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Chapter 0

Abstract
4 \
This dissertation deals with the most important definitions and mathematical prop-
erties of ¢g-calculus, such as quantum derivative and Jackson integration, in addition to
formulating quantum transformations such as ¢-Laplace transform and ¢g-Mellin trans-
form.
- Y,
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Introduction

The study and use of the special functions is a very old branch of mathematics. We mention
for example the Bernoulli and Euler numbers and polynomials, gamma and hypergeometric func-
tions, Jacobi’s elliptic functions, Bessel functions, and the polynomials of Legendre, Laguerre and
Hermite. Most of those functions were introduced to solve specific problems.

The study of basic hypergeometric series (also called g- hypergeometric series or g-series)
essentially started in 1748 when Euler considered the infinite product (¢; ¢)-! = [Too(1 —¢"™) ™!
as a generating function for p(n), the number of partitions of a positive integer n into positive
integers. But it was not until about a hundred years later that the subject acquired an independent
status when Heine converted a simple observation that (111_12[(1 —¢%)/(1—q)] = a into a systematic
theory of 5¢; basic hypergeometric series parallel to the theory of Gauss’ 3F; hypergeometric
series.

Apart from some important work by J. Thomae and L. J. Rogers the subject remained some-
what dormant during the latter part of the nineteenth century until F. H. Jackson embarked on
a lifelong program of developing the theory of basic hypergeometric series in a systematic man-
ner, studying g-differentiation and g-integration and deriving g-analogues of the hypergeometric
summation and transformation formulas that were discovered by A. C. Dixon, J. Dougall, L.
Saalschiitz, F. J. W. Whipple, and others.

D. B. Sears, L. Carlitz, W. Hahn, and L. J. Slater were among the prominent contributors
during the 1950’s. Sears derived several transformation formulas for 3¢9 series, balanced 4¢3 series,
and very-well-poised ,,11¢, series.

During the 1960’s R. P. Agarwal and Slater each published a book partially devoted to the
theory of basic hypergeometric series, and G. E. Andrews initiated his work in number theory,
where he showed how useful the summation and transformation formulas for basic hypergeometric
series are in the theory of partitions. Andrews gave simpler proofs of many old results, wrote
review articles pointing out many important applications and, during the mid 1970’s, started a
period of very fruitful collaboration with R. Askey. Thanks to these two mathematicians, basic
hypergeometric series is an active field of research today. Since Askey’s primary area of interest
is orthogonal polynomials, g-series suddenly provided him and his co-workers with a very rich
environment for deriving g-extensions of beta integrals and of the classical orthogonal polynomials
of Jacobi, Gegenbauer, Legendre, Laguerre and Hermite. Askey and his students and collaborators

who include W. A. AL-Salam, M. E. H. Ismail, T. H. Koornwinder, W. G. Morris, D. Stanton,
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and J. A. Wilson have produced a substantial amount of interesting work over the past sixteen
years.

In summary, the theory of g-calculus presents a discrete analogue of the derivative’s operator
and the integral as well as of the factorial ( i.e., which is referred to as shifted factorial!). In this
theory, we shall take a fixed positive integer ¢ (0 < ¢ < 1 or ¢ > 1), and then try to figure out
some formulas that reduce to the classical one when the integer ¢ goes to 1. It terms out, from
this, that we can give the g-analogue (i.e., in terms of ¢), as far as we can, of all the definitions
and problems. Note also that the transition of any classical expression to its g-analogue is not
unique.

We plan in this work to give a simple overview of the ¢-calculus including the shift factorial,
the definition of the g-derivation and g-integration. We shall also give a brief introduction to the
constructions of the main basic (g-analogue) special functions, and to point out some g-integral

transformations with special focus on the g-Laplace transform and ¢-Mellin transform.
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The quantum Number

The fundamental rules upon which the concept of quantitative calculus is built are as follows:

Definition 1.0.1. The g-analogue of the integer number n is defined by this formula

n

1 —
N (1.1)

:1 2 TL—IZ
n], +q+q¢ +---+q [

and the g-factorial of the integer n is defined by [0],! =1 and forn > 1

(I—¢")(I—¢"")...(1—q)
(1—q)

[n]q! = [n]q “[n— 1](1 e [Q]q ) mq = (1.2)

Example 1.0.1. From the definition we have
=1, Rly=1+q PBly=1+q¢+¢, [“=1+q+¢+ ..

and

Bld=01+q+¢)(1+q) =1+2¢+2¢+¢°
1-¢* 1-¢ 1-¢* 1—¢
l-¢ 1—q 1—q 1-—gq
=(1+q++¢*) (1+q+¢°) (1+q)

=143¢+5¢> +6¢° + 5¢* + 3¢° + ¢°
Therefore, by analogy the quantum binomial theorem can be utilized in designing quantum

algorithms and understanding the dynamics of complex quantum system, thereby facilitating

applications and unraveling the mysteries of quantum phenomena



Chapter 1

Definition 1.0.2. The q-binomial coefficient is given by

{ZLZWZLZL, 0<k<n. (1.3)

Let us recall some elementary properties of the q-factorial needed in the sequel.

The q-binomial coefficient verifies the following recurrence relations
n k[n—l} [n—l} [n—l] n_k[n—l}
=q + = +q ) (1.4)
[k‘] . k|, Lk—1], ko1, k—1],
Proof 1.0.1. Remark that we can write, for any 1 < k <n —1,

= [k] +¢" [n — &].

Therefore,

[n] CIn=1tn] -1k [n—1]l¢" [n — k]
k], (k]! [n— K]l [K]! [n— k]! (k]! [n — k]!

which proves the left equality. Now, for second equality at right most, it suffices to apply the left
equality to the definition (1.3) of the q-binomial coefficient.

Example 1.0.2.
3 2 2
R ]
q q q

1.1 The quantum Derivative

The importance of the difference operator, usually denoted A, lies in discrete models, i.e. the
difference equations essential in particular in modeling (to describe the evolution of a population)
as well as in the digital resolution and simulation. Another operator which is also of very great
importance, in particular in quantum, is the Jackson operator denoted D, which provides another

generalization of the usual derivation operator. Let us now recall the Jackson operator as well as

some of these elementary properties

Azri Dhiya Eddine
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Definition 1.1.1. Let the q-difference operators Dq and o, defined, respectively, by

Dof(e) = T ZIE) g ) = flan) — f@), ouf(a) = Flaa). (15)

qr —x
For any function f, put (¢ — 1)x = h in the latter definition to obtain

f(x+h) = f(x)

tim D, (@) = tim LN I oy
qu(X) _ d(If(X) _ flax) — f(X) (1.6)

dgx qr — x
Example 1.1.1. Compute the q-derivative of f(x) = x*

bos (0P =2 (ag—2) (P + %+ 2?)
ey _

Tq— T rq —

= (14+q+¢°) 2* = [3]2°
The g-derivativ of  f(x) =2",n €N

rq—zr  qg—1 =
(- '+¢"*+qg+1) 2"
qg—1 T
— [qn71+qn72+_”+q+1)xn71

n __
D" =

1.2 Properties of gq-Derivatives

In this section we shall provide some algebraic operations on Dy defined by (1.5). For any two

functions f and g, we have the following elementary operations

o
Do(af(x) £ Bg(x)) = aDqof(x) £ B4 Dg(x) (1.7)

@ 7he g-product rule.
Dy(f - a)(x) = Do f(x)g(x) + f(qx)Deg(x) (1.8)

Azri Dhiya Eddine
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@® [fy(x)# g(gx) #0 then
D, (f($)> _ Dqf(x)g(x) — f(x)Dqy(t) (L9

@ uwhen the function f >0 So

Dyf(x)

PV I = e V@)

(1.10)

Proof 1.2.1. .

Dy(af(x) + Bo(x)) = LA = 59(a2>_—:f («) % Bg(x)

_ af(gr) —af(z) | PBglez) — By(z)

N rxq—T rq— T

= D,f(z) £ Dyg(z).

@ We have.
flqz)g(qr) — f(x)g(x)
rqg—
flgz)g(qx) — f(gz)g(x) + f(qz)g(x) — f(z)g(x)
rq—1x
f(q2)[9(qz) — g(x)] N g(@)[f(qz) — ()]

rq— T rq— T
=f(qz)Dyg(z) + g(x) Dy f(x).

By symmetry we car interchange f and g

Dy(fg)(x) =

Dy(fg)(x) = [(2)Dog(x) + g(qz) Dy f(x)

@ we have
g(X)m =f(x) (1.11)

We apply to (1,5) the rule (1) or we have:

o0, (L) + L85 D900 = s

Azri Dhiya Eddine
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of

Dq <f($)) _ g(ql’)Dq g(X> B f(qx)Dqg<X) (112)

g(x) x)g(q)
the two formulas (1,6) and (3) are both valid.

Example 1.2.1. Let f,g: R — R be the functions f (x) = z*andg (z) = 4x.

Dy (fog) =4z (q+1)
and
Dyg(x) - Dyf(g(x)) = 4*2 (¢ +1)

S0

Dq (f09> 7é Dqg(x) ’ qu(g(fli))

@ Provided that it is g(x) = ax?, this is because the composition rule of two functions on the

Jackson derivative is only valid under this condition

e hae lag(z)) — flglx)
Dy(f og)(r) = =
f (agz?®) — f (az®)  agqa® — az”
N qr — T . aqrP — axP
agr® —ax®  f (aqz?) — f (az?)
 qr—=z . aqrB — axB
= Dyg(x) - Dy f(g9(x))
@ we have

DQW:\/f(ql')—\/f(ﬂ?)

_(Vf(gx) 2))(v/ flgx) +\/f )
(qz — x)( \/fqa: + v/ f(2)
I
(gz — =) (\/f(qz) + /[ (x))

_ 1 flgr) — f(2)
(VF(gz) +/f(z) (g =)
_ qu(x)
V Fgz) ++/f(x)

Azri Dhiya Eddine
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Theorem 1.2.1. Let’s have the following binomial Gaussian formula be:
(z+a)! = Z {Z} F =D 2k
k=0 q
When we set a = 1, we find

k

(z+1)0 = m PR 2k (1.13)
k=0 q

We obtain the q-analogue of (1 + x);,n € N.

Proposition 1.2.1. The g-analogue of f(x) = ﬁ is given by.
D [n]
Dof(x) = —=9 _ —
of ) =7 or - (1—x)pt
and
+1]...[n+k —1]
G
Jf (@) (1 —x)nK
when

(DFA)(O)=[n]n+1]-n+k—1], k>1

q

and therefore

(1_1x)n :1+Z[n][n—1] [k]'[n—l-k—l] (1.14)

The question arises, how can we apply the Jackson derivative (D,) to e specific function suc-
cessively.
Theorem 1.2.2. For every n > 0, we have the flowing formula.
n - n n—
Dis 0@ =3 [1] 27 (o) (Dhotx). (115
q

k=0

Proof 1.2.2. When n =1, we simply obtain equation (1)

Azri Dhiya Eddine 10
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Let’s assume that equation (1,24) holds for n, and well prove it for n + 1.

D (fg)(x) = D, (Z

k=0

k

k=0

3

_I_

k=0

K

n {n] qqk DIHLE (gF) (DFg(x))

By Substituting k + 1 — k into the second sum we find:

n

Dt (fg)(z)=> ¢ m (Dpt* f(qFx)) (Dig(a)) + >

k=

k=0

Then, using q-binomial coefficient formula (1.4) we deduce.

k

k=0

Dr(fg)t) =

| 0y *siara) (Dﬁg(w))) .

] @ @) o).

| (037747 (9) (Dhox) (1.16)

and on the basis of (1.23), which is referred to as q-Leibniz. (1.22) is fulfilled.

Proposition 1.2.2. The g-analogue of (x — a)" is the polynomial

foralln > 1

to conclude for any integer, we have:

.= 1 (1.17)
(x —a)(z —qa)....... (x —¢" %)

Dy (x —a); = [n](z —a), ! (1.18)
Dy — 0] (& — g"a)" (1.19)
(x —a); B % '
Dy (e =" = = ) (z - ") (120

1 [n]
Dy T (1.21)

Azri Dhiya Eddine
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Jackson’s g-integral

In this chapter, we shall investigate the concept of Jackson integration along with some important
properties for g-integration, including q-analogue of the exponential functions and trigonometric

functions such as cosine and sinus, as well as g-gamma and q-beta functions.

12
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The Jackson gq-integration can be defined as the inverse operation of the q-derivation. If
D, F(z) = f(x), then
F(z) — F(qz) = (1 — q)zf(x) (2.1)

We deduce from above that

F(qu> o F<qk+1x) = (1 - Q)quf<qu)7 k= 0,1,2,...

Summing over k =0,1,...,n— 1 we obtain
n—1
F(z)— F(¢"z) = (1 — q)qukf(qu).
k=0

Suppose that 0 < q < 1, and then F(q"x) — F(0) as n — co. From which we deduce that
F(z) = F(0)=(1-qx > _ q"f(¢"z).
k=0
Therefore, for 0 < q < 1 the g-integral of the function f on the interval [0, c] is defined by

/0 @y = (- ) S ) = 3 (0 — ) £, (2.2)

r=0

where x, = cq". For the interval [c,4+00], the q-integral of f is defined by
|t ==Y a s ) (2.3
¢ k=1

With ¢ =1 in (2.2) and (2.3) and summing these two quantities we obtain

Definition 2.0.1. The Jackson g-integral of f over an infinite interval is given by the expression

/0 T t@da=01-0) S ¢ flg") (2.4)

Now we are able to set the following

Definition 2.0.2. A function f is said to be absolutely q-integrable on [0,00[, if the series

Y onez 4" f(q") converges absolutely.

We write L' (R, 4) for the set of all functions that are absolutely q-integrable on [0, oo, where

Azri Dhiya Eddine
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R, + s the set
Ry+ ={¢": neZ}

By using geometric series in Riemann integral, Jackson was able to obtain the integral formula

for the function f(x)

Theorem 2.0.1. When 0 < g <1 and if | f(x)z®| is bounded on the domain 0 < a < 1 where 0 <

a < 1, then the Jackson integral (2.3) converges to F(x) on the domain |0, al.

Proof 2.0.1. It is readily seen that the finite series is convergent, therefore

D, F(z) = (q_ll ( (1—g)x Zq fla") = (1= a)gz Y q"f (qn“ﬂ?)>
= Z q"f(q"z) - Z ¢ f (" x)
=D d"f(dw) =Y q"f (%) = f(x).

It is worthy to mention that from (2.2) we merely deduce that

Definition 2.0.3. For 0 < a < b we have

/a ’ fla)d,a = /O ’ Fla)dya — /O " H@)doa. (2.5)

It is worthy to mention that from definition (1.3), we can merely extract a more compact

formulas

Proposition 2.0.1. We have
b
/0 Daof (x)dyz = £(b) — £(0) (2.6)

D, / iyt = £(x) 2.7)

Azri Dhiya Eddine
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Proof 2.0.2. Indeed, by definition we have

/qu /f q—x

=f( )— f (an“) |Ql| <1

Then

/O Dyf )y = £(b) — £(0)

and we have

Dy /Ox f(x)dgx =D, ((1 - Q>qunf (an)>

(1_1q) (1—qxq2q”f ") —(1—Q)qunf(an)>
=Zq"f($q Zq”“ ¢ = f(x)

.D?fo@yix:

Theorem 2.0.2. We have the following properties

whence

(a) For u(z) = az® we have

/ du—/f 4, (2.8)

(b) The q-integration by parts

b b
/0 f(@)Dag(x)dgz = f(b)g(b) — f(0)g(0) —/0 9(qx) Dy f (). (2.9)

Azri Dhiya Eddine 15
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Proof 2.0.3. using rule (2.6), we have

/f(U(X q/su(x Zf (¢"°)) (u (¢"°x) —u (¢ Pg)
= Zf aq"z") (aq’z” — aq"™2”)
= Z% f(q"u) (¢"u — ¢" ") (2.10)
= io q"f (¢"u) (1 = q)u

— (1= ¢"f (") = / f(u)d

Second, using

Dy(fg9)(x) = f(z)Dyg(z) + g(qz) Dy f (2)

we obtain the following

| Dt = [ @Dg@ie+ [ atanDus (o,

b b
f(0)g(b) — f(0)g(0) = /0 f(@)Dyg(x)dyr + /0 9(qz) Dy f (x)dyz

thus
| 1@y = 1®)90) = 1050) = [ g(an)D (@)
from which we deduce

/ F(@)Dyg(x)dyr = F(x)g(x)[" — / 9(qz) Dy (x)dyz

a

Examples

Azri Dhiya Eddine
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Show that
X 3 3
/ Pdp = ———— = =
0 14+q+q¢* [3q
and h(t) =
T n+1
/ gt = —
0 [n + l]q
Proof
o h(t) =1t"
/t”dt— 1—gq)x Zq xq")
0
= (1" 3 (")’
n=0
= —1 _ q Jjn+1 = —$n+1
1— qn+1 [n + 1]q
o g(t) =Vt

/ g(t)dgt = (1 —q)x > _ q" (zq")
0 n=0
= (1~ Q)qun\/an
1_ q an 1/2 n/2
_ (1 _ q)$3/2 Zan/Q
n=0

1
B

23/2 (1_\/6)(1""\/@) _ (1""\/@) 23/2
1-val+yva+ta (1+a+a)

Azri Dhiya Eddine 17
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o k(t) =logt
/x k(t)dgt = (1= q)>_q"k(xq") = (1 - q) Y _ q"log (xq")

= (1—q) Z ¢"log(z) + (1 —q) Y q"log (")

=2z(1 —q)log(x Zq + x(1 — q) log(q an

n=0

1
= (1= )log(x) - g + (1 — q)xqlog(g an

= xlog(t) + (1 — ¢)zqlog(q) (D Zq )

— zlog(z) + (1 — q)zglog(q) D, (1—iq>

= zlog(z) + (1 — ¢)zqlog(q) = zlog(z) + z——~

(1—q)?

Remark 2.0.1. 0 lim,_; (%) =2

2.1 The g-analogue of the exponential function

Several different methods have been proposed for constructing a q-exponential function and in

this chapter, we will present the approach that relies on the q-differential equation.
Dy(x)=y(x) 0<g<l,xzeR"

(2.11)

from (2,11) we have

and from it

Azri Dhiya Eddine 18
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and
y(g)
= i (- Dal
! (¢*)
y\gzx
ylar) = 7 TSI
then we conclude the following.
B y (¢*x)
M) = T = Do)+ (= Do)
() = y(¢"z)
(I+ (¢ =D)L+ (¢ —Dgz) 1+ (¢ — L)g*x) - (1 + (¢ — 1)g"x
y (¢"x)

T L+ (@~ 1)a]

and we have lim,,_.. q" = 0

y(0)

Y = = | (2.12)
[liea 1+ (¢F = 1) 2]
Now, let us find solutions for equation (2.14) in the following form
y(x) = Z Crx™. (2.13)
n=0
where ¢, is a real number for every natural integer n, and from (2.14) and (2.15) we find
y(zr) = chqun = chx”.
n=0 n=0
and we have D,z = [n],z"* Vn C N.
s0 we get
1
Cpnal = Cn
T+
if
- 1
Cp = Cp H [k]q'
j=0 (2.14)
Co
Cp =
[n]g!

Azri Dhiya Eddine
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Substituting (2.14) into (2.13), we find

) = nz; ]! (2.15)
y(x) = coeq

and

D, (y(X)) _ Day(@)eq(r) — y(x)) Dyeg(x) _ zy(z)eq(z) — zy(z)e,(x) _

eq(X) eq(7)eq(qr) B eq(7)eq(qr)

This shows that the function % is a constant function, so we conclude

So

from (2.15) and (2.14) we find

X gn 1
W)= 2 L = T (@ =Dl

n=0

Definition 2.1.1. for all x € R,0 < ¢ < 1 we define the q-exponential function e,(x) is by

following:

2.2 The function big q-exponential L,

In the same way as before, we can extract the function g-exponential E,(x) as solution of the

following

(2.16)

Azri Dhiya Eddine 20
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For0 <qg<1. and x > 0, we have:

y(gz) — y(x)
(¢q— 1z

= y(r) =1+ 1 - q)zly(qr)

y(qr) =

As above, we merely have

o

y(gz) =[] [1+ (1 = ¢") 2] y (¢’x)

B
Il
—

ygz) =1+ (1= ¢") =]y (¢"x)

=

B
Il
—

and we have lim,_,, ¢" = 0.

Therefore,
yx) =y J] 1+ (1 —¢")x]. (2.17)

assuming the following formula to find solution to equation (2.19).

y(x) = dpa" (2.18)

Where d,, is a real number for any natural number n, and from (2,19) and (2.20) we have

Z d,Dgz" = Z dy (gx")
n=0 n=0

and since Dya™ = [n],2™!, then we obtain

and we have.

vneNt dy—d [ Lo

Azri Dhiya Eddine 21
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by substituting (2.21) for (2.20), we find:

=\ atey 3"
yx)=do ) ¢ T
" nz% [n]q:
=y(x) = doEy(x)

and

This shows that the function % s a constant function.

So we conclude
sy
Eq(x)  Eq(0)

whence
y(x) = Ey(x)
from the foregoing, we conclude the following formula:

X]T;!dn = H [1+ (1 —qk) ]y (¢"x)

In k1

By = S g

Definition 2.2.1. For all x € R,0 < ¢ < 1 we define the q-exponential function E,(x) as follows

Ey(r) =3 ql) (2.19)
n=0 [n]q
Proposition 2.2.1. For the g-exponential functions we have the following properties
®
Dyeq(x) = e4(x) (2.20)
@
DyE,(x) = E,(x) (2.21)
[
DyEy(—x) = —Ey(—qz) (2.22)

Azri Dhiya Eddine
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ealX)eals) = ealx+) (223)
®
eo(=X)Ey(x) = eq(x) By(—x) = 1 (2.24)
®
e1/q(x) = E¢(x) (2.25)
Proof 2.2.1. @
pee) =3 Tt = S e = S e
- i Tl Wi i — )
® - o L 1
D,E,(x) = Z ) l[jl' _ Z ) Wﬁ, _ Z ) [n[ﬁ]ﬁfi T
_ éq(’;) [nxj_ll]q! _ gq(@ [f]nq! — E,(x)
®
D,Ey(—1) = D, <1 s f; o <[;i>!"> _D, <1 s f; —(‘”’En']qqlw )
e, pon gl
—- > T oy~ e
@
eu(X)eqly) = fj wm) (fj . !)
- i > it - i >
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if we change the variable from m = n + k, then we have

m=0 k=0
_Oo (MmN ok 1_OO(X+?J)m
_n;) kzzo(k vy >[m]q| 2|
= eq(r +y)
. n
eu(x)Ey(—1) = 1 TI0+ (- (0]

[Trc L+ (g% = 1)x] Pl
_Hk 1[1+(q _1) } —1
[T 1+ (¢ = 1) 7]

= (1-1/g)"a"
€1/q = Z (1 —1/q)(1=1/¢%)...(1—1/q")

(1—-1/q)"a"
Z q)(1—¢*)...(1—q")

=0

= Ey(z)

2.3 The qg-trigonometric functions

The g-trigonometric functions are g-analogue the classical trigonometric functions. These
functions are defined as follows:
_eglin) +eg(—iz) o~ (=1)"a
COSy T = 5 = nZ:O “oall Ve e C,lz| <1 (2.26)
_ BEy(ir) + Ey(—ix) = (—1)ngrg2n
Cos, x 5 = ; 2], Ve e C (2.27)
; o o > —1)g2ntl
sing g — Sl) ~ eaZle)  en CVW o e o (2.28)
2 — [2n + 1],!
. E (m) —E (—ia:) > (_1)nqn(2n+1)x2n+1
Sing = —* ! = Vo e C 2.29
me 2 ; 2n + 1], re (229)
Proposition 2.3.1. @ According to (2.25), we have
Sing(x) = siny /4(t) (2.30)
24
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cosq(x) = cosy/4(t) (2.31)
@ From (2.20) and (2.21) together with u(x) = ix, we find

D, sing x = cosy(t) .D,sin, x = cos(qx) (2.32)
D,cos,x = —sing(t) .D,cos,z = —sing(qx) .

@ Ve have
e,(ix)Ey(ix) + eq(—ix) E,(—iz) + 2
4

COSq T COSq T =

and
eq(ix) Ey(iz) + eq(—ix) Ey(—ix) — 2

S, X - SN T = —

and thus we have

COS, T COSy X + singxsingz = 1

It is the g-analogue of the equation

sin?z +cosz =1

@ Further properties easily verified using only the definition are the following

cosy(x) + ising(z) = e4(x)
cos:(z) + sin’ (z) = eq(iz)e(—iz)
sing(x)Cos,(x) = cosy(x)Sing(x)

(
cosy () + sin}(z) = E,(iz) E,(—iz)

q

24 The Function g-Gamma and g-Beta

The q-Gamma and q-Beta functions are generalizations of the classical Gamma and Beta
functions, respectively. They are used in mathematics, particularly in the context of special number
theory and special functions and often appear in the context of q-series theory.

The two formulas are introduced by Euler as they are related to solutions of certain special
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differential equation.

I (t) :/xt_le_xdx, t>0 (2.33)
0

7 t>0 (2.34)

1+x5+t

they are gamma and beta functions, respectively. Some of their properties are the following

L(t+1) =1tI'(t) (2.35)

I'(n)=(n—1). ifn is a positive integer (2.36)
TOr(s)

B, s) T Ts) (2.37)

Formula (2.38) shows that the gamma function can be considered as a generalization of the facto-
rials. Next, we study the g-analogues of these two functions, where 0 < q < 1 is involved.

We have q € C, and for each 0 < |g| < 1, the g-Gama I'j(x) is given as follows:

Ly(a) = B2 (g gyres (2.38)

Where (q,q) = [ ey (1 — aq’“). It is a meromorphic function with poles at v = —n + 2mik/logq
where k and n are non-negative integers

When q > 1, using the inverse of observation (1.2) we obtain

Fy(2) = q@ry y(a) = LT o qyimey(3) (2.30)

Definition 2.4.1. Let the formula for g-gamma be the following, t > 0

r,(f) = / U (2.40)
0
and
T,(t) = / ' le dgx x € C,Re(z) >0 (2.41)
0
Proposition 2.4.1. fort € N*, we have.

(1)
Tt +1] =0, T,(1) =1, [,1) =1 (2.42)
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(2)

Dy(t+1) = g '[t],I'(t) (2.43)
Proof 2.4.1. (1) According to the property (2.22), we have
L,(t+1) = /00 at - By %dgx
0
F,t+1)=— /00 2" DyE *dgx
0
Using q-integral by parts (2.11) we have

q.TtE;qt + (qX)tEq—qu e
2q

T lt+1] = -

+/ Eq_qXDthdqx
0 0

glim, oo (20 BT ) + lim,_ o, ((qx)tEq—q%) .
+ / E-*D,X'd,x
2q 0 I

0
= / (t>ft_1Eq_qwdqt = [t]grq(t).
0
Hmy oo (2'E; %) = limg o0 <(qx)tE;‘12“> = 0.
1. T,(1) = [y E;%dst = E) — B> =1
2. T,(1) = I e tdx
3. Tyt +1) = [ ate,*dyx

Using q-integral by parts (2.9), we have

u = 12", Dyv(e) = e,(—)dgx

from which we obtain

i 1 ))qu

o0

2" le,(—qt)dq,x

=)
=l

and setting o = qx, it follows that

r, t+1)= % /000 o' le,(—a)d,a
=q" [t]qfq(t)-
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Definition 2.4.2. The q-Beta function is defined for t, s > 0 by the following
1
By(t,s) = / 21— qu); g (2.44)
0
From the definition of the q-integral we have

Coa Nt—1 L1y 00
qJ (q]a) (1 _ qj+l)q

NE

Bt 00) = (1 —q)

=0

e
I

¢ (¢a) (1— )™,

NE

=(1-9);

:/ N1 — qr)Pdgx
0

<
Il

Using the following relation (1 — qj“);>O = 0 for any non negative integer j, we have from the

above EF = (14 (1 — q)x)°, and thus we obtain

q 7’

By(t,00) = / xTTE, TV dgx
0
by the change the variable x = (1 — q)y
Bitio0) = (=)' [ ot = DE My
0

or

i) = ) (a5

Introducing another variable might seem like a step backward at first glance, but in reality, it

increases our freedom in handling functions and simplifying the problem.
Proposition 2.4.2. Ift >0, and n € Z™", we have.

(=9 —qy!
B,(t.n) = i (2.46)

Fort,s >0, we have: .
(I=q)(1—q)F (117,

L (g (247)

6q(tv S) =

DO
o
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The g-Laplace transtorm

The Laplace transform is a mathematical tool used to convert time domain functions into frequency
domain functions. It’s useful in solving differential equations and analyzing linear time invariant
systems, as it transforms different: operations into algebraic operations that are easier to handle.

The Laplace transform of the function f, is defined in terms of integral as follows

L(/(1)(s) = F(s) = / F(t) - e(—stydt

For instance, the Laplace transform of the constant function, i.e. f(t) =1, is 5

L(1)(s) = /OOO e(—st)dt = —%[e(_gt)]go _ %

29
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3.1 The g-analogue of Laplace transform

The q-Laplace transform is a q-version of the standard Laplace transform. Since there are two
version of the g-exponential functions, it’s obvious that we should have at least two version of
q-Laplace transform. From another hand, because the q-exponentials are the inverse of each other,

we shall only consider one of them.

Definition 3.1.1. The g-Laplace transform of a function f is given by

LA = [ el -pt)f ()t
0
where f is defined over the positive real axis and Re(p) > 0.

Example 3.1.1. .

@ /t)=1
Ly(1)(s) = /OOO o (—st)dyt = —é /01 Dyeg(—stydyt = * [eql—st) = -
@ /)=t
Lo(t)(s) = /0 " ey (—st)dgt — —é /0 1Dy (—st)dgt
= ety - 7eq(—st)dqt = (L))} =
@ /it)=1

oo 1 o
Ly (%) (s) :/t2eq(—st)dqt: ——/ t2Dye,(—st)d,t
0

_ _é Pey(—st)|” —2— /teq(—st)dqt _ %{fq 1) (s)} _ %

0

@ /(t) =1t and o > —1, with the change of variable pt = x

[e.e] 1 [e.e] R
2 a 2
L, (t) (s) = /0 t%q(—st)dgt = s /0 eq(—z)r*dgr = SaHFq(a +1)

Azri Dhiya Eddine



Chapter 3

Proposition 3.1.1.

1.

Proof 3.1.1. 1.

£, (eqlat)) (s) = / " ey styeg(at)dt = / TS

we have the g-Laplace transform of some elementary functions

L, (eq(at)) (s) = 8:71 q—(zn+1)
_ 49
£y (B fa) (9 =
£yfeosy(an))(s) = 5 (=170 (5 (2)7

> qnn

]
o e = 853,00 )

dqt

.

n=0 n=0
_ i a” ld(n +1) _ i a" -1
T [n—1]q st v gntl

— [n!
>0 [ star =3 S, () )
n=0 ln)q 0 ! n=0 [n]' !
n n(n) —n+2 2 n
— [n)d gntl s <=\ sq s 1-— Siq

(3.1)

(3.2)

(3.3)
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3. according to equation (2.26) we have

L, (cosat) (s) = L, (eq (iat) +2€q (—iat)) (s)
L

s —n(n+1) (/La/) e —n(n+1) (—Za)n
Sy e

n=0 n=0

4. according to equation (2.27), we have

= & 1L, (Byiat)) (s) + £, (By(~iat)) (5)

L,(cos(at))(s) = L, (Eq(iat) —|—2Eq(—iat))

1 ¢ .4 s
2 |ps—ia  ps+ial  ¢2s? + a?

5. according to equation (2.28 ), we have

eq(iat) — eq(—iat)

£sing(a))(s) = £, (LD () = 21g, ey iat) (9 - £ i) o)

1|~ e+ (ia)
-y [l
n=0

n

2\ e (i — da)"
1 Zq : gnt1

& (ot oS o (22 (@) 20t
:nzzo(_w g (" )qzn+2 _gn:o<_1) g (%5 )<g>
6. according to equation (2.29), we have
£ siny(a0) (5) = £, (B ) (g
= [y (Ey(iat)(s) — £, (E,)) — iat) ()

O __aq
2i | sq —ia  sq+ia q*s? + a?

In terms of the big q-exponential function, there is another definition of the second kind q-
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Laplace transform denoted (L), and defined as follows

L {f(t) / F()E, (~qst)d

Example 3.1.2. In terms of the second kind we have

LoF) =1
L) 6) = [ Eyastite =~ [ Dy (astyit =~ (B (o =
2. f(t) =t

o 1 o
LO6) = [ Byastiva’ = —— [ oD B(—qst)dat
1

) . 0o 1 —

3. f(t) =t*, « > —1, with the change of variable st = x we obtain

T,(t+1)

& 1 o° 1
L)) = [ EBlastrdg = o [ Ban)etdde =

Proposition 3.1.2. The g-Laplace transform (L,) of elementary functions, we have for instance

the following

1.
Ly (eqlt)) (5) = 3 g™ (3.7
2.
L (B,(0) (5) = — 3.9
3. .
Ly feos,(6) (5) = D2 (-1q D (39
4.
L, (cos,(t)) (s) = o (3.10)
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5
Lysin(®)) (s) = S0(1)"gm 0 (3.11)
6
. 1
L fsing (1) (9) = 5 512

Proof 3.1.2. 1.

= [ng!

1 41 = 1 n(n—1)
- Z m gntl Z gntl q

n=0 n=0

L E0) () = [ E-asnE i = [ o) i L3
M (1)) )

o SV f — q' n
z[n]/q Eo(—qst)t"d,t = Z L)

n=

o

0
q" )rq(n—i-l) 1
[] Sa+1 _5_1

in the same manner as before, we deduce(3).

3 Ly (cosy (1)) (5) = 55 (1)

b Ly (Cosy(0) (9) = 5

5 Ly (iny (1)) (5) = (=100~
6. Ly(Sing(0))(s) = i -

3.2 The g-Laplace transform and the g-derivative

Together with Jackson operator (Dy), the q-Laplace transform involve some perturbations, i.e.

depends on the initial conditions of functions
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Proposition 3.2.1. Let f be a function defined on R, with q-Laplace transform of Dyf exist.
Then

£, (Dyf(0) (5) = — F(0) + £, (F(1) (—) (3.13)

q q
Proof 3.2.1. By definition, using q-integral by part, we find:

D

(Duf(0) () = | 100 = [ FaDye, (-stai
——10) = [ flaDye sty

— =) +5 [ flatye,(~st)dat

e o )o

— 0+ E(f())(—)

q q

More generally, we can apply the q-Laplace transform of Dy f to obtain the Dg“f

Proposition 3.2.2. Let f be a function defined on R and assume that its q-Laplace transform

of Dy | exist. Then

n+1

L (D30) (9= (L, o) () - o (PIppron )

Proof 3.2.2. We assume that equation (3.13) holds true for n and we proceed it for n + 1.

Now by using (3.13), we deduce that

n+1

n+1 —_ s _ p =i~ n+21 ¢
£, (DI () () = pg ¢ >{ FO)+ L, (10) ( )} Zp )Di (1) (0)

=y (g, (f(t))< . )— A RDAGIO

qn+1

where we have used the identity (nH) = (g) +n.

Azri Dhiya Eddine 35



Chapter I

The g-Mellin transtorm

Initiated by Hjalmar Mellin (1854-1933), the Mellin transform of a suitable function f over ]0, 00|
18 given by

M(f)(s) = / " f@)e e

The inversion formula for the Mellin transform is given by the following line integral,

c+io00
f(x) 1/ M(f)(s)a*ds.

2min Jo_iso

The definition of the Mellin convolution product of suitable functions f and g is

[ g(z) = /OOO fW)g (g) C;—y.

In this chapter we are interested with the q-analogue of Mellin transform in terms of g-Jackson

integral.
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Definition 4.0.1. Let f € R, , the g-Mellin transform of f is given by

M,(t)(s) = M,[f(1)](s) = / T (0 dgt (4.1)

0

There exists a (possibly empty) mazximal open vertical strip denoted (xo, 1) in which the q-
integral (4.1) is well defined. Such strip will be called a fundamental strip.
As the classical Mellin transform, we have interesting properties of q-Mellin transform which

coincide with the classical Mellin transform.

Proposition 4.0.1. Let f,(a;); € R, 1, we have the following properties

M,[F(ah](s) = s~ M[F(D)(o) LMLLFO](5) = Myflog( 1))
M |7 (3)| @ =mpren-s a3 (7)] @ =t -
MUDLFO)) = MO | MIDLFO)E) = [1 - sl M5~ 1)
My [ [ @] )= —oanlrols + 0 | a5 @) = [5] i (5)

| INolw

M, [cosz2(t)] (s) = %qslﬂ (14 )72 Fsz(L)

M, [singz(t)] (s) = %qs—i—lﬂ(l + q)s—l/Z%
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4. 1 The qg-Mellin inversion formula

The most interesting question of integral transformation is whether the inverse exist or not.
In this section we shall discuss the inverse of the q-Mellin transform. The inversion formula is

given by the next Theorem

Theorem 4.1.1. Let f € R, 4 and c in the fundamental strip, then we can inverse and obtain

the expression of f from its g-Mellin transform by the formula

) = gt [ ) (4.2

log(Q)
Proof 4.1.1. Let x = ¢" € R, 4, we have using the definition of q-Jackson integral

C+lo;% s log(tJ) s(k—n)
My(f)(s)x™*ds = (1 —q) Zq

(%
C—1—r=~ c—
log(q) log<q —00

The above series converges uniformly with respect to s, therefore

C+lo;ﬁ : - 10g(q
I st =it —0) 3 ) [ oo
B k=—00 " log(a)
2r(1=4) N hmy oy
= T ool q q")0k.n
log(q) kZoo HL)
2ir(1—q) ,, o 2i7(1—q)
= Toola) = ——f(x).
e = g @

Whence the desired formula.

For the convolution there are further properties g-analogue to the classical ones. We mention

some of them here.

Definition 4.1.1. The g-Mellin convolution product of the functions f and g is the function as
denoted above by f *p; g defined by

f o glo /f () YWY e, (4.3)

provided the g-integral exists.
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Theorem 4.1.2. If the g-Mellin convolution product of f and g exists, then

frmg=g%uf My [f *ar 9] = My(f)M,(g)

Theorem 4.1.3. For the suitable functions f and g, we have the following relations

) [ o)~ s = [ Hate)dge

" Tog(q)

g losa) [T [ 1 dyy
e [ oo = [ o (5) ",

" Tog(q)

4 .2 Conclusion

It is worthy to mention that Mellin and its g-analogue is quite different of Laplace and Fourier
transforms as well as their g-analogues. Indeed, we can combine the Fourier cosine and Fourier
sine all together to obtain the Laplace transform with a slate modification and this true either for
classical transformations or their q-analogues.

We remarked at the construction stage of some q-analogues of elementary functions that we
always have two choices: one for 0 < g <1 and one when q > 1, and this corresponds somehow to
the right and left fractional integral calculus. That wealth has been approved with their applications

mainly at recent discover of the quantum theory and application in g-information, q-bit, ... etc.
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