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 شكر و عرفان

و  ،ذ هو خالقناإنحمد الله و نشكره شكرا جزيلا 

امعينن  

.الظروفوقات و ولى بالشكر في كل الأفهو الأ  

نحمد الله عز و جل و نثني عليه الخير كله الذي 

 وفقنا

له ان يجعل هذا كلهأو نس ،تمام هذا العمللإ  

ن  ينفعنا به  و أخالصا لوجهه الكريم و 

.ينتفع به من بعدنا  

 و عرفان حترام و تقدير بشكرإتقدم بكل ا

رستاذ و البروفيسوللأ  

 الفاضل الذي كان موجهنا في البحث العلمي

الذي كان له الفضل الكبير في  ،"بومعزة نوري"

 شق الطريق نحو النجاح

.و على كل النصائح و التوجيهات  

ساتذة في تكويننا تقدم بالشكر لكل الأاكما 

 عبر مسيرتنا الدراسية

،لى الجامعةإبتدائية من الإ  

ب ى كل من قدم لنا يد المساعدة من قريبإلو 

و من بعيدأ  



 

 

 

 

 

 

 

 

 

 

 إهـــــــــــــــــداء 
 

 عالمينــــــلل مةـــــرح مبعوثـــــال شريةـــــالب علمـــــم و دايةــــاله ورــــن لىإ

 .لامــــــالس و لاةــــــالص ضلـــــأف ليهـــــع حمدــــــم يدناــــــس

  ريمينـــــالك والدينلـــــال لىإ
حبيبة قلبي وضياء دربي أمي الغالية التي غمرتني بعطفها وحنانها وسقتني بحبها حفظها 

 .الله وأطال في عمرها 

ألى الذي غرس في حب العمل وظل ينمو وينمو إلى أن أثمر وتفتحت أزهاره وفاح 

 عبيره هو أبي العزيز رحمه الله وأسكنه فسيح جنانه

 .العلم طريق لي نارأ و حرفا علمني من كل لىإ

 الى اخوتي واخواتي وفقهم الله وانار دربهم 

 الى زوجي الكريم اطال الله في عمره

 .المتواضع البحث هذا تمامإ في المساعدة يد لي قدم من كل لىإ
 

 

 

 

 

 

 

 

 



 

 

 

   

 

Résume  

 
Le but de ce travail est de donner des résultats liés aux équations d'ondes couplées localement avec 

un amortissement viscoélastique localisé non lisse de type Kelvin-Voigt et un retard temporel 
localisé (étudié par Mohammad Akil et al [1]). La recherche vise à étudier l'existence et l'unicité de 
la solutions sous des hypothèses appropriées utilisant la théorie des semi-groupes. En utilisant un 
critère général d'Arendt-Batty, nous montrons la forte stabilité de notre système en l'absence de 

compacité de la résolvante.  

Mots clés: Equation d’onde couplée, Amortissement de Kelvin-Voigt, retard temporel, stabilité 

forte, stabilité polynomiale, approche de domaine fréquentiel. 

Abstract 

The aim of this work is to give a results related to locally coupled wave equations with non-

smooth localized viscoelastic damping of Kelvin-Voigt type and localized time delay 

(studied by Mohammad Akil et al[1]). The research aims to study the existence and 

uniqueness of solutions under appropriate assumptions using semigroup theory. Using a 

general criterion of Arendt-Batty, we show the strong stability of our system in the absence 

of the compactness of the resolvent.  

Keywords: Coupled wave equation, delay term, Kelvin-Voigt damping, strong stability, 

polynomial stability, frequency domain approach. 

 ملخص

الهدف من هذا العمل هو إعطاء نتائج تتعلق بمعادلات الموجات المقترنة محلياً مع التخميد اللزج المرن الموضعي غير 

 دراسة(. يهدف البحث إلى [1]والتأخير الزمني الموضعي )درسه محمد عقيل وآخرون Kelvin-Voigt السلس من نوع 

 بين، ن باتي-أرندت العام معيارال. باستخدام أشباه الزمرنظرية مناسبة باستخدام  فرضياتالحلول في ظل  وحدانيةوجود و

 الاستقرار القوي لنظامنا في غياب تماسك المذيب

الحدود،  كثير: معادلة الموجة المقترنة، حد التأخير، تخميد كلفن فويغت، الاستقرار القوي، استقرار الكلمات المفتاحية

 .مجال التردد مقاربة
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Introduction

Elastic/viscoelasric coupled wave equations are among the most important equations in the fields

of applied mathematics and engineering physics. They are essential for describing and under-

standing the behavior of materials that exhibit elastic and viscoelastic characteristics when sub-

jected to external forces. In engineering, these equations model the response of different mate-

rials to stress and deformation, which aids in designing safer and more efficient structures and

products. In the realm of applied physics, these equations elucidate various natural phenomena,

such as the propagation of seismic waves and the transmission of sound waves through various

media, thereby enhancing the comprehension and analysis of these phenomena.

Our thesis dedicated to the study of the stability of local coupled wave equations with singular

localized viscoelastic damping of Kelvin-Voigt type and localized time delay, which is defined as

follows [1]:

(
utt � [aux + b (x) (k1utx + k2utx (x; t� �))g]x + c (x) yt = 0; (x; t) 2 (0; L)� (0;1)
ytt � yxx � c (x)ut = 0, (x; t) 2 (0; L)� (0;1)

(1)

Under the boundary conditions:

u (0; t) = u (L; t) = y (0; t) = y (L; t) = 0 t > 0

And the intial conditions:8>><>>:
(u (0; t) ; ut (0; t)) = (u0 (x) ; u1 (x)) x 2 (0; L)
(y (x; 0) ; yt (x; 0)) = (y0 (x) ; y1 (x)) x 2 (0; L)
(y (x; 0) ; yt (x; 0)) = (y0 (x) ; y1 (x)) x 2 (0; L)

where L; � ; a and k1 are positive real numbers, k2 is a non-zero real number and (u0; u1; y0; y1; f0)

belongs to a suitable space.

We suppose that there exists 0 < � < � < 
 < L and a non-zero constant c0,

such that

b (x) =

(
1; x 2 (0; �)
0; x 2 (�; L)

and
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c (x) =

(
c0;x 2 (�; 
)

0; x 2 (0; �) [ (
; L)

The system (1.1) consists of two wave equations. Where there is only one singular viscoelastic

damping acting on the first equation, while the second equation undergoes indirect damping

through a singular coupling between them. In this context, the presence of viscoelastic damping

in the first equation implies the impact of elastic and viscous properties on the wave behavior in

that equation.

On the other hand, the indirect damping of the second equation means that the damping effect

transmitted through a specific coupling between the two equations, reflecting a complex interac-

tion between the wave fields in the system

Many previous studies have addressed the stability of Elastic/viscoelastic coupled wave equations,

employing various mathematical techniques to analyze these systems. However, research focusing

on the impact of time delay on the stability of these equations remains limited.

The idea of indirect damping mechanisms presented by Russell in [46] has drawn the attention

of many authors (see, for example, [15, 16,17 ,18,19, 14, 20, 21]). The examination of these

systems is also prompted by various physical considerations, such as the Timo instance, [22,

23, 24, 25]). In fact, there are few results concerning the stability of coupled wave equations

with local Kelvin-Voigt damping without time delay, especially in the absence of smoothness of

the damping and coupling coefficients (see Subsection 1.2.1). The last motivates our interest to

study the stabilization of system (1.1) in the present paper.

In the recent years, there has been increasing interest among researchers in problems involving

this type of damping, with various types of stability bieng proposed, depending on the smoothnees

of the damping coefficients (see[26,27,28,29,30,31,32,33,34]. Let us briefly recall some systems

of wave equations Coupled wave equations with Kelvin-Voigt damping and without time delay, as

represented in the previous literature.

In 2020, Hayek et all in [47] studied the stabilization of a system of weakly coupled wave equa-

tions with one or two locally internal Kelvin–Voigt damping and non-smooth coefficient at the

interface.

Their research led to the establishment of various stability outcomes. Similarly, in 2021, Hassine

and Souayeh in [4] studied the behavior of a system with coupled wave equations with a partial

KelvinVoigt damping, by considering the following system.

List of Figures 5



List of Figures

8>>>>>>><>>>>>>>:

utt � (ux + b2 (x)utx)x + vt = 0 , (x; t) 2 (�1; 1)� (0;1)
ytt � cvxx � ut = 0; (x; t) 2 (�1; 1)� (0;1)
u (0; t) = v (0; t) = 0; u (1; t) = v (1; t) = 0 t > 0

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; x 2 (�1; 1)
v (x; 0) = v0 (x) , vt (x; 0) = v1 (x) , x 2 (�1; 1)

(1,2)

where c > 0, and b2 2 L1 (�1; 1) is a non-negative function they posited that the damping

coefficient follows a piecewise function, specifically suggesting that b2 (x) = d1[0;1] (x), where dd

is a strictly positive constant. Consequently, they took the damping coefficient to be near the

boundary with a global coupling coefficient. Their findings

revealed the lack of exponential stability, that the semigroup loses speed and it decays polynomi-

ally with a slower rate then given in [2], down to zero at least as t
�1
12 .

In 2021, Akil, Issa, and Wehbe, as documented in [3], extended the findings of Hassine and

Souayeh in [4] by demonstrating a polynomial decay rate of the form t-1, by considering the

following system

8>>>>>>><>>>>>>>:

utt � (aux + b (x)utx)x + c (x) yt = 0 , (x; t) 2 (0; L)� (0;1)
ytt � yxx � c (x)ut = 0 (x; t) 2 (0; L)� (0;1)
u (0; t) = u (L; t) = y (0; t) = y (L; t) = 0 t > 0

(u (0; t) ; ut (0; t)) = (u0 (x) ; u1 (x)) x 2 (0; L)
(y (x; 0) ; yt (x; 0)) = (y0 (x) ; y1 (x)) x 2 (0; L)

where

b (x) =

(
1; x 2 (�1; �2)
0; otherwise

and

c (x) =

(
c0;x 2 (�2; �4)
0; otherwise

where a > 0; b0 > 0; c0 > 0 and 0 < �1 < �2 < �3 < �4 < L:

They investigate the stabilization of a locally coupled wave equations with only one internal vis-

coelastic damping of Kelvin-Voigt type. A key innovation in their study lies in the fact that both

the damping and coupling coefficients are non-smooth. Additionally, the control of partial differ-

ential equations with time delays have become common among scientists.Time delays have been
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utilized in various applications, such as in physical, chemical, biological, and thermal phenom-

ena, because they no longer rely solely on the current state but also on past events (see [36, 35]).

This type of delay can lead to instances of instability (see [2, 12, 38, 39]). Let us briefly recall

some systems of wave equations with time delay and without Kelvin-Voigt damping.

In 2006, Nicaise and Pignotti, as documented in [5], examined the multidimensional wave equa-

tion under two scenarios. The initial scenario involves a wave equation with boundary feedback

and a delay term at the boundary:8>>>>>>><>>>>>>>:

utt (x; t)��u (x; t) = 0 , (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �D � (0;1)
@u
@v
(x; t) = 0 , (x; t) 2 �N � (0;1)

(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)) , x 2 

ut (x; t) = f0 (x; t) , (x; t) 2 �N � (�� ; 0)

(1,4)

The second scenario pertains to a wave equation featuring internal feedback and a delayed veloc-

ity term, specifically an internal delay, alongside a mixed Dirichlet-Neumann boundary condition.

8>>>>>>><>>>>>>>:

utt ��u+ �1ut + �2ut (x; t� �) = 0, (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �D � (0;1)
@u
@v
(x; t) = 0; (x; t) 2 �N � (0;1)

(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)); x 2 

ut (x; t) = f0; (x; t) 2 �N � (�� ; 0)

(1,5)

where 
 is an open bounded domain of RN with a boundary � of class C2 and �1 = �D[�N , such

that �D \ �N = ; . Under the assumption �2 < �2, an exponential decay achieved for the both

systems (1.4)-(1.5). In [6] Ait Benhassi et al studied the problem (1.5) in more general abstract

setting . The scope of stability analyses for second-order evolution equations with delay was

extended, enhancing the overall understanding of achieving stability in the analysis of dynamic

systems with delays and guides future research in this field .

In 2010.Ammari et al (see [7] studied the wave equation with interior delay damping and dissi-

pative undelayed boundary condition in an open domain 
 of RN , N � 2:The system is described

by:
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8>>>>>>><>>>>>>>:

utt (x; t)��u (x; t) + aut (x; t� �) = 0; (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �D � (0;1)
@u
@v
(x; t) = �kut (x; t) ; (x; t) 2 �1 � (0;1)

(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)); x 2 

ut (x; t) = f0 (x; t) ; (x; t) 2 
� (�� ; 0)

(1,6)

Where � > 0; a > 0 and k > 0:Under the condition that �1 satisfies the T-codition introduced

in [8], they proved that system (1,6) is uniformly asymptotically stable wheneverthe delay coefi-

ciently small .

In 2012, Pignotti, in [9], studied the following system8>>>><>>>>:
utt ��u+ a�wut + kut (x; t� �) = 0, (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �� (0;1)
(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)); x 2 

ut (x; t) = f (x; t) ; (x; t) 2 
� (�� ; 0)

(1,7)

where k 2 R; � > 0; a > 0 and w is the intersection betwen an open neighborhood of the set

�0 = fx 2 �; (x� x0) ; v (x) > 0g and 
 . Moreover ,�w is the characteristic function of w, which is

awave equation with intrernal distributed time delay and local damping in a bounded and smooth

domain 
 � RN ; N � 1:They proved an exponential stability result under some Lions geometric

condition. The proof of the main result is based on an identity with multipliers that allows to

obtain a uniform decay estimatefor a suitable Lyapunov functional.

Several studies have been conducted on wave equations with time delay affecting the boundary, as

evidenced by ([38, 40, 41, 42, 43, 44, 45]), and various types of stability have been demonstrated.

There has also been significant interest from many researchers in studying wave equations with

Kelvin-Voigt damping and time delay, among these studies :

In 2016, Messaoudi et al. in [10] considered the stabilization of the following wave equation

with strong time delay:8>>>><>>>>:
utt ��u+ �1ut + �2ut (x; t� �) = 0, (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �� (0;1)
(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)); x 2 

ut (x; t) = f0 (x; t) ; (x; t) 2 �N � (�� ; 0)

(1,8)

where �1 > 0 and �2 is a non zero real number. The equation can be considered as a Kelvin-

Voigt linear model for a viscoelastic material with a delayed response. Assuming j�2j < �1 ,
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they demonstrate well-posedness and establish an exponential decay result under appropriate

assumptions regarding the damping and delay weights.

In 2016, Nicaise et al. in [11] studied the stabilization problem for the wave equation with

localized Kelvin–Voigt damping and mixed boundary condition with time delay

8>>>>>>><>>>>>>>:

utt (x; t)��u (x; t)� div (a (x)rut) = 0, (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �0 � (0;1)
@u
@v
(x; t) = �a (x) @ut

@v
(x; t)� kut (x; t� �) ; (x; t) 2 �1 � (0;1)

(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)); x 2 

ut (x; t) = f0 (x; t) ; (x; t) 2 
� (�� ; 0)

(1,9)

where � > 0, k 2 R, a(x) 2 L1 (
) and a(x) � a0 > 0on w such that w � 
 is an open neigh-

borhood of �:By using a frequency domain approach we show that, and under an appropriate

geometric condition on �1 and assuming that a a 2 C1;1
�


�
;�a 2 L1 (
), an exponential stabil-

ity result holds. In this sense, this extends the result of [12] where, in a more general setting, the

case of distributed structural damping is considered.

In 2019, Anikushyn and al. in [13] considered an initial boundary value problem for a viscoelastic

wave equation subjected to a strong time localized delay in a Kelvin-Voigt type. The system is

given by the following:

8>>>>>>><>>>>>>>:

utt � c1�u � c2�u (x; t� �)� d1�ut � d1�ut (x; t� �) , (x; t) 2 
� (0;1)
u (x; t) = 0, (x; t) 2 �0 � (0;1)
@u
@v
(x; t) = 0, (x; t) 2 �1 � (0;1)

(u (x; 0) ; ut (x; 0)) = (u0 (x) ; u1 (x)); x 2 

ut (x; t) = f0 (x; t) , (x; t) 2 
� (�� ; 0)

(1,10)

The global exponential decay rate has been verified under appropriate conditions on the coef-

ficients, and the stability region in the parameter space has been further examined using Lya-

punov’s indirect method. Additionally, they have finally presented a numerical example from a

real-world application in biomechanics.

Our thesis is presented as follows: Firstly, it provides an introduction to the research topic, reviews

relevant literature, and lays out the theoretical framework for the study. The second chapter is

devoted to some preliminary notions, in which we define certain theorems and inequalities that

are heavily used in our work. In the third chapter, we will calculate the energy for this model and
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prove the well-posedness of our system using a semigroup approach based on the work of Mo-

hammad Akil et al [1]. Next, in chapter 4, by employing a general criterion of Arendt-Batty, we

demonstrate the strong stability of our system in the absence of compactness of the resolvent. Ad-

ditionally, by utilizing a frequency domain approach combined with a specific multiplier method,

we prove a polynomial energy decay rate of order t�1. Finally, we conclude with a summary and

a list of references used in this dissertation.

In this chapter we recall the main concepts that we will need, it devotes to the notions of the

theory of functional spaces, theorems, formulas and very inequalitiesused in our memory, As we

me ntion the theory of operators and semi group, because they are standard and known among

readers as they can be found in many mathematics references

0.1 Functional spaces

0.1.1 normed spaces

Definition 0.1 (Vector subspaces )

Let E be a vector space over field | , and let F be a subset of E . We say that F is a subspace of

E if and only if

1. F 6= ;

2. 8x 2 F;8y 2 F : x+ y 2 F . In other words F is stable through addition

3. 8x 2 F:For � 2 | : �x 2 F: in other words F is stable by scalair multiplication

Definition 0.2 (Normed vector spaces )

A linear vector space E is called a normalized space if for each elemt u 2 E there exists a real

number denoted by kuk verfying the axioms:

1) kuk = 0() u = 0;

2) ku+ vk � kuk+ kvk ;8u; v 2 |,

3) k�uk = j�j kuk ;8u 2 E; 8� 2 |:

Definition 0.3 (Cuchy suite )

0.1. Functional spaces 10
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Let be (E; k:k) normalized space and a sequence of elements of E , we say that the seqence .

East a continuation of Cauchy (un)n2N if

8" > 0;9n0 (�) ;8n;m � 0 =) kun � umk < �

0.1.2 Complet space

Definition 0.4 Let E be a vector space , we say that E is a complet space if any sequence of Cauchy

(un)n2N of space E converges to an elemnet u of E

0.1.3 Banach spaces

Definition 0.5 ( Banach spaces)

Let be (E; k:k) a normalized space , we say that E is a Banach space if E is a complet space

0.1.4 Hilbert space

Definition 0.6 (Scalar product )

Let H be vector space , we call application of H �H in the body K = C

defined by h:; :i is a dot produit if :

� hu; vi = hv; ui;for all u; v 2 H;

� h�u1 + u2; vi = � hu1; vi+ hu2; vi ;for all u; v 2 H,and � 2 C;

� hu; �vi = � hu; vi, for all � 2 C;

� hu; ui � 0 and hu; ui = 0() u = 0:

Definition 0.7 ( Hilbert space)

A Hilbert space is a Banach space (H; k:kH) complete normed space)

equipped with a scalar product for the associated norm

kukH = hu; ui
1
2 (i:e) kuk2H = hu; ui

0.1. Functional spaces 11
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0.1.5 The Lp(
) spaces

Definition 0.8 Let 1 � p � 1 and let 
 be an open domain in Rn, n 2 N

define the standard lebesgue space

Lp(
) by Lp(
) = fu : 
 �! R is measurable and
Z



ju(x)jp dx <1g:

the standard is noted :

kukp =
�Z




ju(x)jp dx
� 1

p

If p =1;we have

L1(
) = fu : 
 �! R is measurable and there exists a constant C suchthat ju(x)j � C i.e 2 
g
also , we denote by

kuk1 = esssup ju(x)j
x2


= inf fC; ju(x)j < C p.p on 
g

:

Proposition 0.1 Lp(
) menu of its norm k�kLp is a Banach space for all 1 � p � 1:

Definition 0.9 We say that a function u! R belongs to L1loc (
) for everything compact K � 
:

Definition 0.10 L2(
) is a Hilbert space, with the scalar product

hu; viL2(
) =
Z



u (x) v (x) dx; for everything u; v 2 L2(
)

Space Lp ((0; T ) ; E)

Definition 0.11 Let p 2 R .and 1 < p � 1 . we define the space of classes of functions Lp(
) with

Lp(
) =

�
u : 
! R: u is measurable and

Z



ju (x)jp dx < +1
�

the standard is noted by

kukLp =
�Z




ju (x)jp dx
� 1

p

0.1. Functional spaces 12
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Lemma 0.1 Let u 2 Lp ((0; T ) ; E) and @u
@t
2 Lp ((0; T ) ; E) ; ( 1 � p � 1) then the function u is

continuous of [0; T ] in E (i; e)u 2 C1 ((0; 1) ; E) :

0.1.6 Sobolev space

Weak derivative

Definition 0.12 Either2 
 an open of Rn ; 1 � i � n and u 2 L1loc(
) a function has weak i-th

derivative in L1loc(
) existe fi 2 L1loc(
) such as for everything ' 2 C10 (
) we have

Z



u(x)@i' (x) dx = �
Z



fi(x)' (x) dx

This amounts to saying that fi is the i-th derivative of u in the sense of distributions, we will write

@iu =
@u
@xi
= fi

space W 1;p(
)

Definition 0.13 Either 
 any open of Rn and p 2 R; 1 � p � +1; space W 1;p(
) is defined by

Wm;p(
) = fu 2 Lp(
); suchat @iu 2 Lp(
)g

or @iis the i-thweak derivative of u 2 L1loc(
)

space W 1;m(
)

Definition 0.14 Either 
 an open of Rn;m > 2 and p 2 R; 1 � p � +1, space W 1;p(
) is defined

by

W 1;m(
) = fu 2 Lp(
); sach tat D�u 2 Lp(
);8�; j�j � mg

or � 2 Nn; j�j = �1 + �2 + :::+ �n , and D� = @�11 :::@
�n
n is the weak derivative of u 2 L1loc(
) ,

space W 1;m(
) is provided by norme

kukWm;p(
) = kukLp(
) +
X

0<j��mj

kD�ukLp(
)

Definition 0.15 if p = 2; we note by Wm;2 (
) = Hm and Wm;2 (
) = Hm
0 (
) provided by the

standard

0.1. Functional spaces 13
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kukHm;2(
) = (
X
j�j�m

(k@�ukL2(
))2)
1
2

such that Hm (
) Hilbert space , with the dot product

hu; viHm(
) =
X
j�j�m

hD�u;D�vi
L2(
)

=
X
j�j�m

@�u@�vdx; foreverything u; v 2 Hm (
)

1) The space W 1;p(
) are Banach spaces .

2) if m = 0 we have W 0;p(
) = Lp(
):

0.2 Trace Theorem

Theorem 0.1 (of trace )

Either 
 a limited and regular open .We can define a linear and continouus application ,

� : H1 (
) �! L2(@
)

u �! � (u)

Extending the application trace for continuous functions on 
 for everything

u 2 H1 (
) \ C0
�


�
: � (u) = u p @


The trac application is continuous of H1 (
) in L2(@
) ,which means that there is a constant C

such as

k� (u)kL2(@
) � C
 kukH1(
)

0.3 Some useful formulas

Definition 0.16 ( Integration by part)

0.2. Trace Theorem 14
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Either (u; v) 2 H1 (
) , for everything 1 � i � n we haveZ



@u

@xi
vdx = �

Z



@v

@xi
udx+

Z
@


uv�id�:

or �i (x) = cos (�i; xi) is the direction cosine of the angle between the exterior normal has @


at the point and the axis of xi

0.4 Some useful inequalities

0.4.1 Teoreme (Cauchy schwartz inequality)

such as u; v 2 L2 (
)

����Z



uvdx

���� � Z t

0

juvj dx � (
Z



juj2) 12
�Z




jvj2 dx
� 1

2

(i.e)

kuvkL2(
) � kukL2(
) kvkL2(
)

0.4.2 Teoreme (Young algebraic inequality)

such as a; b 2 R+ we have :

jabj � � jaj2 + 1

4�
jbj2 ;with � > 0

0.4.3 Teoreme (Young inequality)

such as ( a; b) 2 R2 we have :

jabj � 1

P
jajP + 1

q
jbjq ;

or p; q strictly positive real numbers linked by the relation
�
1
p
+ 1

q
= 1
�

.

0.4.4 Formula (Young inequality with ")

such as " > 0 so for everything ( a; b) 2 R2;we have

jabj � " jajP + c (") jbjq ;

0.4. Some useful inequalities 15
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or p; q strictly positive real numbers linked by the relation
�
1
p
+ 1

q
= 1
�

, and c (") = 1
P
("p)

�q
p :

0.4.5 Formula (Minkowski inquality)

such as 1 � p � 1; we have

ku+ vkLp � kukLp + kvkLp

0.5 The operators

Let E and F be two Banach space , let us note k:k the standard with which they are provided .

Definition 0.17 (Linear operator)

Let E and F be two Banach space , A linear operator is a linear application

A : D (A) 2 E �! F

(i.e)

8 (u; v) 2 D (A)2 ; A (u; v) = Au+ Av:

8� 2 C; A (�u) = �Au

Definition 0.18 (Domen)

A linear operator A of E in F is a linear application A defined by on a subspace vector D (A) of

E called domain of A such that

D (A) = fu;Au 2 Fg:

A : D (A) � E �! F

we say that A is bounded if there exists C � 0 such that

0.5. The operators 16
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8u 2 D (A) ; kAukF � C kukE :

Other wise , A is said to be unbounded .

Definition 0.19 (GraphenNayaunImage)

The graph of A is the vector subspace of E � F denoted Gr (A) defined by

Gr (A) = f(u;Au) ; u 2 D (A)g:

We call nayau of A the subspace of E denoted ker (A) defined by:

ker (A) = fu 2 D (A) ; Au = 0g:

and Image of A the subspace of Fnoted Im (A) defined by:

Im (A) = A(D (A)) = fu 2 D (A) ; Au = 0g

:

We say that A is injective if ker (A) = f0g;and that A is surjective if Im (A) = F , The operator is

ijective and surjective.

Definition 0.20 (Invertible operator)

We say that an operator A of domain D (A) is invertible if

A : D (A) � E �! F

Is bijective and has an inverse,

A�1 : F �! D (A) � E;

bounded (as operator of F in E).

Definition 0.21 (Resolvante)

Let A be a linear operator (not necessarily continuous) defined on a Banach .For everything

complex number � such that (�I � A)�1 ; existe and is continuous ,we define the resolvent of A

by

R� = (�I � A)�1

0.5. The operators 17
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Set of values of � for which the resolvent exists and called the resolvan set note, p (A) :

The spectrum � (A) is the complement of the resolvon set :

� (A) = C�� (A) :

0.5.1 Dissipative operator

Definition 0.22 (Dissipative operator)

A linear operator A in E is said to be dissipative if we have :

8x 2 D (A) ;8� > 0; k�x� AxkE � � kxkE :

A is said to be m-dissipative if A is dissipative and for all � > 0;The operator �I � A is surjective

, (i.e),

8y 2 X;8� > 0;9x 2 D (A) ; �x� Ax = y

Theorem 0.2 If A is m-dissipative then for all � > 0 , the operator (�I � A) admits an inverse,

(�I � A)�1 y belongs to D (A) for everything y 2 X;and (�I � A)�1 is a linear operator bounded on

X checking 

(�I � A)�1


 � 1

�
:

Theorem 0.3 Let (A;D (A)) be an unbounded dissipative operator in X . The operator A is m-

dissipative if and only if:

9�0 > 0;8y 2 X;9x 2 D (A) ; �0x� Ax = y

:

Theorem 0.4 A operator (A;D (A)) ; linear unbounded in H, is dissipative if and only if:

9x 2 D (A) : hAx; xi � 0:

0.5. The operators 18
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0.5.2 Monotonic maximal operators

Definition 0.23 Let A : D (A) � H �! H a operator linear unbounded .We say that A is monotinic

if

(Av; v) � 0 8v 2 D (A)

A is maximal monotonic if in addition R (I + A) = H i.e,

8f 2 H;9u 2 D (A) for everything u+ Au = f:

Proposition 0.2 Let A a operator maximal monotonic .So

� D (A) is dense in H;

� A is closed,

� for everything � > 0; (I + �A) is bijictive of D (A) on H; (I + �A)�1 is a bounded operator

and. 

(I + �A)�1



L(H)

� 1:

Remark 0.1 Some authors say that A is accretive or that A is dissipative.

Definition 0.24 The operator A is lipchitz continuous if there exists M > 0 such that

kAu� AvkH �M ku� vkH 8u; v 2 H

0.6 Strongly continuus semigroup

the roughout this section (E; k:k) ; will denote a Banach space

Definition 0.25 (Strongly continuus semigroup)

A family of opertors (S (t))t�0 of $ (E) is a strongly continuous semigroup on E when the follow-

ing conditions are met

1) S (0) = I; (I is the identity operator on E ),

2) S (t+ s) = S (t)S (s) ; t; s � 0; (semigroup property ),

0.6. Strongly continuus semigroup 19
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3) for each x 2 X;S (t)x is continuous t on [0;1) :

This type of semigroup will simply be called a C0-semi group

Definition 0.26 A semigroup of bounded linear operators is said to be

1) Uniformly continuous if:

lim
t!0+

kS (t)� Ik = 0:

2) Strongly continuous or class C0 if:

lim
t!s

S (t)x� x = 0 , 8x 2 E

3) Class contraction semigroup C0 he’s classy C0 and:

kS (t)k � 1 , 8t � 0:

Remark 0.2 If (S (t))t�0 is a uniformly continuous semi group , then

lim
t�!s

kS (t)� S (s)k = 0:

0.6.1 Infinitesimal generator

Definition 0.27 The infinitesimal generator of S (t) is the linear operator A of domain

D (A) =

�
x 2 E lim

t!0+
S (t)x� x

t
; existe

�
defined by

Ax = lim
t!0+

S (t)x� x

t
; u 2 D (A)

Theorem 0.5 Let (A;D (A)) be the infinitesimal generator of a semigroup (S (t))t�0 strongly con-

tinuous on E : for all x0 2 D (A) ; x (t) = S (t)x0 is the unique solution of the problem

0.6. Strongly continuus semigroup 20
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x 2 C ([0;1)) ; D (A) \ C1 ([0;1)) ; E

x0 (t) = Ax (t)

0.6.2 Hille-Yosida

Theorem 0.6 An unbounded linear operator (A;D (A)) on X is the infinitesimal generator of a

C0.semigroup of contractions (S (t))t�0 if and only if.

� A is closed and D (A) = X;

� The resolvent set p (A) of A contains R+,and for all � > 0:



(�I � A)�1



$(X)

� ��1

0.6.3 Lummer-Phillips

Theorem 0.7 Let (A;D (A)) be an unbounded linear operator on X, with dense domain D (A) in

X. A is the infinitesimal generator of aC0-semigroup of contractions if and only if it is a m-dissipative

operator.

Theorem 0.8 Let (A;D (A)) be an unbounded linear operator on X. If A is dissipative with,

R (I � A) = X and X is reflexive then D (A) = X

Corollary 0.1 Let (A;D (A)) be an unbounded linear operator onH. A is the infinitesimal generator

of a C0-semigroup of contractions if and only if A is a m-dissipative operator.

Theorem 0.9 Let A be a linear operator with dense domain D (A) in a Hilbert space H.If A is

dissipative and 0 2 p (A), then A is the infinitesimal generator of a C0-semigroup of contractions on

H

Theorem 0.10 .Let (A; For U0 2 D(A); ) be an unbounded linear operator on H . Assume that A

is the infinitesimal generator of a C0-semigroup of contractions (S (t))t�0

1) ForU0 2 D (A), the problem admits a unique strong solution,

0.6. Strongly continuus semigroup 21
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U (t) = S (t)U0 2 C0
�
R+; D(A)

�
\ C1

�
R+; H

�
2) orU0 2 D (A), the problem admits a unique strong solution.

U (t) 2 C0
�
R+; H

�
0.6.4 Lax-Milgram

Definition 0.28 We say a bilinear form a (u; v) : H �H �! R:

i) Continues if there exists a constant C such that:

ja (u; v)j � c juj jvj 8u; v 2 H

ii) Coercive : if there is a constant � > 0 such that:

a (v; v) � � jvj2 8v 2 H

0.7 Stability of semigroup

Let (X; k:kX) be a Banach space, and H be a Hilbert space equipped with the inner product h:; :iH
and the induced norm k:kH .

Definition 0.29 Assume that A is the generator of a strongly continuous semigroup of contractions

(S (t))t�0 on X.

We say that the C0-semigroup (S (t))t�0 is

� Strongly stable if:

lim
t!+1

kS (t)ukX = 0 8u 2 X:

� Uniformly stable if:

0.7. Stability of semigroup 22
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lim
t!+1

kS (t)uk$(X) = 0:

� Exponentially stable if there exist two positive constants M and " such that:

kS (t)ukX �M exp(�"t) , 8t � 0; 8u 2 X:

� Polynomially stable if there exist two positive constants C and such that:

kS (t)ukX � Ct�� kukX 8t � 0; 8u 2 X:

0.7. Stability of semigroup 23



Chapter 1

Existence and Uniqueness of the solution

In this chapter we will calculate the energy for this model and demonstrate the local existence

and uniqueness of the solution, using semigroup theory Westudy thefollowing Problem

1.1 Statement of problem8>>>>>>>>>><>>>>>>>>>>:

utt � [aux + b (x) (k1utx + k2utx (x; t� �))g]x + c (x) yt = 0 (x; t) 2 (0; L)� (0;1)
ytt � yxx � c (x)ut = 0 (x; t) 2 (0; L)� (0;1)
u (0; t) = u (L; t) = y (0; t) = y (L; t) = 0 t > 0

(u (0; t) ; ut (0; t)) = (u0 (x) ; u1 (x)) x 2 (0; L)
(y (x; 0) ; yt (x; 0)) = (y0 (x) ; y1 (x)) x 2 (0; L)
(y (x; 0) ; yt (x; 0)) = (y0 (x) ; y1 (x)) x 2 (0; L)

where k1 and are L; � ; a positive real numbers, k2 is a non-zero real number and (u0; u1; y0; y1; f0)

belongs to a suitable space [1]. We suppose that there exists 0 < � < � < 
 < L and a non-zero

constant c0, such that:

b (x) =

(
1; x 2 (0; �)
0; x 2 (�; L)

and

c (x) =

(
c0;x 2 (�2; �4)
0; otherwise

In order to prove the existence and unity of the solution, we will change a new variable as

following [5]:

24



Chapter 1. Existence and Uniqueness of the solution

� (x; �; t) := ut (x; t� ��) , x 2 (0; �) � 2 (0; 1) ,t > 0 (2,1)

Then, system (1.1) becomes

utt � (Sb (u; ut; �))x + c (x) yt = 0, (x; t) 2 (0; L)� (0;1) (2,2)

ytt � yxx � c (x)ut = 0; (x; t) 2 (0; L)� (0;1) (2,3)

��t (x; �; t) + �� (x; �; t) = 0, (x; �; t) 2 (0; �)� (0; 1) � (0;1) (2,4)

where Sb (u; ut; �) := aux+b (x) (k1utx + k2utx (x; t� �)) : Moreover, from the definition of b(:), we

have

(Sb (u; ut; �)) := (2,5)(
S1 (u; ut; �) := aux + k1utx + k2�x (0; 1; t) x 2 (0; �)
aux; x 2 (�; L)

With the following boundary conditions(
u (0; t) = u (L; t) = y (0; t) = y (L; t) = 0; t > 0

� (0; �; t) := 0, (�; t) � (0; 1) � (0;1)
(2,6)

and the following initial conditions8>><>>:
u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; x 2 (0; L)
y0 (x; 0) = y0 (x) ; y1 (x; 0) = y1 (x) ; x 2 (0; L)
� (x; �; 0) = f0 (x;���) ; (x; �) 2 (0; �)� (0; 1)

(2,7)

1.1.1 Preliminaries and Assumptions

Throughout this works,we use the space

V =
�
u 2 H1 (
) j u = 0 on �1

	
the scalar products:

(u; v) =

Z



u (x) v (x) dx; (u; v)�0 = u (x) v (x) ds

1.1. Statement of problem 25



Chapter 1. Existence and Uniqueness of the solution

and the norms:

kuk
Lp(
)

=

�Z



jujp dx
�
; kuk

Lp(�0)
=

�Z



jujp ds
� 1

p

1.2 Energy of system

In this section we will calculate the energy for this model, the energy of system (2.2)-(2.7) is

given by

8>><>>:
E1 (t)=

1
2

R L
0

�
jutj2 + a kuxk2

�
dx, E2 (t)=

1
2

R L
0

�
kytk2 + kyxk2

�
dx

E3 (t)=
� jK2j
2

R �
0

R 1
0
j�x (:; �; t)j

2 d�dx

Lemma 1.1 Let (u; ut; y; yt; �) be a regular solution of system (2.2)-(2.7). Then, the energy E(t)

satisfes the following estimation

dE (t)

dt
� � (k1 � jk2j)

Z �

0

jutxj2 dx (2,9)

Proof. By multiplying equation (2.2) by ut and integrating over the (0; L),Z L

0

[utt � ((Sb (u; ut; �))x + c (x) y]utdx

then we tak the real part, we find

<
�Z L

0

uttutdx

�
�<

�Z L

0

Sb (u; ut; �)utdx

�
+ <

�Z L

0

c (x) yt

�
utdx = 0

1

2

d

dt

Z L

0

jutj2 dx�<
�Z L

0

Sb (u; ut; �)utdx

�
+<

�Z L

0

c (x) yt

�
utdx = 0

using integration by parts and substituting the terms (2.6),(A-B) from the definition

c (x) =

(
c0;x 2 (�; 
)

0; x 2 (0; �) [ (
; L)

From the above equation and the defnition of Sb (u; ut; �) and c(:),and integration by part with

(2,6) we obtien

1

2

d

dt
kutk2 dx+ <

�Z L

0

Sb (u; ut; �)uxtdx

�
+ <

�
c0

Z 


�

ytutdx

�
= 0
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Chapter 1. Existence and Uniqueness of the solution

from the definition of Sb (u; ut; �),we obtien

1

2

d

dt

Z L

0

kutk2 dx++<
�
a

Z L

0

uxuxtdx

�
+ <

�Z L

0

b (x) k1utxutxdx

�
+<

�
k2

Z L

0

�x (:; 1; t)utxdx

�
+ <

�
c0

Z L

0

ytutdx

�
= 0

1

2

d

dt

Z L

0

�
kvtk2 + a kuxk2

	
dx = �k1

Z �

0

jutxj2 dx

�<
�
k2

Z �

0

�x (:; 1; t)utxdx

�
�<

�
c0

Z 


�

ytutdx

�
= 0

Using Young’s inequality in the above equation, we get

1

dt
E1 (t) � �

�
k1 �

jk2j
2

�Z �

0

jutxj2 dx (1.1)

+
jk2j
2

Z �

0

j�x (:; 1; t)j
2 dx�<

�
c0

Z 


�

ytutdx

�
Then

E1 (t) =
1

2

Z L

0

�
jutj2 + a kuxk2

�
dx (2,10)

Now, multiplying (2.3) by yt, integrating over(0; L), using the definition of c(:), then taking the

real part, we get Z L

0

[ytt � yxx � c (x)ut] yt dx

Z L

0

yttyt dx�<
�Z L

0

yxxyt dx

�
�<

�Z L

0

c(x)utyt dx

�
= 0

Using the integration by part and with the definition of c(:), we deduce that

1

2

d

dt

�Z L

0

�
kytk2 + kyxk2

�
dx

�
= <

�
c0

Z �

�

utytdx

�
d

dt
E2 (t) = <

�
c0

Z 


�

utytdx

�
(1.2)

Then

E2 (t) =
1

2

Z L

0

�
kytk2 + kyxk2

�
dx (2,11)

1.2. Energy of system 27



Chapter 1. Existence and Uniqueness of the solution

We have

��t (:; �; t)+�� (:; �; t)= 0

Deriving (2.4) with respect to x, we obtain

��xt (:; �; t) + �x� (:; �; t) = 0 (2,12)

Multiplying (2.12) by jk2j �x (:; �; t), integrating over (0; �)� (0; 1),
then taking the real part, we get :Z �

0

Z 1

0

�� (:; �; t) jk2j �x (:; �; t) d�dx

+

Z �

0

Z 1

0

�x� (:; �; t) jk2j �x (:; �; t) d�dx = 0

� jk2j
2

d

dt

Z �

0

Z 1

0

j�x (:; �; t)j
2 d�dx

+
jk2j
2

d

d�

Z �

0

Z 1

0

j�x (:; �; t)j
2 d�dx = 0

d

dt
E3 (t) = �

jk2j
2
[

Z �

0

j�x (:; �; t)j
2 dx]10

�jk2j
2

�Z �

0

j�x (:; 1; t)j
2 �

Z �

0

j�x (:; 0; t)j
2 dx

�
Using that fact and taking such as �x (:; 0; t) = utx the part real we get

E3 (t) =
� jK2j
2

Z �

0

Z 1

0

j�x (:; �; t)j
2 d�dx (2,13)

Finally, adding (2.10), (2.11) and (2.13), we obtain (2.9). The proof is thus complete

d

dt
E (t) =

d

dt
(E1 (t) + E2 (t) + E3 (t))

� �
�
k1 �

jk2j
2

�Z �

0

jutxj2

+
jk2j
2

Z �

0

j�x (:; 1; t)j
2 dx�<

�
c0

Z 


�

utytdx

�
+<

�
c0

Z 


�

utytdx

�
� jk2j

2

Z �

0

j�x (:; 1; t)j
2 dx+

jk2j
2

Z �

0

jutxj2

Then
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d

dt
E (t) � �

�
k1 �

jk2j
2

�Z �

0

jutxj2

In the sequel, the assumption on k1 and k2 will ensure that

k1 > 0; k2 2 R�; jk2j < k1 (h)

Under the hypothesis (h) and from Lemma 2.1, the system (2.2)-(2.7) is dissipative in the sense

that its energy is non-increasing with respect to time (i.e.E0 (t) � 0). Let us de ne the Hilbert

space H by

H :=
�
H1
0 (0; L)� L2 (0; 1)

�2 �W

where

W := L2 (0; 1) ;H1
L (0; �) and H1

L (0; �) := fe� 2 H (0; �) ng e� (0) = 0:
The space W is an Hilbert space of H1

L (0; �) valued functions on (0; 1) , equipped with the follow-

ing inner product

�
�1; �2

�
W :=

Z �

0

Z 1

0

�1x�
2
xd�dx 8�1; �2 2 W:

The Hilbert space H is equipped with the following inner product

�
U;U1

�
H
=

Z L

0

�
auxu1x + vv1 + yxy1x + zz1

�
dx (2,14)

+� jk2j
Z �

0

Z 1

0

�x (:; �)x �
1
x (:; �) d�dx

where U = (u; v; y; z; �1 (:; �))
T , U1 = (u1; v1; y1; z1; �1 (:; �))

T 2 H Now, we de ne the linear

unbounded operator

A : D (A) � H �! H

with the domene

D (A) =

(
U = (u; v; y; z; �1 (:; �))

T 2 Hny 2 H2
0 (0; L) \H1

0 (0; L) ,v; z 2 H1
0 (0; L)

(Sb (u; ut; �))x 2 L2 (0; 1) ; �� (:; �) 2 W; � (:; 0) = v (:) in (0; �)

We have the system (2,4),(2,2)8>><>>:
utt � (Sb (u; ut; �))x + c (x) yt = 0

ytt � yxx � c (x)ut = 0

��t (x; �; t) + �� (x; �; t) = 0
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and from him 8>><>>:
utt = (Sb (u; ut; �))x � c (x) yt

ytt = yxx + c (x)ut

��t (x; �; t) = ��� (x; �; t)

and from him 8>><>>:
utt = (Sb (u; ut; �))x � c (x) yt

ytt = yxx + c (x)ut

�t (x; �; t) = ���1�� (x; �; t)

We pose v = ut and yt = z

So 8>><>>:
vt = (Sb (u; v; �))x � c (x) yt

zt = yxx + c (x) v

�t (:; �) = ���� (:; �)
(*)

We pose

U = (u; ut; y; yt; �) ; U = (u; v; y; z; �)

We transform the system (*) to Cauchy system

Ut = AU8>>>>>>><>>>>>>>:

ut

vt

yt

zt

�t

9>>>>>>>=>>>>>>>;
=

0BBBBBBB@

v

(Sb (u; v; �))x � c (:) yt

z

yxx + c (:) v

���� (:; �)

1CCCCCCCA
(2,15)

for all

U = (u; v; y; z; � (:; �))T 2 D (A)

Now, if U = (u; v; y; z; � (:; �))T , then system (2.2)-(2.7) can be written as the following firrst

order evolution equation

Ut = AU , U (0) = U0 (2,16)

where

U0 = (u0; u1; y0; f0 (:; �))
T 2 H
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Remark 1.1 The linear unbounded operator A is injective (i.e.ker (A) = f0g. Indeed, if U 2 D (A)

such that AU = 0, then v = z = � (:; �) = 0 and since � (:; 0) = v (:) , we get � (:; �) = 0

Consequently, (Sb (u; ut; �))x = auxx = 0 and yxx = 0. Now, since u (0) = u (L) = y (0) = y (L) = 0,

then u = y = 0: Thus U = (u; v; y; z; � (:; �))T = 0

1.3 Local Existence

In this section we will demonstrate the local existence and uniqueness of solution , using semi-

group theory. Wea the solvability of the problem (2,14) (2,15) is ensured by the following

proposition.

Proposition 1.1 Under the hypothesis (h), the unbounded linear operator A is m-dissipative in the

energy space H.

Proof. For all ,U = (u; v; y; z; � (:; �))T 2 D (A) from (2.14) and (2.15), and taking the part real

we define the scalar product on the energy space H as follows

< (AU;U)H = <

8>>>>>>><>>>>>>>:

0BBBBBBB@

v

(Sb (u; v; �))x � c (:) yt

z

yxx + c (:) v

���� (:; �)

1CCCCCCCA
;

8>>>>>>><>>>>>>>:

u

v

y

z

�

9>>>>>>>=>>>>>>>;

9>>>>>>>=>>>>>>>;

< (AU;U)H = <
�Z L

0

avxuxdx

�
�<

�Z L

0

(Sb (u; ut; �))x vdx

�
+<

�Z L

0

zxyxdx

�
�<fyxxzdxg � <

�
jk2j
2

Z �

0

Z 1

0

d

d�
j�x (:; �)j

2 d�dx

�

we apply integration by part with respect to x on 


< (AU;U)H = <
�Z L

0

avxuxdx

�
�<

�Z L

0

avxuxdx

�

= <
�Z L

0

avxuxdx

�
+ <

�Z L

0

(Sb (u; ut; �))x vdx

�
+<

�Z L

0

zxyxdx

�
+ <fyxxzdxg � <

�
jk2j

Z �

0

Z 1

0

�x� (:; �) �x (:; �) d�dx

�
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Using integration by parts to the second and fourth terms in the above equation, then using the

definition of Sb (u; ut; �) and the fact that U 2 D (A), we get

< (AU;U)H = �<
�
k1

Z �

0

vxvxdx

�
�<

�
k2

Z �

0

�x (:; 1) vxdx

�
+<

�Z L

0

zxyxdx

�
�<

�Z L

0

zxyxdx

�
� k2
2

Z �

0

Z 1

0

d

d�
j�x (:; �)j

2 d�dx

we find

< (AU;U)H = �k1
Z �

0

jvxj2 dx�<
�
k2

Z �

0

�x (:; 1) vxdx

�
� k2
2

Z �

0

Z 1

0

d

d�
j�x (:; �)j

2 d�dx (*)

the fact that � (:; 0) = v (:) in (0; �), implies that

< (AU;U)H = �k1
Z �

0

jvxj2 dx�<
�
k2

Z �

0

�x (:; 1) vxdx

�
� k2
2

Z �

0

Z 1

0

d

d�
j�x (:; �)j

2 d�dx

we find

< (AU;U)H = �k1
Z �

0

jvxj2 dx�<
�
k2

Z �

0

�x (:; 1) vxdx�
k2
2

Z �

0

j�x (:; �)j
2 dx

�
� j�x (:; 0)j

2 dx

then (*) becoms

< (AU;U)H = �
�
k1 �

jk2j
2

�Z �

0

jvxj2 dx�
jk2j
2

Z �

0

j�x (:; 1)j
2 :

�<
�
k2

Z �

0

�x (:; 1) vxdx

�
Using Young’s inequality in the above equation and the hypothesis (h), we obtain

< (AU;U)H � � (k1 � jk2j)
Z �

0

jvxj2 dx (2,17)

from this conclude that

< (AU;U)H � 0

which implies that A is dissipative. Now, let us prove thatA is maximal. For this aim, let F =

(f 1; f2; f3; f4; f5 (:; �))
T 2 H,

we look for U = (u; v; y; z; � (:; �))T 2 D (A) unique solution of
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� AU = F (2,18)

Equivalently, we have the following system

� v = f 1 (2,19)

� (Sb (u; ut; �))x + c (:) z = f 2 (2,20)

� z = f 3 (2,21)

� yxx � c (:) v = f 4 (2,22)

� ��1�� (:; �) = f 5 (:; �) (2,23)

with the following boundary conditions

u (0) = u (L) = y (0) = y (L) = 0; � (0; �) = 0 (2,24)

and � (:; 0) = v (:) in (0; �)

From (2.19), (2.23) and (2.24), we get

��1�� (:; �)= f
5 (:; �)

Z �

0

�� (�; �) ds= �
Z �

0

f
5

(�; �) ds

� (x; �)� � (0; �) = �
Z �

0

f
5

(�; �) ds

� (x; �) = �

Z �

0

f
5

(�; �) ds+ v (�)�v (�) = �f1

� (x; �) = �

Z �

0

f 5 (x; s) ds� f 1; (x; �) 2 (0; �)� (0; 1) (2,25)

Since,f 1 2 H1
0 (0; L) and f 5 (:; �) 2 W . Then, from (2.23) and (2.25), we get �� (:; �) ; � (:; �) 2 W:

Now, see the de nition of Sb (u; ut; �), substituting (2.19), (2.21) and (2.25) in (2.20) and (2.22),

we get the following system
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�
Sb

�
u; f 1; �

Z 1

0

f 5 (x; s) ds� f 1
��

x

+ c (:) f 3 = �f 2 (2,26)

� yxx � c (:) f 1 = �f 4 (2,27)

u (0) = u (L) = y (0) = y (L) = 0 (2,28)

where

Sb

�
u;�f 1; �

Z 1

0

f 5 (x; s) ds� f 1
�

=

(
aux � (k1 + k2) f

1
x + �k2

R 1
0
f 5x (:; s) ds; x 2 (0; �)

aux, x 2 (�; L)

Let (�;  ) 2 H1
0 (0; L)�H1

0 (0; L) :Multiplying (2.26) and (2.27) by � and  respectively, integrat-

ing over (0; L),

8<:
R L
0

h
Sb

�
u; f 1; �

R 1
0
f 5 (x; s) ds� f 1

�i
x
�dx+

R L
0
c (:) f 3�dx = �

R L
0
f 2�dx

�
R L
0
y
xx
 dx�

R L
0
c (:) f1 dx= �

R L
0
f
4
 dx

then using formal integrations by parts, we obtain8<: �
R L
0
Sb

�
u; f 1; �

R 1
0
f 5 (x; s) ds� f 1

�
�xdx+

R L
0
c (:) f 3�dx = �

R L
0
f 2�dx

�
R L
0
y
x
 xdx�

R L
0
c (:) f1 dx= �

R L
0
f
4
 dx

(
a
R L
0
ux�xdx�

R �
0
(k1 + k2) f

1
x�dx+

R �
0
�k2

R 1
0
f 5x (�; s) ds�dx�

R L
0
c (:) f 3�dx =

R L
0
f 2�dxR L

0
y
x
 xdx =

R L
0
f4 dx� c0

R 

�
f1 dx

a

Z L

0

ux�xdx =

Z L

0

f 2�dx+ c0

Z 


�

f 3�dx (2,29)

+(k1 + k2)

Z �

0

f 1x�xdx� �k2

Z �

0

�Z 1

0

f 5 (:; s) ds

�
�xdx

and Z L

0

yx xdx =

Z L

0

f 4 dx� c0

Z 


�

f 1 dx (2,30)

Adding (2.29) and (2.30), we obtain
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B ((u; y) ; (�;  )) = $ (�;  ) ;8 (�;  ) 2 H1
0 (0; L)�H1

0 (0; L) (2,31)

where

B ((u; y) ; (�;  )) = a

Z L

0

ux�xdx+

Z L

0

yx xdx

and

$ (�;  ) =

Z L

0

�
f 2�+ f 4 

�
dx+ c0

Z 


�

�
f 3�� f 1 

�
dx

��k2
Z �

0

�Z 1

0

f 5 (:; s) ds

�
�xdx+ (k1 + k2)

Z �

0

f 1x�xdx

It is easy to see that,B is a sesquilinear, continuous and coercive form on H1
0 (0; L)� (H1

0 (0; L))
2

, and $ is a linear and continuous form on H1
0 (0; L)�H1

0 (0; L) :Then,

it follows by Lax-Milgram theorem that (2.31) admits a unique solution (u; y) 2 H1
0 (0; L) �

H1
0 (0; L) .

By using the classical elliptic regularity, we deduce that system (2.26)-(2.28) admits a unique

solution (u; y) 2 �H1
0 (0; L)� (H2

0 (0; L) \H1
0 (0; L)) such that (Sb (u; v; �))x 2 L2 (0; 1)

and sinc ker (A) = f0g , we get U =
�
u;�f�1; y;�f 3; �

R �
0
(:; s) ds� f�1

�
2 D (A) is a unique

solution of (2.18).

Then ,A is an isomorphism and since �(A) is open set of C we easily get R (�I � A) = H for a su

ciently smal � > 0 This, together with the dissipativeness of A, imply that D(A) is dense in H and

that A is m-dissipative in H:

According to Lumer-Phillips theorem Proposition 2.1 implies that the well-posedness of (2.16).

Then, we have the following result:

Theorem 1.1 Under the hypothesis (h), for all U0 2 H, system (2.16) admits a unique weak solu-

tion:

U (x; �; t) = exp (At)U0 (x; �) 2 C0
�
R+; H

�
:

Moreover, U0 ifD(A); then system (2.16) admits a unique strong solutionU (x; �; t) = exp (At)U0 (x; �) 2
C0 (R+; D (A)) \ C1R+

U (x; �; t) = exp (At)U0 (x; �) 2 C0
�
R+; H

�
\ C1

�
R+; D (A)

�
:
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stability

2.1 Strong stability

In this section , we will prove the strong stability of systeme (2,2)-(2,7)

utt � (Sb (u; v; �))x + c (:) yt = 0; (x; t)2 (0; L)� (0;1)

(2,7) the initial conditions8>><>>:
u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; x 2 (0; L)
y0 (x; 0) = y0 (x) ; y1 (x; 0) = y1 (x) ; x 2 (0; L)
� (x; �; 0) = f0 (x;���) ; (x; �) 2 (0; �)� (0; 1)

the main result of this section is the following theorem

Theorem 2.1 Assume that (h) is true. Then, the C0-semigroup of contraction (exp (At))t�0 is

strongly stable in H; i.e, for al U0 2 H,

the solution of (2.16) satisfies :

lim
t!+1

kexp (At)U0kH = 0

Proposition 2.1 Under the hypothesis (h), we have

iR � � (A) (3,1)

We will prove Proposition 3.1 by contradiction argument. Remark that, it has been proved in

Proposition 2.1 that 0 2 � (A) Now, suppose that (3.1) is false, then there exists w 2 R�such tha

iw =2 � (A) ;
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let
n
�n; Un := (un; vn; yn; zn; �n (:; �))T

o
n�1

� R� �D(A), with

�n �! w as n �!1 and j�nj < jwj (3,2)

and

kUnkH =



(un; vn; yn; zn; �n (:; �))T




H
= 1 (3,3)

such that

(i�n � A)Un = F n :=
�
f 1;n; f2;n; f3;n; f4;n; f5;n (:; �)

�T �! 0 in H (3,4)

Equivalently, we have

i�nUn � Un = f 1;n �! 0 in H1
0 (0; L) (3,5)

i�nUn � (Sb (u; ut; �))x + c (:) zn = f 2;n �! 0 in L2 (0; L) (3,6)

i�nUn � zn = f 3;n �! 0 in �! 0 in H1
0 (0; L) (3,7)

i�nzn � ynxx � c (:) vn = f 4;n �! 0 in L2 (0; L) (3,8)

i�nzn�n� (:; �) + ��1�n� (:; �) = f 5;n (:; �) �! 0 in W (3,9)

Then , we will proof condition (3,2) by finding a contraction with (3,3) such as kUnkH ! 0; the

proof proposition (3,1) has been divided into several

Lemma 2.1 Under the hypothesis (h), the solution Un := (un; vn; yn; zn; �n (:; �))T 2 D(A)

of system (3.5)-(3.9) satis es the following limits

lim
n!1

Z �

0

jvnx j
2 dx = 0 (3,10)

lim
n!1

Z �

0

jvnj2 dx = 0 (3,11)

lim
n!1

Z �

0

junxj
2 dx = 0 (3,12)

lim
n!1

Z �

0

Z 1

0

���n� (:; �)��2 d�dx = 0 (3,13)

lim
n!1

Z �

0

���n� (:; 1)��2 dx = 0 (3,14)

lim
n!1

Z �

0

jSb (un; unt ; �n)j
2 dx = 0 (3,15)
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Proof. First, taking the inner product of (3.4) with Un in H and using (2.17) with the help of

hypothesis (h),

we obtain

< (AUn; Un) � � (k1 � jk2j)
Z �

0

jvnx j
2 dx

Z �

0

jvnx j
2 dx � � 1

k1 � jk2j
< (AUn; Un)H (3,16)

=
1

k1 � jk2j
< (F n; Un)H �

1

k1 � jk2j
kF nkH kUnkH ! 0

lim
n!1

Z �

0

jvnx j
2 dx = 0

< (AUn; Un) = < ((i�nI � A)Un; Un) = < (�AUn; Un) = < (F n; Un)

so

�AU = F n =) AU = F n

Passing to the limit in (3.16), then using the fact that kUnkH = 1 and kF nkH �! 0 we obtain

(3.10). Now,

since vn 2 H1
0 (0; L) ;

then it follows from Poincare inequality that there exists a constant C� > 0 such that

kvnkL2(0;�) � C� kvnxk
L2(0;�)

(3,17)

Thus, from (3.10) R and (3.17), we obtain (3.11). Next, from (3.5) and the fact that

according to (3,11)

lim
n!1

Z �

0

jvnj2 dx = 0

Z �

0

��f 1;nx ��2 dx � Z L

0

��f 1;nx ��2 dx � 1

�
kF nk2H ,we deduce that (2.1)Z �

0

junxj
2 dx � 2

(�n)2

Z �

0

jvnx j
2 dx+

2

(�n)2

Z �

0

��f 1;nx ��2
� 2

(�n)2

Z �

0

jvnx j
2 dx+

2

(�n)2
kF nk2H (3,18)

Passing to the limit in (3.18), then using (3.2), (3.10) and the fact that kF nkH �! 0

we obtain (3.12). Moreover, from (3.9) and the fact that �n (:; 0) = vn (:)
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in (0; �) ;we deduce that

�n (x; �) = vn exp (�i�n��) + �

Z �

0

exp (�i�n� (s� �)) f 5;n (x; s) ds; (3,19)

(x; �) 2 (0; �)� (0; 1)

From (3.19), and the fact that � 2 (0; 1) and
R �
0

R 1
0
jf 5;n (:; s)j dsdx � 1

� jk2j kF
nkH :

we obtain Z �

0

Z 1

0

j�nx (:; �)j
2 d�dx � 2

Z �

0

jvnx j
2 dx

Z �

0

Z 1

0

Z �

0

�
��f 5;n (:; s)��2 dsd�dx

� 2
Z �

0

jvnx j
2 dx+ 2� 2

Z �

0

Z 1

0

Z 1

0

�
��f 5;n (:; s)��2 dsd�dx

= 2

Z �

0

jvnx j
2 dx+ 2� 2

�Z 1

0

�d�

�Z �

0

Z 1

0

��f 5;n (:; s)��2 dsdx
= 2

Z �

0

jvnx j
2 dx+ � 2

Z �

0

Z 1

0

��f 5;n (:; s)��2 dsdx
� 2

Z �

0

jvnx j
2 dx+ � jk2j_1 kF nk2H

Passing to the limit in the above inequality, then using (3.10) and the fact that kF nkH �! 0 ,

we obtain (3.13). On the other hand, from (3.19), we have

�nx (:; 1) = vnx exp (�i�n�) + �

Z 1

0

exp (�i�n� (s� 1)) f 5;n (:; s) ds

consequently, by using the same argument as proof of (3.13), we obtain (3.14). Next, it is clear

to see that Z �

0

jS1 (un; unt ; �n)j
2 =

Z �

0

jaunx + k1v
n
x + k2�

n
x (:; 1)j

2 dx

� 3a2
Z �

0

junxj
2 dx+ 3k22

Z �

0

j�nx (:; �)j
2 dx

Finally, passing to the limit in the above inequality, then using (3.10), (3.12) and (3.14),

we obtain (3.15). The proof is thus complete. Now, we x a function g 2 C1 ([�; �]) such that

g (�) = �g (�) = 1and set max
x2[�;�]

jg (x)j =Mg (3,20)

and max
x2[�;�]

jg0 (x)j =Mg0

Lemma 2.2 Under the hypothesis (h), the solution Un := (un; vn; yn; zn; �n (:; �))T 2 D (A)
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of system (3.5)-(3.9) satis es the following inequalities

jzn (�)j2 + jzn (�)j2 �Mg0

Z �

0

jznj2 dx (3,21)

+2 j�njMg

�Z �

�

jznj2 dx
� 1

2

+ 2Mg kF nkH

jynx (�)j
2 + jynx (�)j

2 �Mg0

Z �

0

jynx j
2 dx (3,22)

+2 (j�nj+ C0)Mg

�Z �

�

jY n
x j
2 dx

� 1
2

+ 2Mg kF nkH

and the following limits

lim
n!1

jvn (�)j = 0 and lim
n!1

jvn (�)j = 0 (3,23)

lim
n!1

j(Sb (un; unt ; �n)) (�)j = 0 and lim
n!1

j(Sb (un; unt ; �n)) (�)j = 0 (3,24)

Proof. from (3.7),we deduce that

i�nynx � znx = f 3;nx (3,25)

Multiplying (3.25) and (3.8) by 2g zn and 2g ynx respectively, integrating over (�; �) ;

using the definition of c(:), then taking the real part, we get

<
�
2i�n

Z �

�

gynxz
ndx

�
�
Z �

�

g
�
jznj2

�
x
dx = <

�
2

Z �

�

gf3;nx zndx

�
(3,26)

and

<
�
2i�n

Z �

�

gynxz
ndx

�
�
Z �

�

g
�
jynx j

2�
x
dx (3,27)

�<
�
2c0

Z �

�

gvnynxdx

�
= <

�
2

Z �

�

gf4;nynx

�

Using integration by parts in (3.26) and (3.27), we obtain

�
�g jznj2

��
�
= �

Z �

�

g0 jznj2 dx�<
�
2i�n

Z �

�

gynxz
ndx

�
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+<
�
2

Z �

�

gf3;nx zndx

�
and �

�g jynx j
2��
�
= �

Z �

�

g0 jynx j
2 dx�<

�
2i�n

Z �

�

gznynxdx

�
+<

�
2c0

Z �

�

gvnynxdx

�
+ <

�
2

Z �

�

Z �

�

gf4;nx ynxdx

�
Using the definition of g and Cauchy-Schwarz inequality in the above equations,

we obtain

jzn (�)j2 + jzn (�)j2 �Mg0

Z �

�

jznj2 dx

+2 j�njMg

�Z �

�

jynx j
2 dx

� 1
2
�Z �

�

jznj2 dx
� 1

2

+2Mg

�Z �

�

��f 3;nx ��2 dx� 1
2
�Z �

�

jznj2 dx
� 1

2

and

jynx (�)j
2 + jynx (�)j

2 �Mg0

Z �

�

jynx j
2 dx

+2 j�njMg

�Z �

�

jynx j
2 dx

� 1
2
�Z �

�

jznj2 dx
� 1

2

+2 jc0jMg

�Z �

�

jynx j
2 dx

� 1
2
�Z �

�

jvnj2 dx
� 1

2

+2Mg

�Z �

�

��f 4;nx ��2 dx� 1
2
�Z �

�

jynx j
2 dx

� 1
2

The refore, from the above inequalities and the fact that
R �
�
j�n1 j

2 dx �
R L
0
j�n1 j

2 dx � kUnk2H = 1

with �n1 2 fvn; ynx ; zng
and

R �
�
j�n1 j

2 dx �
R L
0
j�n2 j

2 dx � kF nk2H with �n2 2 ff 3;nx ; f4;nx g, we obtain (3.21) and (3.22). On the

other hand, from (3.5),

we deduce that

i�nunx � vnx = f 1;nx (3,28)

Multiplying (3.28) and (3.6) by 2gvn and 2gS1 (un; unt ; �
n) respectively, integrating over (�; �),

using the definition of c(:) and Sb (un; unt ; �
n), then taking the real part,

we get

<
�
2i�n

Z �

�

gunxvn

�
dx�

Z �

�

g (jvnj)x dx (3,29)
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and

= <
�
2

Z �

�

gf1;nx vndx

�
<
�
2i�n

Z �

�

gvnS1 (u
n; unt ; �

n) dx

�
(3,30)

�
Z �

�

g (jS1 (un; unt ; �n)j)x dx

+<
�
2c0

Z �

�

gznS1 (u
n; unt ; �

n) dx

�
= <

�
2

Z �

�

gf2;nx S1 (u
n; unt ; �

n) dx

�

Using integration by parts in (3.29) and (3.30), we get

�
�g jvnj2

��
�
= �

Z �

�

g0 jvnj2 dx�<
�
2i�n

Z �

�

gunxv
ndx

�
+<

�
2

Z �

�

gf1;nx vndx

�
and

�
�g jS1 (un; unt ; �n)j

2��
�

= �
Z �

�

g0 jS1 (un; unt ; �n)j
2 dx

�<
�
2i�n

Z �

�

gvnS1 (u
n; unt ; �

n) dx

�
�<

�
2c0

Z �

�

gznS1 (u
n; unt ; �

n) dx

�

+<
�
2

Z �

�

gf2;nx S1 (u
n; unt ; �

n) dx

�
Using the definition of g and Cauchy-Schwarz inequality in the above equations,

then using the fact that( R �
�
jznj2 dx �

R L
0
jznj2 dx � kUnk2H = 1;

R �
�
jf 1;nx j2 dx �

R L
0
jf 1;nx j2 dx � 1

a
kF nk2H

and
R �
�
jf 2;nx j2 dx �

R L
0
jf 2;nx j2 dx � kF nk2H

we obtain

jvn (�)j2 + jvn (�)j2 �Mg0
Z �

�

jvnj2 dx
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+2 j�njMg

�Z �

�

junxj
2 dx

� 1
2
�Z �

�

jvnj2 dx
� 1

2

+
2p
a
Mg

�Z �

�

jvnj2 dx
� 1

2

kF nk2H

and ��(S1 (un; unt ; �n)) ������2 + ��(S1 (un; unt ; �n)) ������2

�Mg0
Z �

�

jS1 (un; unt ; �n)j
2 dx+ 2 j�njMg

�Z �

�

jS1 (un; unt ; �n)j
2 dx

� 1
2
�Z �

�

jvnj2 dx
� 1

2

+2c0Mg

�Z �

�

jS1 (un; unt ; �n)j
2 dx

� 1
2

+Mg

�Z �

�

jS1 (un; unt ; �n)j
2 dx

� 1
2

kF nkH

Finally, passing to limit in the above inequalities, then using (3.2), Lemma 3.1

and the fact that kF nk2H ! 0 , we obtain (3.23) and (3.24). The proof is thus complete.

From (3.2), (3.21), (3.22), and the fact that jUnjH = 1 and kF nkH ! 0, we obtain

jzn (�)j ; jzn (�)j ; jynx (�)j ; jynx (�)j are bounded (3,32)

The solution Un := (un; vn; yn; zn; �n (:; �))T 2 D(A) of system (3.5)-(3.8) satis es the following

limits

lim

Z �

�
n!1

jznj2 dx = 0 and lim

Z �

�
n!1

jynx j
2 dx = 0 (3,33)

multiplying (3.6) by zn , integrating over (�; �), using the definition of c (:) and Sn (u
n; unt ; �

n) ;

then taking the real part, we get

<
�
i�n
Z �

�

vnzndx

�
�<

�Z �

�

S1 (u
n; unt ; �

n)x z
ndx

�
(3,34)

+c0

Z �

�

jznj2 dx = <
�Z �

�

f 2;nx zndx

�
From (3.7), we deduce that

znx = �i�nynx � f 3;nx (3,35)
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Using integration by parts to the second term in (3.34), then using (3.35), we get

c0

Z �

�

jznj2 dx (3,36)

<
�
i�n
Z �

�

S1 (u
n; unt ; �

n) ynxdx

�
+<

�Z �

�

S1 (u
n; unt ; �

n) f 3;nx dx

�
+ <

n
[S (1u

n; unt ; �
n) zn]

�
�

o
+<

�Z �

�

f 2;nx zndx

�
�<

�
i�n
Z �

�

vnzndx

�
Using Cauchy-Schwarz inequality in the above equation and the fact thatR �
�
j�n1 j

2 dx �
R L
0
j�n1 j

2 dx � kUnk2H = 1
with �n1 2 fynx ; zng and

R �
�
j�n2 j

2 dx �
R L
0
j�n2 j

2 dx � kF nk2H with �n2 2 ff 2;nx ; f3;nx g,
we obtain ����c0 Z �

�

jznj2 dx
���� � (j�nj kF nkH)�Z �

�

jS1 (un; unt ; �n)j
2 dx

� 1
2

(3,37)

+ j�nj
�Z �

�

jvnj2 dx
� 1

2

+
���S1 (un; unt ; �n) ������� jzn (�)j

+
���S1 (un; unt ; �n) ������� jzn (�)j+ kF nkH

Passing to the limit in the above inequality, then using (3.2), (3.32), (3.24),and the fact that

kF nkH ! 0;

we obtain the rst limit in (3.33). On the other hand, multiplying (3.8) by �zn (�n)�1 ;
using the definition of c (:) ; then taking the real part, we get

�
Z �

�

jznj2 dx+ =
�
(�n)�1

Z �

�

ynxxz
ndx

�
+=

�
c0 (�

n)�1
Z �

�

vnzndx

�
= �=

�
(�n)�1

Z �

�

f 4;nx zndx

�
Using integration by parts to the second term in the above equation, then using (3.35),

we obtain Z �

�

jynx j
2 dx =

Z �

�

jznj2 dx�=
�
(�n)�1

Z �

�

f 3;nx ynxdx

�
�=

n
(�n)�1 [ynxz

n]
�
�

o

= �=
�
c0 (�

n)�1
Z �

�

vnzndx

�
�=

�
(�n)�1

Z �

�

f 3;nx zndx

�
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Using Cauchy-Schwarz inequality in the above equation and the fact that kUnkH = 1; we get

Z �

�

jynx j
2 dx �

Z �

�

jznj2 dx+ c0 j�nj�1
�Z �

�

jvnj2 dx
� 1

2

(3,38)

+2 j�nj�1 kF nkH + j�
nj�1 jynx (�)j jzn (�)j+ j�nj

�1 jynx (�)j jzn (�)j

Passing to the limit in (3.21), then using (3.2), the rst limit in (3.33) and the fact that kF nkH ! 0

, we get

lim jzn (�)j = 0
n!1

and lim jzn (�)j = 0
n!1

(3,39)

passing to the limit in (3.38), then using (3.2), (3.11), (3.32), the rst limit in (3.33), (3.39), and

the fact that kF nkH ! 0 ,

we obtain the second limit in (3.33). The proof is thus complete.

Under the hypothesis (h), the solution Un := (un; vn; yn; zn; �n (:; �))T 2 D(A) of system (3.5)-

(3.9) satis es

the following estimations

lim
n!1

jun (�)j2 = 0 and lim
n!1

jyn (�)j2 = 0 (3,40)

lim
n!1

junx (�)j
2 = 0 and lim

n!1
jynx (�)j

2 = 0 (3,41)

lim
n!1

�Z 


�

junj2 dx+
Z 


�

junxj
2 dx+

Z 


�

jynj2 dx+
Z 


�

jynx j
2 dx

�
= 0 (3,42)

lim
n!1

Z 


�

jvnj2 dx = 0 and lim
n!1

Z 


�

jznj2 dx = 0 (3,43)

From (3.5) and (3.7), we get

jun (�)j2 � 2 (�n)�1 jvn (�)j2 + 2 (�n)�1
��f 1;nx (�)

��
and

jyn (�)j2 � 2 (�n)�1 jzn (�)j2 + 2 (�n)�1
��f 3;nx (�)

��
Using the fact that jf 1;nx (�)j2 � �

R �
0
jf 1;nx j2 dx � �

�
kF nk2H and jf 3;nx (�)j2 � �

R �
0
jf 3;nx j2 dx �

� kF nk2H in the above inequalities,

we obtain

jun (�)j2 � 2 (�n)�1 jvn (�)j2 + 2�a�1 (�n)�1 kF nk2H

2.1. Strong stability 45



Chapter 2. stability

and

jyn (�)j2 � 2 (�n)�1 jzn (�)j2 + 2� (�n)�1 kF nk2H

Passing to the limit in the above inequalities, then using (3.2), (3.23), (3.39) and the fact that

kF nkH ! 0 ,

we obtain (3.40). Secondly, since Sb (un; unt ; �
n) 2 H1

0 (0; L) � C ([0; L]) ,

then we deduce that ��S1 (un; unt ; �n) ������2 = ��aunx ��+���2 (3,44)

Thus, from (3.24) and (3.44), we obtain the rst limit in (3.41). Moreover, passing to the limit

in inequality (3.22), then using (3.2), the second limit in (3.33) and the fact that, we obtain the

second limit in (3.41).

On the other hand, (3.5)-(3.8) can be written in (�; 
) as the following form

(�n)2 un + aunxx � i�nc0y
n = G1;n in (�; 
) (3,45)

(�n)2 yn + aynxx � i�nc0u
n = G2;n in (�; 
) (3,46)

where

G1;n = �f 2;nx � i�nf 1;nx � c0f
3;n
x and G2;n = �f 4;nx � i�nf 3;nx � c0f

1;n
x (3,47)

Let V n = (un; unx; y
n; ynx)

T , then (3.45)-(3.46) can be written as the following

V n
x = BnV n +Gn (3,48)

where

Bn =

8>>>><>>>>:
0 1 0 0

�a�1 0 a�1i�nc0 0

0 0 0 1

i�nc0 0 � (�n)2 0

9>>>>=>>>>; = (bij)1�i;j�4

and

Gn =

8>>>><>>>>:
0

a�1G1;n

0

G2;n

9>>>>=>>>>;
The solution of the di erential equation (3.48) is given by

V n (x) = exp (Bn (x� �))V n
�
�+
�
+

Z x

�

exp (Bn (x� s))Gn (s) ds (3,49)
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where exp (Bn (x� �)) = (cij)1�i;j�4 and exp (Bn (x� s)) = (dij)1�i;j�4 are denoted by the

exponential of the matrices exp (Bn (x� �))

and exp (Bn (x� �)) respectively. Now, from (3.2), the entries bi;j are bounded for all 1�i;j�4 and

consequently, the entries

bi;j (x� �) and bi;j (x� s) are bounded. In addition, from the de nition of the exponential of a

square matrix, we obtain

exp (Bn�) =

1X
k=0

 
(Bn�)K

k!

!
for � 2 fx� �; s� xg : (2.2)

The entries ci;j and dij are also bounded for all 1�i;j�4 and consequently exp (Bn (x� �))

and exp (Bn (x� s)) are two bounded matrices. From (3.40) and (3.41) , we directly obtain

V n (�)! 0 in
�
L2 (�; 
)

�4
; as n!1 (3,50)

From (3.47), we deduce thatZ 


�

�� G1;n��2 dx � 3Z L

0

��f 2;nx ��2 dx+ 3 (�n)2 Z L

0

��f 1;nx ��2 dx (3,51)

+3c20

Z L

0

��f 3;nx ��2 dx
and Z 


�

�� G2;n��2 dx � 3Z L

0

��f 4;nx ��2 dx+ 3 (�n)2 Z L

0

��f 3;nx ��2 dx (3,52)

+3c20

Z L

0

��f 1;nx ��2 dx
since f 1;nx ; f4;nx 2 H1

0 (0; L) ;then it follows from Poincar e inequality that there exist two constants

C1 > 0;and C2 > 0

such that



f 1;nx 


L2(0;L)

� C1


f 1;nx 



L2(0;L)
and (3,53)

f 3;nx 



L2(0;L)
� C2



f 3;nx 


L2(0;L)

From (3.51), (3.52) and (3.53), we getZ 


�

�� G1;n��2 dx � 3 �1 + a�1 (�nC1)2 + (c0C2)2� kF nk2H (3,54)

and
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Z 


�

�� G2;n��2 dx � 3 �1 + (�nC1)2 + (c0C2)2� kF nk2H (3,55)

from (3.2), (3.54), (3.55) and the fact thatkF nkH ! 0 , we obtain

Gn ! 0 in
�
L2 (�; 
)

�4
; n!1 (3,56)

from (3.49), (3.50), (3.56) and as exp (Bn (x� �)) ; exp (Bn (x� s)) are two bounded matrices,

we get V n ! 0 in (L2 (�; 
))4 and consequently, we obtain (3.42) from (3.5) , (3.7) and (3.53),

we deduce that Z 


�

jvnj2 dx � 2 (�n)2
Z 


�

junj2 dx+ 2
Z 


�

��f 1;nx ��2 dx
� 2 (�n)2

Z 


�

junj2 dx+ 2C1
a
kF nk2H

Z 


�

jznj2 dx � 2 (�n)2
Z 


�

jynj2 dx+ 2
Z 


�

��f 3;nx ��2 dx
� 2 (�n)2

Z 


�

jynj2 dx+ 2C1
a
kF nk2H

passing to the limit in the above inequalities, then using (3.2), (3.42) and the fact that kF nkH ! 0

,we obtain (3.43). The proof is thus complete.

Lemma 2.3 Let h 2 C1 ([0; L]) be a function. Under the hypothesis (h), the solution Un = (un; vn; yn; zn; � (:; �))T 2
D (A) of system (3.5)-(3.9) satis es the following equalityZ L

0

h0
�
1

a
jSb (un; unt ; �n)j

2 + jvnj2 + jznj2 + jynx j
2

�
dx

�
�
h

�
1

a
jSb (un; unt ; �n)j

2

��L
0

�<
�
2

Z L

0

c (:)hvnynxdx

�
+<

�
2

a

Z L

0

c (:)hznSb (u
n; unt ; �

n) dx

�
+<

�
2i�n

a

Z �

0

hvn (k1vnx + k2�
n
x (:; 1)) dx

�

= <
�
2

Z L

0

hf 1;nx vndx

�
+ <

�
2

a

Z L

0

hf2;nx Sb (u
n; unt ; �

n) dx

�
+<

�
2

Z L

0

hf 3;nx zndx

�
+ <

�Z L

0

hf4;nx ynxdx

�
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multiplying (3.6) and (3.8) by 2a�1Sb (un; unt ; �
n) and 2hynx respectively;integrating over (0;L),

then taking the real part, we get

<
�
2i�n

a

Z L

0

hvnSb (u
n; unt ; �

n) dx

�
(3,57)

�1
a

Z L

0

h (jSb (un; unt ; �n)j)x dx

+<
�
2

a

Z L

0

c (:)hznSb (u
n; unt ; �

n) dx

�
= <

�
2

a

Z L

0

hf2;nx Sb (u
n; unt ; �

n) dx

�
and

<
�
2i�n

Z L

0

hznynxdx

�
�
Z L

0

h (jynx j)x dx (3,58)

�<
�
2

Z L

0

c (:)hznynxdx

�
= 2<

�Z L

0

hf4;nx ynxdx

�
From (3.5) and (3.7), we deduce that

i�nunx = �vnx � f 1;nx (3,59)

i�nynx = �znx � f 3;nx (3,60)

from (3.59) and the de nition Sb (un; unt ; �
n), we have

i�nSb (u
n; unt ; �

n) =

8<: �a
�
vnx + f 1;nx

�
+ i�n (k1vnx + k2�nx (:; 1)) ; x 2 (0; �)

�a
�
vnx + f 1;nx

�
; x 2 (�; L)

(3,61)

Substituting (3.61) and (3.60) in (3.57) and (3.58) respectively, we obtain

�
Z L

0

h

�
jvnj2 + 1

a
jSb (un; unt ; �n)j

2

�
x

dx

+<
�
2i�n

a

Z �

0

hvnk1vnx + k2�nx (:; 1) dx

�
+<

�
2

a

Z L

0

c (:)hznSb (u
n; unt ; �

n) dx

�
= <

�
2

Z L

0

hf 1;nx vndx

�
+ <

�
2

a

Z L

0

hf2;nx Sb (u
n; unt ; �

n) dx

�
and
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�
Z L

0

h
�
jznj2 + jynx j

2�
x
dx�<

�
2

Z L

0

c (:)hvnynxdx

�
= <

�
2

Z L

0

hf4;nx ynxdx

�
+ <

�
2

Z L

0

hf3;nx ynxdx

�
adding the above equations, then using integration by parts and the fact that vn (0) = vn (L) = 0

and zn (0) = zn (L) = 0, we obtain the desired result. The proof is thus complete
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Conclusion

In conclusion, the study of coupled wave equations with singular viscoelasticnelastic damping

with Time Delay singular couplings tability behaviors under certain conditions presents a com-

plex and intriguing research area. Understanding the interplay between different damping mech-

anisms and their effects on wave behavior is crucial for various applications in mathematics,

physics, and engineering, The stability of these dynamic systems opens promising prospects for

practical applications, such as dynamic system control and signal transmission. These advances

help to enrich our understanding of dynamic phenomena and stimulate technological innova-

tion.This summary highlights the important advances made in the study of coupled wave equa-

tions with time delay and their relevance for various scientific and technological fields. Future

research in this field may focus on exploring more sophisticated damping models, investigating

stability properties under different conditions, and extending the analysis to higher-dimensional

systems. By delving deeper into these topics, researchers can enhance our understanding of wave

dynamics and contribute to the development of advanced mathematical models for practical ap-

plications.

51



Bibliography

[1] Akil, Mohammad, Haidar Badawi, and Ali Wehbe. "Stability results of a singular local

interaction elastic/viscoelastic coupled wave equations with time delay." arXiv preprint

arXiv:2007.08316 (2020)

[2] : H. Portillo Oquendo and P. Snez Pacheco, Optimal decay for coupled waves with Kelvin-

Voigt damping ,Applied Mathematics Letters 67 (2017), 16-20. .

[3] A. Wehbe, I. Issa and M. Akil, Stability results of an elastic/viscoelastic transmission problem

of locally coupled waves with non smooth coe cients, Acta Appl. Math., 171 (2021), 46pp

[4] Hassine and N. Souayeh, Stability for coupled waves with locally disturbed kelvin{voigt

damping, Semigroup Forum, 102 (2021), 134-159.

[5] S. Nicaise and C. Pignotti, Stability and Instability Results of the Wave Equation with a Delay

Term in the Boundary or Internal Feedbacks, SIAM J. Control and Optimization, 45 (2006),

1561-1585.

[6] E. M. A. Benhassi, K. Ammari, S. Boulite and L. Maniar, Feedback stabilization of a class of

evolution equations with delay, J. Evol. Equ., 9 (2009), 103-121.

[7] K. Ammari, S. Nicaise and C. Pignotti, Feedback boundary stabilization of wave equations

with interior delay, Systems & Control Letters, 59 (2010), 623-628.

[8] J. L. Lions. Contr^olabilit e exacte, perturbations et stabilisation de syst emes distribu es.

Tome 1, volume 8 of Recherches en Math ematiques Appliqu ees. Masson, Paris, 1988.

[9] C. Pignotti, A note on stabilization of locally damped wave equations with time delay, Sys-

tems & Control Letters, 61 (2012), 92-97.

52



Bibliography

[10] S. A. Messaoudi, A. Fareh and N. Doudi, Well posedness and exponential stability in a wave

equation with a strong damping and a strong delay, J. Math. Phys., 57 (2016), 111501.

[11] S. Nicaise and C. Pignotti. Stability of the wave equation with localized Kelvin{Voigt damp-

ing and boundary delay feedback, Discrete and Continuous Dynamical Systems-Series S,791

(2016), 791-813.

[12] S. Nicaise and C. Pignotti, Exponential stability of second-order evolution equations with

structural damping and dynamic boundary delay feedback, IMA J. Math. Control Inform.,

28 (2011), 417–446.

[13] H. Demchenko, A. Anikushyn and M. Pokojovy, On a Kelvin-Voigt viscoelastic wave equation

with strong delay, SIAM J. Math. Anal., 51 (2019), 4382-4412.

[14] F. Abdallah, , M. Ghader, A. Wehbe and Y. Chitour. Optimal indirect stability of a weakly

damped elastic abstract system of second order equations coupled by velocities, Commun.

Pure & Appl. Anal., 18 (2019), 2789-2818.

[15] M. Akil, M. Ghader and A. Wehbe, The inuence of the coe cients of a system of wave equa-

tions coupled by velocities on its stabilization, SeMA Journal, Nov 2020.

[16] F. Alabau, Stabilisation fronti ere indirecte de syst emes faiblement coupl es, Comptes Ren-

dus de l’Acad emie des Sciences-Series I-Mathematics, 328 (1999), 1015-1020.

[17] F. Alabau, P. Cannarsa and V. Komornik, Indirect internal stabilization of weakly coupled

evolution equations, J. Evol. Equ., 2 (2002), 127-150.

[18] K. Ammari and M. Mehrenberger, Stabilization of coupled systems, Acta Math. Hungar., 123

(2009), 1-10.

[19] Y. Cui and Z. Wang, Asymptotic stability of wave equations coupled by velocities, Mathe-

matical Control and Related Fields, 6 (2016), 429-446.

[20] Z. Liu and B. Rao, Frequency domain approach for the polynomial stability of a system of

partially damped wave equations, J. Math. Anal. Appl., 335 (2007), 860-881.

[21] X. Zhang and E. Zuazua, Polynomial decay and control of a 1 d hyperbolic-parabolic cou-

pled system, J. Di er. Equ., 204 (2004), 380-438.

Bibliography 53



Bibliography

[22] F. Abdallah, M. Ghader and A. Wehbe, Stability results of a distributed problem involving

bresse system with history and/or cattaneo law under fully dirichlet or mixed boundary

conditions, Math. Methods Appl. Sci., 41 (2018), 1876-1907.

[23] M. Akil, Y. Chitour, M. Ghader and A. Wehbe, Stability and exact controllability of a timo-

shenko system with only one fractional damping on the boundary, Asympt. Anal., 10 (2019),

[24] D. Mercier and V. R egnier, Decay rate of the timoshenko system with one boundary damp-

ing, Evol. Equ. Control Theor., 8 (2019), 423-445.

[25] N. Najdi and A. Wehbe, Weakly locally thermal stabilization of bresse systems, Electron. J.

Di er. Equ., 2014 (2014), 19pp.

[26] M. Alves, J. M. Rivera, M. Sep ulveda and O. V. Villagr an, The Lack of Exponential Sta-

bility in Certain Transmission Problems with Localized Kelvin{Voigt Dissipation, SIAM J.

Appl.Math., 74 (2014), 345-365.

[27] M. Alves, J. M. Rivera, M. Sep ulveda, O. V. Villagr an and M. Z. Garay, The asymptotic

behavior of the linear transmission problem in viscoelasticity, Mathematische Nachrichten,

287 (2013), 483-497.

[28] F. Hassine, Stability of elastic transmission systems with a local Kelvin{Voigt damping, Eu-

ropean Journal of Control, 23 (2015), 84-93.

[29] F. Hassine, Energy decay estimates of elastic transmission wave/beam systems with a local

Kelvin{Voigt damping, International Journal of Control, 89 (2016), 1933-1950.

[30] F. Huang, On the Mathematical Model for Linear Elastic Systems with Analytic Damping,

SIAM Journal on Control and Optimization, 26 (1988), 714-724.

[31] K. Liu, S. Chen and Z. Liu, Spectrum and Stability for Elastic Systems with Global or Local

Kelvin{Voigt Damping, SIAM J. Appl. Math., 59 (1998), 651-668.

[32] Z. Liu and Q. Zhang, Stability of a String with Local Kelvin{Voigt Damping and Nonsmooth

.Coe cient at Interface. SIAM Journal on Control and Optimization, 54 (2016), 1859-1871.

[33] H. P. Oquendo, Frictional versus Kelvin{Voigt damping in a transmission problem, Mathe-

matical Methods in the Applied Sciences, 40 (2017), 7026-7032.

[34] J. E. M. Rivera, O. V. Villagran and M. Sepulveda, Stability to localized viscoelastic transmis-

sion problem, Commun. Partial Di er. Equ., 43 (2018), 821-838.

Bibliography 54



Bibliography

[35] V. Kolmanoviskii and A. Mishkis, Introduction of the Theory and Applications of Functional

and Di erential Equations, Dordrecht, 199.

[36] U. Ernst, K. Pawelzik and T. Geisel, Delay-induced multistable synchronization of biological

oscillators, Phys. Rev. E, 57 (1998), 2150-2162.

[37] R. Datko, Not all feedback stabilized hyperbolic systems are robust with respect to small

time delays in their feedbacks, SIAM Journal on Control and Optimization, 26 (1988), 697-

713.

[38] R. Datko, J. Lagnese and M. Polis, An example of the e ect of time delays in boundary

feedback stabilization of wave equations, In 1985 24th IEEE Conference on Decision and

Control. IEEE, Dec. 1985.

[39] M. Dreher, R. Quintanilla and R. Racke, Ill-posed problems in thermomechanics, Applied

Mathematics Letters, 22 (2009), 1374-1379.

[40] R. Datko, Two questions concerning the boundary control of certain elastic systems, Journal

of Di erential Equations, 92 (1991), 27-44.

[41] G. Q. Xu, S. P. Yung and L. K. Li, Stabilization of wave systems with input delay in the

boundary control, ESAIM: Control, Optimisation and Calculus of Variations, 12 (2006),770-

785.

[42] B. Z. GUO and C. Z. XU, Boundary Output Feedback Stabilization of A One-Dimensional

.Wave Equation System With Time Delay. IFAC Proceedings Volumes, 41 (2008), 8755-8760.

[43] M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equa-

tions .IMA Journal of Mathematical Control and Information, 27 (2010), 189-203.

[44] J. M. Wang, B. Z. Guo and M. Krstic, Wave Equation Stabilization by Delays Equal to

Even .Multiples of the Wave Propagation Time, SIAM Journal on Control and Optimization,

49(2011), 517-554.

[45] Y. Xie and G. Xu, Exponential stability of 1-d wave equation with the boundary time delay

based on the interior control, Discrete & Continuous Dynamical Systems-S, 10 (2017), 57-

579.

[46] D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic

systems, J. Math. Anal. Appl., 173 (1993), 339-358.

Bibliography 55



Bibliography

[47] A. Hayek, S. Nicaise, Z. Salloum and A. Wehbe, A transmission problem of a system of

weakly coupled wave equations with kelvin{voigt dampings and non-smooth coe cient at

the interface, SeMA Journal, 77 (2020), 305-338.

Bibliography 56


	 Functional spaces
	   normed spaces
	Complet space
	 Banach spaces
	 Hilbert space
	 The Lp() spaces
	 Sobolev space

	  Trace Theorem
	 Some useful formulas
	 Some useful inequalities
	 Teoreme (Cauchy schwartz inequality)
	 Teoreme (Young algebraic inequality)
	 Teoreme (Young inequality)
	Formula (Young inequality with 0=x"0122)
	Formula (Minkowski inquality)

	 The operators
	 Dissipative operator
	 Monotonic maximal operators

	Strongly continuus semigroup
	Infinitesimal generator
	 Hille-Yosida
	 Lummer-Phillips
	 Lax-Milgram

	 Stability of semigroup
	Existence and Uniqueness of the solution
	 Statement of problem
	Preliminaries and Assumptions

	 Energy of system
	 Local Existence

	 stability
	Strong stability


