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Abstract 

 

The conjugate gradient method is considered one of the most 

important methods used to speed up the gradient algorithm, 

for this purpose, several related algorithms have been 

developed. We will present a new method that accelerates the 

convergence of the gradient method (the higher slope method) 

using a new version of the conjugate gradient and a powerful 

non-exact linear Wolf search. It will be shown that this 

algorithm generates descent trends and converges globally. 

  

Keywords: examples without restrictions, gradient method, 

algorithm, general convergence, linear search, imprecise linear 

search, imprecise linear search for Armijo, Armijo algorithm, 

imprecise strong linear search for Wolf, imprecise weak linear 

search for Wolf, gradient method, conjugate gradient method. 



Résumé 

 

La méthode du gradient conjugué est considérée comme l’une 

des méthodes les plus importantes utilisées pour accélérer 

l’algorithme du gradient, et à cette fin, de nombreux 

algorithmes connexes ont été développés.  

On exposera une nouvelle méthode qui accélère la 

convergence de la méthode du gradient (méthode de la plus 

forte pente) en utilisant une nouvelle version du gradient 

conjugué et une recherche linéaire inexacte de Wolfe forte. On 

montrera que cet algorithme génère des directions de 

descente et converge globalement. 

 

Les mots clés : exemples sans restrictions, méthode du 

gradient, algorithme, convergence générale, recherche linéaire, 

recherche linéaire imprécise, recherche linéaire imprécise pour 

Armijo, algorithme Armijo, recherche linéaire forte imprécise 

pour Wolfe, recherche linéaire faible imprécise pour Wolfe, 

méthode du gradient, méthode du gradient conjugué.  



                                        

 صملخ

 
تعتبر طريقة التدرج المترافق واحدة من أهم الطرق المستخدمة 

تم تطوير العديد من  الغرض،ولهذا  التدرج،لتسريع خوارزمية 
 الخوارزميات ذات الصلة.

سنقدم طريقة جديدة تسرع تقارب طريقة التدرج )طريقة 
المنحدر الأعلى( باستخدام إصدار جديد من التدرج المترافق 

وبحث خطي قوي غير دقيق وولف. سيظهر أن هذه 
 .الكليتقارب الالنسب و الخوارزمية تولد اتجاهات

 

الأمثلة بدون قیود، طریقة التدرج،  الكلمات المفتاحیة:

البحث الخطي غیر  البحث الخطي،لتقارب العام،خوارزمیة ، ا

خوارزمیة  جو،یالبحث الخطي غیر الدقیق لـ أرمالدقیق، 

ولف، البحث والبحث الخطي القوي غیر الدقیق لـ  جو،أرمی

، طریقة التدرجولف، طریقة والخطي الضعیف غیر الدقیق لـ 

 .التدرج المترافق
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Notations & abbreviations

Rn n-dimensional Euclidean (real) space

T transpose of a vector or matrix

x x = [x1, x2...xn]
T

{...} set

f(x), f objective function

x̂ local minimizer

f(x̂) minimum function value

C1 set of continuous differentiable functions

C2 set of continuous and twice differentiable function

⊂,⊆ subset of

|.| absolute value

[a, b] closed interval between the real numbers a and b

R set of real numbers

detA determinant of matrix A

B Euclidean closed unit ball

A−1 Inverse of matrix A

I identity matrix

xTy scalar product of the vectors x and y

∥x∥ Euclidean norm of x

{xk} sequence in Rn

f ′(x) derivative of f at x

ii



Introduction

Let be f : Rn → R and (P ) the problem of nonlinear, unconstrained minimization as follows:

(P ) min {f(x) : x ∈ Rn}

where f : Rn → R is continuously differentiable. Note

gk = ∇f(xk)

To solve the problem (P ), the majority of methods generate an {xk}k∈N suite in the following

form:

xk+1 = xk + αkdk (1)

where dk is a descent direction and αk is the pitch obtained by performing a one-dimensional

optimization. In the conjugate gradient methods the descent directions are of the form :

dk = −gk + βkdk−1 (2)

where the scalar βk characterise the different variants of the conjugate gradient. If βk = 0, then

we get the gradient method. Another choice of directions is given by

dk = −B−1
k gk (3)

where Bk is a nonsingular symetric matrix. Important cases include:

Bk = I (Steepest descent method)

Bk = ∇2f(xk) (Newton’s method)

The quasi Newton methods are also of form (0.3). All these methods are implemented taking into

consideration that dk is a descent direction i.e.

dTk gk < 0

iii



The convergence properties of the methods are descent directions and linear searches depend the

right choice of dk and step αk. The angle that the dk direction and gradient direction makes is

fundamental.Thatâs why weâre undoing

cos(θk) =
−dkgk

∥gk∥∥gk∥

We will choose αk so that we get a decrease on health of the function f , but at the same time it is

necessary that this calculation is not coteux in time and memory. The optimal choice is obtained

by choosing α as the optimal solution for the variable function φ(α) deffinit by

φ(α) = f(xk + αkdk)

Exact linear searches consist of calculating αk as a solution to the following one-dimensional

problem:

f(xk + αkdk) = min{f(xk + αdk) : α > 0}

Unfortunately, exact linear searches are difficult to perform practically and are costly in time

and memory. The strategy we will apply in this part is to choose αk verifying the following two

conditions:

f(xk + αkdk) ≤ f(xk) + σ1αkg
T
k dk (4)

g(xk + αkdk)
Tdk ≥ σ2g

T
k dk (5)

where 0 < σ1 < σ2 <. T 1he first relation (4) (Armijo condition), ensures that the function

sufficiently decreases. The second condition (5) warns that the step αk becomes small. Both

conditions (4) and (5) are called Wolfe conditions.

You can also choose αk checking the following conditions:

f(xk + αkdk) ≤ f(xk) + σαkg
T
k dk (6)

f(xk + αkdk) ≥ f(xk)(1− σ)αkg
T
k dk (7)

where 0 < α <
1

2
. (6) and (7) are called Goldstein conditions. The gradient method is one

of the simplest and most celebrated methods of constraint-free optimization. For many prob-

lems the gradient method becomes slow when approaching a stationary point. There are many
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methods that remedy this problem. Instead of considering dk = −∇f(xk) , you can move along

dk = −Dk∇f(xk) , or the long dk = −gkhk where Dk is a properly selected matrix and hk is an

appropriate vector.

Benzine, Djeghaba and Rahali tried to solve this problem by another method, accelerating the

convergence of the gradient method.

To achieve this goal, they developed a new algorithm they named the epsilon steepest descent

algorithm, in which the formula of Florent Cordellier and Wynn play They also proved global

convergence using exact linear and Armijo research.

In this work we accept the convergence of the gradient method and we study the global conver-

gence using the epsilon algorithm and the inaccurate linear searches of wolfe veriffiant (4) and

(5). We called the new algorithm: Wolfe epsilon steepest descent algorithm.

With 700 numerical tests we have shown that the new algorithm is more performing than the

other two already studied i.e. the steep elpsilon algorithm with exact linear or Armijo searches.

v



Chapter 1

Unconstrained Optimization

The problem we are studying here is the search of the minimum of a real function f of n variables

x1, x2, ..., xn.

Definition 1.1 ([14]) Let be f : Rn → R which to all x ∈ Rn,x = (x1, x2, ..., xn)
t associates the real

value

f(x) = f(x1, x2, ..., xn)

We are looking to solve the problem (P) :

(P ) min {f(x) : x ∈ Rn}

It is therefore a question of determining a point x̂ of Rn such that :

• 1. The point x̂ ∈ Rn is called a global minimum solution of (P) if and only if

f(x̂) ≤ f(x) : ∀x ∈ Rn

Here f(x̂) is called the global minimum value.

• 2. The point x̂ ∈ Rn is called a local minimum solution of (P) if and only if there exists a

neighborhood Vϵ(x̂) such that

f(x̂) ≤ f(x) : ∀x ∈ Vϵ(x̂)

1



Chapter 1. Unconstrained Optimization

Here f(x̂) is called minimum value.

• 3. The point x̂ ∈ Rn is called a strict local minimum solution of (P) if and only if there exists a

neighborhood Vϵ(x̂) such that

f(x̂) < f(x) : ∀x ∈ Vϵ(x̂) , x ̸= x̂

Here f(x̂) is called a strict local minimum value.

1.1 Descent Direction

Definition 1.2 ([14]) Either f : Rn → R, x̂ ∈ Rn , d ∈ Rn is said to be the direction of descent at

the point x̂ if and only if there exists a strictly positive number δ > 0 such that

f(x̂+ λd) < f(x̂) : ∀λ ∈]0, δ[.

Let’s give a sufficient condition for d to be a descent of direction .

Theorem 1.1 ([14]) Let f : Rn → R be differentiable at the point x̂ ∈ Rn and d ∈ Rn one direction

checking the following condition :

f ′(x̂, d) = ∇f(x̂)T .d < 0

then d is a direction of descent at the point x̂.

Proof. f is differentiable at the point x̂ then f continues and ∇f(x̂) exists,therefore

f(x̂+ λd) = f(x̂) + λ∇f(x̂)T .d+ λ∥d∥α(x̂, λd)

so

f(x̂+ λd)− f(x̂) = λ∇f(x̂)T .d+ λ∥d∥α(x̂, λd)

⇒ f(x̂+ λd)− f(x̂)

λ
= ∇f(x̂)T .d+ λ∥d∥α(x̂, λd)

⇒ lim
λ→0

f(x̂+ λd)− f(x̂)

λ
= lim

λ→0
(∇f(x̂)T .d+ λ∥d∥α(x̂, λd))

with

α(x̂, λd) −→
λ→0

0

so

1.1. Descent Direction 2



Chapter 1. Unconstrained Optimization

f ′(x̂, d) = lim
λ→0

f(x̂+ λd)− f(x̂)

λ
= ∇f(x̂)T .d < 0

the limit being strictly negative, then there exists a neighborhood of zero V (0) =] − δ,+δ[ such

that

f(x̂+ λd)− f(x̂)

λ
< 0, ∀λ ∈]− δ,+δ[

The relation (2.1) is particularly true for all λ ∈]0,+δ[. We obtain the desired result by multiplying

the relation (2.1) by λ > 0.

1.2 General scheme of algorithms

Definition 1.3 Let dk be a direction of descent at the point xk we can consider the point xk+1 the

successor of xk as follows :

xk+1 = xk + λkdk, λk ∈]0,+δ[

Start: x0 ∈ Rn, d0 :

∇f(x0)
t.d0 < 0

x1 = x0 + λ0d0

λ0 checks:

f(x0 + λ0d0) < f(x0)

Iteration k: (xk, dk) such that ∇f(xk)
t.dk < 0 and λk such that:

f(xk + λkdk) < f(xk) therefore

xk+1 = xk + λkdk.

The choice of dk and λk makes it possible to build a multitude of optimization algorithms.

-Example of choosing descent directions

If we choose

dk = −∇f(xk),

with

∇f(x̂k) ̸= 0,

1.2. General scheme of algorithms 3



Chapter 1. Unconstrained Optimization

we obtain the gradient method.

Of course, dk = ∇f(xk) is a direction of descent, indeed :

∇f(xk)
tdk = ∇f(xk)

t(−∇f(xk)) = −∇f(xk)
t.∇f(xk) = −∥∇f(xk)

t∥2 < 0

Also if we choose dk = −(H(xk))
−1∇(xk) such that:

H(xk) the Hessian matrix. (H(xk) ∈ Mn×n) ,∇f(xk) the gradient vector.

(∇f(xk) ∈ Mn×1), we obtain the Newton method.

If the matrix H(xk) is positive definite, so

∇f(xk)
tdk = −∇f(xk)

t(H(xk))
−1∇f(xk) < 0

-Example of the choice of steps λk

We choose λk to check

f(xk + λkdk) ≤ f(xk + λdk), ∀λ ∈]0, δ[

the search for a real variable λk, which is called linear search .

1.3 Results of existence and uniqueness

Before studying the properties of the solution (or solutions) of (P ), it is necessary to make sure

of their existence. We will then give results of uniqueness.

Definition 1.4 We say that f : Rn → R is coercive if

lim
∥x∥−→+∞

f(x) = +∞

Here ∥.∥ denotes any norm of Rn We will denote ∥.∥p (p ∈ N) the norm lp of Rn

∀x = (x1, ..., xn) ∈ Rn, ∥x∥p =
[

n∑
i=1

|xi|p
] 1

p

.

The infinite norm of Rn is

∀x = (x1, ..., xn) ∈ Rn, ∥x∥∞ = max
1≤i≤n

|xi|.

Theorem 1.2 (Existence): f : Rn → R∪{+∞} be proper, continuous and coercive, then (P ) admits

at least one solution.

Proof. Let d = inf(p) ; d > +∞ because f is proper. Let (xp)p∈N ∈ Rn be a minimizing sequence,

that is to say such that

1.3. Results of existence and uniqueness 4



Chapter 1. Unconstrained Optimization

lim
p−→+∞

f(xp) = d

Let’s show that (xp) is bounded.If this were not the case we could extract from this suite a sub-

suite (still noted (xp)) such that

lim
p−→+∞

∥xp∥ = +∞

By coercivity of f , we would have

lim
p−→+∞

f(xp) = +∞

which contradicts the fact that

lim
p−→+∞

∥xp∥ = d < +∞

As (xp) is bounded, we can then extract a sub-sequence from it (again noted (xp)) which converges

to x ∈ Rn By continuity of f , we then have

d = lim
p−→+∞

f(xp) = f(x).

In particular d > −∞ is x a solution of the problem (P ).

Theorem 1.3 (Uniqueness ) :f : Rn → R ∪ {+∞} be strictly convex. Then problem (P ) admits at

most one solution.

Proof. Suppose that f admits at least one minimum m and are x1 ̸= x2 (in Rn) achieving this

minimum :

f(x1) = f(x2) = m .

By strict convexity of function f , we then have:

f

(
x1 + x2

2

)
<

1

2
(f(x1) + f(x2)) = m ;

This contradicts the fact that m is the minimum.Therefore, x1 = x2 .Finally, we will give a criterion

for a function to be strictly convex and coercive.

Theorem 1.4 Let f be a function C1 of Rn in R. Suppose that there exists α > 0 such that:

∀(x, y) ∈ Rn × Rn (∇f(x)−∇f(y), x− y) ≥ α∥x− y∥2 (1.1)

Then f is strictly convex and coercive , in particular problem (P) admits a unique solution.

1.3. Results of existence and uniqueness 5



Chapter 1. Unconstrained Optimization

Proof. the Condition (1.1) implies that ∇f is monotone and that f is convex. Moreover, we have

the strict convexity of f .

Finally, f is coercive: indeed, applying the Taylor formula with integral remainder:

f(y) = f(x) +

1∫
0

d

dt
f(x+ t(y − x))dt = f(x) +

1∫
0

(∇f(x+ t(y − x)), y − x)dt. (1.2)

so

f(y) = f(x) + (∇f(x), y − x) +

1∫
0

(∇f(x+ t(y − x))− (∇f(x), y − x))dt. (1.3)

According to (1.1), we obtain

f(y) ≥ f(x) + (∇f(x), y − x) +

1∫
0

tα∥x− y∥2dt (1.4)

Finally

f(y) ≥ f(x)− ∥∇f(x)∥∥y − x∥+ α

2
∥x− y∥2. (1.5)

Let’s fix x = 0 for example; it is then clear that f is coercive. Therefore f admits a unique

minimum at x∗ on Rn characterized by

∇f(x∗) = 0

The condition (1.1) leads us to the following definition:

Definition 1.5 (Elliptic function) : We say that f : Rn −→ R is elliptic if the condition (1.1) is

satisfied, i.e. ∃α > 0 such that

∀(x, y) ∈ Rn × Rn (D2f(x)y, y) ≥ α∥x− y∥2

α is the ellipticity constant.

1.3. Results of existence and uniqueness 6



Chapter 1. Unconstrained Optimization

Proposition 1.1 : A function f : Rn −→ R twice differentiable on Rn is elliptic if and only if

∀(x, y) ∈ Rn × Rn (D2f(x)y, y) ≥ α∥y∥2

Proof. We use again the Taylor formula applied to the function

φ : t → φ(t) = f(x+ ty).

We must now give conditions to be able to calculate the or the solutions. We will try to show that

this solution is the solution of certain equations, so that it will be easier to calculate it.

1.4 Optimality conditions

The objective function must satisfy two sets of conditions in order to have a minimum, namely,

first and second-order conditions. The first-order conditions are in terms of the first derivatives,

i.e., the gradient.

1.4.1 Necessary condition for first-order optimality

Theorem 1.5 either f : Rn → R differentiable at the point x̂ ∈ Rn, if x̂ is a local minimal solution,

then ∇f(x̂) = 0.

Proof. Suppose x̂ is a local minimum solution, then

f(x̂) ≤ f(x),∀x ∈ V (x̂) (1.6)

Suppose the opposite,

∇f(x̂) ̸= 0,

then −∇f(x̂) is a direction of descent, then there ∃ϵ > 0 such that ∀α ∈]0, δ[ :

f (x̂+ α(−∇f(x̂))) < f(x̂)

We set x̂+ α(−∇f(x̂)) = x ,then

f(x) < f(x̂)

So ∃x ∈ V (x̂) such that :

1.4. Optimality conditions 7



Chapter 1. Unconstrained Optimization

f(x) < f(x̂) (1.7)

a contradiction between (1.3) and (1.4).

from or f differentiable and

f(x̂) ≤ f(x), ∀x ∈ V (x̂)

So

∇f(x̂) = 0.

.

1.4.2 Necessary condition for second-order optimality

Theorem 1.6 Either f : Rn → R is twice differentiable at the point x̂ ∈ Rn, if x̂ is a local minimum

of (P ), then ∇f(x̂) = 0 and the Hessian matrix of f at the point x̂, denoted by H(x̂), is positive

semi-definite..

Proof. Let be any x ∈ Rn, since f is twice differentiable at the point x̂ , we will have for all λ ̸= 0

f(x̂+ λx) = f(x̂) +
1

2
λ2xTH(x̂)x+ λ2∥x2∥α(x̂, λx), α(x̂, λx) −→

λ→0
0

This implies

f(x̂+ λx)− f(x)

λ2
=

1

2
xTH(x̂)x+ ∥x2∥α(x̂, λx) (1.8)

x̂ is a local optimum, then there exists δ > o such that

f(x̂+ λx)− f(x̂)

λ2
≥ 0, ∀λ ∈]− δ,+δ[

if we take into consideration (1.5) and we go to the limit when λ → 0, λ ̸= 0, we get

xtH(x̂)x ≥ 0,∀x ∈ Rn.

.

1.4. Optimality conditions 8
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1.4.3 Sufficient condition of optimality

Theorem 1.7 let f : Rn → R twice differentiable at the point x̂ ∈ Rn If ∇f(x̂) = 0 and H(x̂) is

positive, then x̂ is a strict local minimum from (P).

Proof. f being twice differentiable to the point â , we will have for everything x ∈ Rn

f(x) = f(x̂) =
1

2
(x− x̂)TH(x̂)(x− x̂) + ∥x− x̂∥2α(x̂, (x− x̂)), (1.9)

α(x̂, (x− x̂)) →
x→x̂

0, (∇f(x̂)).

Suppose that x̂ is not an optimum strict local.

Then there is a sequence {xk}k∈N∗ , such as xk ̸= x̂ : ∀k and

xk ̸= x̂ : ∀k, xk →
k→∞

x̂, f(xk) ≤ f(x̂) (1.10)

In (1.6) let’s take x = xk divide everything by ∥(x− x̂)∥2 and write dk =
(xk − x̂)

∥(xk − x̂)∥
, we get

f(xk)− f(x̂)

∥(xk − x̂)∥2
=

1

2
dTkH(x̂)dk + α(x̂, (xk − x̂)), α(x̂, (xk − x̂)) →

k→∞
0. (1.11)

(1.7) and (1.8) imply
1

2
dTkH(x̂)dk + α(x̂, (xk − x̂)) ≤ 0, ∀k

on the other hand, the sequence {dk}k∈N∗ is bounded (∥dk∥) = 1,∀n). So there is a sub continua-

tion drtrenicn such that {dk}k∈N1⊂N .

dk →
k→∞,k∈N1

d.

Finally, when k → ∞, k ∈ N1, we obtain
1

2
dTH(x̂)d ≤ 0.

The last relation and the fact that d ̸= 0(∥d∥ = 1) imply that the hessian matrix H(x̂) is not

positive definite. This is in contradiction with the assumption.

1.4. Optimality conditions 9
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1.5 One-dimensional optimization

One-dimensional optimization (linear search) consists of finding λk so as to reduce the function

f Sufficiently along this direction.

This "sufficient" will be quantified in the following in the description of the so called conditions

of Armijo, Wolfe, Goldstein & Price (linear searches inaccurate).

But first we expose the principle of descent method:

1.5.1 Principle of descent method

The principle of a descent method consists in making the following iterations- brags:

xk+1 = xk + λkdk, k > 0 (1.12)

while ensuring the ownership

f(xk+1) < f(xk).

The vector dk is the direction of descent in xk . The scalar λk is called the step of the method at

iteration k.

We can characterize the descent directions in xk using the gradient.

Proposition 1.2 Let d ∈ Rn Be verifying

∇f(x)t.d < 0

then d is a direction of descent in x .

Proof. we have for λ > 0

f(x+ λd) = f(x) + λ∇f(x)td+ λε(λ)

so if we write

f(x+ λd)− f(x)

λ
= ∇f(x)td+ ε(λ)

1.5. One-dimensional optimization 10
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we can clearly see that for λ sufficiently small we will have

f(x+ λd)− f(x) < 0.

Or that d makes with the opposite of the gradient −∇f(x) a strict angle-smaller than 90◦:

θ := arccos
−∇f(x)td

∥∇f(x)∥∥d∥
∈]0, π

2
[

All the descent directions of f en x

{d ∈ Rn : ∇f(x)d < 0}

forms an open half-space of Rn (illustration in Figure 1.1).

Figure 1.1: Half-space (translat ) of the descent direction d from f to x.

Such directions are interesting in optimization because to make f decoist; just move along d.

The descent-oriented methods use this idea to minimize a function In the method (1.9) the choice

of λk is related to the function:

φ(λ) = f(xk + λdk)

As in the method of the direction of descent, the trajectory of the solution follows a zigzag pat-

tern. If is chosen such that f(xk + dk) let be the minimum in each iteration, then the successive

directions are orthogonal.

Indeed

if we note g(x) = ∇f(x)

1.5. One-dimensional optimization 11



Chapter 1. Unconstrained Optimization

df(xk + λdk)

dλ
=

n∑
i=1

∂f(xk + λdk)

∂xki

d(xki + λdki)

dλ

=
n∑

i=1

gi(xk + λdk)dki

= g(xk + λdk)
tdk

where g (xk + dk) is the gradient at the point xk + dk.

In particular, one way to choose λk may be to solve the problem optimization (with a single

variable)

min
λ>0

φ(λ). (1.13)

If the step λ̃k obtained in this way is called the optimal step then we can write:

φ′(λ̃k) = ∇f(xk + λ̃kdk)
tdk = 0

that is to say

g(xk + λ̃kdk)
tdk = 0

or else

dtk+1dk = 0

where

dk+1 = −g(xk + λ̃kdk) = −gk+1

is the direction of descent at the point xk + λ̃dk .So the successive directions dk and dk+1 are

orthogonal as shown in Figure (1.2).

1.5. One-dimensional optimization 12
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Figure 1.2: trajectory of a typical solution in a different way, in the directrion of the patient.

To define a direction of descent it is therefore necessary to specify two things:

* tell how the direction dk is calculated.This choice directly influences in the appointment of the

algoritem.

* To say how we determine the step λk is what we call:the search linear.

Algorithm (method with direction of descent-one iteration)
Step 0: (Initialization)It is

Assumed that at the begining of iteration k, an iterated xk ∈ Rn

Step 1:

Stop test : if ∥∇f(xk)∥ ∼= 0, Stop the algorithm.

Step 2:

Choice of a direction of descent dk ∈ Rn

Step 3:

Linear search : determine a step λk > 0 along dk in such a way to "make f decrease sufficientlly"

Step 4:

If the linear search is finished xk+1 = xk + λkdk, replace k by k + 1 and go to step 1.

1.5. One-dimensional optimization 13
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1.5.2 Linear Search

Performing a linear search means solving the one-dimensional problem (1.10), where the objec-

tive is to :

* Decrease f sufficiently, which most often translates into achieving an inequality of the form

f(xk + λkdk) ≤ f(xk) + ”anegativeterm” (1.14)

The negative term, let’s say νk , plays a key role in the convergence of the algorithm using this

linear search. The argument is as follows.

If f(xk) is lower bounded (∃c a constant such that f(xk) ≥ c for all k), then νk must necessarily

tend towards zero (νk → 0). It is often from the convergence to zero of this sequence that we

manage to show that the gradient itself must tend towards zero. The negative term will have to

take a very particular form if we want to be able to derive information from it.

In particular, it is not enough to impose f(xk + λkdk) < f(xk).

* Prevent the step A0 from being too small, too close to zero.

The first objective is indeed not sufficient because inequality (1.11) is generally satisfied by steps

λk > 0 arbitrarily small.

However, this can lead to a "false convergence", that is to say the convergence of the iterates

towards a non-stationary point. We give an overview in this part of the linear searches that we

will use later. We have classified them into two categories

1.5.3 Exact Linear Searches

In this case, the optimal solution A is calculated exactly (from a theoretical point of view because

in practice we generally only obtain an approximation). We will give the algorithm for linear

search by dichotomy and of the golden number.

The uncertainty interval

Definition 1.6 Consider the following one-dimensional problem:

Minimize
λ∈[a,b]

φ(λ)

1.5. One-dimensional optimization 14
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Definition 1.7 The interval [a, b] is said to be an uncertainty interval if the minimum λ̃ of φ(λ)

belongs to [a, b], but its exact value is not known.

Theorem 1.8 let φ : R → R be strictly quasi-convex on [a, b].

let λ, µ ∈ la, b[, λ < µ

• 1) if φ(λ) > φ(µ), then φ(z) ≥ φ(µ); ∀z ∈ [a, λ].

• 2) if φ(λ) ≤ φ(µ), then φ(z) ≥ φ(λ);∀z ∈ [µ, b].

Important consequences of theorem 1.8:
1. If φ(λ) > φ(µ), then the new uncertainty interval is: [λ, b]. (We delete [a, λ[).

2. If φ(λ) ≤ φ(µ), then the new uncertainty interval is: ∀z ∈ [µ, b]. (We delete [µ, b]).

This is the basic idea for the construction of optimization algorithms unidimentional without deriva-

tive calculation. At each iteration we do dimi reduce the uncertainty interval until we arrive at a

final interval of length less than

The dichotomy method
Algorithm of the dichotomy method

Initialization: Choose ϵ > 0 and l final length of the uncertainty interval, [a, b] being the initial

interval.

Set k = 1 (iteration counter) and go to step 1.

Step 1: If bk − ak < ϵ, stop.The minimum belongs to [ak, bk].

Otherwise ask:

λk =
ak + bk

2
− ϵ

µk =
ak + bk

2
+ ϵ

and go to step 2.

Step 2: If φ(λk) > φ(µk) then ak+1 = ak, bk+1 = µk.

Otherwise ak+1 = λk, bk+1 = bk.

Replace k with k + 1 and go to step 1.

The golden number method
The golden number method improves the dichotomy method, in dimireducing the number of

observations, at each iteration.

Algorithm of The golden number method:
Initial step: choose l > 0 final length of the uncertainty interval and [a1, b1], α = 0, 618,calculate

λ1 and µ1 such that:

1.5. One-dimensional optimization 15



Chapter 1. Unconstrained Optimization

λ1 = a1 + (1− α)(b1 − a1).

µ1 = a1 + α(b1 − a1).

Set k = 1 and go to the main step.

Main step:

(1) If bk − ak < l stop, take α∗ ∈ [ak, bk]. If φ(λk) > φ(µk) go to (2), otherwise go to (3).

(2) Ask ak+1 = λk, bk+1 = µk, µk+1 = ak+1 + (bk+1 − ak+1), calculate φ(µk+1), and go to (4).

(3) Ask ak+1 = ak, bk+1 = µk, µk+1 = λk, λk+1 = ak+1 + (1− α)(bk+1 − ak+1), calculate φ(λk+1) and

go to (4).

(4) Set k = k + 1, and go to (1).

1.5.4 Inexact Line Searches

Exact linear searches, despite the fact that they only lead to an approximate optimal solution,

they do not require a lot of observations at each iteration of the main algorithm .In the 60s, 70s,

80s, math scientists have succeeded in developing linear research that is less expensive, but at

the same time respects the descent of the function.

Let us now describe in detail the three most inaccurate linear searches more important. It is about

the inexact linear searches of Armijo, of Goldstein and de Wolfe.

1.5.5 Inexact Line Searches of Armijo (1966)

Let f : Rn → R, xk ∈ Rn, dk ∈ Rn a direction of descent (∇f(xk)
tdk < 0).

The rule of Armijo requires that f decreases sufficiently to the point xk + λkdk .This condition is

described by the following inequality called condition of armijo:

f(xk + λkdk) ≤ f(xk) + ϵλk∇f(xk)
tdk, ϵ ∈]0.1[ (Armijo)

That is to say that the reduction of f must be proportional at the same time to λk and to the

directional derivative ∇f(xk)
tdk.

1.5.6 Graphical interpretation of the Armijo condition

Let’s define the function

φ : R → R

1.5. One-dimensional optimization 16
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by

φ(λk) = f(xk + λkdk), λk ≥ 0

Note that:

φ
′
(λ) = ∇f(xk + λkdk)

tdk,

φ
′
(0) = ∇f(xk)

tdk < 0,

φ(0) = f(xk).

The equation of the tangent at the point (0, φ(0)) is as follows:

{λ, y} : y = φ(0) + φ
′
(0)(λ− 0)

∼
φ(λk) = f(xk) +∇f(xk)

tdkλk

Let’s Pose

∼
φ(λ) = φ(0) + φ

′
(0)λ

The equation of the tangent becomes:

∼
φ(λ) = f(xk) +∇f(xk)

tdkλ

Now let’s define the function φ̂(λ) as follows:

φ̂(λ) = φ(0) + ϵλφ
′
(0) = f(xk) + ϵλ∇f(xk)

tdk, ϵ ∈ [0, 1[

Figure 1.3: Armijo Rule.

We are looking λk for such that

φ(λ̃k) ≤ φ̂(λ̃k)

1.5. One-dimensional optimization 17
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Remark 1.1 • 1-The condition φ(λk) ≤ φ̂(λk) implies the decrease of the function F .

• 2-Indeed

φ(λk) ≤ φ̂(λk)

f(xk + λdk) ≤ f(xk) + ϵλk∇f(xk)dk < f(xk)

because the direction d is a direction of descent.

• 3- When we take λk very close to zero it will harm the convergence and the speed of convergence.

Indeed

f(xk + λdk) = f(xk) + λk∇f(xk)dk + λkα(xk, λ̃dk)

f(xk + λdk)− f(xk) = λ̃k[∇f(xk)dk + α(xk, λdk)]

if

λk −→ 0

α(xk, λdk)
λ̄k−→0

−→ 0

so

f(xk + λkdk) ≃ f(xk).

1.5.7 Algorithm (Armijo’s Rule)

Step 0:(Initialization)

αg,1 = αd,1 = 0, choose α1 > 0, ρ ∈]0, 1[ set k = 1 and go to step 1.

Step 1:

if φk(αk) ≤ φk(0) + ρφ
′

k(0)αk : STOP (α∗ = αk).

if φk(αk) > φk(0) + ρφ
′

k(0)αk, then

αd,k+1 = αd, αg,k+1 = αk and go to step 2.

Step 2:

if αd,k+1 = 0 determine αk+1 ∈]αg,k+1,+∞[

if αd,k+1 ̸= 0 determine αk+1 ∈]αg,k+1, αd,k+1[

replace k with k + 1 and go to step 1 .
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Remark 1.2 It is clear from Figure 1.3- Armijo’s Rule that the armijo equality is always checked if:

αk ≻ 0 is small enough. indeed, in the opposite case, we would have a sequence of strictly positive

{αk,i}i⪰1 converging to 0 when i → ∞ and such that

f(xk + αkdk) ≤ f(xk) + ραk∇Tf(xk)dk

does not take place for αk = αk,i.

By subtracting f(xk) in the two members, dividing by αk,i and by passing to the limit when i → ∞,

we would find

∇Tf(xk)dk ≥ ρ∇Tf(xk)dk

which would contradict the fact that dk, is a direction of descent (ρ < 1).

Theorem 1.9 If φk : R+ → R , defined by φk(α) = f(xk + αdk) is continuous and bounded on the

outside, if dk is a direction of descent in xk(φ
′

k(0) < 0) and if ρ ∈]0, 1[, then the set of steps verifying

the rule d’armijo is not empty.

Proof. We have

φk(α) = f(xk + αdk)

Ψρ(α) = f(xk) + ραk∇Tf(xk)dk

The Taylor-Yong expansion in α = 0 of φk is:

φk(α) = f(xk + αdk) = f(xk) + ραk∇Tf(xk)dk + αξ(α)

where

ξ(α) → 0, α → 0

and as ρ ∈]0, 1[ and φ
′

k(0) = ∇Tf(xk)dk < 0 we deduce:

f(xk) + αk∇Tf(xk)dk < f(xk) + ραk∇Tf(xk)dk

for α > 0 We see that for α > 0 quite small we have:

φk(α) < Ψρ(α)
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From the above and the fact that φk is bounded inferiorly, and

Ψρ(α) → −∞, (α) → +∞,

we deduce that the function Ψρ(α)− φk(α) at the property:

{
Ψρ(α)− φk(α) ≻ 0 for a small enough

Ψρ(α)− φk(α) ≺ 0 for a large enough
so cancels at least once for α > 0:

By choosing the smallest of these zeros we see that there are ᾱ > 0 such that

φk(ᾱ) = Ψρ(ᾱ) and φk(α) < Ψρ(α) for 0 < α < ᾱ.

Which completes the demonstration.

Goldstein’s Inexact linear Search (1967)

The step λk, is acceptable by the inexacte linear Goldestein search, if it satisfies the following two

Goldesteinlet Goldestein2 conditions:

f(xk + λkdk) ≤ f(xk) + cλk(xk)
t.dkc ∈]0,

1

2
[ (Goldstein1)

f(xk + λkdk) ≥ f(xk) + (1− c).λk.∇f(xk)
t.dk (Goldstein2)

Interpretation of the Goldstein1 relationship:

The Goldsteinl condition is exactly the Armijo condition studied. yes, of course.This condition

ensures a sufficient decrease in the function f .

Interpretation of the Goldstein2 relationship:

provided that Goldstein2 avoids at step λk being too small (see the figure ssous) .This is a great

contribution to the convergence process.
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Figure 1.4: Goldstein rule.

Figure 1.5 shows, on an example, all the points satisfying

the two Goldstein conditions.

The Goldstein Algorithm:
The Algorithm tries to find λk ∈]β1, β2[. We start with an intervalle [a0, bo] quite large. We take

λ0 ∈]β1, β2[:

• if λ0 checked Goldsteinl and Goldstein2 then λk ∈]β1, β2[ and we stop.

• If λ0 > β1, then λ0 is not Goldstein, then we take b1 = λ0 anda1 = bo and λ1 =
a1 + b1

2
and

we start again with λ1.

• If λ0 < β1 then λ0 is not Goldstein2, we take a1 = λ0,b1 = b0 and λ1 =
a1 + b1

2
and we test

λ1 again.

At iteration k
Suppose we have [ak, bk] and λk =

ak + bk
2

If λk checked Goldstein1 and Goldstein2; λk ∈]β1, β2[. Stop.

If λk is not Goldstein1 then λk > β2

We take bk+1 = λk; ak + 1 = ak;λk+1 =
ak + 1 + bk+1

2
.

If k is not Goldstein2 then λk < β1 . We take ak+1 = λk; bk+1 = bk;λk+1 =
ak+1 + bk+1

2
.

The following algorithm is thus obtained :
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Algorithm from Goldstein
STEP 1 (Initialization )

Choose α0 ∈ [0, 10100] and ρ ∈ 0, 1[. Ask a0 = 0, b0 = 10100

Set k = 0 and go to STEP 2.

STEP 2 (Goldsteinl Test)

Iteration k we have [ak, bk] and ak, calculate φk(αk)

If φk(αk) ≤ φk(0) + ραkφ
′

k(0), go to STEP 3.

Otherwise

Ask ak+1 = αk, bk+1 = bk, and go to STEP 4

STEP 3 (Gold Test 02)

if φk(αk) ≥ φk(0) + (1− ρ)αkφ
′

k(0), stop. α∗ = αk

Otherwise

Ask ak+1 = αk, bk+1 = bk and go to STEP 4

STEP 4

Pose αk+1 =
ak+1 + bk+1

2
.

Set k = k + 1 and go to STEP 2.

Wolfe’s inexact linear Search (1969)

Inexact linear weak Wolfe search
The step λk is acceptable by Wolfe’s inexact linear search or Wolfe simply, if it satisfies the follow-

ing two conditions low :

f(xk + λkdk) ≤ f(xk) + c1λk∇tf(xk).dk, c1 ∈]0, 1[ (Wolf1)

∇f(xk + λkdk)
t ≥ c2∇f(xk)

t.dk, c2 ∈]c1, 1[ (Wolf2)

Interpretation of the Wolf1 relationship

the Wolf1 condition is exactly Armijo’s condition, this condition ensures a sufficient decrease in

the function f .

Interpretation of the Wolf2 relationship

The selected λk by the Wolf1 condition can be very small. This can have disastrous consequences

on the convergence of the algorithm. The condition Wolf2 avoids this drawback and removes

very small values from λk. (see the fugire below).
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Figure 1.5: Wolfe rule.

Figure 1.5 shows on an example the set of points satisfying Wolfe’s conditions c−1 = 0.1; c2 = 0.7

(Lemarechal 1980).

Inexacte linear strong Wolfe search

The step λk is acceptable by Wolfe’s inaccurate linear search ,

if it satisfies the following two Wolfe fort1 and Wolfe fort2 conditions :

f(xk + λkdk) ≤ f(xk) + c1λk∇tf(xk)dk, c1 ∈]0, 1[ (Wolfe fort1)

|∇f(xk + λkdk)
t.dk| ≥ c2.|∇f(xk)

t.dk|, c2 ∈]c1, 1[ (Wolef fort2)

Interpretation of the Wolfe fort1 relationship
The Wolfe fort1 condition is exactly the Wolfe1 or Armijo condition.

This condition ensures a sufficient decrease in the function f .

Interpretation of the Wolfe fort2 relationship
The Wolf fort2 condition implies Wolf2. The step λk selected by the Wolf1 and Wolf2 conditions

may be very far from an optimal point or stationary of the φ function . The Wolf fort2 condition

ensures that the pitch has λk is in the vicinity of a stationary point or an optimal point of φ .

Wolfe’s algorithm
STEP 1 (Initialization)

Take α0 ∈ [0, 1090] , calculate φ(0), φ
′
0(0). Take ρ = 0.1 (or ρ = 0, 1 or ρ = 0.001 or ρ = 10−4)

θ = 0.9 (or even smaller )
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Set α0 = 0, b0 = 1099, k = 0 and go to STEP 2

STEP 2 (test of (Wolfe1))

Calculate φ(αk). If φ(αk) ≤ φ(0)+ραkφ
′
(0), go to STEP 3. Otherwise. Ask ak+1 = ak, bk+1 = αk

and go to STEP 4

STEP 3 (test (Wolfe2) or (Wolfeforte2) )

Calculate φ
′
(αk). If φ′

(αk) ≥ θφ
′
(0)(|φ′

k(αk)| ≤ −θφ
′
(0)). STOP

To take α̃ = αk. Otherwise Ask ak + 1 = ak, bk + 1 = bk and go to STEP4

STEP 4 (calculation of αk+1)

αk+1 =
ak+1 + bk+1

2
Set k = k + 1 and go to STEP 2.

1.6 Convergence of methods.

1.6.1 The Zoutendijk condition

Now we will study the contribution of the inaccurate linear search in the convergence of algo-

rithms with descending directions. It’s only a contribution, because linear research alone cannot

ensure the convergence of iterates . It is well understood that the choice of the direction of de-

cente also plays a role. This translates into a so called Zoutendijk condition, from which we can

draw some interesting qualitative information.

An inaccurate linear search rule is said to satisfy the condition Zoutendijk if there exists a constant

C > 0 such that for any index k ≤ 1 we have from

f(xk+1) ≤ f(x)− C∥∇f(xk)∥2 cos2 θk (1.15)

where θk is the angle that dk makes with −∇f(xk), defined by

cos θk =
−∇Tf(xk)dk
∥dk∥∥dk∥

(1.16)
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Here is how we use the condition condition from Zoutendijk.

Theorem 1.10 (from Zoutendijk)

If the sequence {xk} generated by an optimization algorithm verifies the conditiontion of Zou-

tendijk (1.12) and if the sequence f(xk)} is reduced, then∑
k≥1

∥∇f(xk)∥2 cos2 θk < ∞

Proof. By summing the quantities ∥∇f(xk)∥2 cos2 θk while pretaking into consideration (1.13),

we have

l∑
k≥1

∥∇f(xk)∥2cos2θk ≤
1

C
(f(x1)− f(xl+1)) (1.17)

The series is thus convergent since there exists a constant C” such for all k, f(xk) ≥ C”.

Important consequence of Zoudentijk’s theorem

The condition (1.14) implies

∥∇f(xk)∥2 cos2 θk → 0 (k → ∞) (1.18)

This limit can be used to deduce the convergence of the algorithm.

Indeed, if our algorithm generates a sequence {xk} of the form :

xk+1 = xk + λkdk.

If the choice of dk is such that

cos θk ≥ δ > 0,∀k

then it follows from (1.15) that

lim ∥∇f(xk)∥ = 0

The following two proposals specify the circumstances in which the condition of Zoutendijk (1.12)

is verified with the rules of Armijo and Wolf.
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Proposition 1.3 Let f : Rn → R be a function continuously differentciable in a neighborhood of

T = {x ∈ Rn : f(x) ≤ f(x1)}.

We consider an algorithm with descent directions dk, which generates a following {xk} using Armijo’s

linear search, with

α1 > 0

Then there exists a constant C > 0 such that, for any k ≥ 1, one of the conditions

f(xk+1) ≤ f(xk)− C∇Tf(xk)dk

or

f(xk+1) ≤ f(xk)− C∥∇f(xk)∥2 cos2 θk

is verified.

Proposition 1.4 Either f : Rn → R is a continuously differentiable function in a neighborhood of

T = {x ∈ Rn : f(x) ≤ f(x1)}.

We consider an algorithm with descent directions dk, which generates a continued {xk} using the

Wolfe linear search (Wolfe1) and (Wolfe2). Then there remains a constant C > 0 such that, for any

k ≥ 1, the condition of Zoutendijk (1.12) is verified.

1.6.2 Global convergence

Definition 1.8 Let f : Rn → R be differentiable . Suppose that we built a sequence {xk}, using an

optimization algorithm without constraints described in the model (algorithm model). We will say

that the algorithm converges globally if we have :

lim
k→∞

inf ∥∇f(xk)∥ = 0

Remark 1.3 Authors sometimes require for the same definition the next stronger relationship :

lim
k→∞

∥∇f(xk)∥ = 0
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1.6.3 Notion of convergence speed

The global convergence of an algorithm having been established, we are now interested in eval-

uating its effectiveness. From a practical point of view, the effectiveness of an algorithm depends

on the number of necessary iterations to obtain an approximation to within ϵ (ϵ fixed in advance)

of the optimum x∗.

If we compare between them, several algorithms, and if we admit that the calculation time per

iteration is approximately the same for all, the best is the one that will require the smallest num-

ber of iterations.

Unfortunately, it turns out to be impossible to draw general conclusions of this kind of compari-

son.

Depending on the chosen starting point, the nature of the function to be optimized, the value of

the chosen tolerance, the hierarchy of the algorithms may vary considerably.

If we want to identify a criterion having a certain absolute value, we must therefore resort to

another type of analysis: this is the object of the study of the asymptotic convergence, that is to

say of the behavior of the sequence {xk} in the vicinity of the limit point x∗.

This leads to assigning to each algorithm an efficiency index called its speed of convergence.

Remark 1.4 we are once brought to express the convergence speed of {xk} sequel by studying, not

the way ∥xk − x∗∥ tends to 0, but the way the sequence {f(x)} tends to f(x∗) where f the function

that we minimized.
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Gradinet and conjugate gradient methods

2.1 Gradient method (Steepest-descent method)

This method was discovered by Cauchy in 1847 ([10]). It is natural to wonder about the origin

or justification of such an appellation (steepest slope method). Let us consider a point x ∈ Rn, if

∇f(xk) ̸= 0, then the direction dk = −∇f(xk) is a direction of descent (see Theorem 4.1[45] and

remark 4.1[45]). The following Theorem goes show us that this is actually the best direction of

descent. In other words the decrease of the function will be the strongest following the direction:

−∇f(xk).

Theorem 2.1 Suppose that f : Rn → R, is differentiable at point x, and suppose that ∇f(xk) ̸= 0.

Let’s consider the optimal problem

Minimize
∥d∥≤1

f ′(x, d)

where f ′(x, d) is the directional derivative of f at the point x and in the direction d. Then the optimal

solution of this problem is given by

d̃ = − ∇f(x)

∥∇f(x)∥

Proof. Since

f ′(x, d) = lim
λ→0+

f(x+ λd)− f(x)

λ
= ∇f(x)td.

Our problem therefore amounts to minimizing ∇f(x)td in {d : ∥d∥ ≤ 1}. The shwartz inequality

gives

|∇f(x)td| ≤ ∥∇f(x)∥∥d∥.
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so

∇f(x)td ≥ 0,

we have of course

−∇f(x)td ≤ ∥∇f(x)∥∥d∥.

If

∇f(x)td ≤ 0,

(3.1) implies that

−∇f(x)td ≤ ∥∇f(x)∥∥d∥.

Therefore we always have

∇f(x)td ≥ −∥∇f(x)∥∥d∥.

For ∥d∥ ≤ 1, we have

∥∇f(x)∥∥d∥ ≤ ∥∇f(x)∥ ⇒ −∥∇f(x)∥∥d∥ ≥ −∥∇f(x)∥.

So :∀d : ∥d∥ ≤ 1 we have

∇f(x)td ≥ −∥∇f(x)∥

On the other hand,: ∥d̃∥ = 1 and d verifies:

∇f(x)td̃ = ∇f(x)t(− ∇f(x)

∥∇f(x)∥
) = −∥∇f(x)∥.

Interpretation of the Theorem 3.0.2 [45] :

We will start from theorem 7.1[45] to give an intuitive idea about the call: method of the highest

slope. Indeed, according to the theorem 7.1 [45] we have :

f ′(x, d) ≥ f ′(x, d̃) : ∀d, ∥d∥ ≤ 1

Either by using the definition of the directional derivative

lim
λ→0+

f(x+ λd)− f(x)

λ
≥ lim

λ→0+

f(x+ λd̃)− f(x)

λ

This last inequality implies that there exists δ > 0 such that

[f(x+ λd)− f(x)]− [f(x+ λd̃)− f(x)] ≥ 0, ∀λ ∈]− δ,+δ[

or again

f(x+ λd) ≥ f(x+ λd̃), ∀λ ∈]− δ,+δ[ and ∀d, ∥d∥ ≤ 1.
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2.1.1 Algorithm of the steepest slope method

This algorithm is very simple. It follows the following scheme.

Algorithm of the steepest slope method

▶ Initial step :

Chooseϵ > 0. Choose an initial point x1. Put k = 1 and go to the main stage.

▶ Main step :

If ∥∇f(x)∥ < ϵ stop. Otherwise set dk = −∇f(xk) and let the optimal solution of linear search

Min {f(xk,+λdk);λ ≥ 0}.

Pose xk+1 = xk + λkdk. Replace k with k + 1 and repeat the main step.

2.1.2 Disadvantages of the steepest slope method

Slowness of the method in the vicinity of stationary points

This method works efficiently in the first steps of the algorithm. Unfortunately, as soon as we

approach the stationary point, the method becomes very slow. We can intuitively explain this

phenomenon by the following considerations

f(xk,+λd) = f(xk) + λ∇f(xk)
td+ λ∥d∥α(xk;λd)

where α(xk;λd) → 0 when λd → 0.

If d = −∇f(xk), we obtain :xk+1 = xk − λ∇f(xk) and consequently

f(xk+1)− f(xk) = λ[−∥∇f(xk)∥2 + ∥∇f(xk)∥α(xk;λ∇f(xk))]

From the previous expression, it can be seen that when irg approaches a stationary point, and

if f is continuously differentiable, then ∥∇f(xk)∥ is close to zero. Done the term to the right

approaches zero, independently of λ, and consequently f(xk+1) does not move away not a lot of

f(xk) when we go from the point xk, to the point xk+1

The phenomenon of Zigzagging

It is not easy to verify that for the gradient method we always have

dTk .dk+1 = 0,
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that is to say that the sequence {xk} generated by the algorithm of the gradient method,zigzag.

This creates a phenomenon of slowing down in the routing of the points xK towards the optimal

solution.

2.1.3 Some remedies

Change of direction

Instead of taking as the direction of descent, the direction :

dk = −∇f(xk),

we take directions of the form

dk = −D.∇f(xk),

where D is a suitably chosen matrix (D could be, for example, the inverse of the Hesian matrix

at the point xk, that is to say (H(xk))
−1).

Another choice could be made in the following way :

dk = −∇f(xk) + gk,

where gk, is an appropriate vector.

Acceleration of convergence

We can also accelerate the convergence of the gradient method. For this we trans- forms, thanks to

an algorithm for accelerating convergence, the sequence {xk} into a sequence {yk} which would

converge towards the same limit as the following {xk}, but would converge more quickly-dement.

If we denote by x∗this limit comments, we express this rapidity by the limit next :

lim
k−→∞

yk − x∗

xk − x∗ = 0

Example 2.1 Let the following quadratic function be: f(x) = 1
2
xtAx − btx with A > 0 (that is, A

is a positive definite matrix), we note g(ρ) = f(xk + ρdk), where the optimal ρk, is characterized by

g′(ρk) = 0 so we have

∇f(xk + ρkdk)
tdb = (A(xk + ρdk)− b)tdk = 0

Either

∇f(xk + ρkAdk)
tdb = 0 ⇒ ρk = − ((x))t.dk

dtk.Adk
> 0

2.1. Gradient method (Steepest-descent method) 31



Chapter 2. Gradinet and conjugate gradient methods

because dk is a direction of descent and dtkHasdk > 0.

The optimal step gradient method can be written as: xk+1 = xk + ρkdk with

d


k = b− Axk (2.1)

ρk =
dTk .dk
dTk .A

(2.2)

2.2 Conjugate gradient method

This method is mainly used for large problems. This method was discovered in 1952 by Hestenes

and Steifel ([32]), for the minimization of functions strictly convex quadratics. Several mathe-

maticians have extended this method for the nonlinear case. This has been made for the first

time, in 1964 by Fletcher and Reeves ([26]) (Fletcher’s method- Reeves) then in 1969 by Polak,

RibiÃ¨re ([45]) and Polyak ([41]) (Polak-RibiÃ¨re method- Polyak). Another variant was studied

in 1987 by Fletcher ([29]) (Method of the conjugated descent). Let’s mention other new algo-

rithms that can be found in ([18], [6], [38], [34], [23],[37], [52], [20], [13], [4], [20], [2],

[24], [23], [5], [53])

2.2.1 Quadratic optimization without constraints

Definition 2.1 Let Q be a symmetric and positive definite matrix (n;n) and b ∈ Rn. We call

quadratic minimization problem without constraints, the problem noted (PQSC) next :

{
min
x∈Rn

1

2
xTQx− bTx

}
(2.3)

Theorem 2.2 The problem (PQSC) has a unique solution x̂,

solution of the linear system Qx = b, that is to say that x̂ verifies

x̂ = Q−1b (2.4)

2.2.2 Calculation of the pitch obtained by an exact linear search

Let Q be a symmetric and positive definite (n, n) matrix and b ∈ Rn and
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f(x) =
1

2
xTQx− bTx.

Consider the problem (PQSC)

min
x∈Rn

f(x) = min
x∈Rn

{
1

2
xTQx− bTx

}
(PQSC)

The methods with linear research directions generate sequences {xk}k=1,2,... of the following way.

We start with x1 ∈ Rn. At iteration k, if we have xk ∈ Rn, the successor xk+1 of xk is given by the

following relation

xk+1 = xk + αkdk (2.5)

on dk ∈ Rn is a search direction and αk ∈ R+ is the search step obtained by an exact or inaccurate

linear search. In the case of an exact linear search αk check

f(xk + αkdk) = min
α>0

f(xk + αdk) (2.6)

Let’s note

gk = ∇f(xk) = Qxk − b (2.7)

Theorem 2.3 Let Q be a symmetric and positive definite (n, n) matrix and b ∈ Rn and

f(x) =
1

2
xTQx− bTx. (2.8)

Consider the problem (PQSC)

min
x∈Rn

f(x) = min
x∈Rn

{
1

2
xTQx− bTx

}
(PQSC)

Suppose that at iteration k we have a direction dk, of descent, that is to say that dk, verifies
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gTk dk = (Qxk − b)TdK < 0 (2.9)

let αk > 0 be obtained by an inaccurate linear search, that is to say that αk verifies

f(xk + αkdk) = min
α>0

f(xk + αdk)

so

αk = − gTk dk
dTKQdK

(2.10)

2.2.3 Conjugate directions method

Definition 2.2 Let Q be a symmetric (n, n) matrix. The directions d0, d1, ....dk are said to be Q

conjugates if we have

dTi Qdj = 0, 0 ≤ i, j ≤ k (2.11)

Theorem 2.4 Let Q be a symmetric and positive definite matrix (n;n). If the directions d0, d1, ....dk;

with k ≤ n− 1; are non-zero and Q conjugates, then they are linearly independent.

2.2.4 The Algorithm of conjugate directions

Let Q be a symmetric and positive definite (n;n) matrix and b ∈ Rn. Consider the problem of

quadratic minimization without constraints, (PQSC), according to :

min
x∈Rn

{
1

2
xTQx− bTx

}
Algorithm of conjugate directions

*Initialization

We give ourselves any x0 ∈ Rn and (d0, d1, ....dn−1) , Q conjugates. Set k = 0 and go to the main

step

*Main step

For k ≥ 0

Calculate
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gk = ∇f(xK) = Qxk − b

If gk = 0. Stop.

Otherwise calculate

αk = − gTk dk
dTKQdK

Set

xk+1 = xk + αkdk

ask k = k + 1 and go to the main step.

Theorem 2.5 Starting from an initial point x0 ∈ Rn, the previous conjugate directions algorithm

converges to the single optimal solution x̂ of the problem (PQSC) in n iterations, that is to say that

we have

xn = x̂ and Qxn = Qx̂ = b (2.12)

Remark 2.1 If we start from the point x1, then the optimal solution is reached at point xn+1, that is

to say that we will have

x̂ = xk+1

Theorem 2.6 Let Q be a symmetric and positive definite (n, n) matrix and b ∈ Rn and

f(x) =
1

2
xTQx− bTx

Consider the sequence {xk}k=1,2,.... in the following way . We start with x1 ∈ Rn At iteration k, the

successor xk + 1 of xk is given by the relation next

xk+1 = xk + αkdk

where dk ∈ Rn is a search direction and αk ∈ R+ is the search step obtained by an exact linear search,

αk verifies

f(xk + αkdk) = min
α>0

f(xk + αdk) (2.13)

Let’s note
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gk+1 = ∇f(xk+1) = Qxk+1 − b (2.14)

So

gk+1dk = gk + αkQdk (2.15)

and

gTk+1di = 0, k = 0, 1, ..., n− 1 (2.16)

Theorem 2.7 On the conjugate direction method, we have

gTk+1di = 0, k = 0, 1, ..., n− 1, i = 0, .....k (2.17)

2.2.5 Conjugate gradient method. quadratic case

Let Q be a matrix (n, n), symmetric and positive definite. We consider in this paragraph the

following problem (PQSC)

min{f(x) : x ∈ Rn} = min

{
1

2
xTQx− bTx : x ∈ Rn

}
(PQSC)

In the conjugate directions method, the directions d0, ...., dn−1 are given to advance.

In the conjugate gradient method, We start from a point x0 ∈ Rn,

d0 = −g0 = ∇f(x0) = Qx0 − b.

The directions dk,k = 1, ...n− 1 are calculated at each iteration.

At iteration k

dk = −gk + βk−1dk−1

βk−1 is obtained so that dk, is Q conjugated with the other vectors di,i = 0, ..., k − 1.

In other words we must have
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dTkQdi = 0 i = 0, ...k − 1. (2.18)

In the appellation conjugated gradient, we find the two words : gradient and conjugate.

a) The word gradient is used because dk is calculated from the gradient at the point xk.

b) The conjugated word is also justified, because and as will be seen later, the directions {dk}n−1
k=0

are subjugated.

2.2.6 Conjugate gradient algorithm. quadratic case

Principle of the Algorithm

We start from any point x0 ∈ Rn .

Calculate d0 = −g0 = b−Qx0 , α0 = − gT0 d0
dT0Qd0

Suppose that at iteration k we have : xk and dk. This will allow us to calculate

gk = Qxk − b, αk = − gTk dk
dTKQdK

, xk+1 = xk + αkdk, gk+1 = Qxk+1 − b, dk+1 = −gk+1 + βkdk (2.19)

βk is chosen so that

dTk+1.Qdk = 0 (2.20)

Since dk+1 = −gk+1 + βkdk, then (2.17) gives

(−gk+1 + βkdk)
TQdk = 0

or again

βkd
T
k+1.Qdk = gTk+1.Qdk (2.21)

and finally

βk =
gTk+1Qdk

dTk .Qdk
(2.22)
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Algorithm

Conjugate gradient algorithm. Quadratic case

1. Choose x0 ∈ Rn.

2. Calculate g0 = Qx0 − b. If g0 = 0 stop. Otherwise ask d0 = −g0 Ask k = 0

3. Calculate αk = −gTk Qdk
dTkQdk

4. Calculate xk+1 = xk + αkdk.

5. Calculate gk+1 = Qxk+1 − b. if gk+1 = 0 stop.

6. Calculate βk =
gTk+1Qdk

dTkQdk

7. Calculate dk+1 = −gk+1 + βkdk

8. Put k = k + 1 and go to 3 .

2.2.7 Properties of the quadratic conjugate gradient

The fundamental property of the quadratic case conjugate gradient is that the directions {dk}n−1
k=0

are Q conjugates. These directions verify as we have seen in the algotithm

dk+1 = −gk+1 + βkdk

with

βk =
gTk+1Qdk

dTkQdk

According to theorem 4.2, the conjugate gradient algorithm, quadratic version converges to the

optimal solution in n iterations. Let’s summarize these two results in the following two theorems:

Theorem 2.8 The directions {d0, d1, ...., dn−1} generated by the gradient algorithm quadratic conju-

gate are Q conjugates.

Theorem 2.9 Let Q be a (n, n), symmetric and positive definite and (PQSC) the following quadratic

constraint-free minimization problem
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min{f(x) : x ∈ Rn} = min

{
1

2
xTQx− bTx : x ∈ Rn

}
(PQSC)

Starting from any point x0 ∈ Rn , consider the sequence generated by the algorithm of the quadratic

conjugate gradient defined by

gk = ∇f(xk) = Qxk − b, k = 0, 1....

βk =
gTk+1Qdk

dTk .Qdk
, k = 0, 1, ... (2.23)

dk =

{
−g0 si k = 0 (2.24)

gk + βk−1dk−1 si k ≥ 1 (2.25)

αk = − gTk dk
dTkQdk

(2.26)

and

xk+1 = xk + αkdk (2.27)

Then the sequence {xk} converges in n iterations towards the optimal solution x̂ of the problem

(PQSC), that is to say that xn, verifies xn = x̂ and

Qx̂ = Qxn = b (2.28)

2.3 Conjugate gradient method.Non-quadratic case

2.3.1 Introduction and different forms of the conjugate gradient non-quadratic

Let f : Rn → R be non-quadratic. We seek to solve the non-quadratic problem without constraints

(PNQSC) next :
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min{f(x) : x ∈ Rn} (2.29)

Among the oldest methods used to solve problems of the type (PNQSC), we can mention

the conjugate Gradient method. This method is mainly used for large problems. This method

was discovered in 1952 by Hestenes and Steifel ([32]), for the minimization of strictly convex

quadratic functions. Several mathematicians have extended this method for the non-quadratic

case. This was achieved for the first time, in 1964 by Fletcher and Reeves ([26]) (Fletcher-Reeves

method) and then in 1969 by Polak, Ribière ([46]) and Ployak ([42]) (Polak Ribière-Ployak

method). Other variants were studied later ([28],[55],[31]) Another variant was studied in

1987 by Fletcher ([30]) (Conjugated descent method). All these methods generate an {xk}k∈N
sequence as follows :

xk+1 = xk + αkdk (2.30)

The age step αk ∈ R is determined by a one-dimensional optimization or search exact or inaccu-

rate linear of the Armijo, Goldstein or Wolfe type.

The directions d, are calculated recurrently by the following formulas :

dk =

{
−g0 si k = 0 (2.31)

gk + βk−1dk−1 si k ≥ 1 (2.32)

with gk = ∇f(xk) and βk ∈ R.

The different values assigned to βk define the different shapes of the conjugate gradient

If we note

yk−1 = gk − gk−1, sk = xk+1 − xk (2.33)

the following variants are obtained :

1952 ([32])- Conjugate gradient Hestenes - Stiefel variant(HS)

βHS
K =

gTK+1yk

dTk yk
(2.34)
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1964 ([26])-Conjugate gradient variant Fletcher Reeves(FR)

βFR
K =

∥gK+1∥2

∥gk∥2
(2.35)

1969 ([42].[46])- Conjugate gradient Polak-Ribière-Polyak variant(PRP)

βPRP
K =

gTK+1yk
∥gk∥2

(2.36)

1987 ([30])- Conjugate gradient conjugate descent variant - Fletcher (CD)

βCD
K = − ∥gK∥2

dTk−1gk−1

(2.37)

1991 ([36])- Conjugate gradient Liu - Storey variant(LS)

βLS
K = −

gTK+1yk

dTk gk
(2.38)

1999 ([11])- Conjugate gradient variant of Dai-Yuan(DY)

βDY
K =

∥gK+1∥2

dTk yk
(2.39)

2005([31])- Conjugate gradient Hager-Zhang variant(HZ) -(-24)

βHZ
K = (yk − 2dk

∥yk∥2

dTk yk
)T

gK+1

dTk yk
(2.40)

2012([48])- Conjugate gradient variant Rivaie-Mustafa-Ismail-Leong(RMIL)[60]

βRMIL
K−1 =

gTK(gk − gk−1)

∥dk−1∥2
(2.41)

Remark 2.2 In the case where f is not quadratic we have
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βHS
k ̸= βFR

k ̸= βPRP
k ̸= βCD

k ̸= βLS
k ̸= βDY

k ̸= βHZ
k ̸= βRMIL

k (2.42)

Therefore, by applying the non-quadratic conjugate gradient algorithm, using the coefficients βk

appearing in (2.39), we obtain sequences {xk}k∈N different.

What happens if f is strictly convex quadratic and if αk is obtained by an exact linear search. The

answer to this question can be found in the following theorem.

Theorem 2.10 If f(x) =
1

2
xTQx− bTx, with a positive definite symmetric Q, x ∈ Rn; b ∈ Rn and if

αk is obtained by an exact linear search. Let’s note

βk =
gTk+1Qdk

dTkQdk

so we have

βHS
k = βFR

k = βPRP
k = βCD

k = βLS
k = βDY

k = βHZ
k = βRMIL

k (2.43)

and the quadratic conjugate gradient algorithm generates the same sequence {xk}k∈N.

Non-quadratic conjugate gradient algorithm

Introduction

Let f : Rn → R be non-quadratic and (PNQSC) the minimization problem not quadratic without

constraints following :

min{f(x) : x ∈ Rn} (PQSC)

To construct the non-quadratic conjugate case gradient algorithm, we can draw inspiration from

the quadratic conjugate gradient algorithm established in the previous chapter. Unlike the quadratic

case, we do not have a matrix Q. Therefore we do not have conjugate Q directions. As in the

quadratic case, the algorithm of the conjugate gradient non-quadratic case generates a sequence

{xk}k∈N in the following way :

xk+1 = xk + αkdk
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The algorithm starts from any point x0 ∈ Rn.

At iteration k

Suppose that we have the vector xk ∈ Rn and the direction dk−1 This allows us to calculate ∇f(xk)

instead of gk = Qxk − b in the quadratic case. To have xk+1, we need to calculate αk and dk.

Calculation of dk:

dk = −∇f(xk) + βk−1dk−1 (2.44)

We have eight ways to calculate βk−1

βHS
k−1 =

∇f(xk)
T (∇f(xk)−∇f(xk−1))

dTk−1(∇f(xk)−∇f(xk−1))

βPR
k−1 =

∇f(xk)
T (∇f(xk)−∇f(xk−1))

∥∇f(xk−1)∥2

βFR
k−1 =

∥∇f(xk)∥2

∥∇f(xk−1)∥2

βDY
k−1 =

∥∇f(xk)∥2

dTk−1(∇f(xk)−∇f(xk−1))

βLS
k−1 = −∇f(xk)

T (∇f(xk)−∇f(xk−1))

dTk−1∇f(xk−1)

βCD
k−1 = − ∥∇f(xk)∥2

dTk−1∇f(xk−1)

βHZ
k−1 = ((∇f(xk)−∇f(xk−1))− 2dk−1

∥∇f(xk)−∇f(xk−1)∥2

dTk−1(∇f(xk)−∇f(xk−1))
)T

∇f(xk)

(∇f(xk)−∇f(xk−1))Tyk−1

βRMIL
k−1 =

(∇f(xk))
T (∇f(xk)−∇f(xk−1))

∥dk−1∥2

Calculation of αk

Having obtained dk , recall that αk checks

f(xk + αkdk) = min{f(xk + αdk) : α ∈]0,+∞[} (2.45)

In the case where f(x) =
1

2
xTQx− b, positive definite symmetric Q, a, solution of (2.42), is given

by the following relation

αk = − gTk
dTkQdK

(2.46)
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In the case where f is not quadratic, αk cannot be calculated by the formula (2.43). In this

case, αk is calculated by other methods. For example, the golden ratio number method or the

dichotomy method is used. As will be seen later,αk can be calculated by an inaccurate linear

search of Armijo or Goldstein or Wolfe

Non-quadratic conjugate Gradient algorithm

▶ step 1

Chooseanyx0 ∈ Rn and ϵ > 0

▶ step 2

Askk = 0

Callgk = ∇f(x0). Ask d0 = −g0

▶ step 3

Calculateαk using an exact or inaccurate linear search of Armijo or Goldstein or Wolfe or Strong

Wolfe

Calculate xk+1 = xk + αkdk

▶ step 4

If∥∇f(xk+1)∥ < ϵ, Stop, x∗ = xk+1 .Otherwise go to Step 5

▶ step 5

Calculategk+1 = ∇f(xk+1)

Calculate βk by one of the following ways

βk = βHS
k or βk = βFR

k or βk = βPRP
k or βk = βCD

k or βk = βLS
k or βk = βDY

k or βk = βHZ
k or

βk = βRMIL
k

Calculate

dk+1 = −gk+1 + βkdk

Put k = k + 1 and go to Step 3.
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Acceleration of the convergence of the

gradient method by using the conjugate

gradient

Consider the unconstrained optimization problem

(P ) min {f(x) : x ∈ Rn} (3.1)

where f : Rn → R is continuously differentiable. The line search method usually takes the

following iterative formula

xk+1 = xk + αkdk, (3.2)

for (3.1), where xk is the current iterate point, αk > 0 is a steplength and dk is a search direction.

Different choices of dk and αk will determine different line search methods [22, 35, 17]. We

denote f(xk) by fk , ∇f(xk) by gk , and ∇f(xk+1) by gk+1 , respectively. ∥.∥ denotes the Euclidian

norm of vectors and define

yk = gk+1 − gk .

We all know that a method is called steepest descent method if we take

dk = −gk
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as a search direction at every iteration, which has wide applications in solving large-scale mini-

mization problems [47, 49, 25]. One drawback of the method is often yielding zigzag phenomena

in solving practical problems, which makes the algorithm converge to an optimal solution very

slowly, or even fail to converge [40, 41].

If we take

dk = −Hkgk

as a search direction at each iteration in the algorithm, where Hk is an n×n matrix approximating

[∇2f(xk)]
−1, then the corresponding method is called the Newton-like method [40, 41, 50] such

as the Newton method, the quasi-Newton method, variable metric method, etc. Many papers

have proposed this method for optimization problems [ 17, 9].

However, the Newton-like method needs to store and compute matrix Hk at each iteration and

thus adds to the cost of storage and computation. Accordingly, this method is not suitable to solve

large-scale optimization problems in many cases.

The steepest descent method is one of the simplest and the most fundamental minimization meth-

ods for unconstrained optimization. Since it uses the negative gradient as its descent direction, it

is also called the gradient method.

For many problems, the steepest descent method is very slow. Although the method usually works

well in the early steps, as a stationnary point is approached, it descends very slowly with zigza-

guing phenomena. There are some ways to overcome these difficulties of zigzagging by defleting

the gradient. Rather then moving along

dk = −∇f(xk) = −gk,

we can move along

dk = −Dk∇f(xk),

or along

dk = −gk + hk, (3.3)

where Dk is an appropriate matrix and hk is an appropriate vector. Due to its simplicity and its

very low memory requirement, the conjugate gradient method is a powerful line search method

for solving the large-scale optimization problems. In fact, the CG method is not among the fastest
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or most robust optimization algorithms for nonlinear problems available today, but it remains

very popular for engineers and mathematicians who are interested in solving large problems [12,

7, 15, 6, 28, 58]. The conjugate gradient method is designed to solve unconstrained optimization

problem (3.1). More explicitly, the conjugate gradient method is an algorithm for finding the

nearest local minimum of a function of variables which presupposes that the gradient of the

function can be computed.We consider only the case where the method is implemented without

regular restarts. The iterative formula of the conjugate gradient method is given by (3.2), where

αk is a steplength which is computed by carrying out a line search, and dk is the search direction

defined by

dk+1 =

{
−gk si k = 1 (3.4)

gk+1 + βkdk si k ≥ 2 (3.5)

where βk is a scalar, and gk denotes g(xk). Some well known formulas for βk are given as follows:

βHS
K =

gTK+1yk

dTk yk
, βFR

K =
∥gK+1∥2

∥gk∥2
, βPRP

K =
gTK+1yk
∥gk∥2

, βCD
K = −∥gK+1∥2

dTk gk

βLS
K = −

gTK+1yk

dTk gk
, βDY

K =
∥gK+1∥2

dTk yk
, βHZ

K = (yk − 2dk
∥yk∥2

dTk yk
)T

gK+1

dTk yk

The above corresponding methods are known as Hestenes-Stiefel (HS) method [33], the Fletcher-

Reeves (FR) method [29], the Polak-Ribiere-Polyak (PR) method (see [43, 8]), the Conjugate De-

scent method(CD) [29], the Liu-Storey (LS) method [37], the Dai-Yuan (DY) method [13], and

Hager and Zhang (HZ) method [32], respectively.

In the convergence analysis and implementation of conjugate gradient methods, one often re-

quires the inexact line search such as the Wolfe conditions or the strong Wolfe conditions. The

Wolfe line search is to find αk such that

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk (3.6)

dTk g(xk + αkdk) ≥ σdTk gk (3.7)

with δ < σ < 1. The strong Wolfe line search is to find αk such that

f(xk + αkdk) ≤ f(xk) + δαkg
T
k dk (3.8)

|dTk g(xk + αkdk)| ≤ −σdTk gk (3.9)
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where δ < σ < 1 are constants.

The convergence behavior of the above formulas with some line search conditions has been stud-

ied by many authors for many years.

Al-Baali [1] has proved the global convergence of the FR method for nonconvex functions with

the strong Wolfe line search if the parameter σ < 1
2
. The PRP method with exact line search may

cycle without approaching any stationary point, see Powellâs counter-example [44]. Although

one would be satisfied with its global convergence properties, the FR method sometimes per-

forms much worse than the PRP method in real computations. A similar case happen to the DY

method and the HS method.

In next section, we will state the idea of the new method, then a new algorithm will be developed.

Descent property and the global convergence will be established in Section 2. Section 3 is devoted

to numerical experiments by implementing the algorithm to solve many large-scale benchmark

test problems. The conclusions are presented in Section 4.

3.1 The new formula and the corresponding algorithm

In this section, we shall state the idea to propose a new conjugate gradient method and develop

a new algorithm.

In this paper, based the modified strong Wolfe type line search, under some mild conditions, we

give the Descent property and global convergence of the new βk which is known as βBRB
k , where

BRB denotes Belloufi, Rahali and Benzine. Then we can define the following formulas βk to

compute the search directions in (3.4) and (3.5).

βBRB
k =

∥gk+1∥2

∥dk∥2
(3.10)

With the constructed search direction, we find a stepsize by the modified strong Wolfe line search

strategy:

Modification of the strong Wolfe line search

The step length is computed by performing a line search along dk. In practice, a relevant choice

is to compute αk according to the realization of the modified strong Wolfe conditions, namely

f(xk + αkdk)− f(xk) ≤ δαkg
T
k dk (3.11)
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|g(xk + αkdk)
Tdk| ≤ −σgTk dk

∥dk∥2

∥gk∥2
(3.12)

The algorithm is given as follows:

algorithm Step 0: Given x1 ∈ Rn , set d1 = −g1, k := 1 .

Step 1: If ∥gk∥ = 0 then stop else go to Step 2.

Step 2: Set xk+1 = xk + αkdk where dk is defined by (3.4)and (3.5),(3.10) and αk is defined by

(3.11),(3.12).

Step 3: Set k := k + 1 and go to Step 1.

3.2 Descent property and global convergence

The following theorem indicates that, in the inexact case, the search direction dk satisfies descent

property.

Theorem 3.1 If an αk is calculated wich satisfies modified strong Wolfe line search (3.11) and (3.12)

with σ ∈]0, 1
2
], ∀k then for the new conjugate gradient method, the inequality

−
k−1∑
j=0

σj ≤ gTk dk
∥gk∥2

≤ −2 +
k−1∑
j=0

σj (3.13)

holds for all k, and hence the descent property

gTk dk < 0,∀k (3.14)

holds, as long as gk ̸= 0.

Proof. The proof is by induction.

when we take

σgTk dk
∥dk∥2

∥gk∥2
≤ g(xk + αkdk)

Tdk ≤ −σgTk dk
∥dk∥2

∥gk∥2
,

σgTk dk
∥dk∥2

∥gk∥2
× 1

∥dk∥2
≤ g(xk + αkdk)

Tdk ×
1

∥dk∥2
≤ −σgTk dk

∥dk∥2

∥gk∥2
× 1

∥dk∥2

σgTk dk
1

∥gk∥2
≤ g(xk + αkdk)

tdk
∥dk∥2

≤ −σgTk dk
1

∥gk∥2
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σgTk dk
∥gk∥2

≤
gtk+1dk

∥dk∥2
≤ −σgTk dk

∥gk∥2

−1 +
σgTk dk
∥gk∥2

≤ −1 +
gtk+1dk

∥dk∥2
≤ −1− σgTk dk

∥gk∥2

For k = 1 Equations (3.13) and (3.14) is clearly satisfied. Now we suppose that (3.13) and (3.14)

hold for any k ≥ 1.

It follows from the definition (3.4),(3.5) and (3.10) of dk+1 that

−1 +
σgTk dk
∥gk∥2

≤
gtk+1dk+1

∥gk+1∥2
≤ −1− σgTk dk

∥gk∥2

gTk+1dk+1

∥gk+1∥2
= −1 +

gTk+1dk

∥dk∥2
(3.15)

and hence from (3.12) and (3.14) that

−1 + σ
gTk dk
∥gk∥2

≤
gTk+1dk+1

∥gk+1∥2
≤ 1− σ

gTk dk
∥gk∥2

(3.16)

Also, by induction assumption (3.13), we have

−
k−1∑
j=0

σj ≤ gTk dk
∥gk∥2

≤ −2 +
k−1∑
j=0

σj

when We take the first part of the retracement (3.13)

−
k−1∑
j=0

σj ≤ gTk dk
∥gk∥2

−σ
k−1∑
j=0

σj ≤ σ
gTk dk
∥gk∥2

−1− σ
k−1∑
j=0

σj ≤ −1 + σ
gTk dk
∥gk∥2

−1− σ
k−1∑
j=0

σj ≤ −1 + σ
gTk dk
∥gk∥2

≤
gTk+1dk+1

∥gk+1∥2
............(1)

and when We take again the first part of the retracement (3.13)

−
k−1∑
j=0

σj ≤ gTk dk
∥gk∥2

(−σ)×

(
−

k−1∑
j=0

σj

)
≥ −σ × gTk dk

∥gk∥2

−σ
gTk dk
∥gk∥2

≤ σ
k−1∑
j=0

σj
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−1− σ
gTk dk
∥gk∥2

≤ −1 + σ
k−1∑
j=0

σj

gTk+1dk+1

∥gk+1∥2
≤ −1− σ

gTk dk
∥gk∥2

≤ −1 + σ
k−1∑
j=0

σj

we get the

gTk+1dk+1

∥gk+1∥2
≤ −1− σ

gTk dk
∥gk∥2

≤ −2 +
k−1∑
j=0

σj ............(2)

from (1)and (2) we find :

−1 + σ
gTk dk
∥gk∥2

≤ −1− σ
k−1∑
j=0

σj ≤
gTk+1dk+1

∥gk+1∥2
≤ −1− σ

gTk dk
∥gk∥2

≤ −1 + σ
k−1∑
j=0

σj

−
k∑

j=0

σj = −1− σ
k−1∑
j=0

σj ≤
gTk+1dk+1

∥gk+1∥2
≤ −1 + σ

k−1∑
j=0

σj = −2 +
k∑

j=0

σj (3.17)

so

−
k∑

j=0

σj ≤
gTk+1dk+1

∥gk+1∥2
≤ −2 +

k∑
j=0

σj............(3)

Then, (3.13) holds for k + 1.

we multiply the second part of (3) in the ∥gk+1∥2

∥gk+1∥2(−
k∑

j=0

σj) ≤ ∥gk+1∥2(
gTk+1dk+1

∥gk+1∥2
) ≤ (−2 +

k∑
j=0

σj)∥gk+1∥2

Since

gTk+1dk+1 ≤ ∥gk+1∥2
(
−2 +

k∑
j=0

σj

)
(3.18)

and

k∑
j=0

σj <
∞∑
j=0

σj =
1

1− σ
(3.19)

where σ ∈]0, 1
2
] ,

3.2. Descent property and global convergence 51



Chapter 3. Acceleration of the convergence of the gradient method by using the conjugate gradient

0 < σ <
1

2

0 > −σ > −1

2

1 > 1− σ > 1− 1

2

it follows from 1− σ >
1

2

1

1− σ
<

1
1

2
1

1− σ
< 2

−2 +
1

1− σ
< 0

−2 +
k∑

j=0

σj < −2 +
∞∑
j=0

σj < 0 that −2 +
k∑

j=0

σj < 0. Hence, from (3.18),

gTk+1dk+1 ≤ (−2 +
k∑

j=0

σj)∥gk+1∥2 < 0

gTk+1dk+1 < 0

we obtain

gTk+1dk+1 < 0

We complete the proof by induction.

In order to establish the global convergence of the proposed method, we assume that the follow-

ing assumption always holds, i.e. Assumption 1.1 :

Assumption 1.1

Let f be twice continuously differentiable, and the level set L = {x ∈ Rn|f(x) ≤ f(x1)} be

bounded

Theorem 3.2 Suppose that x1 is a starting point for which Assumption 3.1 holds. Consider the New

method (3.4),(3.5) and (3.10). If the steplength αk is computed by the modified strong Wolfe line

search (3.11) and (3.12) with δ < σ <
1

2
and if

1

∥dk−1∥4
≤ 1

∥gk−1∥4
(3.20)

then the method is globally convergent, i.e.,
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lim inf
k−→∞

∥gk∥ = 0 (3.21)

Proof. It is shown in theorem 1 that the descent property (3.14) holds for σ ∈]0, 1
2
] ,

We take from (3.13) and multiply all its sides by (−σ∥dk∥2)
we find that :

σ∥dk∥2
k−1∑
j=0

σj ≥ −σ∥dk∥2
gTk dk
∥gk∥2

≥

(
−2 +

k−1∑
j=0

σj

)
(−σ∥dk∥2)

We get on with the (3.12):

|gTk+1dk| ≤ −σgTk dk
∥dk∥2

∥gk∥2
≤ σ∥dk∥2

k−1∑
j=0

σj

We take from (3.19) and multiply all its sides by (σ∥dk∥2)
we find that :

σ∥dk∥2
(

k−1∑
j=0

σj

)
< σ∥dk∥2

(
k∑

j=0

σj

)
< σ∥dk∥2

(
∞∑
j=0

σj

)
= σ∥dk∥2

(
1

1− σ

)
so

|gTk+1dk| ≤ −σgTk dk
∥dk∥2

∥gk∥2
≤ σ∥dk∥2

k−1∑
j=0

σj ≤ σ

1− σ
∥dk∥2

|gTk+1dk| ≤ −σgTk dk
∥dk∥2

∥gk∥2
≤ ∥dk∥2

k∑
j=0

σj ≤ σ

1− σ
∥dk∥2

for k = k − 1 :

|gTk dk−1| ≤ −σgTk−1dk−1
∥dk−1∥2

∥gk−1∥2
≤ ∥dk−1∥2

k−1∑
j=0

σj ≤ σ

1− σ
∥dk−1∥2

so from (3.12), (3.13), and (3.19) it follows that

|gTk dk−1| ≤ σgTk−1dk−1
∥dk−1∥2

∥gk−1∥2
≤ ∥dk−1∥2σ

k−2∑
j=0

σj = ∥dk−1∥2
k−1∑
j=0

σj ≤ σ

1− σ
∥dk−1∥2 (3.22)

Thus from the definition of dk and using (3.10) and (3.22) we deduce that

∥dk∥2 = ∥gk∥2 − 2βk−1g
T
k dk−1 + β2

k−1∥dk−1∥2 (3.23)
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from (3.22) we have :

|gTk dk−1| ≤
σ

1− σ
∥dk−1∥2

− σ

1− σ
∥dk−1∥2 ≤ gTk dk−1 ≤

σ

1− σ
∥dk−1∥2

∥gk∥2 − 2βk−1g
T
k dk−1 + β2

k−1∥dk−1∥2 ≤ ∥gk∥2 + 2βk−1g
T
k dk−1 + β2

k−1∥dk−1∥2

∥gk∥2 +
2σ

1− σ
βk∥dk−1∥2 + β2

k−1∥dk−1∥2 =
(
1 + σ

1− σ

)
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

∥gk∥2 +
(

2σ

1− σ
βk + β2

k−1

)
∥dk−1∥2 = ∥gk∥2 +

(
2σ

1− σ

∥gk+1∥2

∥dk∥2
+

∥gk∥4

∥dk−1∥4

)
∥dk−1∥2

= ∥gk∥2 +
2σ

1− σ

∥gk+1∥2

∥dk∥2
∥dk−1∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

for k = k + 1 and βk = βk−1

=
1− σ

1− σ
∥gk∥2 +

2σ

1− σ
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

=
1− σ

1− σ
∥gk∥2 +

2σ

1− σ
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

=
1− σ + 2σ

1− σ
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

=

(
1 + σ

1− σ

)
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

In (3.20) we have

1

∥dk−1∥4
≤ 1

∥gk−1∥4
∥gk∥4

∥dk−1∥4
∥dk−1∥2 ≤

∥gk∥4

∥gk−1∥4
∥dk−1∥2

σ ∈]0, 1
2
[ (

1 + σ

1− σ

)
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2 ≤

(
1 + σ

1− σ

)
∥gk∥2 +

∥gk∥4

∥gk−1∥4
∥dk−1∥2(

1 + σ

1− σ

)
∥gk∥2 +

∥gk∥4

∥dk−1∥2
≤
(
1 + σ

1− σ

)
∥gk∥2 +

∥gk∥4

∥gk−1∥4
∥dk−1∥2

So:

≤ ∥gk∥2 +
2σ

1− σ
βk∥dk−1∥2 + β2

k−1∥dk−1∥2

=
1 + σ

1− σ
∥gk∥2 +

∥gk∥4

∥dk−1∥4
∥dk−1∥2

≤ 1 + σ

1− σ
∥gk∥2 +

∥gk∥4

∥gk−1∥4
∥dk−1∥2 (3.24)
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where we used the facts that

1

∥dk−1∥4
≤ 1

∥gk−1∥4
(3.25)

1

∥dk−1∥2
≤ 1

∥gk−1∥2

So

∥dk∥2 ≤
(
1 + σ

1− σ

)
∥gk∥4

∥gk∥2
+

∥gk∥4

∥dk−1∥2
≤
(
1 + σ

1− σ

)
∥gk∥4

∥gk∥2
+

∥gk∥4

∥gk−1∥4
∥dk−1∥2

By applying this relation repeatedly,it follows that

∥dk∥2 ≤
1 + σ

1− σ
∥gk∥4

k∑
j=1

1

∥gj∥2
(3.26)

Now we prove (3.21) by contradiction. It assumes that (3.21) does not hold, then there exists a

constant ϵ > 0 such that

∥gk∥ ≥ ϵ > 0 (3.27)

holds for all k sufficiently large. Since gk is bounded above on the level set L, it follows from

(3.26) that

∥dk∥2 ≤ c1k (3.28)

where c1 is a positive constant.From (3.13) and (3.19), we have

k∑
j=0

σj <
∞∑
j=0

σj =
1

1− σ

1 + σ
k−1∑
j=0

σj =
k∑

j=0

σj <
∞∑
j=0

σj =
1

1− σ

−1− σ
k−1∑
j=0

σj = −
k∑

j=0

σj >
−1

1− σ

We take the first part
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σ
k−1∑
j=0

σj <
1

1− σ

σ
k−1∑
j=0

σj <
1− 1 + σ

1− σ
k−1∑
j=0

σj <
σ

1− σ
× 1

σ
k−1∑
j=0

σj <
1

1− σ
⇒ −

k−1∑
j=0

σj >
−1

1− σ

we take the second part of (3.19)

gTk dk
∥gk∥2

≤ −2 +
k−1∑
j=0

σj ≤ −2 +
1

1− σ

≤ −2 + 2σ + 1

1− σ

So

gTk dk
∥gk∥2

≤ −1 + 2σ

1− σ

− gTk dk
∥gk∥2

≥
(
1− 2σ

1− σ

)
− gTk dk
∥gk∥2

× ∥gk∥2

∥dk∥2
≥
(
1− 2σ

1− σ

)
∥gk∥2

∥dk∥2

− gTk dk
∥dk∥2

≥ (1− 2σ)

(1− σ)

∥gk∥2

∥dk∥2

and by the condition from Zoutendijk.

cos θk = − gTk dk
∥dk∥2

So

cos θk ≥
(
1− 2σ

1− σ

)
∥gk∥
∥dk∥

(3.29)

When

−σ >
−1

2

1− σ > 1 +
−1

2

1− σ >
1

2
1

1− σ
> 2
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another side

−2σ > −1

1− 2σ > 0

(1− 2σ)×
(

1

1− σ

)
> 2× 0

1− 2σ

1− σ
> 0

and we have

∥dk∥2 ≤ c1k
1

∥dk∥2
≥ 1

c1k
∥gk∥ ≥ ϵ > 0

∥gk∥2 ≥ ϵ2

∥gk∥2

∥dk∥2
≥ ϵ2

c1k

Since σ <
1

2
, substituting (3.28) and (3.27) into (3.29) gives

∑
k

cos2 θk ≥
(
1− 2σ

1− σ

)2∑
k

∥gk∥2

∥dk∥2
≥ ϵ2

c1

∑
k

1

k

∑
k

cos2 θk ≥
(
1− 2σ

1− σ

)2∑
k

∥gk∥2

∥dk∥2
≥ c2

∑
k

1

k
(3.30)

where c2 is a positive constant. Therefore, the series
∑
k

cos 2θk is divergent. Let M be an upper

bound of ∥∇2f(x)∥ on the level set L, then

gTk+1dk = (gk + ak∇2f(x))Tdk ≤ gTk dk +Mak∥dk∥2

gTk+1dk − gTk dk ≤ Mak∥dk∥2

(gTk+1 − gTk )dk ≤ Mak∥dk∥2
1

(gTk+1 − gTk )dk
≥ 1

Mak∥dk∥2

and

ak ≥
(gTk+1 − gTk )dk

M∥dk∥2

ak ≥ −
(gTk − gTk+1)dk

M∥dk∥2

ak ≥ −

(
1−

gTk+1

gTk

)
gTk

M∥dk∥2
dk ≥ − (1− σ)

M∥dk∥2
gTk dk
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Thus by using (3.12) and (3.20) we obtain

ak ≥
(1− σ)

M∥dk∥2
gTk dk (3.31)

from (3.11)

fk+1 ≤ fk + δαkg
T
k dk

fk+1 − fk ≤ δαkg
T
k dk

− gTk dk
∥dk∥2

= cos θk ⇒ gTk dk = −∥dk∥2 cos θk

fk+1 − fk ≤ − gTk dk
∥dk∥2M

δ(1− σ).gTk dk

fk+1 − fk ≤ cos θk
δ(1− σ)

M
.(−∥dk∥2 cos θk)

fk+1 − fk ≤ cos θkc3(−∥dk∥2 cos θk)
fk+1 − fk ≤ −c3∥dk∥2 cos2 θk

and

∥dk∥2 ≤ ∥gk∥2

fk+1 − fk ≤ −c3∥dk∥2 cos2 θk ≤ −c3∥gk∥2 cos2 θk

So

fk+1 − fk ≤ −c3∥gk∥2 cos2 θk

Substituting ak of (3.31) into (3.11) gives

fk+1 ≤ fk − c3∥gk∥2 cos2 θk, (3.32)

where c3 =
(1− σ)δ

M
> 0 . Since f(x) is bounded below,

∑
k

∥gk∥2 cos2 θk converges, which indi-

cates that
∑
k

cos2 θk converges by use of (3.27). This fact contradicts (3.30). We complete the

proof.
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3.3 Numerical results and discussions

In this section we report some numerical results obtained with a Fortran implementation of gradi-

ent algorithms and their accelerated variants. All codes are written in Fortran and compiled with

f77 (default compiler settings) on a Workstation Intel(R) core(TM), i3@ 2.20GHz. We selected

a number of 75 large-scale unconstrained optimization test functions in generalized or extended

form [2]. For each test function we have considered ten numerical experiments with the number

of variables n = 1000, 2000, ..., 10000. In the following we present the numerical performance of

CG and ACG codes corresponding to different formula for βk computation. All algorithms im-

plement the Wolfe line search conditions with ρ = 0.0001 andr ρ = 0.9 , and the same stopping

criterion ∥gk∥∞ ≤ 10−10, where ∥.∥∞ is the maximum absolute component of a vector.

The comparisons of algorithms are given in the following context. Let fALG1
i and fALG2

i be the

optimal value found by ALG1 and ALG2, for problem i = 1, ..., 750 , respectively. We say that, in

the particular problem i, the performance of ALG1 was better than the performance of ALG2 if:

|fALG1
i − fALG2

i | < 10−3 (3.33)

and the number of iterations, or the number of function-gradient evaluations, or the CPU time of

ALG1 was less than the number of iterations, or the number of function-gradient evaluations, or

the CPU time corresponding to ALG2, respectively.

We compare the New method CGBRB with the steepest descent method, the CG DESCENT

method, and PRP conjugate gradient method.

Figures 1â4 list the performance of the CGBRB, steepest descent, CG DESCNET and PRP conju-

gate gradient methods. Relative to CPU time, the number of iterations and the number of gradient

evaluations, respectively, which were evaluated using the profiles of Dolan and More [7].

Clearly, Figures 1â4 present that our proposed method CGBRB exhibits the best overall perfor-

mance since it illustrates the highest probability of being the optimal solver, followed by the

steepest descent, CG DESCNET, and PRP conjugate gradient methods relative to all performance

metrics .

3.3. Numerical results and discussions 59



Chapter 3. Acceleration of the convergence of the gradient method by using the conjugate gradient

Figure 3.1: Performance based on CPU time.

Figure 3.2: Performance based on the number of iterations.
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Figure 3.3: Performance based on the number of function evaluations.

Figure 3.4: Performance based on the number of gradient evaluations.

3.4 Conclusion

We have presented a new conjugate gradient algorithm for solving unconstrained optimization

problems. Under the modified strong Wolfe line search conditions we proved the descent property
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and global convergence of the algorithm. For the test problems, the comparison of the numerical

results shows that the new algorithms is a good search direction at every iteration.
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