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Abstract

The conjugate gradient method is considered one of the most
important methods used to speed up the gradient algorithm,
for this purpose, several related algorithms have been
developed. We will present a new method that accelerates the
convergence of the gradient method (the higher slope method)
using a new version of the conjugate gradient and a powerful
non-exact linear Wolf search. It will be shown that this
algorithm generates descent trends and converges globally.

Keywords: examples without restrictions, gradient method,
algorithm, general convergence, linear search, imprecise linear
search, imprecise linear search for Armijo, Armijo algorithm,
imprecise strong linear search for Wolf, imprecise weak linear
search for Wolf, gradient method, conjugate gradient method.




La méthode du gradient conjugué est considérée comme l'une
des méthodes les plus importantes utilisées pour accélérer
I"algorithme du gradient, et a cette fin, de nombreux
algorithmes connexes ont été développés.

On exposera une nouvelle méthode qui accélere la
convergence de la méthode du gradient (méthode de la plus

forte pente) en utilisant une nouvelle version du gradient

conjugué et une recherche linéaire inexacte de Wolfe forte. On
montrera que cet algorithme généere des directions de
descente et converge globalement.

Les mots clés : exemples sans restrictions, méthode du
gradient, algorithme, convergence générale, recherche linéaire,
recherche linéaire imprécise, recherche linéaire imprécise pour
Armijo, algorithme Armijo, recherche linéaire forte imprécise
pour Wolfe, recherche linéaire faible imprécise pour Wolfe,
méthode du gradient, méthode du gradient conjugué.
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Notations & abbreviations

n-dimensional Euclidean (real) space
transpose of a vector or matrix
¢ =[xy, Tg..n)"
set
objective function
local minimizer
minimum function value
set of continuous differentiable functions
set of continuous and twice differentiable function
subset of
absolute value
closed interval between the real numbers a and b
set of real numbers
determinant of matrix A
Euclidean closed unit ball
Inverse of matrix A
identity matrix
scalar product of the vectors x and y
Euclidean norm of z
sequence in R"”

derivative of f at x
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Introduction

Let be f : R" — R and (P) the problem of nonlinear, unconstrained minimization as follows:

(P) min{f(z):z € R"}

where f : R” — R is continuously differentiable. Note

gr = V f(zy)

To solve the problem (P), the majority of methods generate an {xj}scn suite in the following

form:

Thy1 = Tk + Oékdk (1)

where d,, is a descent direction and «; is the pitch obtained by performing a one-dimensional

optimization. In the conjugate gradient methods the descent directions are of the form :

diy = —gr + Brdr— (2)

where the scalar 5, characterise the different variants of the conjugate gradient. If 5, = 0, then

we get the gradient method. Another choice of directions is given by

dy. = —B; ' gi 3)
where By, is a nonsingular symetric matrix. Important cases include:

By, = I (Steepest descent method)
By = V2 f(z) (Newton’s method)

The quasi Newton methods are also of form (0.3). All these methods are implemented taking into

consideration that d;, is a descent direction i.e.

dfgk <0




The convergence properties of the methods are descent directions and linear searches depend the
right choice of d;, and step ay. The angle that the d,. direction and gradient direction makes is
fundamental. Thatas why weare undoing
cos(0y) = g

gkl 1l gl
We will choose «;, so that we get a decrease on health of the function f, but at the same time it is
necessary that this calculation is not coteux in time and memory. The optimal choice is obtained
by choosing « as the optimal solution for the variable function ¢(«) deffinit by

p(a) = f(zy + axdy,)

Exact linear searches consist of calculating «; as a solution to the following one-dimensional
problem:

f(zr + apdy) = min{ f(xp + ady) : a > 0}

Unfortunately, exact linear searches are difficult to perform practically and are costly in time
and memory. The strategy we will apply in this part is to choose «, verifying the following two

conditions:

f(n + ardy) < f(xr) + or0k0] di 4)
g(zp + ardy)'dy, > oogi dy, (5)

where 0 < 01 < 09 <. T 1lhe first relation (4) (Armijo condition), ensures that the function
sufficiently decreases. The second condition (5) warns that the step «;, becomes small. Both
conditions (4) and (5) are called Wolfe conditions.

You can also choose «a;, checking the following conditions:

f(x + ardy) < f(x1) + oargi dy. (6)

[y + awdi) > f(2r) (1 — 0)ougy di (7)

1
where 0 < a < 3 (6) and (7) are called Goldstein conditions. The gradient method is one
of the simplest and most celebrated methods of constraint-free optimization. For many prob-

lems the gradient method becomes slow when approaching a stationary point. There are many




methods that remedy this problem. Instead of considering d,, = —V f(x}) , you can move along
dr. = —DiV f(zy) , or the long d, = —gihy where Dy is a properly selected matrix and Ay is an
appropriate vector.

Benzine, Djeghaba and Rahali tried to solve this problem by another method, accelerating the
convergence of the gradient method.

To achieve this goal, they developed a new algorithm they named the epsilon steepest descent
algorithm, in which the formula of Florent Cordellier and Wynn play They also proved global
convergence using exact linear and Armijo research.

In this work we accept the convergence of the gradient method and we study the global conver-
gence using the epsilon algorithm and the inaccurate linear searches of wolfe veriffiant (4) and
(5). We called the new algorithm: Wolfe epsilon steepest descent algorithm.

With 700 numerical tests we have shown that the new algorithm is more performing than the

other two already studied i.e. the steep elpsilon algorithm with exact linear or Armijo searches.



Chapter 1
Unconstrained Optimization

The problem we are studying here is the search of the minimum of a real function f of n variables

T1,L2y ..., L.

Definition 1.1 ([14]) Let be f : R™ — R which to all x € R,z = (xy, xs, ..., x,)" associates the real

value

f(l’) = f($17$2a 7$n)

We are looking to solve the problem (P) :

(P) min{f(z):z € R"}

It is therefore a question of determining a point z of R™ such that :

e 1. The point © € R" is called a global minimum solution of (P) if and only if
f(@) < f(x) : Ve e R”

Here f(z) is called the global minimum value.

e 2. The point © € R" is called a local minimum solution of (P) if and only if there exists a
neighborhood V(%) such that

f(z) < f(x) : Vo € V(2)
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Here f() is called minimum value.

* 3. The point & € R" is called a strict local minimum solution of (P) if and only if there exists a
neighborhood V. (z) such that

f(@) < flx):Ve eV (z),z#2

Here () is called a strict local minimum value.

1.1 Descent Direction

Definition 1.2 ([14]) Either f : R" — R, & € R",d € R" is said to be the direction of descent at

the point z if and only if there exists a strictly positive number § > 0 such that
f(@+ ) < f(2) : VA €]0,9].
Let’s give a sufficient condition for d to be a descent of direction .

Theorem 1.1 ([14]) Let f : R™ — R be differentiable at the point & € R™ and d € R™ one direction

checking the following condition :

f(z,d)=Vf(@)'.d<0
then d is a direction of descent at the point z.

Proof. f is differentiable at the point Z then f continues and V f(Z) exists,therefore

F(@+ M) = (&) + AVF(@)T.d + M|d]a(i, \d)

SO
J(@ + Ad) — f(&) = AVF(@)T.d + M|d]a(2, Ad)
G, A‘? — @) G )T d+ Al Ad)
N ;ig%f(f - A‘i) — @) lin (V1 (8" + M d]a(2, Ad))
with
o Ad) — 0
SO

1.1. Descent Direction
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f(@+ Ad) — f(%)

(4 — 13 _ ~\T
f($,d)—}\1£r[1) ;) =Vf@).d<o0
the limit being strictly negative, then there exists a neighborhood of zero V' (0) =| — ¢, +4[ such

that
f(&+Xd) — f(2)
A

The relation (2.1) is particularly true for all A €]0, +[. We obtain the desired result by multiplying
the relation (2.1) by A > 0. m

< 0,Y\ €] — 6,49

1.2 General scheme of algorithms

Definition 1.3 Let d, be a direction of descent at the point x; we can consider the point x| the

successor of x;, as follows :
Thr1 = Tk + A\edi, Mg G]O, —|-(5[
Start: xo € R", d; :

Vf(l‘o)t.do <0
1 = T + Aodo

Ao checks:
f(zo + Aodo) < f(xg)
Iteration k: (xy,dy) such that V f(xy)'.d, < 0 and \; such that:
f(zr + \edi) < f(xy) therefore
Tyl = Tk + Apdp.
The choice of d;, and \, makes it possible to build a multitude of optimization algorithms.

-Example of choosing descent directions

If we choose

dk = —Vf(l‘k),
with

Vf(ay) #0,

1.2. General scheme of algorithms
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we obtain the gradient method.

Of course, d;, = V f(x}) is a direction of descent, indeed :
Vf(@)tde =V f(zn) (=V (1) = =V (). Vf(z) = =V f(2)"]]> <0

Also if we choose dj, = —(H(z})) 'V(z) such that:
H(zy) the Hessian matrix. (H(xy) € M,x»),V f(z;) the gradient vector.
(Vf(xx) € M, «1), we obtain the Newton method.

If the matrix H(z}) is positive definite, so

Vf(ae)dy = =V f () (H (i) 'V f(2) <0

-Example of the choice of steps )\,
We choose )\, to check

the search for a real variable )\;, which is called linear search .

1.3 Results of existence and uniqueness

Before studying the properties of the solution (or solutions) of (P), it is necessary to make sure

of their existence. We will then give results of uniqueness.

Definition 1.4 We say that f : R" — R is coercive if

lim f(z) = 400
[|#]| —>+o00

Here ||.|| denotes any norm of R™ We will denote ||.||, (p € N) the norm [, of R"

1
P

n
Ve = (z1,...,2,) € R", ||, = {Z|xz|p}
i=1
The infinite norm of R™ is
Ve = (z1,....2,) € R, |2]|e = gaé};\xA

Theorem 1.2 (Existence): f : R™ — RU{+o0} be proper, continuous and coercive, then (P) admits

at least one solution.

Proof. Let d = inf(p) ; d > +o0 because f is proper. Let (z,),ey € R™ be a minimizing sequence,

that is to say such that

1.3. Results of existence and uniqueness
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lim f(z,) =d

p—>+00

Let’s show that (z,) is bounded.If this were not the case we could extract from this suite a sub-
suite (still noted (z,)) such that

lim_layl| = oo

By coercivity of f, we would have

pﬂg}oof(xp) = +00

which contradicts the fact that

lim [jz,| =d < 400
p—>+00

As (z,) is bounded, we can then extract a sub-sequence from it (again noted (z,)) which converges

to T € R" By continuity of f , we then have

d= lim f(z,) = f(z).

p—r+00

In particular d > —oo is 7 a solution of the problem (P). m

Theorem 1.3 (Uniqueness ) :f : R" — R U {400} be strictly convex. Then problem (P) admits at

most one solution.

Proof. Suppose that f admits at least one minimum m and are z; # x» (in R") achieving this

minimum :

flz1) = f(ze) =m .

By strict convexity of function f, we then have:

PP < SU + fa) = m:

This contradicts the fact that m is the minimum.Therefore, x; = x5 .Finally, we will give a criterion

for a function to be strictly convex and coercive. m

Theorem 1.4 Let f be a function C* of R in R. Suppose that there exists o > 0 such that:

V(z,y) eR" x R"(Vf(z) = V[f(y),z —y) > alz —y|? (1.1

Then f is strictly convex and coercive , in particular problem (P) admits a unique solution.

1.3. Results of existence and uniqueness
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Proof. the Condition (1.1) implies that V f is monotone and that f is convex. Moreover, we have

the strict convexity of f.

Finally, f is coercive: indeed, applying the Taylor formula with integral remainder:

fl6) = @)+ [ Gttty =it = @)+ [(V(+tly = 0).y - a)dr

SO

F() = f(@) + (VF(@),y— o)+ / (Vf (@ + ty — 1)) — (V) y — 2))dt.

According to (1.1), we obtain

F@) > f(@) + (Vf(@),y — ) + / tale — y|Pdt

Finally

fy) = f(@) = IV F@)llly — =[]l + %le —yl*.

(1.2)

(1.3)

(1.4)

(1.5)

Let’s fix z = 0 for example; it is then clear that f is coercive. Therefore f admits a unique

minimum at z* on R” characterized by
Vf(z*)=0

The condition (1.1) leads us to the following definition:

Definition 1.5 (Elliptic function) : We say that f : R* — R is elliptic if the condition (1.1) is

satisfied, i.e. 3o > 0 such that
V(z,y) € R* x R" (D*f(x)y,y) > aflz — y|?

«a is the ellipticity constant.

1.3. Results of existence and uniqueness
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Proposition 1.1 : A function f : R — R twice differentiable on R" is elliptic if and only if
V(z,y) € R" x R" (D*f(x)y,y) = oyl
Proof. We use again the Taylor formula applied to the function
pit—p(t) = f(z+ty).

u
We must now give conditions to be able to calculate the or the solutions. We will try to show that

this solution is the solution of certain equations, so that it will be easier to calculate it.

1.4 Optimality conditions

The objective function must satisfy two sets of conditions in order to have a minimum, namely,
first and second-order conditions. The first-order conditions are in terms of the first derivatives,

i.e., the gradient.

1.4.1 Necessary condition for first-order optimality

Theorem 1.5 either f : R" — R differentiable at the point & € R", if & is a local minimal solution,
then Vf(z) = 0.

Proof. Suppose 7 is a local minimum solution, then

=>

f(&) < f(x), Ve e V(i) (1.6)

Suppose the opposite,
Vi(z)#0,
then —V f(2) is a direction of descent, then there Je > 0 such that Va €]0, 4] :
@+ a(=V[(T)) < f(2)
We set & + a(—V f(2)) = T ,then
f(@) < f(2)

So 3z € V(&) such that :

1.4. Optimality conditions
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f(T) < f(2) (1.7)

a contradiction between (1.3) and (1.4).

from or f differentiable and
f(&) < f(z), Yz € V(2)
So

V(i) = 0.

1.4.2 Necessary condition for second-order optimality

Theorem 1.6 Either f : R™ — R is twice differentiable at the point € R", if Z is a local minimum
of (P), then Vf(z) = 0 and the Hessian matrix of f at the point Z, denoted by H (%), is positive

semi-definite..

Proof. Let be any x € R", since f is twice differentiable at the point Z , we will have for all A # 0

1
f(@+Xx) = f(z)+ EAszH(i*)w + N[22 ]| Z, Ax), a(E, M) — 0
—

This implies

Fi+ ,\;\;2) —flx) _ %xTH(fU)x + |22, Az) (1.8)

Z is a local optimum, then there exists 6 > o such that

f(@+ Ar) — f(2)
)\2

if we take into consideration (1.5) and we go to the limit when A — 0, A # 0, we get

>0, VA €] — 6, +4]

2'H(Z)x > 0,Vx € R™.

1.4. Optimality conditions [}
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1.4.3 Sufficient condition of optimality

Theorem 1.7 let f : R" — R twice differentiable at the point & € R" If Vf(z) = 0 and H (%) is

positive, then z is a strict local minimum from (P).

Proof. f being twice differentiable to the point a , we will have for everything = € R”

flx) = f(&) = %(l’ — &) H(2)(x — 2) + |z — 2*a(, (z - 7)), (1.9)

a(t, (r —2)) — 0,(Vf(Z)).

=T

Suppose that z is not an optimum strict local.

Then there is a sequence {xy }xen+ , Such as z;, # 7 : Vk and

Ty # T Vk, xy 2 z, f(zg) < f() (1.10)
In (1.6) let’s take x = z;, divide everything by ||(z — #)||* and write dj, = H , We get
T — X
flag) = f(@) 1 . . . N .
m = §d£H(x)dk + a(Z, (xp — 7)), a(z, (z, — T)) T 0. (1.11)

(1.7) and (1.8) imply
1
5d{H(£)dk + Oé(i’, (xk — Zf)) < 0, VEk

on the other hand, the sequence {d; }+cn+ is bounded (||dx||) = 1,Vn). So there is a sub continua-

tion drtrenicn such that {d }ren, cn-

k—00,k€EN

Finally, when & — oo, k € N, we obtain
1— _
§dTH(£)d <0.

The last relation and the fact that d # 0(||d|| = 1) imply that the hessian matrix H(Z) is not

positive definite. This is in contradiction with the assumption. m

1.4. Optimality conditions [}
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1.5 One-dimensional optimization

One-dimensional optimization (linear search) consists of finding \; so as to reduce the function
f Sufficiently along this direction.

This "sufficient" will be quantified in the following in the description of the so called conditions
of Armijo, Wolfe, Goldstein & Price (linear searches inaccurate).

But first we expose the principle of descent method:

1.5.1 Principle of descent method

The principle of a descent method consists in making the following iterations- brags:

Tpy1 = T + )\kdk, k>0 (1.12)

while ensuring the ownership

f(xran) < flag).

The vector d,, is the direction of descent in x;, . The scalar )\, is called the step of the method at
iteration k.

We can characterize the descent directions in x; using the gradient.

Proposition 1.2 Let d € R" Be verifying

Vi(x).d<0
then d is a direction of descent in x .

Proof. we have for A > 0
fx+ M) = f(x) + AV f(x)d+ Xe(N)

so if we write

[+ Ad) — f(x)

3 =V f(z)'d+e(N\)

1.5. One-dimensional optimization
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we can clearly see that for )\ sufficiently small we will have
flz+ M) — f(z) <O.

Or that d makes with the opposite of the gradient —V f(x) a strict angle-smaller than 90°:

Vf(x)d 7T

0= avceos g an €% 2!

All the descent directions of f en x
{deR": Vf(z)d <0}

forms an open half-space of R” (illustration in Figure 1.1).

—

Vr
d &)

half-space of directions of
descent from f to x

f =constant

Figure 1.1: Half-space (translat ) of the descent direction d from f to .

Such directions are interesting in optimization because to make f decoist; just move along d.
The descent-oriented methods use this idea to minimize a function In the method (1.9) the choice

of )\ is related to the function:

©(A) = f(z + Ady)

As in the method of the direction of descent, the trajectory of the solution follows a zigzag pat-
tern. If is chosen such that f(x + dj) let be the minimum in each iteration, then the successive
directions are orthogonal.

Indeed

if we note g(z) = Vf(z)

1.5. One-dimensional optimization
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n Of(zg + Ady) d(xg; + Ady;)

df(:lfk + )\dk) _ Z
d\ i=1 8$;ﬂ d\
=1
= g(xX; + Ady)'dy

where g (z), + dy,) is the gradient at the point xj + d.
In particular, one way to choose )\, may be to solve the problem optimization (with a single

variable)

I)\n>i101g0()\). (1.13)

If the step )\, obtained in this way is called the optimal step then we can write

‘P,O‘k) =V [f(x + S\kdk)tdk =0

that is to say
g(zp + M)t = 0

or else

where
A1 = —g(xr + Medp) = —Grn

is the direction of descent at the point x + M, .So the successive directions d; and djq1 are

orthogonal as shown in Figure (1.2).

1.5. One-dimensional optimization
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X,

X

Figure 1.2: trajectory of a typical solution in a different way, in the directrion of the patient.

To define a direction of descent it is therefore necessary to specify two things:

* tell how the direction d,, is calculated.This choice directly influences in the appointment of the

algoritem.

* To say how we determine the step \; is what we call:the search linear.
Algorithm (method with direction of descent-one iteration)
Step 0: (Initialization)It is

Assumed that at the begining of iteration k, an iterated z;, € R"

Step 1:

Stop test : if |V f(z)|| = 0, Stop the algorithm.
Step 2:

Choice of a direction of descent d;, € R"

Step 3:

Linear search : determine a step \; > 0 along d;, in such a way to "make f decrease sufficientlly"
Step 4:
If the linear search is finished x,,; = x; + A\dy, replace k by k£ + 1 and go to step 1.

1.5. One-dimensional optimization
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1.5.2 Linear Search

Performing a linear search means solving the one-dimensional problem (1.10), where the objec-
tive is to :

* Decrease f sufficiently, which most often translates into achieving an inequality of the form

f(xr + Aedi) < f(xy) + 7 anegativeterm” (1.14)

The negative term, let’s say v, , plays a key role in the convergence of the algorithm using this
linear search. The argument is as follows.

If f(z) is lower bounded (Jc a constant such that f(x;) > ¢ for all k), then v, must necessarily
tend towards zero (v, — 0). It is often from the convergence to zero of this sequence that we
manage to show that the gradient itself must tend towards zero. The negative term will have to
take a very particular form if we want to be able to derive information from it.

In particular, it is not enough to impose f(xy + Ardi) < f(xg).

* Prevent the step Ay from being too small, too close to zero.

The first objective is indeed not sufficient because inequality (1.11) is generally satisfied by steps
A, > 0 arbitrarily small.

However, this can lead to a "false convergence", that is to say the convergence of the iterates
towards a non-stationary point. We give an overview in this part of the linear searches that we

will use later. We have classified them into two categories

1.5.3 Exact Linear Searches

In this case, the optimal solution A is calculated exactly (from a theoretical point of view because
in practice we generally only obtain an approximation). We will give the algorithm for linear
search by dichotomy and of the golden number.

The uncertainty interval

Definition 1.6 Consider the following one-dimensional problem:

imimise (s
i g

1.5. One-dimensional optimization
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Definition 1.7 The interval [a,b] is said to be an uncertainty interval if the minimum X of ()\)

belongs to |a, b, but its exact value is not known.

Theorem 1.8 let p : R — R be strictly quasi-convex on [a, b).
let \,pu € la,b[, A <

* Difp(A) > p(p), then p(2) > (u); Yz € [a, Al.

* 2) if p(A) < p(n), then p(2) > ©(A);Vz € [u,b].

Important consequences of theorem 1.8:

1. If p(\) > @(u), then the new uncertainty interval is: [\, b]. (We delete [a, \]).

2. If o(\) < (), then the new uncertainty interval is: Vz € [u, b]. (We delete [p,b]).

This is the basic idea for the construction of optimization algorithms unidimentional without deriva-
tive calculation. At each iteration we do dimi reduce the uncertainty interval until we arrive at a

final interval of length less than

The dichotomy method

Algorithm of the dichotomy method

Initialization: Choose ¢ > 0 and [ final length of the uncertainty interval, [a, b] being the initial
interval.

Set k = 1 (iteration counter) and go to step 1.

Step 1: If b, — a; < ¢, stop.The minimum belongs to [ay, by].

Otherwise ask:

arp +b
)\k: k2bk—€
ar +
M = k2 £ te

and go to step 2.

Step 2: If o(\,) > () then agyy = ag, b1 = g

Otherwise ay1 = Mg, bp1 = bg.

Replace k£ with k£ + 1 and go to step 1.

The golden number method

The golden number method improves the dichotomy method, in dimireducing the number of
observations, at each iteration.

Algorithm of The golden number method:

Initial step: choose [ > 0 final length of the uncertainty interval and [a4, b;], @ = 0, 618,calculate
A1 and p; such that:

1.5. One-dimensional optimization
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/\1 =a; + (1 — Oé)(bl — (11).
p1 = ay + a(by —aq).

Set k = 1 and go to the main step.

Main step:

(1) If by — ay < I stop, take a* € [ag, bi]. If w(A\x) > ¢(ux) go to (2), otherwise go to (3).

(2) Ask a1 = A, b1 = ks pka1 = age1 + (bga1 — agy1), calculate o(py41), and go to (4).

(3) Ask a1 = ak, bry1 = Ly 1 = Ay Ak = a1 + (1 — @) (byy1 — ax41), calculate (A1) and
go to (4).

(4) Set k = k+ 1, and go to (1).

1.5.4 Inexact Line Searches

Exact linear searches, despite the fact that they only lead to an approximate optimal solution,
they do not require a lot of observations at each iteration of the main algorithm .In the 60s, 70s,
80s, math scientists have succeeded in developing linear research that is less expensive, but at
the same time respects the descent of the function.

Let us now describe in detail the three most inaccurate linear searches more important. It is about

the inexact linear searches of Armijo, of Goldstein and de Wolfe.

1.5.5 Inexact Line Searches of Armijo (1966)

Let f: R" — R, z; € R",d;, € R™ a direction of descent (V f(x,)'dy < 0).
The rule of Armijo requires that f decreases sufficiently to the point x; + Ad, .This condition is

described by the following inequality called condition of armijo:

f(l‘k + )\kdk) < f(l‘k) + GAka(mk)tdk, € 6]0.1[ (Armijo)
That is to say that the reduction of f must be proportional at the same time to )\, and to the

directional derivative V f(xy)'dy.

1.5.6 Graphical interpretation of the Armijo condition

Let’s define the function

p:R—=>R

1.5. One-dimensional optimization
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by
©(Ak) = flar + Aedi), A > 0
Note that:

@ (N) = V fxy, + \dy,) dy,
@ (0) = V f(xx)'dp <0,
©(0) = f(xx).

The equation of the tangent at the point (0, ¢(0)) is as follows:

{Ny} iy =9(0)+ ¢ (0)(A—0)
(M) = far) + Vf(zk) dede

Let’s Pose

P(A) = 0(0) + ¢ (0)A

The equation of the tangent becomes:

P(N) = f(x) + V(@) did
Now let’s define the function ¢(\) as follows:

P(A) = ©(0) + erp' (0) = f(z) + AV f(zp) dr, € € [0,1]

T HAI=T0m A )

ligprve che 15
CCroissance
suffisante

L ril
arge )

acceplable ) ’ acceplabe

Figure 1.3: Armijo Rule.

We are looking )\, for such that

1.5. One-dimensional optimization
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Remark 1.1 ¢ 1-The condition ¢(\;) < $(\;) implies the decrease of the function F.

e 2-Indeed

(M) < P(Ar)

<
flzr + Mdi) < f(an) + eV f(n)de < flag)

because the direction d is a direction of descent.

e 3- When we take \;, very close to zero it will harm the convergence and the speed of convergence.

Indeed
J o + Xdk) = f(op) + )\_kvf(ﬂﬂk)dk + A_kOé(xk, S\dk)
if
M — 0
Oé(lL‘k,Xdk) —0
A —0
S0

1.5.7 Algorithm (Armijo’s Rule)

Step 0O:(Initialization)

ag1 = oag1 =0, choose oy > 0,p €]0,1[ set k = 1 and go to step 1.
Step 1:

if () < ©r(0) + pe, (0)ay, : STOP (o = ay).

if pr(ax) > ¢1r(0) + pp.(0)ay, then

Qd+1 = Qd, Qg k41 = oy, and go to step 2.

Step 2:

if g k11 = 0 determine o1 €|ayg 1, +00[

if g1 # 0 determine o1 €Jayg i1, Mdpr1]

replace k with £ + 1 and go to step 1 .

1.5. One-dimensional optimization
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Remark 1.2 It is clear from Figure 1.3- Armijo’s Rule that the armijo equality is always checked if:

ay = 0 is small enough. indeed, in the opposite case, we would have a sequence of strictly positive

{ay.i}i=1 converging to O when i — oo and such that

f(zp + ardy) < fxr) + pa VT f(zy)dy,

does not take place for oy, = ay,;.
By subtracting f(xy) in the two members, dividing by oy ; and by passing to the limit when i — oo,

we would find

VI fan)de = pV f (zr)d
which would contradict the fact that dy, is a direction of descent (p < 1).

Theorem 1.9 If ¢, : R, — R, defined by ¢r(a) = f(zx + ady) is continuous and bounded on the
outside, if dy, is a direction of descent in x;(,(0) < 0) and if p €]0, 1], then the set of steps verifying

the rule d’armijo is not empty.

Proof. We have

pr(a) = f(z) + ady)
,(a) = f(xr) + par VT f(xr)dy

The Taylor-Yong expansion in oo = 0 of ¢y, is:
or(a) = f(rx + ady) = f(xr) + po V' f (1) di + af(a)
where
£(a) > 0,a—=0
and as p €]0, 1[ and ¢, (0) = VT f(})dx < 0 we deduce:
far) + ar VT far)dy, < f(zr) + paxV7 f (z1)dy

for a > 0 We see that for a > 0 quite small we have:

pr(a) < V,(a)

1.5. One-dimensional optimization
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From the above and the fact that ¢, is bounded inferiorly, and
U, (a) = —o0, (a) = 400,

we deduce that the function ¥ ,(«) — ¢y () at the property:

{ U, (a) — () > 0 for a small enough

VU, (a) — ¢p(a) < 0 for a large enough
so cancels at least once for a > 0:

By choosing the smallest of these zeros we see that there are @ > 0 such that

pp(a) = ¥, (a) and ¢i(a) < ¥,(a) for 0 < a < a.

Which completes the demonstration. m

Goldstein’s Inexact linear Search (1967)

The step A, is acceptable by the inexacte linear Goldestein search, if it satisfies the following two

Goldesteinlet Goldestein2 conditions:
1
f(ack + )\kdk) < f(.%’k) + c)\k(xk)t.dkc E]O, 5[ (Goldsteinl)

Interpretation of the Goldstein1 relationship:

The Goldsteinl condition is exactly the Armijo condition studied. yes, of course.This condition
ensures a sufficient decrease in the function f.

Interpretation of the Goldstein2 relationship:

provided that Goldstein2 avoids at step \; being too small (see the figure ssous) .This is a great

contribution to the convergence process.

1.5. One-dimensional optimization
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h’h]:f[u;.&ﬂh)

hgyree: che: ba
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tangent

= pas acceptables —-

Figure 1.4: Goldstein rule.

Figure 1.5 shows, on an example, all the points satisfying

the two Goldstein conditions.

The Goldstein Algorithm:

The Algorithm tries to find A, €]p;, f2[. We start with an intervalle [ag, b,] quite large. We take

Ao €]B1, Bal:

* if \¢ checked Goldsteinl and Goldstein2 then A\, €51, 5] and we stop.

b
e If \y > (31, then )\, is not Goldstein, then we take b; = Ay anda; = bo and \; = il ; ! and

we start again with A;.

. . b
e If \y < 31 then )\ is not Goldstein2, we take a; = \g,b1 = bp and \; = il ; ! and we test

A1 again.

At iteration k

Suppose we have [a, by] and A\, =
If \r checked Goldsteinl and Goldstein2; A\, €5, 52]. Stop.
If \; is not Goldstein1 then A\, > (3,
We take by 1 = A\p;ap + 1 = ap; Mgy =

ar + by,

ap + 1+ by
—

. . b
If k is not Goldstein2 then A\, < 3; . We take ap 1 = \i; bpr1 = bp; Apg1 = ak“—w.

2
The following algorithm is thus obtained :

1.5. One-dimensional optimization
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Algorithm from Goldstein

STEP 1 (Initialization )

Choose g € [0,10'°] and p € 0, 1]. Ask ag = 0, by = 10'%°
Set k£ = 0 and go to STEP 2.

STEP 2 (Goldsteinl Test)

Iteration k£ we have [ay, by] and a;, calculate oy (o)
If or (o) < 0 (0) + page,.(0), go to STEP 3.
Otherwise

Ask aj 1 = ay, bpr1 = by, and go to STEP 4

STEP 3 (Gold Test 02)

if pr(ar) > 0x(0) + (1 = p)arp(0), stop. a* = o

Otherwise

Ask ay 1 = oy, bgr1 = by and go to STEP 4
STEP 4

Pose a1 = ak+1—+bk+1.

Setk=Fk+1 and2go to STEP 2.

Wolfe’s inexact linear Search (1969)

Inexact linear weak Wolfe search

The step \; is acceptable by Wolfe’s inexact linear search or Wolfe simply;, if it satisfies the follow-

ing two conditions low :

f(%k + )\kdk) S f(ili'k) + cl)\kth(a:k).dk, (&1 E]O, 1[ (WOlfl)

Vf(l’k + )\kdk)t > CQVf(l’k)t.dk, C2 E}Cl, 1[ (WOle)

Interpretation of the Wolf1 relationship

the Wolf1 condition is exactly Armijo’s condition, this condition ensures a sufficient decrease in
the function f.

Interpretation of the Wolf2 relationship

The selected )\, by the Wolf1 condition can be very small. This can have disastrous consequences
on the convergence of the algorithm. The condition Wolf2 avoids this drawback and removes

very small values from \,. (see the fugire below).

1.5. One-dimensional optimization
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Figure 1.5: Wolfe rule.

Figure 1.5 shows on an example the set of points satisfying Wolfe’s conditions c—1 = 0.1; ¢, = 0.7
(Lemarechal 1980).
Inexacte linear strong Wolfe search

The step ), is acceptable by Wolfe’s inaccurate linear search ,
if it satisfies the following two Wolfe fortl and Wolfe fort2 conditions :

g+ Mdy) < fzr) + M VEif(ar)dy, c1 €]0,1] (Wolfe fort1)

|Vf($k + )\kdk)tdk‘ > CQ.’Vf(xk)t.dk’, Co G]Cl, 1[ (Wolef fOI'tZ)

Interpretation of the Wolfe fort1 relationship

The Wolfe fort1 condition is exactly the Wolfel or Armijo condition.

This condition ensures a sufficient decrease in the function f.

Interpretation of the Wolfe fort2 relationship

The Wolf fort2 condition implies Wolf2. The step A, selected by the Wolfl and Wolf2 conditions
may be very far from an optimal point or stationary of the ¢ function . The Wolf fort2 condition
ensures that the pitch has ), is in the vicinity of a stationary point or an optimal point of ¢ .
Wolfe’s algorithm

STEP 1 (Initialization)

Take g € [0,10%] , calculate ¢(0), ,(0). Take p = 0.1 (or p = 0,1 or p = 0.001 or p = 107%)

0 = 0.9 (or even smaller )

1.5. One-dimensional optimization
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Set ap = 0, by = 10%, k = 0 and go to STEP 2

STEP 2 (test of (Wolfel))

Calculate ¢(ay). If o(ar) < (0) + pary (0), go to STEP 3. Otherwise. Ask aj, +1 = ag, by +1 = oy
and go to STEP 4

STEP 3 (test (Wolfe2) or (Wolfeforte2) )

Calculate ¢ (ax). If ¢’ (a) > 0 (0)(|p, ()| < —0¢ (0)). STOP

To take & = ay.. Otherwise Ask a, + 1 = ay, b, + 1 = b, and go to STEP4

STEP 4 (calculation of ;1)

Qg1+ by
Oyl = ——(5———

2
Set k =k + 1 and go to STEP 2.

1.6 Convergence of methods.

1.6.1 The Zoutendijk condition

Now we will study the contribution of the inaccurate linear search in the convergence of algo-
rithms with descending directions. It’s only a contribution, because linear research alone cannot
ensure the convergence of iterates . It is well understood that the choice of the direction of de-
cente also plays a role. This translates into a so called Zoutendijk condition, from which we can
draw some interesting qualitative information.

An inaccurate linear search rule is said to satisfy the condition Zoutendijk if there exists a constant

C' > 0 such that for any index £ < 1 we have from

f(zra1) < f(x) = OV f(r)|)? cos® Oy, (1.15)

where 6, is the angle that d; makes with —V f(x;), defined by

—V7 f (k) di

cos @, =
S FATTEA

(1.16)

1.6. Convergence of methods.
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Here is how we use the condition condition from Zoutendijk.

Theorem 1.10 (from Zoutendijk)

If the sequence {z;} generated by an optimization algorithm verifies the conditiontion of Zou-
tendijk (1.12) and if the sequence f(z)} is reduced, then

STV f(zp)||? cos? 0, < oo

E>1

Proof. By summing the quantities ||V f(z})||* cos? §;, while pretaking into consideration (1.13),

we have

l
SNV ) Peosth < 5 (7w) — flann) (1.17)

k>1

The series is thus convergent since there exists a constant C" such for all &, f(z;) > C". =

Important consequence of Zoudentijk’s theorem

The condition (1.14) implies

|V £ (1) ||? cos® O, — 0 (k — o) (1.18)

This limit can be used to deduce the convergence of the algorithm.

Indeed, if our algorithm generates a sequence {z;} of the form :

Tpa1 = T + Apdp.
If the choice of d, is such that

cosf, >0 >0,Vk
then it follows from (1.15) that

lim [V f ()| = 0

The following two proposals specify the circumstances in which the condition of Zoutendijk (1.12)

is verified with the rules of Armijo and Wolf.

1.6. Convergence of methods.
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Proposition 1.3 Let f : R" — R be a function continuously differentciable in a neighborhood of
T={xeR": f(z) < f(z1)}.

We consider an algorithm with descent directions dy, which generates a following {x\} using Armijo’s

linear search, with
a; >0
Then there exists a constant C' > 0 such that, for any k > 1, one of the conditions
f(@rir) < flag) — OV far)dy
or
flae) < flaw) = CIV f(@)]]? cos® O,
is verified.
Proposition 1.4 Either f : R™ — R is a continuously differentiable function in a neighborhood of
T={zeR": f(z) < f(z1)}

We consider an algorithm with descent directions dy, which generates a continued {z} using the
Wolfe linear search (Wolfel) and (Wolfe2). Then there remains a constant C' > 0 such that, for any
k > 1, the condition of Zoutendijk (1.12) is verified.

1.6.2 Global convergence

Definition 1.8 Let f : R™ — R be differentiable . Suppose that we built a sequence {z}}, using an
optimization algorithm without constraints described in the model (algorithm model). We will say

that the algorithm converges globally if we have :

lim inf ||V f(zx)]| =0
k—o0
Remark 1.3 Authors sometimes require for the same definition the next stronger relationship :

lim ||V f(zx)|| = 0
k—o0

1.6. Convergence of methods.
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1.6.3 Notion of convergence speed

The global convergence of an algorithm having been established, we are now interested in eval-
uating its effectiveness. From a practical point of view, the effectiveness of an algorithm depends
on the number of necessary iterations to obtain an approximation to within ¢ (e fixed in advance)
of the optimum z*.

If we compare between them, several algorithms, and if we admit that the calculation time per
iteration is approximately the same for all, the best is the one that will require the smallest num-
ber of iterations.

Unfortunately, it turns out to be impossible to draw general conclusions of this kind of compari-
son.

Depending on the chosen starting point, the nature of the function to be optimized, the value of
the chosen tolerance, the hierarchy of the algorithms may vary considerably.

If we want to identify a criterion having a certain absolute value, we must therefore resort to
another type of analysis: this is the object of the study of the asymptotic convergence, that is to
say of the behavior of the sequence {x;} in the vicinity of the limit point z*.

This leads to assigning to each algorithm an efficiency index called its speed of convergence.

Remark 1.4 we are once brought to express the convergence speed of {x;} sequel by studying, not
the way ||z — x*|| tends to O, but the way the sequence {f(x)} tends to f(x*) where f the function
that we minimized.

1.6. Convergence of methods.
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Gradinet and conjugate gradient methods

2.1 Gradient method (Steepest-descent method)

This method was discovered by Cauchy in 1847 ([10]). It is natural to wonder about the origin
or justification of such an appellation (steepest slope method). Let us consider a point x € R", if
V f(zx) # 0, then the direction d, = —V f(z;) is a direction of descent (see Theorem 4.1[45] and
remark 4.1[45]). The following Theorem goes show us that this is actually the best direction of

descent. In other words the decrease of the function will be the strongest following the direction:
=V f (@)

Theorem 2.1 Suppose that f : R™ — R, is differentiable at point x, and suppose that V f(x;) # 0.

Let’s consider the optimal problem

Minimize f'(z,d
lldll<1 f(@.d)

where f'(x,d) is the directional derivative of f at the point x and in the direction d. Then the optimal

solution of this problem is given by

d=_ V()
[V f(z)]l
Proof. Since
Flod) = lim 2EFA ZT@) G

Our problem therefore amounts to minimizing V f(z)'d in {d : ||d|| < 1}. The shwartz inequality

gives

IVf(@)'d] < [V f(@)llld]]-

28
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SO
Vf(x)td >0,
we have of course
=V f(@)'d < ||V f(@)ld].
If
Vf(x)d <0,
(3.1) implies that
=V f(@)'d < ||V f@)ld].
Therefore we always have
Vi)d=—|Vf)lld].
For ||d|| < 1, we have
IVF@)d < V@) = =V @)lldl = =1V F @)l
So :Vd : ||d|| <1 we have
Vf(z)d > ||V f(@)|

On the other hand,: ||d|| = 1 and d verifies:

Vf@wd::Vf@a%—W§§%%w:=—HVf@»w

Interpretation of the Theorem 3.0.2 [45] :

We will start from theorem 7.1[45] to give an intuitive idea about the call: method of the highest

slope. Indeed, according to the theorem 7.1 [45] we have :

[z, d) > f'(z,d) : Vd, ||d|| <1

Either by using the definition of the directional derivative
o fad) = f@) o, flaAd) = f()

)\*)0_4_ )\ - )\*)0_4_ )\

This last inequality implies that there exists 6 > 0 such that
[f(z+Ad) = f()] = [f(z +Ad) = f(z)] >0, VA€]—5,+9]
or again

f(x+Ad) > f(z+Ad), VA €] — 6,40 and Vd, ||d|| < 1.

2.1. Gradient method (Steepest-descent method)
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2.1.1 Algorithm of the steepest slope method

This algorithm is very simple. It follows the following scheme.

Algorithm of the steepest slope method

» Initial step :

Choosee > 0. Choose an initial point z;. Put £ = 1 and go to the main stage.

» Main step :

If||Vf(x)] < estop. Otherwise set d, = —V f(z) and let the optimal solution of linear search

Min{ f(xg, +Adi); A > 0}.

Pose xy.1 = xx + Apdi. Replace k£ with £ + 1 and repeat the main step.

2.1.2 Disadvantages of the steepest slope method

Slowness of the method in the vicinity of stationary points

This method works efficiently in the first steps of the algorithm. Unfortunately, as soon as we
approach the stationary point, the method becomes very slow. We can intuitively explain this

phenomenon by the following considerations
f(@, +Ad) = f(zi) + AV f(2r)'d + Alldl|o(; Ad)

where «o(zx; Ad) — 0 when A\d — 0.
If d=—Vf(x1), we obtain :x;,; = 2, — AV f(x) and consequently

f@rga) = f(ae) = A=V @) + [V f (@) o AV f(2r))]

From the previous expression, it can be seen that when irg approaches a stationary point, and
if f is continuously differentiable, then ||V f(z;)| is close to zero. Done the term to the right
approaches zero, independently of \, and consequently f(x;.;) does not move away not a lot of
f(zx) when we go from the point z;, to the point x4

The phenomenon of Zigzagging

It is not easy to verify that for the gradient method we always have

dz;'dk+1 = 07

2.1. Gradient method (Steepest-descent method)
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that is to say that the sequence {z,} generated by the algorithm of the gradient method,zigzag.
This creates a phenomenon of slowing down in the routing of the points xx towards the optimal

solution.

2.1.3 Some remedies

Change of direction

Instead of taking as the direction of descent, the direction :
dy = =V f(z),
we take directions of the form
dy = —D.V f(xy),

where D is a suitably chosen matrix (D could be, for example, the inverse of the Hesian matrix
at the point x;, that is to say (H(zz))™!).

Another choice could be made in the following way :

dp = =V f(xr) + gk,

where g;, is an appropriate vector.

Acceleration of convergence

We can also accelerate the convergence of the gradient method. For this we trans- forms, thanks to
an algorithm for accelerating convergence, the sequence {z;} into a sequence {y;} which would
converge towards the same limit as the following {x, }, but would converge more quickly-dement.
If we denote by z*this limit comments, we express this rapidity by the limit next :

. yp—at
lim
k—o0 1} — X*

=0

Example 2.1 Let the following quadratic function be: f(z) = jz'Axz — b'z with A > 0 (that is, A
is a positive definite matrix), we note g(p) = f(xy + pdy), where the optimal py, is characterized by

g (pr) = 0 so we have

Vf(l‘k + pkdk)tdb = (A(l’k + pdk) - b)tdk =0

Either

Vf(wn+ prAdy)'dy = 0 = p = =k > 0

2.1. Gradient method (Steepest-descent method)
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because dy, is a direction of descent and di Hasdy, > 0.

The optimal step gradient method can be written as: x;,1 = xj + pd; with

r=0b—Axy (2.1
d dr.dy,

2.2 Conjugate gradient method

This method is mainly used for large problems. This method was discovered in 1952 by Hestenes
and Steifel ([32]), for the minimization of functions strictly convex quadratics. Several mathe-
maticians have extended this method for the nonlinear case. This has been made for the first
time, in 1964 by Fletcher and Reeves ([26]) (Fletcher’s method- Reeves) then in 1969 by Polak,
RibiA " re ([45]) and Polyak ([41]) (Polak-RibiA "re method- Polyak). Another variant was studied
in 1987 by Fletcher ([29]) (Method of the conjugated descent). Let’s mention other new algo-
rithms that can be found in ([18], [6], [38], [34], [23],[37], [52], [20], [13], [4], [20], [2],
[24], [23], [5], [53])

2.2.1 Quadratic optimization without constraints

Definition 2.1 Let () be a symmetric and positive definite matrix (n;n) and b € R™. We call

quadratic minimization problem without constraints, the problem noted (PQSC') next :

N T
{gg{nz ix Qr—0b x} (2.3)

Theorem 2.2 The problem (PQSC') has a unique solution z,

solution of the linear system Qx = b, that is to say that z verifies

i =0Q (2.4)

2.2.2 Calculation of the pitch obtained by an exact linear search

Let Q be a symmetric and positive definite (n,n) matrix and b € R" and

2.2. Conjugate gradient method
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1

flx) = §aiTQx — bl
Consider the problem (PQSC)
. o . 1 T T
?g%gf(:c) = grgg{ 2x Qr—1> x} (PQSC)

The methods with linear research directions generate sequences {x}x—12 . of the following way.

gauo

We start with z; € R™. At iteration k, if we have x;, € R", the successor x;; of x;, is given by the

following relation

Thy1 = Tk + Oékdk (25)

on d;, € R" is a search direction and «a;, € R" is the search step obtained by an exact or inaccurate

linear search. In the case of an exact linear search «;, check

f(l’k + akdk) = 1;1>11([)1f(:ck + Oédk) (26)

Let’s note

g =V f(xy) =Qup—b 2.7

Theorem 2.3 Let () be a symmetric and positive definite (n,n) matrix and b € R" and

1

flz) = éxTQx — by (2.8)
Consider the problem (PQSC)
. o . 1 T T
;rel]g%f(x) = min { 2% Qx —b w} (PQSC)

Suppose that at iteration k we have a direction dy, of descent, that is to say that dy, verifies

2.2. Conjugate gradient method
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grd, = (Qry — b)Tdg <0 (2.9)
let a, > 0 be obtained by an inaccurate linear search, that is to say that oy verifies
f(ZL’k; + Ozkdk) = Iél;glf(l’k + Oédk)

SO

gi d,

_d:I];QdK (2.10)

ap —

2.2.3 Conjugate directions method

Definition 2.2 Let () be a symmetric (n,n) matrix. The directions dy,d, ....dy are said to be @

conjugates if we have

dfQd; =0,0<i,j<k (2.11)
Theorem 2.4 Let () be a symmetric and positive definite matrix (n;n). If the directions dy, dy, ....dy;

with k < n — 1; are non-gero and () conjugates, then they are linearly independent.

2.2.4 The Algorithm of conjugate directions

Let Q be a symmetric and positive definite (n;n) matrix and b € R™. Consider the problem of

—

quadratic minimization without constraints, (PQSC'), according to :
1 T
min ¢ - Qr —b'x
TERM 2

Algorithm of conjugate directions

*Initialization

We give ourselves any x, € R" and (dy, ds, ....d,,_1) , ) conjugates. Set k¥ = 0 and go to the main
step

*Main step

Fork >0

Calculate

2.2. Conjugate gradient method
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gk = V(1) = Qup — b

If g, = 0. Stop.

Otherwise calculate

_ gi di
diQdx

. =

Set
Tpy1 = T + apdy,
ask £ = k + 1 and go to the main step.

Theorem 2.5 Starting from an initial point xq € R", the previous conjugate directions algorithm
converges to the single optimal solution & of the problem (PQSC') in n iterations, that is to say that

we have

Ty, =2 and Qr, = Qr =0b (2.12)

Remark 2.1 If we start from the point x,, then the optimal solution is reached at point x,, 1, that is

to say that we will have
T=Tpp
Theorem 2.6 Let () be a symmetric and positive definite (n,n) matrix and b € R" and
f(z) = %ITQI — bl

Consider the sequence {xj}i—1. .. in the following way . We start with x; € R" At iteration k, the

successor x;, + 1 of x;, is given by the relation next
Thy1 = Tk + ozkdk

where d;, € R" is a search direction and oy, € R is the search step obtained by an exact linear search,

oy, verifies

flzy 4+ agdy) = rgglf(:ck + ady) (2.13)

Let’s note

2.2. Conjugate gradient method
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Gkr1 = V(Tr1) = QTpp1 — b (2.14)
So
Gr1dr = g + axQdy (2.15)
and
Gdi =0,k=0,1,...,n—1 (2.16)

Theorem 2.7 On the conjugate direction method, we have

Gdi =0,k =0,1,...,n—1,i=0,....k (2.17)

2.2.5 Conjugate gradient method. quadratic case

Let ) be a matrix (n,n), symmetric and positive definite. We consider in this paragraph the
following problem (PQSC)

min{f(z) : € R"} = min { %xTQa: —blrre R”} (PQSQO)

In the conjugate directions method, the directions dj, ...., d,,_; are given to advance.

In the conjugate gradient method, We start from a point x, € R",

do = —go = Vf(ifo) = Qxo — b.

The directions di,k = 1,...n — 1 are calculated at each iteration.

At iteration k

di, = —gr + Br—1di—1

Pr_1 is obtained so that dy, is () conjugated with the other vectors d;,i =0, ..., k — 1.

In other words we must have

2.2. Conjugate gradient method
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diQdi=0i=0,.k—1, (2.18)

In the appellation conjugated gradient, we find the two words : gradient and conjugate.

a) The word gradient is used because d}, is calculated from the gradient at the point z.

b) The conjugated word is also justified, because and as will be seen later, the directions {d,}}~;

are subjugated.

2.2.6 Conjugate gradient algorithm. quadratic case

Principle of the Algorithm

We start from any point 2, € R" .
Id
90 %
di Qdy
Suppose that at iteration k& we have : z; and dj. This will allow us to calculate

Calculate dy = —go = b — Q¢ , ag =

g,?dk

—m7 Tpi1 = T + Qpdy, grp1 = QTig1 — b, djy1 = —grp1 + Brdie (2.19)

g = Qr — b0y =

By, is chosen so that

di1.Qdy =0 (2.20)
Since di.1 = —gry1 + Brdy, then (2.17) gives

(—gre1 + Brdi)TQdy = 0

or again
Brdi - Qdy = gj,1.Qdy, (2.21)
and finally
T
Ji+1Qd,
= 2.22
=0 Qd, (2.22)

2.2. Conjugate gradient method
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Algorithm
Conjugate gradient algorithm. Quadratic case

1. Choose zy € R™.

2. Calculate gy = Qxq — b. If gy = 0 stop. Otherwise ask dy = —go Ask k =0

gdek

3. Calculat = —
alculate oy, dedk

4. Calculate x| = xp + agdy.

5. Calculate g1 = Qupy1 — b. if gx 1 = O stop.

91{+1 Qdy,

. Calculat =
6. Calculate gy, 7 Qds

7. Calculate dy 1 = —gry1 + Brdx

8.Putk=Fk+1landgoto3.

2.2.7 Properties of the quadratic conjugate gradient

The fundamental property of the quadratic case conjugate gradient is that the directions {d;};,

are () conjugates. These directions verify as we have seen in the algotithm

dit1 = —Gr1 + Bredy

with
G @d
5k _ k+1 k
d Qdy
According to theorem 4.2, the conjugate gradient algorithm, quadratic version converges to the

optimal solution in n iterations. Let’s summarize these two results in the following two theorems:

Theorem 2.8 The directions {dy, ds, ....,d,—1 } generated by the gradient algorithm quadratic conju-

gate are () conjugates.

Theorem 2.9 Let () be a (n,n), symmetric and positive definite and (PQSC) the following quadratic

constraint-free minimization problem

2.2. Conjugate gradient method
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min{f(z) : x € R"} = min { %xTQx —blr:ze R”} (PQSQO)

Starting from any point xo € R™, consider the sequence generated by the algorithm of the quadratic
conjugate gradient defined by

gr =V f(xy) = Qrp — bk =0,1....

T
G @l
= k=0,1,... 2.23
=" g, " =0 (2.23)
p —do sik=0 (2.29)
k =
Gk + Br—1dk—1 stk >1 (2.25)
T
g, dy,
ap = — (2.26)
CTdlQd,
and
Tp1 = Tk + apdy, (2.27)

Then the sequence {x\} converges in n iterations towards the optimal solution i of the problem
(PQSC), that is to say that x,, verifies x,, = & and

Qi = Qu, = b (2.28)

2.3 Conjugate gradient method.Non-quadratic case

2.3.1 Introduction and different forms of the conjugate gradient non-quadratic

Let f : R™ — R be non-quadratic. We seek to solve the non-quadratic problem without constraints
(PNQSC) next :

2.3. Conjugate gradient method.Non-quadratic case
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min{ f(z) : x € R"} (2.29)

Among the oldest methods used to solve problems of the type (PNQSC), we can mention
the conjugate Gradient method. This method is mainly used for large problems. This method
was discovered in 1952 by Hestenes and Steifel ([32]), for the minimization of strictly convex
quadratic functions. Several mathematicians have extended this method for the non-quadratic
case. This was achieved for the first time, in 1964 by Fletcher and Reeves ([26]) (Fletcher-Reeves
method) and then in 1969 by Polak, Ribiere ([46]) and Ployak ([42]) (Polak Ribiere-Ployak
method). Other variants were studied later ([28],[55],[31]) Another variant was studied in
1987 by Fletcher ([30]) (Conjugated descent method). All these methods generate an {xy }ren

sequence as follows :

Thy1 = Tk + Oékdk (230)

The age step oy, € R is determined by a one-dimensional optimization or search exact or inaccu-
rate linear of the Armijo, Goldstein or Wolfe type.

The directions d, are calculated recurrently by the following formulas :

g — 9o sik=0 (2.31)
k f—
G + Br—1dp—1 Sik>1 (2.32)

with gr = Vf(l’]g) and Bk € R.
The different values assigned to [, define the different shapes of the conjugate gradient

If we note

Yk-1 = gk — Gk—1, Sk = Tkt1 — Tk (2.33)

the following variants are obtained :
1952 ([32])- Conjugate gradient Hestenes - Stiefel variant(HS)

T
HS Ikx+1Yk
— (2.34)

2.3. Conjugate gradient method.Non-quadratic case
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1964 ([26])-Conjugate gradient variant Fletcher Reeves(FR)

FR _ H9K+1”2 (2.35)
B lgel? '

1969 ([42].[46])- Conjugate gradient Polak-Ribiere-Polyak variant(PRP)

T
pPrP _ IKx+1Yk
N PATE (2:30)

1987 ([30])- Conjugate gradient conjugate descent variant - Fletcher (CD)

oD = _ Noxl® (2.37)
dg_lgkfl

1991 ([36])- Conjugate gradient Liu - Storey variant(LS)

T
LS Ik +1Yk
= = (2.38)
K dfgk

1999 ([11])- Conjugate gradient variant of Dai-Yuan (DY)

DY _ H9K+1||2 (2.39)
K dgyk

2005([31])- Conjugate gradient Hager-Zhang variant(HZ) -(-24)

o2 = (yy, — 2d), Hy’“HQ)Tg“1 (2.40)
dly, ” dlys

2012([48])- Conjugate gradient variant Rivaie-Mustafa-Ismail-Leong(RMIL)[60]

T _
II?]X[{L _ 9K(9k gl;—l) (2.41)
[ dy—1]]

Remark 2.2 In the case where f is not quadratic we have

2.3. Conjugate gradient method.Non-quadratic case
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1S o BER £ BERE o£ gOD o BES o gPY o gHZ o gRMIL (2.42)

Therefore, by applying the non-quadratic conjugate gradient algorithm, using the coefficients [
appearing in (2.39), we obtain sequences {xy }rcn different.
What happens if f is strictly convex quadratic and if oy, is obtained by an exact linear search. The

answer to this question can be found in the following theorem.

1
Theorem 2.10 If f(x) = ExTQx — bz, with a positive definite symmetric Q, x € R"; b € R™ and if

oy, 1s obtained by an exact linear search. Let’s note

T
6 _gk+1Qdk
k— "~
dedk’
so we have
HS _ aFR _ aPRP _ oCD _ aLS _ DY _ aHZ _ ARMIL
k. =Py =P =P =Pk =0 =0T =5 (2.43)

and the quadratic conjugate gradient algorithm generates the same sequence {xy }ren.

Non-quadratic conjugate gradient algorithm

Introduction
Let f : R” — R be non-quadratic and (PNQSC) the minimization problem not quadratic without

constraints following :

min{ f(z) : x € R"} (PQSC)

To construct the non-quadratic conjugate case gradient algorithm, we can draw inspiration from
the quadratic conjugate gradient algorithm established in the previous chapter. Unlike the quadratic
case, we do not have a matrix (). Therefore we do not have conjugate () directions. As in the
quadratic case, the algorithm of the conjugate gradient non-quadratic case generates a sequence

{2k }ren in the following way :

Tp1 = Tk + ogdy,

2.3. Conjugate gradient method.Non-quadratic case
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The algorithm starts from any point =, € R".

At iteration k

Suppose that we have the vector z;, € R" and the direction d;_; This allows us to calculate V f (xzy,)
instead of g, = Q) — b in the quadratic case. To have z;.,, we need to calculate o, and dj.
Calculation of dj,:

dk = —Vf(Ik) —+ ﬁk—ldk—l (244)

We have eight ways to calculate 35,

s V@) (V@) = V(@)
R Al (V) = V(@)
pr_ V@) (Vf () = V(pa)
NMICSIE
e _ V@)
LTIV f(ze) |2
DY _ IV f ()12
AL (V) — V(1)
w5 V(@) (Vf(xg) = Vi(zpa))

e AV f (1)
cp _ VIl
U dl LV (e

IV f(z2) = VI (z-)|? p V f ()

ﬁl?—zl = ((Vf<l'k) - Vf(iﬁkfl)) — 2di1 d}f_l(Vf(xk) — vf(xk—l)) (Vf(J?k) _ vf(xk—l))Tyk—l
RMIL _ (VS (@)™ (Vf(ax) = V(ap-1))

= - [I?

Calculation of o,

Having obtained dj, , recall that oy, checks

f(xk + akdk) = mm{f(:ck + Oédk) e 6]0, +OO[} (245)

1
In the case where f(z) = §xTQx — b, positive definite symmetric (), a, solution of (2.42), is given
by the following relation

gr

_—df Qdr (2.46)

ap =

2.3. Conjugate gradient method.Non-quadratic case
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In the case where [ is not quadratic, o, cannot be calculated by the formula (2.43). In this
case, « is calculated by other methods. For example, the golden ratio number method or the
dichotomy method is used. As will be seen later,a;, can be calculated by an inaccurate linear
search of Armijo or Goldstein or Wolfe

Non-quadratic conjugate Gradient algorithm

» step 1

Chooseanyxy € R™ and € > 0

» step 2

Askk =0

Callg, = V f(x0). Ask dy = —go

» step 3

Cualculateay, using an exact or inaccurate linear search of Armijo or Goldstein or Wolfe or Strong
Wolfe

Calculate xy. 1 = 1, + aud,

» step 4

If||Vf(xri1)] < e, Stop, x* = ;11 .Otherwise go to Step 5

» step 5

Calculateg 1 = V f(xpi1)

Calculate S, by one of the following ways

By = Bi% or By = B or By, = B or By = BP or By = Bi° or B, = B or B = B{!7 or

i = B

Calculate

dk+1 = —Gr+1 + Brdy

Put £k =k + 1 and go to Step 3.

2.3. Conjugate gradient method.Non-quadratic case
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Acceleration of the convergence of the
gradient method by using the conjugate

gradient

Consider the unconstrained optimization problem

(P) min{f(z):2z¢€ R"} (3.1

where f : R® — R is continuously differentiable. The line search method usually takes the

following iterative formula

Tpt1 = Tp + apdy, (3.2)

for (3.1), where z;, is the current iterate point, «;, > 0 is a steplength and d, is a search direction.
Different choices of d;, and o, will determine different line search methods [22, 35, 17]. We
denote f(zx) by fi , Vf(xx) by gx , and V f(xr+1) by gx+1 , respectively. ||.|| denotes the Euclidian

norm of vectors and define

Y = Gk+1 — Gk -

We all know that a method is called steepest descent method if we take

di, = —gu

45
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as a search direction at every iteration, which has wide applications in solving large-scale mini-
mization problems [47, 49, 25]. One drawback of the method is often yielding zigzag phenomena
in solving practical problems, which makes the algorithm converge to an optimal solution very
slowly, or even fail to converge [40, 41].

If we take
dy, = —Hygs

as a search direction at each iteration in the algorithm, where Hj, is an n x n matrix approximating
(V2 f(z)]~", then the corresponding method is called the Newton-like method [40, 41, 50] such
as the Newton method, the quasi-Newton method, variable metric method, etc. Many papers
have proposed this method for optimization problems [ 17, 9].

However, the Newton-like method needs to store and compute matrix H; at each iteration and
thus adds to the cost of storage and computation. Accordingly, this method is not suitable to solve
large-scale optimization problems in many cases.

The steepest descent method is one of the simplest and the most fundamental minimization meth-
ods for unconstrained optimization. Since it uses the negative gradient as its descent direction, it
is also called the gradient method.

For many problems, the steepest descent method is very slow. Although the method usually works
well in the early steps, as a stationnary point is approached, it descends very slowly with zigza-
guing phenomena. There are some ways to overcome these difficulties of zigzagging by defleting

the gradient. Rather then moving along

d, = =V f(xr) = =g,

we can move along

dk = —Dka(ﬂfk),

or along

dp = —gr + hi, 3.3)

where D, is an appropriate matrix and h,; is an appropriate vector. Due to its simplicity and its
very low memory requirement, the conjugate gradient method is a powerful line search method

for solving the large-scale optimization problems. In fact, the CG method is not among the fastest
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or most robust optimization algorithms for nonlinear problems available today, but it remains
very popular for engineers and mathematicians who are interested in solving large problems [12,
7,15, 6, 28, 58]. The conjugate gradient method is designed to solve unconstrained optimization
problem (3.1). More explicitly, the conjugate gradient method is an algorithm for finding the
nearest local minimum of a function of variables which presupposes that the gradient of the
function can be computed.We consider only the case where the method is implemented without
regular restarts. The iterative formula of the conjugate gradient method is given by (3.2), where
ay, is a steplength which is computed by carrying out a line search, and dj, is the search direction
defined by

— Gk sik=1 (3.4
dp1 = .
Gk41 + Brdy, stk > 2 (3.5)
where [ is a scalar, and g, denotes g(z;). Some well known formulas for j; are given as follows:
HS _ 9:{(+1yk FR _ H9K+1H2 PRP _ 9}7;+1yk cD _ _ H9K+1H2
M T T el T R
s _ _ Ik+1Yk DY __ ||9K+1||2 HZ (yk — 2, ||yk||2)TgK+1
K — » MK — K
dj, g dj Y dfye” dly

The above corresponding methods are known as Hestenes-Stiefel (HS) method [33], the Fletcher-
Reeves (FR) method [29], the Polak-Ribiere-Polyak (PR) method (see [43, 8]), the Conjugate De-
scent method(CD) [29], the Liu-Storey (LS) method [37], the Dai-Yuan (DY) method [13], and
Hager and Zhang (HZ) method [32], respectively.

In the convergence analysis and implementation of conjugate gradient methods, one often re-
quires the inexact line search such as the Wolfe conditions or the strong Wolfe conditions. The

Wolfe line search is to find «;, such that

f(l’k + Oékdk) S f(l’k) + 6ozkngdk (36)
d} g(zp + apdy) > ody gy (3.7)

with § < o < 1. The strong Wolfe line search is to find oy, such that

f(%k + Oékdk) < f(:l?k) + (5ozkngdk (38)

\di g(xx + cndy)| < —od} g (3.9)
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where § < o < 1 are constants.

The convergence behavior of the above formulas with some line search conditions has been stud-
ied by many authors for many years.

Al-Baali [1] has proved the global convergence of the FR method for nonconvex functions with
the strong Wolfe line search if the parameter o < 1. The PRP method with exact line search may
cycle without approaching any stationary point, see Powellas counter-example [44]. Although
one would be satisfied with its global convergence properties, the FR method sometimes per-
forms much worse than the PRP method in real computations. A similar case happen to the DY
method and the HS method.

In next section, we will state the idea of the new method, then a new algorithm will be developed.
Descent property and the global convergence will be established in Section 2. Section 3 is devoted
to numerical experiments by implementing the algorithm to solve many large-scale benchmark

test problems. The conclusions are presented in Section 4.

3.1 The new formula and the corresponding algorithm

In this section, we shall state the idea to propose a new conjugate gradient method and develop
a new algorithm.

In this paper, based the modified strong Wolfe type line search, under some mild conditions, we
give the Descent property and global convergence of the new (3, which is known as 3275 where
BRB denotes Belloufi, Rahali and Benzine. Then we can define the following formulas /3 to

compute the search directions in (3.4) and (3.5).

BRB __ H9k+1H2 (3.10)
P [|d? '

With the constructed search direction, we find a stepsize by the modified strong Wolfe line search
strategy:

Modification of the strong Wolfe line search

The step length is computed by performing a line search along d;. In practice, a relevant choice

is to compute «, according to the realization of the modified strong Wolfe conditions, namely

3.1. The new formula and the corresponding algorithm
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< —ogidy H ’“HQ (3.12)

lg(zp + apdy)dy| <

The algorithm is given as follows:

algorithm Step 0: Given x; € R" ,setd; = —g;, k= 1.

Step 1: If ||gx|| = O then stop else go to Step 2.

Step 2: Set xp1 = x + audy, where di is defined by (3.4)and (3.5),(3.10) and «y is defined by
(3.11),(3.12).

Step 3: Set k := k + 1 and go to Step 1.

3.2 Descent property and global convergence

The following theorem indicates that, in the inexact case, the search direction d}, satisfies descent

property.

Theorem 3.1 If an «y is calculated wich satisfies modified strong Wolfe line search (3.11) and (3.12)
1
with o €]0, ] Vk then for the new conjugate gradient method, the inequality

k-1
=Y of < S < 2+Zaj (3.13)
||gk||
holds for all k, and hence the descent property
gid, < 0,Vk (3.14)
holds, as long as g, # 0.
Proof. The proof is by induction.
when we take
di|” AR
o d % o 4 apd)Tdy < —ogld :
T T T
g dk X Sg(.’L’k—FOékdk) de—S—O'g dk
M lgell T Nkl ; : ) )thd k2 ) lgel? ™ Tl
9Ty + apdy
ogld < < —ogld
P i [|? * gl

3.2. Descent property and global convergence
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ogide _ Grprdr < _ng:dk:
ol STl el
Hng il g

For k = 1 Equations (3.13) and (3.14) is clearly satisfied. Now we suppose that (3.13) and (3.14)
hold for any & > 1.
It follows from the definition (3.4),(3.5) and (3.10) of d;,, that

ogidy  Ghi1disr _ 0gdy Fdy
—1+ 2 = 2 = 2
[l x| gl gl
T d T d
Bl _ g 4 Gkt (3.15)
||9k+1|| ||dk||

and hence from (3.12) and (3.14) that

T T
grdk Grp1drr1 < o Tk O e (3.16)

—1+o < <
el = llgrsall? e

Also, by induction assumption (3.13), we have

Td k=1
Z i< '“2_—2+ZJJ
1%l j=0
when We take the first part of the retracement (3.13)
Ii Ok vy,
_Z J <
[lgl?
» gk & i
= " lgel?
k-1
i Ik Ly,
—1—-0) 0/ <—-1+4o0
i=0 als
k=1 T T d
1oyl < —14o % < Gnlin ¢h)
j=0 lgkll> = [lgrsal

and when We take again the first part of the retracement (3.13)

Td
—Z i< < 9%
||gk|\2
T
; i dy,
(—o) x —ZO’J > —0 X
: l[gr||?
dk k-1
0—]
Tl <75
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T k—1
gkd
—-1- <-140) 0’
Ak i
T d Tq
gnden g o gy N
Hgk+1H HQkH =0
we get the
T 4 T4 k=1
Tl o g IEE < 9 S 2)
| gr+1]] g%l =0
from (1)and (2) we find :
Tdq k-1 T d Tq k-1
R T Dl A~ S G R A
[ grl =0 | grral gl =0

k—1 k
N i = azaa <Badi )N S (3.17)
j=0 J=0
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) < BT o S 3)
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Then, (3.13) holds for & + 1.
we multiply the second part of (3) in the ||gr1||?

9 k i\ < gk+1dk+1 < (9 k j 9
| g1l (—ZOU ) < g lPG—5 T ) < (=2+ ZOO' M grsall
j= j=

Since
k
ng+1dk+1 < g1 l” <—2 + ZUJ> (3.18)
j=0
and
k 00 1
j i_
>3- L 019
7=0 7=0
1

where o €]0, 5] ,
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1
it follows from 1 — o > 3

<0

-2
+ 1
k 00 k
-2+ Y 0l < -2+ > 0/ < 0that —2+ > ¢’ < 0. Hence, from (3.18),
7=0 7=0 7=0

k

G < (=24 3207 |lgreall* <0
7=0

91{+1dk+1 <0

we obtain

91{+1dk+1 <0

We complete the proof by induction.

In order to establish the global convergence of the proposed method, we assume that the follow-
ing assumption always holds, i.e. Assumption 1.1 : m

Assumption 1.1

Let f be twice continuously differentiable, and the level set L = {z € R"|f(z) < f(z1)} be
bounded

Theorem 3.2 Suppose that z; is a starting point for which Assumption 3.1 holds. Consider the New
method (3.4),(3.5) and (3.10). If the sfeplength oy, 1s computed by the modified strong Wolfe line
search (3.11) and (3.12) with § < 0 < 3 and if

1 1
4 S 4
k1] | gr—1]]

then the method is globally convergent, i.e.,

(3.20)
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liminf ||gx|| =0 (3.21)
k—>o0

Proof. It is shown in theorem 1 that the descent property (3.14) holds for o €]0, %] ,
We take from (3.13) and multiply all its sides by (—a/|dy||*)
we find that :

g Ld,.
olld|” ZUJ > —o||dy, ||2Hk = ( 2+ 203> (—olldx|?)

We get on with the (3.12):

el _
’gg+1dk| = ngdkH H2 = Hd H ZO-J

We take from (3.19) and multiply all its sides by (|| dy||?)

we find that :
k—1 ) k ) 0o ) 1
olldel* | X207 | <olldell* | X207 | <olldill | Y07 | = olldil? (T)
i=0 i=0 =0 l1-0
SO
I k”
gk 1di| < —ag TdkH < o||dy |2 z j <—Hdk|]2
H del* _
‘gl{-‘rldk' = ng ” H2 = HdkH Z ] —HdkH2
fork=k—1:
| dg—1]|?
lgldy 1| < —0gi (dpy g 71H2 < |ldp_1]? ZO; < —Hdk 2

so from (3.12), (3.13), and (3.19) it follows that

(T dis] < 0T s 1” & 1H2 < lldi- 1||%Zaﬂ = lldis] Zaﬂ < T gt @22

Thus from the definition of d;, and using (3.10) and (3.22) we deduce that

i ll* = lgell” = 288191 dx—1 + By | di—1 |1? (3.23)
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from (3.22) we have :

g
lgLdy_1] < 1—||dk 12
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where we used the facts that

1 1
< (3.25)
i1 l* ~ llgr—all*
1 1
2 S 2
k1]l gl
So
L+o\ [lgll* | llgell* L+o\ llgell* | llgell®
di])? < < ) + < + dy_1]?
19 < (7= ) TP T a2 = \T= ) Tl * Tt %1
By applying this relation repeatedly;it follows that
P < gy (3.26)
k >~ T k TG .
o 2 g

Now we prove (3.21) by contradiction. It assumes that (3.21) does not hold, then there exists a
constant € > 0 such that

gkl > €>0 (3.27)

holds for all k sufficiently large. Since g, is bounded above on the level set L, it follows from
(3.26) that

|di||* < cik (3.28)

where ¢, is a positive constant.From (3.13) and (3.19), we have

ko oo 1
ol < Yol =
=0 i=0 l-o
k=1 k ) o) )
l+od 0l => 0l <> 0ol =
i=0 =0 i=0 l-0o

SRR
—1l—-0),00=-) 0> —r
j=0 j=0 l-o

We take the first part
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Ef‘ 1
oy ol <
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1
I <
ZU 1—0 o
k=1 1 k=1 _
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we take the second part of (3.19)
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and by the condition from Zoutendijk.
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another side

and we have

1
Since o < > substituting (3.28) and (3.27) into (3.29) gives

1—20\? 2 e 1
Zk:cosQ@kZ (1_ U) ZHng ZE—Z—
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20, > > - 3.30
2otz (75 ) g 2 =2 s .

where ¢, is a positive constant. Therefore, the series > cos 26, is divergent. Let M be an upper

k
bound of ||V2f(z)| on the level set L, then
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Thus by using (3.12) and (3.20) we obtain

(1-0) 7
e ——y ) | 3.31
ar = MHdkHng k ( )
from (3.11)
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So

Te1 — Je < —cs|ge||? cos® Oy,

Substituting a,, of (3.31) into (3.11) gives

frr1 < fr — csllgr|® cos® Oy, (3.32)

1 —
where ¢; = % > (. Since f(z) is bounded below, Y_||gx||* cos® 6, converges, which indi-
k

cates that >_ cos? ), converges by use of (3.27). This fact contradicts (3.30). We complete the
k

proof. m
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3.3 Numerical results and discussions

In this section we report some numerical results obtained with a Fortran implementation of gradi-
ent algorithms and their accelerated variants. All codes are written in Fortran and compiled with
f77 (default compiler settings) on a Workstation Intel(R) core(TM), i3@ 2.20GHz. We selected
a number of 75 large-scale unconstrained optimization test functions in generalized or extended
form [2]. For each test function we have considered ten numerical experiments with the number
of variables n = 1000, 2000, ..., 10000. In the following we present the numerical performance of
CG and ACG codes corresponding to different formula for 5, computation. All algorithms im-
plement the Wolfe line search conditions with p = 0.0001 andr p = 0.9 , and the same stopping
criterion ||gx|lc < 1071°, where ||| is the maximum absolute component of a vector.

The comparisons of algorithms are given in the following context. Let f£%'and f/L%? be the
optimal value found by ALG1 and ALG2, for problem i = 1, ..., 750 , respectively. We say that, in
the particular problem i, the performance of ALG1 was better than the performance of ALG? if:

[FARGT = fARG2] < 1078 (3.33)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time of
ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or
the C'PU time corresponding to ALG?2, respectively.

We compare the New method CGBRB with the steepest descent method, the CG DESCENT
method, and PRP conjugate gradient method.

Figures 144 list the performance of the CGBRB, steepest descent, CG DESCNET and PRP conju-
gate gradient methods. Relative to CPU time, the number of iterations and the number of gradient
evaluations, respectively, which were evaluated using the profiles of Dolan and More [7].
Clearly, Figures 144 present that our proposed method CGBRB exhibits the best overall perfor-
mance since it illustrates the highest probability of being the optimal solver, followed by the
steepest descent, CG DESCNET, and PRP conjugate gradient methods relative to all performance

metrics .

3.3. Numerical results and discussions
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Performance profile based on CPU time.

Performance Profile

—— CGBRB
—+— CGLESCENT

steepest descent method | |
——PRP

5 6 7 8 9

Figure 3.1: Performance based on CPU time.

Performance based on the number of iterations

Performance Profile

—— CGBRB i
—+— CGESCENT
01 steepest descent method T
——PRP
0 . ‘ ; . ) . : . : ‘
0 05 1 15 2 25 3 35 4 45 5

Figure 3.2: Performance based on the number of iterations.
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Performance based on the number of gradient evaluations
. T T

T

09+ B

07 4

06 b

05 B

Perfarmance Profile

04 E
03 B

02 B
—— CGBRB

CG,ESCENT

steepest descent method | |
—— PRP

Figure 3.3: Performance based on the number of function evaluations.

Performance based on the number of function evaluations
T F—-

Performance Profile

—— steepest descent method
—+—PRP
CGLESCENT -
——— CGBRB
1 1 N |
6 T 8 9

Figure 3.4: Performance based on the number of gradient evaluations.

3.4 Conclusion

We have presented a new conjugate gradient algorithm for solving unconstrained optimization

problems. Under the modified strong Wolfe line search conditions we proved the descent property

3.4. Conclusion
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and global convergence of the algorithm. For the test problems, the comparison of the numerical

results shows that the new algorithms is a good search direction at every iteration.

3.4. Conclusion
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