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%st ract

Wc main ofr}ect of tfz’is Sissertation is to fwesﬁgate some classical numbers usiﬂg ﬁz’e correspoﬂbiﬂﬂ
generating functions. for each sequence included in this Sissertation, we shall provide an overview

about its construction as well as some of its applications. RAmong classical numbers, we proposes
PP 'g 5 prop

fibonacci, [ucas, )Oeff) (Bl %rmoaic) 5ffrfiﬁ5 both the first and sccond kind, ... among others.




Tntroduction

The solutions of problems in mathematics are sets of elements (finite or not), i.e. a
collections of objects satisfying some specific properties. For instance, given a sequence of
numbers, {a,},, we can associate a formal power series f(x) whose coefficients give the
above sequence, i.e.

f) =) anx".
n=0

The function f is called the generating function of the sequence {a},,.
The generating function is a powerful mathematical tools used to represent and generate
sequences, i.e. this function is represented as a power series expansion
Integer sequences appear in an amazingly wide range of subject areas besides discrete
mathematics, including biology, engineering, chemistry, and physics, as well as in puzzles.
An amazing database of different integer sequences can be found in the On-Line
Encyclopedia of Integer Sequences.
Some counting problems can be solved by finding a closed form for the function that
represents the problem and then manipulating the closed form to find the relevant
coefficient. Among these functions, the most relevant are those satisfying recurrence
relations in which the construction of the corresponding generating functions is more or
less easy reached.
In probability, the most important use of generating functions is to understand moments
of random variables and find explicitly either the random variables or their linear
combinations, among others.
Each way to write a positive integer n as a sum of positive integers is called a partition of
n. By introducing some enumerative combinatorics as a generalization of combinatorial
notions using some special functions, they appeared a numbers of interesting sequence
of numbers hidden inside such as the Stirling numbers both of the first and the second
kind, Bell, Harmonic, Bernoulli ... and more. Moreover, the discrete version as well as g-
analogue (gq-numbers) provide many generalizations and give simplifications in counting
objects mainly in partitions.
In this dissertation, we investigate properties of generation functions as well as the
algebraic operations, i.e. addition, multiplication, differentiation, integration, shift and
inversion.
In Chapter 2, we shall provide various type of classical numbers defined in terms of linear
recurrence relations, then we construct either the ordinary generating functions or the




exponential generating functions. In case of higher order, we show that some specific
sequences can be obtained as convolutions of some simple classical numbers.

In Chapter 3, we focus more or less in combinatorics of objects and discuss the construction
of generating functions of the sequence of numbers. In particular, some illustrative graph
are provided.

A conclusion is given at the end of the chapter 3, which explain further ideas and the
relationship between the selection of objects and the coefficients of x* in the generating
functions.




Chapter 1
Preliminary

The first chapter provides different types of generating functions, the properties of the
algebraic operations as well as the difference of their effect on different types. Illustrative
example are provided.



Chapter 1. Preliminary

1.1 Generating functions

A given infinite sequence ay, a4, ..., can often be represented in a more compact form or
in terms of itself, i.e. recursively. It can also be given with the help of other explicitly known
sequences, among other. For instance, the generating function is a representation of an
infinite sequence of numbers as the coefficients of a formal power series as

Gx)=ap+a;x+ a2x2+...

Generating functions are a powerful tool that allows us to encode an infinite sequence of
numbers into a single function. They’re used to study sequences of numbers in a systematic
way, allowing us to perform operations on the sequences more easily.

Let us begin with the following sequence of positive integers

1,1,1,1, 1,...
Therefore, the corresponding generating function is
glx) = l+x+x2+x3+...

The explicit form of above generating function is well known because it’s just a geometric
series with a common ration x. However, the building method is as follows

3

gx) =1+ x+x>+x3+...
xg(x) = x+x2+x3+xt+. .
1-xgkx) =1

Hence, we have the closed form of g(x), i.e.

(0.9}
1
g(x):1+x+x2+x3+---:Zxk:ﬁ. (1.1)
k=0 B

Another interesting sequence is when a; = (}) for 0 < k < n. It merely seen that

n n nn:nnk:nnkn—k: n
(0)+(1)x+ +(n)x kgo(k)x k;o(k)xl 1+ x)". (1.2)

Once we obtained a closed expression of the generating function, we can use it to generate
further sequences. Indeed, if we replace x by —x in g(x) we get the generating function of
the sequence 1,-1,1,—-1,1,... as follows

g(—x):Lzl—x+x2—x3+
1+x

1.1. Generating functions
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This idea allows us to generate a plenty of sequences just by replacing x.

Unfortunately, we cannot, for example, give anything to x in g(x) to generate the sequence
7,7,7,.... However, we remark that the latter sequence is just 7g(x). This leads to think
about elementary operations on generating functions as well as on power series. Notice
further that the sequence of numbers

Ty g e (1.3)

aell IEN

N
SR N

cannot be connected to g(x) by any elementary operations. However, if we associate the
latter sequence with the following generating function

k X x2 x3

=qpt+a1-—t+ar—+az3—+...

e
G =Y ar—
) ,;)“k Kl 1 T

In this case, we merely deduce that the generating function of the sequence of numbers
(1.3) is 7G(x) = 7e*. Now the function G(x) is referred to as the exponential generating
function while g(x) will be called the ordinary generating function. It is worthwhile to
notice that there are various type of generating functions. Besides the exponential and the
ordinary generating function, we quote for instance Poisson generating function, Dirichlet
generating function, Bell series, Lambert series, among others.

1.2 Operations on generating functions

In this section we deal with ordinary generating functions, but the operations could be
simply applied to other types of generating functions.

Let u(z) = Y5 a,z" and v(z) = X5, b, z" be two ordinary generating functions. Next, we
shall define some algebraic operations on ordinary generating functions as follows

Addition

The sum of u(z) and v(z) is denoted by u(z) + v(z) and is defined by

u(z)+v(z) =) (an+by)z"
n=0

Multiplication by a scalar

Multiplication of u(z) by a scalar A is denoted by Au(z) and is defined by multiplying its
coefficient by this scalar, i.e. the multiplication of u(z) by a scalar A is the generating

1.2. Operations on generating functions
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function of the sequence {Aa,}

o0
Au(z) = ) Aayz"
o

Example 1.1 From above we have

Zx =l+x+x°+x3+xt+ = ——
1-x
o ko k 2_ 3, 4 !
+ -D"x" =l-x+x"—-x"+x"+- = ——
Z‘( ) 1+x
S k) ok _ N o2k 2, 5.4 1 1 2
Y (1+DF)aF =Y 207 =240 42xt b s —r—— =
=0 =0 I-x 1+x 1-x
Convolution

The product of u(z) and v(z) denoted by u(z)v(z), generates the sequence {c,} given by
Cn =X 5_okbn-k, i-e.

u(@)v(z)=)_ (Z akbn_k) 2= cpz"
n n=0

=0 \£k=0
= aobo + (aob1 + albo)z+ (aobg + dlbl + azbo)zz +...

While in case of the exponential generating function, the product u(z)v(z) generates the
sequence d, = Y. 7_ () akbn-r i-e.

X ay . x b, , © (2 ar by .
—Z —22 = -
(kgo k! )(ng'o n! ) ,Z‘o (k—o k! (n— k)')

io(i ilf(:nz).)z——Z(kZO( )akbn k)z—':i %

The sequences {c,} and {d,} are called the Cauchy product and the binomial convolution
of the sequences a;, and b,,, respectively.

We can evaluate the product u(z) v(z) by using a table to identify all the cross-terms from
the product of the sums

u(z)v(z)

b() ZO b1 Z1 bg 22 bg Z3
apz doboZO aoblzl aobg a0b323
a1z a1 b()Z1 a1 l’)l a b2Z3

a Z2 ay b() ay b1 Z3

as Z3 as b() Z3

1.2. Operations on generating functions
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Example 1.2 (Vandermonde’s Identity) Forall m,n,r e N

L(m)| n m\[n m\|[ n m\(n m+n
Z . = + +... = .
o\ 1 J\r—1 0J\r I J\r—1 rJ\0 r
Expanding the expressions on both sides from the identity

A+x)"""=1+x0)"Q+x)™

we have from (1.2) that

|
) ()(2”) ol

Now comparing the coefficients of x" on both sides yields the result.

Remark 1.1 Ifwe take m = n = r in identity (1.4) we obtain

L P L 1 L R R

Now by using the identity

we deduce the following identity
i n\’ _(2n
olk) \nf

The first derivative of the ordinary generating function u(z) gives

(=)

Differentiation and Integration

[e,@] (e.e]
@)=Y m+Dapz" = zu'(®=) napz"
n=0 =

While the Integration on [0, z] gives

V4 o0
f u(t) dt= Z Mz”
0 n

n=1

(1.4)

1.2. Operations on generating functions
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Example 1.3 By taking the derivative of both sides with respect to x and making a change
n— n+1 we obtain from (1.1) that

n;o(n+ 1)z" = =27

If you take the third power of (1.1) or take the second derivative of both sides you obtain
S [(n+2) , 1
y =
=\ 2 (1-2)3

Example 1.4 Let us back to the generating function (1.1) and replace x by x* to get

S ap 1 1( 1 ) 1( 1 )
Zx = 5= +——].
=0 1-x 2\1-x) 2\1+x

Integrating both sides from [0, x] we deduce that

oo y2n+l 1 1 1. (1+x
Z =—In(l-x)+-In(1+x) ==-In|{——| =tanh(x).
—=2n+1 2 2 2° (1-

It is worthwhile to notice that the derivative of an exponential generating function U(z)
would gives

) B [0 ) Z}’l ") B o0 Zn
U@=) apni— = U”@=) anir—
n=0 n! n=0 n!

Shifting

For r = 1, the generating function of the sequences {a+r},>0 and {a,—;},=, are

00
Z an—rzn = ng(Z),

n=r
-1

x ., 8@ —ap—zay—--—ar1z"

Z Aptr = -

n=0 Z

Therefore, if we combine the shift with the derivative, we merely obtain (r = 0 gives g(z))

Zg"@=3 nn-1...n-r+Dayz". (1.5)
n=0
Example 1.5 From (1.1), we merely deduce that

X (n+r 1

n=0

1.2. Operations on generating functions E
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On the other hand, since

it then follows that
o X (n+3 X [(n+2 =
Z(ng—n)x”:GZ(n )x”—lZZ(n )x”+62(n+1)x”
n=0 n=0 3 n=0 2 n=0
Therefore, the generating function of the sequence {n(n* — 1)} is given by

12 6 6x°
1-x0% (1-x3 (1-x2 @Q-x%

> nd-—n)x" =
n=0

Inverse of a power series

The power series }.0” , b, z" is said to be the inverse of the power series 7>  a,z" if:

Proposition 1.1 A power series Y5 , a,z" is invertible if and only if ag # 0.

Proof. Let Y} °° b, z" be the inverse of the power series Y_*° , a, z" such that:
1 19V n=0 p n=0

i (i akbn_k) Z"=1

n=0\k=0
e8] n
aogbg + Z Z aiby,_i Z"=1
n=1\k=0
By identification, we find:
aobo =1

and

which gives the non-zero coefficient ay.

1.2. Operations on generating functions
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Conversely, if ag is non-zero, then the triangular system of equations
aobo =1
arbg+ agb; =0
anbo + an_1b1 +-e 4+ aobn =0

has a unique solution. =

Example 1.6 We can merely check that

The series Y97 , 2" is invertible and its inverse is 1 — z.

We have the following

a=y (")bs = by=Y (:,l)(—l)n_mam-

1.2. Operations on generating functions E



Chapter 2
Generating functions from recurrence relations

In this chapter, we shall investigate some classical numbers defined in terms of recurrence
relations of order two, three, and higher order. Some recurrence relations of higher are a
convolution of other recurrence relations of less order. Furthermore, combinatorial
interpretations in some cases are available.

1

89 0.01
+0.001
+0.0002
+0.00003
+0.000005
+0.0000008
+0.00000013
+0.000000021
+0.0000000034
+0.00000000055
+0.000000000089
+0.0000000000144
+0.00000000000233
+0.000000000000377
+0.0000000000000610
+0.00000000000000987

+ 2 Fibonacci numbers



Chapter 2. Generating functions from recurrence relations

2.1 Generating function of recurrence relation

In counting problems, it may be difficult to find the solution directly. However, it is often
possible to express the n'” number in terms of the previous numbers in the sequence of
solution. We call this interdependence a "recurrence relation" and the sequence may be
expressed recursively using the previous numbers. For instance

The sequence of numbers {a,} defined recursively by

an = Cdp-1

involves a constant sequence, i.e. a, = c"ag, n = 1. Therefore, if we want to find the
corresponding ordinary generating function, we proceed as follows

(o, @] (o 0]
anx" =cap1x" = ) apx"=c¢) ap1x"
n=1 n=1

If we denote by f(x) = ¥97,a,x", then

[e.e] [e.e] (e0]
Y apx"—ap=cx ) an1x" 1 =cx Y apx" =  f-ap=cxf(x)
n=0 n=1 n=0

from which we obtain the expression

ap
1-cx

f)=
Let us consider the sequence of numbers {b,} defined recursively by
bn+1_4bn:5n, 7’1,20, b(): 1.

We shall obtain its generating function /(x) using the above recurrence relation as follows

00 ) 00 ) 00
Z bn+1xn+ —4 Z bnxn+ — Z Snxn+l
n=0 n=0 n=0

o0 o0 o0
= ) bpax"-4x Y bpx"=x) (50"

= (h(x) - by) - 4xh(x) = ——

1-5x
1-4x
< hx)(1-4x)= +1=
1-5x 1-5x
1
= hx)=—— = b,=5", n=0.

1-5x

2.1. Generating function of recurrence relation
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2.2 Recurrence relations of order 2

As shown above, if the sequence of numbers satisfying some kind of recurrence relations,
then the generating function could be, more or less given in a closed form. Among
classical numbers, there are a numerous families satisfying recurrence relations such as
Fibonacci, Lucas, Pell, Tribonacci, Padovan, among others. We shall next select some
classical numbers satisfying a second order recurrence relation. To begin with, let us first
provide an overview of each chosen sequence.

Fibonacci sequence

Fibonacci numbers are the following positive integers
0,1,1,2,3,5,8,13,21,34,55,89, 144, ...

in which each number is the sum of the two previous numbers. Therefore, if we denote
these numbers F,,, we obtain the following recurrence

Fpni1=Fn+Fy-1, F1=1, Fp=0.

Let F(x) be the generating function for this sequence of numbers, then

(0.9}

(o.0]
Fx)—Fo—-Fix=F(x)—x =) Fpx"=) Fy1+Fpp)x"
n=2 =2

n

o0 2 (0]
=x ) Fux"+x") Fpx"
n=0 n=0

accordingly,
F(x)= ) Fux"=—S=— - =— " x" 2.1)
n;o " l-x—x* 5|1-¢x 1-¢x \/gngo(b b ]
In particular, F, is given explicitly by
o"-¢" 1 [(1+v5)" [1-v5\"
F,=—+ =— - 2.2)
N 2

p-fibonacci numbers

For every integer p > 0, the p-Fibonacci sequence denoted throughout {F,(p)},en, is
defined in terms of the following recurrence relation

Fni1(p) = pFn(p) +Fn-1(p), with Fo(p) =0, Fi(p) =1. (2.3)

2.2. Recurrence relations of order 2
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The first few p-Fibonacci numbers are {0, 1, p, p2 +1, p3 +2p,...}. Notice that for a different
given value of p will reduce the above sequence to other known families. In particular,
for p = 1 the p-Fibonacci reduces to the standard Fibonacci numbers. While the case p=2
involves the recurrence relation of Pell numbers. Since the initial condition coincide with
those of standard Fibonacci, then following the same process we merely obtain the ordinary
generating function of p-Fibonacci numbers

(0.9}

Fxx)= ) Fu(p)x"=

S A— 2.4
7=0 1-px—x? 24

p-Lucas numbers

p-Lucas numbers are defined by the recurrence relation (2.3) with the initial conditions
Lo(p) =2 and Ly (p) = p. As customary, for p = 1 the latter numbers gives the classical Lucas
numbers while the case p =2 is called in the literature the Lucas-Pell numbers. Now, taking
in account the initial conditions, their generating function will be
X 2—px
L =Y Lypx"=——F

7=0 1-px—x*

General second order recurrence relations

In order to unify the study of every sequence of numbers satisfying a second order
recurrence relation, we shall take the following general definition. Let the sequence of
numbers E,, defined by the following recurrence relation

Eny1=pEn+qEn-1, E1=b, Eo=a. (2.5)

The Table 2.1 below provides recurrence relations for certain classical numbers such as p-
Fibonacci, p-Lucas, p-Pell, p-Jacobsthal, p-Mersenne, ...among others.

Sequence of numbers{E,;} [ Ey | E; |p |g
p-Fibobacci sequence F,(p) |0 |1 |p |1
p-Lucas sequence L, (p) 2 |p|p |1
p-Pell sequence P, (p) 0 [1 |2 |p
p-Jacobsthal sequenceJ,(p) |0 |1 |p |2
p-Mersenne sequence My(p) [0 (1 |[3p | -2

Table 2.1: Recurrence relations for some specific numbers

2.2. Recurrence relations of order 2
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2.2.1 The odd and the even p-numbers
From the above definition (2.5), we have
Ezn+1 = PE2n + qE2n-1 = p(pE2n-1 + qE2n—2) + qE2n1
= (p*+ q)Ban-1+ 4 (pEan—2) = (p* + 9) E2n-1 + ¢ (E2n-1 — gE21-3)
hence, by induction we can prove the following formulas
Ezn+1 = (p* +29)E2n-1— ¢°Eon-s, (2.6)
Eon = (p° +2@)E2n—2 — 4°Ean—s. (2.7)

Therefore, if E,(x) and E.(x) are the generating function of the odd p-number and even
p-numbers, respectively, defined by (2.5), then we have from (2.6) and (2.7) the following

{1 —(p*+2q) x+ (qx)z}Eo(x) =E; +E3x— (p*+2q)E;x
=E; + ((p2 +q)E; + pqu)x— (p*+2q)E1x
=E;+¢q(pEo—E1)x
{1 —(p*+2q) x+ (qx)z}Ee(x) =Eo+Exx— (p*+2q)Eox

= E() + (pEl — (pz + 6]) Eo)x,

from which we obtain, taking into account the initial conditions, explicitly the generating
functions

b+q(ap-b)x £q )_a+(bp—a(p2+q))x

1-(p?2+2)x+(gx)%’ et = 1-(p2+2)x+(gx)?

Eo(x) = (2.8)

2.2.2 Generating function of some convolution p-numbers

In order to use the properties of the convolution, we shall prove first some identities. For
the sake of simplicity we shall denote the p-Fibonacci and the p-Lucas by F,, := F,(p) and
L, :=L,(p), respectively.

Proposition 2.1 The p-Fibonacci and p-Lucas numbers defined above satisfying the
following identities

FpFp, = ;(L — (=D)L ) (2.9)
ntm pz +4 n+m n—m)» .

2.2. Recurrence relations of order 2
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Proof. A simple proof of these identities can be done using the characteristic equation, i.e.
the representation of the numbers in terms of the solution of the characteristic equation as
in standard case (2.2). For the p-numbers, the characteristic equation is the following

+y/p?+4
O:xz—px+1:(x—01)(x—02), 012=w.

Taking into account the initial conditions, we have the following representations

n_ ~n
0770,
F, =

, L, =07 +0}. (2.11)
01—-02

Let us remark, by taking o, > 0, 02 <0, that we have

0102=-1, 01+02=p, 01—-02=1/p?>+4, 02:p0+1.

Therefore, the left hand side of (2.9) will be

1
BuFin = 5 (07 =03) (o7 = o') =~ 01"+ 04" = (o0 + o]'0})

p?+4
S LT G )
S (Lntm— (@10 )”(0”_’"+0”_m)):—1 (Litm = (D" L]
p2+4 n+m 192 1 2 p2+4 n+m n-m|-

Now the second identity for p-Lucas numbers is clear. m
Some interesting identities could be easily obtained from (2.9)-(2.10). For instance, since
F; =1, remark then that for m =1 the identity (2.9) reduces to the following

= +4(Ln+1 +Ln_1). (2.12)

While the choice n = k+1 and m = k transforms the identities to the following

_ Wk
Bt =5 Lok = p-1) 2.13)
LiLis1 = Loger + p(=1¥. (2.14)
From another hand, we merely obtain that
2 _ o 1k 2 _ 1k
Fe= p2+4(L2k 2(-1) ) Ly =Lox+2(=1)". (2.15)
FiLi = Fop. (2.16)

Let us now denote by E;(x) and E2(x) the ordinary generating functions of the sequence
{Fr(P)Fns1(P)},,cny and {Ly(p)Lps1(p)},cnp Tespectively. Then

2.2. Recurrence relations of order 2
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Theorem 2.1 The generating functions E(x) and E»(x) are given explicitly as follows

pXx

2—p?x+2x>
— B WO | Col ey
—(pe+Dx+x°)+x

E1(x) = T I (PR 418

Proof. For E;(x) we shall use (2.13) together with (2.8). From one hand, we know that the

ordinary generating function of the sequence {(—1)"} is ﬁ From another hand, taking

into account the initial conditions, the generating function of the odd p-Lucas numbers
together with (2.13) involve

B0 = (s 2

p2+a\1- (P2 +2)x+x2 1+x

1 (p(l+x)?-pd-(p?>+2)x+x?)
p2+4( A-(p?+2)x+ x>+ x) )
_ px
T 1-(p?2+D(x+x2) +x3

In the same way, the ordinary generating function E,(x) could be checked. m
Next, we shall denote by E3(x), E4(x) and E5(x) the ordinary generating functions of the
sequence of numbers {F4(p)}, .y {L5 (D)} ,cp a0d {Fn(P)Ln(p)} ,cnp TESPECtively. Then

Theorem 2.2 The generating functions E3(x), E4(x) and Es(x) are given explicitly as follows
2

E (x)_ X—X
T2 D+ ) + 1
4—(4+3p?%) x - p?x?
By = TSP P
1-(pr+D(x+x°)+x
pXx
Es(x) =

1- (P2 +1D)(x+x2)+x3
Proof. The generating functions are a direct calculations from (2.15)-(2.16) together with
(2.8) after replacing the initial conditions at the latter identity. m

2.2.3 Inhomogeneous recurrence relations

Some interesting inhomogeneous recurrence relation of order 2 worth to be mentioned.
The first one we want to invoke is the so called Leonardo sequence {D,} defined in terms of
the following recurrence [2]

Dn:Dn_l +Dn_2+1, n22. (2.17)

with initial conditions Dy =D; = 1.
As each sequence, Leonardo numbers have their own properties. We shall provide some of
their amazing properties. First, by induction we can prove in few lines that

2.2. Recurrence relations of order 2
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Proposition 2.2 Forn =0, the D, is an odd number.

Unexpected properties is that Leonardo and Fibonacci numbers are expressed in each other
as follows

Proposition 2.3 For n = 0, the Leonardo numbers D, are given in terms of Fibonacci
numbers F,, via

D, =2F;+1 - 1. (2.18)

Proof. For n =0 and n = 1 the identity (2.18) is true according to the initial conditions of
(2.17) . By induction, assume that (2.18) is true up to n. Therefore, from (2.17)

Dys1=Dp+Dp1+1=(2F,41 — 1)+ (2F, - 1) +1
=2(Fp41+Fn)—1=2F, 1.

Whence the result. =
The ordinary generating function of Leonardo numbers can be easily calculated using the
initial conditions. Indeed, let us denote the latter by GL(x), then we have
= n_ l—x+ x?
GL(x) = ’;Oan T o
Since the recurrence relation (2.17) is inhomogeneous, then substituting n by n + 1 and
substracting the resulting equality from (2.17) we infer that

The latter identity shows that Leonardo numbers satisfy a recurrence relation of order 3,
this will be the main objective of the next section. Before moving to the next section, we
shall mention further generalizations of Leonardo numbers. In [6] the authors propose the
following generalization of Leonardo numbers, which we call p-Leonardo and denoted by
{2,}. Again, these numbers are defined in terms of the following inhomegeneous second
order recurrence relation

@n - @n_l + @n_z + p, nz= 2. (2.19)

with initial conditions 2y = 2; = 1.
At first sight, the connection between p-Leonardo and Fibonacci constitutes a
generalization of (2.18) and can be again proved by induction in few lines

Proposition 2.4 For n = 0, the p-Leonardo numbers 9, are given in terms of Fibonacci
numbers F,, via

Dn=(p+1)Fps1—p. (2.20)

2.2. Recurrence relations of order 2
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2.3 Recurrence relations of higher order

A linear homogeneous recurrence relation of order k with constant coefficients is a
recurrence of the form

Up+diup1+doty_o+...+diuy_i =0, di #0.
Remark that if u,, = 2" is a solution of the equation with u, # 0 and verifying
X+ di 2 v do P+ d R =0
In particular, if n = k, we find the latter equation is the characteristic equation, i.e.

X+ di 2 v dy K+ dy =0

2.3.1 Recurrence relation of order 3

Next we shall give illustrative examples for third order recurrence relation.
Let us begin with the so-called the Tribonacci sequence {T,} and Tribonacci-Lucas
sequence {K,} are defined by following third order recurrence relation

Yn :Yn_l +Yn_2 +Yn_3, I’l?g

with the initial condition To =0, T; = To = 1 and Ky = K> = 3 and K; = 1, respectively. By
taking into account the initial conditions, it’s not difficult to see that

(e.0] (o.0]
Y Tpx = Y Kpx" =
n=0 n=0

It has been shown that Tribonacci numbers could be obtained by computing sums of the

3-2x—x3

1—x—x?—-x%

X

1—x—x2—x%

elements in a specific direction from triangular numbers. The trinomial numbers obtained
in the expansion of the polynomial (1 + x + x2)", n > 0, explains such idea [4]

To=l Ty=2 13-4 T5=13

0 -y Ti=1 Ty=7
! :l/+1x/1xz§/

( )

(14 x4 3

( ). = 1 +2x  +3x2 2 +1xt

(1+x+x2)° = 1 43x +6x2  +7x0  +6x% 4325 410

( ). = 1 +4x +10x% +16x% +19x* 41625 +10x5 +4x7 + 18

( ) = 1 +5x +15x% +30x° +45x% +51x5 +45x0 +30x7 + 15x° + 51 + x1°

Tribonaccinumbers T, =T,-1+T,-2+T;,_3

2.3. Recurrence relations of higher order
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A second type of examples are special ones. We shall consider the so-called the Padovan
sequence, denoted {C,} and the Perrin sequence {R,} defined by the following recurrence
relation

Zn:Zn_2+Zn_3, 7’223

with the initial conditions Cy = C; = C2 =1 and Rg = 3, R; =0, Rz = 2, respectively.
In Literature, it has been remarked that Padovan and Perrin numbers satisfying further
recurrence relations such as

Their ordinary generating functions are

[e.e] [e.0]
Z(an”:1 ZRnx”:1
n=0 n=0

respectively. Moreover, there are some combinatorial interpretations of Padovan numbers
mainly their appearance in partitions. It is also worthy to mention that Padovan numbers
could be obtained from Pascal triangle trough some specific directions.

3 — x?

_x2_x3’

1+x
—x2— x3’

Co=1 _ _

s 2Tl =2 =4 g9 G670
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Padovan numbers obtained through the above direction Cn=Cu2+Cj_3

2.3. Recurrence relations of higher order
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2.3.2 Recurrence relation of order greater than 3

We can also provide generating functions of the convolution of some of the above
sequences. For instance, if we consider the following fifth order recurrence relation

Ln+s =Inta + 21543 =241 — 1, nz3 (2.21)

with the initial conditions Iy =1y = 1, I, = 2, I3 = 4 and I4 = 8, then its ordinary generating
function will be

_ X+ x?
C1-x—2x2+2x4+ x5

[o,@]

Z I, x" (2.22)
n=0

Next, we shall discuss some convolutions of classical numbers as well as decompositions
of some sequences of numbers defined by higher order recurrence relations in terms of the

classical number’s sequences.

Convolution of Fibonacci and Padovan

To begin with, let us back to the sequence of numbers defined by the linear recurrence
relation (2.21). In order to understand the behavior of the sequence, we shall simplify or
decompose its generating function. Indeed, the latter can be considered as a convolution of
two sequences when we decompose the generating function as a product of two functions,

golnxn: X+ x° ( x )( 1+x )

i.e.

1—x—2x2+2x4+x5: 1-x—x2/\1-x2-x3
o (o,0)

= Zan” ZCnx”
n=0 n=0

which suggests that the numbers I, are the product of Fibonacci and Padovan, that is to say,
I, = F,,C,. Therefore, we have obtained, by multiplying numbers of sequences satisfying
recurrence relations of order two and three, a new sequence of numbers satisfying a fifth
order recurrence relation.

Convolution of Fibonacci and Perrin
Now, under the initial conditions Ip = 0, I; = I, = 3, I3 = 8 and I = 14, the generating
function of the recurrence relation (2.21) takes the following form

00 3
Y Ipx"=
n=0

3x—x
1—x—2x2+2x%+ x5

(2.23)

2.3. Recurrence relations of higher order
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as above, using the decomposition of the denominator, in this case the generating function
is a convolution of Fibonacci and Perrin sequences, i.e.

= 3x—x3 X 3—x?
Y Iyx" = :( )
=5 1—x—2x>+2x*+x% U1—x—x?/\1-x%?—x3

2.4 Binomial transformation

For a sequence of numbers {a,}, its binomial transform is a new sequence {i,} defined by

the rule
" In " n
a, = Z ajy with inversion a, = Z (—1)”_kék. (2.24)
k=0\k i=o\k
It could be also defined in the symmetric version as follows
A = (n k+1 T : = (n k+14
a, = Z (D" " ay with inversion a, = Z (D" ag.
e=0\k i=o\k

It has been proved that the binomial transform of many classical numbers also satisfy
recurrence relations. For instance, we can prove by induction the following results

Theorem 2.3 Under the notations above, the binomial transforms of p-Fibonacci,
Tribonacci, Padovan and Perrin satisfy the following recurrence relations

Friz=(p+2)Fp1 — pEy, Tpis =4Tpio —4The +2T5,
Cn+3 = 3Cn+2 - ZCIHI + Cny En+3 = 31,'zn+2 - 2E]’l+1 + En»

respectively. Moreover, their ordinary generating functions could be computed explicitly.
Indeed, the generating function of binomial transform of p-Fibonacci, Tribonacci, Padovan
and Perrin numbers are

s A X i A x_xz

F xn: y T xl’l: ]
ngo " 1-(p+2)x+ px? n;o " 1—4x+4x%-2x3
iﬁ o 3-6x+2x? ic o 1-x
= 1-3x+2x2—x% o 1-3x+2x2—x%

respectively.

2.4. Binomial transformation
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Generating functions beyond recurrence

relations

In this chapter we introduce the Pochhammer symbol, i.e. the ascending factorial and
descending factorial. The coefficients of their expansions appear in many situations and
referred to as the Stirling numbers. In fact, many classical numbers are somehow
connected.

1
Z (X)pz" = 5
n=0 l-xz
l—-xz-
2(x+1)z2
1-(x+2)z—-
3(x+2)z?
1-(x+4)z——.
1
Y nl-z'=
n=0 12 °Z2
1-2z-
2272
1-3z——

21
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3.1 Enumerative Combinatorics
The rising factorial, sometimes called the ascending factorial, is defined by (x|w)o = 1 and
xlw),=xx+w)(x+2w)...x+(n-1Nw), n=1,

and generalized falling factorial, also called descending factorial, is defined by (x|w)y = 1
and
xlw),=x(x—w)(x-2w)..(x—(n—-1Dw), n=1.

When w = 1, the rising factorial gives the Pochhammer symbol, i.e.
Xp=&xDp=x(x+1D)(x+2)...(x+n-1), n=1, (3.1)
while the falling factorial becomes
(X =xI)y=x(x-1)(x-2)...(x—n+1), n=1, (3.2)

By expanding the rising and the falling factorial, we obtain polynomials in x, i.e. power
series. Indeed, the following are few terms

(x)1=1 ()1 =1

(X)2=x(x+1)=x*+x (X)p=x(x-1)=x*—x
()3=x(x+1Dx+2)=x3+3x%+2x | ()3 =x(x—D(x—2) = x> —3x%>+2x
()4 =x*+6x3+11x%+6x (X)g=x*—6x3+11x%—-6x

(x)5 = x° +10x* +35x3 + 50x2 + 24x | (x)5 = x° — 10x* +35x3 — 50x° + 24 x.

It is worthwhile to notice some of the properties of the falling and the rising factorial. We
have

X)p={(x+n-1),=1"{-x)p, (Xp=x-n+1),==D"(-x),
X x+n—1

<x>n=n!( ) (x)n=n!( ) mp=0Q),=n!
n n

The rising as well as falling factorial can be extended to real x with help of gamma function
as follows
(x)n=r(x+n), <x>n=M

I'(x) 'x-n+1)

3.1. Enumerative Combinatorics
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3.2 Stirling numbers

The coefficients of the power series (3.1) and (3.2) constitute a sequence of numbers called
the Stirling numbers of the first kind. That is to say, the sequence of numbers obtained from
the following expansion

n
Xn=Y s(nkx*. (3.3)
k=0
The sequence numbers obtained from the inverse of the expansion are called the Stirling
numbers of the second kind. In other words, Stirling numbers of the first and second kind
can be considered inverses of one another. Roughly speaking, we have from one hand

x" = Xn: S(n, k) (x) . (3.4)
k=0

and from the other hand, they constitute matrix inverses of one another. That is, if we
denote by s = (s,,x) the lower triangular matrix of Stirling numbers of the first kind, i.e. s, =
s(n, k). Then the inverse of this matrix is the lower triangular matrix s™! = S = (S,,x) with
Sk = S(n, k) the Stirling numbers of the second kind.
Another place where you can encounter Stirling numbers is the following: Let D = d/dx,
then the differential operators x"D” and (xD)” are connected through the following
relations [9]

n n
xD)" =) S(n,k)x*D*,  x"D" =Y s(n, k)(xD)* = (xD),
k=0 k=0

In combinatorics Stirling numbers of the first kind s(n,k) count the number of
permutations of n elements with k disjoint cycles (circular permutations). While Stirling
numbers of the second kind denoted S(n, k) count the number of ways to partition a set of
n elements into kK nonempty subsets.

Now, to get the generating function of the Stirling numbers, there are many ways using
either the definition or some of their properties. We shall here use some of these techniques
alternatively. Let us start with the first kind numbers. From the above properties we have
from one hand

(1+2)* = OZO: Flen= oin! ol L oi(x)nz—n
n=0\" n=0 nj n! n=0 n!

(e.0] n n [o,@] [e.e] n

=Y z Y s(n, ) xk = Y x¥ Y s(n,k)z—.

n! n!

n=0 """ k=0 k=0 k=n :

3.2. Stirling numbers
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From the other hand, since

k

oo
(1+2)% =0 = ¥ (In(1 + 2)F 2
k=0 k!

it follows then that
Proposition 3.1 The exponential generating function of the first kind Stirling numbers is

n k
z _ (In(1 + 2)) ' (3.5)

.

s(nk)— =

—n n! k!

Although James Stirling had discovered the Stirling numbers of the second kind in a purely
algebraic context in 1730, Masanobu Saka was the first person to realize the combinatorial
significance of the latter numbers in 1782. [5]. Indeed, Saka studied the number S(n, k)
of ways that a set of n elements can be partitioned into k subsets where he discovered the
following recurrence relation which can be proved by induction

S(in,k)=S(n-1,k-1)+kS(n—1,k), l<k<n. (3.6)

In order to use the latter recurrence, let us now consider the following sums

(0.9}

EAx) =Y S(nk)x", BT, 0= Snkx*. (3.7)
n=0 k=0

Theorem 3.1 We have the following

xk

M = T a2 0o Ty(x) = x(1+D)By-1(x).

Proof. Since Ag(x) = Bg(x) = 1, then by using the above recurrence relation (3.6) we obtain
for k =1 that

A=) Snk)x"=) Sn-1,k-Dx"+k) Sn-1,kx"

n=1 n=1 n=1
o0 o0
=xY Sn-1Lk-Dx" '+kx ) S(n-1,kx""
n=1 n=1

Therefore,

k

X
Ap_1(x) =

X
Ap(0) = XA () +kxAr) - = A = (1-kx)...(1 —2x)(1 — x)

The same thing for T,,(x). =

3.2. Stirling numbers
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It is worthy to mention that T,,(x) is a polynomial in x referred to as Touchard polynomial .
Moreover, the Stirling numbers of the first kind satisfy the following analogue recurrence
relation which can be used, as above, to extract the ordinary generating function

s(n+1,k)=s(n,k—1)—ns(n, k).

The following tables provide the first few values of these numbers

n\k 1 2 3 4 B 6 7 8 |9
1 1

2 -1 1

3 2 -3 1

4 -6 11 -6 1

5 24 -50 35 -10 1

6 -120 274 -225 85 -15 1

7 720 -1764 1624 -735 175 -21 1

8 -5040 | 13068 | -13132 | 6769 | -1960 | 322 | -28 | 1
9 40320 | -109584 | 118124 | -67284 | 22449 | -4536 | 546 | -36 | 1

25\‘10

1

1 15 1
1 31 90 65\15 1 ‘ = Bg

1 63 301 350 140 \‘21 1

1 127 966 1701 1050 266\‘28

1 255 3025 7770 6951 2646 462\‘36
1 511 9330 34105 42525 22827 5880

Table 3.1: The first values of Stirling numbers of the first kind

1 \

750\‘45 1

Figure 3.1: The first values of Stirling numbers of the second Kind

3.2. Stirling numbers
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3.3 Bell numbers

If we look at the table of Stirling numbers of the second kind, we can extract many
properties regarding these numbers. At the first sight, we can see that the diagonal entries
is always 1. The second remark is that the line right below the main diagonal constitutes
the binomial coefficient ( ) (as explained in red at the table of these numbers).

Now, since the Stirling numbers of the second kind count the number of partition of n-set
into k-nonempty parts, then the total number of partitions of the integer n is the sum of
the corresponding row. This interesting sequence of numbers is called the n’" Bell
numbers and denoted by B,,. That is to say, the Bell numbers are the total number of ways
of partitioning a et of n elements, i.e.

n
B,=) S(nk.
k=0

It is worthy to mention that the Bell numbers had been studied by many mathematicians.
One of the earliest appearances of theme is in Japan around the year 1500. Moreover, in
order to simplify the computation of thee numbers, we shall provide some of their
properties mainly recurrence relations. For this end we have [8]

Proposition 3.2 Let B, be the number of set partitions of [n]. Then B, satisfies the following
recurrence relation

n

n
Bpi1= ), (k)Bk, Bp=1. (3.8)
k=0

Moreover, their exponential generating function can be easily computed. First, we have
00 X" 00 xn+k xk 00 4 xkex

- = = Z = ) 3.9

Therefore, using (3.8) we obtain

B(r) = ZB_—1+ZB—— in—l(n;I)Bkt_”
_HZZ() (ITD' ZBkZ()mH)'

n=0k=0

The first derivative with respect to ¢ together with the use of (3.9) glve

B'(t)=) By ( )—: By —— =¢' Bk —etB(t).
kgo r;k k) n! kgo n=t (1 k)'k' kzo k!

Solving the latter differential equation with the initial condition B(0) = 1, we deduce that

3.3. Bell numbers
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Theorem 3.2 The exponential generating function of Bell numbers is
o0 tn X
Y Bp—=e" 7l (3.10)
n=0 n:

For people who don'’t like combinatorics, we refer to [7] for comprehensive information on
the exponential polynomials.

Now, since By = 1, then the reciprocal of B, can be defined (in literature the reciprocal of
Bell numbers are called Uppuluri-Carpenter numbers and denoted C,). Hence, by
definition we have B,,C,, = 1 from which we deduce the exponential generating function

n n n
Y Cu=el ™, Cn= Y (-1)*S(n, k). (3.11)
n.
k=0 k=0

Furthermore, if we add, and then subtract, the expressions of B,, and C,;, we obtain [7]

) 3]
E, ::E B, +C;)=Sn,2)+Sn,4) +...+S(n, k)= ) 2S(n,2i)
k=0
n-1
1 [T]
On =3 Brn—Cn) =S, ) +S(1n,3)+..+S(n, )= ) S(n,2i+1),
k=0
where k and [ is the largest even integer and the largest odd integer that is less than or equal
to n, respectively. From these, the exponential generating functions are given explicitly

Y E,=— =cosh(e*-1), ) 0,— =sinh(e*-1).
k=0 =0 ™

Notice further that the Touchard polynomials (3.7) evaluated at 1 is nothing else but Bell
numbers, i.e. T, (1) = B,,. Therefore, we can invoke further properties. For instance, the
geometric polynomials (also known as Fubini polynomials) are slight modification of
Touchard polynomials, obtained from the latter by multiplying the coefficient of x* by k!.
Roughly peaking, by setting x = 1 the Fubini polynomials give the so-called geometric
numbers (or preferential arrangement numbers or Fubini numbers) G, as

Gn=)_ Snkk. (3.12)
k=0

Itis easy to see that the exponential and the ordinary generating function are explicitly given

o0 n 1 o0 n|xn
Y G=o, Y Gl ' .
=T 2—ex = 1-x)(1-2x)...(1—nx)

3.3. Bell numbers
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3.4 Harmonic numbers

The Harmonic numbers denoted {H},,~; are defined by the general term

1 1 1
H,=1+—-4+—+---4+—.
2 3 n

Therefore, we shall look for a closed formula for the generating function given by

e[

n=1\k=1

o0

H(x)=) Hpx"= Z
n=1

1
1+ + +oeit—
3 n

which is clearly the generating function of the sequence {1,1,1,...} times the generating
function of the sequence {H,,},,>;.
Let us remark first, that the derivative of the generating function of the latter sequence gives

x

PREI I

n=11

Accordingly, by integrating both sides we get that the generating function of the sequence

—In(1 - x) :ln(L).
1-x

Finally, the convolution shows that the generating function of the Harmonic numbers is

| 1
H(x)= ) Hpx ==\

Next we shall invoke very amazing properties by performing diagonal sums in the
Harmonic triangle. Let us begin with explanations of this triangle. In fact, the Harmonic
triangle is related to reciprocals of the elements in Pascal’s triangle and is formed by taking
successive differences of terms of the harmonic series.

Therefore, after the first row, each entry is the difference of the two elements immediately
above it. It is worth to mention that each element is the sum of the element to its right and

1
the element below it in the array. For example, for og We see that atits rightis 2 and bellow

1 1
this number we ﬁnd , by checking we find that — - — = —
30 12 30 20

3.4. Harmonic numbers
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1 1 1
1 2 3 4 5 6 7 8
1 1 1 1 1 1 1
2 6 12 20 30 42 56
1 1
3 12 30 60 105 168
1 1 1 1 1
4 20 60 140 280
1 1
5 30 105 280
1 1 1
6 42 168
7 56
1
8

From another hand, each entry is the sum of the infinite series formed by the entries in the
row below and to the right, in other words, each row has the first element in the row above it

1

as its sum. Further remark is that each rising diagonal contains elements which are — times
n

the reciprocal of the similarly placed elements in Pascal’s triangle.

In contrast to the harmonic triangle, each element in any row after the first is the sum of all
terms in the row above it and to the left, while it is also the difference of the two terms in
the row beneath it, and the sum of the element to its left and the element above it. Since

the nth row in the harmonic triangle has sum , if we multiply the row by n, we can

immediately write the sum of the reciprocals of elements found in the columns of Pascal’s
triangle written in left-justified form as

-1
- Oo(k)

—=) ) n>1.
n-1 =, \n

3.4. Harmonic numbers
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3.5 Conclusion

There are plenty of interesting sequences of numbers that we meet in our daily life. Solving
recurrence relation can be given in term of generating functions which help in tern to
provide some connections between coefficients and and object. Indeed, if we consider
various ways of selecting objects from a set S = {a, b, c}, then

Select one object from S we have

{a} or {b} or {c (denotedby a+b+c)
Select two objects from S we have
{a,b} or f{a,c} or {bc} (denotedby ab+ac+ bc)

Select three objects from S we have

{a,b,c} (denotedby abc)
Remark that these symbols can be found in the following expression

(1+ax)(1+bx)1+cx)=1x"+(a+b+c)x' + (ab+ ac+ bc) x> + (abc) x3.
We my write 1+ ax = x° + ax! which could be interpreted as
"ais not selected or a is selected once".

The latter technique of modeling is very practical mainly in combinatorics to choose
objects in different ways, arrangements, configurations, looking for the shortest routes in
rectangular grid, ... etc.

This simple interpretation shows how one can associate objects to coefficients in
generating functions. There are many techniques for modeling problem in daily life and
across different fields such as calculus, biology, physics, electronics, random variables, ...
among others.

3.5. Conclusion
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