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Résume

Le but de ce travail est de donner des résultats liés aux équations d'ondes couplées localement avec
un amortissement viscoélastique localisé non lisse de type Kelvin-Voigt et un retard temporel
localisé (étudié par Mohammad AKil et al [1]). La recherche vise a étudier 1'existence et I'unicité de
la solutions sous des hypothéses appropriées utilisant la théorie des semi-groupes. En utilisant un
critere général d'Arendt-Batty, nous montrons la forte stabilité de notre systeme en l'absence de
compacité de la résolvante.

Mots clés: Equation d’onde couplée, Amortissement de Kelvin-Voigt, retard temporel, stabilité
forte, stabilité polynomiale, approche de domaine fréquentiel.

Abstract

The aim of this work is to give a results related to locally coupled wave equations with non-
smooth localized viscoelastic damping of Kelvin-Voigt type and localized time delay
(studied by Mohammad Akil et al[1]). The research aims to study the existence and
uniqueness of solutions under appropriate assumptions using semigroup theory. Using a
general criterion of Arendt-Batty, we show the strong stability of our system in the absence
of the compactness of the resolvent.

Keywords: Coupled wave equation, delay term, Kelvin-Voigt damping, strong stability,
polynomial stability, frequency domain approach.
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’ Introduction \

Elastic/viscoelasric coupled wave equations are among the most important equations in the fields
of applied mathematics and engineering physics. They are essential for describing and under-
standing the behavior of materials that exhibit elastic and viscoelastic characteristics when sub-
jected to external forces. In engineering, these equations model the response of different mate-
rials to stress and deformation, which aids in designing safer and more efficient structures and
products. In the realm of applied physics, these equations elucidate various natural phenomena,
such as the propagation of seismic waves and the transmission of sound waves through various
media, thereby enhancing the comprehension and analysis of these phenomena.

Our thesis dedicated to the study of the stability of local coupled wave equations with singular
localized viscoelastic damping of Kelvin-Voigt type and localized time delay, which is defined as
follows [1]:

{ uy — [aug + b (2) (kyuge + ko (2,6 — 7)) He + ¢ (2) yp = 0, (x,t) € (0,L) x (0,00)
Yit — Yoo — C () uy = 0, (x,t) € (0,L) x (0,00)

Under the boundary conditions:

w(0,t) =u(L,t) =y (0,t) =y (L,t) =0 t>0

And the intial conditions:

(u(0,t) ,u (0,1)) = (ug () ,ur (z)) « € (0,L)

(v (2,0), 9 (2,0)) = (yo () ;31 (x)) =€ (0, L)

(5 (2,0), 9 (2,0)) = (o () ,y1 (x)) =€ (0,L)
where L, 7,a and k; are positive real numbers, k, is a non-zero real number and (ug, u1, Yo, y1, fo)
belongs to a suitable space.
We suppose that there exists 0 < o < § < v < L and a non-zero constant ¢y,

such that

and
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¢(z) = { co,z € (@, 7)
0,z € (0,a) U(ry, L)

The system (1.1) consists of two wave equations. Where there is only one singular viscoelastic
damping acting on the first equation, while the second equation undergoes indirect damping
through a singular coupling between them. In this context, the presence of viscoelastic damping
in the first equation implies the impact of elastic and viscous properties on the wave behavior in
that equation.
On the other hand, the indirect damping of the second equation means that the damping effect
transmitted through a specific coupling between the two equations, reflecting a complex interac-
tion between the wave fields in the system
Many previous studies have addressed the stability of Elastic/viscoelastic coupled wave equations,
employing various mathematical techniques to analyze these systems. However, research focusing
on the impact of time delay on the stability of these equations remains limited.
The idea of indirect damping mechanisms presented by Russell in [46] has drawn the attention
of many authors (see, for example, [15, 16,17 ,18,19, 14, 20, 21]). The examination of these
systems is also prompted by various physical considerations, such as the Timo instance, [22,
23, 24, 25]). In fact, there are few results concerning the stability of coupled wave equations
with local Kelvin-Voigt damping without time delay, especially in the absence of smoothness of
the damping and coupling coefficients (see Subsection 1.2.1). The last motivates our interest to
study the stabilization of system (1.1) in the present paper.
In the recent years, there has been increasing interest among researchers in problems involving
this type of damping, with various types of stability bieng proposed, depending on the smoothnees
of the damping coefficients (see[26,27,28,29,30,31,32,33,34]. Let us briefly recall some systems
of wave equations Coupled wave equations with Kelvin-Voigt damping and without time delay, as
represented in the previous literature.
In 2020, Hayek et all in [47] studied the stabilization of a system of weakly coupled wave equa-
tions with one or two locally internal Kelvin—Voigt damping and non-smooth coefficient at the
interface.
Their research led to the establishment of various stability outcomes. Similarly, in 2021, Hassine
and Souayeh in [4] studied the behavior of a system with coupled wave equations with a partial

KelvinVoigt damping, by considering the following system.
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(g — (ug +ba () ugy), +0, =0, (x,t) € (—1,1) x (0,00)
Ypt — CUpy — U = 0, (z,t) € (=1,1) x (0, 00)
u(0,t) =v (0,t) =0, u(l,t)=v(l,t)=0 t>0 (1,2)
u(x,0) =ug (z), u (x,0) =u (), re(—1,1)
v (z,0) = v (2), v (2,0) = vy (2), x € (—1,1)

where ¢ > 0, and b, € L*(—1,1) is a non-negative function they posited that the damping
coefficient follows a piecewise function, specifically suggesting that b, () = d1jy,1) (x), where dd
is a strictly positive constant. Consequently, they took the damping coefficient to be near the
boundary with a global coupling coefficient. Their findings

revealed the lack of exponential stability, that the semigroup loses speed and it decays polynomi-
ally with a slower rate then given in [2], down to zero at least as ¢ 7.

In 2021, Akil, Issa, and Wehbe, as documented in [3], extended the findings of Hassine and
Souayeh in [4] by demonstrating a polynomial decay rate of the form t-1, by considering the
following system

uy — (auy + b (2) wy), +c(x)y, =0 ,  (x,t) € (0,L) x (0,00)
Yt — Yoz — C(T)up =0 (z,t) € (0,L) x (0,00)
uw(0,t) =u(L,t) =y (0,t) =y (L,t) =0 t>0
(u(0,t),u; (0,8)) = (ug (z),u1 (x)) x € (0,L)
(y (2,0) 3 (2,0)) = (yo (), 1 (2)) z € (0,L)
where
b(x) { 1, z € <Oé1ia2)
0, otherwise
and

co.x € (ag, ay)
c(z) = :
0, otherwise
where a > 0,bg > 0,¢p >0and 0 < a; < s < ag < oy < L.
They investigate the stabilization of a locally coupled wave equations with only one internal vis-
coelastic damping of Kelvin-Voigt type. A key innovation in their study lies in the fact that both
the damping and coupling coefficients are non-smooth. Additionally, the control of partial differ-

ential equations with time delays have become common among scientists.Time delays have been
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utilized in various applications, such as in physical, chemical, biological, and thermal phenom-
ena, because they no longer rely solely on the current state but also on past events (see [36, 35]).
This type of delay can lead to instances of instability (see [2, 12, 38, 39]). Let us briefly recall
some systems of wave equations with time delay and without Kelvin-Voigt damping.

In 2006, Nicaise and Pignotti, as documented in [5], examined the multidimensional wave equa-
tion under two scenarios. The initial scenario involves a wave equation with boundary feedback

and a delay term at the boundary:

’

g (z,t) — Au(x,t) =0 (x,t) € 2 x (0,00)
u(z,t) =0, (x,t) € T'p x (0,00)
g—g (x,t) =0 , (x,t) € Ty x (0,00) (1,4)
(u(z,0),u (2,0)) = (ug (z),u1 (x)) , x €
| w(z,t) = fo(x,1), (x,t) € 'y x (—7,0)

The second scenario pertains to a wave equation featuring internal feedback and a delayed veloc-

ity term, specifically an internal delay, alongside a mixed Dirichlet-Neumann boundary condition.

Uy — A+ pyug + pouy (z,t — 1) =0, (x,t) € Q x (0, 00)
u(x,t) =0, (x,t) € I'p x (0,00)
% (z,t) =0, (x,t) € Ty x (0,00) (1,5)
(1 (2,0) 1 (2,0)) = (o (&) 1 (), ren
L Uy (Jj,t) = an ($7t> € 1—‘N X (_7-70)

where () is an open bounded domain of R" with a boundary I' of class C? and I'; = I'p UT'y, such
that I'p NT'y = (. Under the assumption u, < u,, an exponential decay achieved for the both
systems (1.4)-(1.5). In [6] Ait Benhassi et al studied the problem (1.5) in more general abstract
setting . The scope of stability analyses for second-order evolution equations with delay was
extended, enhancing the overall understanding of achieving stability in the analysis of dynamic
systems with delays and guides future research in this field .

In 2010.Ammari et al (see [7] studied the wave equation with interior delay damping and dissi-
pative undelayed boundary condition in an open domain 2 of RY | N > 2.The system is described
by:
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ug (z,t) — Au(x,t) + auy (x,t — 7) = 0, (z,t) € 2 x (0,00)
u(z,t) =0, (z,t) € I'p x (0,00)
Qu (z,t) = —kuy (2,1), (z,t) € T1 x (0,00) (1,6)
(u(z,0),u (2,0)) = (uo (z), uy (x)), x €
| w(7,t) = fo(z,1), (x,t) € Q x (—7,0)

Where 7 > 0, a > 0 and £ > 0.Under the condition that I'; satisfies the T-codition introduced
in [8], they proved that system (1,6) is uniformly asymptotically stable wheneverthe delay coefi-
ciently small .

In 2012, Pignotti, in [9], studied the following system

U — Au+ ax,ue + kug (.t —7) =0, (x,t) € Q2 x (0,00)

u(x,t) =0, (z,t) € T x (0,00) .7)
(u(z,0),u (2,0)) = (up (z), u1 (x)), x €}

w (z,t) = f(x,t), (x,t) € Q x (—7,0)

where £k € R, 7 > 0, a > 0 and w is the intersection betwen an open neighborhood of the set

I'o={z eI, (x—x),v(x) >0} and Q2. Moreover ,Yx,, is the characteristic function of w, which is

awave equation with intrernal distributed time delay and local damping in a bounded and smooth
domain Q2 c RY, N > 1.They proved an exponential stability result under some Lions geometric
condition. The proof of the main result is based on an identity with multipliers that allows to
obtain a uniform decay estimatefor a suitable Lyapunov functional.

Several studies have been conducted on wave equations with time delay affecting the boundary, as
evidenced by ([38, 40, 41, 42, 43, 44, 45]), and various types of stability have been demonstrated.
There has also been significant interest from many researchers in studying wave equations with
Kelvin-Voigt damping and time delay, among these studies :

In 2016, Messaoudi et al. in [10] considered the stabilization of the following wave equation

with strong time delay:

Uy — Au~+ pyug + pouy (z,t — 7) =0, (z,t) € Q x (0,00)
u(z,t) =0, (x,t) € T x (0,00) (1.8)
(u(z,0),u (z,0)) = (uo (z) ,us (), xz €
u (x,t) = fol(x,t), (x,t) e Ty x (—7,0)

where 1, > 0 and g, is a non zero real number. The equation can be considered as a Kelvin-

Voigt linear model for a viscoelastic material with a delayed response. Assuming |u,| < u; ,
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they demonstrate well-posedness and establish an exponential decay result under appropriate
assumptions regarding the damping and delay weights.
In 2016, Nicaise et al. in [11] studied the stabilization problem for the wave equation with

localized Kelvin—-Voigt damping and mixed boundary condition with time delay

(s (2,8) — Au (2,t) — div (a (2) Vi) = 0, (z,t) € Q x (0, 00)
u(z,t) =0, (z,t) € Ty x (0,00)
W (2,t) = —a(z) 2 (z,t) — kuy (z,t — 7) (z,t) € 1 x (0,00) (1,9)
(u(z,0),u (2,0)) = (ug (z), u1 (x)), x €N

| w(z,t) = fo(x,t), (x,t) € Q x (—71,0)

where 7 > 0, k € R, a(z) € L>*(2) and a(x) > a9 > Oon w such that w C € is an open neigh-
borhood of I".By using a frequency domain approach we show that, and under an appropriate
geometric condition on I'; and assuming that a a € C*! (Q), Aa € L™ (12), an exponential stabil-
ity result holds. In this sense, this extends the result of [12] where, in a more general setting, the
case of distributed structural damping is considered.

In 2019, Anikushyn and al. in [13] considered an initial boundary value problem for a viscoelastic
wave equation subjected to a strong time localized delay in a Kelvin-Voigt type. The system is

given by the following:

Uy — c1Au — coAu (x,t — 7) — diAuy — diAug (x, t —7),  (2,t) € Q2 x (0,00)
u(z,t) =0, (x,t) € Ty x (0, 00)
9u (z,t) =0, (z,t) € Ty x (0,00) (1,10)
(u(x,0),us (2,0)) = (uo (z) , us (), z €
Ut<x>t) = fo (I7t)’ ($,t> € 0 x (_7_70)

The global exponential decay rate has been verified under appropriate conditions on the coef-
ficients, and the stability region in the parameter space has been further examined using Lya-
punov’s indirect method. Additionally, they have finally presented a numerical example from a
real-world application in biomechanics.

Our thesis is presented as follows: Firstly, it provides an introduction to the research topic, reviews
relevant literature, and lays out the theoretical framework for the study. The second chapter is
devoted to some preliminary notions, in which we define certain theorems and inequalities that

are heavily used in our work. In the third chapter, we will calculate the energy for this model and
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prove the well-posedness of our system using a semigroup approach based on the work of Mo-
hammad Akil et al [1]. Next, in chapter 4, by employing a general criterion of Arendt-Batty, we
demonstrate the strong stability of our system in the absence of compactness of the resolvent. Ad-
ditionally, by utilizing a frequency domain approach combined with a specific multiplier method,
we prove a polynomial energy decay rate of order ¢~!. Finally, we conclude with a summary and
a list of references used in this dissertation.

In this chapter we recall the main concepts that we will need, it devotes to the notions of the
theory of functional spaces, theorems, formulas and very inequalitiesused in our memory, As we
me ntion the theory of operators and semi group, because they are standard and known among

readers as they can be found in many mathematics references

0.1 Functional spaces

0.1.1 normed spaces
Definition 0.1 (Vector subspaces )

Let F be a vector space over field k , and let F' be a subset of £ . We say that F' is a subspace of
E if and only if

1. F £
2. Vxe F,Vy € F': x+y € F . In other words F is stable through addition

3. Vz € F.For A € k: Az € F. in other words F is stable by scalair multiplication

Definition 0.2 (Normed vector spaces )

A linear vector space E is called a normalized space if for each elemt u € E there exists a real

number denoted by ||u|| verfying the axioms:
1) |lu]| =0 <<= u=0,

2) [Ju+o| < |ul| +||v], Yu,v €k,

3) | Aul| = |A] ||ul|,Yu € E, VA € k.

Definition 0.3 (Cuchy suite )

0.1. Functional spaces
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Let be (E,|.||) normalized space and a sequence of elements of £ , we say that the seqence .

East a continuation of Cauchy (u,),, oy if
Ve > 0,3ng (€) ,Vn,m > 0 = ||u, — unl|| <€

0.1.2 Complet space

Definition 0.4 Let E be a vector space , we say that E is a complet space if any sequence of Cauchy

(tn),en Of SPace I converges to an elemnet u of E

0.1.3 Banach spaces
Definition 0.5 ( Banach spaces)

Let be (E,|.||) a normalized space , we say that E is a Banach space if F is a complet space

0.1.4 Hilbert space
Definition 0.6 (Scalar product )

Let H be vector space , we call application of H x H in the body K = C
defined by (., .) is a dot produit if :

o (u,v) = m,for all u,v € H,
o (Auj + ug,v) = A(ug,v) + (ug,v) forall u,v € H,and A € C,
o (u,\v) = \(u,v), forall A € C,
e (u,u) >0and (u,u) =0 <= u=0.
Definition 0.7 ( Hilbert space)

A Hilbert space is a Banach space (H, ||.||;) complete normed space)

equipped with a scalar product for the associated norm

NI

lullr = {uw)? (i) lullfy = {u,w)

0.1. Functional spaces
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0.1.5 The L?(Q)) spaces
Definition 0.8 Let 1 < p < oo and let 2 be an open domain in R", n € N

define the standard lebesgue space

17(Q) by I7(Q) = {u: @ — R is measurable and / ()| dx < oo).
Q

full, = ( [ |u<x>\ﬁdx)’l’

L>*(Q) = {u: Q — R is measurable and there exists a constant C suchthat |u(x)| < Ci.e € Q}

the standard is noted :

If p = co,we have
also , we denote by

|ul|, = esssup |u(x)| = inf {C, |u(z)] < C p.p on Q}

€N

Proposition 0.1 L?(§2) menu of its norm ||-||,, is a Banach space for all 1 < p < co.

Definition 0.9 We say that a function u — R belongs to L}, (Q) for everything compact K C ).

loc

Definition 0.10 L?(Q) is a Hilbert space, with the scalar product

(U, V) 20y = /Qu (z) v (x) dz, for everything u, v € L*(Q)

Space L? ((0,7),F)

Definition 0.11 Let p € R.and 1 < p < oo . we define the space of classes of functions L*()) with

LP(Q) = {u :  — R. u is measurable and / lu (z)|P do < +oo}
Q

the standard is noted by

ol = ([ 1o d.r)’l’

0.1. Functional spaces
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Lemma 0.1 Let u € L?((0,T),E) and 2* € L?((0,T),E),(1 < p < co) then the function u is

continuous of [0,T] in E (i,e)u € C*((0,1), E).

0.1.6 Sobolev space

Weak derivative

Definition 0.12 Eithere € an open of R" ;1 < i < nand u € L} () a function has weak i-th

loc

derivative in L}

loc

() existe f; € L} .(Q) such as for everything o € C5°(Q) we have

loc

| u@ap@de == [ oy @) ds

This amounts to saying that f; is the i-th derivative of « in the sense of distributions, we will write

Oiu=F- = f;

space W'?(Q)

Definition 0.13 Either Q any open of R" and p € R, 1 < p < +oo, space W'P(Q) is defined by

Wm™P(Q) = {u € LP(2),suchat 0;u € LP(Q2)}

or 9;is the i-thweak derivative of u € L} ()

loc

space W1m(Q)

Definition 0.14 Either Q2 an open of R",m > 2and p € R, 1 < p < +oo, space W'?(Q) is defined
by

Wh™(Q) = {u € LP(Q), sach tat D*u € LF(Q), Vo, |a| < m}

ora € N" |a] =a; +az + ... + a, , and D* = 9{*...99" is the weak derivative of u € L}, (Q),

loc

space W™ () is provided by norme

Il = lullpoey + Y 1Dl oo

0<|a<m)|

Definition 0.15 if p = 2, we note by W™?(Q) = H™ and W™?*(Q) = H}"(Q) provided by the

standard

0.1. Functional spaces
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o 1
[ull gy = (> (10"l 12(0))°)?

|laj<m

such that H™ (2) Hilbert space , with the dot product

(s V) () = Z (D%u, D U>L2(Q) = Z 0“u0®vdx, foreverything u,v € H™ (§2)

|a|<m |a|<m
1) The space W'?(Q) are Banach spaces .

2) if m = 0 we have W?(Q) = LP(Q).

0.2 Trace Theorem

Theorem 0.1 (of trace )

Either 2 a limited and regular open .We can define a linear and continouus application ,
®: H"(Q) — L*(09)
u— D (u)
Extending the application trace for continuous functions on Q for everything

ue H' (Q)NC°(Q) : @ (u) =u109Q

The trac application is continuous of H! (Q2) in L?(912) ,which means that there is a constant Cq,

such as

19 (W)l 2 00) < Ca llull o

0.3 Some useful formulas

Definition 0.16 ( Integration by part)

0.2.  Trace Theorem



List of Figures

Either (u,v) € H* (Q) , for everything 1 < i < n we have

Ou vdr = —/ Ov udx + / uvn,do.
q 0x; o 0z o0

or 7, (x) = cos (n;, x;) is the direction cosine of the angle between the exterior normal has 02

at the point and the axis of x;

0.4 Some useful inequalities

0.4.1 Teoreme (Cauchy schwartz inequality)

such as u,v € L? ()

g/otmvmxs% uf?)? (/ |v|2da:>é

/ uvdx
Q

(i.e)
Juv]| 20y < llull g2 V] 220

0.4.2 Teoreme (Young algebraic inequality)

such as a,b € R, we have :

1
lab] < & |al® + o b|* , with § > 0

0.4.3 Teoreme (Young inequality)
such as ( a,b) € R? we have :
1 p 1
< _ q
ab| < lal” + 1ol

or p, q strictly positive real numbers linked by the relation (% + % = 1) .

0.4.4 Formula (Young inequality with ¢)

such as £ > 0 so for everything ( a,b) € R? we have

jab| < elal” + ¢ (e) b,

0.4. Some useful inequalities
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or p, q strictly positive real numbers linked by the relation (

0.4.5 Formula (Minkowski inquality)

such as 1 < p < oo, we have

lu+ ol < lull o + (0]l 2o

0.5 The operators

Let F and F be two Banach space , let us note ||.|| the standard with which they are provided .

Definition 0.17 (Linear operator)

Let E and F' be two Banach space , A linear operator is a linear application

A:D(A)eE—F

(i.e)

VY (u,v) € D(A)*, A(u,v) = Au+ Av.
YA€ C,A(A\u) = NAu

Definition 0.18 (Domen)

A linear operator A of E in F' is a linear application A defined by on a subspace vector D (A) of
E called domain of A such that

D(A) = {u, Au € F}.

A:D(A)CE—F

we say that A is bounded if there exists C' > 0 such that

0.5. The operators
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Vu e D (A), [ Aully < Clul

Other wise , A is said to be unbounded .

Definition 0.19 (Graphe\Nayau\Image)

The graph of A is the vector subspace of F x F' denoted Gr (A) defined by

Gr(A) = {(u, Au) ,u € D (A)}.

We call nayau of A the subspace of F denoted ker (A) defined by:

ker (A) ={ue D(A), Au = 0}.

and Image of A the subspace of F'noted Im (A) defined by:

Im(A)=A(D(A) ={ue D(A),Au =0}

We say that A is injective if ker (A) = {0},and that A is surjective if Im (A) = F', The operator is

ijjective and surjective.

Definition 0.20 (Invertible operator)

We say that an operator A of domain D (A) is invertible if

A:D(A)CE—F

Is bijective and has an inverse,

A F— D(A) CE,

bounded (as operator of F' in E).

Definition 0.21 (Resolvante)

Let A be a linear operator (not necessarily continuous) defined on a Banach .For everything

complex number ) such that (\] — A)™", existe and is continuous ,we define the resolvent of A

by

Ry= W\ —A)"!

0.5.

The operators
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Set of values of A for which the resolvent exists and called the resolvan set note, p (A).

The spectrum o (A) is the complement of the resolvon set :
o(A)=C/p(A).

0.5.1 Dissipative operator
Definition 0.22 (Dissipative operator)

A linear operator A in F is said to be dissipative if we have :

Vo € D(A),YA > 0, Az — Azl > Allz|| .

A is said to be m-dissipative if A is dissipative and for all A > 0,The operator \/ — A is surjective

, (.e),

Vye X,VA> 0,3z € D(A),\x — Az =y

Theorem 0.2 If A is m-dissipative then for all A > 0, the operator (A — A) admits an inverse,
(M — A)~ 'y belongs to D (A) for everything y € X,and (A — A)~" is a linear operator bounded on
X checking .
A —-A)7Y <~
o — 4y < 2

Theorem 0.3 Let (A, D (A)) be an unbounded dissipative operator in X . The operator A is m-
dissipative if and only if:

N >0,Vy e X,qx € D(A), Nx — Az =y

Theorem 0.4 A operator (A, D (A)), linear unbounded in H, is dissipative if and only if:

dr e D(A): (Az,z) <O0.

0.5. The operators
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0.5.2 Monotonic maximal operators
Definition 0.23 Let A: D (A) C H — H a operator linear unbounded . We say that A is monotinic
if

(Av,v) >0 Vv e D (A)

A is maximal monotonic if in addition R (I + A) = H i.e,

Vfe H ,Jue D(A) for everything u + Au = f.
Proposition 0.2 Let A a operator maximal monotonic .So
e D(A)isdensein H,
e Ais closed,

e for everything A > 0, (I + AA) is bijictive of D (A) on H, (I + AA)™" is a bounded operator
and.

(1 +XA)” <1l

1
Iz
Remark 0.1 Some authors say that A is accretive or that A is dissipative.

Definition 0.24 The operator A is lipchitz continuous if there exists M > 0 such that

|Au — Av||; < M |ju —v||; YVu,v e H

0.6 Strongly continuus semigroup
the roughout this section (£, ||.||) , will denote a Banach space

Definition 0.25 (Strongly continuus semigroup)

A family of opertors (S (t)),5, of £ (E) is a strongly continuous semigroup on £ when the follow-

ing conditions are met

1) S(0) =1, (I isthe identity operator on F ),

2) S(t+s)=5(t)S(s),t,s >0, (semigroup property ),

0.6. Strongly continuus semigroup
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3) for each z € X, S (t) z is continuous ¢ on [0, 00) .
This type of semigroup will simply be called a Cy-semi group
Definition 0.26 A semigroup of bounded linear operators is said to be

1) Uniformly continuous if:

lim ||S (t) — I]| = 0.
Jim |5 (¢) — 1|

2) Strongly continuous or class Cj if:

limS(t)z —x=0,Ve € E

t—s

3) Class contraction semigroup Cj he’s classy Cj and:

IS <1, vt>0.

Remark 0.2 If (S (t)),s, is a uniformly continuous semi group , then

lim ||S (£) — S ()] = 0.

t—s

0.6.1 Infinitesimal generator

Definition 0.27 The infinitesimal generator of S (t) is the linear operator A of domain

D(A) = {x € Elim M, existe}

t—0t+

defined by

Az = lim+, ue D(A)

Theorem 0.5 Let (A, D (A)) be the infinitesimal generator of a semigroup (S (t)),, strongly con-
tinuous on E : for all xg € D (A),x (t) = S (t) zo is the unique solution of the problem

0.6. Strongly continuus semigroup
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z € C([0,00)),D(A)NC([0,00)), FE
r' (t) = Az (t)

0.6.2 Hille-Yosida

Theorem 0.6 An unbounded linear operator (A, D (A)) on X is the infinitesimal generator of a

Co.semigroup of contractions (S (t)),, if and only if

e Aisclosed and D (A4) = X,

e The resolvent set p (A) of A contains R*,and for all A > 0.

<\t

H()‘I o A>_1H£<X) =

0.6.3 Lummer-Phillips

Theorem 0.7 Let (A, D (A)) be an unbounded linear operator on X, with dense domain D (A) in
X. Ais the infinitesimal generator of aCy-semigroup of contractions if and only if it is a m-dissipative

operator.

Theorem 0.8 Let (A, D (A)) be an unbounded linear operator on X. If A is dissipative with,

R(I — A) = X and X is reflexive then D (A) = X

Corollary 0.1 Let (A, D (A)) be an unbounded linear operator on H. A is the infinitesimal generator

of a Cy-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 0.9 Let A be a linear operator with dense domain D (A) in a Hilbert space H.If A is
dissipative and 0 € p (A), then A is the infinitesimal generator of a Cy-semigroup of contractions on
H

Theorem 0.10 .Let (A,For UO € D(A),) be an unbounded linear operator on H . Assume that A

is the infinitesimal generator of a Cy-semigroup of contractions (S (t)),-,

1) ForU, € D (A), the problem admits a unique strong solution,

0.6. Strongly continuus semigroup
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U(t)=S(t)Uy e C°(RT,D(A)) nC" (RT, H)

2) orlU, € D (A), the problem admits a unique strong solution.

U(t)e C° (R H)

0.6.4 Lax-Milgram

Definition 0.28 We say a bilinear form a (u,v) : H x H — R:

i) Continues if there exists a constant C' such that:

la (u,v)| < c|ul |v Yu,v € H

ii) Coercive : if there is a constant « > 0 such that:

a(v,v) > alvl? Yve H

0.7 Stability of semigroup

Let (X, .|| ) be a Banach space, and H be a Hilbert space equipped with the inner product (., .) ;

and the induced norm ||.|| ;.

Definition 0.29 Assume that A is the generator of a strongly continuous semigroup of contractions

(S (t))tzo on X.

We say that the CO-semigroup (S (1)), is

e Strongly stable if:

lim [[S()ully =0 VuelX.

t—+00

e Uniformly stable if:

0.7.

Stability of semigroup
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lim |‘S(t)u‘|,€()<) =0.

t——+o0

e Exponentially stable if there exist two positive constants M and e such that:

1S () ully < M exp(—ect), vVt >0, YVu e X.

e Polynomially stable if there exist two positive constants C' and B such that:

IS () ully < CHlull, V>0, Yu € X.

0.7. Stability of semigroup
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Existence and Uniqueness of the solution

In this chapter we will calculate the energy for this model and demonstrate the local existence

and uniqueness of the solution, using semigroup theory Westudy thefollowing Problem

1.1 Statement of problem

p

U — auy + b () (k1 + kot (2, — 7)) Hoe +c () ye =0 (x,t) € (0,L) x (0,00)
Yt — Yoo — € () U = (z,t) € (0,L) x (0,00)
u(0,t) =u(L,t) =y(0,1) =y (L,t) =0 t>0
(u(0,1),ur (0,2)) = (uo () , ua () ze(0,L)
( (2,0),9: (x,0)) = (yo (), y1 () z€(0,L)

| W (,0),u:(2,0)) = (%o (), 11 (x)) z e (0,L)

where k; and are L, 7, a positive real numbers, £, is a non-zero real number and (ug, u1, yo, 1, fo)
belongs ¢, a suitable space [1]. We suppose that there exists 0 < a < § < v < L and a non-zero

constant ¢y, such that:

bz) = 1,2 € (0,P)
0,z € (B, L)

and

¢(z) = { co,x € (ag, ay)

0, otherwise

In order to prove the existence and unity of the solution, we will change a new variable as

following [5]:

24
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n(z,p,t) :=u (x,t—pr), 2€(0,5) pe(0,1),t>0 2,1

Then, system (1.1) becomes

g — (Sp (u, ug, )z + () y; =0, (x,t) € (0,L) x (0,00) (2,2)
Yit — You — C(T) up = 0, (x,t) € (0, L) x (0,00) (2,3)
™ (@, pt) + 1, (2, p,t) =0,  (z,p,t) €(0,58) x(0,1) x (0,00) 2,4

where S, (u, ug, ) := au, +b () (k1u + ko, (z,t — 7)) . Moreover, from the definition of o(.), we

have

(Sb (U7Utu77)) = (255)

St (u, ug,m) := auy + kg + kan, (0,1,t) = € (0,05)
AUy, VIS (ﬁa L)

With the following boundary conditions

{ w(0,8) =u(L,t) =y (0,8) =y (L,t) =0, >0 2.6
n(0,p,t) :=0, (p,t)  x(0,1) x (0,00)
and the following initial conditions
u(x,0) = ug (z),u (z,0) =uy (z),z € (0, L)
vo (,0) = o (2) 31 (2,0) = 1 (), € (0, L) 27
n(z,p,0) = fo(z,—p7),(z,p) € (0,8) x (0,1)

1.1.1 Preliminaries and Assumptions

Throughout this works,we use the space

V={ueH (Q)|u=00nT}

the scalar products:

(u,v) = /Qu (z)v () dz, (u,v)p, = u(z)v(7)ds

1.1. Statement of problem
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and the norms:

Il = ([ o) = (f |u|f’ds>;

1.2 Energy of system

In this section we will calculate the energy for this model, the energy of system (2.2)-(2.7) is

given by

Ei (1) =3 Jy (Jul* +allu,|?) dx, Ex (1) =3 o (lyel® + ll]”) dx

=22 [ [ n, (0, dpda
Lemma 1.1 Let (u,uy,y,y:,n) be a regular solution of system (2.2)-(2.7). Then, the energy E(t)

satisfes the following estimation

B8
dEW o, - rkzr)/ g |? d 2,9)
di ;

Proof. By multiplying equation (2.2) by %; and integrating over the (0, L), m

/0 e — (S (), + ¢ () y) Tda

then we tak the real part, we find

o[- x{ [ s o}
2dt/ Jue|* do — R {/ Sy (u, ug, n utdm}+§R{/ c(x)yt}mdxzo

using integration by parts and substituting the terms (2.6),(A-B) from the definition

C(:L’) _ CO,I € (OZ,’}/)
0,z € (0,a) U (v, L)
) a

From the above equation and the defnition of Sy (u,u;,7) and ¢(.),and integration by part with

(2,6) we obtien

1d L v
ST |we||® da + R {/ Sy (u, ug, n) u_xtd:v} + R {co/ ytu_tdx} =0
0 «a

1.2.  Energy of system




Chapter 1. Existence and Uniqueness of the solution

from the definition of S, (u, u;, n),we obtien

L
/ HUtH dr + +R / UplUgedr ¢ + R / b () k1wt de
L L
+R {k‘g/ n, (., 1,1) umdx} { / ytutdx} =0
0 0

1d
§d—/ P + ety = ks [ ol

,
{ My ,1,t)u_txd:c} —%{CO/ ytu_tdx} =0

Using Young’s inequality in the above equation, we get

1 k|
aEl()_—< |2)/ym| dzx (1.1
B
—i—@/ |n$(.,1,t)]2da:—§R{co/ ytu_tda:}
0 o

Then

1

L
Ei(t) = 5/0 (lue* + a ||u||?) do (2,10)

Now, multiplying (2.3) by ¥;, integrating over(0, L), using the definition of ¢(.), then taking the

real part, we get

L
/ [ytt — Yzz — C (ZL’) Ut] n dx
0

L L L
/ytth—%{/ ymmd:c}—%{/ c(x)utmx}:o
0 0 0

Using the integration by part and with the definition of ¢(.), we deduce that

Ld [ [5 o 2 -
33 4 Ol ) do p =% {eo [ wgids
0 [’

d v
EEQ( )= %{co/a ut@daz} (1.2)

Then

1 L
Ea =5 [ (il + o) do 2.11)

1.2.  Energy of system
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We have
T ('7p7 )+np( P, ) 0

Deriving (2.4) with respect to x, we obtain

TNyt (.,,O,t) +77:Jcp ('apat) =0 (2,12)

Multiplying (2.12) by |k2| 7, (., p, t), integrating over (0, 5) x (0, 1),
then taking the real part, we get :

B 1
/ / ™ (., p,t) [k2| 7, (-, p, t) dpd
0 0

B rl
+/ / Mzp <7p7t)|k2‘n_x(7pat>dpd$:()
0 0

|/~<?2|al/ﬁ/1 2
. (-, p, )" dpdx
2 dt o | |

|k2| d / /1 2
+—— Ny (0 t)|" dpdx =0
s | ] o
d |l<;2
el - 24

el [/5 |nx<.,1,t>|2—/f\nm«,o,wfdx]

Using that fact and taking such as 7, (., 0,¢) = u, the part real we get

T|K gt
Eg(t):%/o /O 0. (o) dpda (2,13)

Finally, adding (2.10), (2.11) and (2.13), we obtain (2.9). The proof is thus complete

d d
—E(t
dt (t) = dt

<- ( |k2)/|m|

k
| 2|/ | Ny 717t)’ d‘T—%{CO/ utytdx}
Y k B
wife [Cugnar) L2 [, aopar s B[
a 0

(B () + B (t) + E5 (1))

Then

1.2.  Energy of system
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< - (k=) [

In the sequel, the assumption on k; and %k, will ensure that

ki > 0, ko € R*, |]€2| < ky (h)

Under the hypothesis (h) and from Lemma 2.1, the system (2.2)-(2.7) is dissipative in the sense
that its energy is non-increasing with respect to time (i.e.Fy (t) < 0). Let us de ne the Hilbert

space H by

H := (H} (0,L) x L2(0,1))* x W

where

W= L*(0,1); H} (0,8) and H} (0,5) := {fj € H(0,8)\} 7(0) =

The space W is an Hilbert space of H; (0, 3) valued functions on (0, 1) , equipped with the follow-

B
= / / men2dpdx  Vn',n? € W.
0

The Hilbert space H is equipped with the following inner product

ing inner product

L
(oY), / (auxm—i-vv_—l—yxy_;—l—z;) dx (2,14)

+T\k2\/ / Ny (., p . p) dpdz
where U = (u,v,y,2z,7* (,p))", = (ul, oyt 2t 0t (, p))T € H Now, we de ne the linear

unbounded operator
A:D(A)CH—H
with the domene
D(4) = { U= (u,v,y,2n" (,p) € H\ye H20,L)NHL(0,L) w,ze HL(0,L)
(S (w,ur,m)), € L*(0,1),7, (. p) € W,n(.,0) =v(.) in (0,5)
We have the system (2,4),(2,2)

uy — (Sp (u, ug,m)), +c(z) ye =0
Yt — Yoz — C(f)ut =0

1.2.  Energy of system
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and from him

e = (S (u, ug, m)), — ¢ () ye

and from him

Yt = Yoo + C(7) uy
Gy (xupa t) =", (:Evpv t)

ug = (Sp (U, ur, 77));5 —c(z)ys

We pose v =wu; and y; = 2
So

We pose

U = (uaut7y7yt7n)7U = (u7vay727n)

Yit = Yoo + € (T) Uy
Ur (33, Ps t) = _7__177,0 (Z’, P t)

Uy = (Sb (uv v, n))x - C(:L‘) Yt
2t :ym“_"C(x)U
() = =71, (. p)

We transform the system (*) to Cauchy system

( )
Uy

Vg

Yt

¢y

for all

U= (u,v,9,27(,p)" €D(A)

Ut:AU

(Sb (uv v, 77))1 - ¢ () Y
Yzx +c () [
-1, (-ap)

)

(2,15)

Now, if U = (u,v,y,27(.,p))", then system (2.2)-(2.7) can be written as the following firrst

order evolution equation

where

U, = AU, U(0) =0

UO = (U0>U17?Jo»f0 (7p))T €H

(2,16)

1.2.  Energy of system
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Remark 1.1 The linear unbounded operator A is injective (i.e.ker (A) = {0}. Indeed, if U € D (A)
such that AU = 0, then v = z = n(.,p) = 0 and since n(.,0) = v(.), we get n(.,p) = 0

Consequently, (Sy (u,us, 1)), = 0ze = 0 and y,, = 0. Now, since u (0) = u (L) =y (0) = y (L) =0,
then u =y =0. Thus U = (u,v,y, 2,7 (.,p))T =0

1.3 Local Existence

In this section we will demonstrate the local existence and uniqueness of solution , using semi-
group theory. Wea the solvability of the problem (2,14) (2,15) is ensured by the following

proposition.
Proposition 1.1 Under the hypothesis (h), the unbounded linear operator A is m-dissipative in the

energy space H.

Proof. For all ,U = (u,v,y,2,1(.,p))" € D(A) from (2.14) and (2.15), and taking the part real

we define the scalar product on the energy space H as follows

r () )

v u
(St (w,v,m)), — () ye v
R(AU,U), = R 2 ,
Yoo + () v
\ =71, (-, p) (7))

R(AU,UY, = R {/OL avmu_xdx} R {/OL (S, (u,ut,n))m@dx}

% L o B |k’2| B 1 d )
+ Zfede o — R{yzezdr} — R ¢ == =12 (. p) dpdz
0 o Jo ap

we apply integration by part with respect to = on 2

RAUU)y = %{/OL cwmu_mdx} - %{/OL amuxdx}
—R {/OL avxu_xd:c} +R {/OL (S (u, g, n))xm}

—l—?R{/Oszy_mdx}+§R{ym7dx}—§]?{]k2|/oﬂ/Olnmp(.,p)m(.,p)dpdm}

1.3.  Local Existence
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Using integration by parts to the second and fourth terms in the above equation, then using the
definition of Sy (u, us,n) and the fact that U € D (A), we get

B B
?R(AU,U)H——S?{IQ/ vxﬂxdx} %{kg/ N, (-, )v_xd:z:}
0
L L
+§R{/ zwﬁdx}—%{/ Exyxdx} / / — In, (., p)|? dpda
0 0

B B
RAUU)y = -k ‘Um|2 dx — ER{/@/ n, (-, 1)@(1:6}
0

)2 dpd *
// mm, )|? dpda *)

the fact that »(.,0) = v (.) in (0, ), implies that

R(AU,U) /|vx| de — R {k’g/ N, (1 Umdl‘} // n, (., )| dpdx
0 dp

we find

R(AU,U)y / v, d — R { 2/ Ny (-1 vxda:——/ 1, (o) d:v}—\nm(.,())]2d3:
0

then (*) becoms
R(AUU)y = - (b ‘k)/ 0. dz ’2’/ n. (.

%{k/ 0 (1T

Using Young’s inequality in the above equation and the hypothesis (h), we obtain

we find

B
%mamHg—m—mm/|mwx (2,17)
0

from this conclude that

R (AU, U), < 0

which implies that A is dissipative. Now, let us prove thatA is maximal. For this aim, let F' =
(F1 12 820 57 ()T € H,
we look for U = (u,v,y,2z,1(.,p))" € D (A) unique solution of

1.3.  Local Existence
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—AU=F (2,18)

Equivalently, we have the following system
— UV = fl (2:19)
= (S (wue,m)), e ()2 = f° (2,20)
—z=f (2,21)
— Yoo — (v = f* (2,22)
—7 ', (,p) =1 (.,p) (2,23)

with the following boundary conditions

u(0) =u (L) =y(0) =y (L) =0,7(0,p) =0 (2,24)

and n(.,0) =v(.) in (0,05)
From (2.19), (2.23) and (2.24), we get

', (.p)=1"(,p)

/Opnp(-,p)dszf/op;(np)ds

p 5

n(x,p)—n(O,p)IT/ f (-,p)ds

0

n) =7 € s o0 =1

v =7 [ Flasds—f, (@ee0.8)x 0 (2,25)

Since,f' € H; (0,L)and f° (., p) € W . Then, from (2.23) and (2.25), we get 1, (., p) , 7 (., p) € W.
Now, see the de nition of S} (u, us, ), substituting (2.19), (2.21) and (2.25) in (2.20) and (2.22),

we get the following system

1.3. Local Existence
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[Sb (u,fl,T/ 7 (z,s)ds — fl)} fe()fP=—f2 (2,26)
0 T

= Yox — C() fl = _f4 (2’27)

u(0)=u(L)=y(0)=y(L)=0 (2,28)

where

S _rl T ' 5 ds — 1

b <u7 f ) /0 f (l‘, 8) S f )

{ aug — (ky + ko) fX + ko fol f5(.,8)ds,z € (0,3)
atly, z€(B,L)

Let (¢,v) € H} (0,L) x HE (0, L) Multiplying (2.26) and (2.27) by ¢ and v respectively, integrat-
ing over (0, L),

IS [sb (u FLr L f5 (x,s)ds — f )} ddr+ [Fe f3¢dx = — [F Fode
_fo mm¢dx fo fl¢dx f f ¢d$

then using formal integrations by parts, we obtain

—[rs, <u L7 [ (e, s)ds — f! ) Godz + [1F e f3gz5dx = — [F f23da
~Jo ¥, buda— [y () Fpda= —fo f i

a [\ updydr — [V (ky + ko) frode + [0 mhy [) f2 (-, 8) dsgde — [ ¢ () fPode = [i f2odx
fo yzwxdac = fo f4pdx — ¢ f: flpdx

L N L . ¥ N
a / Uy, dr = / f2odx + ¢ / f3odx (2,29)
0 0 @

B B 1
+ (k1 + ko) / féaxda: — Tkg/ (/ (., s) ds) ¢, dz
0 0 0

and

L . L o 0% .
/ Yo, dr = / fhpdr — co/ flapdx (2,30)
0 0 «
Adding (2.29) and (2.30), we obtain

1.3. Local Existence
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B((u,y),(¢,0) = £(¢,9),V (¢,9) € Hy (0,L) x Hy (0, L) (2,31)
where

L L
B((uy),(6.9) = a /0 usBoda + /0 o, d

and

L _ . 0% N o
£6.0)= [ (o4 1) s v [ (15~ £17) ds

ok, /0 ’ ( /0 (s ds) Goddi + (i + o) /0 " 15 d

It is easy to see that,B is a sesquilinear, continuous and coercive form on H} (0, L) x (H} (0, L))
, and £ is a linear and continuous form on H} (0, L) x H} (0, L) .Then,

it follows by Lax-Milgram theorem that (2.31) admits a unique solution (u,y) € H} (0,L) X
H}(0,L) .

By using the classical elliptic regularity, we deduce that system (2.26)-(2.28) admits a unique
solution (u,y) € xHy (0,L) x (HE (0,L) N Hy (0, L)) such that (S, (u,v,n)), € L*(0,1)

and sinc ker (A) = {0} , we get U = (u,—f"',y,—f3,7 [/ (,s)ds — f') € D(A) is a unique
solution of (2.18).

Then ,A is an isomorphism and since p(A) is open set of C we easily get R (A\] — A) = H for a su
ciently smal A > 0 This, together with the dissipativeness of A, imply that D(A) is dense in H and
that A is m-dissipative in H.

According to Lumer-Phillips theorem Proposition 2.1 implies that the well-posedness of (2.16).

Then, we have the following result:

Theorem 1.1 Under the hypothesis (h), for all Uy € H, system (2.16) admits a unique weak solu-
tion:
U (x,p,t) = exp (At) Uy (,p) € C° (R, H) .

Moreover, Uy if D(A), then system (2.16) admits a unique strong solutionU (z, p, t) = exp (At) Uy (x, p) €
C°(R*,D(A)) NC'RT

U (z,p,t) =exp (At) Uy (z,p) € C° (RY, H) N C* (RT, D (4)).

1.3. Local Existence
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stability

2.1 Strong stability

In this section , we will prove the strong stability of systeme (2,2)-(2,7)

uy — (Sp (w,v,m)), +c()y =0, (x,t)€(0,L)x(0,00)

(2,7) the initial conditions

u(x,0) =ug (), u (x,0) =uy (z),z € (0,L)
Yo (1‘70) = Yo (:E) » Y1 (:L‘70) =l (ZL“) S (0’ L)
n(xapv 0) = Jo ($7 _pT) ) (il?,p) S (075) X (Oa 1)

the main result of this section is the following theorem

Theorem 2.1 Assume that (h) is true. Then, the Cy-semigroup of contraction (exp (At)):i>o is
strongly stable in H; i.e, foral Uy € H,

the solution of (2.16) satisfies :

1tlier |lexp (At) Up|l; =0
Proposition 2.1 Under the hypothesis (h), we have
iR Cp(A) G,

We will prove Proposition 3.1 by contradiction argument. Remark that, it has been proved in
Proposition 2.1 that 0 € p (A) Now, suppose that (3.1) is false, then there exists w € R*such tha

iw & p(A),
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let {)\", ur .= (u™ o™ y", 2" n" (.,p))T} C R* x D(A), with

n>1
A" — wasn — oo and |\"| < |w| (3,2)
and
HUnHH = H(unavnvynvzn’nn ("p))THH =1 (3,3)
such that
(Z)\n . A) Ur — Fm" -— (fl,n,f2,n’f3,n’ f4,n7 f5,n (“0))T . 0in H (3’4)
Equivalently, we have
iN'U" — U™ = f4" — 0in H; (0, L) (3,5)
iINU™ — (S (u,ug,m)), +c()2" = f2" — 0in L? (0, L) (3,6)
iIN'U™ — 2" = f*" — 0in — 0in H; (0, L) (3,7)
iN'Z" —yt —c ()" = f4" — 0in L* (0, L) (3,8)
N2 (p) T (L) = 20 (L p) — 0in W (3,9

Then , we will proof condition (3,2) by finding a contraction with (3,3) such as ||U"||,; — 0, the

proof proposition (3,1) has been divided into several

Lemma 2.1 Under the hypothesis (h), the solution U™ := (u™,v",y", 2", 0" (., p))" € D(A)

of system (3.5)-(3.9) satis es the following limits

B
lim [ |[o"*dz =0 (3,10)
B
lim [v")* dz = 0 (3,11)
n—oo 0
O e
lim lul|”dx =0 (3,12)
n—oo 0
Bl 9
lim / !772 (.,,0)| dpdz =0 (3,13)
g 2
lim / |77;‘(.,1)} dx =0 (3,14)
n—oo 0
g 2
lim |Sp (u", uit,n™)|" dz =0 (3,15)
n—oo 0

2.1. Strong stability
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Proof. First, taking the inner product of (3.4) with U” in H and using (2.17) with the help of

hypothesis (h), =

we obtain
p 2
R(AU™ U™) < —(k1—|k2|)/ o da
0

p 1
/ )P de < —————R (AU, U™, (3,16)
0 ki — [ka|
1 1
- R(F U, < ———
( )H kl _ |]€2|

F" utll,, — 0

O
lim o2 |"dx =0

n—oo 0

R (AU, U™) = R ((GA"T — A) U™, U™) = R (—AU™,U™) = R (F", U™)

SO
—AU = F" = AU = F"

Passing to the limit in (3.16), then using the fact that ||U"||,, = 1 and ||F"||, — 0 we obtain
(3.10). Now,

since v" € Hy (0, L),

then it follows from Poincare inequality that there exists a constant C, > 0 such that

10" | 20,89 < Co llVZ ] (3,17)

L2(0,8)
Thus, from (3.10) R and (3.17), we obtain (3.11). Next, from (3.5) and the fact that
according to (3,11)

b
lim [v"|" dz =0

n—oo 0
g 2 L 2 1 9
/ | fa"] dxg/ |f2"] de < EHF“HH ,we deduce that 2.1
0 0
B B B
/|ug|2da:§ 32/ o da + 32/ | frn)?
0 (A) 0 (>\) 0
2 po 2 .
< MQ/O 05" e o 1 (3,18)

Passing to the limit in (3.18), then using (3.2), (3.10) and the fact that || F"||,, — 0
we obtain (3.12). Moreover, from (3.9) and the fact that " (.,0) = v" (.)

2.1. Strong stability
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in (0, 5) ,we deduce that
p
n" (z,p) = v"exp (—iX"Tp) + T/ exp (—iA"T (s — p)) 2" (2, 5) ds, (3,19)
0

(2, ) € (0.5) x (0,1)
From (3.19), and the fact that p € (0, 1) andfoﬁ fol 112" (., 8)|dsdx < @ 1F™| -

we obtain
//|77x |dpd:c<2/ o) dx///p!f“ ,s)‘zdsd,odx

g . g 1 rl 9
§2/ |2 das+27’2/ / / p| o (., s)|” dsdpda
0 o Jo Jo
- 1 B )
:2/ |v2|* dx + 272 (/ pdp)/ / | /5" (., )| dsda
0 0 o Jo
B . B rl 9
:2/ |2 d:z:+7‘2/ / | (., 8)|" dsda
0 o Jo

B8
<2 / o2+ 7 o | FP
0

Passing to the limit in the above inequality, then using (3.10) and the fact that |||, — 0,
we obtain (3.13). On the other hand, from (3.19), we have

1
ne (., 1) = vl exp (—iA"7T) + 7'/ exp (—i\"7 (s — 1)) f>" (., s)ds
0

consequently, by using the same argument as proof of (3.13), we obtain (3.14). Next, it is clear

to see that

B B
/ 1S, (" o ) = / e + ko + ko (, 1) da
0

<3a/ u”? dx+3k2/ 7 (., p)|? da

Finally, passing to the limit in the above inequality, then using (3.10), (3.12) and (3.14),
we obtain (3.15). The proof is thus complete. Now, we x a function g € C* (o, §]) such that

g (o) = —g(B) = land set max |g (z)| = M, (3,20)

z€[a,f]

and max =
max |9 (1)

Lemma 2.2 Under the hypothesis (h), the solution U™ := (u™,v",y", 2", 0" (., p))" € D (A)

2.1. Strong stability
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of system (3.5)-(3.9) satis es the following inequalities
2 2 A 2
S OP 4@ <My [ (3.21)
0
I 3
ralean, ([CRas) o, 1
n 2 n 2 ﬁ 'n,2
e (B)” + [y ()" < My [ [y, |" da (3,22)
0

8 2
v+ Gy, ([ v fac) 2, 1

and the following limits

lim [v" (o)) =0 and lim [v"(8)]=0 (3,23)
i (S (")) ()] = 0and. T (8, (" 7)) (9)] = 0 (3.24)

Proof. from (3.7),we deduce that

Ny — gl = (3,25)

n
Multiplying (3.25) and (3.8) by 2¢ z™ and 2¢ y? respectively, integrating over («, ),

using the definition of ¢(.), then taking the real part, we get

B B B
%{22‘)\”/ gyﬁﬁdm}—/ g(|z”|2)xd:1::§ﬁ{2/ gf:f””z_”d.r} (3,26)

and
B B
ére{m"/ gygz—ndx}—/ g (Jy2?), dx (3,27)

B B
—9%{200/ gv”@dw} :3%{2/ gf4’”y_g}

Using integration by parts in (3.26) and (3.27), we obtain
218 p 2 B _
[—g1z"], = —/ g'|2"] dw—?ﬁ{%%”/ gyﬁzndl‘}

2.1. Strong stability
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B
+3‘E{2/ gfj’”z_"dx}
n218 f 1, m|2 -\ n 7 nTm
[—glyxl}az—/ g lyz " dx — 4 2iA / gz"yrdx

8 8 8
+%{200/ gv"y;‘d:z:}+§)?{2/ / gf;"”ygdx}

Using the definition of g and Cauchy-Schwarz inequality in the above equations,

and

we obtain 5
O+ @ < My [ ds
8 3 aﬂ 3
+2|\"| M, (/ |y2|2dx) (/ |z”|2da§)
3 ) 3 g 3
+2M, (/ }ff”‘ d:p) (/ | 2" dm)
and

B
W B)F + 1 (@) < M, / 2 do

8 3/ B

+2|\"| M, (/ |y2|2d$) </ |z”|2da§)
1 1
ﬁ ni2 2 B ni2 2

+2|co| M, lyz|” dx 0" dx
1 1
g 4n|2 ? g n|2 :

s ([ ) ([ o)

The refore, from the above inequalities and the fact that [ f €7 de < fOL &P de < U3 =1
with £ € {v",y2, 2"}

and [7[€r* de < [V |€n de < ||[F™|)3, with &5 € {f3", 4}, we obtain (3.21) and (3.22). On the
other hand, from (3.5),

we deduce that

N |=

N (3,28)
Multiplying (3.28) and (3.6) by 2¢7, and 2¢5; (u™, u}', n"™) respectively, integrating over («, ),
using the definition of ¢(.) and S, (u”, v}, n™), then taking the real part,

we get
B B
R {2@')\"/ guﬁm} dx — / g (|v"), dx (3,29)
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and 5 5
— 9%{2/ gf;’”mdx} 8‘%{22’)\"/ go" Sy (u™,up, ") dl‘}

8
- [ oS ), do
s
+3?{2co/ gz" S (U™, uy, ™) dx}
B _
= 3‘3{2/ 9f3"S (W u ") dw}

Using integration by parts in (3.29) and (3.30), we get

218 ’ 2 ’ —
[—g]v"| ]a:—/ g [v"| dx—%{%/\"/ gu;‘v”dx}

B
+3‘E{2/ gf;’”mdx}

and
n n n B
[_g |Sl (U y Uy 5 1] )|2}a
’ 2
= —/ g 181 (W, up,n™)|” dx
B
—%{22’)\”/ gu™ Sy (u", uy,n™) dx}
B
—%{200/ gz" Sy (u", uyt,n") d:c}

B _
+%{2/ gfF"Sy (u" ul', ™) dm}

Using the definition of g and Cauchy-Schwarz inequality in the above equations,

then using the fact that

B n2 Ly n2 n||2 B n|2 L n|2 n||2
{fa 2" de < [y 12" P de < UM = 1, f £ de < fy [0 de < S F

n|2 L n|2 n
and [7 |20 do < [ |20 do < || F3,

we obtain ,
" (B + " (@) < Mg/ / o ? d

(3,30)

2.1. Strong stability
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8 ERVA 2
+2\)\”]Mg(/ \uZde) </ ]v"|2da:)
1
v Zntg ([ rfas) g
— V" dx
va i\, "

|(Sy (u ™) (7)1 + |(Sh (™) (7) [

and

1 1
B B 2 B 2
<uy [ |sl<un,uy,nn>|2dx+2|A”|Mg(/ |sl<un,u::,n“>|2dx) ( |v"|2dx)
3 , 3 3 )
+2cOMg( [ it d:c) + My ( [ s dx) 1L

Finally, passing to limit in the above inequalities, then using (3.2), Lemma 3.1

and the fact that ||F"||>, — 0, we obtain (3.23) and (3.24). The proof is thus complete

[N Q

From (3.2), (3.21), (3.22), and the fact that |U"|,; = 1 and || F"||; — 0, we obtain

12" ()], 12" (B)] s |y ()], yz (B)] are bounded (3,32)

The solution U" :

(u™, v™, y", 2" 0" (., p))" € D(A) of system (3.5)-(3.8) satis es the following
limits

B B
lim/ 2"?dz =0 and lim/ [yl dz =0 (3,33)

n—oo n—oo

multiplying (3.6) by 2" , integrating over (
then taking the real part, we get

B B
%{i)\"/ U"ﬁdﬂ:} 3‘8{/ S (u",u;‘,n”)xz_”dx} (3,34)
—i—co/ 12" do = R {/ f2”z"dm}

Th o s\ £33
Zz_ 2)‘ yr

xT

a, ), using the definition of ¢(.) and S, (u",u}, "),

From (3.7), we deduce that

(3,35)

2.1. Strong stability
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Using integration by parts to the second term in (3.34), then using (3.35), we get

g
co/ 12" da (3,36)

B
?R{M”/ S1 (u”,u?,n”)ﬂdm}

B8
+R {/ St (u", uy,n") ;’"dx} + %{[S(lu”,uf,n")z_’l]g}

B B
+9‘E{/ ff”z_”dm} - %{i)\"/ U”z_”dx}

Using Cauchy-Schwarz inequality in the above equation and the fact that
JHEP de < fy 161 de < U™l = 1
with & € {yz,2"} and [/ |&* de < [)" |65 do < | F"| with & € {27 f3"},

we obtain
Co / 2" dx

B 3
Y (/ |w|2dx) (8 ) (89)| 1 (B)
+ (S (w uf,n™) (@) |2 (@) + 1 F™ ]|y
Passing to the limit in the above inequality, then using (3.2), (3.32), (3.24),and the fact that

[1E™ (| — 0,
we obtain the rst limit in (3.33). On the other hand, multiplying (3.8) by —z7 (\") ™",

3 3
< (N 1F"),) ( [ s <u“,uz,n">rzdx) (3.37)

using the definition of ¢ (.), then taking the real part, we get

- N L
—/ 12" dm+%{(>\”) / y;‘wz”da:}
- o -
—i—%{co()\”)_ / v"z”dx}:—%{()\")_ / fﬁ’"z”dm}

Using integration by parts to the second term in the above equation, then using (3.35),

[wpar= [pa-sfon [Fed - o fon we)
= -9 {co (A~ /j v”z_”dx} -3 {()\”)_1 /j fjmz—ndx}

we obtain

2.1. Strong stability
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Using Cauchy-Schwarz inequality in the above equation and the fact that | U"||,; = 1, we get

I I : . 3
/ w dxg/ 2P da 4 o | N7 (/ o dac) (3.38)

F2 N THIE g X L (B)] 12" (8)] + 1A g (@) |2 (o)

Passing to the limit in (3.21), then using (3.2), the rst limit in (3.33) and the fact that || F"||; — 0

, we get

lim|2" (o) =0 and lim|z" (8)| =0 (3,39)

n—oo n—oo

passing to the limit in (3.38), then using (3.2), (3.11), (3.32), the rst limit in (3.33), (3.39), and
the fact that ||[F"|, — 0,

we obtain the second limit in (3.33). The proof is thus complete.

Under the hypothesis (h), the solution U" := (u”,v",y", 2", 7" (.,p))" € D(A) of system (3.5)-
(3.9) satis es

the following estimations

lim [u" (8)]°=0 and lim |y" (3)]> =0 (3,40)
hm lu™ (B))*=0 and hm ™ (B)] = (3,41)
lim (/ |u"? dm—l—/ ™| da:—l—/ | dx+/ ) dx) = (3,42)
lim |v"| dr =0 and lim \z"| dx =0 (3,43)
n—oo ,8 n—oo

From (3.5) and (3.7), we get

" (B)F < 2(A") 7 o (B +2 () £ (B))]
and

ly" (B)]F <2(N") 7 |z (B) +2(A) T £27 (B)]

Using the fact that |f1"(8)* < B [ [fi"[*dz < 2|F"||% and |27 (B)]* < B f) |f3") do <
B ||F™||3, in the above inequalities,
we obtain

[ (B2 < 2() o () + 284~ (") [FM

2.1. Strong stability
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and
" (B))F < 2Nz (B + 28 (A" IFMIG,

Passing to the limit in the above inequalities, then using (3.2), (3.23), (3.39) and the fact that
[E"™ | — 0,
we obtain (3.40). Secondly, since S, (u", u}',n") € Hy (0, L) € C ([0, L]),
then we deduce that
|1 () (87) = |aug (8%)[° (3,44)

Thus, from (3.24) and (3.44), we obtain the rst limit in (3.41). Moreover, passing to the limit
in inequality (3.22), then using (3.2), the second limit in (3.33) and the fact that, we obtain the
second limit in (3.41).

On the other hand, (3.5)-(3.8) can be written in (3, ) as the following form

(A u" + au”, — iX"coy" = GY" in (B,7) (3,45)
A y" + ayll, — iN'eou" = G*" in (3,7) (3,46)

where
GV = — 2 A I o f3n and GEM = — A AT I g fLm (3,47)

Let V™ = (u™,ul, y", y;‘)T , then (3.45)-(3.46) can be written as the following

Vh = BT 4 Gn (3,48)
where
0 1 0 0
—a ' 0 at\"¢ O
B =y 0 o o 1 s
iAN"co 0 (A™)? 0
and
0
—lGl,n
ar=1{"
0
G2,n

The solution of the di erential equation (3.48) is given by

V" (z) = exp (B" (z — ) V" (BF) + /; exp (B" (x —s)) G" (s) ds (3,49)

2.1. Strong stability
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where exp (B" (z — f8)) = (¢ij)<; ;<4 and exp(B"(z—s)) = (di),, ;<, are denoted by the
exponential of the matrices exp (B" (z — f3))

and exp (B" (x — [3)) respectively. Now, from (3.2), the entries b, ; are bounded for all ;<; ;<4 and
consequently, the entries

b, (x — ) and b; ; (v — s) are bounded. In addition, from the de nition of the exponential of a

square matrix, we obtain

exp (B"() = Z <(B1]:f)

) for (e {z—p(,s—xa}. (2.2)

The entries ¢; ; and d;; are also bounded for all 1, ;<4 and consequently exp (B" (v — 3))
and exp (B" (x — s)) are two bounded matrices. From (3.40) and (3.41) , we directly obtain

V'(B) —0in  (L*(3,7))", as n — oo (3,50)

From (3.47), we deduce that

L L
/V\ Gl»”fd:cSS/ \ff’"\2da:+3()\”)2/ | f7)? de (3,51)
B 0 0

L
132 / 173 de
0
and ., . . i . i
/ G2 e < 3 / 74 43 (A7)? / 72 da (3,52)
B 0 0
L 2
w3 [ da
0
since f1", f&" € Hg (0, L) ,then it follows from Poincar e inequality that there exist two constants
01 > O,and 02 >0
such that
”f;’n”m(o,L) <G Hf;nHLZ(O,L) and (3,53)
HfjnHH(o,L) <Gy Hfg’nHH(o,L)
From (3.51), (3.52) and (3.53), we get

Y
/ | le”\z dr <3 (1+a P (\"C1)* + (coC2)?) |1 F™||5 (3,54)
B

and
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N
/ | G2 de < 3 (1+ (\"C1)* + (coCo)?) |F™|% (3,55)
B
from (3.2), (3.54), (3.55) and the fact that||F"||, — 0, we obtain
G" — 0in (L2 (6,7))4, n — 0o (3,56)

from (3.49), (3.50), (3.56) and as exp (B" (x — 3)),exp (B" (x — s)) are two bounded matrices,
we get V" — 0 in (L2 (ﬁ,fy))4 and consequently, we obtain (3.42) from (3.5) , (3.7) and (3.53),

we deduce that ) ., X
/ " ? da < 2()\”)2/ |u”|2dx+2/ ‘f;’”‘zdx
B B B

K 2C
<20 [ e S

il 9 9 vy 9 vy 9
/ |27 de < 2(A\") / ly"| dx—|—2/ | [ dw
B B B
K 2C
S L N R L

passing to the limit in the above inequalities, then using (3.2), (3.42) and the fact that || F"||;, — 0
,we obtain (3.43). The proof is thus complete.

Lemma 2.3 Let h € C* ([0, L)) be a function. Under the hypothesis (h), the solution U™ = (u™,v", y", 2", (.
D (A) of system (3.5)-(3.9) satis es the following equality

L
1
[ (G F 1 4 127 4 ) o
0

_ {h (2 S, (u”,uf,n”)|2)]j _ R {Q/OLC(.) hv”@dx}

L
+¥ {2 / c()h2"Sy (u", uf, ™) dx}
0

2\ (7 _
+§R{ A / hv”(klv;}—i-k:gnﬁ(.,l))dx}
0

L L
:3%{2/ hf;"v"dx} +§R{2/ hfZ" Sy (u", uy, n") dw}
0 a Jo

L L
+3fe{2 / h f%”z"da;} + R { / h fﬁ’"@dm}
0 0
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multiplying (3.6) and (3.8) by 2a7'S, (u”,u?,n") and 2hy” respectively,integrating over (0; L),

then taking the real part, we get
2 )\n L .
R { ! / ho" Sy (u™, ul, ") d:c} (3,57)
0

a

1 L
2 [ hs ), do
0

a

L
+R {g / c()h2"Sy (u", ul, ™) d:z:}
0

a

2 [k —
= {_/ hfg?’nsb (un7u?,,’,}n) d{E}

a Jo

and . .
m{zm / hzn@dx} - / h (7)), de (3,58)
0 0

L L
—R {2/ c(.) hz"y;‘dx} = 2R {/ hf;f’"@da:}
0 0

From (3.5) and (3.7), we deduce that

INUT =~ — f" (3,59)
I = —Zn — f3n (3,60)
from (3.59) and the de nition S, (u", u},n™), we have
_ —a (V7 + F77) X (b7 + ol (1)), € (0, 8)
iN" Sy (u", uy,n") = = (3,61)
~a (07 +117) 0 € (B,1)

Substituting (3.61) and (3.60) in (3.57) and (3.58) respectively, we obtain
L 1
=[RS R d
0 x

2\" (7 N
+§R{ A / ho" kvl 4 kon? (., 1) d:z:}
0

a

L
+3 {2 / c () h2"Sy (u", uf, ™) dx}
0

a

L L
— 3%{2/ hf%’”v"dx} +5R{2/ hfZ"Sy (u™,up,n™) dw}
0 a

0

and
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L L
_/ h(\z”|2+|yg|2)xda:—§)?{2/ c(.)hv”yZdaj}
0 0

L L
:9%{2/ hfjny—gd:c} +8%{2/ hfjny—gdx}
0 0

adding the above equations, then using integration by parts and the fact that v" (0) = v" (L) =0

and 2" (0) = 2" (L) = 0, we obtain the desired result. The proof is thus complete




Conclusion

In conclusion, the study of coupled wave equations with singular viscoelastic\elastic damping
with Time Delay singular couplings tability behaviors under certain conditions presents a com-
plex and intriguing research area. Understanding the interplay between different damping mech-
anisms and their effects on wave behavior is crucial for various applications in mathematics,
physics, and engineering, The stability of these dynamic systems opens promising prospects for
practical applications, such as dynamic system control and signal transmission. These advances
help to enrich our understanding of dynamic phenomena and stimulate technological innova-
tion.This summary highlights the important advances made in the study of coupled wave equa-
tions with time delay and their relevance for various scientific and technological fields. Future
research in this field may focus on exploring more sophisticated damping models, investigating
stability properties under different conditions, and extending the analysis to higher-dimensional
systems. By delving deeper into these topics, researchers can enhance our understanding of wave
dynamics and contribute to the development of advanced mathematical models for practical ap-

plications.
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