthy digital environment. 

2) Cancelable Biometric: Cancelable biometrics (revocable biometrics) is a technique 

used to enhance the security and privacy of biometric systems (see Fig. I.4). It involves 

transforming biometric data into a revocable and renewable format, allowing for the 

biometric template to be changed if compromised [16]. This method ensures that even if 

biometric data is exposed, the original biometric trait remains secure and a new, secure 

version can be generated. 

 

Fig. I.4 Cancelable biometrics 

Implementing cancelable biometrics allows organizations to substantially improve the 

security and privacy of their biometric systems, offering a robust solution to the challenges 

associated with protecting biometric data. Cancelable biometrics offers numerous 

advantages that enhance security, privacy, and trust in biometric systems: 

- Enhanced Security: By transforming the biometric data, cancelable biometrics protect 

against template theft and misuse. Even if the transformed template is compromised, the 

original biometric trait remains secure. 

- Privacy Protection: The non-invertibility of the transformation function ensures that the 

original biometric data is not exposed, protecting user privacy. Also, users can have 
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different transformed templates for different applications, preventing linkage across 

systems. 

- Revocability and Renewability: If a transformed biometric template is compromised, a 

new template can be generated using a different transformation, similar to changing a 

password. This provides a practical solution for managing compromised biometric data. 

I.2 Biometrics 

Biometrics is the measurement and statistical analysis of people's unique physical and 

behavioral characteristics. The technology is mainly used for identification and access 

control or for identifying individuals who are under surveillance [17]. The basic premise of 

biometric authentication is that every person can be accurately identified by intrinsic 

physical or behavioral traits. 

I.2.1 Biometrics importance 

Currently, biometric recognition is an important issue for securing systems. Indeed, the 

growing interest in biometrics is due to several factors, including: 

- High security: Combined with other technologies such as encryption or smart cards, 

certain systems make fraud very complicated. 

- Comfort: By replacing only traditional methods, such as passwords, biometrics makes it 

possible to respect basic security rules. When these rules are followed, biometrics saves 

administrators from having to respond to numerous password change requests. 

- Security/psychology: In certain cases, notably for e-commerce and e-banking, the 

customer does not trust. It is essential for these organizations to convince the customer to 

transact. Biometric authentication can change customer behavior. 

I.2.2 Biometrics application 

Generally, biometrics meets security requirements in almost all areas [18]. Biometric 

security applications can be classified into four main sections 

- Public service: Biometrics is used in the public service to control and secure government 

and border buildings, to control immigrants entering and leaving a territory, to identify 

people in airports (Iris, face and digital fingerprint) and also in public health. 

- Judiciary: Biometrics is used in the judiciary to prove certain facts regarding criminal 

offenses, to identify the identity of such a criminal using biometric traits extracted from the 
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crime scene, in electoral voting by Internet and in the identification of missing children and 

finally in the electronic protection of documents. 

- Banking sector: Biometrics are used in the banking sector to carry out banking 

transactions (cash withdrawals, bank cards, payment by telephone and internet) and to 

reduce the proportion of fraud thanks to the integration of smart cards with fingerprint 

recognition digital. 

- Physical and logical access: Biometrics are effectively used to control physical and 

logical access. It is used either to control physical access such as securing a location 

(building or room) or to control logical access such as securing a computer session. 

I.3 Biometrics technologies 

Biometric modalities refer to the various physiological, behavioral and biological 

characteristics that are used for identification and authentication purposes. These modalities 

encompass a wide range of unique attributes that can be measured and analyzed to establish 

an individual's identity with a high degree of accuracy. It’s an integral part of human bodies 

or behaviors, meaning that they are necessarily subject to evolution over time and to the 

hazards of everyday life [19,20]. Biometric technology is developing rapidly and tends to 

be associated, in the short term, with current technologies such as smart cards, badges, keys, 

etc. Thus, Fig. I.5 shows important biometric modalities. 

 

Fig. I.5 Biometric modalities 
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I.3.1 Properties of a biometric modality: The biometric modalities used must have certain 

properties to allow the development of reliable and robust biometric systems. The essential 

properties for each biometric modality are as follows: 

- Universality: The entire population must have this modality; 

- Uniqueness:Two different persons must have different representations of their biometrics; 

- Stability: A biometric must be relatively stable over time and above all must be stable for 

a person whatever the circumstances of acquisition (external conditions, emotional 

conditions of the person, etc…); 

- Acceptability: Refers to the constraints to the acquisition and use of a biometric modality, 

it must be accepted by the public; 

- Non-reproducibility: concerns whether or not it is easy to falsify a biometric modality to 

avoid fraudulent use of the system; 

- Permanence: the information must be constant over time; 

- Performance: effectively recognize a person, a predetermined criterion established to 

evaluate the performance of a biometric system; 

- Measurability: it can be measured with different sensors. 

I.3.2 Types of biometric modalities: All biometric modalities share the objective of 

verifying an individual's identity through the analysis of their physical (morphological), 

behavioral, or biological attributes [21, 22]. Among the different existing biometric 

modalities, there are three main categories: 

1) Physical biometric modalities (morphologies): In biometrics, morphology refers to the 

measurement of a person's physical features to create a biometric template. This category 

focuses on identifying and verifying specific physical traits, including, but not limited to, 

fingerprints, face, iris, and palmprint. 

- Fingerprint: Fingerprint recognition (Fig. I.6) relies on capturing and analyzing the 

unique patterns of ridges and valleys present on a person's fingertips. It is one of the oldest 

and most widely used biometric due to the distinctiveness and permanence of fingerprints.  

 

Fig. I.6 Fingerprint modality 
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- Face: Facial recognition technology (Fig. I.7) utilizes facial features such as the distance 

between the eyes, nose shape, and jawline to identify individuals. It has gained significant 

popularity in recent years, especially in surveillance and security applications. 

 

Fig. I.7 Face modality 

- Iris: Iris recognition (Fig. I.8) involves capturing high-resolution images of the unique 

patterns in the colored part of the eye (iris). The intricate patterns of the iris are highly 

distinctive and stable over time, making it a reliable biometric modality. 

 

Fig. I.8 Iris modality 

- Palmprint Recognition: Palmprint recognition (Fig. I.9) analyzes the unique patterns of 

lines, ridges, and creases on the palm of the hand. It is particularly useful in situations 

where fingerprint recognition may not be feasible, such as in outdoor environments or 

industrial settings.  

 

Fig. I.9 Palmprint modality 

2) Behavioral biometric modalities: Behavioral biometrics modalities encompass distinct 

characteristics based on individuals' actions, habits, or mannerisms. They provide 

continuous authentication, non-intrusive verification, and resistance to spoofing attempts. 

Leveraging these characteristics, organizations can enhance security measures and user 

experience across various applications requiring identity verification. 
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- Voice Recognition: Voice recognition (Fig. I.10) technology identifies individuals based 

on the unique characteristics of their voice, including pitch, tone, and speech patterns. It is 

commonly used in telephone-based authentication systems and voice-controlled devices. 

 

Fig. I.10 Voice modality 

- Signature Recognition: Signature recognition (Fig. I.11) examines the distinct features of 

an individual's handwritten signature, including stroke dynamics, pressure, and speed. 

Widely used in financial transactions and legal documents, signature recognition provides a 

reliable means of identity verification. 

 

Fig. I.11 Signature modality 

- Gait recognition: Gait recognition (Fig. I.12) identifies individuals based on their walking 

patterns, including stride length, speed, and rhythm. By capturing and analyzing these 

unique characteristics, gait recognition systems can accurately verify identity, offering 

applications in security and surveillances. 

 

Fig. I.12 Gait modality 

3) Biological biometric modalities: Biological biometrics is based on the analysis of a 

person's biological traces, such as DNA, hand veins, and facial thermography. 

- Hand Veins: Hand vein recognition technology (Fig. I.13) analyzes the pattern of veins in 

the hand, which is unique to each individual. It utilizes infrared imaging to capture the vein 

pattern and is used in access control systems and banking applications. 
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Fig. I.13 Hand vein modality 

- DNA: Deoxyribonucleic acid is the most accurate way to determine a person's identity. It 

is impossible to find two persons with the same DNA (Fig. I.14). This biometric has the 

advantage of being unique and permanent throughout life. 

 

Fig. I.14 DNA modality 

- Facial thermography: The amount of heat emitted by the different parts of the face 

characterizes each person (Fig. I.15). It depends on the location of the veins but also on the 

thickness of the skeleton, the amount of tissue, muscle, fat, etc. A thermal camera takes an 

infrared image of the face. This makes it possible to highlight a distribution of heat specific 

to each person. 

 

Fig. I.15 Facial thermography modality 

I.3.3 Biometric System Description 

A biometric system is a pattern recognition system that identifies a person based on a 

feature vector derived from their unique physiological or behavioral traits. Depending on 

the application, a biometric system typically operates in either verification mode or 

identification mode. 

1) Biometric system phases: The design of biometric systems involves two fundamental 

phases: the registration (enrollment) phase and the recognition phase, which can operate in 

either authentication mode or identification mode. 
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- Enrollment phase (creation of the database): The first phase of any biometric system is 

the registration (or enrollment). During this phase, a user's biometric data is captured and 

stored in a biometric database (as a form of feature vector) for the first time (Fig. I.16). 

 

Fig. I.16 Enrollment phase 

This process may also include adding the user's biographical information to the database. 

- Reconnaissance Phase (Test): The task of the recognition phase (Fig. I.17) is to verify or 

identify the identity of a person attempting to access the system. During this phase, the 

biometric data is captured, and a set of parameters (biometric template or feature vector) is 

extracted, similar to the enrollment process. The extracted feature vector is then compared 

with the stored feature vectors in the enrollment phase, and a decision is made based on the 

score obtained in the comparison task. 

 

Fig. I.17 Recognition phase 

The sensor used should closely match the one used during enrollment to ensure accuracy.  

2) Operating modes: In biometric systems, the recognition process depends on whether the 

system operates in verification or identification mode. 

- Verification mode: In verification mode, also known as authentication, the person 

attempting to access the system declares their identity. The algorithm then compares the 

biometric template of the declared identity with the corresponding pre-stored template in 

the database. The system responds with a binary decision (yes or no) indicating whether the 

templates match. This process involves comparing the input template with a single template 

in the database (1:1). 

- Identification mode: In this mode, the person attempting to access the system does not 

declare their identity. Instead, the system determines "Who am I?" by checking if the user's 

biometric template matches any template in the database. The user provides a biometric 

sample, which is then compared against all stored templates from the enrollment phase  
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(1: N comparison). The system either accepts the user if a match is found or rejects them if 

no match exists. The identification mode can be divided into two operating modes: 

Closed set mode: The output of the biometric system is the identity of the person whose 

stored template shows the highest degree of similarity to the biometric sample provided. 

Open set mode: If the highest similarity between the tested biometric sample and all pre-

registered templates falls below (or exceeds) the security threshold, the person is rejected, 

indicating that the user is not enrolled. Otherwise, the person is accepted. 

3) Biometric system modules: A typical biometric system can be represented by four main 

modules: 

- Capture module: This module captures the raw biometric data of the user using biometric 

sensors or scanners. Factors like cost and size impact the design of the sensor module. 

- Feature extraction module: Here, raw data from the sensor module is processed to 

generate a digital representation of underlying traits or modalities. Extracted features are 

then passed to the matching module for comparison. 

- Matching module: Extracted features are compared with templates stored in the database 

to generate a match score. This score's quality depends on the given biometric data's 

quality. The matching module also incorporates a decision-making module, where the 

match score validates the claimed identity. 

- Decision module: This module determines whether the user is a genuine user or an 

impostor based on match scores. These scores are either used to validate a person's identity 

or provide a ranking of enrolled identities for individual identification. 

I.4 Multimodal biometrics 

A Multimodal Biometric System is an advanced identification system integrates multiple 

biometric traits to enhance individual identification, which uses more than one behavioral 

or physical characteristic. The advantage of multimodal biometric traits compared to token 

based or password is, these traits cannot be lost, stolen or shared; ensuring higher accuracy 

and security compared to unimodal systems combining independent biometric modalities 

mitigates the limitations of any single modality, such as non-universality or unreliable data 

due to worn fingerprints. The system's reliability is further strengthened as failures in one 

technology do not significantly impact individual identification, thanks to the successful 

employment of different modalities. This reduces susceptibility to spoofing attempts, 
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thereby enhancing overall system efficiency. Particularly noteworthy is the significant 

reduction in the Failure to Enroll rate, a key advantage of multimodal systems. 

I.4.1 Data Fusion 

Data fusion is the process of combining information from multiple sources to produce a 

more accurate, reliable, and comprehensive understanding of a situation or phenomenon 

than could be achieved by using individual sources alone. In the context of biometric 

systems, data fusion involves integrating data from various biometric modalities. The goal 

of data fusion is to improve data quality of that object, which can be achieved if the 

information is stored separately, obtaining synergy [23]. Synergy can be defined as: the 

representation of a whole is better than the representation of the individual components. 

The advantages of data fusion in biometric systems are multiple. By integrating multiple 

biometric modalities, data fusion improves identification accuracy and reliability, even in 

challenging environments or for individuals with unique characteristics. It also improves 

security measures by reducing the likelihood of unauthorized access or fraudulent attempts 

to impersonate the system. Additionally, data fusion allows biometric systems to adapt to 

changing conditions or user constraints, ensuring reliable performance in various scenarios. 

I.4.2 Fusion Scenarios 

In the context of multimodal biometric systems, fusion scenarios represent the various 

approaches or methodologies employed to combine information from multiple biometric 

modalities [24]. We can differentiate 5 possible scenarios of multimodal systems (Fig. I.18)  

 

Fig. I.18 Fusion scenarios 
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1) Multi-sensor systems: Several sensors make it possible to capture the same biometric 

modality. So, capturing a face using a conventional camera and an infrared camera falls into 

this scenario. 

2) Multi-biometric systems: This type of system combines different biometric traits of a 

person. Face and iris fusion, or face and fingerprint fusion are part of this type of approach. 

These systems require different sensors as well as algorithms dedicated to each biometric 

trait. The main characteristic of this type of system is that the biometric modalities 

considered can be more decorrelated than for multi-sensor systems. 

3) Multi-sample systems: A single sensor can capture multiple instances of the same 

biometric modality with the aim of making feature extraction more robust or enriching a 

person's biometric model. For example, of several captures of a person’s face from different 

angles. The use of videos also falls into this context. 

4) Multi-instance systems: This type of system allows multiple instances of the same 

biometric modality to be captured. The acquisition of several fingerprints via the same 

sensor is the typical example of this type of system. These systems do not result in 

additional sensor costs or the development of new algorithms. Not to be confused with 

multi-sample systems. 

5) Multi-algorithms systems: In these systems, the same biometric data is processed using 

multiple algorithms. This multiplicity of algorithms can occur in the extraction module, by 

considering several sets of features, and/or in the comparison module, by using several 

comparison algorithms. For example, texture analysis and minutiae algorithms can be 

combined to process the same fingerprint image to extract various features that can be used 

to improve system performance. 

These fusion scenarios represent different strategies for integrating information from 

multiple biometric modalities, each with its own advantages and considerations. 

Understanding and appropriately applying these fusion scenarios are essential for designing 

effective and efficient multimodal biometric systems that achieve optimal recognition 

performance and robustness. 

I.4.3 Fusion level 

Fusion levels in multimodal biometric systems encompass various combinations of 

biometric modalities and fusion strategies [25]. Here, we explore four common fusion 



19___                                                                                                                                         BIOMETRICS FOR SECURITY 

 

scenarios in detail, including sensor level fusion, feature extraction level fusion, matching 

score-level fusion, classification and class decision level fusion. 

- Fusion at the sensor level: This process involves fusing raw data from different sensors 

(Fig. I.19). It allows for the utilization of either samples of the same biometric trait acquired 

from multiple compatible sensors or multiple instances of the same biometric trait obtained 

using a single sensor.  

 

Fig. I.19 Fusion at the sensor level 

Since the fusion occurs at a very early stage, this method contains a substantial amount of 

information compared to other fusion levels. Various techniques can achieve this, such as 

Discrete Wavelet Transform (DWT) and Principal Component Analysis (PCA), for fusing 

multiple modalities. 

- Fusion at the Feature Extraction Level: At this level, feature vectors are combined to 

create a unified vector (Fig. I.20). It entails using either the same feature extraction 

algorithm or a different one across multiple modalities whose features need to be fused.  

 

Fig. I.20 Fusion at the feature extraction level 

These types of fusion poses challenges because the relationships between features are often 

unknown, structurally incompatible features are prevalent, and there's a risk of encountering 

the curse of dimensionality. When the feature vectors are homogeneous, a single resulting 

feature vector can be calculated as a weighted sum of the individual feature vectors. When 

the feature vectors are heterogeneous, we can concatenate them to form a single vector. 

- Fusion at Matching Score Level: Each system produces a matching score reflecting the 

similarity between the feature vector and the template vector (Fig. I.21). These scores can 

be combined to verify the accuracy of the claimed identity [26]. However, scores obtained 
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from different matchers may not be directly comparable, so a score normalization technique 

is employed to align them onto the same scale. 

 

Fig. I.21 Fusion at the matching score level 

To combine scores obtained from multiple search modules using schemes such as sum of 

scores (SUM), maximum of scores (MAX), minimum of scores (MIN) and multiplication of 

scores (MUL), weighted sum of scores (WHT). 

- Fusion at the Decision Level: The fusion at the decision level concerns the combination 

of decisions obtained from each source (Fig. I.22). Decision-level fusion is often used for 

its simplicity. Indeed, each system provides a binary decision, and the decision fusion 

system consists of making a final decision based on this series of binary decisions. 

 

Fig. I.22 Fusion at the decision level 

The most used methods are vote-based methods such as OR (if one system decided 1 then 

YES), AND (if all systems decided 1 then YES) or majority voting (if the majority systems 

decided 1 then YES). 

Conclusion 

Biometrics has become an integral part of many applications, serving to strengthen security 

measures and streamline the process of identifying individuals. In this chapter, our 

exploration focused on the multifaceted field of biometrics, delving into various biometric 

modalities and the complex systems they comprise. We have carefully considered the 

architecture and functionality in biometric systems. Additionally, we delved into the fusion 

scenarios suitable for multimodal biometric systems, illuminating strategies for fusing 

diverse biometric data to boost accuracy and efficiency.  
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Remote access authentication is a crucial component of modern cybersecurity, serving as the 

initial line of defense against unauthorized access to network resources and sensitive 

information. It involves the verification of users' identities who are attempting to connect to a 

network or system from a remote location, typically outside the confines of a physical office or 

facility. Upon successful authentication, users are granted access privileges commensurate with 

their credentials, enabling them to leverage resources and services remotely. In this chapter, after 

illustrating some concepts about remote access authentication, the structure of the proposed 

biometric encryption system will be carefully presented. 
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Introduction 

Remote access authentication and authorization are mechanisms for controlling user access to 

remote systems. Biometric authentication enhances security by ensuring that access is granted 

only to authorize individuals based on their unique biometric data [27]. In this chapter, we 

will illustrate the key aspects of implementing biometric authentication for remote access and 

its associated benefits. Additionally, we will present the proposed system for authentication 

and information security during transmission. 

II.1 Remote Access Scenario 

A distinct authentication scenario involves granting remote access to a network using a 

combined client-server model that integrates cryptographic mechanisms with biometrics. In 

this setup, the client terminal functions as a biometrics-based host, equipped with a capture 

device and a processing unit to measure biometric features and generate the feature vector 

(biometric template) [27]. This access scenario typically includes mechanisms to detect 

liveness and prevent biometric replay attacks. 

II.2 Benefits of biometrics-based remote access 

Biometrics provides numerous advantages for user authentication in remote work scenarios, 

including enhanced security, convenience, compliance, and user experience. Difficult to 

forge, share, lose, or forget, biometrics effectively prevents unauthorized access. They are 

user-friendly, eliminating the need to remember complex passwords or carry extra devices. 

Moreover, biometrics aid organizations in meeting regulatory and industry standards for data 

protection, privacy, and auditability [28]. Finally, they offer a seamless and personalized 

authentication process, boosting user satisfaction and trust. 
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II.3 Crypto-biometric based remote access 

The system uses symmetric cryptographic and multi-factor authentication methods. In this 

system, users authentications are based on a card combined with a PIN code and a biometric 

trait [29]. The e-security system based on multi-factor authentication is shown in Fig. II.1.  

 

Fig. II.1 An example of biometric based remote access 

In any biometric system, there are two essential phases: enrolment and identification. Thus, 

all the authorized users must be previously enrolled (registered) in system database. For each 

user, during the enrollment process, the feature vectors (or template) are generated from their 
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biometric modalities (e.g., Palmprint modality) and stored in the database for later use 

(identification process) as well as in the user ID card. In addition, a PIN code is randomly 

generated and stored in this card. Hence, the PIN code is used for security purposes and to 

authenticate the user in the electronic transmission device (logical access control). 

II.4 Biometric and Cryptography 

Biometrics and cryptography are two fields that intersect in various applications, such as 

secure authentication systems or encrypted data transmission (Fig. II.2).  

 

                 Fig. II.2 Biometric and Cryptography relationship 

While biometrics focuses on unique physical or behavioral characteristics for identity 

verification, cryptography deals with secure communication through encoding and decoding 

information. Combining biometrics with cryptography offers a robust approach to enhancing 

security systems [30]. This integration leverages the unique strengths of each technology to 

provide secure, reliable, and user-friendly authentication mechanisms. 

II.5 Proposed Systems  

Generally, in the cryptographic process, the shared key (random key) must be exchanged 

between the different clients in order to decrypt the transmitted information (symmetric 

cryptography). For that, one of efficient solution is to use biometric traits of the user to secure 

this key during transmission in order to attain a higher security against cryptographic attacks. 

These systems, called biometric cryptosystems or crypto-biometric systems, can benefit of the 

advantages of both fields (cryptography and biometrics). In such systems, while cryptography 

endows with high and modifiable security levels, biometrics ensured that user requesting the 

information is legitimate. Furthermore, biometrics can secure effectively the cryptographic 

key. Among several scenarios, the cryptographic commitment scheme draws greater attention 
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from researchers. In this scenario, the cryptographic key is embedded in a feature vector 

without disclosing it (hiding the cryptographic key). Thus, the fuzzy commitment is one of the 

used commonly method of this scenario. 

II.5.1 Preliminary 

Feature extraction is a crucial task in biometric applications because of the vast array of 

features present in images. Due to this necessity, researchers have dedicated significant effort 

to improving this process. Indeed, many challenges related to the final design of a biometric 

system are typically linked to feature extraction. In this sub-section, we discuss our feature 

extraction method and the classifier used. 

1) HOG descriptor: Feature extraction is a critical task in biometric applications due to the 

vast array of features present in images. Consequently, researchers have dedicated significant 

effort to this area. In fact, many challenges associated with the final design of a biometric 

system are typically linked to the feature extraction process [31]. In our work, we use an 

important feature extraction method namely Histogram of Oriented Gradient (HOG) 

descriptors. 

HOG descriptors are like an edge map, but it stores both the gradient magnitude information 

and the cell-level edge locations. The location coarseness and normalization of HOG features 

are crucial because they provide some degree of invariance to small geometric and 

photometric changes. Assume that the input is the � × � sized window � of a grayscale 

image, or even the whole image, to create a HOG feature, we follow the steps: 

- Calculate gradients: Find the components of the gradient ���, ��	 by:     

                   � ���, �� = ��, � + 1� − ��. � − 1����, �� = �� − 1, �� − �� + 1, ��            = 1 … � , � =  1 … �                       (1)   

The gradient is then transformed to polar coordinates with the angle limited between 0° and 

180° degrees to identify opposite gradients. 

  � � =  ���� + ���                               
� =  �� 

�  �tan$����, ��	� %&' (                                                (2)  

where tan$�  is the inverse tangent, which yields values between -π and π, and μ and θ denote 

respectively the magnitude and the direction (angle) of the gradient of each pixel. 

- Cell Orientation Histograms: The window is partitioned into nonoverlapping neighboring 

) × ) sized cells (i.e. c = 8). Then, for each cell, a histogram of the gradient directions sorted 

in B bins (i.e. B = 9). Thus, the bins are numbered from 0 to * − 1 and each has a width of 
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+ =  �� 
,  It is important to note that with so few bins, a pixel at a bin boundary could wind 

up in a different bin if the image changes significantly. Voting by bilinear interpolation is 

used to overcoming these quantization artifacts. This method lets each pixel in a cell 

contribute to two adjacent bins. This method divides the gradient magnitude between the 

two bins for each pixel based on the distance between the gradient orientation and the center 

of each bin. In other words, it calculates how much of the gradient magnitude is in each bin: 

ℱ./01� �2 , �2  , *2 , *23� � =  � 4�� → *2   4�� → *23�   / 4� + 4� = 1                 (3) 

Since the gradient magnitude is always positive, the resulting cell histogram is a *-valued 

vector. 

- Block Normalization: In this phase, the cells are organized into overlapping 2) × 2) pixel 

blocks with a vertical and horizontal overlapping step of c pixels. Next, the histograms of 

the four cells in each block are concatenated into a single block feature, which is then 

normalized using the Euclidean norm: 

78 = 9ℎ�2,;� , ℎ�2,;3�� , ℎ�23�,;� , ℎ�23�,;3��<                                   (4) 

Where 78 denotes the feature of the block k and ℎ�2,;� ,the histogram of the cell (i, j). This 

block feature is normalized as follows: 

 78= =  >?�‖>?‖A3 ∈                                                      (5) 

Where ∈ is a small positive constant that prevents division by zero in gradient-free blocks. 

- HOG Feature: Lastly, to represent the whole window feature, all the normalized block 

features (78=) are concatenated to produce one HOG feature vector (ℋ), as shown below: 

ℋ = [7�E  , 7� =, … , 78 = , … , 7F=]                                                (6) 

Where H is the number of blocks in the window. Finally, the resulting HOG function is also 

normalized using Eq (5). 

2) Codebook formulation: The feature vectors extracted from all the training images 

represent the various features that can be found in the work context. Intuitively, all of these 

features (palmprint features of several persons) have a finite dimension. Consequently, many 

feature vectors in the training base after the transformation can be very close. Therefore, an 

unsupervised clustering process was conducted to select only the most discriminative feature 

vectors relevant to the work context. After clustering, the resulting vectors form a so-called 
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codebook (I8), which represents prior knowledge that is presented to the feature extraction 

method to effectively represent the image's features. 

In our study, we used the Linde-Buzo-Gray (LBG) algorithm [12] as the clustering technique. 

This algorithm takes a set of biometric feature vectors (J) as input and generates a 

representative subset of feature vectors (codebook, I8) according to the similarity measure. 

The initial codebook, the distortion, and the threshold are the parameters that control the 

convergence of the LBG algorithm, which generally requires a maximum number of iterations 

to ensure this convergence. 

3) Deep Rule-Based classifier: A novel multi-layer neuro-fuzzy architecture called the deep 

rule-based (DRB) system has been developed by combining the strengths of self-organizing 

non-parametric fuzzy rule-based (FRB) systems with the massively parallel multi-layer 

structure characteristic of deep learning. This innovative approach has shown exceptional 

performance across various image classification tasks. 

- Massively Parallel Rule Base Layer: This layer comprises a collection of massively 

parallel (IF...THEN) rules, constructed based on multiple prototypes interconnected through 

logical OR operators. These rules constitute the fundamental core of the DRB classifier. This 

classifier involves organizing a parallel set of (IF...THEN) rules, one for each of the C class 

present in the image set. These rules are formed based on prototypes extracted from data 

clouds within images of each class during the learning process. Once the learning process is 

completed, the rule base will contain C rules, each formulated in the form (IF...THEN) for 

classes ) =  1, 2, 3, . . , I. 

IF �� ∽ OP,�	 OR �� ∽ OP,�	 OR ⋅⋅ OR �� ∽ OP,TU	THEN   �class c�                                                                                       (7) 

where the ∽ denotes similarity, representing the fuzzy degree of membership. � represents an 

input image and OP,2 represents the ith prototype of the cth class. ]P represents the number of 

prototypes from the images of the cth class identified by the DRB classifier. The learning 

process of the DRB classifier has been described in detail in [8]. 

Once the identification procedure is complete, the DRB system generates I fuzzy rules 

corresponding to the I classes. For every testing image �, each of the I fuzzy rules will 

produce a confidence score ^P��� through its local decisionmaker. This score is determined 

based on the feature vector of �, denoted as J. 
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^P��� = arg maxcd�,�,…TU�e$fJ$gU,hfA�                                           (8) 

As a result, one can get I scores of confidence per image: 

^��� = [^����,  ^����, … , ^P���]                                               (9) 

These scores are the inputs of the overall decision-maker. 

- Decision-Maker Layer: In the final layer, the overall decision-maker employs the winner-

takes-all principle to determine the label (person identity (O2i)) of the test palmprint ROI sub-

image. 

O2i��� = arg maxjd�,�,…TU[^P���]                                           (10) 

This means that the decision-maker selects the class label associated with the highest 

confidence score obtained from the previous layer’s fuzzy rules. 

4) Logistic Maps: In recent years, the dynamic behavior of nonlinear systems has garnered 

significant practical interest across numerous applications due to their simplicity, and 

richness. Among these systems, chaotic systems stand out as some of the most important. 

They are characterized by extreme sensitivity to initial conditions, periodicity, pseudo-random 

behavior, and high complexity. Indeed, in a chaotic system, sensitivity to initial conditions is 

undoubtedly the essential feature of chaotic behavior, making long-term evolution 

unpredictable. Such systems are highly sensitive to even the slightest perturbation in the 

initial condition (initial state) [31]. Even if the starting points are nearly identical, the 

trajectories quickly diverge. A chaotic system in discrete time is defined by the following 

equation: 

kl3� = m�kl� ,    n = 0,1,2 …                                                 (11) 

Where kl o pl is called state, and Γ plots the next state〖 kl3�. From an initial state   k , the 

repeated application of this function (Γ) causes a sequence of N points �qklrld T � called the 

orbit of the discrete-time system. 

Undoubtedly, these systems have been successfully used in information security applications, 

for the generation of dynamic secret keys in encryption, steganography and digital 

watermarking algorithms. Chaotic cards are one of the simplest systems to use for generating 

a chaotic sequence. In the literature, several one-dimensional (1D), two-dimensional (2D) and 

three-dimensional (3D) chaotic maps are proposed. In our proposal, we used several one-

dimensional logistics maps, each one is defined by:  
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  ℒtj�k , �t�:        xv3� = μt × xv�1 − xv�                                       (12) 

Where xv ∈ [0,   1] denotes the system state, k ∈ [0,   1] denotes the initial system state and 

μt ∈ [3.57, 4] is the control parameter. In such systems, k  and �t can be used as a 

cryptography secret key. 

5) Fuzzy commitment: The template protection method during transmission is carried out 

using the principle of Key binding. In this method, the biometric system is combined with the 

fuzzy commitment approach to strengthen the system security [32]. Fuzzy commitment uses 

the biometric data and the cryptographic key to recalculate new biometric data which will 

then be used for authentication and key release simultaneously in a single step. 

- Key Insertion:  This task is performed only during transmission (transmitter). The system 

extracts the template for each user using the feature extraction and encoding method (HOG 

and codebook), resulting in a binary template of size { × | (where { is the number of vectors 

in the biometric template and | is the number of bits used to encode the maximum rank in the 

codebook). A binary vector of size ) is then randomly generated, and its coefficients 

constitute the binary key. Next, a new key I is formed by concatenating several keys, 

ensuring that the size of I matches the size of the template. 

C = [c, c, c, ⋯ c]                                                  (13) 

Now, calculate the offset � by an exclusive-or (XOR function) between each code coefficient 

(in the form of a bit) and each Template coefficient. Note that the latter has the advantage of 

being stable in size and ordered. 

δ = V�⨁C                                                              (14) 

The user's commitment O is then defined as the set of ��, ��)��, with � is a hash function. 

- Key Extraction: This task is performed only during reception (receiver). The key (I) 

extraction process (key recovery operation) in the receiver is shown in Fig. II.2. 

 

                                  Fig. II.3 Key recovery process 
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The system examines all models that are already recorded in the database when enrolled in the 

system. For each sample in the database, calculate the vector I2 by an exclusive-or (XOR 

function) between the binary string δ and the biometric test model. 

I2 = �⨁� 2                                                      (15) 

Now the key can be recovered. To achieve this, the bits of the binary vector I2 are mapped 

into a matrix �� (with a size of n� × n�, where n� represents the key length and n� is the 

number of keys in I2) and key recovery is carried out by taking the majority vote among ��. 

After that, to check if the retrieved key ()) is the same as the inserted key ()̃) in the 

transmitter, the system checks if ��)� = ��)̃�. If this key is correct, the system must also 

extract the biometric template from the binary string δ by: 

��/2 = �⨁I2�              with            I2� = [c, c, c, ⋯ c]                      (16) 

Finally, the biometric templates ��/2 and � 2 must be compared, if they are from the same 

person, the key can be used to decrypt the message using the AES algorithm. It is important to 

note that the success of the key extraction process depends on the intra/interclass variation of 

client users. Thus, it is very necessary to use a very efficient feature extraction technique that 

reduces intraclass variability and increases interclass variability. 

II.5.2 Biometric System 

1) Encryption and data transmission side: In the terminal system, the user sends data, such 

as an image, in an encrypted data format over the network. This system involves two primary 

steps (Fig. II.3): 

 

Fig. II.4 Encryption and data transmission side 
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- Verification and Feature Vector Generation: Initially, the system verifies and generates the 

feature vector based on the user's ID card secret code. If the code is correct, a feature 

extraction technique is applied using the sender’s fingerprint method to create the feature 

vector, which is then compared with the one stored on the ID card. If the card PIN or 

extracted feature does not match the one on the ID card, access is denied. 

- Encryption and Transmission: Upon successful verification and feature vector extraction, a 

fuzzy commitment scheme is applied, where the extracted vector is secured using the 

encryption key (c). A composite function associates the encryption key with the user and 

calculates the offset (�), combining the key and the feature vector. The fuzzy commitment is 

represented by the pair of feature vector and a one-way hash function (ℎ�)�). Importantly, 

neither the biometric feature nor the key (c) is transmitted publicly. 

After the initial verification, the system uses the feature vector and two chaos systems (��, ��) 

to encrypt the image for secure transmission. Finally, the client sends the offset (�), the hash 

function ℎ�)�, and the encrypted image to the destination's central server. 

2) Data decryption and user identification side: Upon receipt (Fig.II.4), using users' 

biometric templates previously stored in the database, the system first attempts to retrieve the 

key and verify its authenticity using a one-way hash function (ℎ�)�).  

 

                 Fig. II.5 Data decryption and user identification side 

If the result is positive, this key (c) is used to retrieve the biometric feature vector and 

compare it with the feature vector corresponding to the user's authentication. The encrypted 

image is then decrypted using the transmitted feature vector and chaos systems (��, ��). 
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II.5.3 Cryptography system 

Cryptosystems are essential for securing data through two critical phases: encryption and 

decryption. In the encryption phase, data is transformed into incomprehensible data using an 

encryption algorithm and a key, ensuring that the data becomes unreadable to unauthorized 

users. Decryption, the reverse process, converts incomprehensible data back into data using 

the corresponding decryption algorithm and key, allowing authorized access to the original 

information.  

1) Encryption process: In our system, the image encryption process based on blocks (Fig. 

II.5), dividing the image into multiple blocks and encrypting each block sequentially based on 

the encryption of the previous block. This method ensures that each block's encryption is 

dependent on the prior block, enhancing security through inter-block dependency. The blocks 

are organized using a chaos sequence algorithm combined with feature vectors to construct a 

tree structure that determines the encryption sequence. This approach leverages the 

unpredictability of chaos theory and the specificity of feature vectors to create a robust and 

secure encryption process. 

 

                                   Fig II.6 Image encryption system structure 

Fig. II.6 L illustrates the image encryption process. In this system, the biometric template 

serves as the key for the encryption process. The diagram below depicts the proposed 

encryption algorithm, which utilizes the biometric template to ensure that the encryption is 

uniquely tied to the user's biometric data. This method enhances security by making the 

encryption key specific to the individual, thereby preventing unauthorized access and 

ensuring that the encrypted data remains protected. 
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Fig II.7 Image block encryption phase 

(1) Load the biometric template � and the codebook ℬ to transform it into binary format     

  ℱ, ��, ℬ� = �,                  (17)  

(2) Rearrange the binary sequence with the first chaotic system logistic maps (ℒ�� with 

parameters (� , ��). 

ℱ�1���,, � � , ��	 =  ��                                               (18) 

(3) Using the combination of the binary sequence ��, the second chaotic system ℒ�� with 

parameters (� � , ��) and a third chaotic system ℒ�Awith parameters (�′ � , �′�) to 

create another chaotic system  ℒ�, with the following conditions:   

ℱ�1��ℒ�� , ℒ�A , ��	 = � ℒ����              �         ���� = 0ℒ�A��             �          ���� = 1                        (19) 

(4) Using the block size ℬ� to calculate how many blocks the image � can be divided into, 

the first half of the chaotic sequence will be used to determine the tree levels and the 

second half to calculate the connection between the nodes. 

   ℱ��11�ℬ�, ℒ�� = ����                                              (20) 

(5) A rearrange step is performed on image ℐ using a fourth chaotic system ℒ�� with 

parameters ( � � , ��). 

  ℱ�2��ℐ, � � , ��) = ℐ�                                               (21) 

(6)   The shuffled image ℐ� will be divided into several blocks chained together by the 

����  which will decide the parents’ block and the children blocks. 

ℱ> /P8��ℐ�, ����� =  ¡ℬ¢ , ℬ£ , ℬP�, ℬP�, … , ℬP¤ r                            (22)  
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(7) Including the fifth chaotic system with parameters ( � £ , �£) to generate chaotic slaves 

as the same number of blocks ¤. 

ℱP¥�/�¤,  � £ , �£� = qℒ¦�, ℒ¦�, … , ℒ¦¤r                                  (23) 

(8)   Parents block ℬ¢ encryption will be the projection of blocks in the § matrix of the first 

chaotic share ℒ£�. 

q§¢ , ℛ¢r =  ©ª�ℒ¦�	,         £« =   ℬ« ∗ §F                                  (24) 

(9) The encryption of the children block ℬP will be connected with the parent block ℬ¢ of 

each child as shown in the tree in the figure. And the § matrix of its corresponding 

chaotic slave as demonstrated below: 

   q§¢ , ℛ¢r =  ©ª�ℒ¦�	,           £® = ��ℬ« ∗  §¢� +  ℬj �                        (25)    

 (10) After encrypting all the blocks one by one the reconstructed image ℐℛ after arranging           

the block will be shuffled using the sixth chaotic system ℒ¯ with the parameters ( � ¯ , �¯) 

to get the final encrypted image °£. 

                                ℱ±¥²³�ℐℛ , � ¯ , �¯	 =  °£                                                    (26) 

2) Image Decryption: During the decryption process (Fig. II.6), the biometric template acts 

as the key to unlock the encrypted image. Once the template undergoes binarization to 

convert it into a binary format, it is employed to reverse the encryption, guaranteeing that 

solely the accurate biometric data can decrypt the image successfully.  

 

                                     Fig II.8 Image decryption system structure 
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The decryption algorithm, depicted in the block diagram below (Fig. II.7), precisely 

reconstructs the original image from the encrypted data. This approach guarantees a high level 

of security since the distinct biometric template serves as a strong key that is challenging to 

replicate or counterfeit. 

 

Fig II.9 Image block encryption phase 

(1) Load the biometric template � and the codebook ℬ to transform it into binary format.      

  ℱ, ��, ℬ� = �,                 (27)  

(2) Rearrange the binary sequence with the first chaotic system (logistic maps,ℒ�� with 

parameters (� , ��). 

ℱ�1���,, � � , ��	 =  ��                                                 (28) 

(3) Using the combination of the binary sequence ��, the second chaotic system ℒ��  with 

parameters (� � , ��) and a third chaotic system ℒ�A with parameters (�′ � , �′�) to 

create another chaotic system  ℒ�, with the following conditions:   

  ℱ�1��ℒ�� , ℒ�A , ��	 = � ℒ����              �         ���� = 0ℒ�A��             �          ���� = 1                         (29) 

(4) Using the block size ℬ� to calculate how many blocks the image ℐ can be divided into, 

the first half of the chaotic sequence will be used to determine the tree levels and the 

second half to calculate the connection between the nodes. 

                                                 ℱ��11�ℬ�, ℒ�� = ����                                                  (30) 

(5) A rearrange step is performed on the encrypted image °£ to restore the original order of 

encrypted blocks ℬ´ using the chaotic system ℒµ with parameters ( � ¶ , �µ). 
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 ℱ·1��ℐ´ , � ¶ , �µ) = ℐ·                                                 (31) 

(6) The block decryption phase will be performed by reversing the encryption phase as 

shown below by starting from the parent block.  ©ª decomposition of the first chaotic 

slave: 

q§¢ , ℛ¢r =  ©ª�ℒ¦��     ,    ℬ¢ =  £¢ ∗  §¢̧                                   (32) 

(7) The children blocks will be decrypted by inversing the previous encryption process and 

by obtaining the decrypted parent block as follow:                                          

  q§¦ , ℛ¦r =  ©ª�ℒ¦¤�                                                     (33) 

  ℬ¢ =  �£¦ ∗  §¦̧� − �ℬ¢ ∗  §¢� 

(8) After obtaining the decrypted blocks and reconstruction the image ℐ�, another rearrange 

process is conducted to restore the decrypted image using the chaotic system ℒℳ with the 

parameters ( � � , ��). 

(9)                                                ℱ�1�0/��ℐ�, � � , ��) = ℐ                                                 (34) 

 

Conclusion 

The combination of biometric systems with cryptography, particularly utilizing chaos-based 

cryptographic methods like the logistic map, has sparked a revolution in security and identity 

verification. By intertwining distinctive biometric identifiers with sophisticated encryption 

techniques, biometric cryptosystems offer a potent defense against unauthorized access and 

cyber threats. The intricate processes of key generation, template protection, and encryption 

safeguard the confidentiality, integrity, and uniqueness of biometric data, fortifying the 

overall security framework. Furthermore, the integration of advanced machine learning 

algorithms into palmprint recognition systems signifies the ongoing evolution and innovation 

in biometric security technologies. This seamless collaboration between biometric systems 

and cryptography not only establishes a resilient security infrastructure but also enhances the 

safeguarding of sensitive data, effectively mitigating vulnerabilities to breaches and 

unauthorized intrusions. 

 



 

 

 

Experimental Results 

 
Dans un systeme d'identification biométrique, l'empreinte à reconnaitre est représentée par  

Recently, in the field of cybersecurity, biometric technologies are increasingly used due to their 

impacts on the degree of security and reliability of the information security system. In this 

chapter, we will show the results of our experiments on a typical database, which indicate that 

the contribution we proposed is robust and gives good results comparable to several state-of-the-

art works. By showcasing the performance and effectiveness of our biometric authentication 

system, we aim to provide valuable insights into its potential applications and implications for 

bolstering cybersecurity defenses in various domains. 
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Introduction 

Biometric cryptosystems are increasingly used due to their significant impact on the reliability 

of information security. A biometric cryptosystem must meet two essential constraints: the 

precision required by the biometric system and the robustness of information security. In this 

chapter, we focus on discussing the performance of our proposed biometric system based on 

palmprint, as well as the level of security it achieves. The experiments conducted in this 

chapter, which are based on a recent biometric database, demonstrate that our method is more 

efficient than several existing methods. 

III.1 Dataset Description 

The aim of this section is to evaluate the performance of the proposed biometric system. The 

experiments were conducted using the Tongji Contactless Palmprint Dataset [34], which is a 

publicly available dataset comprising 12,000 images from 600 different palms. The dataset 

includes data from a diverse group of 300 volunteers (192 males and 108 females) ranging in 

age from 20 to 50 years old, with 235 volunteers aged between 20 and 30 and the remaining 

between 30 and 50. Data collection involved two separate sessions to capture samples of both 

left and right palms. Each volunteer provided 10 images per palm in each session, resulting in 

a total of 40 images per individual. The time interval between the first and second sessions 

averaged approximately 61 days, with the shortest interval being 21 days and the longest 

being 106 days. 

III.2 Test Protocol 

The comprehensive test protocol ensured a systematic evaluation and validation of the 

biometric authentication system, offering valuable insights into its performance and potential 

applications in information security. Thus, to test the performance of our proposed biometric 

system, we divided the database into two sets for each palm (left and right). The first set, 
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representing 50% or 3000 images equally distributed among all participants (10 images per 

person), was used for the enrollment phase. The remaining set, also 50% or 3000 images (10 

images per person), was used for the testing phase. This division allowed us to obtain a total 

of 451,500 scores for each palm. Among these scores, 3000 are genuine scores and 448,500 

are imposter scores. 

III.2.1 Test methodology 

The biometric system's performance was evaluated in both open-set and closed-set modes, 

taking into account various environmental factors and user interactions to ensure its 

robustness. Additionally, the encryption system's resilience against several potential cyber-

attacks was assessed. These rigorous testing procedures provide a comprehensive 

understanding of the system's capabilities and areas needing improvement, guiding future 

enhancements. This thorough evaluation not only demonstrates the system's current efficacy 

but also informs strategic directions for its ongoing development and optimization. 

We divided our series of tests into two main parts: evaluating the performance of the 

biometric system and assessing the performance of the encryption system. The first part is 

further divided into three sub-parts. In the first sub-part, we conducted several experiments to 

determine the optimal parameters for the feature extraction method applied to the entire 

image. In the second sub-part, we examined the system's performance using block-based 

image analysis with the best-selected parameters of feature extraction method. Finally, the 

third sub-part focuses on quantifying the feature vector and evaluates the biometric system's 

performance using the codebook. The second part of our experiments evaluates the robustness 

of the encryption system.  

III.2.2 Performance Metrics 

Evaluating the performance of a biometric system is a critical phase in its design and 

implementation, as it determines whether the system is adequately efficient for its intended 

use. It also enables the comparison of different systems. This performance is primarily 

assessed through various metrics and can be visualized using different performance curves. 

In the open-set identification mode, the False Accept Rate (FAR) [35] and False Reject 

Rate (FRR) [35] are crucial metrics for assessing the system's security and user accessibility, 

respectively. The Equal Error Rate (EER) [35], where FAR equals FRR, offers a 

comprehensive measure of the system's overall accuracy. Additionally, the Genuine Accept 

Rate (GAR) indicates the system's effectiveness in correctly identifying legitimate users. In 
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the closed-set identification mode, the most commonly used evaluation metrics are Rank-One 

Recognition (ROR) and Rank of Perfect Recognition (RPR). 

Performance curves make it possible to represent performance for all threshold values 

without setting an a priori threshold. In the open-set identification mode, the Receiver 

Operating Characteristic (ROC) curve helps visualize the trade-off between FAR and FRR, 

facilitating the selection of an optimal operating point. Conversely, in the closed-set 

identification mode, the Cumulative Match Characteristic (CMC) curve is utilized to illustrate 

performance. 

III.3 Tests Results 

Assessing a system's performance is indeed crucial in its design and implementation, allowing 

us to ascertain its suitability for the intended application. In this section, we'll evaluate the 

biometric cryptosystem from two main perspectives: the performance of the biometric system 

itself and the level of security provided by its cryptography. This section aims to test the 

proposed biometric cryptosystems. As mentioned earlier, it is divided into two main parts: the 

first part involves preliminary experiments to assess the performance of the biometric system, 

while the second part focuses on evaluating the performance of the encryption algorithm. 

III.3.1 Biometric System Performance Evaluation 

Biometric systems, utilizing distinctive characteristics for identification purposes, require 

evaluation to ensure they meet essential standards of accuracy, reliability, and user 

convenience. As previously mentioned, this part is divided into three subparts, arranged in a 

sequence that enables us to fulfill all requirements, which are Whole Image Analysis (HOG-

I), Block Based Image Analysis (HOG-B): and Codebook based image analysis (HOG-Q). 

The primary goal is to represent the biometric modality with a distinctive biometric feature 

vector of small size. 

1) HOG-I based biometric system: In biometrics, it is difficult to obtain an exact result for a 

person recognition system. This is mainly due to the choice of features that should accurately 

represent person's identities. This choice is important because it conditions the entire 

methodology used for recognition. Thus, as we showed in the previous section, our method 

(HOG) includes two parameters (number of zones � = � ∗ � and number of bins) to control 

the precision of the extracted biometric feature vector. It is therefore imperative to evaluate 

the performance of the identification system to select the appropriate parameters giving the 

best results. Mathematically, there is no magic formula to directly determine the optimal 
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settings that provide the best system performance. In general, in these cases, experimental 

tests are carried out by varying the different parameters in predefined sets and then selecting 

the combination that optimizes an objective function (empirical tests). It should be noted that 

our tests are carried out on a biometric identification system based on the right palm of the 

palmprint, which operates in open-set/closed-set modes. Additionally, one parameter was 

examined and chosen for the HOG-based feature extraction method, which is the number of 

regions (�). Furthermore, the cryptosystem biometric system is developed and implemented 

using MATLAB 2015a on a Windows 10 platform and an embedded PC with a 2.2 GHz Intel 

Pentium processor with 6 GB DRAM. 

 In this subsection, we attempt to select the number of regions (�) from among three 

predefined values (� = 3, 5, 7), resulting in (9, 25, and 49 regions). It is important to note 

that our systems utilize the DRB classifier due to its efficiency in classification applications. 

To examine the effect of this parameter on the accuracy of the biometric identification system 

(both open-set and closed-set modes), we illustrate the performance of the systems in terms of 

EER and ROR for different palms (right and left) in Fig. III.3.  

     

(a)                                                                  (b) 

Fig III.1 HOG-I Based Biometric Identification System performance. (a) Open-set biometric 

identification system and (b) Closed-set biometric identification system 

From these Figures, we can make three important observations: 

 A very acceptable performance can be achieved with all possible values of w, where an 

effective error rate (open-set), EER, of less than 1.500% has already been obtained. 

 In general, the higher the number of regions, the lower the error rate. The best results were 

obtained with 49 regions (� = 7), which is better than the performance achieved with 9 

regions (	 = 3). 
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 A similar performance is achieved when configuring the system in closed-set identification 

mode. The system's performance can also be improved with 49 regions (� = 7), which 

can deliver excellent results. 

According to Fig. III.1.(a), it is clear that 49 zones offer better results in terms of EER. In this 

case, the open-set identification system can achieve an error rate (EER) of 0.0733% (at a 

threshold 
� equal to 0.9013) and 0.0666 (
�  =  0.8771) for systems based on the right and 

left palm, respectively. Improvements of 94.43% and 94.94% can be obtained compared by 

case of using 9 zones; the system therefore operates with an EER of 1.2170% (
�  =  0.923). 

We also examined the closed-set identification mode, and for both biometric modalities (right 

palm and left palm), the system continues to perform efficiently with a Rank-One Recognition 

(ROR) of 99.36% and 99.73%, and a Perfect Recognition (RPR) of 111 and 109, respectively. 

 The experimental results tests obtained in this part clearly indicate that the use of palm-

based biometric modalities in conjunction with the feature extraction method based on the 

HOG technique can provide better performance. This can lead to an efficient biometric 

system that can be used in many applications requiring high security, especially if these 

applications deal with small or medium-sized databases. 

 In most image recognition systems, block-based image analysis has evolved as a 

processing paradigm over the past decade. It has been widely used in image processing, 

particularly for data compression and pattern recognition. Therefore, in the following subpart, 

we attempt to improve the system performance using block-based image analysis. 

2) HOG-B based biometric system: In block-based analysis, the image is divided into sub-

images or smaller blocks. Indeed, the computational time and memory space required for 

image processing are crucial. Therefore, it is more practical to process several sets of reduced 

data rather than the entire image. In this part of the tests, the effectiveness of block-based 

image analysis in the biometric identification system will be evaluated. Thus, in our 

experiments, we adopted the following strategy: For each block size from the set ({30×30, 

40×40, 50×50, 60×60}), the original image (right palm and left palm) is divided into blocks 

with one of the four provided overlap rates ({0%, 25%, 50%, 75%}). The EER and ROR are 

then calculated after performing HOG (best case previously selected, w = 9) on the blocks. 

For each biometric modality, 16 tests can be performed, and the parameters (block size and 

overlap rate) with the lowest EER values are chosen as the best settings. In Fig. III.2 and Fig. 

III.3, the performance of the open-set and closed-set biometric identification system (EER and 
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ROR) is plotted against block size and block overlap for both identification biometric 

modalities (right palm and left palm). 

  

                                          (a)                                                                (b) 

Fig III.2 HOG-B Based open-set identification biometric system. (a) Right palm based 

biometric system, and (b) Left palm based biometric system. 

   

                                          (a)                                                                 (b) 

Fig III.3 HOG-B Based closed-set identification biometric system. (a) Right palm based 

biometric system, and (b) Left palm based biometric system. 

For the open-set identification mode, by observing and analyzing Fig. II. (a) and Fig. II. (b), 

we can see that: (i) In the case of the right palm, block-based analysis significantly increased 

the system's performance (improvement of 100.00%) compared to whole image analysis. In 

the best case (40×40 and 75% overlap), the system can operate with perfect error values 

(EER, 
�) of (0.000%, 0.99), and (ii) a block size of 50×50 with 75% overlap is best for the 

left palm, where an EER improvement of 100.00% was obtained. Thus, the system can 

operate with values (EER, 
�) of (0.000%, 0.939). 
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 In previous experiments, the performance of the open-set identification system was 

examined. Here, we will try to determine the optimal values for block size and overlap degree 

to achieve the best performance in closed-set identification. In these tests, we will examine 

the same block size and overlap values, and the results obtained after testing all the values are 

presented in Fig. III.3. From this figure, compared to previous results, we can easily see that 

the performance of the closed-set identification system is improved by 100.00%. It is clear 

that in both cases (right palm and left palm), a block size of 60×60 with 75% overlap 

produced the best results. In the case of the left palm, the system operates with values (ROR, 

RPR) of 100.00%, 1. And with values (ROR, RPR) of 99.98 %, 3 for the right palm, the 

system can also operate with the same rate values. Fig. III.4. (a) et Fig. III.4. (b) compares the 

two approaches: whole image analysis and block-based analysis. In this figure, the significant 

difference between the two approaches and the ideal improvement achieved are clearly 

visible. 

   

                                          (a)                                                                 (b) 

Fig III.4 Comparison of whole image-based analysis and block-based analysis. (a) Open-set 

biometric identification system, and (b) Closed-set biometric identification system 

The biometric feature vector in our study plays a major role in the data encryption process for 

the transmitted image, as it is used to produce the tree that determines the sequence of image 

blocks. Thus, the process of determining this tree depends on certain relationships between 

the components of a sequence produced using two chaos systems and a feature vector with 

binary components. Since the biometric feature vector components contain real and large 

components, they must be transformed into a binary feature vector. The proposed method is 

based on a codebook that quantizes the sub-vectors in the feature vector. In the next series of 

experiments, we will re-evaluate the biometric system based on the codebook. 
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3) HOG-Q based biometric system: In a biometric system, the final representation of image 

features has a significant impact on the system's identification rate. Since the proposed 

method depends on several factors, we conducted experimental tests to select the best factors 

that could improve the system's accuracy. It should be noted that the previously selected 

parameters, namely the block analysis size and the overlap ratio between blocks, were used. 

In these tests, we will try to choose the codebook length from the predetermined lengths, 

which are {128, 256, 512, 1024}. 

 By altering this parameter, numerous feature representations can be generated. 

Experimentally, we can select the optimal codebook size that enhances the system's accuracy 

by adjusting the codebook size and opting for the one that delivers the best performance. 

Thus, in order to see the effect of codebook length on the biometric system performance, we 

clearly illustrate, in Fig. III.5, the results of the open-set/closed-set identification system. 

From these curves, we can find two important cases: i) Acceptable performance is achievable 

across all potential codebook lengths, as an effective error rate (EER) below 1.600% has 

already been attained in the open-set identification system. Similarly, in the closed-set 

identification system, the same trend was observed, with the system consistently operating at 

a rate exceeding 68.00% for both the right and left palms, and ii) typically, a smaller 

codebook length results in a higher EER (as well as ROR). In the case of the open-set 

identification system, the average EER achieved with a codebook length of 1024 is superior 

to those attained with a codebook length of 32. 

 

(b)                                                                  (b) 

Fig III.5 HOG-Q Based biometric identification system performance. (a) Open-set biometric 

identification system, and (b) Closed-set biometric identification system 
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In the best case (codebook length equal to 1024), the system operates with minimum error 

rates (EER) of 0.261% (
�= 0.892) and 0.502% (
�= 0.842) in the open-set identification 

system (see Fig. III.5. (a)) for the right palm and left palm, respectively. In the closed-set 

biometric identification mode (see Fig. III.5. (b)), the biometric system operates with 

97.240% (RPR = 71) and 96.670% (RPR = 109) for the right palm and left palm, respectively 

Fig. III.6. (a) and Fig. III.6. (b) also compare the two approaches: block-based analysis and 

codebook-based analysis. 

  

Fig III.6 Comparison of block-based analysis and codebook-based analysis. (a) Open-set 

biometric identification system, and (b) Closed-set biometric identification system. 

From this figure, it is clear that the performance of the codebook-based biometric 

identification system has slightly deteriorated compared to the system based directly on 

biometric feature vectors. However, this result is still very effective because the size of the 

biometric feature vector has been significantly reduced and is now ready to be used in the 

encryption process. Furthermore, since our biometric identification system relies on coding 

the biometric feature vector using the codebook, it is easily capable of producing revocable 

biometric feature vectors to enhance the security of the biometric identification system, which 

can be achieved by reorganizing the codebook vectors. 

The proposed biometric identification system demonstrated significant improvements in both 

open-set and closed-set identification modes when optimal parameters were employed. For 

open-set identification, using a codebook length of 1024 resulted in remarkably low error 

rates (EER) of 0.261% for the right palm and 0.502% for the left palm. Similarly, in closed-

set identification, the system achieved high performance rates of 97.240% and 96.670% for 

the right and left palms, respectively. Finally, Figures III.7.(a) and III.7.(b) compare all the 
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proposed methods using Detection error tradeoff (DET) curve (for open-set identification 

system) and Cumulative Match Curve (CMC) (for closed-set identification system). 

  

Fig III.7 Biometric identification system performance. (a) Open-set biometric identification 

system, and (b) Closed-set biometric identification system 

From these figures, we can see the effectiveness of the proposed system, as the efficiency of 

the methods based on feature vectors is directly demonstrated. These results emphasize the 

importance of selecting appropriate parameters and highlight the system's strong performance 

across different configurations, indicating its potential for high-security applications requiring 

precise biometric identification.  

Our biometric identification system is now ready to produce binary biometric feature vectors 

and is capable of working with high accuracy in both open-set and closed-set identification 

modes. These biometric feature vectors are used to produce the encryption tree, so in the next 

part, we will evaluate the security level of the data encryption. 

III.3.2 Encryption Algorithm Performance Evaluation 

The main objective of our cryptosystem is to ensure remote user authentication and the 

integrity of transmitted data (encrypted image). In this section, we will conduct a security 

analysis to test the robustness of our proposals against potential attacks. Generally, to ensure 

security, three aspects of the system design must be verified: i) the robustness of the 

encryption algorithm against different attacks, ii) the impossibility of finding biometric 

feature vectors through exhaustive search, meaning the key space must be very large, and iii) 

a small modification of the secret key should produce completely different feature vectors. 
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Fig. III.8 shows a test image of size 256 � 256. In the encryption process, multiple chaos 

systems were used. In this example, the following parameters were defined: the values [0.64, 

3.94] for the initial logistic map used to shuffle the images to be encrypted; {[0.74, 3.92], 

[0.09, 3.78]} to create the tree used in the encryption process; [0.50, 3.82] for block 

encryption; and [0.48, 3.62] for shuffling the encrypted images. It should also be noted that 

the encryption process is performed using blocks of size 64 � 64 pixels. 

                          

                       (a)                                             (b)                                              (c) 

Fig III.8 Encryption and decryption of a sample image, (a) Original image, (b) Encrypted 

image and (c) Decrypted image. 

 Histogram Analysis: The histogram of an image visually represents the intensity levels 

of its pixels [36]. A grayscale image typically has 256 distinct intensities, so its histogram 

displays these intensities and how pixels are distributed among them. Fig. III.9 illustrates that, 

unlike the histograms of the original image, the distribution of grayscale values in the 

encrypted image is uniform. Some grayscale values between 0 and 255 are absent in the 

original image, whereas in the encrypted image, all grayscale values are uniformly spread 

between 0 and 255. This demonstrates that the resulting image thwarts attackers from 

launching a statistical attack against the encryption method. 

                      

   (a)                                                                                (b) 

Fig III.9 Histograms comparison. (a) Original image and (b) Encrypted image 

 Information Entropy Analysis: The uncertainty level of the encryption scheme is used 

to determine the information entropy [37]. It is employed to determine the algorithmic 
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efficiency of image encryption, serving as a statistical measure of unpredictability and 

describing the texture of the input image. An ideal encrypted image should have an entropy of 

8, indicating an unexpected source. However, achieving ideal information entropy is 

impractical. Table III.1 shows the results obtained for 50 test iterations. 

Table III.1. Entropies obtained after 50 iterations 

 Min Max Average 

Information Entropy 7.9884870 7.9912799 7.990227348 

 Structural similarity index measure: The Structural Similarity Index Measure (SSIM) 

serves as a robust method for predicting the perceived quality of digital television, cinematic 

images [38], and various other types of digital images and videos. Its utility extends to 

measuring the similarity between two images, providing valuable insights into their 

perceptual similarity. The SSIM values obtained serve as invaluable metrics for assessing the 

fidelity and similarity between images. Table III.2 illustrates the SSIM values after 50 

iterations. 

Table III.2. SSIM obtained after 50 iterations 

 Min Max Average 

SSIM 0.4559 % 0.9072 % 0.6036 % 

 Peak Signal-To-Noise Ratio: The term PSNR stands for Peak Signal-to-Noise Ratio, 

which expresses the ratio between the maximum possible value (power) of a signal and the 

power of the distortion noise affecting the quality of its representation. To this end, we 

conducted 50 iterations to observe the PSNR values for each test [39], as indicated in Table 

III.3. 

Table III.3. PSNR obtained after 50 iterations 

 Min Max Average 

PSNR 6.544 dB 6.739 dB 6.632 dB 

 

 Differential Attack: By changing some of the original, unmodified pixels in the image, an 

adversary can gain useful information. Evaluations of the resilience of the simple encrypted 

image to differential attacks often use metrics such as the Number of Pixel Changing Rate 



50                                                                                                                          EXPERIMENTAL RESULTS 

(NPCR) and the Unified Average Changed Intensity (UACI) [40]. Table III.4 shows the 

NPCR and UACI obtained after 50 iterations. 

Table III.4. NPCR and UACI obtained after 50 iterations 

 Min Max Average 

NPCR 99.92 % 99.96 % 99.94 % 

UACI 83.77 % 96.40 % 89.19 % 

 Key Sensitivity: In this section, our objective is to assess the effectiveness of our system 

and its robustness against the sensitivity to slight differences between cryptographic keys. 

This sensitivity implies that two very similar keys will result in entirely different encrypted 

data. In our tests, the image is encrypted using the correct key, but in the decryption process, 

we employ another key that is very similar. Furthermore, we modify three different initial 

states for the chaotic systems involved in image mixing, encryption, and encrypted image 

shuffling. To evaluate the performance of the cryptosystem against this attack, we present the 

results in Fig. III.10. 

                     

 (a1)                                          (b1)                                        (c1) 

                     

  (a2)                                         (b2)                                        (c2) 

                      

(a3)                                          (b3)                                          (c3) 
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Fig III.10 Image decryption results using false keys, (a1-a3) Original image, (b1-b3) 

Encrypted image using true keys, and (c1-c3) Decrypted image using false keys. 

The findings depicted in this figure unequivocally demonstrate that none of the decryption 

attempts yield the original image or even a close approximation of it. This not only highlights 

the efficacy and resilience of our system but also underscores its capability to withstand a 

wide range of potential attacks with remarkable success. Such results underscore the 

reliability and security of our cryptographic approach, reaffirming its suitability for 

safeguarding sensitive information in various applications and scenarios. 

 Key Space Analysis: In our biometric cryptosystem, six logistic maps ( �
�

|���,�,…,�) are 

used for image encryption process [41]. The key space is calculated by using all Mean 

Absolute Errors (MAE) between two generated sequences.  

 ��  !"#$ , "%#$& = �

#$
 ∑ | "#$()* + "%#$|#$

,��                                        (1) 

We obtain 1.333 � 10�� for -� , each chaotic system has two distinct parameters μ�and x�, 

which lead to S� =  1.003 �  10�4� which is sufficient for a secure system. It is clear that the 

key space is sufficiently large which prevents any attempt at an attack with algorithmic force. 

The example in Figure III.11 illustrates the system's robustness when an attacker employs a 

different biometric modality. The biometric feature vector serves as the key to create the tree 

that defines the order of blocks, parent blocks, and children blocks. Modifying the biometric 

modality will have a significant impact on the decryption process, as indicated below. 

                     

                            (a1)                                     (b1)                                       (c1) 

                     

                           (a2)                                     (b2)                                       (c2) 
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Fig III.11 Decryption results after biometric modality change: (a1) Biometric modality used 

in encryption, (b1) Tree created with the feature vector, (c1) Decrypted image using the same 

biometric modality, (a2) Biometric modality not used in encryption, (b2) Tree created with 

the feature vector, and (c2) Decrypted image using the different biometric modality. 

 Data loss: The impact of data loss during the image encryption/decryption process 

significantly depends on the amount of data lost. A minor loss, such as 10%, usually causes 

partial degradation and visual artifacts in the decrypted image, including pixelation, 

blurriness, or missing blocks, with some parts still identifiable but compromised in quality. 

Conversely, a major loss, such as 70%, often leads to severe degradation, making the 

decrypted image unrecognizable or heavily distorted due to large sections of missing or 

corrupted pixels. Extensive data loss may cause the decryption process to fail entirely, 

resulting in a completely unusable output. The exact effect is contingent upon the encryption 

algorithm's robustness and its ability to handle errors. 

                               

                         (a1)                                        (b1)                                          (c1) 

                                

                        (a2                                          (b2)                                         (c2) 

Fig III.12 Decryption results after data loss. (a1-a2) Original image, (b1) Encrypted data with 

10% data loss, (c1) decrypted image, (b2) Encrypted data with 60% data loss, (c1) Decrypted 

image. 

Our security analysis reveals the robustness and effectiveness of the proposed image 

encryption system against various potential attacks. 

- The encrypted images exhibit a uniform distribution of grayscale values, which 

significantly differs from the input images. This uniformity prevents attackers from using 
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statistical attacks to deduce the original image content. Also, the entropy values for the 

encrypted images are close to the ideal value of 8, indicating a high level of unpredictability 

and confirming the encryption algorithm's effectiveness, and finally, SSIM values after 50 

iterations demonstrate that the encrypted images have low similarity to the original images, 

ensuring that the encryption significantly alters the image content. 

- The PSNR values over 50 iterations show that the quality of the decrypted images remains 

consistent, verifying the encryption system's ability to maintain image integrity despite 

potential noise and distortions, and the evaluations using NPCR and UACI metrics confirm 

that the encryption system is resilient to differential attacks. The encrypted images respond 

robustly to slight changes in the input image, highlighting the system's security against such 

attacks. 

Finally, the system demonstrates high sensitivity to slight differences in cryptographic keys. 

Decrypting an image with a slightly different key results in an entirely different and 

unrecognizable image, showcasing the system's robustness against key-related attacks.     

Modifying the biometric template used for encryption significantly impacts the decryption 

process, leading to ineffective decryption results. This indicates the system's reliance on 

accurate biometric data, enhancing security, and the system's performance varies with the 

extent of data loss. Minor data loss results in partial image degradation, while major data loss 

leads to severe image distortion or complete decryption failure. This demonstrates the 

system's dependency on data integrity and its robustness in handling minor data losses. 

 

 Conclusion 

Biometric-based encryption systems offer several features, including the remote identification 

of a user's identity, which in itself acts as a multi-factor verification system. Additionally, 

these systems encrypt data and protect it against theft, distortion, or alteration. In our work, a 

biometric cryptosystem based on palm prints is proposed. Our system employs multiple chaos 

systems to secure data transmission. The results obtained demonstrate its effectiveness in the 

both tasks, allowing for the precise remote authentication of the user's identity and securing 

the transmitted data. 
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Conclusion 

With the rapid development of digital technology and the swift transformation of various 

fields towards digitization, particularly in sensitive areas such as financial institutions, 

information security has become essential to gain customer trust, achieve rapid expansion, 

and increase profits. The adoption of biometric technologies has grown significantly across 

these applications as a method to bolster security for both logical and physical access. These 

technologies are now prevalent in many fields, particularly for safeguarding cryptographic 

keys during their transmission. Remote logical access, facilitated by biometric cryptosystems, 

can authenticate users through a multi-factor technique and ensure the security of data during 

transmission. In this dissertation, a biometric cryptosystem based on an efficient feature 

extraction method is proposed. This method extracts binary biometric feature vectors based on 

a previously created codebook. In our study, we utilized palmprint biometric modality as there 

is a well-known and available biometric database. 

Our biometric cryptosystem employs multiple chaos systems due to their high sensitivity to 

their initial parameters, which serve as the cryptography key. The experiments presented in 

this dissertation were conducted on a medium-sized database containing 300 persons. 

Additionally, for classification, we employed a novel and effective classifier based on deep 

learning (DRB) to classify the biometric feature vectors.  

Experimental results demonstrated high identification rates as well as a high level of 

security for transmitted data. In future work, we plan to utilize biometric feature extraction 

methods based on deep learning as well as other highly chaotic systems such as Rössler, 

Lorenz, and Henon attractors. 
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Here is the list of abbreviations used in the text sorted in alphabetical order: 

AES:    Advanced Encryption Standard 

CMC:    Cumulative Match Characteristic 

DET:    Detection Error Tradeoff 

DNA:   Deoxyribonucleic acid 

DRB:   Deep Rule-Based 

DWT:   Discrete Wavelet Transform 

EER:    Equal Error Rate 

FAR:   False Accept Rate 

FRR:   False Reject Rate 

HOG:   Histogram of Oriented Gradient 

LPQ:   Local Phase Quantization 

MAX:   Maximum of Scores 

MIN:    Minimum of Scores 

MUL:   Multiplication of Scores 

NPCR:   Number of Pixel Change Rate 

PCA:    Principal Component Analysis 
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ROC:   Receiver Operating Characteristic 

ROR:   Rank-One Recognition 

RPR:    Rank of Perfect Recognition 

SUM:   Sum of Scores 

UACI:   Unified Average Changed Intensity 
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Extraction of the Region of Interest (ROI) 

A.1 Image Preprocessing 

Given that the images obtained from biometric modalities (raw data) are not directly 

usable by biometric systems, they must undergo preprocessing during which a Region of 

Interest (ROI) is extracted. The preprocessing phase aims to configure and modify the image 

(original biometric modality) in order to prepare it for feature extraction. 

An ROI is an interesting region of an image and can be used as the starting point for 

many image processing algorithms. The quality of the algorithm used to detect ROIs often 

determines the quality of the entire processing chain applied to an image. Additionally, the 

ability to detect the same ROIs (or approximately the same) in two different images 

representing the same scene is an important property generally required for all ROI detection 

algorithms. In the field of biometrics, the significance of ROIs depends on the type of 

biometric modality. ROIs can correspond to areas of the eyes or areas around the mouth in a 

facial image, just as they can correspond to the iris in an eye image. Therefore, the extraction 

method will depend on the biometric modality. 

A.2 Palmprint 

The palm is the inner surface of the hand between the wrist and the fingers. A 

palmprint is defined as an imprint on a palm. Hence, the preprocessing phase for this modality 

involves isolating the palmprint (ROI) from the rest of the hand image acquired by any sensor 

(e.g., a CCD camera). Since the ROI extraction is not necessarily perfect, a tolerance of a few 

pixels in translation is introduced in both vertical and horizontal directions. The ROI 

extraction method applied in our system is based on the algorithm described in [42]. 
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Step 1: Noise Reduction 

Image smoothing is an important operation used to reduce noise that corrupts 

information before the binarization step. Specifically, a Gaussian low-pass filter helps reduce 

this noise by targeting the noise located in high frequencies. After passing through a Gaussian 

low-pass filter of size 3 × 3 with a standard deviation σ = 1.5, a smooth image is obtained (see 

figure A.1). 

 

 

 

 

Fig A.1 Image Filtering 

Step 2: Binarization 

Binarizing an image involves segmenting the image into two classes: the background 

and the object. This process consists of setting the background to black and the object to 

white. There are several binarization techniques, but thresholding is the most popular 

technique due to its ease of implementation and speed. The final thresholding is done by 

comparing the filtered image with a threshold value ��. This operation is given by the 

formula: 

                                                   ����, �	 =  �   1     ����, �	 ≥ ��
 0     ��ℎ������  

where �� is the original image after Gaussian filtering, and �� is the binary image 

obtained. To generate the threshold ��, we chose the Otsu method due to its effectiveness. 

Figure A.2 shows the binarization operation. 

 

 

 

 

 

 

 

Fig A.2 Image Binarization 
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Step 3: Edge Detection 

 

The objective of this step, carried out using a classic contour tracking algorithm 

(Square-Tracing), is to determine the contour of the hand. In binary images, pixels are either 

black or white. To identify objects in a binary image, we need to locate the white pixels that 

are connected to each other. In other words, connected pixels or neighbors form an object on a 

binary image that needs to be successfully identified. Additionally, in a square tiling, a pixel 

is in contact with 8 pixels, defining their neighborhood. This type of connectivity is called 8-

connectivity (see figure A.3.(a)). In the case where pixels are connected only by 4 pixels, the 

connectivity is of type 4 (see figure A.3.(b)). 

 

 

 

 

 

 

 

Fig A.3 Contour in a binary image. (a) 8-connectivity, (b) 4-connectivity, and (c) 

algorithm application. 

 

We consider in an image that the hand corresponds to a set of white pixels on a black 

pixel background. In other words, the pixels of interest are white (useful pixels) and the black 

pixels represent the background. We start at the bottom left of the image and scan the columns 

from the bottom to the top until we encounter a white pixel (pixel of interest). This pixel is 

stored as the starting pixel. Once the starting pixel is detected, if we are on a useful pixel, we 

turn left, and if we are on a background pixel, we turn right. The algorithm stops once we 

return to the starting pixel. Each time a white pixel is detected, its coordinates are stored to 

determine the hand contour. The operation of this algorithm is depicted in figure A.3.(c). 

Figure A.4 shows the hand contour after applying this algorithm. 

 

Step 4: Detection of Key Points 

The characteristic points, represented by the fingertips and the valleys between the 

fingers, are calculated using the same contour tracking algorithm. These points coincide with 

the maxima and minima of the abscissa of the contour points. Moreover, the fingertips are 
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initialized at the points with the lowest abscissas of each finger, and the valleys at the points 

with the highest abscissas located between the fingers. The palm window (ROI) is constructed 

according to one of the classic models (usually square).  

 

                                                     Fig A.4 Hand Contour 

 

Its localization depends solely on the position of valleys F1 and F2, as well as the width of the 

palm. Figure A.5 represents the result of extracting the two points (F1 and F2). 

Fig A.5 Localization Of The Points Of Interest. 

 

Step 5: Image Rotation 

With the extraction of these points, only one step remains for normalizing the palm: its 

rotation. The rotation angle is calculated based on the line drawn between the two points F1 

and F2 and the y-axis. Once the angle θ is determined, we rotate the image by an angle θ to 

align the axis F1 and F2 with the y-axis of the image (see Figure A.6).  

 

 

Fig A.6 Image Rotation. 
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In many studies, the rotation takes place before defining the window, making it easier to 

locate the square. If the rotation is applied to the entire image, the edges of the extraction 

window are horizontal and vertical, making it very easy to locate the square (ROI). 

 

Step 6: ROI Localization 

The width of the region of interest (ROI), corresponding to the distance d between the 

reference segment F1F2 and the palm square, is set to a few pixels (in our work, d = 20 

pixels). The width of the square, W, is also set to a few pixels (in our work, W = 128 pixels). 

These two distances are set in such a way that the ROI is centered on the hand. This region 

(ROI) is highlighted in the following diagram (see Figure A.7). 

 

 

Fig A.7 Localization Of The ROI in The Palm. 

 

Step 7: ROI Extraction 

        A square region, corresponding to the ROI, with a fixed dimension of 128×128 pixels, 

ensuring that all regions conform to the same dimension, is then extracted. Figure A.8 shows 

the result obtained after the ROI extraction operation. 

 

Fig A.8 Extraction Of The ROI in The Palm. 

 

       The ROI extraction method we have just described has successfully processed various 2D 

hand images represented in grayscale and multispectral formats. However, 3D images require 

a specific preprocessing phase for ROI extraction. David Zhang et al. [43] use the same sensor 
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for acquiring palm prints in both grayscale and 3D representations. Thus, the ROI extraction 

for the grayscale representation is applied as described earlier. Subsequently, after rotating the 

3D image by the previously calculated angle, the four corner points of the square (ROI) are 

matched one-to-one between the 2D and 3D images (see Figure A.9). As a result, ROI 

extraction for a 3D representation can be easily implemented using the ROI extraction 

algorithm. 

 

Fig A.9 Matching Between 2D and 3D Image. 

from a 2D representation. Figure A.10 shows the 3D ROI obtained by grouping all points 

corresponding to pixels in the 2D ROI. 

 

Fig A.10 Extraction of ROI from the 3D image. 
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Annex B 

Deep Rule-Based Classifier 

The Deep Rule-Based Classifier (DRB) is an advanced machine learning model that 

integrates rule-based and deep learning techniques for effective classification tasks. The 

(DRB) combines the interpretability of rule-based systems with the representation power of 

deep neural networks to improve classification accuracy and provide transparent decision-

making processes. 

 DRB validation algorithm. Since the image pre-processing and feature, extraction 

techniques involved in the DRB systems design are standard ones and are problem-specific; 

their implementation will not be specified in this section. 

      The Dynamic Evolving Cloud-Based Classifier (DRB) proposed by Angelov and Gu is a machine 

learning model that combines the principles of evolving data clouds with rule-based decision-making. 

The DRB classifier operates in a dynamic environment, where data distribution may change over time 

[44]. It continuously updates its knowledge and adapts to these changes by evolving its data cloud 

representations. 

 

1. Data Cloud Representation: 

      DRB represents each class in the dataset as a data cloud. The data cloud model captures the 

characteristics and distribution of the data points belonging to a specific class. The data cloud 

representation involves modeling each class in the dataset using statistical parameters and 

membership functions. Here’s how you can mathematically describe this: 

 Mean (�)  

� =  1� � ��
	

�
�
.                                                      (B. 1) 

where �� are the data points belonging to a specific class, and N is the total number of data 

points in that class. 
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 Standard Deviation (σ) 

� =  �1� �(�� − �)�.	
�
�

                                                      (B. 2)  
 Membership Function 

       The membership function determines the degree to which a data point belongs to a particular data 

cloud or class. In the context of DRB, the membership function is used to calculate the similarity or 

proximity of a data point to a data cloud. It is typically defined as a Gaussian function that measures the 

likelihood of a data point being part of a specific class. 

    The Membership Function �� for a class cloud � can be represented as: 

                                                       ��(�) =  ��√�� ���� (�!")� #�.
                                        

(B.3)               

     where � is the data point, " is the mean of the data points, and σ is the standard deviation 

 Rule Generation: 

      In a DRB, the rule generation process typically involves comparing the membership functions of data 

points to data cloud models to generate decision rules. The context of membership functions and 

data cloud models, the rule generation process may involve comparing the membership 

degree of a data point to different classes based on the data cloud models. A simplified rule 

generation equation in the context of fuzzy logic and membership functions 

$%&' ∶ )� *("� × ���) + ("� × ���) + ⋯ + (". × ��.)  ≥ 012�31456 7   08'9 (:;<==).  
Where: 

��, ��, ..., μn are the membership degrees of the data point in different fuzzy sets or 

clusters. 

>?�, >?�, ..., MFn are the membership functions corresponding to the fuzzy sets or 

clusters. 

@ℎBCDℎEFG is a decision threshold that determines the class assignment based on the 

aggregated membership values. 

 Decision Making: 

     The decision-making process in DRB involves checking the data point against the generated rules to 

assign a class label. 
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     These are some key aspects of how the DRB classifier works, incorporating the concept of evolving 

data clouds and a rule-based approach for classification. The membership function and rule generation 

play crucial roles in the decision-making process of the classifier. 

2. DRB flowchart 

2.1.  Supervised Learning Process: 

Similarly to the ALMMo-0 algorithm, the supervised learning process can be done in 

parallel for each fuzzy rule within the DRB classifier and only summarize the learning 

process of an individual fuzzy rule. Nonetheless, the same principle can be applied to all the 

other fuzzy rules within the rule base of the DRB classifier as well, we consider: 

 the ith (i = 1,2,...,C) rule. 

The pseudo flowchart of online self-learning process of the ith subsystem of the DRB  

system is presented in this subsection. By default, 2H is set to be  2H =  I�(� − JK=(LH°)).           
 DRB Learning Flowchart 

The pseudo flowchart of the learning process of the DRB classifier is summarized as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig B.1 DRB Learning Process Scheme. 
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2.2 Validation Process 

The pseudo flowchart of the validation process of the DRB classifier is summarized as 

follows. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig B.2 DRB Validation Process Scheme. 
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Annex C 

1. Performance Evaluation 

 

Although biometric identification methods promise to be highly effective, we 

currently cannot guarantee their robustness in practical usage contexts and user targets. 

Furthermore, there are several factors that impact the functionality of these systems, such as: 

• Lack of stability: Biometric identification systems are less precise because they provide 

responses in terms of percentage similarity (between 0% to 100%, with 100% almost never 

achieved). Variations in identification results for an individual can stem from poor user 

interaction with the biometric sensor (e.g., improper finger placement on a palm print sensor), 

different acquisition conditions (e.g., changes in lighting for a facial recognition system), or 

the use of different sensors during enrollment and identification phases. Due to this 

variability, most biometric systems are vulnerable. This lack of stability can lead to an 

increase in the system's error rate. 

• Lack of precision: Biometric data extracted from different individuals can be relatively 

similar, as in the case of identical twins. This lack of uniqueness can also contribute to higher 

error rates in certain biometric systems. 

• Lack of acceptability: Acquiring biometric data requires user interaction with the biometric 

sensor, which can be contact-based or contactless (e.g., palm prints and facial recognition, 

respectively). Some biometric modalities are considered more intrusive than others, and the 

absence of studies considering user acceptability when using biometric systems can hinder the 

widespread adoption of such systems [45]. 

In addition to these limitations, biometric identification methods have other 

constraints, including maintenance requirements, security concerns, cost implications, data 

protection issues, human operational control needs, and recognition error rates. Several 

studies have been conducted in biometrics to evaluate and compare biometric systems. 

However, there is currently no standardized evaluation methodology for biometric systems 

that encompasses various operational aspects. In this section, we present the different metrics 

used to evaluate the performance of biometric systems from the perspective of identification 

accuracy. We will begin by defining the various error rate measures of biometric systems. 
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Next, we will discuss how to represent these error rates, and finally, we will present the 

operational points to be defined for evaluating a system. 

 

2. Measurement of Error Rates 

The response of a biometric recognition system is typically a similarity score Do (in 

the range [0··1], after normalization) between the acquired biometric sample (test image) and 

the registered model (reference model) in the system's database. The closer the score is to "1" 

(or "0" depending on the distance used), the more confident the system is that the two images 

come from the same person. Conversely, the closer the score is to "0" (or "1" depending on 

the distance used), the less confident the system is that the two images come from the same 

person. The system's decision is governed by a decision threshold ��: biometric samples that 

generate scores above �� are grouped, leading to the conclusion that they belong to the same 

person. On the other hand, samples that generate scores below �� are not grouped, resulting in 

the conclusion that they come from two different individuals. Depending on this threshold, 

there are two types of classification errors corresponding to the incorrectly measured 

decisions. They result from the lack of exact match between two biometric samples of a 

person and therefore help evaluate the reliability level of the biometric system [45]. 

Two types of errors can occur in a biometric system: it may reject a legitimate user, 

leading to false rejections (False Rejection - FR), or it may accept an impostor, resulting in 

false acceptances (False Acceptance - FA). When evaluating an identification system on a 

database, error rates are measured on this basis. The false acceptance rate (FAR) is the 

number of false acceptances divided by the number of impostor tests. The false rejection rate 

(FRR) is the number of false rejections divided by the number of client tests. As mentioned 

earlier, the system's decision errors are dependent on the decision threshold ��. In fact, FAR 

and FRR are functions of this threshold, and in general, they should be noted as FAR (��) and 

FRR (��) respectively. 

                   ������� =  

����

��
              ��� =  


����

��
                                               

(C.1) 

where Ni and Nc represent the number of impostor tests and the number of client tests 

in the database, respectively. In applications using a biometric identification system, an 

important parameter to adjust is the decision threshold. Hence, the threshold �� must be 

adjusted based on the target application: high security, low security, or a compromise between 

the two. Finally, another widely used rate in the community is the genuine acceptance rate 
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(GAR). This rate represents the percentage of client individuals accepted by the system and is 

crucial as it signifies the success of the biometric system: 

                                       ��� ���� = 1 − �������                                                 (C.2) 

It is essential to note that the two mentioned error rates are used in both operational 

modes: verification and open-set identification. However, for closed-set identification, 

another rate can be utilized. In this operational mode, the rank one recognition rate (ROR) or 

simply the identification rate is used. This rate indicates the percentage of individuals 

recognized by the biometric system based on a variable ρ. 

                                                ������ |��� = 100 −  
���

�
                                                      

(C.3) 

where ρ represents the rank (ρ ∈ [1 · ·N]), N represents the number of individuals in 

the database, and �� is the number of clients rejected by the system. ROR represents the ratio 

of correctly retrieved models by the system in the database to the total number of models. 

Another significant parameter, especially for system comparison, is the rank of perfect 

recognition (RPR). This parameter represents the rank, �!, where ROR = 100%. 

                                      ������ |���" = 100%                                                      

(C.4) 

We say a system recognizes at rank �! when it selects, among ρn images, the one that 

best matches the test image. Therefore, we can conclude that as RPR increases, the 

corresponding recognition rate is related to a low-security level. 

 

3. Operating Points 

In the case of a system operating in verification or open-set identification mode, the choice of 

the decision threshold �� is crucial as it directly influences the system's performance. A 

threshold �� that is too small (or large depending on the distance used) leads to a high number 

of false rejections, while a threshold �� that is too large (or small depending on the distance 

used) results in a significant rate of false acceptances. For applications, we must set �� at 

which the decisions to accept or reject the user will be made. This corresponds to choosing an 

operating point of the system. The most commonly used operating points are: 

 Equal Error Rate (EER) This operating point corresponds to the threshold that 

yields  

equal FAR and FRR rates, meaning the best compromise between false rejections and 

false acceptances. 
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 Fixed False Acceptance Rate (FAR fixed) This operating point corresponds to the  

threshold at which the FAR is set to a fixed rate determined by the application (for 

example, FAR = 0.01%). The biometric system's performance is measured by the FRR at 

this fixed FAR value. 

 

Fig C.1: Distribution of scores and error rates for a given threshold. (a) Distribution of client 

scores and imposter scores, and (b) Variation of False Rejection Rates (FRR) and False 

Acceptance Rates (FAR) as a function of the threshold. 

 

 Fixed False Rejection Rate (FRR fixed) This operating point corresponds to the  

threshold at which the FRR is set to a fixed rate determined by the application (for 

example, FRR = 0.01%). The biometric system's performance is measured by the FAR at 

this fixed FRR value. 

 

Fig C.2: Receiver Operating Characteristic (ROC) Curve. (a) Variation of False Rejection Rate 

(FRR) as a function of False Acceptance Rate (FAR) when the decision threshold varies, and (b) 

Variation of Genuine Accept Rate (GAR) as a function of FAR when the threshold varies. 
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4. Performance Curves 

To visualize the performance of biometric systems as the threshold varies, we use 

performance curves. The most commonly used performance curves are: 

 

 Score Distribution Curve for Genuine and Impostor Scores 

To assess the accuracy of a biometric system, we need to calculate scores from biometric 

samples belonging to the same person and scores from biometric samples of different 

individuals. The distribution of scores from biometric samples belonging to the same person 

is called the genuine distribution, while the distribution of scores from biometric samples of 

different individuals is called the imposter distribution. Figure C.1.(a) illustrates the genuine 

and impostor score distributions. It is evident from this figure that if the threshold �� varies, 

the respective values of FAR and FRR change. 

 

 FAR and FRR Variation Curve as a Function of the Decision Threshold 

As we have seen before, the performance of a biometric system (verification or open-set 

identification) is generally evaluated based on FAR and FRR. It is noteworthy that these two 

rates are highly correlated, and if one increases, the other decreases. 

The correlation between FAR and FRR is illustrated in Figure C.1.(b). This correlation is 

primarily due to the difficulty of separating the genuine and imposter distributions. On this 

figure, we can observe the error rates for each threshold value. Additionally, the threshold of 

the Equal Error Rate (EER) point, which is where FAR and FRR are equal, is the intersection 

of the two curves. 

 

 FRR Variation Curve as a Function of FAR when the Threshold Varies 

Since both FAR and FRR error rates depend on the same decision threshold, we can also 

represent the variation of FRR as a function of FAR when the threshold varies. This curve is 

called the Receiver Operating Characteristic (ROC) curve. This curve graphically represents 

the performance of a verification or open-set identification system for different values of To. 

The threshold of the EER point, where FAR and FRR are equal, is the intersection of the 

curve with the first bisector for ROC curves represented in Figure C.2.(a). By observing 

Figure C.2.(a), we can identify two other significant points: ZeroFRR, where no false 

rejections occur, and ZeroFAR, where no false acceptances occur. 



76                                                                                                                                                                 ANNEX  C 

 

 

 

 Cumulative Score Curve 

In closed-set identification mode, the Rank-One Recognition (ROR) is the most commonly 

used measure, but it is not always sufficient. In the case of an error, it can be beneficial to 

know if the correct choice is among the �! top responses. We then plot the Cumulative Match 

Characteristics (CMC) curve, which represents the probability that the correct choice is 

among the top responses, as illustrated in Figure C.3. On this figure, we can read the value of 

ROR, which corresponds to ρ = 1, and the value of RPR, which corresponds to ROR = 100%. 

 

Fig C.3 : Cumulative Score Curve (CMC) 
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