

UNIVERSITÉ DE LARBI TEBESSI- TÉBESSA FACULTÉ DES SCIENCES ET TECHNOLOGIE Département de Génie Electrique

Commande des Systèmes Linéaires

Support de Cours, Exercices Corrigés et Scripts en Matlab

Réalisé par: Dr. Djamel OUNNAS Maître de Conférences à l'Université de Tebessa djamel_ounnas@hotmail.com

2020/2021

Résumé

La commande des systèmes linéaires est une discipline destinée à analyser, synthétiser et concevoir des correcteurs (régulateurs ou encore contrôleurs) pour les systèmes linéaires. Ce support de cours, a pour but de présenter un exposé sur les principales techniques de synthèse des correcteurs basée sur la modélisation fréquentielle d'un système asservi décrit par une fonction de transfert, ainsi que la synthèse des correcteurs basée sur la modélisation temporelle d'un système asservi décrit par une représentation d'état. Il est destiné aux étudiants dans les disciplines de l'automatique, d'électrotechnique et de mécanique...ect. Ce support de cours présente aussi plusieurs exemples avec des codes (scripts) et simulation en Matlab. Il présente également des exercices avec solutions détailles et des sujets d'examens de module.

Abstract

The control of linear systems is a discipline intended to analyze, synthesize and design regulators or even controllers for linear systems. This course aims to present the main techniques for synthesizing correctors based on frequency modeling and temporal modeling. This course intended for students in the disciplines of automation, electrical engineering and mechanics ... ect. It presents several examples with codes and simulation in Matlab. It also presents exercises with detailed solutions and old exams.

Contents

Abstract iv Contents v Introduction 1 1 Rappel sur la stabilité des systèmes linéaires 3 1 Introduction 3 2 Critère mathématique 5 3 Critère algébrique 6 4 Critère graphique 8 5 Marges de stabilité 10 5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 7 Solutions des exercices 14 8 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur à action dérivée 21 4 Correcteur à action dérivée 21 5 Correcteur à action dérivée 21 4 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure mixte 26 7.1 Méthodes de synthèse 27 7.1 Méthodes de synthèse 37 7.2 Méthodes algébriques 31		Rés	umé	iii
ContentsvIntroduction11Rappel sur la stabilité des systèmes linéaires31Introduction32Critère mathématique53Critère algébrique64Critère graphique85Marges de stabilité105.1Marge de gain115.2Marge de gain126Exercices corrigés147Solutions des exercices142Synthèse des correcteurs PID171Introduction172Cahier des charges d'un asservissement183Actions correctives élémentaires193.1Correcteur proportionnel203.2Correcteur intégral203.3Correcteur à action dérivée214Correcteur à avance de phase246Structure des correcteur PID256.1Structure parallèle256.2Structure mixte2663Structure mixte2677.1Méthodes empiriques277.1Méthodes de synthèse277.2Méthodes de sploiques318Exercices corrigés38		Ab	stract	iv
Introduction 1 1 Rappel sur la stabilité des systèmes linéaires 3 1 Introduction 3 2 Critère mathématique 5 3 Critère algébrique 6 4 Critère graphique 8 5 Marges de stabilité 10 5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 7 Solutions des exercices 17 1 Introduction 17 2 Synthèse des correcteurs PID 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 </th <th></th> <th>Co</th> <th>ntents</th> <th> V</th>		Co	ntents	V
1Rappel sur la stabilité des systèmes linéaires31Introduction32Critère mathématique53Critère mathématique64Critère algébrique64Critère graphique85Marges de stabilité105.1Marge de gain115.2Marge de phase126Exercices corrigés147Solutions des exercices142Synthèse des correcteurs PID171Introduction172Cahier des charges d'un asservissement183Actions correctives élémentaires193.1Correcteur proportionnel203.3Correcteur à action dérivée214Correcteur à avance de phase215Correcteur à avance de phase246Structure garallèle256.1Structure parallèle256.2Structure série267Méthodes de synthèse277.1Méthodes empiriques277.2Méthodes algébriques318Exercices corrigés38	In	ntroc	luction	1
1Introduction32Critère mathématique53Critère mathématique64Critère graphique85Marges de stabilité10 5.1 Marge de gain11 5.2 Marge de phase126Exercices corrigés147Solutions des exercices147Solutions des exercices142Synthèse des correcteurs PID171Introduction172Cahier des charges d'un asservissement183Actions correctives élémentaires193.1Correcteur proportionnel203.2Correcteur à action dérivée214Correcteur à action dérivée215Correcteur à avance de phase216Structure parallèle256.1Structure parallèle256.2Structure série267Méthodes de synthèse277.1Méthodes empiriques277.2Méthodes algébriques318Exercices corrigés38	1	Ra	ppel sur la stabilité des systèmes linéaires	3
2 Critère mathématique 5 3 Critère algébrique 6 4 Critère graphique 8 5 Marges de stabilité 10 5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à action dérivée 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 </td <td></td> <td>1</td> <td>Introduction</td> <td> 3</td>		1	Introduction	3
3 Critère algébrique 6 4 Critère graphique 8 5 Marges de stabilité 10 5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 7 Solutions des exercices 14 7 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à action dérivée 21 5 Correcteur à action dérivée 21 4 Correcteur à action dérivée 21 5 Correcteur à action dérivée 21 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure mixte 26 7 Méthodes de synthèse 27		2	Critère mathématique	5
4 Critère graphique 8 5 Marges de stabilité 10 5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 2 Synthèse des correcteurs PID 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38 </td <td></td> <td>3</td> <td>Critère algébrique</td> <td> 6</td>		3	Critère algébrique	6
5 Marges de stabilité 10 5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID		4	Critère graphique	8
5.1 Marge de gain 11 5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 2 Synthèse des correcteurs PID 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur ai action dérivée 21 4 Correcteur à action dérivée 21 4 Correcteur à vetard de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38		5	Marges de stabilité	10
5.2 Marge de phase 12 6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 2 Synthèse des correcteurs PID 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 31 8 Exercices corrigés 38			5.1 Marge de gain	11
6 Exercices corrigés 14 7 Solutions des exercices 14 7 Solutions des exercices 14 2 Synthèse des correcteurs PID 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38			5.2 Marge de phase	12
7 Solutions des exercices 14 2 Synthèse des correcteurs PID 17 1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		6	Exercices corrigés	14
2Synthèse des correcteurs PID171Introduction172Cahier des charges d'un asservissement183Actions correctives élémentaires193.1Correcteur proportionnel203.2Correcteur intégral203.3Correcteur à action dérivée214Correcteur à retard de phase215Correcteur à vance de phase246Structure des correcteur PID256.1Structure parallèle256.2Structure mixte267Méthodes de synthèse277.1Méthodes empiriques318Exercices corrigés38		7	Solutions des exercices	14
1 Introduction 17 2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38	2	Sv	athèse des correcteurs PID	17
2 Cahier des charges d'un asservissement 18 3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38	-	~J.	Introduction	17
3 Actions correctives élémentaires 19 3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 21 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38		2	Cahier des charges d'un asservissement	
3.1 Correcteur proportionnel 20 3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 21 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38		-3	Actions correctives élémentaires	19
3.2 Correcteur intégral 20 3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 21 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		Ŭ	3.1 Correcteur proportionnel	20
3.3 Correcteur à action dérivée 21 4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38			3.2 Correcteur intégral	20
4 Correcteur à retard de phase 21 5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 31 8 Exercices corrigés 38			3.3 Correcteur à action dérivée	21
5 Correcteur à avance de phase 24 6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		4	Correcteur à retard de phase	21
6 Structure des correcteur PID 25 6.1 Structure parallèle 25 6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes algébriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		5	Correcteur à avance de phase	24
6.1 Structure parallèle 25 6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		6	Structure des correcteur PID	
6.2 Structure série 26 6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		Ŭ	6.1 Structure parallèle	25
6.3 Structure mixte 26 7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38			6.2 Structure série	26
7 Méthodes de synthèse 27 7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38			6.3 Structure mixte	26
7.1 Méthodes empiriques 27 7.2 Méthodes algébriques 31 8 Exercices corrigés 38		7	Méthodes de synthèse	27
7.2 Méthodes algébriques 31 8 Exercices corrigés 38		÷.,	7.1 Méthodes empiriques	27
8 Exercices corrigés			7.2 Méthodes algébriques	
		8	Exercices corrigés	
9 Solutions des exercices 40		9	Solutions des exercices	

3	Rep	présentation d'état des systèmes linéaires	47
	1	Introduction	47
	2	Équations d'état	47
	3	Obtention de la représentation d'état	50
		3.1 Représentation d'état diagonale ou quasi diagonale	51
		3.2 Représentation d'état canonique (forme compagne)	54
	4	De la FT à la représentation d'état	55
	5	Exercices corrigés	57
	6	Solutions des exercices	58
4	Rép	oonse d'un modèle d'état	61
	1	Introduction	61
	2	Solution de l'équation d'état	61
	3	Calcul de la matrice de transition	61
	4	Réponse d'un système	62
	5	Exercices corrigés	64
	6	Solutions des exercices	64
5	Cor	nmande par retour d'état et par retour de sortie	69
	1	Commande par retour d'état	69
	-	1.1 Commandabilité d'un système	69
		12 Critère de Kalman	70
		1.3 Commande par placement de pôles	70
		14 Calcul de vecteur de retour d'état	71
	2	Commande par retour de sortie	74
	-	21 Principe de l'observation	74
		2.2 Observabilité d'un système	74
		2.3 Critère d'observabilité	75
		24 Équations d'un observateur	75
		2.5 Procédure de synthèse	75
	3	Commande par retour d'état observé	76
	4	Exercices corrigés	79
	5	Solutions des exercices	80
6	Filt	re de Kalman	83
	1	Introduction	83
	$\overline{2}$	Observateur de Kalman	83
	3	Structure d'un estimateur non biaisé	84
	4	Estimateur à variance minimale	85
	-	4.1 Solution générale	86
		4.2 Régime permanent du filtre de Kalman	86
7	Suj	ets d'examens	87

Introduction

La commande des systèmes linéaires est une discipline destiné à analyser, synthétiser et concevoir des correcteurs (régulateurs ou encore contrôleurs) pour les systèmes linéaires. Ce support de cours, a pour but de présenter un exposé sur les principales techniques de synthèse des correcteurs basée sur la modélisation fréquentielle d'un système asservi décrit par une fonction de transfert, ainsi que la synthèse des correcteurs basée sur la modélisation temporelle d'un système asservi décrit par une représentation d'état. Il est destiné aux étudiants dans les disciplines de l'automatique et d'électrotechnique, de mécanique...ect.

Ce support de cours est divisé en deux parties, la première s'articule autour de deux chapitres et la deuxième s'articule autour de trois chapitres. La première partie est réservée à l'étude des systèmes linéaires dans le domaine de Laplace et la deuxième est réservée à l'étude des systèmes linéaires dans l'espace d'état.

Dans le première chapitre, nous présentons un rappel sur les différents critères utilisés pour l'étude de la stabilité des systèmes linéaires. Nous abordons les méthodes permettant de déterminer la stabilité d'un système linéaire continu dont on connaît soit l'expression analytique de la fonction de transfert, soit une représentation graphique de sa réponse fréquentielle (Bode, Nyquist, Black).

Dans le deuxième chapitre, nous étudions les principales méthodes de la synthèse des correcteurs PID . Nous présentons, dans un premier temps, la notion d'un cahier des charges d'un asservissement et l'étude de différentes actions correctives (Proportionnelle, Intégrale et Dérivée). Nous présentons ensuite les déférents types des correcteurs: correcteur à retard de phase, correcteur à avance de phase et les structures des correcteurs PID. Nous étudions ensuite la synthèse des correcteurs PID par les méthodes empiriques, les méthodes algébriques et les méthodes fréquentielles.

Dans le troisième chapitre, nous présentons les méthodes permettant d'obtenir de modèle d'état d'un système linéaire à partir de ses équations différentielles ou à partir de sa fonction de transfert. Nous présentons également les techniques permettant d'obtenir la fonction de transfert d'un système à partir de sa représentation d'état.

Dans le quatrième chapitre, nous présentons la réponse d'un système linéaire décrit par une représentation d'état. Il s'agit d'utiliser un modèle d'état pour déterminer la réponse d'un système linéaire à une excitation classique. Par réponse on entend l'expression de la sortie du système délivrée sous l'effet d'une sollicitation donnée.

Dans le cinquantième chapitre, nous introduisons des concepts nécessaires pour établir des lois de commande par retour d'état et par retour de sortie. Ces concepts sont ceux de commandabilité et d'observabilité. Nous présentons, dans un premier temps, le concept de la commande par placement de pôles et ensuite nous présentons l'algorithme qui permet de calculer le vecteur de retour d'état et la précommande. Nous présentons également la notion de la commande basée sur l'utilisation d'un observateur et l'algorithme qui permet de calculer son gain.

Une sixième chapitre est ajouté à la fin de ce support de cours pour regrouper les anciens sujets d'examens de ce module.

Chapter 1

Rappel sur la stabilité des systèmes linéaires

1 Introduction

La stabilité est une performance à satisfaire en priorité pour un système à commander. Un système instable est caractérisé soit par des oscillations d'amplitude de plus en plus grande de la sortie, soit par une croissance négative ou positive de la sortie. En effet, la stabilité du système commandé est le premier objectif qui doit être assuré pour le bon fonctionnement de l'asservissement. Les autres objectifs d'un asservissement (précision et rapidité) ne peuvent pas être obtenus si le système commandé est instable.

Ce chapitre présente des méthodes permettant de déterminer la stabilité d'un système linéaire continu dont on connaît soit l'expression analytique de la fonction de transfert, soit une représentation graphique de sa réponse fréquentielle (Bode, Nyquist).

Définition 1 Un système linéaire est dit stable si la réponse de sa sortie est bornée pour toutes entrées bornées. Sinon, on dit qu'il est instable.

Exemple 1: Soient les deux systèmes de premier ordre dont les fonctions de transfert en boucles ouvertes sont données par 1.1 et 1.2.

$$G_1(p) = \frac{S_1(p)}{E(p)} = \frac{5}{10p+1}$$
(1.1)

$$G_2(p) = \frac{S_2(p)}{E(p)} = \frac{5}{2p-1}$$
(1.2)

Les réponse de ces systèmes pour une entrée échelon unitaire (E(p) = 1/p) sont données par les expressions temporelles 1.3 et 1.4.

$$s_1(t) = 5(1 - e^{-\frac{1}{10}t}) \tag{1.3}$$

$$s_2(t) = 5(1 - e^{\frac{1}{2}t}) \tag{1.4}$$

3

Figure 1.1: Réponse indicielle

Les tracés des réponses indicielles sont montrées sur les figures 1.1(a) et 1.1(b). À partir de ces résultats, on peut dire que le premier système est stable car sa réponse est bornée et le deuxième est instable car sa réponse est non bornée.

Le script Matlab [Script 1] peut être utilisé pour trouver ces derniers résultats.

```
1 %% Script: Exemple 1
  clc, close all, clear all;
2
  %% Declaration de systeme 1
3
4 Num1=5
  Den1=[10 1]
\mathbf{5}
  G1=tf(Num1,Den1)
6
  %% Declaration de systeme 2
7
8 Num2=5
  Den2=[2 -1]
9
10 G2=tf(Num2,Den2)
11 %% Reponse indicielle: Systeme 1
  figure(1)
12
  step(G1)
13
14 grid on
15 xlabel('Temps(s)')
16 ylabel('s_1(t)')
  title('Reponse indicielle')
17
  %% Reponse indicielle: Systeme 2
18
19 figure(2)
20 step(G2)
21 grid on
22 xlabel('Temps')
  ylabel('s_2(t)')
23
24 title('Reponse indicielle')
```

Généralement, pour juger la stabilité d'un système linéaire et continue, il existe plusieurs critère qu'on peut les décomposer en trois; à savoir: critère mathématique basée sur les pôles du système, critère algébrique basée sur l'étude de l'équation caractéristique du système et critère graphique basé sur les différents diagrammes (Bode, Nyquist, Black...ect). Dans ce qui suit, nous allons présenté l'essentielle de ces critères.

2 Critère mathématique

On considère le système bouclé donné par le schéma fonctionnel (1.2).

Figure 1.2: Schéma fonctionnel d'un système bouclé

La fonction de transfert en boucle fermée (FTBF) du système est donnée par 1.5.

$$H(p) = \frac{S(p)}{E(p)} = \frac{H_1(p)}{1 + H_1(p)H_2(p)}$$
(1.5)

La FTBF du système peut être réécrit sous la forme polynomiale (en fonction de l'opérateur de Laplace p) 1.6.

$$H(p) = \frac{N(p)}{D(p)} = \frac{b_n p^n + b_{n-1} p^{n-1} + \dots + b_1 p + b_0}{a_n p^n + a_{n-1} p^{n-1} + \dots + a_1 p + a_0}$$
(1.6)

L'équation $D(p) = a_n p^n + a_{n-1} p^{n-1} + \dots a_1 p + a_0 = 0$ est connu par *l'équation* caractéristique du système. La FTBF du système peut être réécrit sous la forme pôles-zéros 1.7 suivante:

$$H(p) = \frac{(p-z_1)(p-z_2)\dots(p-z_n)}{(p-p_1)(p-p_2)\dots(p-p_n)}$$
(1.7)

Où $z_1 \ldots z_n$ sont les zéros du système (les racines de numérateur N(p)) et $p_1 \ldots p_n$ sont les pôles du système (les racines de dénominateur D(p)). Donc, la condition de stabilité selon le critère mathématique s'énonce ainsi:

Un système bouclé est stable si et seulement si les pôles de sa fonction de transfert en boucle fermée sont à parties réelles strictement négatives.

Exemple 1 On reprend les fonctions de transfert (FT) 1.1 et 1.2. Le pôle de la première FT est négative ($p_1 = -1/10$ système stable) et le deuxième est positive ($p_1 = 1/2$ système instable).

Exemple 2 On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{8}{(p+1)(p+4)}$$
(1.8)

La FTBF de système 1.8 est donnée par :

$$G(p) = \frac{8}{p^2 + 5p + 12} \tag{1.9}$$

2. CRITÈRE MATHÉMATIQUE

Les pôles du système sont : $p_1 = -2.5 + 2.39j$, $p_2 = -2.5 - 2.39j$. Ce système est stable car ses deux pôles sont à partie réelle négatives.

Le script Matlab [Script 2] peut être utilisé pour juger la stabilité d'un système à partir de l'analyse de sa fonction de transfert en boucle fermée.

```
%% Scriptes: Exemple 2
1
  clc, close all, clear all;
2
  %% Declaration de Systeme
3
  NUM=8 % numerateur de la TF
4
                          %denumerateur de la TF
  DEN=conv([1 1],[1 4])
\mathbf{5}
                           %fonction de transfert en boucle ouverte
  FTBO=tf(NUM,DEN)
6
                          %fonction de transfert en boucle fermee
  FTBF=feedback(FTBO, 1)
7
  %% Extraction de numerateur et denumerateur de la FTBF
8
  [num, den] = tfdata (FTBF, 'v')
9
  %% calul des poles
10
  p=roots(den)
11
  %% Verification de la signe des poles
12
  if (real(p(1))<0) & (real(p(2))<0)
13
       disp('Systeme stable')
14
15
  else
       disp('Systeme instable')
16
17
  end
  %% reponse indicelle de systeme
18
  step(FTBF)
19
  grid on
20
21 xlabel('Temps(s)')
22
  ylabel('s(t)')
  title('Reponse indicielle')
23
```

La réponse indicielle de système 1.9 est illustrée sur la figure (1.3)

Figure 1.3: Réponse indicielle du système 1.9

3 Critère algébrique

Le critère mathématique est simple est facile à appliquer pour juger la stabilité d'un système linéaire et continu. Cependant, ce critère ne peut être appliqué pour juger la stabilité d'un système dont la fonction de transfert d'ordre augmenté. Autrement dit, il est impossible d'obtenir les racines de l'équation caractéristique

par les méthodes analytiques. Pour résoudre ce problème, on fait appel à un autre critère connu sous le nom de "Critère de Routh".

Le critère de Routh est une technique analytique permettant de déterminer si les racines l'équation caractéristique ont des parties réelles positives. Cette approche ne peut être appliquée qu'au système dont l'équation caractéristique est un polynômes en fonction de p. Ainsi, le critère de Routh n'est pas directement applicable aux systèmes contenant des retards $(e^{-\theta p})$.

Le critère de Routh est basé sur l'équation caractéristique 1.10 suivante:

$$D(p) = a_n p^n + a_{n-1} p^{n-1} + a_{n-2} p^{n-2} + a_{n-3} p^{n-3} + \dots + a_1 p + a_0 = 0$$
(1.10)

On suppose arbitrairement que $a_n > 0$. Si $a_n < 0$, on multiplie l'équation 1.10 par -1 pour générer une nouvelle équation qui vérifie cette condition.

- Premier test: Une condition nécessaire (mais non suffisante) à la stabilité est que tous les coefficients $(a_n, a_{n-1}, a_{n-2}, a_{n-3}, \dots a_1, a_0)$ de l'équation caractéristique soient positifs. Si un coefficient est négatif ou égal à zéro, au moins une racine de l'équation caractéristique est positif, et le système est instable.
- *Deuxième test*: Si tous les coefficients sont positifs, on peut construire le tableau de Routh suivant:

a_n	a_{n-2}	a_{n-4}	a_{n-6}	
a_{n-1}	a_{n-3}	a_{n-5}	a_{n-7}	
b_1	b_2	b_3	b_4	
c_1	c_2	c_3	c_4	

Où

$$b_1 = \frac{a_{n-1}a_{n-2} - a_na_{n-3}}{a_{n-1}}, b_2 = \frac{a_{n-1}a_{n-4} - a_na_{n-5}}{a_{n-1}}, \dots$$
$$c_1 = \frac{b_1a_{n-3} - a_{n-1}b_2}{b_1}, c_2 = \frac{b_1a_{n-5} - a_{n-1}b_3}{b_1}, \dots$$

La condition de stabilité selon le critère de Routhe s'énonce ainsi :

Une condition nécessaire et suffisante pour que toutes les racines de l'équation caractéristique aient des parties réelles négatives est que tous les éléments de la colonne de gauche du tableau de Routh soient positifs.

Remarque: Le nombre de changements de signe dans les éléments de la première colonne est égal au nombre de pôles stables.

Exemple 3 Étudier la stabilité du système dont fonction de transfert en boucle fermée H(p) définie par :

$$H(p) = \frac{10}{p^4 + 5p^3 + p^2 + 1} \tag{1.11}$$

Solution: Le polynôme caractéristique est $D(p) = p^4 + 5p^3 + p^2 + 0p + 1$. Ce système est instable car le coefficient de p est zéro (première test).

3. CRITÈRE ALGÉBRIQUE

Exemple 4 On considère un système de fonction de transfert G(p). Déterminer les conditions sur la valeur de K de manière à ce que le système soit stable

$$H(p) = \frac{15}{10p^3 + 17p^2 + 8p^2 + 1 + K}/K > 0$$
(1.12)

Solution: Le polynôme caractéristique de ce système est $D(p) = 10p^3 + 17p^2 + 8p^2 + 1 + K$. On remarque que les coefficients de l'équation caractéristique sont positifs et non nulles, ce que implique que la condition de la première test est satisfaite. Donc, le tableau de Routh peut être construit comme suit:

$$\begin{array}{c|ccc}
10 & 8 \\
17 & K+1 \\
\underline{(17)(8)-(10)(k+1)}^{17} & 0 \\
K+1 & \\
\end{array}$$

Le système est stable si $\frac{(17)(8) - (10)(k+1)}{17} > 0 \Rightarrow 0 < K < 12.6$

4 Critère graphique

On considère un système représenté par le schéma fonctionnel (1.2). La FTBF de système s'écrit comme suit:

$$H(p) = \frac{S(p)}{E(p)} = \frac{H_1(p)}{1 + H_1(p)H_2(p)} = \frac{H_1(p)}{1 + G(p)}$$
(1.13)

Où $G(p) = H_1(p)H_2(p)$ représente la fonction de transfert en boucle ouverte (FTBO). L'équation caractéristique peut être s'écrit en fonction de la FTBO:

$$1 + G(p) = 0 \quad \Rightarrow \quad G(p) = -1 \tag{1.14}$$

La position de la FTBO par rapport au point -1, nous renseigne sur la stabilité du système. Dans le plan complexe, le point (-1, 0) est appelé le point critique (figure 1.4(a)). Dans le plan de Black, le point critique a pour coordonnées (-180, 0) (figure 1.4(b)).

Les critères graphiques permettant de juger la stabilité d'un système en boucle fermé à partir de l'analyse de ses diagrammes (Nyquist, Bode, Black...) de sa fonction en boucle ouverte.

Critère de Revers Le critère du revers est basé sur le diagramme de Nyquidt de la fonction de transfert en boucle ouverte du système de sa fonction en boucle ouverte qui ne possède aucun pôle à partie réelle positive. Dans ces conditions, le critère de stabilité peut s'exprimer comme suit:

- Dans le plan de nyquist: Un système asservis linéaire est stable si, en décrivant le lieu de transfert dans le plan de Nyquist de la fonction de transfert en boucle ouverte, on laisse le point critique sur la gauche. Il est instable dans le cas contraire.
- Dans le plan de Black: Un système asservis linéaire est stable si, en décrivant le lieu de transfert dans le plan de Black de la fonction de transfert en boucle ouverte, on laisse le point critique sur la droite. Il est instable dans le cas contraire.

Figure 1.4: Point critique, (a) dans le plan de Nyquist, (b) Dans le plan de Black

Figure 1.5: Critère de Revers dans le plan de Nyquist

• Dans le plan de Bode: L'énoncé du critère du revers est en fait la vérification pour la pulsation ω_{c0} (pulsation de coupure à 0db) des deux conditions suiv-

4. CRITÈRE GRAPHIQUE

Figure 1.6: Critère de Revers dans le plan de Black

antes:

$$G(\omega_{c0}) = 1 \quad et \quad Arg(G(\omega_{c0})) \ge 180^{\circ} \tag{1.15}$$

Le respect de cette double condition permet d'énoncé le critère du revers dans le plan de Bode suivant:

Un système asservi est stable si, à la pulsation ω_{c0} , le déphasage est supérieur $\dot{a} - 180^{\circ}$.

Figure 1.7: Critère de Revers dans le plan de Bode

5 Marges de stabilité

Les critères qu'on a présenté ci-dessus sont des critères de stabilité absolus, ces critères ne permettent pas en général de régler un système. Si on reprend l'exemple 4, on a trouvé que pour que le système soit stable, on doit choisir une valeur de K entre 0 et 12.6. La question que se pose ici, quelle est la meilleur valeur de K qu'il faut choisir. C'est pour cela il faut définir des marges de stabilité, c'est à dire une distance à respecter entre le point critique et le lieu de la fonction de transfert en boucle ouverte. Dans ce contexte, on définit la marge de gain et la marge de gain de 6dB et marge de phase de 45°. Dans ce suit, nous allons définir les marges de gain et gain et

de phase pour un système dont la fonction de transfert en boucle ouvert notée G(p) caractérisé par un gain (module) $G(\omega)$, une phase $\phi(\omega)$ et supposé stable.

5.1 Marge de gain

On considère le diagramme de Nyquist d'un système montré dans la figure 1.8(a), la marge de gain consiste à évaluer la distance OA entre le point O et le point Adéfini comme le point d'intersection de la courbe avec l'axe réel. La distance OAest défini par les coordonnées suivantes:

$$G(\omega_{\pi}) = OA \quad et \quad \varphi(\omega_{\pi}) = -\pi \tag{1.16}$$

La marge gain est défini généralement en décibels comme suit:

$$M_G = -20log(\omega_\pi) \quad avec \quad \varphi(\omega_\pi) = -\pi \tag{1.17}$$

Figure 1.8: Marge de gain, (a) dans le plan de Nyquist, (b) Dans le plan de Bode

Exemple 5 Calculer la marge de gain de système suivant:

$$G(p) = \frac{2 \times 10^6}{(p+100)^3} \tag{1.18}$$

Solution: Les expressions de gain et de phase peuvent être déduit à partir de la FTBO comme suit:

$$G(j\omega) = \frac{2 \times 10^6}{(j\omega + 100)^3} \Rightarrow \begin{cases} G(\omega) = \frac{2 \times 10^6}{(\sqrt{\omega^2 + 100^2})^3} \\ \varphi(\omega) = -3atan(\frac{\omega}{100}) \end{cases}$$

On commence tout d'abord par le calcul de la pulsation ω_{π} puis on déduit M_{G} .

$$\varphi(\omega_{\pi}) = -\pi \Rightarrow -3atan(\frac{\omega_{\pi}}{100}) = -\pi \Rightarrow tan(atan(\frac{\omega_{\pi}}{100})) = tan(\frac{\pi}{3}) \Rightarrow \omega_{\pi} = 100\sqrt{3}$$

 $On \ a \ alors$:

$$M_G = -20\log \frac{2 \times 10^6}{(\sqrt{\omega_\pi^2 + 100^2})^3} \Rightarrow M_G = -20\log \frac{1}{(\sqrt{(100\sqrt{3})^2 + 100^2})^3}$$

$$\Rightarrow M_G = 12dB$$

5. MARGES DE STABILITÉ

5.2 Marge de phase

La notion de marge de phase permet d'évaluer l'éloignement angulaire entre le point critique et le lieu de Nyquist du système. On considère le lieu de Nyquist montré sur la figure 1.9(a) pour un système supposé stable. Le point B (situé à l'intersection du lieu de Nyquist et le cercle de centre O et de rayon 1) correspond à la pulsation de coupure à 0dB (par définition $G(\omega_{c0}) = 1$). Alors, la marge de phase est l'éloignement de point B par rapport au point critique C. Par conséquent, on peut définir la marge de phase comme suit:

$$M_{\varphi} = \pi + \varphi(\omega_{c0}) \quad avec \quad G(\omega_{c0}) = 1 \tag{1.19}$$

Figure 1.9: Marge de phase, (a) dans le plan de Nyquist, (b) Dans le plan de Bode

Exemple 6 Calculer la marge de phase de système suivant:

$$G(p) = \frac{2 \times 10^6}{(p+100)^3} \tag{1.20}$$

Solution: Les expressions de gain et de phase peuvent être déduit à partir de la FTBO comme suit

$$G(j\omega) = \frac{2 \times 10^6}{(j\omega + 100)^3} \Rightarrow \begin{cases} G(\omega) = \frac{2 \times 10^6}{(\sqrt{\omega^2 + 100^2})^3} \\ \varphi(\omega) = -3atan(\frac{\omega}{100}) \end{cases}$$

On commence par le calcul de la pulsation de coupure ω_{c0} puis on déduit la marge de phase M_{φ} .

$$G(\omega_{c0}) = 1 \Rightarrow \frac{2 \times 10^6}{(\sqrt{\omega_{c0}^2 + 100^2})^3} = 1 \Rightarrow \omega_{c0} = \sqrt{(\sqrt[3]{2 \times 10^6})^2 - 100^2} = 76.6 rad/s$$

 $On \ a \ alors$:

$$M_{\varphi} = \pi + \varphi(\omega_{c0}) = \pi - 3atan \frac{\omega_{c0}}{100} \Rightarrow M_{\varphi} = \pi - 3atan \frac{76.6}{100}$$
$$\Rightarrow M_{\varphi} = 67.6^{\circ}$$

Le script Matlab [Script 3] peut être utilisé pour calculer la marge de gain, la marge de phase et les montrer sur le diagramme de Bode.

```
%% Script : Exemples 5 et 6
1
  clc, close all,clear all;
2
  %% Declaration de systeme
3
  NUM=2e6
4
  DEN1=conv([1 100], [1 100])
5
  DEN=conv(DEN1, [1 100])
6
  G=tf(NUM,DEN)
7
   %%Calacul de la marage de gain MG et la marge de pahse Mph
8
   [MG, Mph, Wg, Wp] = margin (G)
9
  %%Digramme de Bode
10
  margin(G)
^{11}
```

Les diagrammes de Bode de de système 1.20 traité dans les exemples 5 et 6 sont illustrées sur la figure (1.10)

Figure 1.10: Diagramme de Bode de système 1.20

6 Exercices corrigés

Exercice 1. On considère un système de fonction de transfert en boucle ouverte G(p) définie par:

$$G(p) = \frac{K}{p(p+2)(p+3)}$$

lorsque le système est placé dans une boucle d'asservissement à retour unitaire. - Étudier la stabilité de système.

Exercice 2. On considère un système de fonction de transfert en boucle ouverte G(p) définie par:

$$G(p) = \frac{100K}{p^2 + 10p + 11}$$

lorsque le système est placé dans une boucle d'asservissement à retour unitaire. 1- Étudier la stabilité de système

2- Calculer la valeur de K qui assure au système une marge de gain égale à 6dB

Exercice 3. On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{K}{p(p+10)^2}$$

Déterminer la valeur de K qui permet d'obtenir une pulsation de coupure égale à 2rad/s et déduire la valeur de la marge de phase pour cette valeur de K.

Exercice 4. On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

$$G(p) = \frac{K}{(p+1)^3}$$

Calculer la valeur de K qui assure au système une marge de phase égale à 45°.

7 Solutions des exercices

Solution d'exercice 1. La fonction de transfert en boucle ouverte G(p) est définie par:

$$G(p) = \frac{K}{p(p+2)(p+3)}$$

La fonction de transfert en boucle fermée H(p) est

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{K}{p^3 + 5p^2 + 6p + K}$$

L'équation caractéristique de ce système est $p^3 + 5p^2 + 6p + K = 0$. On remarque que les coefficients de l'équation caractéristique sont positifs et non nulles. Donc, le tableau de Routh peut être construit comme suit:

1	6
5	K
$\frac{30-K}{5}$	0
\mathring{K}	

Le système est stable si $\frac{30-K}{5} > 0 \Rightarrow 0 < K < 30$.

Solution d'exercice 2. La fonction de transfert en boucle ouverte G(p) définie par:

$$G(p) = \frac{2K}{(5p+1)^3}$$

1- Étude de stabilité

La fonction de transfert en boucle fermée H(p) est

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{2K}{125p^3 + 75p^2 + 15p + 5K + 1}$$

L'équation caractéristique de ce système est $125p^3 + 75p^2 + 15p + 5K + 1 = 0$. On remarque que les coefficients de l'équation caractéristique sont positifs et non nulles. Donc, le tableau de Routh peut être construit comme suit:

$$\begin{array}{c|ccccc}
125 & 15 \\
75 & 5K+1 \\
\frac{1000-625K}{75} & 0 \\
5K+1 & 0
\end{array}$$

Le système est stable si 0 < K < 1.6.

2- Calcule de K qui assure une marge de gain égale à 6dB

Les expressions de gain et de phase peuvent être déduites à partir de la FTBO comme suit

$$G(j\omega) = \frac{2K}{(5j\omega+1)^3} \Rightarrow \begin{cases} G(\omega) = \frac{2K}{(\sqrt{(25\omega^2+1)^3})} \\ \varphi(\omega) = -3atan(5\omega) \end{cases}$$

On commence tout d'abord par le calcul de la pulsation ω_{π} puis on déduit M_G .

$$\varphi(\omega_{\pi}) = -\pi \Rightarrow -3atan(5\omega) = -\pi \Rightarrow tan(atan(5\omega_{\pi})) = tan(\frac{\pi}{3}) \Rightarrow \omega_{\pi} = 5\sqrt{3}$$

On a alors :

$$M_G = -20\log \frac{2K}{\left(\sqrt{25\omega_\pi^2 + 1}^3\right)} = 6 \Rightarrow K =$$
$$\Rightarrow M_G = 12dB$$

Solution d'exercice 3. Le système est décrit par la fonction de transfert G(p) définie par :

$$G(p) = \frac{10}{p(p+10)^2}$$

7. SOLUTIONS DES EXERCICES

1- Détermination la valeur de K qui permet d'obtenir une pulsation de coupure égale à 2rad/s.

On a:

$$G(\omega_{c0}) = 1 \Rightarrow \frac{K}{\omega_{c0}(\omega_{c0}^2 + 100)} = 1 \Rightarrow K = \omega_{c0}(\omega_{c0}^2 + 100)$$

L pulsation de coupure égale à $\omega_{c0} = 2rad/s$, alors on peut calculer la valeur de K comme suit:

$$K = 20(20^2 + 100) = 208$$

2- Calcul de la valeur de la marge de phase pour cette valeur de K. On a alors :

$$M_{\varphi} = \pi + \varphi(\omega_{c0}) = \pi - \frac{\pi}{2} - 2atan\frac{\omega_{c0}}{10} = \frac{\pi}{2} - 2atan\frac{2}{10} = 1.1760rad$$

Solution d'exercice 4. Le système est décrit par la fonction de transfert G(p) définie par :

$$G(p) = \frac{K}{(p+1)^3}$$

Calcul de la valeur de K qui assure au système une marge de phase égale à 45° . On a:

$$M_{\varphi} = \pi + \varphi(\omega_{c0}) = \frac{\pi}{4} \Rightarrow \pi - 3atan(\omega_{c0}) = \frac{\pi}{4} \Rightarrow \omega_{c0} = tan\frac{\pi}{8} = \sqrt{2}rad/s.$$

d'autre part on a:

$$G(\omega_{c0}) = 1 \Rightarrow \frac{K}{(\sqrt{(\omega_{c0}^2 + 1)})^3} = 1 \Rightarrow K = (\sqrt{(\omega_{c0}^2 + 1)})^3 = (\sqrt{(2+1)})^3 = 3\sqrt{3}$$

Chapter 2

Synthèse des correcteurs PID

1 Introduction

L'objectif de la commande des système linéaire ou non linéaire est de modifier ses performances pour qu'il suivre une consigne et satisfaire un cahier des charges bien déterminé préalablement. Il est donc nécessaire d'ajouter dans la boucle d'asservissement un élément de commande que l'on appelle contrôleur, régulateur ou encore correcteur qui sont basés principalement sur la notion de la contre-réaction (*Feedback*). Le contrôleur calcule la valeur d'erreur correspondant à la différence entre la sortie du système et sa consigne. Il essaie ensuite de minimiser l'erreur en augmentant ou en diminuant la commande afin que la sortie se déplace plus près du point de consigne.

Pour mieux comprendre cette notion, on considère le schéma (2.1) qui montre un exemple de la commande d'un four implémentée sur un automate programmable. La température du four est contrôlée en ajustant sur la vanne à gaz. L'opérateur définit la température souhaitée comme point de consigne. Le capteur de température fournit une mesure et l'envoyée au contrôleur. La contre-réaction est comparée au point de consigne et une valeur d'erreur est calculée. Ensuite, le contrôleur détermine la position de vanne appropriée pour corriger l'erreur.

Figure 2.1: Commande d'un four

L'exemple 2.1 peut être également représenté par le schéma fonctionnel (2.2).

Figure 2.2: Schéma fonctionnel d'un asservissement

Généralement, dans l'automatique chaque élément de la boucle d'asservissement (ou de boucle régulation) est représenté par une fonction de transfert comme le montre le schéma fonctionnel (2.3) où G(p), A(p), B(p) et C(p) représente respectivement la fonction de transfert de système (ou processus) à commander, la fonction de transfert d'actionneur, la fonction de transfert de capteur et la fonction de transfert de contrôleur (correcteur). Les signaux W, ε , U, E et S représente respectivement la consigne, l'erreur, la commande, l'entrée du système et la sortie du système.

Figure 2.3: Schéma fonctionnel d'un asservissement

Dans le cas de la commande des systèmes linéaire, le correcteur Proportionnel-Intégrale-Dérivée (PID) est largement utilisé dans le contrôle des systèmes industriels. Le contrôleur PID contient trois action correctives avec ses propres paramètres qui peuvent être interprétées en termes de temps comme suit: L'action P dépend de l'erreur présente, l'action I peut être considéré comme l'accumulation des erreurs passées et l'action D comme une prévision des erreurs futures, basée sur le taux de changement actuel. La somme pondérée de ces trois actions est utilisée pour fournir la commande approprié au système.

2 Cahier des charges d'un asservissement

En règle générale, la boucle de régulation doit satisfaire un cahier des charges qui impose, en boucle fermée, les performances statique et dynamique suivantes:

• La précision, matérialisée par l'erreur qui est définie par l'écart permanent qui existe entre la sortie mesurée et la consigne. Généralement, on utilise l'expression d'erreur de positon ε_p 2.1 (erreur pour une entrée échelon) pour matérialiser la précision;

$$\varepsilon_p = \lim_{t \to \infty} \varepsilon(t) = \lim_{p \to 0} p\varepsilon(p) = \lim_{p \to 0} (1 - FTBF(p))$$
(2.1)

• La rapidité, matérialisée, par le temps de montée défini comme le temps nécessaire à la réponse du système pour évoluer de 10 à 90%, de 5 à 95%, ou de 0 à 100% de sa valeur finale. La relation approchée suivante est plus souvent utilisé :

$$t_m = \frac{3}{\omega_{nBF}} = \frac{3}{\omega_{c0}} \tag{2.2}$$

• La marge de stabilité, matérialisée, en générale, par la marge de phase. On rappelle que coefficient le d'amortissement en boucle fermée peut s'écrire en fonction de la marge de phase par la relation approchée comme suivante:

$$\xi_{BF} = \frac{M_{\varphi}^{\circ}}{100} \tag{2.3}$$

• La limitation du dépassement qui est la valeur du pic maximal de la réponse mesurée relativement à l'unité. Si la valeur finale du régime permanent diffère de l'unité, on utilise plus souvent le dépassement maximal exprimé en pourcentage. Il est défini par :

$$d\% = 100 \frac{s(t_p) - s(\infty)}{s(\infty)}$$
(2.4)

Figure 2.4: Performances d'un asservissement

3 Actions correctives élémentaires

On considère le schéma général d'une boucle de régulation corrigée (2.5) où C(p) est la fonction de transfert du correcteur, G(p) est la fonction de transfert du système et B(p) est la fonction de transfert du capteur. le correcteur contient trois actions correctives élémentaires (P, I ou D) qui permettent, individuellement, de corriger telle ou telle performance. Elles sont relativement simples à réaliser mais, en général, dégradent d'autres performances. Elles sont utilisables lorsque le cahier des charges est peu exigeant. Dans le cas contraire, il faut envisager de combiner ces différentes actions au sein d'un correcteur plus complexe.

3. ACTIONS CORRECTIVES ÉLÉMENTAIRES Réalisé par Dr. OUNNAS D.

Figure 2.5: Performances d'un asservissement

3.1 Correcteur proportionnel

Le correcteur est un simple amplificateur de gain réglable C(p) = K qui a pour mission de modifier le gain statique initial du système. l'influence du gain statique sur les performances peut être déduit à partir du digramme de Bode illustré sur la figure (2.6).

- Si $K < 1 \Rightarrow$ translation du diagramme de gain vers le haut \Rightarrow augmentation de ω_{c0} ce que améliore la rapidité $(t_m = 3/\omega_{c0})$ et la précise. D'autre part l'augmentation de ω_{c0} diminue la marge de phase ce que dégrade la stabilité et le dépassement
- Si $K > 1 \Rightarrow$ translation du diagramme de gain vers le bas \Rightarrow diminution de ω_{c0} ce que dégrade la rapidité et la précise. D'autre part l'augmentation de ω_{c0} améliore la marge ce que dégrade la stabilité et le dépassement \Rightarrow amélioration stabilité.

Figure 2.6: Influence du gain statique sur les performances

3.2 Correcteur intégral

Le correcteur est un intégrateur de fonction de transfert :

$$C(p) = \frac{1}{p} \tag{2.5}$$

À partir de digrammes de Bode montré sur la figure (2.7), l'introduction d'un intégrateur pur au système amélioration la précision (annulation de l'erreur statique, diminution de l'erreur de vitesse si le système non corrigé est de classe 0) et garantit le rejet asymptotique des perturbations constantes. D'autre part, il diminue la pulsation ω_{c0} ce que résulte la diminution de la rapidité. L'ajout d'un intégrateur au système diminue aussi la marge de phase \Rightarrow dégradation de la stabilité voire instabilité.

On conclure que l'action intégrale n'améliore que la précision, les autres performances sont dégradées

Figure 2.7: Influence d'intégrateur sur les performances

3.3 Correcteur à action dérivée

Le correcteur est un dérivateur de fonction de transfert :

$$C(p) = p \tag{2.6}$$

qui a pour mission d'ajouter un zéro nul à la fonction de transfert en boucle ouverte. Intuitivement, on peut imaginer que son action est l'inverse de celle de l'intégrateur. L'action dérivée n'améliore que la rapidité, les autres performances sont dégradées.

4 Correcteur à retard de phase

Le correcteur à retard de phase est une forme approchée du correcteur PI. Il réalise une action intégrale (augmentation du gain en basses fréquences) sans introduire d'intégrateur. Sa fonction de transfert est:

$$C(p) = \frac{a(1+Tp)}{1+aTp} \quad avec \quad a > 1$$

$$(2.7)$$

Il est utilisé, en générale, pour imposer une erreur permanente imposée, une marge de phase ou une rapidité. Pour mieux comprendre ce correcteur, on considère son diagramme de Bode (2.8). L'examen du diagramme de Bode illustré sur la figure (2.8) permet de prévoir l'action de ce correcteur. Lorsque celui-ci sera placé en cascade avec le système à corriger, dans la chaîne directe, les deux diagrammes de Bode s'additionneront. Le gain statique est donc bien augmenté de 20log(a), ce qui améliore la précision. En réglant le paramètre T sur une valeur suffisamment faible, cette correction n'a d'influence qu'aux basses fréquences; le gain aux hautes

4. CORRECTEUR À RETARD DE PHASE Réalisé par Dr. OUNNAS D.

fréquences n'est pratiquement pas affecté. Le déphasage négatif supplémentaire introduit par le correcteur se situe également aux basses fréquences. Il n'a donc pas d'influence sur la marge de stabilité, étant donné que les pulsations de coupure à 0dB sont, en général, situées dans des plages de fréquences plus élevées.

En tout état de cause, pour régler le correcteur à retard de phase, on choisira la valeur de *a* qui permet d'obtenir le gain statique résultant voulu et on choisira ensuite *T* se sorte que $1/T \ll \omega_{c0}$.

Figure 2.8: Diagramme de Bode de correcteur à retard de phase

Exemple 7 On considère le système de fonction de transfert G(p) placé dans une boucle à retour unitaire, avec :

$$G(p) = \frac{1}{\left(1 + \frac{p}{10}\right)^3}$$
(2.8)

Proposer un correcteur qui satisfait le cahier des charges suivant: Marge de phase $M_{\varphi} = 45^{\circ}$ et erreur de position.

Solution: On cherche tout d'abord un correcteur proportionnel qui assure au système en boucle fermée une marge de phase $M_{\varphi} = 45^{\circ}$. La FTBO de système plus correcteur est comme suit:

$$G(p) = \frac{K}{\left(1 + \frac{p}{10}\right)^3} \quad \Rightarrow \quad \begin{cases} G(\omega) = \frac{K}{\left(\sqrt{\frac{\omega^2}{100} + 1}\right)^3} \\ \varphi(\omega) = -3atan(\frac{\omega}{10}) \end{cases}$$
(2.9)

On a $M_{\varphi} = \pi + \varphi(\omega_{c0})$ avec $G(\omega_{c0}) = 1$.

$$M_{\varphi} = \pi - 3atan(\frac{\omega_{c0}}{10}) = \frac{\pi}{4} \Rightarrow \omega_{c0} = 10rad/s \tag{2.10}$$

Alors

$$G(10) = \frac{K}{\left(\sqrt{\frac{100}{100} + 1}\right)^3} = 1 \Rightarrow K = 2.8$$
(2.11)

La nouvelle FTBO plus correcteur à retard de phase est donnée par:

$$G(p) = \frac{(1+Tp)}{1+aTp} \frac{2.8a}{\left(1+\frac{p}{10}\right)^3}$$
(2.12)

On calcule l'erreur de position en boucle fermée, comme suit :

$$\varepsilon_p = \lim_{p \to 0} (1 - FTBF(p)) = 1 - \frac{2.8a}{2.8a + 1}$$
(2.13)

Pour obtenir une erreur de position de 5%, il est nécessaire de mettre

$$\varepsilon_p = 1 - \frac{2.8a}{2.8a + 1} = 0.05 \Rightarrow a = 6.8;$$
 (2.14)

Pour finir, il suffit de choisir T de manière à ce que 1/T soit très inférieur à la pulsation de coupure à 0dB. On peut prendre, par exemple, T = 10s.

On a finalement :

$$G(p) = 6.8 \frac{(1+10p)}{1+68p} \tag{2.15}$$

Le code Matlab [Script 4] donne les même résultats trouvés ci-dessus. Le diagramme de Bode de système plus correcteur est illustré sur la figure (2.9).

```
%% Script: Exemple 7
1
  clc, close all, clear all;
2
  %% Fonction de transfert de systeme
3
  NUM=2.8, DEN1=conv([1/10 1],[1/10 1]) DEN=conv(DEN1,[1/10 1])
4
  G=tf(NUM,DEN),
5
  %% Fonction de transfert de correcteur
6
  C=tf([68 6.8], [68 1])
7
  %% Fonction de transfert de systeme + correcteur
  Gc=series(G,C),
9
  %% Digramme de Bode de systeme corrige
10
 margin(Gc)
11
```


Figure 2.9: Diagramme de Bode de système corrigé 2.8

4. CORRECTEUR À RETARD DE PHASE

5 Correcteur à avance de phase

Le correcteur à avance de phase est un correcteur qui, comme son nom l'indique, permet d'augmenter la marge de phase d'un système. Il s'agit de compenser un trop faible déphasage autour de la pulsation de coupure à 0dB. Sa fonction de transfert est :

$$C(p) = \frac{1+aTp}{1+Tp} \quad avec \quad a > 1 \tag{2.16}$$

L'intérêt de ce correcteur est visible sur le diagramme de Bode (2.10) où à la pulsation maximale ω_{max} , le déphasage présente un maximum φ_{max} qui sont donnés par:

$$\omega_{max} = \frac{1}{T\sqrt{a}} \quad et \quad \varphi_{max} = \arcsin\frac{a-1}{a+1} \tag{2.17}$$

L'idée de ce correcteur consiste à faire coïncider ω_{max} avec la pulsation ω_{co} du

Figure 2.10: Diagramme de Bode de correcteur à avance de phase

système à corriger et à régler φ_{max} , que l'on appelle la remontée de phase, de manière à obtenir la marge de phase voulue.

Exemple 8 On considère un système dont la FTBO définie par:

$$G(p) = \frac{100}{\left(1+p\right)^2} \tag{2.18}$$

Calculer les paramétrés d'un correcteur à avance de phase qui permet d'avoir une marge de phase de $M_{\varphi} = 45^{\circ}$.

Solution: On cherche tout d'abord à calculer la marge de phase sans correcteur. La FTBO est comme suit:

$$G(p) = \frac{100}{(1+p)^2} \quad \Rightarrow \quad \begin{cases} G(\omega) = \frac{100}{(\omega^2+1)} \\ \varphi(\omega) = -2atan(\omega) \end{cases}$$
(2.19)

On a $M_{\varphi} = \pi + \varphi(\omega_{c0})$ avec $G(\omega_{c0}) = 1$.

$$G(\omega c0) = \frac{100}{(\omega_{c0}^2 + 1)} = 1 \Rightarrow \omega_{c0} = 9.9 rad/s$$
(2.20)

Alors:

$$M_{\varphi} = \pi - 2atan(9.9) \Rightarrow M_{\varphi} = 11^{\circ} \tag{2.21}$$

Pour avoir une marge de phase, on doit procéder à une remontée de phase de 34° à la pulsation ω_{c0} . On introduit donc un correcteur à avance de phase que l'on règle de manière à ce que :

$$\varphi_{max} = 45^{\circ} - 11^{\circ} = 34^{\circ} = \arcsin\frac{a-1}{a+1} \Rightarrow a = \frac{1+\sin 34^{\circ}}{1-\sin 34^{\circ}} = 3.54$$
 (2.22)

On a encore

$$\frac{1}{T\sqrt{a}} = \omega_{c0} \Rightarrow \frac{1}{T\sqrt{3.54}} = 9.9 \Rightarrow T = 0.053 \,\mathrm{sec} \tag{2.23}$$

Finalement :

$$C(p) = \frac{1 + .19p}{1 + 0.053p} \tag{2.24}$$

La nouvelle FTBO du système corrigé est:

$$FTBO_c = G(p)C(p) = \frac{100}{(1+p)^2} \frac{1+.19p}{1+0.053p}$$
(2.25)

Le code Matlab [Script 5] peut être utilisé pour trouver les résultats ci-dessus.

```
1 %% Script :Exemple 8
2 clc,close all,clear all;
3
  %% Fonction de systeme
4 NUM=100
 DEN=conv([1 1],[1 1])
\mathbf{5}
  G=tf(NUM,DEN)
6
  %% Fonction de correcetur
7
8 C=tf([68 6.8], [68 1])
9 %% Fonction de systeme+correcteur
10 Gc=series(G,C)
11 %% Digramme de Bode
 margin(Gc)
12
```

6 Structure des correcteur PID

On distingue trois structures pour les correcteurss PID:

6.1 Structure parallèle

L'expression temporelle qui relie la commande u(t) avec l'erreur $\varepsilon(t)$ de cette structure est donné par:

$$u(t) = K_p \varepsilon(t) + T_d \frac{d\varepsilon(t)}{dt} + \frac{1}{T_i} \int \varepsilon(t) dt$$
(2.26)

6. STRUCTURE DES CORRECTEUR PID

La fonction de transfert de correcteur PID peut être déduite comme suit:

$$C(p) = \frac{U(p)}{\varepsilon(p)} = K_p + T_d p + \frac{1}{T_i p}$$
(2.27)

Figure 2.11: Structure parallèle de correcteur PID

6.2 Structure série

La fonction de transfert de correcteur PID série peut être déduite comme suit:

$$C(p) = \frac{U(p)}{\varepsilon(p)} = K_p(1 + T_d p) + (1 + \frac{1}{T_i p})$$
(2.28)

Figure 2.12: Structure série de correcteur PID

6.3 Structure mixte

La fonction de transfert de correcteur PID mixte est donnée par:

$$C(p) = \frac{U(p)}{\varepsilon(p)} = K_p (1 + T_d p + \frac{1}{T_i p})$$
(2.29)

Figure 2.13: Structure mixte de correcteur PID

7 Méthodes de synthèse

Le problème de la détermination des correcteur est connu par la synthèse des correcteur. Les méthodes de synthèse sont très nombreuses et une classification rigoureuse n'est pas une tâche facile. Néanmoins, on distingue dans le cadre de cette section les deux types de méthodes :

- Les méthodes dites *empiriques* ne nécessitant pas une connaissance parfaite du modèle du procédé à commander. Les paramètres du régulateur seront calculés à partir des observations expérimentales sur le procédé (Relevé de la réponse indicielle par exemple). L'intérêt majeur de ces méthodes réside dans leur simplicité. Elles sont largement utilisées dans le domaine industriel et elles sont dans la plus part des cas suffisantes mais ne permettent pas un réglage fin.
- Les méthodes basées sur la *connaissance du modèle* du système sous forme de fonction de transfert par exemple. Les actions du régulateur seront calculées de façon à obtenir la fonction de transfert souhaitée en boucle ouverte ou en boucle fermée.

7.1 Méthodes empiriques

En 1942, Ziegler et Nichols ont proposé deux approches heuristiques basées sur leur expérience et quelques simulations pour ajuster rapidement les paramètres des correcteurs P, PI et PID. La première méthode nécessite l'enregistrement de la réponse indicielle en boucle ouverte, alors que la deuxième demande d'amener le système bouclé à sa limite de stabilité.

Méthode de Ziegler-Nichols en boucle ouverte

Cette méthode s'applique plutôt à des systèmes ayant un délai dont le comportement ressemble celui d'un système de premier ordre. Ce type de réponse est souvent retrouvé dans les procédés chimiques et thermiques.

$$G(p) = \frac{Ke^{-\tau p}}{(T_s p + 1)}$$
(2.30)

7. MÉTHODES DE SYNTHÈSE

Pour obtenir les paramètres du régulateur PID, il suit d'enregistrer la réponse indicielle d'un système pour une entrée échelon E_0 seul (sans correcteur), puis de tracer la tangente au point d'inflexion de la courbe. On mesure ensuite sa pente, le retard apparent correspondant au point d'intersection de la tangente avec l'abscisse et la valeur finale, comme le montre la figure (2.14).

Figure 2.14: Réponse indicielle d'un système en boucle ouverte

On recherche la pente maximale $R = K/\tau$ (où $\tau = T$). Par après, les valeurs du tableau 2.1 sont utilisées calculer les paramètres du correcteur choisi.

Table 2.1: Paramétrés de de PID : Méthode de Ziegler-Nichols en boucle ouverte

Type de correcteur	K_p	T_i	T_d
$\mathbf{P}: C(p) = K_p$	$\frac{E_0}{rR}$	•	•
$\operatorname{PI}: C(p) = K_p(1 + \frac{1}{T_i p})$	$0.9\frac{E_0}{rR}$	$0.33 \frac{E_0}{rR^2}$	
PID : $C(p) = K_p(1 + \frac{1}{T_i p} + T_d p)$	$1.2\frac{E_0}{rR}$	$0.6 \frac{E_0}{rR^2}$	$0.6\frac{E_0}{R}$

Exemple 9 On considère le système dont la FTBO définie par :

$$G(p) = \frac{e^{-4p}}{(1+p)^3} \tag{2.31}$$

Calculer les paramètres d'un correcteur PID en utilisant la méthode de Ziegler-Nichols en boucle ouverte, sachant que sa réponse industrielle est illustrée sur a figure (2.15).

Solution: On a: $R = K/\tau = 1/4.0125 = 0.2492$ avec r = 3.2972. Alors, les paramètres de correcteur PID sont déduits à partir le tableau 2.1, comme suit:

$$\begin{cases} K_p = 1.2 \frac{E_0}{rR} = \frac{1.2}{(3.2972)(0.2492)} = 1.4605 \\ T_i = 0.6 \frac{E_0}{rR^2} = \frac{0.6}{(3.2972)(0.2492)^2} = 2.9303 \\ T_d = 0.6 \frac{E_0}{R} = \frac{0.6}{0.2492} = 2.4077 \end{cases}$$
(2.32)

Finalement:

28

$$C(p) = 1.4605(1 + \frac{1}{2.9303p} + 2.4077p)$$
(2.33)

Le code Matlab [Script 6] peut être utilisé pour trouvé les résultats ci-dessus.

Figure 2.15: Réponse indicielle de système de 2.15

```
1 clc;
2
  close all;
3 clear all;
4 K=1
  Gs1 = tf([K], conv([1 2 1], [1 1]), 'InputDelay', 3)
\mathbf{5}
  [y,t] = step(Gs1);
6
  h = mean(diff(t));
7
  dy = gradient(y, h);
                                                                           0
8
   [\neg, idx] = \max(dy);
                                                                           8
9
  b = [t([idx-1,idx+1]) ones(2,1)] \setminus y([idx-1,idx+1]);
                                                                           8
10
  tv = [-b(2)/b(1); (1-b(2))/b(1)];
                                                                           %
11
  f = [tv ones(2, 1)] * b;
12
  % Calculate Tangent Line
13
  figure
14
15 plot(t, y)
16 hold on
  plot(tv, f, '--g')
17
                                                                            8
  plot(t(idx), y(idx), 'or')
18
  plot(t,K*ones( length(t) ),'--')
19
20 % Maximum Vertical
21 hold off
22 grid
```

Méthode de Ziegler-Nichols en boucle fermée

Cette méthode nécessite de boucler le système sur un simple correcteur proportionnel dont on augmente le gain jusqu'à amener le système à osciller de manière permanente comme le montre la figure (2.18).

Figure 2.16: Système sous étude : Ziegler-Nichols

7. MÉTHODES DE SYNTHÈSE

On se trouve ainsi à la limite de stabilité du système. Après avoir relevé le gain critique K_{cr} et la période d'oscillation T_{cr} de la réponse, on peut calculer les paramètres du régulateur choisi à l'aide du tableau 2.2.

Figure 2.17: Réponse indicielle d'un système

Table 2.2: Méthode de Ziegler-Nichols en boucle fermée

Type de correcteur	K_p	T_i	T_d
$P: C(p) = K_p$	$0.5K_{cr}$	•	•
PI : $C(p) = K_p(1 + \frac{1}{T_i p})$	$0.45K_{cr}$	$0.83T_{cr}$	•
PID : $C(p) = K_p (1 + \frac{1}{T_i p} + T_d p)$	$0.6K_{cr}$	$0.5T_{cr}$	$0.125T_{cr}$

Exemple 10 On considère le système dont la FTBO définie par :

$$G(p) = \frac{3}{(p+1)(p+2)(p+3)}$$
(2.34)

Calculer les paramètres d'un correcteur PID en utilisant la méthode de Ziegler-Nichols en boucle fermée.

Solution: Il faut trouver la valeur du gain critique K_{cr} et la période critique Tu. Pour un système simple comme celui-ci, il suffit d'utiliser la table de Routh pour obtenir le gain critique, puis simuler et mesurer la période.

La table de Routh est alors :

1	11
6	6+3K
$\frac{66 - (6 + 3K)}{6}$	0
6+3K	0

Pour que le système soit stable, il faut que $66 - (6+3K) > 0 \Rightarrow K < 20$. Le gain critique est donc $K_{cr} = 20$. La réponse indicielle de système montre que le période $T_u = 1.9s$.

On peut trouver le période critique par une autre méthode, on utilisant la fréquence d'oscillation ω_c du système avec le gain critique. On utilise deuxième

Figure 2.18: Réponse indicielle d'un système

linge de la table de Routh, puis on isole ω_c en remplaçant $p = j\omega_c$. On considère le système dont la FTBO définie par :

$$6p^{2} + 6 + 3(K) = 6p^{2} + 6 + 3(20) = 6p^{2} + 66$$
(2.35)

On substitue $p = j\omega_c$

$$6(j\omega_c)^2 + 66 = 0 \Rightarrow \omega_c = \sqrt{11} \tag{2.36}$$

et la période est :

$$T_u = \frac{2\pi}{\omega_c} = \frac{2\pi}{\sqrt{11}} = 1.89s \tag{2.37}$$

Donc, les paramétrés du PID sont :

$$K_p = 12 \ T_i = 0.0787. \ T_d = 0.3521$$
 (2.38)

7.2 Méthodes algébriques

Les méthodes algébriques où théoriques sont très nombreuses et reposent sur la connaissance d'un modèle précis du système à commander. Les performances réelles obtenues dépendent de la qualité du modèle et de son aptitude à représenter le mieux possible le système. Connaissant ce modèle, il est possible de définir les caractéristiques du correcteur qui permettra de commander au plus près le système par une des méthodes algébriques de synthèse.

On considère la boucle de régulation (2.19) suivante:

Figure 2.19: Boucle de régulation d'un système

La fonction de transfert en boucle fermée:

$$H(p) = \frac{G(p)C(p)}{1 + G(p)C(p)}$$
(2.39)

7. MÉTHODES DE SYNTHÈSE
L'idée de cette méthode repose sur la connaissance, au préalable, de comportent désiré en boucle fermé $(H_d(p))$ de manière à répondre au cahier des charges bien défini. C'est-à-dire qu'on pose $H(p) = H_d(p)$. Dans ce cas, on peut déduire le correcteur C(p), comme suit:

$$C(p) = \frac{H_d(p)}{G(p)(1 - H_d(p))}$$
(2.40)

Usuellement, le comportement désiré en boucle fermée est celui d'un système de premier ordre ou de deuxième ordre avec un gain statique unitaire, ce qui permet d'assurer une précision statique parfaite.

Exemple 11 On considère le système dont la FTBO G(p) définie :

$$C(p) = \frac{10}{(1+25p)(1+10p)}$$
(2.41)

Déterminer le correcteur PID qui satisfait le cahier des charges suivant : On souhaite obtenir un comportement de premier ordre en boucle fermée avec un temps de réponse à 5% égal $t_r = 0.6s$ et une précision statique parfaite.

Solution: La forme générale d'un système de premier ordre est donnée par:

$$H_d(p) = \frac{K}{(1+Tp)}$$
 (2.42)

Selon le cahier des charges $t_r = 3T \Rightarrow T = t_r/3 \Rightarrow T = 0.6/3 = 0.2s$, et une précision statique parfaite $\Rightarrow K = 1$ ce que nous permet d'écrire le comportement désiré, comme suit:

$$H_d(p) = \frac{1}{(1+0.2p)} \tag{2.43}$$

A partir 2.40, on peut déduire la fonction de transfert est comme suit:

$$C(p) = \frac{\frac{1}{(1+0.2p)}}{\frac{10}{(1+25p)(1+10p)}\left(1-\frac{1}{(1+0.2p)}\right)} = \frac{250p^2+35p+1}{2p}$$
(2.44)

La forme PID parallèle peut être extraite à partir 2.44:

$$C(p) = \frac{35}{2} + \frac{1}{2p} + \frac{250}{2}p \tag{2.45}$$

La réponse du système corrigé pour une consigne de un (1) est illustrée sur la figure 2.20. Les résultats de l'exemple 11 peuvent être trouvés en utilisant le script Matlab [Script 7].

```
%Script: Exemple 11
1
  clc; close all; clear all;
2
  den=conv([25 1],[10 1])
3
  num=10
4
  G=tf(num, den)
\mathbf{5}
  Nc=[250 35 1]
6
  Dc=[2 0]
7
  C=tf(Nc,Dc)
8
  Gs=series(G,C)
9
  H=feedback(Gs,1)
10
  [y,t]=step(H);
11
12 plot(t,y)
13 hold on
14 plot(t, ones(length(t)), '--r')
15 xlabel('Temps (s)')
16 ylabel('Amplitude')
  title('Reponse indicielle')
17
  legend('reponse de systeme', 'consigne')
18
```


Figure 2.20: Boucle de régulation d'un système

Synthèse correcteur PI et IP pour les systèmes de premier ordre

Dans cette section nous allons présenter quelques méthodes permettant de synthétiser les correcteurs PI et IP (Intégral -Proportionnel) pour les systèmes de premier ordre.

Synthèse de correcteur PI

On considère la boucle de régulation illustrée sur la figure (2.21).

Soit G(p) un système de premier ordre peut être donné par une des fonction de transfert suivant:

$$G(p) = \frac{K}{(1+Tp)} \tag{2.46}$$

où K représente le gain statique et T représente la constante de temps La fonction de transfert de correcteur PI peut être donné par:

$$C(p) = K_p + \frac{K_i}{p} = \frac{K_p p + K_p}{p}$$
(2.47)

7. MÉTHODES DE SYNTHÈSE

Réalisé par Dr. OUNNAS D.

Figure 2.21: Boucle de régulation d'un système

Il existe plusieurs méthodes algébriques pour déterminer les paramètres de correcteur PI. Dans ce support de cours, nous allons présenter les deux méthodes suivante:

Méthode de placement des pôles

A partir la boucle de régulation 2.21, la FTBF peut être s'écrire comme suit:

$$H(p) = \frac{G(p)C(p)}{1 + G(p)C(p)} = \frac{\left(\frac{K}{1+Tp}\right)\left(\frac{K_ip + K_i}{p}\right)}{1 + \left(\frac{K}{1+Tp}\right)\left(\frac{K_ip + K_i}{p}\right)} = \frac{K(K_pp + K_i)}{Tp^2 + (KK_p + 1)p + KK_i} \quad (2.48)$$

De 2.48, on peut écrire:

$$H(p) = \frac{\frac{K(K_p p + K_i)}{T}}{p^2 + \frac{(KK_p + 1)}{T}p + \frac{KK_i}{T}}$$
(2.49)

La forme générale d'un système de deuxième ordre est donné par:

$$H_d(p) = \frac{K_s \omega_n^2}{p^2 + 2\xi \omega_n + \omega_n^2} \tag{2.50}$$

où K_s est le gains statique, ω_n est la pulsation propre et ξ est le facteur d'amortissement. A partir de l'équation caractéristique, on impose les pôles du système en boucle fermée de sorte que le système soit sous-amorti ($0.7 \leq \xi < 1$). Alors, par identification avec l'équation caractéristique avec 2.49, on trouve que:

$$\begin{cases} \frac{1+KK_p}{T} = 2\omega_n \xi \Rightarrow K_p = \frac{2\omega_n \xi T - 1}{K} \\ \frac{KK_p K_i}{T} = \omega_n^2 \Rightarrow K_i = \frac{\omega_n^2 T}{KK_p} \Rightarrow K_i = \frac{\omega_n^2 T}{2\omega_n \xi T - 1} \end{cases}$$
(2.51)

Méthode de compensation des pôles

Dans le cas de la méthode de placement des pôles, on remarque que la fonction de transfert en boucle fermée contient un zéro ce que peut modifier le régime transitoire du système. Pour remédier à ce problème, la méthode de compensation des pôles et plus adaptée pour le calcul des paramètres K_p et K_i . Elle consiste à imposer le zéro du régulateur égal à un pôle de la fonction de transfert du système à commander et une constante du temps répondant aux objectifs fixés.

La fonction de transfert en boucle fermée est :

$$H(p) = \frac{K(K_p p + K_i)}{p(1 + Tp) + (K_p p + K_i)} = \frac{KK_i(\frac{K_p}{K_i}p + 1)}{p(1 + Tp) + (K_p p + K_i)}$$
(2.52)

On pose:

$$\frac{K_p}{K_i}p + 1 = TP + 1 \tag{2.53}$$

v

$$H(p) = \frac{KK_i(\frac{K_p}{K_i}p+1)}{(1+Tp)(p+KK_i\frac{K_p}{K_i}p+1)} = \frac{KK_i}{p+KK_i} = \frac{1}{\frac{1}{KK_i}p+1}$$
(2.54)

Dans ce cas, on impose un comportement en boucle fermé similaire à un système de premier ordre caractérisé par un gain statique K_s et une constante de temps T_s , comme suit:

$$H_d(p) = \frac{K_s}{1 + T_s p} \tag{2.55}$$

A partie la condition 2.53, on peut trouver:

$$\frac{K_p}{K_i} = T \tag{2.56}$$

et par identification de 2.54 avec 2.55, on trouve:

$$\frac{1}{KK_i} = T_s \tag{2.57}$$

Finalement:

$$\begin{cases} K_p = \frac{T}{KT_s} \\ K_i = \frac{1}{KT_s} \end{cases}$$
(2.58)

Synthèse de correcteur IP

La commande des systèmes de premier ordre à l'aide des correcteurs Intégral proportionnelle (PI) dimensionnés par les méthodes de compensation des pôles ou de placement des pôles, présente les inconvénients suivants :

- La méthode de placement des pôles permet d'imposer n'importe quelle dynamique à la boucle fermée, néanmoins elle présente l'inconvénient d'introduire un zéro (non contrôlable) qui peut modifier la dynamique imposée.
- La méthode de compensation des pôles permet de remédier à ce problème, mais elle ne permet d'imposer qu'une dynamique du premier ordre, de plus le comportement de la régulation vis-à-vis de la perturbation est médiocre, car la dynamique du rejet de la perturbation n'est pas imposée par le correcteur. La structure de la commande IP permet de remédier à tous ces inconvénients.

La structure du correcteur IP est schématisée par la figure (2.22). Elle est une association d'une boucle interne munie du correcteur proportionnel et d'une boucle externe commandée par un correcteur intégrateur.

Figure 2.22: Commande par correcteur IP

A partir la boucle de régulation (2.22), la FTBF peut être s'écrire comme suit:

$$H(p) = \frac{KK_pK_i}{Tp^2 + (1 + KK_p)p + KK_pK_i} = \frac{\frac{KK_pK_i}{T}}{p^2 + \frac{1 + KK_p}{T}p + \frac{KK_pK_i}{T}}$$
(2.59)

Par identification avec le forme générale d'un système de deuxième ordre 2.51, on peut s'écrire:

$$\begin{cases} \frac{1+KK_p}{T} = 2\omega_n \xi \Rightarrow K_p = \frac{2\omega_n \xi T - 1}{K} \\ \frac{KK_p K_i}{T} = \omega_n^2 \Rightarrow K_i = \frac{T\omega_n^2}{2\omega_n \xi T - 1} \end{cases}$$
(2.60)

Exemple de commande d'un system de premier ordre

Dans cette section, nous allons traiter le problème de la commande en boucle fermée d'un système de premier ordre par un correcteur PI où nous allons essayer de synthétiser les paramétrés K_p et K_i par les méthodes de placement des pôles et compensation des pôles. Ensuite, nous allons commander ce système par un correcteur IP.

Exemple 12 On considère le système de premier ordre dont la fonction de transfert en boucle ouverte définie par:

$$G(p) = \frac{10}{(0.5p+1)} \tag{2.61}$$

Calculer les paramétrés de correcteur PI et correcteur IP qui garantir un temps de réponse $t_r \leq 0.5s$ et un dépassement $D\% \leq 10\%$

Pour répondre à cette question, on utilise directement les expressions trouvées cidessus 2.51, 2.58 et 2.61. Le script Matlab [Scipte 5] donne la solution complète de cet exercice.

```
1 %Scipt de exemple 12
2 clc;
3 close all;
4 clear all;
5 %System en BO
6 T=0.5;
7 K=10
8 G=tf(K,[T 1])
9 %Comportement souhaite
10 wn=100;
11 Ksi=0.6;
12 %Prametres de Placement des poles (Correceteur PI)
13 Kp_p=(2*wn*Ksi*T-1)/K;
14 Ki_p=wn^2*T/(K*Kp_p);
15 %Prametres de P Compensation des poles (Correceteur PI)
16 tr=0.5;
17 T_s=tr/3;
18 Kp_c=T/(K*T_s);
19 K_i_c=1/(K*T_s);
20 %Prametres de correcteur IP
21 Kp_ip=(2*Ksi*wn*T-1)/(K);
22 Ki_ip=(T*wn^2)/(K*Kp_ip);
23 %Correcteur PI et IP
24 Cpip=tf([Kp_p Ki_p],[1 0]);% placemet des pole
25 Cpic=tf([Kp_p Ki_p], [1 0]); % componsation des pole
26 %Nouvelle FTBO
27 Gsp=series(G,Cpip);
28 Gsc=series(G,Cpic);
29 %FTBF
30 Hp=feedback(Gsp,1); %FTBF Systeme+ Correcetur PI Placement des poles
31 Hc=feedback(Gsc,1); %FTBF Systeme+ Correcetur PI componsation ...
      des poles
32 Hip=tf(K*Kp_ip*Ki_ip,[T (1+K*Kp_ip) K*Kp_ip*Ki_ip ]);% %FTBF ...
      Systeme+ Correcetur IP
33 %Consigne echelon u=5/p
34 t=0:.2:5;
u=5*ones(size(t));
36 lsim(Hp,u,t);
37 hold on
38 lsim(Hc,u,t,'--g');
39 hold on
40 lsim(Hip,u,t,'.--');
41 plot(t,u,'--r')
42 xlabel('Temps');
43 ylabel('Amplitude');
44 title('Reponse indicielle');
45 legend('Correcteur PI avec placement des poles','Correcteur PI ...
      avec Componsation des poles', 'Correcteur IP', 'Consigne');
```

La figure (1.2) donne les résultats de simulation de trois méthode. On peut remarquer clairement que le correcteur IP donne les meilleurs performances.

7. MÉTHODES DE SYNTHÈSE

Figure 2.23: Commande d'un système de premier ordre par correcteur PI et IP

8 Exercices corrigés

Exercice 1. On souhaite asservir un système dont la fonction de transfert en boucle ouverte:

$$G(p) = \frac{8}{p^2 + 5p + 6}$$

On place ce système dans la chaîne directe d'une boucle de régulation, en cascade avec un correcteur proportionnel de gain K. La boucle de retour est assurée par un système de fonction de transfert B(p) = 3.

- Déterminer la condition nécessaire sur K pour que le système possède une marge de phase supérieure à 45° .

- Déterminer l'expression du nouveau correcteur C(p) qui permet d'avoir à la fois une marge de phase de 45° et une erreur de position inférieure à 0, 2.

Exercice 2. On souhaite asservir un système dont la fonction de transfert en boucle ouverte:

$$G(p) = \frac{1000}{p(p+10)^2}$$

On place ce système dans une boucle à retour unitaire avec un correcteur proportionnel de gain K.

- Déterminer la valeur de K qui assure au système une marge de phase supérieure à 45° .

- Calculer l'erreur de positon et l'erreur de vitesse.

On désire maintenant avoir un asservissement respectant les conditions: erreur de positon nulle et erreur de vitesse égale à 2%. Pour ce faire en ajoutant un correcteur à retard de phase.

Calculer les paramètres de nouveau correcteur.

Exercice 3. On souhaite asservir un système dont la fonction de transfert est:

$$G(p) = \frac{1000}{p(p+10)^2}$$

On désire réaliser un asservissement respectant les conditions:

- Réponse oscillatoire en boucle fermé.
- Dépassement e boucle fermée égale 5%.
- temps de réponse en boucle fermée (BF) égale à $0.6 \ s.$
- Erreur statique nulle.

-Proposer un correcteur au système sachant que le dépassent de système en boucle ouverte égale à 60%.

- à partie le cahier de charge, déterminer la marge de phase que doit avoir le système en boucle fermée et la pulsation de coupure à 0dB correspondante.

- Déterminer la marge de phase qu'aurait le système non corrigé à cette pulsation. En déduire les paramètres de correcteur.

Exercice 4. On souhaite asservir un système dont la fonction de transfert est:

$$G(p) = \frac{10}{(3p+1)}$$

- Calculer les paramètres d'un correcteur PI par la méthode de placement des pôles respectant les conditions: une réponse oscillatoire en boucle fermé, un dépassement en boucle fermée égale à 5% et un temps de montée en boucle fermée égale à 0.2 s.

Exercice 5. On souhaite asservir un système dont la fonction de transfert est:

$$G(p) = \frac{2}{(10p+1)}$$

- Calculer les paramètres d'un correcteur PI par la méthode de compensation qui assure au système en boucle fermée un montée égale à 0.3 s.

Exercice 6. On souhaite asservir un système dont la fonction de transfert est:

$$G(p) = \frac{6}{(50p+1)}$$

- Calculer les paramètres d'un correcteur IP respectant les conditions: - une réponse oscillatoire en boucle fermé, un dépassement e boucle fermée égale à 5% et un temps de montée en boucle fermée égale à 0.8 s. Exercice 7. On souhaite asservir un système dont la fonction de transfert est:

$$G(p) = \frac{25}{(0.1p+1)(0.5p+1)}$$

- Déterminer les la fonction de transfert d'un correcteur PID qui satisfait le cahier des charges suivant : On souhaite obtenir un comportement premier ordre en boucle fermée avec un temps de réponse à 5% égal 0.1 s et une précision statique parfaite.

9 Solutions des exercices

Solution d'exercice 1. La fonction de transfert en boucle ouverte est:

$$G_o(p) = KG(p)B(p) = \frac{24K}{p^2 + 5p + 6}$$

- Calcul de K qui assure au système marge de phase égale à 45° . On a:

$$M_{\varphi} = \pi + \varphi(\omega_{c0}) = \frac{\pi}{4} \Rightarrow \pi - atan(\frac{(6 - \omega_{c0}^2)}{5\omega_{c0}}) = \frac{\pi}{4} \Rightarrow \frac{(6 - \omega_{c0}^2)}{5\omega_{c0}} = tan\frac{3\pi}{4}.$$
$$\Rightarrow \frac{(6 - \omega_{c0}^2)}{5\omega_{c0}} = -1 \Rightarrow \omega_{c0}^2 - 5\omega_{c0} - 6 = 0 \Rightarrow \begin{cases} \omega_{c0_1} = 6\\ \omega_{c0_2} = -1 \end{cases}$$

d'autre part on a:

$$G_o(\omega_{c0}) = 1 \Rightarrow \frac{24K}{\sqrt{((6 - \omega_{c0}^2)^2 + 25\omega_{c0}^2)}} = 1 \Rightarrow K = \frac{\sqrt{((6 - \omega_{c0}^2)^2 + 25\omega_{c0}^2)}}{24} = 1.76$$

- Calcul de correcteur qui assure au système marge de phase égale à 45° et erreur de position égale à 2%.

Pour assurer les deux conditions de cahier des charge, il faut choisir un correcteur à retard de phase. La nouvelle FTBO plus correcteur est donnée par:

$$G_{oc}(p) = \frac{(1+Tp)}{1+aTp} \frac{42.2a}{p^2+5p+6}$$

On calcule l'erreur de position en boucle fermée, comme suit :

$$\varepsilon_p = \lim_{p \to 0} (1 - FTBF(p)) = 1 - \frac{42.2a}{42.2a + 1}$$

Pour obtenir une erreur de position de 2%, il est nécessaire de mettre

$$\varepsilon_p = 1 - \frac{42.2a}{42.2a+1} = 0.02 \Rightarrow a = 1.16;$$

Pour finir, il suffit de choisir T de manière à ce que 1/T soit très inférieur à la pulsation de coupure à 0dB. On peut prendre, par exemple, T = 10s.

On a finalement :

$$G(p) = 1.16 \frac{(1+10p)}{1+11.6p}$$

Solution d'exercice 2. La la fonction de transfert en boucle ouverte:

$$G(p) = \frac{1000K}{p(p+10)^2}$$

. . . . _ _ _

- Calcul de la valeur de K qui assure au système une marge de phase supérieure à $45^{\rm o}.$

On a:

$$M_{\varphi} = \pi + \varphi(\omega_{c0}) = \frac{\pi}{4} \Rightarrow \pi - \frac{\pi}{2} - 2atan\frac{\omega_{c0}}{10} = \frac{\pi}{4} \Rightarrow \omega_{c0} = 10tan\frac{\pi}{8} = 4.1421rad/s$$

d'autre part on a:

$$G(\omega_{c0}) = 1 \Rightarrow \frac{1000K}{\omega_{c0}(\omega_{c0}^2 + 10^2)} = 1 \Rightarrow K = \frac{\omega_{c0}(\omega_{c0}^2 + 10^2)}{1000} = 0.4853$$

- Calculer l'erreur de positon et l'erreur de vitesse. La fonction de transfert en boucle fermée est

$$H(p) = \frac{G(p)}{1 + G(p)} = \frac{1000K}{p(p+10)^2 + 1000K}$$

L'erreur de position en boucle fermée est

$$\varepsilon_p = \lim_{p \to 0} (1 - FTBF(p)) = \lim_{p \to 0} (1 - \frac{1000K}{p(p+10)^2 + 1000K}) = 1 - 1 = 0$$

L'erreur de vitesse en boucle fermée est

$$\varepsilon_v = \lim_{p \to 0} \frac{(1 - FTBF(p))}{p} = \lim_{p \to 0} \frac{1}{p} \left(\frac{p(p+10)^2}{p(p+10)^2 + 1000K}\right) = \frac{1}{10K} = 0.0485 = 4.85\%$$

Pour assurer les deux conditions de cahier des charge, il faut choisir un correcteur à retard de phase. La nouvelle FTBO plus correcteur est donnée par:

$$G_{oc}(p) = a \frac{(1+Tp)}{(1+aTp)} \frac{1000K}{p(p^2+10)}$$

On calcule l'erreur de vitesse en boucle fermée, comme suit :

$$\varepsilon_v = \lim_{p \to 0} \frac{(1 - FTBF(p))}{p} = \frac{1}{10Ka}$$

Pour obtenir une erreur de position de 2%, il est nécessaire de mettre

$$\varepsilon_p = \frac{1}{10Ka} = 0.02 \Rightarrow a = \frac{1}{10 \times 0.02K} = \frac{1}{10 \times 0.02 \times 0.4853} = 10.3$$

Pour finir, il suffit de choisir T de manière à ce que 1/T soit très inférieur à la pulsation de coupure à 0dB. On peut prendre, par exemple, T = 10s.

On a finalement :

$$G(p) = 1.16 \frac{(1+10p)}{1+11.6p}$$

9. SOLUTIONS DES EXERCICES

Solution d'exercice 3. La fonction de transfert du système est :

$$G(p) = \frac{1000}{p(p+10)^2}$$

-Proposition un correcteur au système sachant que le dépassent de système en boucle ouverte égale à 60%

Le dépassement est donné par:

$$D\% = 100e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}} = 60 \Rightarrow \xi = \sqrt{\frac{\ln(0.6)^2}{(\ln(0.6)^2 + \pi^2)}} = 0.1605$$

On a:

$$\xi = \frac{M_{\varphi}^{\circ}}{100} \Rightarrow M_{\varphi}^{\circ} = 100\xi = 100 * 0.1605 = 16^{\circ}$$

Pour augmenter la valeur de la marge de phase, on doit utiliser un correcteur à avance de phase.

$$C(p) = \frac{1 + aTp}{1 + Tp}$$

- Détermination de la marge de phase que doit avoir le système en boucle fermée et la pulsation de coupure à 0dB correspondante.

on a le temps de réponse en boucle fermée (BF) égale à $0.6 \ s$, on peut de déduire la pulsation de coupure à 0dB comme suit:

$$t_m = \frac{3}{\omega_{c0}} \Rightarrow \omega_{c0} = \frac{3}{t_m} = 5rad/s$$

On a aussi le dépassement e boucle fermée égale 5%.

$$D\% = 100e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}} = 5 \Rightarrow \xi = \sqrt{\frac{\ln(0.05)^2}{(\ln(0.05)^2 + \pi^2)}} = 0.7$$

- Déterminer la marge de phase qu'aurait le système non corrigé à cette pulsation. On a:

$$\xi = \frac{M_{\varphi}^{\circ}}{100} \Rightarrow M_{\varphi}^{\circ} = 100\xi = 100 * 0.7 = 70^{\circ}$$

Calcul de paramètres de correcteur à avance de phase.

Pour avoir une marge de phase, on doit procéder à une remontée de phase de 34° à la pulsation ω_{c0} . On introduit donc un correcteur à avance de phase que l'on règle de manière à ce que :

$$\varphi_{max} = (70^{\circ} - 16^{\circ}) = 54^{\circ} = \arcsin\frac{a-1}{a+1} \Rightarrow a = \frac{1+\sin 54^{\circ}}{1-\sin 54^{\circ}} = 9.4729$$

On a encore

$$\frac{1}{T\sqrt{a}} = \omega_{c0} \Rightarrow \frac{1}{T\sqrt{9.4729}} = 5 \Rightarrow T = 0.065 \text{ sec}$$

Finalement :

$$C(p) = \frac{1 + 0.6156p}{1 + 0.065p}$$

Solution d'exercice 4. La fonction de transfert du système est:

$$G(p) = \frac{10}{(3p+1)}$$

- *Calcul de paramètres de correcteur PI* La FTBF peut être s'écrire comme suit:

$$H(p) = \frac{G(p)C(p)}{1 + G(p)C(p)} = \frac{\left(\frac{10}{1+3p}\right)\left(\frac{K_ip + K_i}{p}\right)}{1 + \left(\frac{10}{1+3p}\right)\left(\frac{K_ip + K_i}{p}\right)} = \frac{10(K_pp + K_i)}{Tp^2 + (3K_p + 1)p + 10K_i}$$
$$H(p) = \frac{\frac{10(K_pp + K_i)}{3}}{p^2 + \frac{(10K_p + 1)}{3}p + \frac{10K_i}{3}}$$

D'après le cahier des charges, on peut déduire:

-Réponse oscillatoire en boucle fermé \Rightarrow le polynôme caractéristique d'un système de deuxième ordre est

$$D(p) = p^2 + 2\omega_n \xi + \omega_n^2$$

Dépassement e boucle fermée égale 5%

$$D\% = 100e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}} = 5 \Rightarrow \xi = \sqrt{\frac{\ln(0.05)^2}{(\ln(0.05)^2 + \pi^2)}} = 0.7$$

Temps de montée en boucle fermée égale à $0.2 \ s$.

$$t_m = \frac{3}{\omega_n} \Rightarrow \omega_n = \frac{3}{t_m} = 15 rad/s$$

Alors on peut écrire le polynôme caractéristique d'un système de deuxième ordre est

$$D(p) = p^2 + 21p + 225$$

Par identification, on obtient:

$$\begin{cases} \frac{(10K_p+1)}{3} = 21\\ \frac{10K_i}{3} = 225 \end{cases} \Rightarrow \begin{cases} K_p = 6.2\\ K_i = 67.5 \end{cases}$$

Solution d'exercice 5. La fonction de transfert du système est:

$$G(p) = \frac{2}{(10p+1)}$$

- Calculer les paramètres d'un correcteur PI par la méthode de compensation La fonction de transfert en boucle fermée est :

$$H(p) = \frac{2(K_p p + K_i)}{p(1+10p) + (K_p p + K_i)} = \frac{2K_i(\frac{K_p}{K_i}p + 1)}{p(1+10p) + (K_p p + K_i)}$$

On pose:

$$\frac{K_p}{K_i}p + 1 = 10P + 1$$

9. SOLUTIONS DES EXERCICES

Réalisé par Dr. OUNNAS D.

v

$$H(p) = \frac{2K_i(\frac{K_p}{K_i}p+1)}{(1+10p)(p+2K_i\frac{K_p}{K_i}p+1)} = \frac{2K_i}{p+2K_i} = \frac{1}{\frac{1}{\frac{1}{2K_i}p+1}}$$

Un système de premier ordre est caractérisé par un gain statique K_s et une constante de temps T_s , comme suit:

$$H_d(p) = \frac{K_s}{1 + T_s p}$$

On obtient:

$$\frac{K_p}{K_i} = 10$$

et par identification, on trouve:

$$\frac{1}{2K_i} = T_s$$

où le temps de réponse est:

$$t_r = 3T_s \Rightarrow T_s = \frac{t_r}{3} = \frac{0.3}{3} = 0.1$$

Finalement:

$$\begin{cases} K_p = \frac{T}{KT_s} = \frac{10}{2 \times 0.1} = 50\\ K_i = \frac{1}{KT_s} = \frac{1}{2 \times 0.1} = 5 \end{cases}$$

Solution d'exercice 6. La fonction de transfert du système est: est:

$$G(p) = \frac{6}{(50p+1)}$$

- *Calcul de paramètres de correcteur IP* la FTBF peut être s'écrire comme suit:

$$H(p) = \frac{6K_pK_i}{50p^2 + (1+6K_p)p + 6K_pK_i} = \frac{\frac{6K_pK_i}{50}}{p^2 + \frac{1+6K_p}{50}p + \frac{6K_pK_i}{50}}$$

D'après le cahier des charges, on peut déduire:

-Réponse oscillatoire en boucle fermé \Rightarrow le polynôme caractéristique d'un système de deuxième ordre est

$$D(p) = p^2 + 2\omega_n \xi p + \omega_n^2$$

Dépassement e boucle fermée égale 5%

$$D\% = 100e^{-\frac{\xi\pi}{\sqrt{1-\xi^2}}} = 5 \Rightarrow \xi = \sqrt{\frac{\ln(0.05)^2}{(\ln(0.05)^2 + \pi^2)}} = 0.7$$

Temps de montée en boucle fermée égale à $0.8 \ s.$

$$t_m = \frac{3}{\omega_n} \Rightarrow \omega_n = \frac{3}{t_m} = 3.75 rad/s$$

Réalisé par Dr. OUNNAS D.

44

Alors on peut écrire le polynôme caractéristique d'un système de deuxième ordre est

$$D(p) = p^2 + 5.25p + 14$$

Par identification avec le polynôme caractéristique d'un système de deuxième ordre, on peut s'écrire:

$$\begin{cases} \frac{1+6K_p}{50} = 5.25 \Rightarrow K_p = \frac{5.25 \times 50 - 1}{6} \\ \frac{6K_pK_i}{50} = 14 \Rightarrow K_i = \frac{50 \times 14}{5.25 \times 50 - 1} \end{cases} \Rightarrow \begin{cases} K_p = 43.5833 \\ K_i = 0.0535 \end{cases}$$

Solution d'exercice 7. La fonction de transfert du système est: est:

$$G(p) = \frac{25}{(0.1p+1)(0.5p+1)}$$

- Détermination de la fonction de transfert d'un correcteur PID La fonction de transfert en boucle fermée:

$$H(p) = \frac{G(p)C(p)}{1 + G(p)C(p)}$$

On pose $H(p) = H_d(p)$. Dans ce cas, on peut déduire le correcteur C(p), comme suit:

$$C(p) = \frac{H_d(p)}{G(p)(1 - H_d(p))}$$

La forme générale d'un système de premier ordre est donnée par:

$$H_d(p) = \frac{K}{(1+Tp)}$$

Selon le cahier des charges $t_r = 3T \Rightarrow T = t_r/3 \Rightarrow T = 0.1/3 = 0.0333s$, et une précision statique parfaite $\Rightarrow K = 1$ ce que nous permet d'écrire le comportement désiré, comme suit:

$$H_d(p) = \frac{1}{(1+0.0333p)}$$

On peut déduire la fonction de transfert est comme suit:

$$C(p) = \frac{\frac{1}{(1+0.0333p)}}{\frac{25}{(1+0.1p)(1+0.5p)}\left(1 - \frac{1}{(1+0.0333p)}\right)} = \frac{0.05p^2 + 0.6p + 1}{25p}$$

La fonction de transfert de correcteur PID est:

$$C(p) = \frac{0.6}{25} + \frac{1}{25p} + \frac{0.05}{25}p$$

9. SOLUTIONS DES EXERCICES

Chapter 3

Représentation d'état des systèmes linéaires

1 Introduction

La fonction de transfert a l'avantage d'être d'utilisation simple, mais cette simplicité est perdue dans le cas des multivariable de transfert. De plus, les conditions initiales ne sont pas facilement prises en compte, et seules les parties observables et gouvernables sont représentées. Malgré tout, les représentations fréquentielles, à la base de ces représentations, donnent une vision irremplaçable sur les comportements externes des systèmes.

Dans cette deuxième partie, nous présenterons la modélisation des systèmes linéaires par une autre approche appelée *représentation d'état* qui permet de modéliser un système dynamique en utilisant des variables d'état. Cette représentation permet de déterminer l'état du système à n'importe quel instant futur si l'on connaît l'état à l'instant initial et le comportement des variables exogènes qui influent sur le système. La représentation d'état du système permet de connaître son comportement "*interne*" et pas seulement son comportement "*externe*" comme c'est le cas avec sa fonction de transfert.

2 Équations d'état

De nombreux processus physiques peuvent être décrits par des équations différentielles et algébriques. La représentation d'état pour un système linéaire et invariant dans le temps a la forme générale suivante:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases} \qquad x(t_0) = x_0 \tag{3.1}$$

où $x(t) = \begin{bmatrix} x_1(t) & x_2(t) & \dots & x_n(t) \end{bmatrix}$ est le vecteur d'état à n dimensions. $x_1, x_2, \dots x_n$ sont appelés les variable d'état. $u(t) = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}$ est le vecteur d'entrée ou de commande à m dimensions. $u_1, u_2, \dots u_m$ sont appelés les entrées. $y(t) = \begin{bmatrix} y_1 & y_2 & \dots & y_m \end{bmatrix}$ est le vecteur sortie ou d'observation à p dimensions. $y_1, y_2, \dots y_p$ sont appelés les sorties.

A, B, C et D sont des matrices constantes. La matrice A de dimension $n \times n$ est appelée matrice d'état (ou encore matrice d'évolution). La matrice B de dimension $n \times m$ est appelée matrice de commande (ou encore matrice d'entrée). La matrice C de dimension $p \times n$ est appelée la matrice d'observation. La matrice D de dimension $p \times m$ est appelée la matrice de couplage (souvent D = 0).

Le système d'équations différentielles d'ordre un dx(t)/dt = Ax(t) + Bu(t) est appelé équation d'état ou équation de commande. L'équation y(t) = Cx(t) + Du(t)est appelée équation de sortie ou équation d'observation.

Exemple 13 moteur à courant continu couplé à un accouplement flexible: La figure (3.3) montre un moteur à courant continu couplé à un accouplement flexible. R et L sont la résistance et l'inductance d'induit, k et b sont respectivement la constante de ressort et le coefficient d'amortissement de l'accouplement flexible et J_m et J_l sont respectivement les moments d'inertie de moteur et de la charge du moteur. u est la tension d'alimentation du MCC qui représente l'entrée du système et θ_l est la position angulaire de charge qui représente la sortie du système.

Figure 3.1: moteur à courant continu couplé à un accouplement flexible

Si les deux inerties sont séparées l'une de l'autre et que les couples appropriés $(T_k; T_b; T_a)$ sont ajoutés comme indiqué sur la figure (3.2), on peut écrire la deuxième loi de Newton comme suit:

$$J_m \ddot{\theta}_m(t) = K_a i(t) + K(\theta_l(t) - \theta_m(t)) + b(\dot{\theta}_l(t) - \dot{\theta}_m(t)) - b_m \dot{\theta}_m(t), \qquad (3.2)$$

$$J_{l}\ddot{\theta}_{l}(t) = -k(\dot{\theta}_{l}(t) - \dot{\theta}_{m}(t)) - b(\dot{\theta}_{l}(t) - \dot{\theta}_{m}(t)) - b_{l}\dot{\theta}_{l}(t).$$
(3.3)

où K_a représente la constante de couple, b_m et b_l sont respectivement les coefficients de frottement visqueux des roulements du moteur et de l'arbre de charge. L'application de la loi d'Ohm et la loi de Kirchhoff au circuit électrique de système

Figure 3.2: Moments d'inertie du système

permet d'écrire:

$$\frac{di}{dt} = -\frac{R}{L}i(t) - \frac{k_e}{L}\dot{\theta}_m(t) + \frac{1}{L}u(t).$$
(3.4)

où k_e est le coefficient d'induction des enroulements d'induit du moteur. Si on choisi les variables d'état comme suit: $x_1 = i, x_2 = \theta_m, x_3 = \dot{\theta}_m, x_4 = \theta_l$ et $x_5 = \dot{\theta}_l$, alors on peut écrire les équations suivantes:

$$\begin{cases} \dot{x_1} = \dot{i} = -\frac{R}{L}i(t) - \frac{k_e}{L}\dot{\theta}_m(t) + \frac{1}{L}u\\ \dot{x_2} = \dot{\theta}_m = x_3\\ + \dot{x_3} = \ddot{\theta}_m = \frac{K_a}{J_m}i - \frac{k}{J_m}\theta_m - \frac{b+b_m}{J_m}\dot{\theta}_m + \frac{k}{J_m}\theta_l + \frac{b}{J_m}\dot{\theta}_l\\ \dot{x_4} = \dot{\theta}_l = x_5\\ \dot{x_5} = \ddot{\theta}_l = \frac{k}{J_l}\theta_m + \frac{b}{J_l}\dot{\theta}_m - \frac{k}{J_l}\theta_l - \frac{b+b_l}{J_l}\dot{\theta}_l \end{cases}$$
(3.5)

On peut réécrire les équations 3.5 comme suit:

$$\begin{cases} \dot{x_1} = -\frac{R}{L}x_1 + 0x_2 - \frac{k_e}{L}x_3 + 0x_4 + 0x_5 + \frac{1}{L}u \\ \dot{x_2} = 0x_1 + 0x_2 + 1x_3 + 0x_4 + 0x_5 + 0u(t) \\ \dot{x_3} = \frac{K_a}{J_m}x_1 - \frac{k}{J_m}x_2 - \frac{b+b_m}{J_m}x_3 + \frac{k}{J_m}x_4 + \frac{b}{J_m}x_5 + 0u \\ \dot{x_4} = 0x_1 + 0x_2 + 1x_3 + 0x_4 + 1x_5 + 0u(t) \\ \dot{x_5} = 0x_1 + \frac{k}{J_l}x_2 + \frac{b}{J_l}x_3 - \frac{k}{J_l}x_4 - \frac{b+b_l}{J_l}x_5 + 0u \end{cases}$$
(3.6)

On peut écrire les équations 3.6 sous la forme matricielle suivante:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \\ \dot{x}_5 \end{bmatrix} = \begin{bmatrix} -\frac{R}{L} & 0 & -\frac{k_e}{L} & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \frac{K_a}{J_m} & -\frac{k}{J_m} & -\frac{b+b_m}{J_m} & \frac{k}{J_m} & \frac{b}{J_m} \\ 0 & 0 & 0 & 0 & 1 \\ 0 & \frac{k}{J_l} & \frac{b}{J_l} & -\frac{k}{J_l} & -\frac{b+b_l}{J_l} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} -\frac{1}{L} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} u \quad (3.7)$$

Si on prend les angles θ_m et θ_l comme sorties de système, alors on peut écrire l'équation de sortie comme suit:

$$y = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + 0u$$
(3.8)

Exemple 14 On considère le circuit électrique ci-dessus ou $V_e(t)$ représente la tension d'entrée et $V_s(t)$ la tension de sortie. on désire dans ce exemple proposer une représentation d'état pour ce circuit.

L'application de la loi d'Ohm et la loi de Kirchhoff permet d'écrire:

$$V_e(t) = V_c(t) \tag{3.9}$$

$$V_s(t) = Ri_L(t) \tag{3.10}$$

$$V_e(t) = L\frac{di_L}{dt} + Ri_L(t)$$
(3.11)

$$V_c(t) = \frac{1}{c} \int i_c dt \tag{3.12}$$

$$i(t) = i_c(t) + i_L(t)$$
 (3.13)

2. ÉQUATIONS D'ÉTAT

Figure 3.3: Circuit électrique

à partir de l'équation 3.9, on peut déduire:

$$\frac{di_L}{dt} = -\frac{R}{L}i_L(t) + \frac{1}{L}V_e(t)$$
(3.14)

à partir de l'équation 3.11 et de l'équation 3.12, on peut écrire:

$$\frac{dV_c}{dt} = \frac{1}{c}i_c = \frac{1}{c}(i(t) - i_L(t)) = -\frac{1}{c}i_L(t) + \frac{1}{c}i(t)$$
(3.15)

Si on choisi comme variables d'état $x_1 = i_L$, $x_2 = V_c$ et on prend V_e comme entrée connue de système, i(t) comme entrée inconnue de système et V_s comme sortie de système, Alors on peut écrire:

$$\begin{cases} \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{R}{L} & 0 \\ -\frac{1}{c} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} \frac{1}{L} \\ 0 \end{bmatrix} V_e + \begin{bmatrix} 0 \\ \frac{1}{c} \end{bmatrix} i$$

$$y = \begin{bmatrix} R & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(3.16)

Le code Matlab [Script 8] peut être utilisé pour déclarer la représentation d'état de système présenté dans l'exemple 14 :

```
1 % Script pour l'exemple 15
2 clc, clear all, close all;
3
4 A=[-R/L,0;1/C,0]
5 B=[-R/L;0]
6 C=[R 0]
7 D=0
8 Sys=ss(A,B,C,D)
```

3 Obtention de la représentation d'état

Dans cette sous section, nous présentation les méthode permettant d'obtenir la représentation d'état d'un système linéaire à partir de sa fonction de transfert.

On considère un système de fonction de transfert G(p) défini par:

$$G(p) = \frac{b_m p^m + b_{m-1} p^{m-1} + b_{m-2} p^{m-2} + \ldots + b_1 p + b_0}{p^n + a_{n-1} p^{n-1} + a_{n-2} p^{n-2} + \ldots + a_1 p + a_0}$$
(3.17)

3.1 Représentation d'état diagonale ou quasi diagonale

Cas de pôles distincts

On suppose que la fonction de transfert de système prend la forme suivante:

$$G(p) = \frac{Y(p)}{U(p)} = \frac{\alpha_1}{p - \lambda_1} + \frac{\alpha_2}{p - \lambda_2} + \dots \frac{\alpha_n}{p - \lambda_n} = \sum_{i=1}^n \frac{\alpha_i}{p - \lambda_i}$$
(3.18)

On pose:

$$X_i(p) = \frac{\alpha_i}{p - \lambda_i} U(p) \tag{3.19}$$

Alors on peut écrire la sortie Y(p) comme suit:

$$Y(p) = \sum_{i=1}^{n} \frac{\alpha_1}{p - \lambda_i} U(p) = \sum_{i=1}^{n} X_i(p)$$
(3.20)

à partir l'équation 3.19, on peut déduire:

$$pX_i(p) = \alpha_i X_i(p) + \lambda_i U(p)$$
(3.21)

On applique la transformée de la Laplace inverse à l'équation 3.21, on trouve:

$$\dot{x}_i(t) = \alpha_i x_i(t) + \lambda_i u(t) \tag{3.22}$$

à partir l'équation 3.22, on peur écrire:

$$\begin{cases}
 i = 1 : \dot{x}_{1}(t) = \alpha_{1}x_{1}(t) + \lambda_{1}u(t) \\
 i = 2 : \dot{x}_{2}(t) = \alpha_{2}x_{2}(t) + \lambda_{2}u(t) \\
 \vdots \\
 i = n : \dot{x}_{n}(t) = \alpha_{n}x_{n}(t) + \lambda_{n}u(t)
 \end{cases}$$
(3.23)

L'équation 3.23 peut être transformée à la forme matricielle suivante:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$
(3.24)

On applique la transformée de la Laplace inverse à l'équation 3.20, on trouve:

$$y(t) = x_1(t) + x_2(t) + \ldots + x_2(t)$$
(3.25)

à partir l'équation 3.25, on peut écrire la forme matricielle suivante:

$$y(t) = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$
(3.26)

3. OBTENTION DE LA REPRÉSENTATION D'ÉTAT Réalisé par Dr. OUNNAS D.

Finalement, la représentation d'état d'un système décrit par une fonction de transfert de la forme 3.18 peut être donnée par:

$$\begin{cases} \dot{x} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} x(t) + \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix} x(t) \end{cases}$$
(3.27)

Exemple 15 On considère un système dont la fonction de transfert suivante

$$G(p) = \frac{5}{p+1} + \frac{-3}{p-2} + \frac{4}{p-7}$$
(3.28)

On peut directement déduire la représentation de système comme suit:

$$\begin{cases} \dot{x} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 7 \end{bmatrix} x(t) + \begin{bmatrix} 5 \\ -3 \\ 7 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} x(t)$$
(3.29)

Cas de pôles multiples

On suppose que la fonction de transfert de système prend la forme suivante:

$$G(p) = \frac{Y(p)}{U(p)} = \frac{\alpha_1}{(p-\lambda)^1} + \frac{\alpha_2}{(p-\lambda)^2} + \dots + \frac{\alpha_n}{(p-\lambda)^n} = \sum_{i=1}^n \frac{\alpha_i}{(p-\lambda)^i}$$
(3.30)

On peut écrire la sortie Y(p) comme suit:

$$Y(p) = \sum_{i=1}^{n} \alpha_i \frac{U(p)}{(p-\lambda)^i}$$
(3.31)

On pose:

$$X_{n+1-i}(p) = \frac{U(p)}{(p-\lambda)^{i}}$$
(3.32)

à partir l'équation 3.32, on peut déduire:

$$\begin{cases} i = 1 : X_n(p) = \frac{U(p)}{(p-\lambda)} \Rightarrow pX_n = \lambda X_n + U(p) \\ i = 2 : X_{n-1}(p) = \frac{U(p)}{(p-\lambda)^2} = \frac{U(p)}{(p-\lambda)} \frac{1}{(p-\lambda)} = \frac{X_n}{(p-\lambda)} \Rightarrow pX_{n-1} = X_n + \lambda X_{n-1} \\ i = 3 : X_{n-2}(p) = \frac{U(p)}{(p-\lambda)^3} = \frac{U(p)}{(p-\lambda)^2} \frac{1}{(p-\lambda)} = \frac{X_{n-1}}{(p-\lambda)} \Rightarrow pX_{n-2} = X_{n-1} + \lambda X_{n-2} \\ \vdots \\ i = n : X_1(p) = \frac{U(p)}{(p-\lambda)^n} = \frac{U(p)}{(p-\lambda)^{n-1}} \frac{1}{(p-\lambda)} = \frac{X_2}{(p-\lambda)} \Rightarrow pX_1 = X_1 + \lambda X_2 \end{cases}$$
(3.33)

On applique la transformée de la Laplace inverse aux équations 3.33, on trouve:

$$\begin{cases}
i = 1 : \dot{x}_{n}(t) = \lambda x_{n}(t) + u(t) \\
i = 2 : \dot{x}_{n-1}(t) = x_{n}(t) + \lambda x_{n-1}(t) \\
i = 3 : \dot{x}_{n-2}(t) = x_{n-1}(t) + \lambda x_{n-2}(t) \\
\vdots \\
i = n : \dot{x}_{1}(t) = x_{1}(t) + \lambda x_{2}(t)
\end{cases}$$
(3.34)

à partir l'équation 3.34, on peut écrire la forme matricielle suivante:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} \lambda & 1 & \dots & \dots & 0 \\ 0 & \lambda & \ddots & & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & 1 \\ 0 & 0 & \dots & \dots & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 1 \end{bmatrix} u(t)$$
(3.35)

En utilisant 3.32, on peut écrire l'équation 3.31 comme suit:

$$Y(p) = \sum_{i=1}^{n} \alpha_i X_{n+1-i} = \alpha_1 X_n + \alpha_2 X_{n-1} + \ldots + \alpha_n X_1$$
(3.36)

On applique la transformée de Laplace inverse à l'équation 3.36 on trouve:

$$y(t) = \alpha_1 x_n(t) + \alpha_2 x_{n-1}(t) + \ldots + \alpha_n x_1(t) = \left[\begin{array}{ccc} \alpha_n & \alpha_{n-1} & \ldots & \alpha_1 \end{array} \right] x(t) \quad (3.37)$$

Finalement, la représentation d'état d'un système décrit par une fonction de transfert de la forme 3.30 peut être donnée par:

$$\begin{cases} \dot{x} = \begin{bmatrix} \lambda & 1 & \dots & \dots & 0 \\ 0 & \lambda & \ddots & & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & 1 \\ 0 & 0 & \dots & \dots & \lambda \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 1 \end{bmatrix} u(t)$$

$$y(t) = \begin{bmatrix} \alpha_n & \alpha_{n-1} & \dots & \alpha_n \end{bmatrix} x(t)$$

$$(3.38)$$

Exemple 16 On considère un système dont la fonction de transfert suivante

$$G(p) = \frac{1}{p+3} + \frac{-3}{(p+3)^2} + \frac{2}{(p+3)^3}$$
(3.39)

On peut directement déduire la représentation de système comme suit:

$$\begin{cases} \dot{x} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 2 & -3 & 1 \end{bmatrix} x(t) \end{cases}$$
(3.40)

3. OBTENTION DE LA REPRÉSENTATION D'ÉTAT Réalisé par Dr. OUNNAS D.

3.2 Représentation d'état canonique (forme compagne)

Il existe plusieurs représentation d'état de forme compagne qui peuvent être facilement obtenues à partir de la fonction de transfert. Cette sous-section est restreint aux formes compagnes les plus classiques. Les deux formes dites "compagnes" les plus communément rencontrées sont : Forme compagne horizontale (réalisation canonique de commande) et forme compagne verticale (réalisation canonique d'observation).

Forme compagne horizontale

On considère un système de fonction de transfert G(p) défini par:

$$G(p) = \frac{b_m p^m + b_{m-1} p^{m-1} + b_{m-2} p^{m-2} + \dots + b_1 p + b_0}{p^n + a_{n-1} p^{n-1} + a_{n-2} p^{n-2} + \dots + a_1 p + a_0}$$
(3.41)

on pose

$$\begin{cases} x_1(t) = y(t) \\ x_2(t) = \dot{y}(t) \\ \vdots \\ x_n(t) = \frac{d^{n-1}y}{dt^{n-1}} \end{cases}$$
(3.42)

On obtient alors la forme compagne horizontale suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 & \dots & 0 \\ 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \ddots & 1 \\ -a_0 & -a_1 & \dots & -a_{n-1} \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} u(t)$$
(3.43)
$$y(t) = \begin{bmatrix} b_0 & b_1 & \dots & b_n & 0 \dots 0 \end{bmatrix} x(t)$$

Exemple 17 On considère un système dont la fonction de transfert suivante:

$$G(p) = \frac{3p^2 + 5p + 2}{p^3 + 7p^2 + 6p + 2}$$
(3.44)

L'utilisation de 3.43 permet de déduire la représentation d'état sous la forme compagne horizontale, comme suit:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -6 & -7 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 2 & 5 & 3 \end{bmatrix} x(t) \end{cases}$$
(3.45)

Forme compagne verticale

On considère un système de fonction de transfert G(p) donné par:

$$G(p) = \frac{Y(p)}{U(p)} = \frac{b_m p^m + b_{m-1} p^{m-1} + b_{m-2} p^{m-2} + \dots + b_1 p + b_0}{p^n + a_{n-1} p^{n-1} + a_{n-2} p^{n-2} + \dots + a_1 p + a_0}$$
(3.46)

on pose

$$\begin{cases} x_{1}(t) = y(t) \\ x_{2}(t) = \frac{d^{n-1}y}{dt^{n-1}} + \dot{y}(t) \\ \vdots \\ x_{n-1}(t) = a_{2}y + a_{3}\dot{y} + \dots + \frac{d^{n-2}y}{dt^{n-2}} - \left(b_{2}u + \dots + b_{m}\frac{d^{m-2}u}{dt^{m-2}}\right) \\ x_{n}(t) = a_{1}y + a_{2}\dot{y} + \dots + \frac{d^{n-1}y}{dt^{n-1}} - \left(b_{1}u + \dots + b_{m}\frac{d^{m-1}u}{dt^{m-1}}\right) \end{cases}$$
(3.47)

On obtient alors la forme compagne verticale suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} a_{n-1} & 1 & \dots & 0 \\ a_{n-2} & 0 & \ddots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -a_1 & 0 & \dots & \ddots & 1 \\ -a_0 & 0 & \dots & \dots & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_m \\ \vdots \\ b_0 \end{bmatrix} u(t)$$
(3.48)
$$y(t) = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} x(t)$$

Exemple 18 On considère un système dont la fonction de transfert suivante

$$G(p) = \frac{3p^2 + 5p + 2}{p^3 + 7p^2 + 6p + 2}$$
(3.49)

L'utilisation de 3.48 permet de déduire la représentation d'état sous la forme compagne verticale, comme suit:

$$\begin{cases} \dot{x} = \begin{bmatrix} -7 & 1 & 0 \\ -6 & 0 & 1 \\ -2 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t)$$
(3.50)

4 De la FT à la représentation d'état

On considère un système décrit par sa représentation d'état suivante:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$
(3.51)

4. DE LA FT À LA REPRÉSENTATION D'ÉTAT Réalisé par Dr. OUNNAS D.

On applique la transformée de Laplace au système 3.51, on obtient:

$$\begin{cases} pX(p) = AX(p) + BU(p) \\ Y(p) = CX(p) + DU(p) \end{cases}$$
(3.52)

à partir de la première équation de 3.52, on peut écrire:

$$X(p) = (pI - A)^{-1}BU(p)$$
(3.53)

On substitue X(p) dans la deuxième équation de 3.52, on obtient:

$$Y(p) = \left(C([pI - A])^{-1} + D\right)U(p)$$
(3.54)

Exemple 19 On considère un système décrit par la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -6 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t) \end{cases}$$
(3.55)

On calcule tout d'abord la matrice $(pI - A)^{-1}$.

$$(pI - A) = \begin{bmatrix} p & -1 \\ 6 & p+2 \end{bmatrix} \Rightarrow (pI - A)^{-1} = \frac{1}{(p^2 + 2p + 6)} \begin{bmatrix} p+2 & +1 \\ -6 & p \end{bmatrix}$$
(3.56)

Alors la fonction de transfert peut être calculée comme suit:

$$Y(p) = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{(p+3)} & \frac{1}{(p+3)(p+2)} \\ \frac{-6}{(p+3)(p+2)} & \frac{p}{(p+3)(p+2)} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{2p-3}{(p^2+2p+6)}$$
(3.57)

Le code Matlab [Script 9] peut être utilisé pour calculer la représentation d'état de système présenté dans l'exemple 19 :

```
1 % Script pour l'exemple 19
2 clc, clear all, close all;
3
4 A=[0,1;-6,-2]
5 B=[1;1]
6 C=[1 1]
7 D=0
8 [N,D]=ss2tf(A,B,C,D)
9 Fonction_de_transfert=tf(N,D)
```

5 Exercices corrigés

Exercice 1. On considère un moteur à courant continu régi par les équations électrique et mécanique suivantes:

$$\begin{cases} u(t) = Ri(t) + L\frac{i(t)}{dt} + e(t) \\ J\frac{\omega(t)}{dt} = C_m(t) - f\omega(t) - r\theta(t) - C_r(t) \\ e(t) = K\omega \\ C_m(t) = Ki(t) \end{cases}$$

 C_m est le couple électromagnétique. C_r est le couple de charge (perturbation). f est le coefficient de frottement visqueux et r est la constate de rappel, J est le moment d'inertie de l'axe du rotor. K est représente les constantes de vitesse et de couple. u(t) est la tension appliquée au moteur. e(t) est la force contre électromotrice. i(t) est le l'intensité traversant le moteur. $\omega(t)$ est la vitesse de rotation du rotoret $\theta(t)$ est l'angle du rotor.

La sortie observée y est la position angulaire. C_r est considéré comme une entrée supplémentaire.

Donner les équations d'état du système.

Exercice 2. On considère un système électromécanique représenté par le schéma ci-dessous.

Figure 3.4: Schéma fonctionnel d'un système électromécanique

Déterminer les modèle d'état de système

Exercice 3. La dynamique d'un hélicoptère peut être décrite par les équations différentielles suivantes :

$$\begin{cases} \frac{d^2\rho(t)}{dt^2} = -0.65\frac{d\rho(t)}{dt} - 0.02\frac{dx(t)}{dt} + 5.4\alpha(t) \\ \frac{d^2x(t)}{dt^2} = -1.57\frac{d\rho(t)}{dt} - 0.03\frac{dx(t)}{dt} + 9.8(\rho(t) + \alpha(t)) \end{cases}$$

Où ρ est l'angle de tangage qui peut être commandé par l'angle α et x est la position horizontale. Les sortie observées sont l'angle de tangage et la position. déterminer une représentation d'état pour ce système.

5. EXERCICES CORRIGÉS

Exercice 3. Soit uns système de fonction de transfert suivanteG(p) définie par :

$$G(p) = \frac{2p+1}{p^3 + 7p^2 + 5p + 6}$$

Donner les représentation d'état de système sous formes compagne horizontale et compagne verticale.

6 Solutions des exercices

Solution d'exercice 1. Les équation de système sont données par:

$$\begin{cases} u(t) = Ri(t) + L\frac{i(t)}{dt} + e(t) \\ J\frac{\omega(t)}{dt} = C_m(t) - f\omega(t) - r\theta(t) - C_r(t) \\ e(t) = K\omega(t) \\ C_m(t) = Ki(t) \end{cases}$$

à partir ces équation, on peut écrire:

$$\begin{cases} \frac{di(t)}{dt} = -\frac{R}{L}i(t) - \frac{K}{L}\omega(t) + \frac{1}{L}u(t) \\ \frac{d\omega(t)}{dt} = \frac{K}{J}i(t) - \frac{f}{J}\omega(t) - \frac{r}{J}\theta(t) - \frac{1}{J}C_r(t) \\ \frac{d\theta(t)}{dt} = \omega \end{cases}$$

Si on choisi $x = \begin{bmatrix} i & \omega & \theta \end{bmatrix}^T$ alors on peut déduire la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -\frac{R}{L} & -\frac{K}{L} & 0\\ \frac{K}{J} & \frac{f}{J} & \frac{r}{J}\\ 0 & 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} \frac{1}{L} \\ 0\\ 0 \end{bmatrix} u(t) + \begin{bmatrix} 0\\ -\frac{1}{J}\\ 0 \end{bmatrix} C_r(t) \\ y(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x(t) \end{cases}$$

Solution d'exercice 2. à partie le schéma 3.4, on peut déduire la représentation suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -3 & 0.5 \\ 4 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 2 \\ 2 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t) \end{cases}$$

Solution d'exercice 3. La dynamique de l'hélicoptère est décrite par les équations différentielles suivantes :

$$\begin{cases} \frac{d^2\rho(t)}{dt^2} = -0.65\frac{d\rho(t)}{dt} - 0.02\frac{dx(t)}{dt} + 5.4\alpha(t) \\ \frac{d^2x(t)}{dt^2} = -1.57\frac{d\rho(t)}{dt} - 0.03\frac{dx(t)}{dt} + 9.8(\rho(t) + \alpha(t)) \end{cases}$$

Si on prend:

$$\begin{cases} x_1 = \dot{\rho} \\ x_2 = \rho \\ x_3 = \dot{x} \\ x_4 = x \end{cases} \Rightarrow \begin{cases} \dot{x}_1 = \ddot{\rho} = -0.65x_1 - 0.02x_3 + 5.4\alpha(t) \\ \dot{x}_2 = \dot{\rho} = x_1 \\ \dot{x}_3 = \ddot{x} = 1.57x_1 + 9.8x_2 - 0.03x_3 + 9.8\alpha(t) \\ \dot{x}_4 = \dot{x} = x_3 \end{cases}$$

Alors on peut déduire la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -0.65 & 0 & -0.02 & 0 \\ 1 & 0 & 0 & 0 \\ 1.57 & 9.8 & -0.03 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 5.4 \\ 0 \\ 9.8 \\ 0 \end{bmatrix} \alpha(t) \\ y(t) = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} x(t) \end{cases}$$

Solution d'exercice 4. La fonction de transfert est définie par :

$$G(p) = \frac{2p+1}{p^3 + 7p^2 + 5p + 6}$$

à partir les équations 3.43, on peut déduire la forme compagne horizontale suivante

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ -6 & -5 & -7 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} x(t) \end{cases}$$

à partir les équations 3.48, on peut déduire la forme compagne verticale suivante :

$$\begin{cases} \dot{x} = \begin{bmatrix} -7 & 1 & 0 \\ -5 & 0 & 1 \\ -6 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t) \end{cases}$$

:

Chapter 4

Réponse d'un modèle d'état

1 Introduction

La réponse d'un système consiste à déterminer sa sortie y(t) délivrée sous l'effet d'une excitation u(t) (par exemple impulsion, échelon ou sinusoïde), tout en utilisant le modèle d'état. La solution de ce problème passe par la résolution des équations d'état pour détermination de l'expression de l'état x(t) puis l'expression de la sortie y(t).

2 Solution de l'équation d'état

On considère l'équation d'état complète suivante:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{4.1}$$

La solution d'une telle équation différentielle est connue et a pour expression :

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$
(4.2)

Dans cette écriture, e^{At} représente une matrice exponentielle que l'on note en général $\Phi(t)$ et que l'on appelle *matrice de transition* du système.

3 Calcul de la matrice de transition

La résolution des équations d'état consiste à calculer la matrice de transition $\Phi(t)$. De nombreuses méthodes existent. Nous nous contenterons de présenter dans cette section une méthode basée sur l'utilisation de la transformée de Laplace.

On considère l'équation d'état suivante:

$$\dot{x}(t) = Ax(t) + Bu(t) \tag{4.3}$$

On applique la transformée de Laplace au système 4.3, on obtient:

$$pX(p) - x(0) = AX(p) + BU(p) \Rightarrow X(p) = (pI - A)^{-1}x(0) + (pI - A)^{-1}BU(p) \quad (4.4)$$
61

Par identification avec 4.2, on obtient:

$$\Phi(t) = e^{At} = TL^{-1} \left[pI - A \right]^{-1}$$
(4.5)

où TL^{-1} représente la transformée de Laplace inverse et I représente la matrice d'identité de dimension n.

Exemple 20 On considère un système décrit par une représentation d'état dont la matrice d'état donnée par:

$$A = \begin{bmatrix} 0 & 1\\ -6 & -2 \end{bmatrix} \tag{4.6}$$

On calcule tout d'abord la matrice $(pI - A)^{-1}$.

$$(pI - A) = \begin{bmatrix} p & -1 \\ 6 & p+2 \end{bmatrix} \Rightarrow (pI - A)^{-1} = \frac{1}{(p^2 + 2p + 6)} \begin{bmatrix} p+2 & +1 \\ -6 & p \end{bmatrix}$$
(4.7)

On calcule maintenant la transformée de la Laplace inverse de $(pI - A)^{-1}$ comme suit:

$$e^{At} = TL^{-1} \begin{bmatrix} \frac{1}{(p+3)} & \frac{1}{(p+3)(p+2)} \\ \frac{-6}{(p+3)(p+2)} & \frac{p}{(p+3)(p+2)} \end{bmatrix} = TL^{-1} \begin{bmatrix} \frac{1}{(p+3)} & \frac{1}{(p+2)} - \frac{1}{(p+3)} \\ \frac{6}{(p+3)} - \frac{6}{(p+2)} & \frac{3}{(p+3)} - \frac{2}{(p+2)} \end{bmatrix}$$
(4.8)

Après le calcul de la transformée de la Laplace inverse, la matrice de transition peut être trouvée comme suit:

$$\Phi(t) = e^{At} = \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 6e^{-3t} - 6e^{-2t} & 3e^{-3t} - 2e^{-2t} \end{bmatrix}$$
(4.9)

4 Réponse d'un système

La connaissance de la matrice de transition permet de calculer directement le réponse du système pour une entrée donnée. Si on substitue la solution 4.2 dans l'équation de sortie, on obtient la réponse du système suivant:

$$y(t) = Ce^{At}x(0) + C\left(\int_0^t e^{A(t-\tau)}B(\tau)d\tau\right) + Du(t)$$
(4.10)

Exemple 21 On considère un système décrit par la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -6 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$
(4.11)

On désire calculer la réponse du système pour une entrée échelon unitaire.

La matrice de transition est donnée par:

$$e^{At} = \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 6e^{-3t} - 6e^{-2t} & 3e^{-3t} - 2e^{-2t} \end{bmatrix}$$
(4.12)

Réalisé par Dr. OUNNAS D.

62

La réponse du système est:

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} e^{-3t} & e^{-2t} - e^{-3t} \\ 6e^{-3t} - 6e^{-2t} & 3e^{-3t} - 2e^{-2t} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 & 0 \end{bmatrix} \int_0^t \left(\begin{bmatrix} e^{-3(t-\tau)} & e^{-2(t-\tau)} & e^{-3(t-\tau)} \\ 6e^{-3(t-\tau)} - 6e^{-2(t-\tau)} & 3e^{-3(t-\tau)} - 2e^{-2(t-\tau)} \end{bmatrix} (1)d\tau \right) \begin{bmatrix} 1 & 0 \end{bmatrix}$$

$$y(t) = e^{-2t} + \frac{1}{3}(1 - e^{-3t})$$

Le code Matlab [Script 10] peut être utilisé pour trouver la réponse indicielle du système y(t) pour l'exemple 21 :

```
1 %% Script : Exemple 21
  clc, clear all, close all;
^{2}
3
  A = [0, 1; -6, -2]
  B=[0;1]
4
  C=[1 0]
\mathbf{5}
6 D=0
  Sys=ss(A, B, C, D);
7
  [y,t]=step(Sys);
8
9 plot(t,y)
10 xlabel('Temps (s)')
  ylabel('y(t)')
11
```


Figure 4.1: Réponse indicielle du système y(t) pour l'exemple 21

5 Exercices corrigés

Exercice 1. On considère un système décrit par la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -1 & -2 \\ 0 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

- Que peut-on dire sur la stabilité du système ?
- Déterminer l'expression de la matrice de transition de ce système.

Exercice 2. On considère un système décrit par représentation d'état suivante :

$$\begin{cases} \dot{x} = \begin{bmatrix} -1 & 0 \\ -1 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 0.5 & 0 \end{bmatrix} x(t) \end{cases}$$

Ce système étant soumis à une entrée en échelon unité, déterminer à tout instant t l'expression y(t).

Exercice 3. Déterminer la fonction de transfert de système défini par le modèle d'état suivantes :

$$\begin{cases} \dot{x} = \begin{bmatrix} -2 & -4 \\ -2 & -9 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

- Calculer les pôles de la fonction de transfert et en déduire l'expression de sa sortie en réponse à un échelon unité.
- Vérifier ce résultat en résolvant les équations d'état. On supposera que l'état initial du système est caractérisé par un vecteur d'état nul.

6 Solutions des exercices

Solution d'exercice 1. Le système est décrit par la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -1 & -2 \\ 0 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

1-Étude de la stabilité du système

64

Pour juger la stabilité du système, on doit calculer les pôles du système (valeurs propres de la matrice A) comme suit:

$$det(pI - A) = 0 \Rightarrow det \left(p \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & -2 \\ 0 & -4 \end{bmatrix} \right) = det \left(\begin{bmatrix} p+1 & 2 \\ 0 & p+4 \end{bmatrix} \right) = 0$$

Réalisé par Dr. OUNNAS D.

Alors on peut déduire l'équation caractéristique comme suit:

$$p^2 + 5p + 4 = 0$$

Les pôles du système peut être trouvés comme suit:

$$\begin{cases} p_1 = -1\\ p_2 = -4 \end{cases}$$

Les pôles du système sont négative \Rightarrow le système est stable.

2-Calcul de la matrice de transition

On calcule tout d'abord la matrice $(pI - A)^{-1}$.

$$(pI - A) = \begin{bmatrix} p+1 & 2\\ 0 & p+4 \end{bmatrix} \Rightarrow (pI - A)^{-1} = \frac{1}{(p+1)(p+4)} \begin{bmatrix} p+4 & -2\\ 0 & p+1 \end{bmatrix}$$

La matrice de transition est:

$$e^{At} = TL^{-1} \left([pI - A]^{-1} \right) = TL^{-1} \left(\begin{bmatrix} \frac{1}{(p+1)} & \frac{-2}{(p+1)(p+4)} \\ 0 & \frac{1}{(p+4)} \end{bmatrix} \right)$$

Après le calcul de la transformée de Laplace, on obtient

$$e^{At} = \begin{bmatrix} e^{-t} & Ae^{-t} + Be^{-4t} \\ 0 & e^{-4t} \end{bmatrix}$$

Solution d'exercice 2. Le système est régi par:

$$\begin{cases} \dot{x} = \begin{bmatrix} -1 & 0 \\ -1 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 0.5 & 0 \end{bmatrix} x(t) \end{cases} \quad x(0) = 0$$

L'expression de y(t) est donné par:

$$y(t) = Ce^{At}x(0) + C\left(\int_{0}^{t} e^{A(t-\tau)}B(\tau)d\tau\right) + Du(t)$$

On calcule tout d'abord la matrice $(pI - A)^{-1}$.

$$(pI - A) = \begin{bmatrix} p+1 & 0\\ 1 & p+3 \end{bmatrix} \Rightarrow (pI - A)^{-1} = \frac{1}{(p+1)(p+3)} \begin{bmatrix} p+3 & 0\\ -1 & p+1 \end{bmatrix}$$

La matrice de transition est:

$$e^{At} = TL^{-1} \left([pI - A]^{-1} \right) = TL^{-1} \left(\begin{bmatrix} \frac{1}{(p+1)} & 0\\ \frac{-1}{(p+1)(p+3)} & \frac{1}{(p+3)} \end{bmatrix} \right)$$

Après le calcul de la transformée de Laplace, on obtient

$$e^{At} = \begin{bmatrix} e^{-t} & 0\\ \frac{1}{2}e^{-t} - \frac{1}{2}e^{-3t} & e^{-3t} \end{bmatrix}$$

6. SOLUTIONS DES EXERCICES

$$\int_{0}^{t} e^{A(t-\tau)} B(\tau) d\tau = \int_{0}^{t} \left(\begin{bmatrix} e^{-(t-\tau)} & 0\\ \frac{1}{2}e^{-(t-\tau)} - \frac{1}{2}e^{-3(t-\tau)} & e^{-3(t-\tau)} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix} d\tau \right)$$
$$\int_{0}^{t} e^{A(t-\tau)} B(\tau) d\tau = \int_{0}^{t} \left(\begin{bmatrix} e^{-(t-\tau)}\\ \frac{1}{2}e^{-(t-\tau)} + \frac{1}{2}e^{-3(t-\tau)} \end{bmatrix} d\tau \right) = \begin{bmatrix} 1 - e^{-t}\\ \frac{1}{2}(1 - e^{-t}) + \frac{1}{6}e^{-3t} \end{bmatrix}$$

Alors la sortie y(t) est

$$y(t) = \begin{bmatrix} 0.5 & 0 \end{bmatrix} \begin{bmatrix} 1 - e^{-t} \\ \frac{1}{2}(1 - e^{-t}) + \frac{1}{6}e^{-3t} \end{bmatrix} = \frac{1}{2} (1 - e^{-t})$$

Solution d'exercice 3. Le système est donné par le modèle d'état suivant :

$$\begin{cases} \dot{x} = \begin{bmatrix} -2 & -4 \\ -2 & -9 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

1 Détermination de la fonction de transfert du système La fonction de transfert du système est:

$$Y(p) = (C([pI - A]^{-1}) U(p))$$

On calcul tout d'abord le la matrice $[pI - A]^{-1}$

$$[pI - A] = \begin{bmatrix} p+2 & 4\\ 2 & p+9 \end{bmatrix} \Rightarrow [pI - A]^{-1} = \frac{1}{p^2 + 11p + 10} \begin{bmatrix} p+9 & -4\\ -2 & p+2 \end{bmatrix}$$

Alors La fonction de transfert G(p) = Y(p)/U(p) est:

$$G(p) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{p+9}{p^2+11p+10} & \frac{-4}{p^2+11p+10} \\ \frac{-2}{p^2+11p+10} & \frac{p+2}{p^2+11p+10} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{-4}{p^2+11p+10}$$

2- Calcul de pôles de la fonction de transfert on a:

$$G(p) = \frac{-4}{p^2 + 11p + 10} \Rightarrow D(p) = p^2 + 11p + 10 = 0 \Rightarrow \begin{cases} p_1 = -1\\ p_2 = -10 \end{cases}$$

3- Expression de la sortie pour une entrée échelon unité

$$G(p) = \frac{Y(p)}{U(p)} \Rightarrow Y(p) = G(p)U(p) = \left(\frac{-4}{p^2 + 11p + 10}\right) \left(\frac{1}{p}\right) = \frac{-4}{p(p+1)(p+10)}$$
$$Y(p) = \left(-\frac{4}{10}\right) \left(\frac{1}{p}\right) + \left(\frac{4}{9}\right) \left(\frac{1}{p+1}\right) - \left(\frac{4}{90}\right) \left(\frac{1}{p+10}\right)$$

La la réponse indicielle du système est:

$$y(t) = TL^{-1}(Y(p)) = -\frac{4}{10} + \frac{4}{9}e^{-t} - \frac{4}{90}e^{-10t}$$

Réalisé par Dr. OUNNAS D.

66

4- Expression de la sortie pour une entrée échelon unité L'expression de y(t) est donné par:

$$y(t) = Ce^{At}x(0) + C\left(\int_0^t e^{A(t-\tau)}B(\tau)d\tau\right) + Du(t)$$

La matrice de transition est:

$$e^{At} = TL^{-1} \left([pI - A]^{-1} \right) = TL^{-1} \left(\begin{bmatrix} \frac{p+9}{(p+1)(p+10)} & \frac{-4}{(p+1)(p+10)} \\ \frac{-2}{(p+1)(p+10)} & \frac{p+2}{(p+1)(p+10)} \end{bmatrix} \right)$$

Après le calcul de la transformée de Laplace, on obtient

$$e^{At} = \begin{bmatrix} \frac{8}{9}e^{-t} + \frac{1}{9}e^{-10t} & -\frac{4}{9}e^{-t} + \frac{4}{9}e^{-10t} \\ -\frac{2}{9}e^{-t} + \frac{2}{9}e^{-10t} & \frac{1}{9}e^{-t} - \frac{1}{9}e^{-10t} \end{bmatrix}$$

$$\begin{split} \int_{0}^{t} e^{A(t-\tau)} B(\tau) d\tau &= \int_{0}^{t} \left(\begin{bmatrix} \frac{8}{9} e^{-(t-\tau)} + \frac{1}{9} e^{-10(t-\tau)} & -\frac{4}{9} e^{-(t-\tau)} + \frac{4}{9} e^{-10(t-\tau)} \\ -\frac{2}{9} e^{-(t-\tau)} + \frac{2}{9} e^{-10(t-\tau)} & \frac{1}{9} e^{-(t-\tau)} - \frac{1}{9} e^{-10(t-\tau)} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} d\tau \right) \\ \int_{0}^{t} e^{A(t-\tau)} B(\tau) d\tau &= \int_{0}^{t} \left(\begin{bmatrix} -\frac{4}{9} e^{-(t-\tau)} + \frac{4}{9} e^{-10(t-\tau)} \\ \frac{1}{9} e^{-(t-\tau)} - \frac{1}{9} e^{-10(t-\tau)} \end{bmatrix} d\tau \right) \\ \int_{0}^{t} e^{A(t-\tau)} B(\tau) d\tau &= \begin{bmatrix} -\frac{4}{9} (1-e^{-t}) + \frac{4}{90} (1-e^{-10t}) \\ \frac{1}{9} (1-e^{-t}) - \frac{1}{90} (e^{-10t}) \end{bmatrix} \end{bmatrix}$$

Alors la sortie y(t) est

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} -\frac{4}{9} (1 - e^{-t}) + \frac{4}{90} (1 - e^{-10t}) \\ \frac{1}{9} (1 - e^{-t}) - \frac{1}{90} (e^{-10t}) \end{bmatrix} = -\frac{4}{9} (1 - e^{-t}) + \frac{4}{90} (1 - e^{-10t})$$
$$y(t) = -\frac{4}{9} (1 - e^{-t}) + \frac{4}{90} (1 - e^{-10t}) = -\frac{4}{10} + \frac{4}{9} e^{-t} - \frac{4}{90} e^{-10t}$$
Chapter 5

Commande par retour d'état et par retour de sortie

1 Commande par retour d'état

La commande par retour d'état consiste à modifier le comportement en boucle fermée d'un système donné par une représentation d'état de tel sort le système en boucle fermée ses pôles soient placées de manière appropriée. Ces pôles en effet déterminent le comportement du système. Dans ce chapitre, nous présentons, dans un premier temps la notion de la commandabilité, et ensuite nous présentons la structure de la commande par retour d'état et l'algorithme qui permet de calculer le gain de retour d'état par une méthode dite *placement de pôles*.

1.1 Commandabilité d'un système

La problématique de la commande d'un système consiste à contrôler un système de manière à ce qu'il évolue, depuis un état initial constaté, vers un état final déterminé. En représentation d'état, il s'agira de déterminer le signal de commande u(t) entre deux instants donnés, t_1 et t_1 , pour amener le système de l'état $x(t_1)$ vers un état $x(t_2)$ souhaité.

Commandabilité vers 0

Un système est dit **commandable** à l'instant t_1 s'il est possible de déterminer un signal d'entrée u(t) sur l'intervalle $[t_1, t_2]$ de manière à amener le système de l'état $x(t_1) = x_1$ vers l'état $x(t_2) = 0$. Si un système est commandable quel que soit t_1 , il est dit complètement commandable.

Accessibilité

Un système est dit accessible à l'état x_2 s'il est possible de déterminer un signal d'entrée u(t) sur l'intervalle $[t_1, t_2]$ de manière à amener le système d'un état $x(t_1) = x_1$ vers l'état $x(t_2) = x_2$.

Commandabilité complète

Un système est complètement commandable s'il est possible, quel que soit l'intervalle $[t_1, t_2]$ et quelque soit l'état x, de déterminer un signal de commande u(t) sur $[t_1, t_2]$ qui amène le système de n'importe quel état $x(t_1) = x_1$ vers l'état voulu $x(t_2) = x_2$.

1.2 Critère de Kalman

Il existe de nombreux critères de commandabilité ou de non-commandabilité. Le critère de Kalman est l'un des plus couramment utilisés.

Un système est complètement accessible et complètement commandable si et seulement si la matrice de commandabilité définie par 5.1 est régulière, autrement dit si son déterminant n'est pas nul.

$$Q_c = \begin{bmatrix} B & AB & A^2B & \dots & A^{n-1}B \end{bmatrix}$$
(5.1)

1.3 Commande par placement de pôles

On considère un système décrit par la représentation suivante:

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$
(5.2)

Le retour d'état est le moyen le plus classique d'envisager la commande d'un système modélisé par une représentation d'état. Il suppose que toutes les composantes x_i du vecteur d'état x soient accessibles à la mesure. Une loi de commande possible est alors:

$$u(t) = Hy_c(t) + Kx(t) \tag{5.3}$$

où K est un vecteur ligne de n composantes qu'il est convenu d'appeler vecteur de retour d'état, H est un scalaire dit de précommande ou précompensation et y_c est la consigne, c'est-à-dire l'entrée du système en boucle fermée.

Si l'on regarde attentivement l'équation 5.3, on comprend que ce type de loi de commande ne correspond plus au schéma d'asservissement classiquement rencontré dans l'approche fréquentielle mais à un nouveau schéma de commande, comme indiqué sur la figure (5.1). Le placement de pôles consiste à déterminer le vecteur de

Figure 5.1: Schéma d'asservissement

retour d'état K de telle sort que le système ait les pôles désires, plus rigoureusement, de telle sort que la matrice d'état en boucle fermée admette les valeurs propres spécifiées. Ceci permet d'agir de manière significative sur le comportement transitoire du système, en termes de temps de réponse, d'oscillations, etc. Plus exactement, si l'on injecte l'équation 5.2 dans le système 5.3, il vient:

$$\begin{cases} \dot{x}(t) = (A + BK)x(t) + BHy_c(t) \\ y(t) = (C + DK)x(t) + DHy_c(t) \end{cases}$$
(5.4)

Ainsi, la matrice en boucle fermée est $A_{bf} = A + BK$. Donc le problème de placement de pôles se résume à ceci :

Placement de pôles : Soient une matrice A et un vecteur B, déterminer le vecteur K tel que le spectre de A + BK coïncide avec un spectre donné.

1.4 Calcul de vecteur de retour d'état

Pour calculer le vecteur de vecteur de retour d'état K, on suit les étapes suivantes:

• Vérification de la commandabilité. Si la paire (A, B), le placement de pôles est génériquement impossible.

$$det\left(\left[\begin{array}{cccc} B & AB & A^2B & \dots & A^{n-1}B\end{array}\right]\right) \neq 0 \tag{5.5}$$

• Détermination du polynôme caractéristique désiré :

$$D_d(p) = \prod_{i=1}^n (p - \lambda_i) = p^n + \alpha_{n-1}p^{n-1} + \ldots + \alpha_2 p^2 + \alpha_1 p + \alpha_0$$
(5.6)

• Détermination du polynôme caractéristique en boucle ouverte:

$$D_d(p) = det(pI - A) = p^n + a_{n-1}p^{n-1} + \ldots + a_2p^2 + a_1p + a_0$$
(5.7)

• Calcul du retour d'état \hat{K} dans la base canonique.

$$\hat{K} = \begin{bmatrix} k_1 & k_2 & \dots & k^n \end{bmatrix} = \begin{bmatrix} a_0 - \alpha_0 & a_1 - \alpha_1 & \dots & a_{n-1} - \alpha_{n-1} \end{bmatrix}$$
(5.8)

• Calcul de la matrice de passage M

$$M = \begin{bmatrix} m_1 & m_2 & \dots & m_n \end{bmatrix} \begin{cases} m_n = B \\ m_{n-1} = (A + a_{n-1}I)B \\ m_{n-2} = (A^2 + a_{n-1}A + a_{n-2}I)B \\ \vdots \\ m_1 = (A^{n-1} + a_{n-1}A^{n-2} + \dots + a_1I)B \end{cases}$$
(5.9)

• Calcul du retour d'état dans la base initiale :

$$K = \hat{K}M^{-1}$$
 (5.10)

1. COMMANDE PAR RETOUR D'ÉTAT

• Calcul de la précommande :

$$H = \left[D - (C + DK) (A + BK)^{-1} B \right]^{-1}$$
(5.11)

Exemple 22 On considère un système décrit par la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 3\\ -1 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 1\\ 0.5 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$
(5.12)

les pôles désirés de système en boucle fermée sont $\lambda_1 = \lambda_2 = -1$.

Étape 1 La matrice de commandabilité est

$$Q_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 1.5\\ 0.5 & -3 \end{bmatrix} \Rightarrow det(Q_c) = -3.75$$
(5.13)

 $det(Q_c) \neq 0 \Rightarrow$ le système est commandable.

Étape 2 Le polynôme caractéristique désiré en boucle fermée est

$$D_d(p) = (p+1)(p+1) = p^2 + 2p + 1 \Rightarrow \alpha_0 = 1, \alpha_1 = 2$$
(5.14)

Étape 3 Le polynôme caractéristique en boucle ouverte est

$$D(p) = det(pI - A) = p^{2} + 1p + 0.25 \Rightarrow a_{0} = 3, a_{1} = 4$$
(5.15)

Étape 4 Le retour d'état correspondant à la base canonique de commande est

$$\hat{K} = \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} a_0 - \alpha_0 & a_1 - \alpha_1 \end{bmatrix} = \begin{bmatrix} 2 & 2 \end{bmatrix}$$
(5.16)

Étape 5 La matrice de passage à la base canonique est :

$$M = \begin{bmatrix} m_1 & m_2 \end{bmatrix} \begin{cases} m_2 = B = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \\ m_1 = (A + a_1 I)B = \left(\begin{bmatrix} 0 & 3 \\ -1 & -4 \end{bmatrix} + 4 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) \begin{bmatrix} 1 \\ 0.5 \end{bmatrix}$$
(5.17)

La matrice de passage peut être trouvée comme suit:

$$M = \begin{bmatrix} 1 & 5.5\\ 0.5 & -1 \end{bmatrix} \Rightarrow M^{-1} = \begin{bmatrix} 0.2667 & 1.4667\\ 0.1333 & -0.2667 \end{bmatrix}$$
(5.18)

Étape 6 Le retour d'état dans la base initiale est

$$K = \hat{K}M^{-1} = \begin{bmatrix} 2 & 2 \end{bmatrix} \begin{bmatrix} 0.2667 & 1.4667 \\ 0.1333 & -0.2667 \end{bmatrix} = \begin{bmatrix} 0.8 & 2.4 \end{bmatrix}$$
(5.19)

Étape 7 Calcul de la précommande :

$$H = \left[D - (C + DK) (A + BK)^{-1} B \right]^{-1} = 0.1818$$
 (5.20)

Le code Matlab [Scipte 11] peut être utilisé pour calculer le gain de retour d'état pour l'exemple 22 :

```
%% Script: Exemple 22
1
  clc, clear all, close all;
2
  A=[0,3;-1,-4]
3
  B=[1;0.5]
4
  C = [1 \ 0]
\mathbf{5}
  D=0
6
  %La matrice de commandabilite est
7
   Q_{-}c = [B A \star B]
8
   determinant=det(Q_c)
9
    if determinant == 0,
10
        disp('Le systeme est non commandable')
11
    else
12
       disp('Le systeme est commandable')
13
       %Etape 2 Le polynome caracteristique desire en boucle fermee est
14
       Lamda=[-1 -1] %poles desire
15
       Dd=poly(Lamda) %polynome caracteristique
16
       Alpha1=Dd(2)
17
       Alpha0=Dd(3)
18
       %Etape 3 Le polynome caracteristique en boucle ouverte est
19
20
       ValeurProrpres=eig(A) %les valauer prpores
       D=poly(ValeurProrpres)
21
       a1=D(2)
22
       a0=D(3)
23
       %Etape 4 Le retour d'etat correspondant a la base canonique
24
25
       K_tiled=[a0-Alpha0,a1-Alpha1]
       %Etape 5 La matrice de passage
26
       M = [B (A+a1 \cdot eye(2)) \cdot B]
27
       Inverse_M=inv(M)
28
       %Etape 6 Le retour d'etat dans la base initiale est
29
30
       K=K_tiled * Inverse_M
       %Etape 7 Calcul de la precommande :
31
       H= inv(-C*inv(A+B*K)*B)
32
33
    end
```

Le modèle Simulink illustré sur la figure (5.2) peut être utilisé pour vérifier la commande par retour d'état. Le résultat de la commande en boucle fermée pour une

Figure 5.2: Modèle de Simulink pour la commande par retour d'état

consigne de 1 est montrée sur la figure (5.7).

1. COMMANDE PAR RETOUR D'ÉTAT

Figure 5.3: Réponse de la sortie pour l'exemple 22

2 Commande par retour de sortie

Dans cette second sous section, on suppose que les composantes du vecteur d'état x ne sont pas forcément accessibles. On se contente d'utiliser l'information présente au niveau de la sortie y(t) pour établir une loi de commande. Cette diminution de l'information exploitable dans la boucle de rétroaction est bien sûr de nature à compliquer le problème de commande. Lorsque seule la sortie y(t) est utilisée pour le bouclage, on parle de retour de sortie.

2.1 Principe de l'observation

Le principe de l'observation est d'utiliser u(t) et y(t) pour reconstruire un vecteur $\hat{x}(t)$ qui soit aussi proche que possible de x(t) afin d'effectuer ensuite un retour d'état selon la structure présentée par la figure (5.4). Comme le montre cette figure,

Figure 5.4: Principe de l'observateur

l'ensemble constitué de l'observateur (encore appelé reconstructeur d'état) et du retour d'état K constitue un retour dynamique proche de celui proposé par la figure (5.4). Toutefois, celui-ci comporte deux entrées : u(t) et y(t).

2.2 Observabilité d'un système

Un système est dit *observable* à un instant t_1 , si la connaissance du signal d'entrée et du signal de sortie sur un intervalle de temps $[t_1, t_2]$ permet de calculer l'état du

système à l'instant t_1 . Si un système est observable quel que soit l'instant t_1 , il est dit complètement observable.

2.3 Critère d'observabilité

Un système est complètement observable si et seulement si la matrice de observabilité définie par 5.21 est régulière, autrement dit si son déterminant n'est pas nul.

$$Q_o = \begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix}$$
(5.21)

2.4 Équations d'un observateur

Un observateur peut être donné par les équations suivantes:

$$\begin{cases} \dot{\hat{x}}(t) = A\hat{x}(t) + Bu(t) + L(y - \hat{y}) \\ y(t) = C\hat{x}(t) \end{cases}$$
(5.22)

La synthèse de l'observateur consiste à déterminer son gain L.

2.5 Procédure de synthèse

Pour calculer le vecteur de vecteur de retour sortie L, on suit les étapes suivantes:

• Vérification de l'observabilité de la paire (A, C). Si la paire (A, C) n'est pas observable, la synthèse de l'observateur est impossible.

$$det \left(\begin{bmatrix} C \\ CA \\ CA^2 \\ \vdots \\ CA^{n-1} \end{bmatrix} \right) \neq 0.$$
 (5.23)

• Détermination du polynôme caractéristique désiré pour l'observateur :

$$\hat{D}_d(p) = \prod_{i=1}^n (p - \tau_i) = p^n + \beta_{n-1} p^{n-1} + \dots + \beta_2 p^2 + \beta_1 p + \beta_0$$
(5.24)

• Détermination du polynôme caractéristique en boucle ouverte:

$$D_d(p) = det(pI - A) = p^n + a_{n-1}p^{n-1} + \ldots + a_2p^2 + a_1p + a_0$$
(5.25)

• Calcul du du gain de l'observateur \hat{L} dans la base canonique.

$$\tilde{L} = \begin{bmatrix} l_1 \\ l_2 \\ \vdots \\ l^n \end{bmatrix} = \begin{bmatrix} a_0 - \beta_0 \\ a_1 - \beta_1 \\ \vdots \\ a_{n-1} - \beta_{n-1} \end{bmatrix}$$
(5.26)

2. COMMANDE PAR RETOUR DE SORTIE

• Calcul de la matrice de passage N

$$(N')^{-1} = \begin{bmatrix} n_1 & n_2 & \dots & n_n \end{bmatrix} \begin{cases} n_1 = C' \\ n_2 = (A' + a_{n-1}I)C' \\ n_3 = ((A')^2 + a_{n-1}A' + a_{n-2}I)C' \\ \vdots \\ n_n = ((A')^{n-1} + a_{n-1}(A')^{n-2} + \dots + a_1I)C' \\ (5.27) \end{cases}$$

• Calcul du gain d'observateur dans la base initiale:

$$L = N\hat{L} \tag{5.28}$$

3 Commande par retour d'état observé

La reconstruction du vecteur d'état a ici pour but de mettre en œuvre une loi de commande par retour d'état lorsque le vecteur d'état n'est pas mesurable. Si l'on associe l'observateur d'état et la loi de commande par retour d'état, on obtient le schéma (5.5).

Figure 5.5: Principe de la commande par retour de sortie

La loi de commande dans ce cas est donnée par

$$u(t) = Hy_c(t) + K\hat{x}(t)$$
(5.29)

Exemple 23 On considère un système décrit par la représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 3 \\ -1 & -4 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t)$$
(5.30)

les pôles désirés de système en boucle fermée sont $\tau_1 = \tau_2 = -0.5$.

Étape 1 La matrice de observabilité est

$$Q_o = \begin{bmatrix} C & CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix} \Rightarrow det(Q_o) = 3$$
(5.31)

Réalisé par Dr. OUNNAS D.

76

Le determinant de Q_o différant de zéro \Rightarrow le système est observable. Étape 2 Le polynôme caractéristique désiré en boucle fermée est

$$D_d(p) = (p+1)(p+1) = p^2 + p + 0.25 \Rightarrow \beta_0 = 0.25, \beta_1 = 1$$
(5.32)

Étape 3 Le polynôme caractéristique en boucle ouverte est

$$D(p) = det(pI - A) = p^{2} + 1p + 0.25 \Rightarrow a_{0} = 3, a_{1} = 4$$
(5.33)

Étape 4 Le retour d'état correspondant à la base canonique de commande est

$$\tilde{L} = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} a_0 - \beta_0 \\ a_1 - \beta_1 \end{bmatrix} = \begin{bmatrix} 2.75 \\ 3 \end{bmatrix}$$
(5.34)

Étape 5 La matrice de passage à la base canonique est :

$$(N')^{-1} = \begin{bmatrix} n_1 & n_2 \end{bmatrix} = \begin{bmatrix} 1 & 4 \\ 0 & 3 \end{bmatrix} \quad avec \quad \begin{cases} n_1 = C' \\ n_2 = (A' + a_1 I)C' \end{cases}$$
(5.35)

La matrice N peut être déduite comme suit:

$$N = \begin{bmatrix} 1 & 0\\ -1.3333 & 0.3333 \end{bmatrix}$$
(5.36)

Étape 5 Calcul du gain d'observateur dans la base initiale :

$$L = \begin{bmatrix} 2.7500\\ -2.6667 \end{bmatrix} \tag{5.37}$$

Le code Matlab [Scipte 12] peut être utilisé pour calculer le gain de l'observateur de l'exemple 23. Le modèle Simulink illustré sur la figure (5.6) est utilisé pour vérifier la commande par retour de sortie.

```
1 %% Script: Exemple 23
2 clc, clear all, close all;
3 A=[0,3;-1,-4]
4 B=[1;0.5]
5 C=[1 0]
6 D=0
7 %La matrice de l'observabilite est
8 Q_{-}O = [C; C \star A]
 determinant=det(Q_0)
9
10
   if determinant == 0,
        disp('Le systeme est non observable')
11
   else
12
13 disp('Le systeme est observable')
14 %Etape 2 Le polynome caracteristique desire en boucle fermee est
15 Lamda=[-0.5 -0.5] %poles desire
16 Dd=poly(Lamda) %polynome caracteristique
17 Beta1=Dd(2)
18 Beta0=Dd(3)
19 %Etape 3 Le polynome caracteristique en boucle ouverte est
20 ValeurProrpres=eig(A) %les valauer prpores
21 D=poly(ValeurProrpres)
22 al=D(2)
23 a0=D(3)
24 %Etape 4 Le retour d'etat correspondant a la base canonique
25 L_tiled=[a0-Beta0;a1-Beta1]
26 %Etape 5 La matrice de passage N
27 n1=C'
28 n2=(A'+a1*eye(2))*C'
29 n=[n1 n2]
30 N = (inv(n))'
31 %Etape 6 Calcul du gain d'observateur dans la base initiale
32 L=N*L_tiled
33 end
```


Figure 5.6: Modèle de Simulink pour la commande par retour de sortie

Le résultat de la commande en boucle fermée pour une consigne de 5 est montrée sur la figure (5.4).

Figure 5.7: Réponse de la sortie pour l'exemple 23

4 Exercices corrigés

Exercice 1. On considère un système décrit par représentation d'état suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 1 & 2 \\ \alpha & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t) \end{cases}$$

Déterminer la condition sur le paramètre α pour que ce système soit complètement commandable.

Exercice 2. Soit un système donné par la représentation suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -0 & 1 \\ -3 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \end{cases}$$

Calculer la vecteur de retour d'état assurant un placement de pôles en BF à $p_1 = -2 + 3jet p_2 = -2 - 3j$ puis en déduire la matrice de précommande.

Exercice 3. Le système est donné par la représentation suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -2 & 1 \\ -1 & 6 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

Calculer la gain de l'observateur assurant une dynamique en BF caractérisée par les $p_1 = -1 + 0.5j$ et $p_2 = -1 - 0.5j$

5 Solutions des exercices

Solution d'exercice 1. Le système est décrit par la représentation d'état suivante

$$\begin{cases} \dot{x} = \begin{bmatrix} 1 & 2 \\ \alpha & 1 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t) \end{cases}$$

Pour juger la commandabilité du système, on doit calculer la matrice de commandabilité du système:

$$Q_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 1 & \alpha + 1 \end{bmatrix} \Rightarrow det(Q_c) = \alpha - 2$$

Le système est commandable si $det(Q_c) \neq 0 \Rightarrow \alpha - 2 \neq 0 \Rightarrow \alpha \neq 2$.

Solution d'exercice 2. Le système est donné par la représentation suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} 0 & 1 \\ -3 & -2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t) \end{cases}$$

Pour calculer le gain de retour d'état, on suit les étape suivantes:

Étape 1 La matrice de commandabilité est

$$Q_c = \begin{bmatrix} B & AB \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0.5 & -2 \end{bmatrix} \Rightarrow det(Q_c) = -1$$

 $det(Q_c) \neq 0 \Rightarrow$ le système est commandable.

Étape 2 Le polynôme caractéristique désiré en boucle fermée est

$$D_d(p) = (p+2+3j)(p+2-3j) = p^2 + 4p + 13 \Rightarrow \alpha_0 = 13, \alpha_1 = 4$$

Étape 3 Le polynôme caractéristique en boucle ouverte est

$$D(p) = det(pI - A) = p^2 + 5p + 4 \Rightarrow a_0 = 4, a_1 = 5$$

Étape 4 Le retour d'état correspondant à la base canonique de commande est

$$\hat{K} = \begin{bmatrix} k_1 & k_2 \end{bmatrix} = \begin{bmatrix} a_0 - \alpha_0 & a_1 - \alpha_1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \end{bmatrix}$$

Étape 5 La matrice de passage à la base canonique est :

$$M = \begin{bmatrix} m_1 & m_2 \end{bmatrix} \quad \begin{cases} m_2 = B = \begin{bmatrix} 1 \\ 0.5 \end{bmatrix} \\ m_1 = (A + a_1 I)B = \begin{bmatrix} 3 \\ 0.5 \end{bmatrix}$$

La matrice de passage peut être trouvée comme suit:

$$M = \begin{bmatrix} 1 & 3\\ 0.5 & 0.5 \end{bmatrix} \Rightarrow M^{-1} = \begin{bmatrix} -0.5 & 3\\ 0.5 & -1 \end{bmatrix}$$

Réalisé par Dr. OUNNAS D.

80

Étape 6 Le retour d'état dans la base initiale est

$$K = \hat{K}M^{-1} = \begin{bmatrix} 3 & 3 \end{bmatrix} \begin{bmatrix} -0.5 & 3 \\ 0.5 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 6 \end{bmatrix}$$

Étape 7 Calcul de la précommande :

$$H = \left[D - (C + DK) (A + BK)^{-1} B \right]^{-1} = \frac{1}{3}$$

Solution d'exercice 3. Le système est donné par la représentation suivante:

$$\begin{cases} \dot{x} = \begin{bmatrix} -2 & 1 \\ -1 & 6 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u(t) \\ y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) \end{cases}$$

Pour calculer le gain de l'observateur, on suit les étapes suivantes:

Étape 1 La matrice de observabilité est

$$Q_o = \begin{bmatrix} C & CA \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \Rightarrow det(Q_o) = 1$$

Le determinant de Q_o différant de zéro \Rightarrow le système est observable.

Étape 2 Le polynôme caractéristique désiré en boucle fermée est

$$D_d(p) = (p+1)(p+1) = p^2 + 2p + 1.25 \Rightarrow \beta_0 = 1.25, \beta_1 = 2$$

Étape 3 Le polynôme caractéristique en boucle ouverte est

$$D(p) = det(pI - A) = p^2 - 4p - 11 \Rightarrow a_0 = -11, a_1 = -4$$

Étape 4 Le retour d'état correspondant à la base canonique de commande est

$$\hat{L} = \begin{bmatrix} l_1 \\ l_2 \end{bmatrix} = \begin{bmatrix} a_0 - \beta_0 \\ a_1 - \beta_1 \end{bmatrix} = \begin{bmatrix} -12.25 \\ -6 \end{bmatrix}$$

Étape 5 La matrice de passage à la base canonique est :

$$(N')^{-1} = \begin{bmatrix} n_1 & n_2 \end{bmatrix} = \begin{bmatrix} 1 & -6 \\ 0 & 1 \end{bmatrix} \quad avec \begin{cases} n_1 = C' \\ n_2 = (A' + a_1 I)C' \end{cases}$$

La matrice N peut être déduite comme suit:

$$N = \begin{bmatrix} 1 & 0\\ 6 & 1 \end{bmatrix}$$

Étape 5 Calcul du gain d'observateur dans la base initiale :

$$L = \begin{bmatrix} -12.25 \\ -79.5 \end{bmatrix}$$

5. SOLUTIONS DES EXERCICES

CHAPTER 5. COMMANDE PAR RETOUR D'ÉTAT ET PAR RETOUR DE SORTIE

Chapter 6

Filtre de Kalman

1 Introduction

D'une façon générale, la fonction de filtrage consiste à estimer une information (signal) utile qui est polluée par un bruit. . Le filtre de Kalman permettant de donner un estimée de l'état de système à partir d'une information a priori sur l'évolution de cet état et de mesures réelles. Il est une approche statistique, d'assimilation de données, dont le principe est de corriger la trajectoire du modèle en combinant les observations avec l'information fournie par le modèle de façon à minimiser l'erreur entre l'état vrai et l'état filtré.

Dans ce chapitre, nous introduisons les notions, les concepts, les définitions et les principes généraux du filtre de Kalman.

2 Observateur de Kalman

On considère un système perturbé donné par le modèle d'état suivant appelé modéle de Kalman :

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) + Mw(t) \\ y(t) = Cx(t) + Du(t) + v(t) \end{cases}$$
(6.1)

où x(t) est le vecteur d'état à n dimensions.u(t) est le vecteur d'entrée ou de commande à m dimensions. y(t) est le vecteur sortie ou d'observation à p dimensions. w(t) est une entrée (signale) aléatoire à q dimensions. v(t) est une entrée (bruit) aléatoire à p dimensions.

Nous supposerons que:

- La paire (A, C) est détectable, c'est-à-dire qu'il n'y a pas de mode instable et inobservable dans le système,
- les signaux w(t) et v(t) sont des bruits blancs gaussiens centrés de densité spectrale de puissance (DSP) W et V respectivement, c'est-à-dire :

$$\begin{cases} E[w(t)w(t+\tau)^{T}] = W\delta(t) \\ E[v(t)v(t+\tau)^{T}] = V\delta(t) \\ E[w(t)v(t+\tau)^{T}] = 0 \end{cases}$$
(6.2)

83

La dernière relation de 6.2 traduit l'indépendance stochastique des bruits w(t) et v(t).

• V est inversible (il y a autant de sources de bruits blancs indépendantes que de mesures dans l'équation de mesure).

L'information déterministe que l'on peut connaitre de système doit être regroupée dans le modèle (soit $\dot{x}(t) = Ax(t) + Bu(t)$; toute information aléatoire doit être regroupée dans les bruits w(t) et v(t). Le bruit d'état $w_x = Mw$ représente les perturbations extérieures et également les erreurs de modélisation.

3 Structure d'un estimateur non biaisé

Un filtre de Kalman est un système dynamique avec 2 entrées (vectorielles) : la commande déterministe u(t) et la mesure y(t). L'état (ou la sortie) de ce filtre est un estimé de l'état x(t) du système. Soit :

$$\dot{\hat{x}}(t) = A_f \hat{x}(t) + B_f u(t) + K_f y(t)$$
(6.3)

la représentation d'état de ce filtre. Bien entendu il faut initialiser ce filtre avec $\hat{x}(t_0)$ l'estimé de l'état du système à l'instant initial t_0 .

On note $\epsilon(t) = x(t) - \hat{x}(t)$ l'erreur d'estimation de l'état du système et $\epsilon(t_0) = x(t_0) - \hat{x}(t_0)$ l'erreur d'initialisation.

En retranchant l'équation 2 de l'équation d'état et en utilisant l'équation de la sortie y, on obtient :

$$\dot{\epsilon}(t) = Ax + Bu(t) + Mw - A_f \hat{x} - B_f u + K_f (Cx + Du + v(t))$$
(6.4)

$$\dot{\epsilon} = (A - K_f C)\epsilon - (A - K_f C - A_f)\hat{x} + (B - K_f D - B_f)u + Mw(t)K_f v \quad (6.5)$$

Étant donné que les bruits w et v sont gaussiens et le système est linéaire, on peut affirmer que $\epsilon(t)$ est une variable aléatoire gaussienne. Nous allons maintenant nous intéresser à l'espérance mathématique (moyenne) de $\epsilon(t)$.

Estimateur non biaisé : avant tout, on souhaite que l'estimateur soit non biaisé, c'est-à-dire que:

- quel que soit le profil de commande $u(\tau)$ appliqué sur l'horizon $\tau \in [t_0; t]$,
- quel que soit l'initialisation $\hat{x}(t_0)$,

on souhaite que la moyenne de l'erreur d'estimation tende vers 0 lorsque t tend vers l'infini.

Les bruits w et v étant centrés, nous pouvons écrire :

$$E[\dot{\epsilon}(t)] = (A - K_f C)E[\epsilon(t)] - (A - K_f C - A_f)E[\hat{x}(t)] + (B - K_f D - B_f)u(t)$$

et $\lim_{t\to\infty} E[\epsilon(t)] = 0, \forall u(t), \forall E[\hat{x}]$ si et seulement si:

$$A_f = A - K_f C, \quad B_f = B - K_f D \tag{6.6}$$

$$et \ A - K_f D \ est \ stable \tag{6.7}$$

Si l'on reporte 6.7 dans 6.3, l'équation du filtre de Kalman s'écrit:

$$\dot{\hat{x}}(t) = (A\hat{x}(t) + Bu(t)) + K_f(y(t) - C\hat{x}(t) - Du(t))$$
(6.8)

On reconnait dans le premier terme du second membre de cette équation, le modèle du système $(A\hat{x} + Bu)$ qui est exploité pour prédire l'évolution de l'état du système à partir de l'estimation courante \hat{x} . Cette prédiction est en fait une simulation en ligne du modèle du système. Le modèle étant faux, la prédiction est recalée en fonction de l'erreur entre la mesure y et la mesure prédite $\hat{y} = C\hat{x} + Du$ et du gain du filtre K_f . Le signal d'erreur $y - \hat{y}$ est aussi appelé *l'innovation*. Le schéma correspondant (dans le cas où D = 0) est représenté sur la figure 6.1. Cette structure garantit que l'estimateur est non biaisé quel que soient les matrices A, B, C, D du système et le gain K_f tel que $A - K_f C$ soit stable (cela justifie en fait l'hypothèse H1: la présence d'un mode instable et inobservable ne permet pas de trouver de gain Kf stabilisant et donc de construire un estimateur non-biaisé).

Figure 6.1: Schéma fonctionnel du filtre de Kalman (cas D = 0).

4 Estimateur à variance minimale

Le gain K_f est calculé en fonction de la confiance que l'on a dans le modèle (exprimée par la densité spectrale W) relativement à la confiance que l'on a dans la mesure (exprimée par la densité spectrale V). Si le modelé est très bon (W très *petit*) et la mesure très bruitée (V très *grand*) alors le gain K_f devra être très petit. En fait parmi tous les gains K_f satisfaisant la contrainte 6.7, nous allons choisir celui qui minimise la variance de l'erreur d'estimation de l'état du système $\epsilon(t)$ ($\forall t$). Nous rappelons que $\epsilon(t) = x(t) - \hat{x}(t)$ est une variable aléatoire vectorielle (à n composantes) centrée (non-biaisée) gaussienne. Le caractère gaussien de cette variable permet d'affirmer que si la variance de l'erreur d'estimation est effectivement minimisée, alors $\hat{x}(t)$ est vraiment le meilleur estimé de x(t).

4. ESTIMATEUR À VARIANCE MINIMALE Réalisé par Dr. OUNNAS D.

4.1 Solution générale

On cherche donc K_f qui minimise :

$$J(t) = \sum_{i=0}^{n} E[\epsilon_i(t)^2] = E[\epsilon(t)^T \epsilon(t)] = trace[\epsilon(t)^T \epsilon(t)] = traceP(t)$$
(6.9)

 $P(t) = E[(x(t) - \hat{x}(t))^T(x(t) - \hat{x}(t))]$ matrice de covariance de l'erreur d'estimation. En reportant 6.6 dans 6.5, l'évolution de $\epsilon(t)$ est décrite par l'équation d'état :

$$\dot{\epsilon}(t) = (A - K_f C)\epsilon(t) + \begin{bmatrix} M & -K0 \end{bmatrix} \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$$
(6.10)

avec

$$E\left[\left[\begin{array}{c}w(t)\\v(t)\end{array}\right]\left[\begin{array}{c}w^{T}(t)&v^{T}(t)\end{array}\right]\right] = \left[\begin{array}{c}W_{q\times q}&0_{q\times q}\\0_{q\times q}&V_{q\times q}\end{array}\right]\delta(t)$$

On peut donc appliquer le théorème de système linéaire bruité et conclure que la covariance de l'erreur d'estimation P(t) obéit à l'équation différentielle :

$$\dot{P}(t) = AP(t) + P(t)A^{T} - P(t)C^{T}V^{-1}CP(t) + MWM^{T}$$
(6.11)

avec

$$K_f = P(t)C^T V^{-1} (6.12)$$

Cette équation différentielle de Riccati doit être intégrer et initialiser avec $P(t_0)$ qui traduit la confiance que l'on a dans l'initialisation du filtre avec $\hat{x}(t_0)$:

$$P(t) = E[(x(t) - \hat{x}(t))^T (x(t) - \hat{x}(t))]$$

On obtient alors le gain $K_f(t)$ à partir de P(t) et de l'équation (2.13). Le filtre de Kalman est donc non-stationnaire.

Les équations 6.9, 6.11 et 6.12 constituent les équations du filtre de Kalman continu qu'il faut intégrer à partir de l'initialisation $\hat{x}(t_0)$ et $P(t_0)$. L'intégration de 6.11 et le calcul de $K_f(t)$ peuvent être effectués en ligne ou hors ligne. Dans ce dernier cas, il faudra stocker dans le calculateur la loi $K_f(t)$. En pratique, l'implantation du filtre de Kalman se fera sur un calculateur numérique et donc en temps discret. On peut alors discrétiser l'équation d'état du filtre de Kalman. On peut aussi choisir de faire la synthèse d'un filtre de Kalman directement en discret. Enfin, les équations du filtre sont entièrement définies par les données du problème, c'est-à-dire les matrices A, B, M, C, D, W et V.

4.2 Régime permanent du filtre de Kalman

En régime permanent, une fois passé le régime transitoire dû aux erreurs d'initialisation, l'erreur d'estimation devient un signal aléatoire stationnaire. On donc : $\dot{P}(t) = 0$.

P, matrice constante définie positive qui représente la covariance de l'erreur d'estimation en régime permanent, est la solution positive de l'équation algébrique de Riccati :

$$AP + PA^{T} - PC^{T}V^{-1}CP + MWM^{T} = 0 (6.13)$$

Le gain du filtre devient également constant:

$$K_f = P(t)C^T V^{-1} (6.14)$$

On peut vérifier que la positivité de P implique la stabilité du flitre, c'est-à-dire que toutes les valeurs propres de la matrice $A - K_f C$ sont à partie réelle négative.

Chapter 7 Sujets d'examens

Licence automatique Année Universitaire : 2016/2017 Durée : 2 heurs

Examen de Commande des Systèmes Linéaires

Exercice 1 (5 points). On considère un système de fonction de transfert en boucle ouverte G(p) définie par :

-Tracer le diagramme de Bode et de Nyquiste de système sans correcteur.

- Déterminer le régulateur C(p) qui permet obtenir un comportement de système d'ordre 1 en boucle fermée avec un temps de réponse à 5% égal 0.3 s et une précision statique parfaite.

Exercice 2 (5 points). On considère un system dont la fonction transfert :

$$H(p) = 1 + \frac{4p + 10}{p^2 + 3p + 2}$$

- Donnez sa représentation d'état sous forme modale.
- Donnez sa représentation d'état sous forme compagne verticale.

Exercice 3 (5 points). La dynamique d'un système peut être décrite par l'équation différentielle :

$$\frac{1}{\omega_n^2} \ddot{y}(t) + \frac{2\zeta}{\omega_n} \dot{y}(t) + y(t) = Ku(t) \qquad /K = 1, \ \omega_n = \sqrt{2}, \ \zeta = \frac{3}{2\sqrt{2}}$$

- Proposer une représentation d'état sachant que les sorties de système sont $\dot{y}(t)$ et y(t).

- Étudiez la stabilité et déterminer la réponse du système pour un échelon unitaire de commande à partir de conditions initiales nulles.

Exercice 4 (5 points). Soit un système dont le modèle d'état suivant :

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix} x(t) + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u(t)$$

- Calculer la matrice de retour d'état K pour que le système en boucle fermée soit caractérisé par les pôles $p_1 = -2 + 3j$, $p_2 = -2 - 3j$, $p_3 = -1$

Examen de Commande des Systèmes Linéaires

Exercice 1 (**13 points**). On souhaite asservir un système dont la fonction de transfert en boucle ouverte défini par:

$$G(p) = \frac{5}{p(0.1p+1)^2}$$

On place ce système dans la chaîne directe d'une boucle de régulation, en cascade avec un correcteur proportionnel de gain positif K. La boucle de retour est assurée par un système de fonction de transfert B(p)=1.

1- Etudier la stabilité de système.

2- Calculer en fonction de K l'erreur de position et l'erreur de vitesse.

3- Calculer la valeur de K qui assure au système une marge de phase supérieure à 45°.

On désire maintenant réaliser un nouveau asservissement respectant le cahier des charges suivant:

- Réponse oscillatoire en boucle fermé.

- Dépassement en boucle fermée égale 10 %.

- temps de montée en boucle fermée égale à 0.2s

- Erreur de vitesse égale à 8%.

4 - Proposer un correcteur au système qui permet d'assurer les conditions ce cahier des charges.s

Exercice 2 (7 points). La dynamique d'un système en boucle ouverte est décrite par l'équation différentielle :

$$\frac{1}{\omega_n^2} \ddot{y}(t) + \frac{2\zeta}{\omega_n} \dot{y}(t) + y(t) = Ku(t)$$

Sachant que le comportement de système placé dans une boucle d'asservissement à retour unitaire est caractérisé par une réponse oscillatoire avec une précision parfaite, temps de montée égale à 0.4s et un dépassement de 20 %.

- Proposer une représentation d'état en utilisant comme sorties $\dot{y}(t)$ et y(t).

- Calculer les fonction de transferts du système.

Examen de Commande des Systèmes Linéaires

Exercice 1 (**13 points**). On souhaite asservir un système dont la fonction de transfert en boucle ouverte défini par:

$$G(p) = \frac{5}{p(0.1p+1)^2}$$

On place ce système dans la chaîne directe d'une boucle de régulation, en cascade avec un correcteur proportionnel de gain positif K. La boucle de retour est assurée par un système de fonction de transfert B(p)=1.

1- Etudier la stabilité de système.

2- Calculer en fonction de K l'erreur de position et l'erreur de vitesse.

3- Calculer la valeur de K qui assure au système une marge de phase supérieure à 45°.

On désire maintenant réaliser un nouveau asservissement respectant le cahier des charges suivant:

- Réponse oscillatoire en boucle fermé.

- Dépassement en boucle fermée égale 10 %.

- temps de montée en boucle fermée égale à 0.2s

- Erreur de vitesse égale à 8%.

4 - Proposer un correcteur au système qui permet d'assurer les conditions ce cahier des charges.s

Exercice 2 (7 points). La dynamique d'un système en boucle ouverte est décrite par l'équation différentielle :

$$\frac{1}{\omega_n^2} \ddot{y}(t) + \frac{2\zeta}{\omega_n} \dot{y}(t) + y(t) = Ku(t)$$

Sachant que le comportement de système placé dans une boucle d'asservissement à retour unitaire est caractérisé par une réponse oscillatoire avec une précision parfaite, temps de montée égale à 0.4s et un dépassement de 20 %.

- Proposer une représentation d'état en utilisant comme sorties $\dot{y}(t)$ et y(t).

- Calculer les fonction de transferts du système.

Licence automatique (S5) Année Universitaire : 2020/2021 Durée : 1 heur

Examen de Commande des Systèmes Linéaires

$$\dot{x}(t) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix} x(t) + \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} u(t)$$
$$y(t) = \begin{pmatrix} \overline{1 & 0 & 0} \\ 0 & 0 & 1 \end{pmatrix} x(t)$$

- Calculer les fonction de transferts du système.

Département de Génie Electrique Module : Commande des systèmes linéaires Chargé de module: Ounnas D. Université de Tébessa

Licence automatique Année Universitaire : 2016/2017 Durée : 1h30m

Examen de Rattrapage

Exercice 1 (6points). On considère le système en boucle ouverte G(p) défini par : $G(p) = \frac{100}{(p+10)(p+2)}$ -Tracer le diagramme de Bode et de Nyquist de système sans correcteur. - Déterminer le régulateur *C*(*p*) qui permet obtenir un comportement de système d'ordre 1 en boucle fermée avec un temps de réponse à 5% égal 0.3 s et une précision statique parfaite.

Exercice 2 (6 points). La dynamique d'un système peut être décrite par l'équation différentielle :

$$\frac{1}{\omega_n^2} \ddot{y}(t) + \frac{2\zeta}{\omega_n} \dot{y}(t) + y(t) = Ku(t) / K = 1, \ \omega_n = \sqrt{2}, \ \zeta = \frac{3}{2\sqrt{2}}$$

- Proposer une représentation d'état sachant que les sorties de système sont $\dot{y}(t)$ et y(t).

- Étudiez la stabilité et déterminer la réponse du système pour un échelon unitaire de commande à partir de conditions initiales nulles.

Exercice 4 (8 points). La dynamique d'un hélicoptère peut être décrite par les équations différentielles suivantes :

$$\begin{cases} \frac{d^2 \rho(t)}{dt^2} = -0.65 \frac{d \rho(t)}{dt} - 0.02 \frac{dx(t)}{dt} + 5.4\alpha(t) \\ \frac{d^2 x(t)}{dt^2} = -1.57 \frac{d \rho(t)}{dt} - 0.03 \frac{dx(t)}{dt} + 9.8(\rho(t) + \alpha(t)) \end{cases}$$

Où $\rho(t)$ est l'angle de tangage qui peut être commandé par l'angle $\alpha(t)$ et x(t) est la position horizontale.

- déterminer une représentation d'état de système et déduire le schéma fonctionnel.

- Calculer la matrice de retour d'état K assurant un placement de pôles en B.F à $p = -3 \pm 3j$ et en déduire la matrice de précommande H.

Bibliographie

[1] PRADIN, Bernard et GARCIA, Germain. Modélisation, analyse et commande des systèmes linéaires. Presses Univ. du Mirail, 2010.

[2] Y. GRANJON, Yves. Automatique: systèmes linéaires, non linéaires, à temps continu, à temps. DUNOD, 2010.

[3] SABERI, Ali, STOORVOGEL, Anton A., et SANNUTI, Peddapullaiah. Control of linear systems with regulation and input constraints. Springer Science & Business Media, 2012.

[4] O. Bachelier. Représentations d'état linéaires des systèmes mono-entrée, mono-sortie. Éditions Lily et Aksel. 2019.

[5] H. Egon, M. Marie, P. Poree. TRAITEMENT DU SIGNAL ET AUTOMATIQUE II: Asservissements linéaires échantillonnés et représentation d'état. Ecoles d'ingénieurs, BTSIUT. Editions Hermann. Collection Méthodes. 2001.

[6] O. Bachelier. Cours d'Automatique, représentations d'état linéaires, systèmes monovariables. Support de cours. école nationale supérieure d'ingénieurs de Poitiers, France, 2017

[7] KEVICZKY, László, BARS, Ruth, HETTHÉSSY, Jenő, et al. Control engineering. Singapore: : Springer, 2019.

[8] HENDRICKS, Elbert, JANNERUP, Ole, et SØRENSEN, Paul Haase. Linear systems control: deterministic and stochastic methods. Berlin : Springer, 2008.

[9] D.Alazard Introduction au filtre de Kalman. Notes de cours. Octobre 2006.