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ABSTRACT

Wind energy plays an increasingly crucial role in electricity production, requiring proactive
involvement of wind farms in managing the electrical grid. Additionally, diagnosing potential
faults in the wind energy chain and detecting failures are major priorities for both industry and
research. This thesis aims to enhance the energy quality of variable-speed wind turbines using a
doubly-fed induction generator (DFIG) by developing a comprehensive control method. The
primary objective is to regulate active and reactive power through field-oriented control (FOC) to
meet the requirements of the wind farm control system. To achieve this, three types of controllers
were investigated: proportional-integral (P1) controller, fuzzy logic controller (FLC), and neural
network-based controller (NNC). Simulations have shown the superiority of NNC in terms of
dynamic responsiveness and precise tracking of power reference values. Simultaneously, a
diagnostic method using fuzzy logic was devised to monitor and detect ITSC and open-phase
circuits in the stator windings of the DFIG within the wind system. This method solely utilizes
phase currents to detect and locate faults in real-time. Furthermore, to address converter failure
issues, a fault detection technique for pulse width modulation (PWM) inverters was studied. This
technique combines fuzzy logic and neural networks to accurately identify short-circuit and open-
circuit faults in the wind generator inverter.

Keywords:

Wind energy; Doubly-fed induction generator (DFIG); Field-oriented control (FOC); Proportional-
integral (P1) controller; Fuzzy logic controller (FLC); Neural network-based controller (NNC);
Faults; Diagnostic; inter-turn short circuits; open-phase circuits; short-circuit; open-circuit; PWM
inverters.
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RESUME

L'énergie éolienne joue un réle de plus en plus crucial dans la production d'électricité, nécessitant
une implication proactive des parcs éoliens dans la gestion du réseau électrique. De plus, le
diagnostic des défauts potentiels dans la chaine d'énergie éolienne et la détection des pannes sont
des priorités majeures pour l'industrie et la recherche. Cette thése se concentre sur I'amélioration
de la qualité énergétique des éoliennes a vitesse variable a base d'un générateur asynchrone a
double alimentation (GADA) et en développant une methode de contrdle globale. L'objectif
principal est de réguler I'énergie active et reactive en utilisant un contrdle a flux orienté pour
répondre aux exigences du systéme de controle du parc éolien. Pour atteindre cet objectif, trois
types de contrdleurs ont été explorés : le contréleur proportionnel-intégral (PI), le contrdleur
logique flou (FLC) et un contréleur basé sur les reseaux neuronaux (NNC). Les simulations ont
démontré la supériorité du NNC en termes de réactivité dynamique et de capacité a suivre
précisement les valeurs de référence de puissance. En paralléle, une approche de diagnostic basée
sur la logique floue a été développée pour surveiller et détecter les courts-circuits inter-spires et les
circuits a phase ouverte dans les enroulements statoriques de la GADA dans le systéme éolien.
Cette méthode utilise uniquement les courants de phase pour détecter et localiser les défauts en
temps réel. De maniere complémentaire, pour résoudre le probleme des pannes de convertisseurs,
une technique de détection de défauts pour un onduleur a modulation de largeur d'impulsion (MLI)
a été etudiée. Cette technique combine la logique floue et les réseaux neuronaux pour identifier
avec précision les défauts de court-circuit et de circuit ouvert dans l'onduleur de génération
éolienne.

Mots clés :

Energie éolienne ; Générateur asynchrone & double alimentation (GADA) ; Contréle a flux orienté ;
Contréleur proportionnel-intégral (PI) ; Contréleur logique flou (FLC) ; Contrdleur basé sur les
réseaux neuronaux (NNC) ; Défauts ; Diagnostic ; Courts-circuits inter-spires ; Circuits a phase
ouverte ; Court-circuit ; Circuit ouvert ; Onduleur a MLI.
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General Introduction

General Introduction

Demographic growth and extensive industrialization across all sectors have significantly
increased the demand for electrical energy in recent years. Concurrently, the scarcity of global
hydrocarbon resources, the risks associated with nuclear energy such as accidents and pollution
and the growing environmental and ecological awareness among populations and governments
have made renewable energy sources increasingly attractive for future electricity generation.

Among these renewable energy sources, we find wind energy, which is currently the subject
of lively debate and is increasingly attracting interest to meet the ever-growing demand for
electrical energy.

Wind energy is an environmentally friendly and non-polluting energy source, as its use does
not produce greenhouse gas emissions. Wind turbines convert the kinetic energy of the wind into
electrical energy, which can be used to power consumers, stored in batteries, or fed into the
electrical grid. However, these turbines are subject to various faults that can affect their operational
performance. Therefore, an intensive shutdown of a wind turbine chain inevitably causes
immeasurable losses [1].

In order to avoid such shutdowns, it is essential to rigorously monitor wind turbines to
ensure optimal energy efficiency. This monitoring must be able to detect, locate, and identify faults
in order to determine the necessary maintenance actions. These steps, which form the basis of fault
diagnosis, must be carried out as quickly as possible.

The doubly-fed induction machine and power converters play a crucial role in variable-
speed wind turbines, offering significant advantages such as precise speed control, efficient
conversion of wind energy, optimal power management, and overall improvement in wind energy
conversion system efficiency. These components are fundamental for fully utilizing the potential
of wind energy.

Despite the robustness of the asynchronous machine, it can still experience failures similar
to those of other electrical machines. These failures can result from various internal factors, such
as mechanical issues (rotor/stator friction, eccentricity, bearing faults) and electrical issues (broken
bars, stator faults, insulation faults). Additionally, external factors such as mechanical stresses
(torque pulsation, improper mounting, overload), environmental conditions (temperature,

humidity, contamination), and electrical factors (voltage fluctuations, voltage transients, voltage



General Introduction

imbalance) can also contribute to these failures. Therefore, it is essential to equip these machines
with reliable diagnostic systems to prevent any damage, no matter how minor.

Regarding power converters, although they are essential for variable-speed wind turbines,
they can experience various faults that impact turbine operation and performance. These faults
include short-circuits and open-circuits that may occur in the power switches.

In practice, implementing diagnostic strategies for wind turbines is often complex [2].
These approaches can generally be categorized into three main types: the first relies on prior
knowledge of the system's behavior, the second is based on pre-established quantitative or
qualitative models, and the third involves analyzing received signals using artificial intelligence
algorithms.

The advent of Al in recent years has brought about new methods in fault diagnosis. The
motivation behind using Al techniques lies in their ability to generalize and adapt to new,
unforeseen situations, as well as the increasing availability of data for training purposes.

In this context, the main objective of our thesis work is to develop fault detection and
diagnostic methods in the wind conversion chain using advanced techniques, aiming to enhance
the performance and profitability of energy production.

To accomplish this objective, this thesis is organized into four chapters, each focusing on a
distinct aspect of fault diagnosis in the wind energy conversion chain:

The first chapter presents a historical overview of wind energy conversion systems,
detailing the operating principles of wind turbines, the different types of turbines used, and the
essential components of wind energy systems. It also introduces the concepts of fault diagnosis and
the various methods employed, including the emerging use of Al.

The second chapter focuses on the modeling and control of a variable-speed wind turbine
based on a DFIG. It examines in detail the electromechanical components of the energy conversion
chain and presents the control laws used to optimize the turbine's operation, including PI, FLC, and
NN controllers.

The third chapter explores diagnostic methods for electrical faults encountered in DFIGs
used in wind farms. It examines the types of possible faults, their detection methods, and

emphasizes on artificial intelligence techniques such as fuzzy logic for accurate detection.
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The fourth chapter specifically focuses on the failures of power converters used in wind
energy conversion systems. It explores fault diagnostic methods, particularly those based on data,
highlighting the use of fuzzy logic and neural networks for fault detection.

By integrating these chapters, this thesis aims to contribute to enhancing the reliability and

sustainability of renewable energy conversion systems.
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.1 Introduction

Electricity generation using wind energy is booming in most countries, due to its potential
to provide a clean and sustainable source of energy. However, the wind energy conversion chain
is subject to various faults and anomalies that can compromise its efficiency and sustainability. To
ensure the optimal operation of wind power plants, it is essential to develop advanced diagnostic
methods to identify, analyze, and correct these faults effectively and proactively [3][4].

This chapter is divided into two parts. The first part provides a historical overview of wind
turbine conversion systems, explaining the operating principles of wind turbines, detailing the
different types of turbines along with their advantages and disadvantages, and describing the
various components that comprise their energy systems. In the second part, we define the terms
used in fault diagnosis. We will then classify system faults according to their location, temporal
evolution and impact on the performance of the systems to be monitored. We will also classify
fault diagnosis methods. In addition, we will mention the emergence of artificial intelligence (Al)
in fault diagnosis.

1.2 Historical

For more than 3000 years, humans have been utilizing wind energy, establishing it as one
of the oldest energy sources. In ancient Egypt, sailors employed wind power to propel their
sailboats, while millers used it to grind grain. These historical examples demonstrate that wind
energy is by no means a recent concept. Its utilization dates back millennia, demonstrating its
ongoing significance in the evolution of energy technologies. During the Middle Ages, windmills
spread widely throughout Europe, finding utility in grinding grain and pumping water. In the late
19th century, specifically during the years 1887-1888, the production of electricity from the wind
began. It was in 1887 when the very first windmill capable of generating electricity was erected in
Scotland. This remarkable achievement inspired innovative projects in the United States and
numerous European countries. Thus, wind energy began its promising journey as a source of
electricity during that period. In the latter half of the 20th century, wind turbines as we know them
today were developed [5]. According to the Global Wind Energy Council data for the year 2022,
China leads as the largest producer of wind energy and the world's biggest market for new
installations, followed by the United States and Brazil. Wind energy has the advantage of being
considered a renewable and clean source of energy, as it does not run out and does not generate

greenhouse gas emissions. This feature makes it all the more interesting for a society increasingly
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concerned about environmental issues. However, wind energy faces various challenges, including
a still relatively high cost of electricity generation and limited availability in some parts of the
world.

1.3 Principle of Wind Energy Conversion

Wind energy is a renewable energy source that captures the power of the wind to turn
turbines and generate electricity.

A wind turbine is a machine engineered to convert some of the wind's kinetic energy into
mechanical energy through rotation. This rotation then drives a generator that produces electricity
[6].

Driven by the wind, the propeller begins to turn, causing its blades to rotate. This
mechanical energy is converted into electrical energy through a slow main shaft, a gearbox, and a
generator, which then either feeds into the grid, is consumed locally, or is stored in batteries [7].

Figure 1.1 depicts the primary components of a conventional wind energy conversion
system linked to the electrical grid.
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Figure 1. 1 Structure of the grid-connected WECS.

1.4 Classification of wind turbine types

Wind turbines can be classified based on several criteria, including:
1.4.1 Depending on the rotation speed

Based on generator speed, wind turbines are categorized into two types: fixed speed and
variable speed.
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1.4.1.1 Fixed Speed Wind Turbine

Fixed-speed wind turbines were the first to be designed and developed using asynchronous
cage machines, as shown in Figure 1.2. These turbines are the most commonly used for high-power
generation due to their simple design. The asynchronous machines are directly connected to the
grid, operating at a fixed rotor speed close to the synchronization speed dictated by the pulsation

of currents between the stator and the grid [8].
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Figure 1. 2 Fixed-speed wind turbine.

The advantages and disadvantages of this type can be listed as follows:

A. Advantages of fixed speed wind turbines

e Simple: Fixed-speed wind turbines feature a straightforward mechanism and a basic
structure, making them easy to understand and use. This simplicity aids in their
manufacture, installation, and maintenance.

e Robust: Fixed speed wind turbines are known for their durability and resilience. They are
designed to withstand harsh weather conditions. Their robust construction allows them to
continue to operate reliably for long periods without significant damage or breakdowns.

e Economical: fixed-speed wind turbines are cost-effective in several respects. First, their
simple design and construction make them less expensive to manufacture and install
compared to more complex wind technologies. Second, their robustness reduces the need
for frequent repairs and maintenance, resulting in lower operating costs. Finally, constant-

speed wind turbines do not require power electronics, further reducing their overall cost.
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e Reduced maintenance: Fixed-speed wind turbines require less maintenance than other types
of wind turbines. They have fewer moving parts and do not rely on complex control
systems. As a result, there is less wear and fewer components that require regular inspection
and replacement. This reduces downtime and maintenance costs.

e No need for power electronics: fixed speed wind turbines operate without power
electronics. This reduces the complexity and cost of the turbine.

B. Disadvantages of fixed speed wind turbines

e Non-optimized power extraction: fixed-speed wind turbines cannot adjust their rotor speed
to suit wind conditions. This means that the power extracted from the wind is not optimized,
as the turbine may not operate at maximum efficiency. This can result in lower energy
production than with variable-speed turbines.

e Uncontrolled reactive power: In fixed-speed turbines, reactive power is not controlled,
which can lead to voltage fluctuations and grid instability, affecting overall power quality.

e Additional capacitor banks: To magnetize the electrical machine of a fixed-speed wind
turbine, additional capacitor banks are required. These banks supply the necessary reactive
power for the magnetization process. However, incorporating capacitor banks increases the

system's complexity and cost.

1.4.1.2. Variable Speed Wind Turbine

Variable speed wind turbines are a modern innovation in wind turbine technology, made
feasible by the integration of power electronics. This advancement enables them to operate
effectively across a wide range of speeds, thereby improving energy production quality and
enhancing overall energy capture efficiency. In addition, variable speed wind turbines can reduce
noise and lower mechanical system costs [9][10]. These turbines use different types of generators
with power electronics structures [8]. There are two main structures for variable-speed wind
turbines, illustrated in Figures 1.3 and 1.4.

Figures 1.3 show the first structure which involves the use of an asynchronous cage

generator with a bidirectional (AC/DC/AC) converter.
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Figure 1. 3 Variable-speed wind turbine.

Figure 1.4 shows the second structure involving a doubly-fed induction generator (DFIG)

which is powered directly to the stator and through a bidirectional converter (AC/DC/AC).
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Figure 1. 4 Variable-speed wind turbine based DFIG.

A. Advantages of variable speed wind turbines

e Regulation of active and reactive power sent to the grid: Variable-speed wind turbines can
manage both active and reactive power, optimizing wind energy production and improving
alignment with grid demands.

e Elimination or reduction of the need for speed multipliers: Variable speed turbines can
reduce or even completely eliminate the need for a speed multiplier, simplifying design and
reducing maintenance costs.
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Increased operating range: Variable-speed wind turbines are able to operate efficiently even
at lower wind speeds. This means they can produce energy even when wind conditions are
less favorable, increasing uptime and overall energy production.

Enhanced integration of wind turbines into the power grid: Variable-speed wind turbines
facilitate smoother integration into the existing power grid. Their capability to regulate both
active and reactive power allows for improved grid coordination, mitigating issues related
to wind power stability and intermittency.

Simplicity of generator speed control thanks to the blade orientation system: Variable-speed
wind turbines use a blade orientation system that enables easy control of generator rotation
speed. This makes it possible to optimize energy production by adjusting the speed of
rotation according to wind conditions.

Disadvantages of fixed speed wind turbines

Complex Control System: Variable-speed wind turbines necessitate a more sophisticated
control system compared to fixed-speed turbines. This is because the turbine speed must be
adjusted based on wind conditions to optimize power generation. The control system must
continuously monitor wind speed and adjust the turbine speed accordingly, which adds to
the overall complexity and cost of the turbine.

High Cost of Power Converters: Variable-speed wind turbines require power converters to
transform the variable frequency output of the turbine into a fixed frequency suitable for
grid connection. These power converters can be costly, contributing to the higher overall
expense of variable-speed turbines compared to fixed-speed turbines.

The periodic maintenance required for the gearbox and sliding contacts for brush rings.

1.4.2 Depending on the orientation of the axis of rotation

Wind turbines are classified according to the position of their rotor (axis of rotation) into

two types: vertical-axis wind turbines (VAWT) and horizontal-axis wind turbines (HAWT) [11].
1.4.2.1 Vertical-Axis Wind Turbines

Figure 1.5 illustrates Vertical-Axis Wind Turbines (VAWTS), which convert wind's kinetic

energy into electrical energy. These turbines have a vertical axis of rotation perpendicular to the

ground, with the generator and gearbox positioned at the tower's base. They can function at low

wind speeds and are not dependent on wind direction [12].
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Figure 1. 5 Vertical-Axis Wind Turbines (VAWT).

A. Advantages of VAWT
The main advantages of VATW are [8]:

Simpler design: VAWTSs have a simpler design than HAWTS. They do not require complex
mechanisms to orientate the rotor according to wind direction. This makes them easier and
less costly to manufacture and install.

Easier installation and maintenance: Key components, including the gearbox, electric
generator, and control devices, are located at the base of the turbine on the ground. This
setup simplifies access for maintenance and repairs, eliminating the need for technicians to
climb to high elevations to perform maintenance tasks.

Operation in all wind directions: Unlike HAWTS, which require a steering mechanism to
face the wind, vertical-axis turbines can operate in all airflow directions. This means they
can capture wind energy even when the wind changes direction, increasing their overall
efficiency.

Disadvantages of VAWT

Low efficiency with wide power fluctuations: VAWTSs are subject to wide power
fluctuations, which means that the amount of energy produced can vary considerably

depending on wind conditions.
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e Complete dismantling of wind turbines for rotor bearing replacement: In the event of rotor
bearing failure, it is necessary to completely dismantle the vertical axis wind turbine for
replacement. This can lead to significant costs and downtime.
e The need for an auxiliary starting device: VAWT often requires an auxiliary starting device
to set them in motion. This can add extra costs and complexity to the installation.
e In VAWT, the high-power generating devices take up a lot of land, so they can't be sited
on agricultural sites or other areas where space is limited.
1.4.2.2 Horizontal-Axis Wind Turbines

This type of wind turbine features a rotor mounted on a mast that is perpendicular to the
wind. The blades of these turbines drive the generator shaft. Horizontal-axis wind turbines come
in various configurations, including single-blade, two-blade, and three-blade designs [13][14].

Single- and two-bladed turbines have the advantage of producing less vibration, but they

are also less efficient and generate more noise. Turbines with an even number of blades should be
avoided because of their instability. Reducing the number of blades reduces costs while increasing
wind energy efficiency. Among the various configurations, the three-blade turbine is the most
commonly used because of its excellent efficiency and optimum cost [15].

HAWTS are categorized into two types: "up-wind" and "down-wind", as shown in the
Figure 1.6. In the "up-wind" configuration, the rotor faces into the wind, allowing the airflow to
directly reach the blades. This setup avoids the "tower shadow" effect, where the tower obstructs
wind flow to the blades. To ensure optimal performance, an automatic and continuous steering
mechanism is crucial. This mechanism can be either passive, using a fixed vertical wing, or active,
employing an electric motor [7].

In the "down-wind" configuration, the wind passes behind the rotor and reaches the blades
after flowing through the nacelle. This can cause premature equipment wear due to vibration or

mechanical fatigue [16].

11
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Figure 1. 6 Horizontal-Axis Wind Turbines (HAWT).

A. Advantages of HAWT

e Superior efficiency: they can capture wind at higher altitudes, where the wind is less
affected by terrain, such as mountains. This enables them to generate more electricity from
the same amount of wind [15][17][8].

e Small footprint: HAWTS have a small footprint. Unlike VAWTS, which require a larger
surface area, HAWTSs only require space for the tower, which usually houses all the
connection systems. This makes them suitable for areas where space is limited.

e Simple, robust design: HAWTs have a simple, robust design, reducing the risk of
mechanical failure and the need for frequent maintenance.

e Wind orientation system: HAWTS are equipped with a mechanism that allows them to align
with the wind direction. This ensures the turbine blades consistently face the wind,
maximizing the energy extracted from it.

B. Disadvantages of HAWT

e Horizontal wind turbines emit a lot of noise. This can be problematic in residential areas
where wind turbines are installed, as the noise can cause a nuisance for residents.

e Horizontal wind turbines require an orientation system to cope with changes in wind
direction. This adds further complexity to the installation and maintenance of the turbine.

e Horizontal wind turbines require non-flexible rotor blades. This means that the blades

cannot adapt to variations in wind speed, which can lead to reduced turbine efficiency.

12
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e Faced with strong winds, horizontal wind turbines are less resistant than vertical ones. This
means they can be damaged more easily by strong winds, which can lead to high repair
costs [15][17][8].

1.4.3 Depending on the size of the wind turbine

In theory, there is no direct correlation between the height of a wind turbine and its power
output since the generated power is closely related to the rotor's swept area, which depends on the
propeller's diameter rather than the turbine's height. The table I .1 below presents size categories
of wind turbines and their associated power ratings, which are approximate and intended to provide
a general idea. Additionally, these power ratings are meaningful only when the wind speed at which

they are achieved is specified [18].

Table I. 1 Classification of wind turbines by size and associated order of magnitude [18].

Name Rotor diameter | Swept area Power
[m] [m?] [kW]
Micro 0.5-1.25 0.2-1.2 0.1-0.4
Mini 1.25-3 1.2-7.1 0.4-2
Domestic 3-10 7-79 2-30
Small commercial 10-20 79-314 30-120
Commercial average 20-50 314-1963 120-750
Large commercial 50-100 1963-7854 750-3000
Commercial giant 100-170 7854-22686 | 3000-8000

1.5 Wind turbine construction

Typically, a wind turbine is composed of three main components [19]:

e Therotor, consisting of blades attached to a hub, can have 1, 2, 3, or more blades, depending
on the wind conditions at the installation site. The three-bladed rotor is the most common,
offering a balanced compromise between cost, vibration behavior, visual impact, and noise.

e The nacelle houses all the mechanical components needed to connect the turbine rotor to
the electric generator, including:

¢ Slow shaft: connects the rotor hub to the gearbox.

% Gearbox: links the slow shaft to the fast shaft.

% Fast shaft: drives the electric generator.

% Generator: typically, a synchronous or asynchronous machine that converts kinetic

energy into electrical energy.
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+«+ Cooling system: either air or water-based.

% Anemometer: measures wind intensity.

% Electronic management system: controls the wind turbine.

«+ Bearings: support rotating parts.
« Disc brake: different from the aerodynamic brake, it stops the system in case of
overload.

e The mast (tower), generally a steel or concrete structure supporting the wind turbine, or
possibly a wire mesh, must be as high as possible to avoid disturbance close to the ground.
However, the amount of material used is not negligible, and weight must be kept to a
minimum. A compromise is generally to choose a mast slightly larger than the diameter of

the wind turbine rotor. Figure 1.7 shows the main components of a horizontal-axis wind

turbine.
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Figure 1. 7 Wind Turbine Composition.

1.6 Basic concepts for diagnosis
Methods of fault diagnosis have been of great interest to scientists and researchers,
particularly in the field of automated production systems, whose complexity is constantly changing.

Troubleshooting is primarily about detecting, locating and identifying anomalies in a system.
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It facilitates maintenance by selecting the appropriate method and structure to restore proper
system operation. Fault diagnosis is part of a wider monitoring and supervision framework. The
complexity of power generation systems, such as wind turbines, requires functions such as
monitoring, supervision, technical management and maintenance planning to be taken into account.

This section provides an introduction to the general concepts of monitoring and diagnosis,
as well as the different stages and techniques of industrial diagnostics. It addresses different
concepts and structures used in diagnosis, highlighting their importance to improve system
performance, reliability and safety. It also highlights the importance of fault diagnosis in wind

systems and the need to identify and correct apparent faults in these systems.
1.6.1 Normal operation of a system

A system is deemed to be in a normal operating state when its variables (including state
variables, output variables, input variables, and system parameters) remain near their nominal
values. However, if the variables deviate significantly from their nominal values, the system is
considered defective [19][20].

1.6.2 Faults

Faults are manifested by any deviation or deviation of at least one observed feature of the
monitored system from its required reference feature, corresponding to the normal and standard
operating condition. It usually does not result in a complete shutdown of the system, but it may
cause a potential failure. Defects may have a physical origin, resulting from material malfunctions,
design errors, errors in the operation of systems, or errors during maintenance actions. As a result
of a defect, the system becomes unable to perform the primary function for which it was designed.

It is important to note that a defect does not necessarily lead to a failure [7].
1.6.3 Failure

“Failure” means a functional anomaly within a physical system, which means that the
system is unable to perform its primary function or one of its functions [8]. “Faults” are included
in the category of “failures” but the reverse is not true. This means that a system can have faults
without necessarily experiencing a failure, but that a failure always involves the presence of faults.
Failure can occur partially when the system maintains the ability to perform some of its required

functions, or fully when it is unable to perform all of these functions.
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1.6.4 Break-down

A break-down occurs when a component or system is unable to fully perform a required

function. This period spans from the moment the failure occurs until the repair work is completed
[81[21].
1.6.5 Residual

The residual is a signal that indicates the presence of a defect in a system. It measures the
difference between actual or observed system operation and normal or standard operation given by
a reference model. When there are no defects, the average residual value is zero, which means that
the actual operation of the system corresponds to the expected normal operation. However, in the
presence of a defect, the average residual value deviates from zero, indicating that the actual

operation differs from the expected normal operation [7].
1.6.6 Diagnostic

Diagnosis is a process aimed at detecting the occurrence of a fault at an early stage before
it leads to failure, relying on measurements and observations made on the monitored system.
It also includes the step of fault localization and identification. Its English acronym is FDI (Fault
Detection and Isolation), and the diagnostic procedure comprises three essential steps [7][22]:
1.6.6.1 Fault detection

Determination of whether the monitored system is in normal operation or not [7][22].
1.6.6.2 Fault location

This entails determining which functional component or subsystem is affected by the
detected fault [7].
1.6.6.3 Fault Identification

This process involves determining the extent, type, and time of occurrence of an observed

fault. The goal is to improve the understanding of the system's behavior [7].
1.6.7 Monitoring

Monitoring is a process used to keep a close eye on the operation of a system. It relies on
data collected continuously and in real time from the system to analyze and detect any change in
its behavior. The collected data is processed and analyzed to identify any deviations from the
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normal behavior of the system. If faults or failures are detected, service agents are alerted and can
take appropriate action to resolve the problem.

Additionally, the collected data is transferred to a monitoring module for further analysis.
There are two types of monitoring: control monitoring and system monitoring. Control monitoring
focuses on assessing the performance and behavior of the control system itself, while system

monitoring evaluates the overall functioning and behavior of the entire system [7].
1.6.8 Maintenance

is a process of maintaining or restoring the performance of components or the entire system
in order to perform the required task. Monitoring and diagnosis improve the reliability,
maintainability and availability of a functional entity. These different concepts are defined by [7]:
> Reliability
Reliability refers to an entity’s ability to perform the required functions under specified
conditions for a given duration. This is an important consideration for overall system performance
and reliability [7].
> Availability
Availability refers to an entity’s ability to be in a state where it can perform the required
functions under specified conditions. It is a measure of the system’s accessibility and readiness to
perform its tasks. Availability is crucial to ensure that the system is operational when needed and
can meet the demands placed on it [7].
» Maintainability
Maintainability is the ability of a system to be restored to a functional state through proper
maintenance to perform the functions required under specific conditions [7].
1.6.9 Diagnostic procedures
In the diagnostic process, two main steps are involved: fault detection and localization,
followed by, in some methods, an identification step. For industrial equipment, when a fault
appears, the diagnostic system first detects the anomaly and then identifies the causes in order to
isolate it. The organizational sequence of a system fault diagnostic procedure is defined as [8][23]:
» Extraction of the necessary information,
> Development of signatures associated with defect symptoms,
» Implementation of the diagnostic method,
>

Detection of malfunctions,
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> Interpretation of data,
» Decision-making guided by the consequences and severity of faults.
1.6.10 Classification of faults (Types of faults)

Faults are classified into three categories based on their location: actuator faults, sensor
faults, and system (or component) faults. This classification also takes into account their temporal
evolution, distinguishing between abrupt faults, intermittent faults, and gradual faults.

Furthermore, considering their impact on the system, we distinguish between additive and

multiplicative faults. Figure 1.8 illustrates the various fault positions within the automated system.
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Figure 1. 8 Different positions of faults.

1.6.10.1 Depending on the location of the fault
A. Sensor faults

A sensor fault refers to a situation where the sensor inaccurately represents the physical
state of the system. There are two types of sensor faults: partial faults and total sensor faults.

A partial fault occurs when the sensor produces a signal that does not fully align with the
actual value of the measured variable, potentially causing the displayed value to be lower than the
true value. In contrast, a total fault occurs when the sensor outputs a value that is completely
unrelated to the measured quantity, meaning the sensor's reading does not correspond at all to the
actual physical state of the system.

B. Actuator faults

Actuator faults refer to problems that occur in the operational part of a system and affect
the system input signal. These faults may result in a total or partial loss of functionality of an
actuator responsible for controlling the system.

Partial actuator faults refer to situations where the actuator still functions to some extent,

but its performance is degraded from its normal operation in a healthy system.
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C. Component faults
These faults originate from the system itself and are generally not caused by a faulty sensor
or actuator. This type of fault can be caused by various factors such as wear, aging of components,
environmental conditions or manufacturing errors. This reduces the ability of the system to perform
a task. Understanding and analyzing component faults is essential to maintaining system reliability
and efficiency.
1.6.11 Diagnostic methods
A fault diagnosis system is specific to its field of application and varies according to various
parameters [24]. This variety of parameters and application areas has led to the development of
multiple methods for fault diagnosis. Based on the application perspective, we can distinguish two
main families of approaches used for diagnosis [25][26][27]:
e Model-Based methods,
e Data-Driven methods.
The following figure shows the hierarchy of diagnostic methods:
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Figure 1. 9 Classifications of fault diagnosis methods.
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1.6.11.1 Model-Based methods

Within the framework of model-based methods, fault detection and diagnostic systems are
generally categorized into qualitative or quantitative approaches.
A. Qualitative methods

Qualitative model-based fault diagnosis methods employ a model that represents the input-
output relationship of the plant using qualitative functions focused on different units within the
process. This approach is commonly categorized into fault trees, diagraphs, and fuzzy systems
[28][29].

e Diagraph (Causal graphs)

A graph, or diagraph, is a collection of nodes connected by edges, where each edge has a
direction assigned to it. From the "cause™ nodes to the "effect” nodes, directed arcs connect them.
Every node in the signed digraph represents a variable's departure from its steady state. By
identifying faulty components, causal graphs can be used to explain the abnormal operation that
was noticed [28][8].

e Fault trees

Fault tree analysis originated at Bell Telephone Laboratories in 1961. A fault tree diagram
is structured from the top down and visually illustrates possible pathways in a system that could
result in an undesired event or failure. These pathways link contributing events and conditions
using standard logic symbols, with AND and OR gates being the primary elements utilized in fault
trees [28].

e Fuzzy logic

Fuzzy logic (FL) is applied in fault diagnosis, especially within qualitative model-based
and process-history-based methodologies. Fuzzy logic systems (FLS) utilize qualitative linguistic
terms to account for the inherent imprecision observed in real-world processes and systems.

FLS provides the following benefits: they enable the management of processes that are
either inadequately modeled or not expressible mathematically; They characterize process behavior
using empirical or experiential information from sensor systems and/or human operators; and they
can manage complex non-linear, multi-variable, and time-varying processes without necessitating

precise mathematical definitions [28].
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B. Quantitative methods

Quantitative models are formulated using mathematical functional relationships that

connect the input and output of the system [29].
e Parity space

The parity space method enables verifying the parity or consistency of the system model

with measurements from sensors and known inputs generated by actuators.

Generally, this approach involves identifying a projection matrix that maps the system's
inputs and outputs into a subspace that is independent of the system's states. This helps to eliminate
the influence of states on residues. Parity relationships are characterized by the fact that they relate
only to known variables, such as inputs and outputs. These relationships can be either static, which
means that they relate to inputs and outputs of the system at a specific time, be dynamic, meaning
that there is a dynamic relationship between the measured outputs and the system inputs at different
time points. The parity space method employs linear algebra techniques, particularly matrix
projections, to eliminate unknown state variables. Even for nonlinear systems, parity relations
remain applicable. However, the resulting residual is expressed as a constraint function
independent of the system's state [7].

e Parameter estimation

This principle involves estimating the parameters of the studied systems using input and
output measurements, as illustrated in Figure 1.10. It then calculates the difference between these
estimated parameters and the reference values that represent the normal state of the process. This

method has been used to detect faults in non-linear systems [30][8].
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Figure 1. 10 Generations of residues by parameter estimation.

e Diagnostic observers
Diagnostic observers are intended to estimate system output based on control knowledge
(input), as illustrated in Figure 1.11. Discrepancies between estimated and measured outputs

generate a vector called the residue vector, intended to be a reliable indicator of process behavior

[8].

Input vector u Output vector y
— Process —
y Residual
— Observer — —

Figure 1. 11 Generation of residues by observer.

1.6.11.2 Data-Driven methods

In the data-driven approach, techniques devoid of any specific model assumptions are
employed, relying solely on previously processed data. This method operates under the assumption
of having access to substantial amounts of pre-processed data. The data, which may vary in form,
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can be integrated into a diagnostic system as preliminary information [29]. This approach can be
classified into either qualitative or quantitative methods.
A. Qualitative methods

Methods for feature extraction can be divided into qualitative methods, which encompass

expert systems and qualitative trend analysis (QTA) [31][32].
e Expert systems

Expert systems are computer-based tools utilized to leverage the insights, knowledge,
and/or guidance of individuals possessing expertise in a specific domain. Typically, key stages in
the development of an expert system involve acquiring knowledge, selecting appropriate
knowledge representation methods, encoding knowledge into a knowledge base, designing
inference procedures for diagnostic reasoning, and developing input-output interfaces [28].

They use heuristic information to link symptoms to faults. From all the symptoms at his
disposal, he deduces possible conclusions and develops new hypotheses to deepen the diagnosis
by exploiting the additional information collected on the system to be diagnosed.

The development of expert systems for diagnostic problem-solving offers several
advantages, including ease of creation, transparent reasoning, the ability to handle uncertainty, and
the provision of explanatory solutions. However, these systems also present significant
weaknesses: they are often highly specialized to particular systems, prone to failure outside their
knowledge boundaries, and difficult to update or modify [8].

e Qualitative trend analysis

QTA is a qualitative signal analysis technique that uses information from the first and
second derivatives to segment signals based on their convexity and slope. It is used for process
monitoring and fault detection. The QTA consists of two basic steps: identifying trends in
measurements and interpreting these trends in terms of scenarios [33][34]. It is a semi-quantitative
method that provides fast and useful information for fault diagnosis [35].

B. Quantitative methods

Principal component analysis (PCA) [36], neural network [37], and statistical classifier

methods [27] are some of the quantitative techniques utilized for feature extraction.
e Neural networks
A neural network (ANN) is a network of interconnected elementary processors that process

information from external signals to reproduce the behavior of the system to be modeled.
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ANNs are a type of artificial intelligence that imitates the way biological neurons send
signals to each other. They are composed of nodal layers, each containing an input layer, one or
more hidden layers, and an output layer. Each node, or artificial neuron, performs a mathematical
operation on the input it receives and passes the result to the next layer.

ANNs are particularly effective in diagnosing faults within non-linear dynamic systems.
They possess noteworthy features such as learning abilities, self-organization, and the capacity to
model a large class of non-linear systems, making them both intriguing and appealing [28].

e Statistical methods

Several statistical techniques are employed to establish the connection between the inputs
and outputs of a system undergoing fault diagnosis. Among these are linear regression, multiple
regressions, polynomial regression, principal component analysis, partial least squares, and logistic
regression. These methods are commonly known as black-box statistical approaches for fault
diagnosis. As fault diagnosis involves classification, it can be framed within the classical statistical
pattern recognition framework [28].

o Principal Component Analysis (PCA)

PCA is a statistical technique aimed at reducing the dimensionality of multivariate datasets
while preserving most of their variance. It is based on the transformation of the initial variables
into a new set of orthogonal linear components, called principal components, which are both
uncorrelated and ordered according to their decreasing variance [38].

PCA is used to decrease the dimensionality of the data, thus making it possible to visualize
the links between the variables and detect the underlying patterns in the data. In addition, BCP can
be used to reduce the number of dimensions of data before applying other statistical techniques
such as regression or classification.

o Statistical classifier

Statistical classification is a supervised learning technique employed to categorize new
observations into predetermined classes using a training dataset containing labeled examples. The
primary objective is to develop a model capable of accurately predicting the target class for each
instance in the dataset. Commonly used algorithms for statistical classification encompass decision
trees, Naive Bayes, logistic regression, support vector machines, random forests, and neural
networks. Model training entails selecting a suitable algorithm and dataset with known labels,

followed by validation using an independent dataset to evaluate its ability to generalize.
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Performance assessment relies on metrics such as accuracy, precision, recall, F1 score, ROC curve,
and confusion matrix. Challenges in classification include combating overfitting, addressing class
imbalance, and optimizing feature selection. Given the absence of a universally superior method,
careful consideration must be given to selecting the appropriate algorithm. Understanding these
principles and challenges is indispensable for effectively applying classification techniques in real-
world scenarios, thereby contributing to ongoing advancements in machine learning and
classification methodologies [39].
1.7 Advent of Al in fault diagnosis

Data-driven methods that take advantage of Al remain primarily in the research stage [40].
However, compared to model-based approaches, the data-centric approach offers a new paradigm
for solving increasingly complex problems [41]. Interest in data-driven approaches stems from
various elements associated with the use of artificial intelligence algorithms. The main advantages
and disadvantages of the approaches discussed can be compared according to the criteria presented
in Table 1.2.

Table I. 2 Comparison between fault diagnostic methods [42].

Features Model-Based Data-Driven
Detection method Mathematical Machine
Type of approaches used to perform the diagnosis model learning
Nature of system Determinist Non-
Type of systems typically used with the approach deterministic
Transparency of diagnosis Transparent Black Box
Ability to understand the
diagnosis
Expertise required High Low to moderate

Illustrates the level of expertise needed for
development

Flexibility Weak High

Illustrates the ability to

adapt following changes

Development complexity High High

Illustrates the degree of difficulty in development

e Nature of system: the use of Al methods differs from other approaches by facilitating the
processing of non-linear data or incomplete models [26]. This approach is suitable for
systems with large datasets whose underlying physics remain poorly understood. For other

methods, the creation of a complete model or the definition of significant features required
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for diagnosis can be difficult, especially when representing a complex system using signal
processing methods [43].
e Flexibility: Due to the nature of Al tools, this approach provides the ability to periodically
adjust the system in response to changes [40]. For example, it is possible to retrain the
diagnostic model regularly as new data is generated. In contrast, conventional methods
would involve revising the initial model or assessing its impact.
e Expertise required: Implementing a data-driven approach requires less expertise on the
system under study than other diagnostic methods. Indeed, developing a complete model
often requires the collaboration of multiple experts and a significant investment of time.
Furthermore, in the case of a signal-based approach, diagnosis relies on the expertise of the
individuals who designed the diagnostic system [37].
e Development complexity: Accumulating the data needed to train Al tools can be difficult.
In addition, Al approaches are prone to overtraining, which can decrease their effectiveness
compared to model- or signal-based methods. Developing a model that can effectively
simulate various failure conditions for a model-based approach is also a complex challenge.
Only the signal-based approach offers a simple and uncomplicated solution to develop [44].
e Diagnostic transparency: Al learning methods are generally considered as black boxes,
which means that they can sometimes produce undesirable results due to overtraining or
use in scenarios not covered by training data, thus causing them to operate outside their
area of expertise [40]. In contrast, model-based approaches provide a clearer understanding
of diagnosis, as they rely on underlying physical or mathematical models of the system.
1.8 Conclusion

In this chapter, we have presented a general study on wind turbines and their main
characteristics in the first part. We have also listed the existing types of wind turbines and their
constituent components. The second part focuses on the state of the art in system fault diagnosis:
we initially defined terms used in the field of fault diagnosis, then classified system faults based
on their location, temporal evolution, and their impact on the performance of monitored systems.
Furthermore, we established a classification of fault diagnosis methods and addressed the
emergence of Al in fault diagnosis.

To study the wind system and develop fault diagnosis methods, we will establish a

mathematical model that satisfactorily and realistically represents the behavior of the wind system,
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followed by the implementation of an efficient control. Thus, the next chapter will be devoted to
the establishment of the mathematical model and to the control of the variable speed wind system
based on DFIG.
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Chapter I Modeling and Control of a Variable Speed Wind Turbine, based on a DFIM

I1.1 Introduction

The dominance of horizontal-axis wind turbines is primarily due to economic
considerations related to their manufacturing and installation. Among horizontal-axis wind
turbines, there are two main types: fixed-speed and variable-speed models. Variable-speed wind
turbines are more commonly used for electricity production on the grid because they can operate
over a wide range of wind speeds, optimizing energy production for low winds and maintaining
constant power in high winds.

In our work, we have chosen to study a variable-speed wind turbine using an asynchronous
generator with a wound rotor, also known as a Doubly-Fed Induction Generator (DFIG). This
second chapter focuses on the modeling and control of a variable-speed wind turbine system based
on a DFIG. We will begin by explaining why this type of wind turbine is the most widely used for
electrical energy production. Next, we will present the models of the various components in the
wind turbine's electromechanical conversion chain. In the second part, we will detail the various
control laws that enable optimal operation of the wind turbine and independent control of active
and reactive power using PI, FLC, and NN controllers. The chapter will conclude with a
presentation and explanation of the simulation results.

11.2 Description of the WECS based in DFIG

In our research focus, we've opted to examine a variable-speed wind turbine utilizing a
wound rotor asynchronous generator, commonly termed a doubly-fed induction machine (DFIM),
illustrated in Figure I1.1.

Here's how the system operates: the turbine propels the DFIM via a multiplier. The stator
of the DFIM is directly linked to the grid, while the rotor connects to the grid through three-phase
static converters IGBT (Insulated Gate Bipolar Transistor). These power converters, referred to as
RSC and GSC within our study, will be controlled using Pulse Width Modulation (PWM).
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Figure 11. 1 WECS based on DFIG.

The operation of this arrangement can be explained as follows: When wind passes through,
the rotor, also known as the propeller, begins to rotate, thereby setting the blades in motion. This
rotational action of the propeller induces movement in a shaft located within the nacelle, known as
the slow shaft, which is connected to the gearbox. The gearbox then increases the slow rotational
speed of the turbine to match the rotation speed of the rotor. The generator, linked to the gearbox
via a shaft known as the fast shaft, is responsible for converting this mechanical energy into
electrical energy.

The bidirectional capability of the converters enables operation in hypo or
hypersynchronous modes. In hypersynchronous mode, electrical energy can be transferred not only
from the stator to the grid but also from the rotor to the grid, enhancing the efficiency of the wind
system. Furthermore, the power factor at the connection point of the wind turbine to the power grid
can be managed by adjusting reactive powers in various inverter controls [45].

The primary advantage of this wind system is that the RSC and the GSC, which transfer the
slip power to the power grid, are designed to handle only a portion of the nominal power of the
DFIM. Specifically, if the DFIM operates at nominal power in hypersynchronous mode with a
maximum slip of -30%, then a maximum of 25% of the machine's nominal power passes through
the converters. This allows the converters to be sized for a power range between 25% and 30% of
the machine's nominal power [45].

The additional costs linked to maintenance resulting from the use of a speed multiplier and

the ring/brush system of the DFIM are thus counterbalanced by the savings made on the converters,
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compared to a wind system where the converters would be sized for the rated power of the generator
[45].

We will now study the transformation of the kinetic energy of wind into electrical energy
by modeling the different elements of the electromechanical conversion chain of the wind turbine.
11.3 Wind energy conversion system modeling

In this section, we introduce the aerodynamic model of the turbine and the multiplier,
followed by the mechanical model of the wind turbine. We then discuss the conversion of
mechanical energy into electrical energy. A brief overview of the operation of the DFIG will be
provided, after which the DFIG will be modeled in the Park reference frame to present the control
of the RSC. Finally, we will model the connection of the GSC to the electrical grid via the RL filter
in the Park reference frame to explain the GSC control.

11.3.1 Wind turbine modeling
11.3.1.1 Aerodynamic model

The turbine or propeller, positioned at the front of the turbine, typically features three blades
of length R and is mounted on a rotor. Its primary function is to capture the kinetic energy of the
wind and convert it into mechanical energy, which is then transferred to the slow rotating shaft.

Wind power is expressed by the following mathematical equation [46].

1
Py = E.p.S.v3 (IL.1)

The aerodynamic power, converted by a wind turbine, p,,, depends on the power

coefficient ¢,, and is expressed by equation (2) [47]:

1
Pturzch(l'ﬁ)*p*s*v3 (I11.2)
A represents the tip speed ratio:
Q * R
A= ”‘; (1L 3)

Where:
p: Air density (Kg/m3);

v: Wind speed (m/s);
S = mR?: Surface area swept by the wind turbine blades (m2);

R: Rotor radius of the turbine (m);
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C, (4, B): The power coefficient is dependent on both the tip speed ratioA and the pitch angle
B.
Q1S the angular speed of the wind turbine rotor.

The C, represents the aerodynamic efficiency of the wind turbine and is influenced by its

specific characteristics. This value is theoretically limited by the Betz limit, set at 0.593, though
this limit is never actually achieved in practice [45].

In this thesis, we use an approximation based on analytical functions to estimate the C,as a

function of A and the £, as expressed in equation (11.4) [48]:

( 151 24 -
C,(1,B) = 0.73 (;1_ — 0.588 — 0.0025%4 — 13.2>.e :

2
i . 0.003 (IL. 4)
PTA40028 B3+1

Figure 11.2 shows the power coefficient curves plotted for various values of  against A.
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Figure I1. 2 The power coefficient Cp (A,B).

Given the turbine's rotational speed, the mechanical torque T, available on the slow-
rotating shaft can be expressed as follows:

Pty 7T
Toyr =——=—— R3xv2xC,(A, II.5

11.3.1.2 Multiplier model
The multiplier plays an essential role between the turbine and the generator in a wind power

system. Its purpose is to adjust the turbine speed (Q,,), which is relatively slow, to the generator
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speed (Q,,.c), Which is higher. The multiplier is ideally rigid and lends itself to simplified modeling
in the form of a simple gain [49].

In this approach, we neglect the elasticity and friction of the multiplier and the associated
energy losses. In sum, although the multiplier is a complex device, we represent it concisely by the

following two equations:

T
Tmec = Gur (116)
Qmec = G * Qpyr (IL.7)

Where: T,,.. IS mechanical torque,
Q.0 the generator speed, and G is the multiplier ratio.
11.3.1.3 Modeling of the mechanical shaft
The shaft incorporates a mass that simulates the inertia of the turbine rotor, supporting both

the blades and the hub, alongside a smaller mass representing the inertia of the generator rotor.

Qt‘m‘ Q‘mec
i Tmec
I aep ™
I fur
i’ _____________________ | L f
G

Figure 1. 3 Model of the mechanical part of the wind turbine.

According to Figure 1.3, we can determine the rotation speed of the turbine. The

mechanical equation of the turbine shaft, linked to that of the generator used, is given as follows:
dQ
(% +]mec) drzec + [Qmec = Tmec — Tem (I1.8)

f is the viscous friction coefficient,
T.., is the electromagnetic torque of the generator,
Jeur 1S the moment of inertia of the turbine,

Jmec 1S the moment of inertia of the generator.
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11.3.2 Modeling of the doubly-fed induction generator

In the domain of converting mechanical energy into electrical energy for electricity
production, a variety of generators tailored for wind systems can be found. These diverse machines
are classified based on factors such as power output, operational speed, torque capabilities, weight,
volume, and other pertinent criteria. Among the primary types of electrical machines commonly
used in the wind industry are synchronous machines and asynchronous machines [50]. For the
purposes of this study, we have chosen to utilize the DFIG, renowned for its high efficiency and
widespread adoption in wind energy production.

The DFIM is a variant of the three-phase asynchronous machine. Its particularity lies in the
fact that it is simultaneously powered by two sources: its stator and its rotor. The major advantage
of the DFIM lies in its ability to control power flow in hyposynchronous and hypersynchronous
regimes, whether in motor or generator mode. Additionally, it enables variable-speed operation in
integrated systems [51].

In the context of variable-speed wind energy systems, two primary configurations are used
for double feeding of asynchronous machines:

Stator-Only Double Feeding: In this configuration, the stator provides one source of
power, and the machine’s rotor is also fed directly from the grid. This setup allows for better control
of power flow and is commonly used.

Stator-Rotor Double Feeding with Converters: Another configuration employs
converters positioned between the rotor of the machine and the electrical grid. These converters
are smaller and more economical since they manage lower rotor power. Additionally, this setup
enables simultaneous adjustment of both rotor voltage amplitude and frequency. Consequently, it
is preferred in variable-speed wind turbine systems over turbines powered solely by the stator and
equipped with power converters [52].

In a three-phase reference frame, the electrical equations of the DFIG are expressed as

follows:

dt (1L.9)
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With;
Ugs 146 Ry 0 07
[Us] = |Ups| ; [Is]=[lbs] et [RJ=|0 Ry 0
UCS Ics _0 0 RS—
Ugr I, R, 0 0]
[Ur] = |Ubr| ; [Ir]=[1br] et [R,]=|0 R, O
UCT‘ Icr _0 0 Rr_

Where: [Ug], [U,]: stator and rotor voltage vector,
[L], [I]: stator and rotor current vector,
[R¢].[R,]: are respectively the stator and rotor resistors.

The equations related to fluxes are expressed in terms of currents and various self and

mutual inductances, as follows:

[(ps] = [Lss] * [Is] + [Msr] * [Ir]
i) = 101 121+ 140 1] (11-10)
With;
l, M, M, L M, M,
[Lss] = [Ms L Ms] ; [er] = [Mr L Mr]
Mg M M, M, I,

Where:
[Lgs], [L]: are respectively the self-inductances of the stator and rotor phases,
M, M,.: are the mutual inductances between stator and rotor phases,
[M,,]: is the matrix of mutual inductances or the stator-rotor coupling matrix given by:

21 21\
cos(0) cos (9 + ?> cos (9 — ?)

M, ] = [M,5s]T = |cos (9 — 2;) cos(6) cos (9 + 2?”)

21 2n
cos (9 + —) cos (9 — —) cos(60)
L 3 3
[M,] and [M,]T : is the stator-rotor mutual inductance.

The Park transformation is used to simplify and reduce the equations related to the machine
by performing a change of reference frame in the electrical plane, designated as the (d-q) frame.

This transformation is described by:
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_ cos(@)  cos (9 - 2;) cos (9 — 4?) |
P(0) = \/g —sin(f) —sin (9 — 2;) —sin (9 + 2%) (I.11)
1 1 1
N N VZ

The Park transformations applied to currents and voltages in the equations of DFIG result
in obtaining a biphasic model. This model is formulated as follows:

( dpg .
Ugs = Rs * Igs +d—ts_05*(pqs

d .
qu:Rs*Iqs'i'&-l'es*(pds

J dt (11.12)

dgﬂd .
Uar = Ry * Iy + dtr_ar*(.oqr

do .
kUqr=Rr*Iqr+7qr+9r*(Pdr
Pas = Ls ¥ Igs + M * Iy,

Pgs = Lg * Igs + M * [

I1.13
¢dr:LT*IdT+M*IdS ( )

Pgr =Lr*1qr+M*IqS
With respectively:
Ugs, Ugs, Ugr and Uy, - direct and quadrature stator and rotor voltages of the two-phase system,
6, and 6, : the angular speed of the d and q axes in the stator reference frame (S, abc) and in the rotor
reference frame (R, abc), respectively,
w, et w, :sont les pulsations des grandeurs électriques statoriques et rotoriques ;
Pas) Pgs» Parand @g, . direct and quadrature stator and rotor flux of the system,
Lg and L, : the stator and rotor cyclic inductors of the machine,

M : mutual inductance.

The electromagnetic torque is expressed as:

M
Tem = pL_ (Idrq)qs - Iqr§0d5) (I1.14)
s

Where p represents the number of pole pairs of the DFIG.

The active and reactive power components generated by the stator and rotor of the DFIG

are respectively expressed as:

35



Chapter I Modeling and Control of a Variable Speed Wind Turbine, based on a DFIM

(Ps = Ugslys + qulqs

Qs = qulds + Udslqs (IL.15)
B =Ugrlar + Uquqr .

Qr = Uqudr + Udrlqr

11.3.3 Modeling the GSC connection

In this section, we examine the modeling of the GSC connection to the electrical grid via
an RL filter. Figure 11.4 illustrates the entire link to the electrical grid, consisting of the DC bus,
the GSC, and the input filter.

7 1

ond red GSC
(<1<
irand \ / S‘il Si] S il
D,. I:E D, D, Lf Rf iy,
) 1’ NW\_I\MA_é—
C Av . i~ )
RSC < :_Tvdr P ;ﬂ M_L
and Vo
2 oen_ |
DFIG 3 .
1E AR s, ||
D, D;. Dy
\ 7

Figure I1. 4 Connection of the GSC to the grid.
With:
iond, ireq, : the currents modulated by the RSC and the GSC, respectively,

icona : the current through the capacitor,

v4. : DC bus voltage,

S, Dy :respectively, the IGBT transistors and the diodes connected in antiparallel (ie{1, 2, 3,4,
5, 6}),

Ry, Ly : the resistance and inductance of the filter RL,
Vg1, Vppr, Vyyr - Simple voltages modulated by the GSC,
Vg1, Vg2, Vg3 : the simple voltages of the grid,

ifyr, s, 2 the currents flowing through the RL filter.
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11.3.3.1 Modeling the DC bus
The voltage across the DC bus capacitor is determined by integrating the current that flows
through the capacitor [53]:

dvd 1 .
dtC = =+ leona (11.16)

The current in the capacitor originates from a node through which two currents flow,
modulated respectively by the RSC and the GSC (see Figure 11.4).

lcond = lred — lond (I1.17)
11.3.3.2 Model of the connection to the grid in the Park frame
According to Figure 11.4, in the three-phase frame system and using Kirchhoff's laws, we
can formulate the following expressions [54]:

Vpy = —Rp % iy — LfW + vy (I1.18)
. dify:

vle = _Rf * lle - Lf? + vSZ (H 19)

Vpgr = —Rp * ip3r — LfT + vg3 (I1.20)

Using the Park transformation on the three previous equations, we arrive at the following
expression [55][56]:

di .
_ digg . _
The powers active and reactive produced by the GSC are defined by [57]:
Pf = UdS * lfd + qu * lfq (II 23)
QF = Ugs * ipqg — Ugs * izq (11.24)

11.4 Wind energy conversion system control
According to Figure 11.1, it is therefore imperative to execute three specific controls to
ensure the proper functioning of the wind turbine:
e The MPPT,
e The RSC, using IFOC with a power loop,
e The GSC; consists of controlling the DC bus voltage as well as the active and reactive

power exchanged with the grid.
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11.4.1 MPPT control strategy

The MPPT method is employed to enhance the efficiency of wind energy conversion
systems by maximizing the power extracted from the wind. This is achieved through precise control
of the rotor speed using a variable speed drive, which adjusts the electromagnetic torque to maintain
the rotor speed at its designated reference value [58].

In this control strategy, the output of the speed controller uses the reference electromagnetic
torque T,,," to achieve a rotor speed (,,,.. equal to its desired value Q,,,..". To regulate the rotor
speed and mitigate the impact of mechanical torque T,,.., considered a disturbance, an integral
proportional (P1) controller is implemented. This method ensures effective tracking and
maintenance of the maximum power point, thereby optimizing power generation in wind energy

conversion systems.

Multiplier Mechanical shaft

mec

-
I

"

MPPT Control

Figure 11. 5 Block diagram of MPPT strategy.

For a given operating point (at a fixed wind speed), the objective is to maximize mechanical
power, which corresponds to the maximum value of the coefficient C,,. This value is achieved when
the relative speed A equals its optimal value A,,, (for a constant value of g equal to 0°), as
illustrated in Figure 11.6.

The reference rotation speed of turbine Q,,,," is obtained using equation (11.3) and is defined
as follows:
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Aopt-V

'Qtur* = (II. 25)
We deduce the rotation speed reference of the DFIG by taking into account the gain of the

multiplier by:
Qmec: = G.Quyy” (1. 26)
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TSR
Figure 11. 6 Cp as a function of A for  =0°.

11.4.2 Grid side converter control (GSC)
The GSC is connected between the direct current DC bus and the electrical grid via an RL
filter. This converter serves two essential functions [45][59]:
v" Maintaining a constant DC bus voltage, regardless of the magnitude and direction of the
rotor power flow in the DFIG.
v" Ensuring a unity power factor at the point of connection with the electrical grid.
Figure 11.7 illustrates the control of the GSC, which achieves these two functions by

simultaneously regulating the currents flowing through the RL filter and the DC bus voltage.

Vdc
f——l h—al i .
Leond ™ Grid

vfl

o

sz

vdc' vy3

Figure 1. 7 Principle of GSC control.
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A. Control of currents passing through the RL filter

In the frame system (d, q) associated with the stator rotating field, we have the following

equations [60]:

. difg
Vfa = _Rf lra — Lf W + €ra (H 27)
_ difq
qu = _Rf lfq - Lf W + efq (II 28)
Where:
€rq = —G)SLf lfd + qu (II 30)

The connection model between the GSC and the grid, in the dg reference frame based on
the stator rotating field, allows us to establish precise control over the currents flowing through the
RL filter. Taking couplings into account, each axis (d and g) can be independently controlled, each
with its own controller [45]. The references for these controllers are the currents in the RL filter of
the dq axes.The block diagram of the current control loops for the dqg axes is illustrated in Figure
11.8. The controllers used are of the PI type. These regulation schemes include compensation and
decoupling terms for the dq axes, as well as models of the GSC and its connection to the grid via
the RL filter in the dqg reference frame [60].

( G ‘ €
i
i.* K. v,,* Vi -1 Jd
Jd Kpf + if Jfd | I Gc Ja I
K3 R.+L.s
S S
1 €r
i
i * v * v —1 fa
Ja K i Ja Ja
- —» G —>
P c R, +L;s
\ —> -
Control of currents in the RL filter System(GSC+RL filter)

Figure I1. 8 Control of currents in the RL filter.

For the control of rotor currents, we represent the RSC by a gain G.. We assume that the
converter is ideal, which means we neglect the dead times imposed by the power switch drivers of

the RSC. In this case, the value of G¢ is equal to 1.
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The reference currents ir, " and i, come from the DC bus voltage control block and the
reactive power control respectively at the connection point of the GSC with the power grid.

By neglecting losses in the resistance Ry of the RL filter and taking into account the
orientation of the dq reference associated with the rotating stator field (U,, = 0), equations (11.23)

and (11.24) are rewritten as follows [61]:

Using these equations, we can impose the reference active and reactive powers, denoted as

P:" and Q(", by imposing the corresponding reference currents [45]:

Qr
irg* = - (11.33)
TS
qq*::fz— (I1.34)
Ugs

Theiqq" component is used to control the reactive power at the point of connection between
the GSC and the grid. On the other hand, the quadrature component ., “is employed to control the
DC bus voltage. Thanks to this principle, it is possible to impose a zero reference reactive power
(Qf"=0 VAr) [45].

B. Control of DC bus voltage

The powers involved in the DC bus can be expressed as follows [45]:

Prea = Vac-lrea (I1.35)
P = Vgc-lcona (11.36)
Pona = Vac-lona (I1.37)
The connection between these powers is expressed by the relation [45]:
Preq = P, + Pypyg (I1.38)

Assuming that all Joule losses are negligible compared to the power exchanged between
the rotor of the DFIG and the grid (including losses in the capacitor, converter, and RL filter), we
can express this as follows [45]:

Pr = Proqg =P+ Popa (1. 39)
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The reference power for the capacitor is associated with the reference current flowing
through it [45]:

P" = vacicona” (I1.40)

The Figure 11.9 illustrates the block diagram of the DC bus voltage control loop. To simplify

the control chain, we assume that the reference current i, "is always equal to the current iz, as the

response time of the internal loop is shorter than that of the external loop [45].

P ond
+ [ Pf P 1 icand Vi
"L NUEN [ I
Ve Cs
Ve T
Control of DC bus volfage System (DC bus, GSC, RL filter)

Figure 1. 9 DC bus voltage control loop.

11.4.3 Rotor side converter control (RSC)
11.4.3.1 Indirect field-oriented control (IFOC)

Vector control remains the predominant technique for controlling DFIG-based wind
turbines. In this approach, the rotor current vector is split into two components using a
synchronously rotating (dq) reference frame [62]. The direct rotor current governs reactive power
control, while the quadrature current is associated with real power. This configuration allows the
DFIG to closely resemble the structure of a DC machine, where torque and flux control magnitudes
are naturally decoupled [63].

For an AC machine, achieving this straightforward vector control performance directly is
not feasible. Two options exist to address this challenge. The first option involves aligning the d-
axis with the stator flux. Alternatively, the second option is to orient the g-axis along the stator

voltage and introduce a 90° delay to the d-axis, considering that the two vectors are phase-shifted
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by 90°. The first one is widely adopted in wind power generation using DFIG and is a classical

method documented in the literature [64][65].

The system employs an indirect vector approach to independently regulate the generator's

powers and address coupling issues. Specifically, a closed-loop control scheme governs the rotor

currents, while an open-loop control scheme manages the powers. Assuming constant stator flux

aligned with the d-axis, the elimination of stator winding resistance results in a quadratic

nullification of the quadrature stator flux (¢4s=0), yielding a direct stator flux of ( 4= @) [66].

This simplifies the equations (11.12), (11.13) and (I1.14) to their concise form:

( Uas = Rslgs
qu = Rqus + 05045
dgg
) Uar = Rylgr + Tr - Br(qu
do .
kUqr = erqr + d_;l?‘ + 0,0ar

The resistance of the stator windings is negligible in high-power machines.

Uss =0
{qu = és§0d5 =Vs
(Pas = ¢s = Lslgs + Mlg,
0 = Lglys + My,
P, = Lyl + M1y,
Oqr = Lylgr + My
M

Tem = —p L_ Iqr<ps
s

The power stator equations (I1.15) can be simplified as shown below:

P = Vslqs
Qs = Velys

(IL. 41)

(11.42)

(11. 43)

(1L 44)

(11 45)

From Equation (11.43), one can deduce the connection between the stator and rotor currents:

ps M
I ———.1
ds Ls Ls dar
M
Iqs = —L—S.Iqr
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By substituting equation (11.46) into the rotor flux expressions (11.43), they can be expressed

in terms of rotor currents as shown below:

M? )
((pdr = (Lr - L_s) lar + ML__:

MZ
Pgr = <Lr - L_s> IQr

The connection between the rotor voltages and the rotor currents can be determined by

(I1.47)

substituting equation (11.47) into the expressions for U, and Uy, [67]:

( U R, 1 + <L MZ) Aay (L MZ) 1
—_ . — — — gw — —
dr r-idr r Ls dt S r Ls qr

I1.48
M?\dl,, M? oM (I 48)
Uqr = Rr'lqr + LT _L_S 7+gws LT _L_s Idr +gL_s
Where :
wsand w,: stator and rotor angular velocity, respectively;
g: represents the slip of the asynchronous machine.
W — W
g=—-—"1 (1. 49)
wr

By replacing Equation (11.46) into Equation (11.45), the expressions for active and reactive

power can be reformulated in terms of rotor currents, as shown below:

M
Py = _Vs-L_SIqr
I1.50
S S Ls S Ls. dr
From equation (11.42) the expression for the stator flux can be written as follows:
Vs
Pas = Ps = — (I.51)
ds S W
So, equation (11.50) becomes like this:
K = _Vs-L_SIqr
2 M (I1.52)

= —Vi—.1
M.w, °SLg %
Utilizing the equations recently derived, we can construct a streamlined representation for

the rotor windings of the DFIG. This enables us to define the relationships between the applied
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voltages on the rotor and the consequent stator powers. Specifically, equations (11.48) and (11.52)
allow us to illustrate in Figure 11.10 a model with rotor voltages as inputs and stator active and

reactive powers as outputs. This model serves as the foundation for subsequent regulation efforts.

-
U ! BN P
" RT+S(L,~7M2/LS) L, §
.
{ o (-7,
\ J
' \
gos (L, =M/ ) 1
- A
1
)

Figure 11. 10 Block diagram of the DFIG.

From Figure 11.10, we can observe that power and voltage are connected through a first-
order transfer function. Additionally, because the slip value g is low, it will be feasible to establish
vector control effectively. The impact of couplings will remain minimal, allowing independent
control of the d and g axes using their respective controllers.

Unlike direct control, the IFOC method aims to regulate both the rotor powers and currents.
It accounts for the coupling terms and employs two proportional-integral (PI) controllers on each

axis [68]. The figure below illustrates the model of IFOC that we selected for our study.
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Figure 11. 11 Block diagram of IFOC with PI controllers.

11.4.3.1.1 PI synthesis
A. Power controller

The block diagram illustrating the power control loop with a PI controller is depicted in the

figure below:

Pa-’ Qa-

Ps, Qs

Kip G(s) ,

e
+
|
L 4

PP

Figure 11. 12 Block diagram of the power PI controller.

In the context of control systems, the terms K, and K, represent the proportional and
integral gains, respectively. This particular type of controller emerges from the balanced interplay
of two fundamental actions:

e Proportional Action: Its purpose is to fine-tune the system's dynamic response speed.
e Integral Action: This action aids in minimizing the discrepancy (static error) between the

desired reference value and the actual controlled output.

The transfer function to be regulated, denoted as G (s), is defined as follows:

(11.53)

G(s) =
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The transfer function of the open loop becomes:

K; MV;. (K,,.s + K;
Hy_oi(s) = (Kpp + ﬂ).a(s) = o (Koo ‘”2”2 (11.54)
s s|LoRy + 5. L. (Ly — L—)]
The transfer function of the closed loop is expressed by:
MVs.(Kpp-S+Kip)
Lo (1)
Hp—c(s) = 5.(LsRy+MVsKpp) MVsKip (IL.55)
SZ + M2 M2
() (1)
The transfer function of a second-order system is expressed by the following equation:
K.w,?
= L (11.56)
s? 4+ 2.&wy,. s + w2
Where:
K :is the system's gain,
wy,:is the natural frequency of the system,
& :is the damping ratio.
By identifying equation (11.56) with equation (11.55), we obtain:
( 2.5 Wy L. (Ly —2°) = LR,
K,, = =
pp M2
L. (Lr = L—S)
MV,K;
X wy? = ——— (11.57)
L. (Lr — L—S)
2
wa?Lg. (Ly — ’;’—)
L Kip = MV,

B. Current controller

The figure below depicts the simplified block diagram for the synthesis of PI controllers for the

rotor currents of the DFIG.
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i s Iqr k; 1 Tz, Iyr
kpi + — olL.s+R, »
s

Figure I1. 13 Block diagram of the current PI controller.

With:
o=(1-2) (11.58)
The open loop transfer function is given by:
Kpi
H ()—(K +K”)( ! )—K T (11.59)
i—ot\S) = \Hpi 777 ) o.Le.s+R,/] % S '

To eliminate the zero in the transfer function, we employ the pole compensation method

for controller synthesis. In other words, this translates to:

K, o.L
K_Ii)-l — R_rr (11. 60)
The H;_,; then becomes.
Hi_oi(s) = st (IL 61)
The Closed Loop Transfer Function has the following form:
Hi_o(s) = ;R (1. 62)
1+ K s

The formula for adjusting the controller gains based on machine parameters and response

time is presented as follows:

o.L,
Kpi = t
M (I1.63)
.
Kii =+
T

Where: t,.is the response time.
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11.4.3.2 Fuzzy Logic Control

This section focuses on applying fuzzy logic to improve the performance of the IFOC
technique by replacing Pl controllers with FLCs. One major advantage of fuzzy control over
traditional methods is its independence from precise mathematical models of the system [69].

Typically, designing an FLC for electric drives involves decisions concerning the
following parameters:

- Selection of linguistic variables,

- Choice of membership functions,

- Selection of inference method,

- Choice of defuzzification strategy.

In single-variable systems, the inputs to the FLC typically consist of the error (the deviation
between the setpoint and the process output) and its rate of change (which indicates the system's
dynamics) [23]. Many advanced controllers adopt the simple scheme proposed by Mamdani, as
depicted in the following diagram:

LS*,_’_ Ep —
- di,, I,

[ — f —»' DFIG+
P IFOC

Figure 11. 14 Block diagram of a FLC.
The inputs for the FLC are computed as depicted at time k [69].
E,(k) = PB;" (k) — Ps(k) (1. 64)
dE, (k) = E,(k) — E,(k — 1) (I. 65)

By integrating the FLC output dl,, ,we obtain the control signal for the I ,-"system, as was

presented in the Figure 11.14.

Iy () = Iy (k — 1) — dl," (k) (11. 66)

Figure 11.15 illustrates the comprehensive diagram of IFOC utilizing FLC.
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= e
A {5l .
PS IJ ym’(L"7%F Inverter _’ DFIG
Iy Us'
IR L e
0 D o4
Liw,

Figure I1. 15 Block diagram of IFOC with FLC.

This method relies on four fundamental steps:

a. Fuzzification

The evaluation of a membership function that converts a numerical value into a fuzzy degree
is shown in Figure 11.16.

The membership functions for the input variables E,, dE,, and dI,,. were chosen to be
triangular and trapezoidal shapes[58]. This choice is based on their simple implementation and
their effectiveness in representing linguistic variables and their corresponding fuzzy sets[58].

These shapes enable smooth transitions between different linguistic terms and provide

flexibility in representing fuzzy sets.

T T T
NG NM NP EZ PP PM PG

Degree of membership
Q
&

\

-7 -0.5 o 0.5 1
‘Ep,dEp,dlgr’

Q

Figure 1. 16 Membership functions for input variables Ep,dEp and output digr of the
FLC.
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b. Evaluation of the rules

The process involves converting fuzzy input into fuzzy output using fuzzy If-Then rules. In this
study, we employed Mamdani's fuzzy inference method, along with a fuzzy Max-Min operation,
as detailed in Table 11.1. The FLC's inference process is based on a set of 7x7 rules that define the
relationship between the input variables and the resulting control signal.

Table I1. 1 Table of fuzzy rules.

E
dE;
NG NG [NM | NG | NG |[NM | NP | EZ

PING|NM|NP | EZ| PP | PM | PG

NM | NG |NM| NG| NM | NP | EZ | PP

NP NG | NP |NM| NP | EZ | PP | PM

EZ NG | NP | NP | EZ | PP | PM | PG

PP NM | NM| EZ| PP | PM | PG | PG

PM |[NP | EZ | PP |PM | PG | PB | PG

PG | EZ | PP |PM| PG | PG | PB | PG

c. Rule output aggregation

The aggregation process entails combining the outputs from all the rules into a single unified
result.

d. Defuzzification

To obtain a numerical value from the aggregated fuzzy output set, a technique called
defuzzification is used. In the context of the FLC for controlling active and reactive power in a
DFIG, the defuzzification process uses the center of gravity method.

This method calculates the crisp output value by determining the weighted average of the fuzzy
output sets, with each set's weight based on its degree of membership within the output fuzzy set.

The defuzzification equation for the FLC in this context can be represented as follows:

dlyy = Y uri(Igri)dlgri
2 upi(Igri)

Where, ug;denotes the membership degree of I,.;.

(11 67)
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11.4.3.3 Improvement of IFOC performance by ANN

This section delves into the practical application of ANN. Our goal is to enhance the
performance of the IFOC technique by replacing the PI controllers with NNC.

ANNSs are inspired by the complex structure of the human brain. In our study, we implemented
an NN controller using Matlab's nftool. Concurrently, we simulated a DFIG-based wind turbine
using a Pl controller and collected data to represent the desired control behavior of the DFIG-based
WECS both before and after the controller's operation.

We then trained a feed-forward neural network using supervised learning. The neural network
architecture was configured as (1-10-1), meaning one input neuron, ten neurons in the hidden layer,
and one output neuron. The training process focused on optimizing the network'’s performance by
minimizing a cost function, and we refined the network iteratively using the Levenberg-Marquardt
optimization algorithm until achieving satisfactory results.

Once fully trained, the NNC can be seamlessly integrated into the control system of the DFIG-
based WECS, effectively regulating power generation. Figure 11.17 illustrates the structure of a
NNC used, and Figure 11.18 illustrates the comprehensive diagram of IFOC with NNC.

I I

' I
Input : Hidden layers W Ouiput

: :

! !

X l wS” ) I
Ps H 5 ’- ) I B Iqr*

PS H wo” 24 !

Figure I1. 17 General structure of Artificial Neural Network
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Figure 11. 18 Block diagram of IFOC with NNC.

I1.5 Results and discussion
This section evaluates and compares the performance of the proposed methods in terms of

reference tracking, dynamic response, static error, system stability, and robustness. The complete
system was modeled by simulating a 10 Kw wind turbine with the parameters specified in Table

[1.2 using Matlab/Simulink.
Table Il. 2 Parameters of turbine and DFIG.

Turbine parameters
Parameters Value
Nominal power 10Kw
Number of blades 3
Diameter of a blade 3m
Multiplier gain 54
Moment of inertia 0.042K g.m?
Coefficient of friction 0.017N.m.s™!
DFIG parameters
Nominal power 7.5Kw
Rated frequency 50Hz
Stator resistance 0.455Q
Rotor resistance 0.62Q
Stator inductance 0.084H
Rotor inductance 0.081H
Mutual inductance 0.078H
Moment of inertia 0.3125 Kg.m2
Coefficient of friction 6.73*10° N.m.s"!
Number of pole pairs 2
Air density 1.225 Kg/m®

Figures (11.19), (11.20), (11.21), and (11.22) illustrate the reference tracking responses for active

and reactive power control employing PI, FLC, and NN controllers. To assess the performance of

53



Chapter I Modeling and Control of a Variable Speed Wind Turbine, based on a DFIM

the proposed controllers, the simulation entails incrementally adjusting both active and reactive
reference powers. Specifically, the active reference power is modified at 2s and 3s, while the

reactive reference power is adjusted at 3s.

Ps-ref Ps(PI) Ps(FLC) Ps(NN) ]|
Zoomz2 ZOooOM3 1
% m
= /-Y\ .
T N\, -/
=
(=] -
.
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q —
T 7.5 2 2.5 3 3.5 4
Time(s)
Figure I1. 19 Active power.
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Figure 11. 20 Zoom in active power behavior.
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Figure I1. 21 Reactive power.
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Figure I1. 22 Zoom in reactive power behavior.
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The dynamic and static performance of the three controllers during normal operation can be
succinctly summarized in Tables I1.3 and 1.4, respectively.

Table I1. 3 Performance comparison of the three active power controllers.

Active power
Controller Pl FLC NN
Performan
Rise time(s) 2.9486e-04 | 2.9206e-04 | 2.9745¢-
04
Maximum overshoot 2061.4898 2080.7327 67.3400
(%)
Settling time(s) 0.078728 0.034608 0.00923
Conception Simple Simple Medium

Table 11. 4 Performance comparison of the three reactive power controllers.

Reactive power
ontroller Pl FLC NN

Performa

Rise time(s) 5.2314e-04 | 6.2824e-04 2.9903

Maximum 4093.5473 1888.5716 5.8815
overshoot (%)
Settling time(s) 0.08462 0.03056 0.01022

Conception Simple Simple Medium

e The classical PI controller performs well in tracking active and reactive power, considering
rise time, settling time, and peak values.

e However, it exhibits a significant overshoot, indicating an oscillatory response. To mitigate
this, controller tuning is necessary.

e Sensitivity to variations in system parameters requires careful attention during
implementation and tuning.

e The FLC shows similar performance in terms of rise time, settling time, and peak compared
to the PI controller.

e It appears slightly more robust to parameter variations.

o Like the PI controller, it also exhibits a significant overshoot, which may require tuning.

e The NNC demonstrates remarkable performance across rise time, settling time, overshoot,
and robustness to parameter variations.

e Notably, it has a low overshoot compared to other controllers.

e However, it does exhibit a noticeable undershoot.
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11.5.1

when

Overall, the NNC design complexity is moderate.

Robustness test
In this simulation section, our main goal is to evaluate the robustness of the three controllers

faced with varying parameters, specifically the inductances L;, Lg, and the mutual

inductance M. We will compare the performance of these controllers based on criteria such as rise

time, maximum peak overshoot, and settling time.

To conduct the robustness assessment, we employed the following approaches:

1. Stator and Rotor Inductance Variation: We intentionally increased the stator and rotor
inductances of the DFIG by 25% above their nominal values. Subsequently, we analyzed
the system's behavior using the PI, FLC, and NN controllers while these parameters were
modified.

2. Mutual Inductance Variation: Conversely, we reduced the mutual inductance of the DFIG
by 25% below its nominal value. We then observed how the system responded to this
parameter change when controlled by the three different controllers.

Figure 11.23 and Table 11.5 display the simulation outcomes with a +25% variation in L.
5 x10* ‘ . ‘ . ‘ . 3><104 ‘ ‘ ‘
Ps-ref Qs-ref
2 Ps-PI(+25%Ls) | —— Qs-PI(+25%Ls)
Ps-FLC(+25%Ls) 2 ——Qs-FLC(+25%Ls)| |
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Time(s) Time(s)

Figure 11. 23 Active and reactive power behavior using the three controllers with +25%

variation of Ls.
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Table I1. 5 Performance comparison of the three active power controllers with +25%

variation of Ls.

Active power
Controller Pl FLC NN
Performan
Rise time(s) 7.7744¢e-4 | 4.9143e-4 | 7.7203e-4
Maximum overshoot (%) 941.1434 | 125.1498 67.6828
Settling time(s) 0.1024 0.04711 0.01036
Reactive power
Rise time(s) 1.0614e-2 | 1.5885¢-3 2.9891
Maximum overshoot (%) 1279.1335 | 746.1308 1.1689
Settling time(s) 0.08478 0.06909 0.01213

Figure 11.24 and Table 11.6 present the simulation results with +25% variation of L,..
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Figure 1. 24 Active and reactive power behavior using the three controllers with +25%

variation of Lr.

Table 1. 6 Performance comparison of the three active power controllers with +25%

variation of Lr.

Active power
Controller Pl FLC NN
Performance
Rise time(s) 1.2407e-3 | 8.6182¢-4 | 6.4654¢-
4
Maximum overshoot (%) 1006.3462 | 153.7652 | 67.4897
Settling time(s) unstable 0.05089 | 0.01193
Reactive power
Rise time(s) 1.8857e-3 | 1.8196e-3 | 2.9884
Maximum overshoot (%) 709.1956 | 803.1542 | 0.91166
Settling time(s) unstable 0.09309 0.01294
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Figure 11.25 and Table 11.7 present the simulation results with -25% variation of M.
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Figure 11. 25 Active and reactive power behavior using the three controllers with -25%

variation of M.

Table I1. 7 Performance comparison of the three active power controllers with -25%

variation of M.

Active power
Controller Pl FLC NN
Performan

Rise time(s) 2.1116e-2 | 9.1929e-4 1.4402e-3
Maximum overshoot (%) 196.486 | 159.4129 67.3609
Settling time(s) unstable 0.809 0.01245

Reactive power

Rise time(s) 4.1798e-4 | 6.2902e-3 3.6251e-3
Maximum overshoot (%) | 1001.8854 | 752.9087 16.7727
Settling time(s) unstable 0.1838 0.02345

Through an examination of the impact of stator/rotor inductance variation and mutual
inductance on the dynamics of controllers (PI, FLC, and NN), it becomes evident that both FLC
and NN controllers exhibit robustness across different parametric variations (Lg, L,, and M).
However, the PI controller loses its robustness entirely when subjected to a -25% variation in M.

Furthermore, the neural controllers outperform the fuzzy controller, particularly in terms of settling
time and overshoot.

11.6 Conclusion

This chapter addressed the modeling and control of a variable-speed wind system based on
a DFIG directly connected to the electrical grid via the stator and through static three-phase

converters using IGBTs on the rotor. The modeling of various components of the wind system was
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presented, including the aerodynamic and mechanical models of the turbine. To establish control
strategies for both converters, models for the DFIG and the connection of the GSC to the grid via
an RL filter were developed. The MPPT control method was examined in detail to extract the
maximum available power from the wind. Control schemes for the RSC and GSC were elaborated
to ensure independent control of active and reactive powers while optimizing wind turbine
operation. These controls were implemented using PI, FLC, and NN controllers.

Finally, simulations were conducted to validate the overall modeling and control of the
wind system. The results demonstrated that active and reactive powers of the wind system could
be independently controlled while ensuring optimal active power supply to the electrical grid.
Furthermore, the NN controller outperformed the Pl and FLC controllers in terms of power,
efficiency, and robustness, enhancing both the dynamic and static performance of the DFIG.

The robustness of the controllers was also assessed by varying the machine's mutual
inductance. Notably, the PI controller was significantly affected by this variation, while the NN

controller remained nearly unchanged.
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Chapter 111 DFIG Electrical Fault Diagnosis

I11.1 Introduction

DFIGs are essential components of modern wind farms, efficiently converting wind energy
into electricity. However, due to their continuous operation in harsh environmental conditions,
these machines are prone to various electrical and mechanical faults that can compromise their
performance and durability. This chapter examines diagnostic methods for electrical faults in
DFIGs primarily used in wind systems. We begin with a thorough analysis of the various types of
faults encountered by wind systems, ranging from mechanical issues such as bearing and gear
failures to electrical faults including short circuits and phase openings. Next, we explore advanced
diagnostic methods used to detect these faults, including model-based techniques and data-driven
approaches. Special attention is given to artificial intelligence techniques such as the use of neural
networks and fuzzy logic for precise fault detection and localization. We present in this chapter the
proposed approach for detecting and locating short circuit and phase opening faults in the stator of
a DFIG using fuzzy logic. Finally, we analyze the simulation results to demonstrate their
effectiveness in a real operational environment.

111.2 Different Faults of Wind Systems

A wind turbine system is a complex device that converts wind energy into electrical energy.
Composed of several components, wind turbines can be subject to malfunctions or faults caused
by temporary events or natural aging. These problems can lead to interruptions and economic
consequences. Temporary events may include extreme weather conditions, while faults due to
aging occur over time. When these problems arise, wind turbines may fail to function properly,
resulting in disruptions in electricity production and high repair costs.

To better understand these faults, it is crucial to analyze statistics based on the frequency of
faults and their downtime. This approach allows for the identification of the most critical faults for
effective predictive maintenance [70]. However, access to this data may be limited by
manufacturers, hindering the optimization of wind turbine maintenance [70].

The main components susceptible to faults in wind turbine systems are the electrical system,
sensors, blade orientation, and control system. The longest downtimes are generally associated with
the control system and the gearbox [19]. Faults are more frequent in the electrical system than in
mechanical components such as the gearbox. The number of faults per year of operation increases

after the first years, with a relatively constant rate thereafter [71][19].
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Generators and power converters are more prone to faults in direct drives than in indirect

drives, but less critical than gearbox faults. The electrical system has a significant fault rate in direct

drives, exceeding that of the gearbox in indirect drives. Direct-drive generators have a fault rate

twice as high as those in indirect drive applications [19].

Below, we outline some common faults that may arise in wind turbine systems due to

factors such as environmental conditions, operational stresses, component wear, and manufacturing

faults.

Table I11. 1 Common faults in wind turbines [72][73][74].

Type of Fault

Origins of Fault

Blade and Rotor Faults

Corrosion, cracks, reduced stiffness, increased surface
deformation of blades, errors in pitch angle, imbalance of rotors

roughness,

Gearbox Faults

Imbalance and misalignment of shaft, damage to shaft, bearings, and gears,
broken shaft, high oil temperature, oil leakage, poor lubrication

Generator Faults

Excessive vibrations, overheating, abnormal noises, insulation damage

Bearing Faults

Overheating, premature wear due to unpredictable stress

System Faults

Main Shaft Faults Misalignment, cracks, corrosion, coupling failure
Hydraulic System | Sliding valve blockage, oil leakage

Faults

Mechanical Braking | Hydraulic failures, wind speed exceeding the limit

Tower Faults

Poor quality control during manufacturing, improper installation and loading,
harsh environmental conditions

Electrical
System/Device Faults

Broken buried metal lines, corrosion or cracks in traces, board delamination,
component misalignment, electrical leaks, cold-solder joints

Sensor Faults

Malfunction or physical failure of sensors, malfunction of hardware or
communication links, errors in data processing or communication software

These faults can lead to disruptions in system operation, decreased efficiency, and potential

safety risks. It is critical to implement robust monitoring, diagnostic, and maintenance strategies to

promptly detect and rectify these faults, ensuring the reliable and safe functioning of wind turbine

systems.

111.3 Diagnostic Methods on Wind Turbines

The detection and location of faults in wind turbines are achieved through various

approaches, including:

e The use of observers to detect faults in rotor and generator angular velocity sensors, as well

as to estimate output and adjust detection thresholds [75].
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Model-based methods, such as the use of Coleman transformation and invariant linear time
model identification, enabling fault detection using a Kalman filter[77][76].

Data-based approaches, such as neural networks, for monitoring and fault detection,
demonstrating superiority in fault detection compared to other methods [77][78][79].

Regarding fault detection on specific wind turbine components, several studies have

focused on:

Detecting pitch angle sensor faults using piecewise-refined models to generate residual
signals [80].

Detecting speed multiplier faults by extracting fault-related features using wavelets [81].
Detecting converter faults using an unknown input observer [82].

Other specific methods are also used to detect defects such as cracks in gears, mechanical
brake defects, bearing defects, ...

Time-frequency analysis-based approaches, such as wavelet transform use, are also used
for mechanical and electrical fault monitoring and diagnosis in wind turbines [83]. This
method effectively eliminates noise and analyzes non-stationary signals, making it easier

to detect various defects in wind turbines.

111.4 Faults in Electric Generators

The asynchronous generator, despite advancements in engineering and materials science,

can still have various types of faults. The most common faults in low and medium power generators

are stator faults, while mechanical stress-induced faults are more prevalent in high-power

generators. Although the DFIG is robust, it can still experience electrical or mechanical faults,

which can be caused by various stresses and can lead to structural and functional faults, potentially

damaging the machine and causing production losses [84].
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Figure I11. 1 The different faults in DFIG.

111.4.1 Electrical faults

The electrical faults of a DFIM can lead to its shutdown and are classified into two
categories: those affecting the stator electrical circuits and those affecting the rotor. These faults,
such as short circuits between turns of the same phase, can result in an increase in currents in the
stator of the affected phase, a slight variation in amplitude on the other phases, a modification of
the power factor, and an intensification of currents in the rotor circuit. They can also lead to an
increase in temperature at the winding, accelerating the deterioration of the insulators and
potentially causing a cascade effect, such as the occurrence of a second short circuit.

Among the short-circuit faults, we find short circuits between the phases of the stator or the
rotor, between bearings of the same phase, and between a phase and ground. A short circuit near
the power supply between phases can generate very high currents, leading to conductor fusion or
triggering of protective devices. Similarly, a short circuit near the neutral between two phases can
cause an imbalance without conductor fusion, which may also have a mechanical origin, such as
excessive vibrations leading to loosening of bolts or insufficient tightening of a lug at the cable

junction, potentially resulting in phase opening.
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111.4.2 Mechanical Faults

Mechanical faults in a DFIM are common and can manifest at the level of the ball bearings
and the machine shaft. Bearing faults can result from poor material selection during manufacturing,
leading to rotation problems and disruptions in the machine's operation. Electrical currents flowing
through the bearings can contribute to their deterioration, especially at high speeds.

Shaft faults may be caused by the use of unsuitable materials during construction,
potentially leading to cracks and eventually shaft fracture, resulting in irreparable machine
shutdown. Corrosive environments can weaken the robustness of the shaft, for example, moisture
can cause microcracks and ultimately lead to complete machine failure.

Eccentricity, resulting from rotor displacement relative to the shaft's center of rotation, can
cause torque oscillations. Different types of eccentricities, such as static, dynamic, or mixed
eccentricity, alter the magnetic and mechanical behavior of the machine, increasing
electromagnetic forces in the air gap and causing friction between the stator and rotor, resulting in
significant vibrations in the windings.

I11.5 Study of Electrical Faults of the DFIG

In this section, we will develop the stator fault model that concerns the malfunctions of
induction machines due to short-circuits between the stator windings. Furthermore, the model of
the stator phase open-circuit fault.

The short-circuit (SC) inter-turns of the same phase can occur either at the level of the coil
heads or inside the winding slots. However, the coil heads are more likely to be affected due to the
crossings of the wire bundles. This type of fault leads to a decrease in the effective number of turns
in the coil, which can have a significant impact on the operation of the machine.

The short-circuit fault between the turns of the same phase is expressed as a percentage of
the total number of short-circuited turns. This means that the severity of the fault is assessed based
on the proportion of turns affected by the short-circuit compared to the total number of turns in the
winding. This information is essential to diagnose and assess the extent of the damage caused by
the SC between the turns, which can help take appropriate corrective measures to ensure the proper
operation of the induction machine.

111.5.1 Model of DFIG with SC Fault
In the event of a SC fault in an induction machine, the corresponding voltage and flux

equations can be expressed as follows:
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( d
[Us] = [Rs] [Is] + E [(ps]
d
) [Ur] = [Rr] [Ir] + E [(pr] (111 1)
d
kO = [Rsci][lsci] + E[(Psci]
With;
Ps Lgs Mg Lgsc][ Is
Pr | = Msr er Lrsc Ir (IH' 2)
Psci Lesc  Lyse Lgcid Use

Where;
@s¢i- flux of the phase shorted-circuit;
Ig.; - current of the short-circuit phase;
L. mutual inductance between a stator phase and SC winding;
L, mutual inductance between a rotor phase and SC winding;
R,.;: resistance related to the short circuit coil.
In the case of a stator circuit current fault, the inductance of the SC winding can be modeled
by considering both the stator and rotor phases [85]:
Lgei = Nsei®(M + 1) (1. 3)
Using the equation below, we can establish the relationship between the number of turns

affected by short-circuits N,.; and the number of turns in the healthy phase N;:

Nci
N;

Nsci = (I11. 4)

Upon transforming the three-phase system into a two-phase system (as, ), the voltage and
flux equations undergo corresponding modifications and can be expressed in relation to the new
two-phase variables as follows:

d
Qa[s’s = Rs!zxﬁs + Eftxﬁs
d b4
Qa[)’r = era[)’r + Efaxﬁr — wP (E) Papr (11 5)
d
0 = NsciRilapi + 5, Papsc-i
Paps = Papf; + Papm = ls-laﬁs + M(Lxﬁs + !aﬂr - Lxﬁsc)

Papr = Papf, + Papm = lr-!aﬁr + M(laﬁs + !aﬁr - la[)’sc) (11.6)
Papsc; = Nsci- 8. (Qcc)-faﬁm
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. cos?(0s.) cos(Bs.) sin (6.)
With; §.(0,.) = s¢ s¢ SC]
(6sc) cos(8s.) sin (6.) cos?(0s.)
( 3
Lxﬁsci = Enisclaﬁsci
{ (II1. 7)
B 3
Lgotﬁsci = Eniscfaﬂsci

Papm: the common magnetizing flux;
Papr.s Paprr- Stator and rotor leakage flux, respectively.

The line currents are determined by combining the SC currents with the currents accounted
for by the conventional Concordia model. This combined total represents the overall line currents.
Through this approach, it becomes feasible to derive the winding equation for the faulty component

with respect to the stator reference [85]:

2n
Lugse, = 5;—25 8. (85¢)- Upps (111 8)

111.5.2 Stator Phase Open Fault of The DFIG Model

The faults of open circuits (OC) in the stator or rotor phases can have various origins [86].
These faults result in the cancellation of current in the damaged phase, lead to an imbalance of
currents in the other phases, and cause significant fluctuations in torque. Their consequences are
less severe than those of a SC because they do not pose the risk of overheating that could lead to a
sudden machine failure. However, these faults disrupt the operation of the generator in the mode
of supplying electrical energy [84]. In the event of a phase "a" open fault, the DFIG stator and rotor

voltages become unbalanced. The voltages and fluxes are then represented by the following

equations:
def d
[Us] = [Rg"-"1Us] + = [s] (I1L.9)
4 .
[Ur] = [RA][1F] + i [or]
def o def o
{[q)s] = [Los *101s] + Mg ][] (111 10)
def :
[9r] = [Lry 1] + My 1]
0 0 0 0 _%MS _%MS
Where; REf-°=[0 R, 0] ; 1defo—lo 1+ M, _%Ms
0 0 R 1

0 —-M I+ M,
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0 0 0
) 2T ] ) 2T
Lgl:‘f_o - M, = sin (6, + ?) sin0, sin (6, — ?)
2m 21
sin (6, — ?) sin (6, + ?) sin6,
[ . 21 i 2T ]
0 sin(6,+—=) sin(6,——=)
3 3
21
LS =Mg=|0  sing,  sin(6,+ 3
2w
0 sin (6, — ?) sin6,
With;

R%/ - fault stator resistance;
L7 -°: fault stator inductance;
L2¢7-°: stator-rotor mutual fault inductance;

L*7-°- rotor-stator mutual fault inductance.

111.6 Diagnosis By Fuzzy Logic

Monitoring and diagnostic techniques for energy conversion systems are widely used to
prevent unexpected shutdowns of these systems. These techniques were initially developed from
traditional methods and have since evolved to incorporate Al techniques, including fuzzy logic,
artificial neural networks, and combined structure techniques. Compared to conventional fault
diagnostic approaches, these artificial intelligence-based techniques offer numerous advantages
[87]88].

In this section, we will introduce a methodology based on fuzzy logic for monitoring the
DFIG condition. This methodology enables the detection of short-circuit or open-phase faults in
the stator windings, as well as the detection and localization of these types of faults.
111.6.1 Stator Fault Detection Using Fuzzy Logic

In order to evaluate the condition of the DFIG stator, a compositional rule based on fuzzy
logic is employed and managed by a fuzzy interference block. A monitoring system is proposed to
implement this diagnostic approach, with its architecture illustrated in Figure 111.2.
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Figure I11. 2 Fault monitoring and detection system.

In the proposed diagnostic methodology, the amplitudes of the stator currents (las, Ibs, and
Ics) and the stator's condition (CM) are chosen as input membership functions and outputs of
the fuzzy system. These variables are defined using fuzzy set theory and play a crucial role in
the analysis process. The stator's condition is expressed as a linguistic variable in the CM, with
values like "Healthy, Short-circuit, Critical short circuit and Open-phase™ as shown in Figure
I11.3. Furthermore, the input variables las, 1bs, and Ics are also treated as linguistic variables,

with values such as "Very-small, Small, Medium, and Big" as depicted in Figure I11.4.
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Figure 111. 3 Membership functions for output variables.
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Figure 111. 4 Membership functions for input variables.

The fuzzy rules for membership functions are developed using the entire dataset presented

in Table 111.2 A total of fourteen rules are applied, incorporating both input and output

membership functions. These rules are defined as follows:
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Table I11. 2 Fuzzy rules of the membership functions (Detection Cas).

Rules I, Iy I M
1 very-small oC
2 very-small oC
3 very-small oC
4 big Critical SC
5 big Critical SC
If A A T
6 n n big h Critical SC
7 small d small d small f] Healthy
8 medium medium medium Healthy
9 small small medium SC
10 Small medium medium SC
11 medium small medium SC
12 small medium small SC
13 medium small small SC
14 medium medium small SC
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111.6.1.1 Simulation Results (Detection Cas)

A. Characteristics Under Normal Operating Conditions (Healthy Case)
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Figure I11. 5 The curve of the stator current (Detection Cas).
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Figure 111. 6 Fuzzy output values (Detection Cas).
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Figure I11. 7 Fuzzy inference diagram (Detection Cas).

B. DFIG Characteristics Under Open Phase Conditions
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Figure I11. 8 The curve of the stator current (Detection Cas).
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Figure I11. 9 Fuzzy output values (Detection Cas).

las =0 lab=0 lac =14.4 CM = 89.4

(N [ ] [ [ ] [ A
2 [ ] N [ ] A
s ] ] L ] /]
4 ] ([ ] [/ \]
s | ] [ [ ] VAR
6 ] [ ] L] VAR
7 AT ] [N ]
8 /N N
9 VN VAR
10 I/ \N—— VAR
11 I\ VAR
12 Al ] [/ N ]
13 AT ] [/ N ]
14 Al ] L ]

0 60 0 60 0 60 S

Figure I11. 10 Fuzzy inference diagram (Detection Cas).
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C. DFIG Characteristics Under Short-Circuit Conditions
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Figure I111. 11 The curve of the stator current (Detection Cas).
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Figure 111. 12 Fuzzy output values (Detection Cas).
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Figure I11. 13 Fuzzy inference diagram (Detection Cas).
D. DFIG Characteristics Under Critical Short-Circuit Conditions
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Figure I11. 14 The curve of the stator current (Detection Cas).
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Figure I11. 16 Fuzzy inference diagram (Detection Cas).
e Figure 1115 illustrates the stator phase currents with a zoom on the section where the
operation is in a steady state. This clearly indicates that the current is balanced.
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e Figure I11.6 depicts the output fuzzy value, reflecting the decision taken, falling within the
CM range of healthy [0 30], denoting the boundaries of a healthy state. Furthermore, Figure
I11.7 showcases the fuzzy inference system for the current phases.

e Figures 111.8 until 111.16 illustrate the same parameters under different scenarios.

e Figure 111.8,111.9 and 111.10 displays the parameters when the generator has an open circuit
in phase (a) a stator, while Figure 111.11, 111.12 and 111.13 presents the parameters in the
event of a SC with 10% of turns occurring in the same phase. Additionally, Figure 111.14,
[11.15 and 111.16 showcases the parameters when critical SC faults with 35% of turns occur
in the same phase.

e Observing figures 111.8, 111.11, and 111.14, it is notable that a stator short circuit or a phase
opening fault leads to an imbalance in the generator's stator currents and a significant
increase in the amplitudes of the three stator phase currents, even if the fault is only present
in phase "a".

e Expanding on this, an open stator phase results in suppressed current, significantly affecting
the generator's performance. Conversely, in the case of a short circuit, the current amplitude
rises in correlation with the number of stator turns affected by the short circuit. Hence,
precise detection and diagnosis of these faults are crucial for maintaining the DFIG's
optimal operation.

e Figures (111.9) ,(111.12) and (111.15) outline the criteria used to detect these faults. In the
scenario of an open stator phase, the criterion is defined as CM = {open circuit [60 100]}.
This signifies that if the current amplitude in the affected phase falls between 60% and
100% of the nominal current amplitude, an open phase fault is identified. Similarly, in the
case of a short circuit involving 10% of the windings, the criterion is CM = {short circuit
[20 60]}. This indicates that if the current amplitude in the affected phase ranges from 20%
to 60% of the nominal current amplitude, a short circuit fault is detected. For critical short
circuit faults involving 35% of the turns, the decision criterion is CM = {critical short circuit
[50 85]}.

e The reliability of the current phase-related approach is confirmed through the fuzzy
inference diagrams illustrated in Figures 111.10, 111.13, and 111.16. These tests validate the
methodology, demonstrating its reliability and applicability. Moreover, to showcase the
effectiveness of our approach in detecting and monitoring the state of the DFIG stator, even
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in the presence of open or short-circuit phase faults in other phases (b and c), we
investigated a 10% and 35% fault in the short circuit of the turn and the opening fault of

phases "b" and "c."

111.6.2 Stator Fault Detection and Localization Using Fuzzy Logic

The system for detecting and locating short-circuit or phase opening faults at the stator level
maintains the same basic principle as the previous methodology but incorporates a second
membership function for the input variables. This precision function aims to pinpoint the faulty
stator phase. Thus, the input precision variables (Delta E1, Delta E2, and Delta E3) are
interpreted as linguistic variables, with categories such as Negative(N), Zero (Z), and Positive(P),

as illustrated in Figure 111.17.
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Figure I111. 17 Membership functions of input precision variables.
The membership functions of the output variables in this case are shown in Figure 111.18,
with values such as: "Healthy, OC-A, OC-B, OC-A, CSC-A, CSC-B, CSC-C, SC-A, SC-B, SC-
Clll

T T T T T T T T T
healthy OC-A oc-B oc-c CcSscCc-A Ccsc-B Ccsc-C ScCc-A sc-B sc-c

Degree of membership

1 L 1 L L 1 1 1 1
o 10 20 30 40 50 60 70 80 20 100
cmMmz2

Figure 111. 18 Membership functions of output variables.
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The fuzzy rules for the membership functions used in localizing stator phase faults are
determined from the data provided in Table 111.3. A set of 17 rules is applied, integrating the
membership functions of two inputs and one output, and they are defined as follows:

Table I11. 3 Fuzzy rules of the membership functions (Detection and Localization Cas).

Rules I, I I Delta Delta DeltaE3 cM
El E2
1 very- OC-A
small
2 very- OC-B
small
3 very- oc-C
Il
It A Y R T
4 big [N n n n hl csc-A
d d d d e
5 big n| CSC-B
6 big Csc-C
7 small small small Z Z Z Healthy
8 medium medium medium Z Z Z Healthy
9 small small medium SC-C
10 Small medium medium P SC-B
11 Small medium medium N SC-C
12 medium Small medium P SC-A
13 medium small medium N SC-C
14 Small medium small SC-B
15 medium Small Small SC-A
16 medium medium Small P SC-A
17 medium medium Small N SC-B

111.6.2.1 Simulation Results (Detection and Localization Cas)

Figures 111.19, 111.20, 111.21, 111.22,111.23 and 111.24 illustrate the results of the test for
detecting and locating faults in the stator phases, specifically the open phase fault of phase C, the
short-circuit fault of phase A, and the critical short-circuit fault of phase B. This methodology

enables the detection and localization of faults in any stator phase.
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A. Case of Open-Circuit Fault in Stator Phase C
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Figure I11. 19 The curve of the stator current (Detection and Localization Cas).

100

90

80

70

60

50

40

Fuzzy output values

30

20

Open Circuit Phase C
10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time(s)

Figure 111. 20 Fuzzy output values (Detection and Localization Cas).
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B. Case of Short-Circuit Fault in Stator Phase A
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Figure I11. 21 The curve of the stator current (Detection and Localization Cas).
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Figure 111. 22 Fuzzy output values (Detection and Localization Cas).
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C.Case of Critical Short-Circuit Fault in Stator Phase B
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Figure I11. 23 The curve of the stator current (Detection and Localization Cas).
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Figure I11. 24 Fuzzy output values (Detection and Localization Cas).
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I11.7 Conclusion

This chapter introduces a diagnostic approach based on fuzzy logic, which facilitates the
monitoring and detection of inter-turn short circuits and open-phase circuits in the stator windings
of DFIG used in wind turbines. By capturing stator currents and computing their average absolute
values, this proposed method depends exclusively on phase currents to promptly identify and
pinpoint faults in real-time for systems employing the DFIG. Simulation results have shown that
this approach can provide valuable information about the DFIG's status, enabling the anticipation

of potential failures' severity.
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Chapter IV Wind Power Converter Fault Diagnosis

IV.1 Introduction

Power converter faults are a major cause of wind turbine failures. Research on fault
diagnosis methods, including model-based and data-driven approaches, is essential to ensure
efficient operation and maintenance. This chapter focuses on fault detection techniques for a PWM
inverter used in a wind energy conversion system based on a doubly-fed induction generator. It
specifically addresses short-circuit and open-circuit faults that can occur in the power switch.

The chapter begins by examining the current state of research on fault diagnosis of wind
energy converters to update the relevant literature. It highlights the main types of faults faced by
these converters. In particular, it explores the common faults that can affect the inverter of variable-
speed wind turbine (DFIG) systems, focusing on short-circuit (SC) and open-circuit (OC) faults
that impact the power switches of the inverter.

A comprehensive overview of fault diagnosis methods for wind energy converters is
presented. The three main categories of diagnosis methods are discussed: model-based, signal-
based, and data-driven. Each method is detailed, highlighting its advantages and specific
requirements. The importance of performance metrics to evaluate the effectiveness of fault
diagnosis methods is emphasized.

A methodology is proposed to diagnose open-circuit and short-circuit switch failures by
combining fuzzy logic and advanced intelligence approaches based on artificial neural networks.
Finally, the last section evaluates the simulation results under normal operating conditions and in
the presence of open-circuit and short-circuit faults, using the Matlab/Simulink software.

V.2 Background

Although there are numerous surveys on the condition monitoring and fault diagnosis of
wind turbines [89][90][91][73], they mainly focus on the examination of the entire wind turbine
system, with limited emphasis on wind power converters. The exploration of fault diagnosis in
wind power converters is not comprehensive, with more attention paid to fault modes and signals
than fault diagnosis methods. A detailed review of signals and signal processing techniques used
for condition monitoring and fault diagnosis in wind turbines is presented in the survey by [73].

There have been various surveys conducted on fault diagnosis methods for converters, such
as those by [25][26] and [92], which provide insights into model-based, signal-based, knowledge-
based, and hybrid fault diagnosis methods, focusing on introducing various techniques. However,

a more comprehensive qualitative and quantitative analysis of these methods is required.
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[93] reviewed fault diagnosis methods for insulated gate bipolar transistors (IGBT) in
three-phase power inverters with T-type or traditional two-level topologies, which included
methods like Park's vector method, normalized current method, and neural networks. However,
concerns regarding reliability and robustness were not addressed, and these methods may not be
directly applicable to fault diagnosis of modular multilevel converters (MMC) due to the detection
of faulty arms instead of faulty cells.

Studies by [94] and [95] evaluated and summarized fault diagnosis methods based on signal
processing, mechanism-based, and artificial intelligence for switching devices. However, a more
in-depth analysis and comparison of these methods are necessary to determine their effectiveness
and applicability in fault diagnosis of wind power converters.

V.3 Common Faults in Wind Power Converters

Wind power converters are often subject to typical faults associated with specific converter
topologies used in wind turbine systems. These include diode rectifier-based converters, 2-level
back-to-back (2L-BTB) converters for systems with 1-3MW power, 3-level neutral-point-clamped
back-to-back (3L-NPC BTB) converters for systems with 5-8MW power, and modular multilevel
converters (MMC) for high-power applications. Research indicates that the primary components
susceptible to faults in wind power converters are power semiconductor devices, such as IGBTSs,
printed circuit boards (PCBs), and capacitors. Power semiconductor device faults, influenced by
factors like PCB faults, can result in power switch faults, a common cause of converter failures.
These faults, including Short-Circuit (SC) and Open-Circuit (OC) faults, can cause irreversible
damage to wind power converters due to excessive current or voltage during turbine start-up,
degradation of heat dissipation performance over time, and environmental factors like dust,
corrosive gases, and moisture in wind farms [96].

IV.4 Inverter Faults

The two-level inverter (2L-BTB) used in DFIG is composed of six power switches, which
can convert DC voltage to AC voltage, making it a crucial component in WECS [96].

Among all the faults occurring in the inverter, the most common ones relate to open circuits

and short circuits in the power switches.
IVV.4.1 Short-circuit fault (SC)

A short-circuit fault in a switch can occur when one of the two switches remains constantly

turned on, and a subsequent short-circuit happens when the second switch is instructed to close.
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This fault is typically caused by a malfunction in the control of the transistors or a physical
failure of the silicon chip due to overheating, which is the most common mode of failure. Short-
circuit faults are highly severe and can cause significant damage to the converter and other
components within a short time due to the resulting abnormal overcurrent. Therefore, most current
Fault Diagnosis methods for short-circuit faults rely on hardware circuits to minimize the response

time and prevent further damage.
I1V.4.2 Open circuit fault (OC)

An open circuit fault typically arises from a gate malfunction or a break in a jumper wire
within the transistor, often caused by thermal cycling or as a consequence of a previous short circuit
fault [97]. This fault commonly leads to a complete or partial loss of operation in one of the IGBTs
that make up the static converter. When an open circuit fault occurs, it manifests as high harmonic
distortion in currents. The currents in the faulty phase and the unaffected phase become out of sync,
resulting in fluctuations in generator torque and a reduction in the grid power factor. Unlike a short
circuit fault, an open circuit fault has a slower response time and does not typically cause significant
damage to the entire system in a short timeframe [96].

IVV.5 Comprehensive Overview of Fault Diagnosis Methods for Wind Power Converters
The fault diagnosis framework for wind power converters encompasses three main

categories of methods: model-based, signal-based, and data-driven [26].
IV.5.1 Model-based Method

e This approach involves creating a precise mathematical or analytical model of the wind
power converter system, taking into account the known physical characteristics and
dynamics of the system [26][96].

e By comparing the estimated values from the model with the actual measured values, fault
results are obtained through residual analysis [26][96].

e The accuracy of the system model is crucial for providing reliable diagnostic results.

IV.5.2 Signal-based Method

e This method involves studying the behavior of the wind power converter system under

different component failures [26][96].
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e Diagnostic variables and thresholds are generated based on the measured signals to identify
the fault state of the converter through symptom analysis [26][96].
e Prior knowledge of the system is necessary for effective fault diagnosis, but a precise

system model is not required.

1VV.5.3 Data-driven Method

e This approach utilizes the available historical operational data to determine the system
states.

e Mathematical techniques are applied to process and extract features from the measured
signals, followed by the use of artificial intelligence algorithms for fault pattern training
and recognition [26][96].

e While this method does not rely on a precise system model or prior knowledge of the
system, it requires a significant amount of historical data for training, making it

computationally intensive and time-consuming.

Different performance metrics are employed to assess the efficacy of fault diagnosis
methods for wind power converters. These metrics encompass factors such as the number of faults,
diagnosis duration, accuracy, precision, recall, F1-score, false detection rate, missed detection rate,
and robustness [96]. By utilizing these metrics, it becomes possible to evaluate the strengths and
limitations of various fault diagnosis approaches, playing a vital role in guaranteeing the
dependability and effectiveness of wind power converter systems.

IVV.6 Diagnostic Methodology

This section focuses on the techniques we have studied and utilized for diagnosing PWM
inverter faults. The latter pertains to a wind energy conversion system employing a double-fed
induction generator. More specifically, it addresses both short-circuit faults and open-circuit faults

occurring in the power switch.
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Figure 1V. 1 WECS with fault in inverter.
Among the methods studied for fault diagnosis and protection of IGBT transistors, based

on their performance, and implementation efforts:

I1VV.6.1 Spectral Analysis Method

Signal processing has a rich history of application in detecting electrical faults, with spectral
analysis emerging as a prominent and efficient diagnostic method. Spectral analysis, at its essence,
relies on the Fast Fourier Transform (FFT) spectrum. As per Fourier's theorem, any waveform in
the time domain can be represented as a combination of weighted sines and cosines. The FFT
algorithm facilitates the conversion of sampled data from the time domain to the frequency domain.
In a signal sampled at a rate of fs Hz, the time interval between samples is At (where At = 1/fs).

The Fast Fourier Transform computation is represented by [98]:
N-1 .k
X, = z x,e ", k=0,1,2,..,N—1 (IV.1)
t=0

IV.6.2 Park Contour Trajectory Analysis Method

This method is tailored for the configuration of the three-phase two-level inverter. This
approach involves detecting and pinpointing the faulty IGBT transistor within the system by
analyzing the magnitude and angle of the Park vector. The Park vector is derived using the

Concordia transformation. By evaluating the modulus and angle of the Park vector, this method
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enables the identification of the failed IGBT transistor in the inverter system. The two-phase

currents and voltages are expressed as follows:

1 ! ! I
e
= = 1 IV.2
5 ﬂ V3 3 Lb v-2)
o :
Assuming the system is in balance, I, + I, + I, = 0 ,we then implement the Concordia

transformation:

v
R

Al

Figure IV. 2 Transformation of Concordia.
In the complex domain: © = i, + ig.
Figure (1V.3) depicts the graphical representation in Polar coordinates showing the precise
fault angles associated with the open-circuit faults of the IGBT switches in the inverter.
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Figure IV. 3 Graphical representation of the fault angles linked to open-circuit faults of

IGBT switches in the inverter, utilizing polar coordinates.
IVV.6.3 Fault Detection Method Based on Fuzzy Logic

The fuzzy logic methodology is structured to calculate the average absolute current values
(AAVC) through the acquisition of stator currents. This enables the instantaneous identification
and localization of open-circuit or short-circuit faults in the inverter's IGBT by utilizing the basic
phase currents of the generator.
1VV.6.3.1 Fuzzy Monitoring Approach

Figure 1V.4 illustrates a comprehensive schematic of the proposed methodology [99].
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Figure IV. 4 Schematic of the proposed diagnostic approach utilizing fuzzy logic.

The measured generator phase currents are normalized by the modulus of the Park's Vector,

as indicated in reference [99].

| f Y
lga = (3l —lp ——F—=I,
37 V6o Ve (IV.3)
1 1

i

=—ip ——I
q \/E b \/i c
Where; i,, i, and i, represents the stator currents of the induction generator, while i; and

izdenotes the components of the Park’s vectors.

The modulus of the Park's vector, represented as iy, can be formulated as follows:
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|55 = /idz +ig” (IV. 4)

The provided equation signifies the normalized stator phase currents of the induction
generator [100].
[
iy = — (1V.5)
|25
Where: n = a, b and c;

If we assume that the induction generator is powered by a reliable inverter generating a
precisely balanced three-phase sinusoidal current system, it can be expressed as follows [101]:

iq = Ly sin(wst + @)
i, = J

. ) 2m
ip =1, sin (a)st —?—I— (p)

. ) 21
ig = Iy sin (a)st + 3 + (p)

(IV.6)

Where; I,stands for the maximum current amplitude, w, represents the generator current

frequency, and ¢ denotes the initial phase angle.

Following this, the revised expression for the Park's Vector modulus can be defined as

follows [102]:
3
IEI=Im\/; (Iv.7)

Irrespective of the measured generator phase currents' amplitudes, the normalized stator

currents will consistently lie within the range of +./2/3, as [103]:

gy = sin(wst)

S 21

iy = ipy = Sin (wst - ?> (IV.8)
) . 21
lgy = SIN (wst + ?)

The average absolute values of the three normalized generator phase currents, denoted as

inn, Can be represented as follows:

fl/wsl' jde=— |2 (IV.9)
o lnN _7T 3 .
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Ultimately, the three input monitoring variables e, (e,, ej, e.) in the fuzzy system inference
are derived from the errors in the average absolute values of the normalized currents, as indicated
by the equation following [101]:

en =& — Sp(linnl) (Iv.10)

The constant value &, equal to the average absolute value, can be represented as follows:

1 /8
&= —\/: ~ (0.5198 (Iv.11)
m.|3

The values of E,, and S,allow for the creation of a distinct fault signature, as demonstrated

by the following equations:

_ (N fore, <0

En = {P fore, >0 (IV.12)
_ (N foriyy <0

Sn = {P foriny >0 (IV.13)

IVV.6.3.2 Input and output variables

The input variables of the fuzzy system are determined by choosing the values of(E,, E;, and
ES) and (Sg, Sp, and S,) .These input variables (E,, E;, and E;) and (S,, S;,, and S,.) are considered
linguistic variables and are denoted as t(Q) = {Zero (Z), Positive (P), Negative (N)}, as illustrated
in Figure IV.5.
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Figure IVV. 5 Membership functions for input.

Figure 1V.6 shows CM-SC representing the inverter state (Short circuit switch) as a linguistic
variable, labeled as T(CM-CC) = {sc-TR1, sc-TR2, sc-TR3, sc-TR4, sc-TR5, sc-TR6, Healthy}.
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In Figure IV.7, CM_O illustrates the inverter state (Open circuit switch) as a linguistic variable,
denoted as T(CM-OC) = {op-TR1, op-TR2, op-TR3, op-TR4, op-TR5, op-TR6, Healthy}.

sc-TR1T sc-TR2 sc-TR3 sc-TR4 sc-TR5 sc-TR6 Healthy

e o
o ®

Degree of membership
o
A

\

o 5 70 15 20
CM-SC

Figure IV. 6 Membership functions for output variables (SC switch fault).

op-TR1 op-TR2 op-TR3 op-TR4 op-TRS op-TR6 Healthy

:\/\\ /\/\ | /

o 5 70 175 20
CcM-0OC

Degree of membership

Figure IV. 7 Membership functions for output variables (OC switch fault).

The fuzzy rules are specified as follows:
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Table V. 1 Fuzzy rules membership function.

Short circuit switch fault of inverter
Rules if | and | and if | and | and is
Ea | Eb Ec Sa | Sb Sc

Rule01 N P P P N N SC-TR1
Rule02 N P P N P P SC-TR2
Rule03 P N P N P N SC-TR3
Rule04 P N P P N P SC-TR4
Rule05 P P N N N P SC-TR5
Rule06 P P N P P N SC-TR6
Rule07 YA YA YA VA VA VA Healthy

Open circuit switch fault of inverter
Rule01 P N N N P P OC-TR1
Rule02 P N N P N N OC-TR2
Rule03 N P N P N P OC-TR3
Rule04 N P N N P N OC-TR4
Rule05 N N P P P N OC-TR5
Rule06 N N P N N P OC-TR6

1VV.6.4 Neural Network-Based Fault Detection Method

Neural network diagnosis is a computational model inspired by the operation of human
neurons, designed in a schematic manner. It is based on the principles of biological neurons and is
utilized to detect faults within a system. For successful fault identification, neural network
diagnosis necessitates an adequate number of examples illustrating both normal operation and
anomalies [104]. During the training phase, the input network processes the features, while the
output network provides the required diagnosis [105].

The diagram shown in Figure 8 illustrates the use of three-phase stator currents for
extracting features. Under normal or healthy conditions, these current values come together to

create a three-dimensional (3D) circle.
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Figure 1V. 8 Schematic of the proposed diagnostic method employing NN.

The creation of the three-dimensional circle is explained by equation (1V.14) [106].
R?=12+1% + I? (IvV.14)
In each fault scenario, the 3D circle experiences a specific pattern change. Each single and
multiple fault scenario displays its own distinctive 3D pattern. Equations are employed to clarify
the different extracted features derived from the examination of three-phase currents.

Equation (1V.15) is utilized to compute the average value of each phase [106].

ly—mean = z Ia/N

Iy—mean = Z I,/N (IV.15)

Ie—mean = z Ic/N

In this method, the subsequent feature extraction step includes determining angles for the mean

With; N number of samples.

points acquired from the earlier process. Angles are computed for every mean point of the plotted
3D currents. As alterations or the lack of a phase can influence the mean point's location in the
three-dimensional space, distinct angles can be extracted for each fault situation. Two angles are
computed for each mean value in both axis directions, leading to a total of six angles. These six

angles are derived using Equation (1V.16) [106].
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(atanBA = tan™ " (Ip_mean/la-mean)
atanCA = tan™ ' (I._mean/la—mean)
atanAC = tan™ ' (Ig—mean/lc—mean)
atanBC = tan_l(lb—mean/lc—mean)
atanAB = tan™ " (Is—mean/Ip-mean)

\atanCB = tan™ " (Ic-mean/Ip-mean)

1VV.6.4.1 Architecture of The Employed ANN

(Iv.16)

The ANN system is designed with neurons that share uniform structures and are

interconnected similar to those found in the human nervous system. It is organized into layers

where each neuron receives inputs from the outputs of preceding neurons. Specifically, neurons

in the input layer are exclusively connected to the subsequent layer, while neurons in the hidden

layer possess the distinctive property of being interconnected with all neurons in both the

preceding and succeeding layers [107]. In our NN setup, the input layer comprises nine neurons

responsible for transmitting input values to the hidden layer. For a short circuit switch fault

(Figure 1V.9), the hidden layer consists of 20 neurons, and for an open circuit switch fault (Figure

IV.10), it has 10 neurons. The output layer is composed of six neurons, with the system's desired

output being binary, represented as either (1 or 0).
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'a-lnean
lb—mean
’r—rnean
atanBA
atanCA

atanAC

atanBC

Hidden layer

N1/

77000 AR AR AR NS SN SANAANN

\\\'-\\Q\x\\\\\':'f.
R NNy

"'\\"\\ B D X \
R T, D
S
RN Y

Figure IV. 9 NN structure (SC switch fault).
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Figure IV. 10 NN structure (OC switch fault).

IV.7 Study of Results

In our thesis, the Matlab/Simulink software is utilized to investigate the impacts of short-circuit
and open-circuit faults in the inverter. A fault is intentionally introduced at 1.5s for analysis
purposes. This section evaluates the simulation results under normal operating conditions and when
an open circuit fault and a short circuit fault are present. Table 1V.2 summarizes the data used for
Neural Network training. It is divided into two parts: one for short-circuit faults and the other for
open-circuit faults. Each fault scenario is presented alongside the healthy state. The "Faulty
switch" rows identify the specific inverter switches affected under each fault condition. For every
scenario, a feature vector is constructed V. These features serve as inputs for the NN, enabling it
to detect and classify faults. The "Output code of NN" row assigns a unique binary code to each

scenario.

Figures (IV.11, 1V.12, IV.13, 1V.14, IV.15, and IV.16) depict the simulation outcomes in the
normal state and when open circuit and short circuit faults occur in various switches of an inverter
within a wind energy conversion chain based on the DFIG. These results include phase stator

currents, stator current spectrum, Park contour analysis, output fuzzy value, and NN test.
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Table V. 2 Feature data for NN training.

Short circuit fault

Training data: Feature vector: V = [1,_cans Ib—means Ic—meanr Obar Ocar Oacr Ober Oabs Ochl

Faulty Healthy | T| T|T|T|T| T| TR1 TR1 TR1 TR1 TR2 TR2 TR2 TR2 TR3 TR3 TR4 TR4 TR1 TR2
switch R/R|R|R|R|R| & & & & & & & & & & & & & &
(short- 1(2|3|4|5|6| TR3 TR4 TR5 TR6 TR3 TR4 TR5 TR6 TR5 TR6 TR5 TR6 TR4 TR3
circuit) & &
TR5 TR6
Output 0 1{0({0|0|O0|O 1 1 1 1 0 0 0 0 0 0 0 0 1 0
code of 0 of1j0|0|0]O 0 0 0 0 1 1 1 1 0 0 0 0 0 1
neural 0 o({0j1|0(0]|O0 1 0 0 0 1 0 0 0 1 1 0 0 0 1
network 0 0o(0|j0|1(0]|O0 0 1 0 0 0 1 0 0 0 0 1 1 1 0
0 ofojojo|1]|o0 0 0 1 0 0 0 1 0 1 0 1 0 1 0
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Figure 1V. 16 Simulation results in the case of SC switch fault in TR1 andTR4 and TR5.

An open circuit fault on switch TR3 results in the absence of the positive phase B current
alternation starting at 1.5 seconds (Figure 1V.12. a). Additionally, an open circuit fault on
switches TR1 and TR4 leads to the loss of the positive phase A current alternation and the
absence of the negative phase B current alternation (Figure 1V.13. a).

106




Chapter IV Wind Power Converter Fault Diagnosis

e Spectral analysis reveals a spectrum with similar spectral lines but higher amplitudes when
an open circuit fault is present (Figure 1V.12.b and Figure 1V.13.b). Open circuit faults in
single or multiple switches cause changes in the envelope repetition and distort the elliptical
shape of the Park transform graph (Figure 1V.12.c and Figure 1V.13.c).

e InFigure IV.12.d, the output fuzzy value signifies the fault detection. In the case of an open
circuit fault in switch TR3, the decision reflects CM = 7 within the range {op-TR3 [5 9]}.

¢ In the scenario of a short-circuit fault involving a single switch, double switches, and three
switches, the three-phase stator currents Isa, Isb, and Isc exhibit imbalance at the time of
failure (t=1.5 s), with a shift in the sequence of the three-phase current (Figures 1V.14.a,
IV.15.a, and 1V.16.a). A short-circuit fault in the inverter leads to a sudden surge in the
electrical current within the phase containing the faulty switch.

e Figures IV.13.b, IV.13.c, IV.14.b, IV.14.c, IV.15.b, IV.15.c, IV.16.b, and IV.16.c illustrate
the stator current spectrum and the analysis of the park contour in various scenarios of open
circuit faults (double switches) and short circuit faults (single, double, or triple switches).
The detection of faults is identified by the amplified amplitudes of the spectral lines and the
distortion of the elliptical shapes in the Park transform graphs.

e In the case of a short-circuit fault occurring in switch TR1, the assessment shows CM=1
within the range {Sc-TR1 [0 3]} (Figure 1V.14.d).

e The outcomes of the diagnostic system based on neural networks are presented in figures
IV.1l.e, 1V.12.e, IV.13.d, IV.14.e, IV.15.d, and IV.16.d. These visual representations
showcase the results of the neural network training under normal operational circumstances
as well as instances of single, double, or triple open and short circuit faults. The figures
offer a visual insight into the learning process.

e The MATLAB software was utilized for machine learning until reaching a significantly
low mean squared error. The results indicate that the neural network-based diagnostic
approach outperforms the fuzzy logic-based method in detecting single, double, and triple
faults, showcasing an accuracy rate of around 100% for single faults, 95% for double faults,
and 95% for triple faults. Moreover, it demonstrates rapid fault detection under consistent

environmental conditions.
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V.8 Conclusion

In conclusion, this chapter has introduced an efficient approach for monitoring, diagnosing,
and pinpointing short-circuit and open-circuit faults in wind turbine inverter switches by employing
fuzzy logic to monitor the phase of stator currents. Additionally, it suggests utilizing artificial
neural networks for fault classification in the IGBTs of wind power converters, featuring a
straightforward design. The simulation outcomes using MATLAB software demonstrate that the
neural network-based technique can identify single, double, and triple faults more accurately than
the fuzzy logic-based method, with a rapid response time. This method could prove highly
beneficial for promptly detecting faults in wind turbine inverters, facilitating swift repairs and

reducing downtime.
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General Conclusion

General Conclusion

The thesis proposes innovative solutions to enhance the reliability and efficiency of wind
turbines through advanced approaches in modeling, control, and diagnostics.

Our research underscores innovative approaches to monitor, diagnose, and detect faults in
wind systems, emphasizing the pivotal role of artificial intelligence and advanced control
techniques in enhancing the reliability and efficiency of wind turbines. The initial chapter
introduces the fundamentals of wind turbines, the various types utilized, and the essential
components of wind systems. The subsequent chapter addresses the modeling and control of
variable-speed wind turbines based on DFIG technology, highlighting control strategies aimed at
optimizing performance. Moving forward, the third chapter investigates methods for diagnosing
electrical faults in DFIGs, with a specific focus on leveraging artificial intelligence for precise
detection. Finally, the fourth chapter concentrates on failures in power converters within wind
conversion systems, proposing data-driven diagnostic methods complemented by Al.

The simulation results show that the proposed diagnostic framework effectively detects
electrical faults in machines and power converters, bolstered by logical and objective discussions.

Despite the progress made, challenges remain, particularly in terms of experimentally
validating the proposed methods and practically integrating diagnostic systems in the wind
industry. To overcome these challenges, it is recommended to continue research to optimize

artificial intelligence algorithms and conduct field experiments to confirm the results obtained.

Future perspectives include:

+ Extending the application of these methods to other systems.

+ Exploring new diagnostic approaches based on machine learning and enhancing the

integration of artificial intelligence technologies in wind systems.

+ Testing and comparing other fault scenarios and types by adopting new diagnostic

approaches.
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