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The software’s are created to implement the needs of the customer in reality, and this raises the 

need to measure the applicability and accuracy of the software. Software reliability engineering is 

based on models and measurements that quantify the software reliability. 

In our thesis, we have proposed a reliability prediction method of Multi agent systems integrating 

metrics depending on the agent's behavior and MAS characteristics. 

For the development of our approach we used machine learning regression algorithm that is 

based on finding the correlation between the proposed metrics in order to predict the agent’s 

reliability. 

Keywords: SRE, Reliability, MAS, Machine Learning. 
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Résumé 

 

 

 

 

 

 

 

 

 

Le logiciel est créé pour répondre aux besoins réels du client, ce qui impose de mesurer 

l’applicabilité et la précision du logiciel. La fiabilité du logiciel est basée sur des modèles et des 

mesures pour quantifie la fiabilité du logiciel. 

Dans notre mémoire, nous avons proposé une approche de prévision de la fiabilité des systèmes 

multi-agents (SMA) intégrant des métriques dépendant du comportement de l'agent et des 

caractéristiques des SMA. 

Pour le développement de de notre approche, nous avons utilisé l’algorithme de régression 

d’apprentissage automatique, reposant sur la recherche de la corrélation entre les métriques 

proposées afin de prédire la fiabilité des agents. 

Keywords: SRE, fiabilité, SMA, apprentissage automatique. 
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"In nature and human imagination, anything is possible." 

John Archibald Wheeler 

 

Introduction 

Nowadays, software has appeared in all industrial sectors whether in air traffic control, nuclear 

reactors, aircraft and hospital patient monitoring systems and even in our homes and the daily 

routine. 

Software reliability is a major attribute in software quality together with functionality, usability, 

performance, serviceability, capability, installability, maintainability and documentation, it is 

directly attached to software defects and failures, in an Inverse way more defect leads to less 

software reliability. High software reliability has become hard to obtain especially with the huge 

growth in software size and complexity, as instance the large next-generation aircraft will have 

over one million source lines of software on-board; next-generation air traffic control systems will 

contain between one and two million lines [50]. 

The Software reliability engineering attention is to develop engineering techniques to 

quantitatively evaluate Software reliability. In order to forecast reliability, failure data were 

integrated in reliability models like jelinsky and Moranda model, Weibull and Gamma model...; 

and also, multiple metrics were used like the number of failures in a time period, and time 

between failures. 

Many software reliability testing tools were developed like SMERFS, CASRE, MEADEP, 

SOFTREL, SREPT that were able to estimate and predict software reliability. 

Problematic 

Although reliability forecasting still now based on reliability models but the most of this model 

are based on assumptions that are not realistic like the assumptions that faults are independent 

of each other and that correction of a fault never introduces new faults. Based on the different 

reliability testing tools, which their aim was to estimate or to predict reliability or both in the 
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same time, the tools based on both prediction and estimation have shown better results in 

reliability measuring. 

Because the exhaustive study in the SRGM, we tried to focus on the prediction part. Our concern, 

is predicting multi-agent systems reliability, more precisely agent’s reliability because reliable 

agents mean reliable MAS, taking into account the complexity of the agents' behavior. 

1. On what basis can we predict agent reliability? 

2. What approach can we apply? 

Manuscript Organization 

Our manuscript comprised of three chapters, including this general introduction ending with 

general conclusion. 

In the first chapter we have presented software reliability engineering defining the reliability 

and the different reliability forecasting models and metrics with their classifications. 

The second chapter introduces reliability test tools, describing these tools and how they 

execute, and comparison of the tools based on criterions, concluding with a ranking of this tools. 

The third chapter contains an initiation to the multi agent systems and the agent as an entity. 

Fourth chapter defines in the first part an approach to predict the reliability of agents based on 

metrics that derived from the agents behaviors, applying the regression algorithm in machine 

learning to predict reliability; in the second part we have presented the coding environment and 

then explain each step in the code and the obtained results. 

We conclude this work by presenting perspectives in this area of research. 
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Chapter 1 

Software Reliability Engineering 

 

 
 

 

 

"The good thing about science is that it's true 

                                                                     whether or not you believe in it."                                                     

                                                                                                                         Neil deGrasse Tyson  

 

Introduction 

The technological revolution is in her peak, with the rapid pace that software and hardware are 

managed to pass in the last decades. 

We are reaching the point where perfection is more and more demanded in the current and future 

developments, especially on the software level because of the huge advance that hardware has 

reached. That has opened the way to developing software’s with reliable performance, better 

quality especially minus cost and less production time.  

In this chapter, we will present some of the software crisis that had big impact, and have 

mentioned the factors that jeopardize the reliability. Then we enter the software reliability 

engineering that includes the reliability testing measurements and models. 

1. Software crises 

Due to the increased demand for computer programs in all industry areas [1], the complexity of 

the programs developed has increased; the quality of the software became the main challenge 

facing programmers and developers.  

The world has seen many software crises like: 

The THERAC 25 crisis in 1986 which is a radiotherapy system for cancer tumor treatments 

caused by the inability of the system to call off a treatment in case of error diagnosis entered by 

mistake and an error message improperly displayed [2]. 

The PATRIOT disaster On February 25, 1991 during the Golf War, an error of 0.000000095 

second in precision in every 10th of a second, an enemy missile skipped the patriot defenses 

leading to killing 28 innocents [3]. 

Telephone outage happened in 1991, after modifying three lines of code in a signaling program 

containing millions of lines of code, local telephone systems in California and along the east coast 

came to a halt [4]. 
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Ariane 5, On 4 June 1996, after the Ariane 4 rocket successful launch, Ariane 5's inaugural flight 

flew away, while the control software's design flaws were revealed by the faster horizontal drift 

speed of the new rocket [5]. 

All these tragedies were the results of different causes like: 

• Maintenance costs are almost as important as its development cost. 

• Passing the delivery deadline. 

• Software inefficiency. 

• The poor quality of the software. 

• Certain requirements were unapplied. 

• The software was never delivered. 

2. Software Reliability 

Software is defined as a collection of computer programs, procedures, rules and data. Software 

features are classified into six main characteristics and 27 sub-characteristics [6]. 

ISO/IEC 9126 defines this characteristic and sub-characteristic as: 

• Functionality: Suitability, accuracy, interoperability, security. 

• Reliability: Maturity, fault tolerance, recoverability. 

• Usability: Understandability, learnability, operability, attractiveness. 

• Efficiency: Time behavior, resource utilization. 

• Maintainability: Analyzability, changeability, stability, testability. 

• Portability: Adaptability, installability, replaceability, coexistence. 

According to ANSI, “Software Reliability is defined as the probability of failure-free software 

operations for a specified of time in a specified environment”. Software reliability engineering is 

based on a key characteristic which is software reliability. 

IEEE defines Reliability as “The ability of a system or component to perform its required 

functions under stated conditions for a specified period of time”. 

Software Reliability Engineering (SRE) is so defined as the quantitative study of the operational 

behavior of software systems with compliance with user requirements for reliability. 

SRE was integrated like standard or current best practice of more than 50 organizations in their 

projects and software reports, including AT & T, Lucent, IBM, NASA, Microsoft and many more 

in Europe, Asia and the North America [7] but comparing it to the number of the software 

producers it is small amount. 

2.1. Factors affecting software Reliability  

The software development process consists of five phases: analysis, design, coding, testing, and 

operation. In each phase, there is factors can affect the software reliability and eventually 

software quality [8]. 

Factors such as subsystem configuration, operational profile, working languages, and applications 

categories, etc., must be taken into account and incorporated in the estimation of software 

reliability. 
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In Schneberger (1997), the authors listed the main causes of software errors according to the 

project managers. These reasons can be classified in the following eight main categories: 

• Modification / addition / definition of a requirement. 

• Programmer or team member experience, turnover. 

• Design / scope / complexity changes. 

• Coding and test phase problems. 

• New technology / language / tools. 

• Management experience. 

• Upper management influence/bidding and time constrains. 

• Data available for use in metrics and models. 

Potential factors that can influence the reliability of each component or the application system 

are listed in the following table: 

Factor Factors affecting reliability 

1 Inadequate test. 

2 Operations errors. 

3 Lack of a consistent quality assurance process. 

4 Management change issues. 

5 Lower quality source code. 

6 Different operating conditions - high levels of use and overload. 

7 Hardware failure - hard disks, network equipment, servers, power sources, 

memory, CPU. 

8 Interactions with external services or applications. 

9 Random Events - Security Failures. 

10 Problems related to the operational environment. 

Table 1.1. Factors affecting software reliability [8]. 

2.2. Software reliability techniques 

Software reliability techniques have known several times that we will try to mention [9]: 

2.2.1. Fault lifecycle techniques  

It’s actually can be divided into four (04) principal techniques 

• Prevention of errors: avoid, by construction, a fault occurrence. 

• Elimination of defects: detect, by verification and validation, the existence of faults and 

eliminate them. 

• Fault tolerance: provide, by redundancy, a service comply with the specification despite 

defects having occurred or occurring. 

• Failure/Outage forecasting: to estimate, by evaluation, the presence of faults and 

occurrences and consequences of failures.  

These techniques were like defense barriers to limit the cost and time of construction all 

respecting the user requirements, but fault prevention technique was not able to prove herself. 
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2.2.1.1. The bathtub curve for Software Reliability 

In the bathtub curve we will observe the different stages of the failure rate in time: 

 

Figure 1.1. Bathtub curve for software reliability [9]. 

In the last phase, software does not have an increasing failure rate, in this phase, software is 

approaching obsolescence; there are no motivation for any upgrades or changes to the software. 

Therefore, the failure rate will not change. In the useful-life phase, software will experience a 

drastic increase in failure rate each time an upgrade is made. The failure rate levels off gradually, 

partly because of the defects found and fixed after the upgrade. 

2.2.2. Software reliability models and measurement 

Forecasting failures were the goal of SR modeling on both axes’ estimation and prediction. 

Estimation which is measuring the current state, and prediction as assessment of the future state 

of the reliability of a software system. 

SR model specifies the form of a random process that describes the behavior of software failures 

with respect to the time. Based on three main reliability modeling approaches: 

• The error seeding and tagging approach. 

• The data domain approach. 

• The time domain approach, which is considered to be the most popular one. 

The goal of time domain SR modeling is to create curve fitting of observed time-based failure data 

by a pre-specified model formula, parameterized with statistical techniques (such as the Least 

Square or Maximum Likelihood methods). 

The model supply’s an estimate of the existing reliability or predictability of future reliability by 

extrapolation techniques. 

SR models are generally based on a number of common assumptions, as follows. 

1. The operating environment identical to that of the test, the measurement environment is 

where the reliability model has been set. 

2. In case of default, the fault that causes the failure is immediately deleted. 

3. The removal of defects does not cause new ones. 

4. The number of defects inherent in the software and the way these faults manifest themselves 

to cause failures follow, at least statistically, some mathematical formulas. 
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As the number of defects (as well as the failure rate) of the software system reduces as tests 

progress, resulting in increased reliability, these models are often referred to as software 

reliability growth models (SRGM) [9]. 

 

Figure 2.1. Software Reliability Engineering Process Overview [9]. 

This figure shows an SRE framework in current practice First, a reliability goal is determined 

quantitatively from the customer's point of view to maximize customer satisfaction, and customer 

use is defined by developing an operational profile.  

The software is then tested according to the profile, failure data collected and reliability 

monitoring during tests to determine the release time of the product. This activity can be 

repeated until some reliability level has been reached. 

The operational profile is a set of disjointed alternatives operating scenarios of the system and 

their probabilities of occurrence. 

For better comprehension of the two axes’ we will see the main differences between the two: 

Issues Prediction Models Estimation Models 

Data Reference Uses historical data. Uses data from the current 

software development effort. 

When used in Usually made prior to development or Usually made later in life cycle 
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development cycle test phases; can be used as early as 

concept phase. 

(after some data have been 

collected); not typically used in 

concept or development phases. 

Time frame Predict reliability at some future time. Estimate reliability at either 

present or some future time. 

Table 1.2. Difference between software reliability prediction models and software reliability 

estimation models [10]. 

2.3. Basic Reliability Metrics 

The choice of the applied metrics depends primarily on the domain of execution and the 

requirements of the user and this metrics are the way to quantify software reliability [1]. 

• MEAN TIME TO FAILURE (MTTF): MTTF is defined as the time interval between successive 

failures. An MTTF of 300 means that a failure can be waited every 300 units of time. Time 

units are totally depending on the system and it can even be specified in the number of 

transactions. MTTF is relevant for systems with long transactions. 

• MEAN TIME TO REPAIR (MTTR): Once the failure has occurred, it is sometimes necessary to 

repair the error. MTTR measures the average time needed to track errors causing failure and 

repairing them. 

• MEAN TIME BETWEEN FAILURE (MTBF): The combination of the MTTF and MTTR 

metrics is the MTBF metric. MTBF = MTTF + MTTR, an MTBF of 300 indicates that once the 

failure has occurred, the next failure should only occur after 300 hours. In this case, the time 

measurements are in real time and not the execution time as in MTTF. 

• RATE OF OCCURRENCE OF FAILURE (ROCOF): ROCOF is the frequency of occurrence 

with which unexpected behavior is likely to occur in a time interval. A ROCOF of 0.02 means 

that two failures are likely to occur on 100 no operational time unit. It's also called failure 

intensity metric. 

• PROBABILITY OF FAILURE ON DEMAND (POFOD): POFOD is the probability that the 

system will fail when a Service request is made. A POFOD of 0.1 means that one out ten 

service requests may result in failure. POFOD is an important measure for critical safety 

systems. 

• AVAILABILITY (AVAILABLE): An availability of 0.995 means that every 1000 units of time, 

the system will probably be available for 995 of them. The percentage of time that a system is 

available for use, taking into account forecasts and unforeseen downtime, and it takes into 

account the repair time and the system restart time. If a system is down on average four hours 

on 100 hours of operation, its availability is 96%. 

2.4. Software Reliability Growth Models  

These models refer to models that attempt to predict software reliability from test data. They 

show a relationship between error detection data and known mathematical functions, such as 

logarithmic or exponential functions.  

The model that describes error detection in software reliability is called the software reliability 

growth model [11]. 
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There are many models we will try to mention some of them: 

2.4.1. Non Homogeneous Poisson Process Model 

General software reliability models follow the NHPP as follows: 

������� = 	
 =
�����

�!
�����, n =0,1,2….(1) 

Where m(t) is mean value function, which is expected number of failures detected by testing time 

t. It can be written as:              m(t) = � ������


�
. …………………..……..(2) 

Where λ(s) is intensity function of failure. 

Most of NHPP SRGM is expressed using the differential equation as: 

����

�
= ��������� − �����……………..(3) 

Through solution of Equation (3), that make to find unique m(t) using a(t) and b(t). Also, this 

process can be applied to assume for software testing. 

2.4.2. Model Jelinski-Moranda 

Introduced for the first time in 1972, it is a continuous time-independently distributed inter 

failure time and independent and identical error behavior model. 

2.4.3. Goel-Okumoto Model  

It has been proposed by Goel and Okumoto, and is one of NHPP's most popular models in the field 

of Software Reliability Modeling and is also known as the Exponential NHPP Model. 

2.4.4. Generalized NHPP model of Goel 

This is the generalization of the Goel-Okutmoto model, and is proposed by Goel to determine the 

situation in which the software failure intensity increases slightly at the beginning and then 

decreases. 

2.4.5. Inflected S-shaped model inflicted 

This model is proposed by ohba and is based on the concept that software reliability growth 

becomes an S if the defects of a program are mutually dependent and some defects are not 

detectable before others deleted and that this model solves a technical problem in Goel-Okumoto 

model. 

2.4.6. Logistic Growth Curve Model 

This model is designed to predict the economic growth of the population and could also be applied 

to the growth of software reliability. The logistic growth curve model is one and has an S-shaped 

curve. 

2.4.7. Musa-Okumoto model 

In this model, a property is incorporated, which is explained by Musa-Okumoto. They observed 

that the reduction in the failure rate resulting from repairs resulting from early failures is often 

greater because they tend to occur more often than once. 

2.4.8. Yamada Delayed S-Shaped Model 

It is the model with the modification of the inhomogeneous possession process which makes it 

possible to obtain an S-shaped curve for the cumulative number of detected failures, so that the 

failure rate initially increases and then fades. 
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Model Name Mean Value Function Intensity Value Function 

Jelinski-Moranda Model m(t ) =n (1 − exp – фt). λ i= (n −k ) µ. 

Goel-Okumoto Model m(t) =a 1 − exp − bt,  

α > 0, b> 0  

a= expected total number of 

fault.  

b= fault detection rate. 

λ (t) =ab ∗exp – bt. 

a> 0, b> 0 

Generalized Goel NHPP 

Model 

 

m(t) = a(1-exp([-btc ]) ,  

a> 0, b> 0, c> 0  

a= expected total number of 

faults. 

b,c =reflect quality of testing. 

λ (t ) =abctc −1 exp−btc.  

α> 0,b > 0,c > 0  

Inflected S-Shaped Model 

 

m(t) =a ∗(1 −exp [−bt ] /1 + ѱ (r) 

∗exp –bt ). 

ѱ (r ) = 1 –r /r  

a > 0,b > 0,r > 0  

a= expected total number of 

faults.  

r = rate of detectable fault.  

b =fault detection rate. 

λ (t ) =(ab exp [−bt ]( 1 +βt ) / ( 1 +β 

∗exp [ −bt ]) 2. 

a> 0,b > 0, β > 0. 

Logistic Growth Curve 

Model 

 

m(t ) =α /1 +k ∗ exp–[bt ]  

α> 0, b> 0, k> 0  

a = expected total number of 

faults. 

k,b = estimated by fitting the 

failure data.  

λ(t) = ab exp− bt 1 + k∗exp −bt 2  

a> 0,b > 0,k > 0  

Musa-Okumoto Model 

 

m(t ) = a∗ ln (1 +bt ). 

a > 0, b> 0  

a = expected total number of 

faults. 

b = fault detection rate  

λ(t ) =ab (1 +bt ). 

a > 0, b> 0  

Gompertz Growth Curve 

Model  

 

m(t)=akbt  

a>0,0<b<0,0<k<1  

a= expected total number of 

faults.  

b= estimated using regression 

analysis. 

λ(t ) = abln(k)kexp[-bt] exp [-bt]  

a>0,0<b<0,0<k<1  

 

 

Yamada Delayed S-Shaped 

Model  

 

m(t)= a(1-(1+bt) * exp[-bt]),  

a>0,b>0  

a = expected total number of 

fault to be detected  

b = fault detection rate  

λ(t)= ab2t*exp[-bt],  

a>0,b>0  

Yamada exponential  

 

m(t)=a*(1-exp[-rα(1-exp[ βt])]). 

a>0,b>0,α>0, β>0  

a = total number of fault to be 

detected.  

α = fault introduction rate  

r, β =constants. 

λ(t)=ara(exp[-rα(1-exp[-βt])])*exp[-βt]. 

a>0,b>0,α>0, β>0  

Yamada Imperfect 

Debugging Model  

m(t)=a*b*(exp[αt]-exp[-bt]/α +b)  

a>0,b>0,α>0  

λ(t)=a*b*(α*exp[αt]+b*exp[-bt]/α +b).  

a>0,b>0,α >0  
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 a = total number of fault to be 

detected.  

b =fault detection rate.  

α = fault introduction rate.  

Yamada Raleigh  

 

m(t)=a(1-exp[-rα (1-exp[-

βt2/2])])  

a>0,r>0,α >0, β>0  

a= total number of fault to be 

detected. 

α = fault introduction rate.  

r, β =constants.   

λ(t)=araβt(exp[-rα(1-exp[-βt2/2])]) 

*exp [-βt2/2]. 

a>0,r>0,α >0, β>0  

Modified Duane Model  

 

m(t)=a{1-(b/b+t)c)} a>0,b>0,c>0  

a = total number of fault to be 

detected. 

λ(t )=acbc (b+t)-(1+c). 

a>0,b>0,c>0  

Weibull-Type Testing-

Effort Function Model  

 

m(t)=a(1-exp[-ba(1-exp{-βtγ])])  

a,b,α, β, γ >0  

a=total number of fault to be 

detected  

b = fault detection rate  

α =Total number of test effort  

β = scale parameter. 

γ = shape parameter. 

 

Table 1.3. Mean Value and Intensity of Various Models [11]. 

3. Classification Based on Failure History 

The existing SWRMs are classified into four main classes on the basis of failure history [12]. 

• Time between Failure Models (TBF Models).  

• Fault Count Models (FC Models).  

• Fault Seeding Models (FS Models).  

• Input domain-based Models (IDB Models). 

3.1. TBF models: In this class of models; process under consideration is the time between 

failures. He assumed that the elapsed time between the (i-1) and the i-th faults is a random 

variable.  

The estimates of these parameters are obtained from the observed values of TBF and the TOS 

parameter is obtained from the adjusted models. 

3.2. FC Models: The random variable of interest is the number of failures (failures) occurring 

during specified time intervals, called FC models. It is assumed that the number of failures 

follows a known stochastic process. The time is used whether it is calendar or can be a CPU time. 

3.3. FS models:  In this model, we tested and observed the number of seeded and native faults 

counted. The MLE and combinatorial method makes it possible to obtain an estimate of the defect 

content of the program before seeding before seeding, and then from the value of the parameter 

SWR is calculated. 
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3.4. BDI models:  In this model approach, a set of test cases is generated from the entry covering 

the operational profile of the input.  The input domain is partitioned into a set of equivalent 

classes. 

  

 

  

Time Between Failure (TBF) Models 

1. It’s an independent times between failure. 

2. Each fault has equal probability. 

3. After each occurrence fault are removed. 

4. At the time of correction new faults are introduce. 

5. Ex. J-M De-Eutrophication, Schnick and 

Wolverton, Goel and Okumoto Imperfect Debugging, 

Littlewood-Verall Bayesian Models 

 

 

 

 

Fault Count (FC) Models 

1. Fault or failure in specified time interval. 

2. Testing during intervals is reasonably 

homogenous. 

3. Numbers of fault detected during non-overlapping 

intervals are independent of each other. 

4. Estimate software reliability mean time by fault 

count. 

5. Ex. Generalized Poisson Model, Goel-Okumoto 

NHPP Model, IBM Binomial and Poisson Models, 

Logarithmic Poisson Execution Time Model, Musa 

Okumoto 

 

 

 

Fault Seeding (FS) Models 

1. A known number of faults are “seed”. 

2. Seeded faults are randomly distributed in the 

program. 

3. A Program has unknown number of indigenous 

faults. 

4. Indigenous and seeded faults have equal 

probabilities of being detect. 

5. Ex. Lipow model, Mills seeding model, Basin 

model 

 

 

 

 

Input Domain Based (IDB) Models 

1. Test cases are generated from the input covering. 

2. Estimate software reliability by failure observed 

in test cases. 

3. Random testing is used. 

4. Input domain can be partitioned into equivalent 

classes. 

5. Input profile distribution is known. 

6. Ex. Bastani Model, Nelson Model, Ramamoorthy 

Table 1.4. Overview of Models based on Failure History [12]. 
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Conclusion 

In this chapter we have viewed or better say entered to the software reliability engineering with 

the main definitions of the domain, without a doubt the reliability measuring has become an 

important factor in software development industry. 

In the next chapter we will detail the reliability metrics and growth models, ending with tools 

comparison. 
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Chapter 2 

Reliability Testing Tools: State of art 

 
 

 

 

 

 

 

"This world is grand and there lies an ocean of undiscovered findings."                                                     

                                                                                                                                 Isaac Newton 

 

Introduction 

Forecasting failures were the goal of SR modeling on both axes’ estimation and prediction. 

Estimation which is measuring the current state, and prediction as assessment of the future state 

of the reliability of a software system. 

Software reliability is measured using measurements, models and leading to reliability test tools. 

In this chapter we will make a comparison between the most known and used software reliability 

tools including CASRE, SMERFS, SOFTREL, MEADEP and SREPT for each tool we will details 

the different modules of it and the way it executes, and counting their advantages and dis 

advantages; ending with comparison table and tools ranking. 

1. Reliability estimation tools 

1.1. CASRE - A Computer-Aided Software Reliability Estimation Tool 

CASRE as Computer Aided Software Reliability Estimation, it is an extension of the tool 

SMERFS. It is a user-friendly reliability estimation tool, where the user can manipulate different 

options like selecting a set of failure data or executing a model through a menu. 

After the execution the results are presented as failure intensities or inter-failure times in a 

graphical form (plots) or in tabular form, the user can also use this window of the results to detect 

cumulative number of failures and reliability growth curve. 

The models combination grants better predictive reliability estimation, CASRE provides this 

option [11]. With the ability to determine user custom combination and add it as a configuration 

to the tool. To help the users CASRE applies different techniques to determine the applicability of 

a model to a set of failure data [13]. 

1.1.1. The functionalities that CASRE provides: 

• Data modification: includes data editing, smoothing (altering), and data transformation 

(logarithmic, exponential, or linear). 
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• Failure data analysis (statistics of the failure data). 

• Modeling and measurements: allow users to execute several models on the failure data. 

• Display of results: provides the user graphical display models [13]. 

For further details on this tool we start by giving a global view on its main functionalities in the 

Figure below: 

 

Figure 2.1. CASRE architecture [13]. 

Data modification  

• Editing: Casre allows the users to custom or create the failure data history. with easy to use 

interface with the ability of choosing time between failures or test interval lengths manually, 

with the possibility to choose preferred editor 

• Smoothing: To handle the noisy data, it uses the next smoothing techniques: Sliding 

rectangular window, hann window, polynomial fit, and specific cubic-polynomial fits (e.g. B-

Spline, Bezier Curve). 

• Data Transformation: Is very important part it concerns the result display, we need to select 

performing operations like logarithmic, exponential, or linear transformations of the failure 

data for better or more understandable results, as example we have the following operations:     

� log(a * x(i)) + b); x(i),  

� exp(a * x(i) + b),  

� x(i) ** a,  

� x(i) + a, 

� x(i) * a. 

� user-specified transformation. 

Failure data analysis 

The "Summary Statistics" allows users to display the failure data summary statistics, including 

the mean and median of the failure data, 25% and 75% hinge points, skewness, and kurtosis. 
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Modeling and measurement 

It has two modeling functions. The "Models" block executes single software reliability models on a 

set of failure data. The "Model Combination" block, allows users to execute several models on the 

failure data and combine the results of those models. 

The block labeled "Model Evaluation" allows users to determine the applicability of a model to a 

set of failure data: 

• Single Model Execution: with the following models:  

(1) Bayesian Jelinski-Moranda Model (BJM) [14], [15]. 

(2) Brooks and Motley Model (BM) [16]. 

(3) Duane Model (DU) [17], [18]. 

(4) Geometric Model (GM) [16]. 

(5) Goel-Okumoto (GO) [19]. 

(6) Jelinski-Moranda (JM) [20], [21]. 

(7) Keiller-Littlewood Model (KL) [22], [23]. 

(8) Littlewood Model (LM) [ 24]. 

(9) Littlewood non-homogeneous Poisson Process. 

(10) Littlewood-Verrall (LV) [25]. 

(11) Musa-Okumoto (MO) [26]. 

(12) Generalized Poisson Model (PM) [16]. 

(13) Schneidewind’s Model (SM) [27]. 

(14) Yamada Delayed S-Shape Model (YM) [28]. 

CASRE allows users to choose the parameter estimation method (maximum likelihood, least 

squares, or method of moments), Model outputs include: 

- Current estimates of failure rate/ inter-failure time. 

- Current estimates of reliability. 

- Model parameter values, including high and low parameter values for a user-selectable 

confidence estimated bound. 

- Current values of the pdf. 

- The probability integral transform uῑ. 

- The normalized logarithmic transform of uῑ, yῑ. 

• Combination Models: the users can set their own models combination results according to 

several combination schemes. The resulting combination models could be further used as the 

component models to form another combination model. 

• Model Evaluation: help users decide which model or combination models could be applied to a 

specific failure data set by using statistical methods: 

- Computation of prequential likelihood (PL) function (the "Accuracy" criterion). 

- Determination of the probability integral transform ui , (plotted as the u-plot - the "Bias" 

criterion). 

- Computation of yi to produce the y-plot (the "Trend" criterion). 

- Noisiness of model predictions (the "Noise" criterion). 
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Display of results 

CASRE graphically displays model results in the following forms: 

- Inter-failure time /failure frequencies, actual and estimated. 

- Cumulative failures, actual and estimated. 

- Reliability growth, actual and estimated. 

Both current and estimated quantities are available on the same plot. Users are able to control 

the range of data to be plotted as well as the usual cosmetic aspects of the plot (e.g. X and Y 

scaling, titles), multiple plots could be simultaneously displayed. 

It allows users to save them on a file or to be printed, and also includes the ability of saving the 

used data to produce a plot to a file that can be imported by a spreadsheet, a DBMS, or a 

statistics package for further analyses. 

CASRE On-screen 

The Main Steps to Use CASRE are [29]: 

Step 1. Create a set of failure data. 

Step 2. Start CASRE. 

Step 3. Open a set of failure data. 

Step 4. Change the failure data. 

Step 5. Apply filters and smoothing operations to the data. 

Step 6. Apply trend tests to the failure data to determine whether or not software reliability 

models should be applied. 

Step 7. Apply models to the failure data. 

Step 8. View the model outputs. 

Step 9. Print failure data and model results. 

Step 10. Save failure data and model results to disk. 

Step 1: Create a set of failure data 

The Failure data files has a specific format, we can create it using word processor or text editor. 

We have two kinds of failure data: Time between failures and Failure count, with different 

formats. Two types of inputs: 

• Time between failures: 

Seconds 

4   9   1 

5   6     7 

6   50   2 

The first line represents the time units for the data file (seconds, minutes, hours, days weeks, 

months, years). In the case of second unit the subsequent lines are: 

- The first column is the current failure number. 

- The second column represents the time that has passed since the last failure was observed. 

- The values in the second column are measured in the time units given in the first line of the file. 

- The third column indicates the severity of the failure on a scale of 1 to 9. 
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• Failure count: 

Minutes 

3   4   10   4 

4   8   20    3 

5   1   30    7 

The first line represents the time units for the data file. 

In the case of second unit the subsequent lines are: 

- The first column gives a sequential test interval number. 

- The second column specifies the number of failures that were observed during a given test 

interval. 

- The third column gives the length of the test interval. Test interval lengths do not have to be 

equal. 

- The fourth column indicates the severity of the failure on a scale of 1 to 9. 

Step 2: Install and run CASRE  

The CASRE main window should then appear as shown 

 

Figure 2.2. CASRE Main Menu. 

Step 3: Opening a Data File 

• Go to File -> Open 

Browse to the directory where the file is located and select it to open it. 

When a failure data file is opened, the text of the file is shown in the main window, while a plot of 

the data is shown in the graphic display window (see figure 2.3). 

Step 4: Change the failure data 

We can change from a data type from one to another using external application (see figure 2.4). 
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Figure 2.3. Shows a data file. 

 

Figure 2.4. Example on data file with failure count. 

Step 5: Filters and smoothing operations 

As shown in figure 2.5: 

• Shaping and scaling filters for changing the shape of the failure data curve. 

• A filter for changing the time units for a failure data set. For example we can change between 

data form seconds to minutes. 

• A Hann window for removing noise from the failure data. 

• The capability of selecting a subset of the failure data based on severity classification. 

• A filter for rounding the failure data to the nearest whole number. 
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Figure 2.5. Shows Filters Sub Menu. 

Step 6: Apply trend tests. 

• Determine whether a set of failure data exhibits reliability growth. 

• Running Arithmetic Average of Time Between Failures/Failure Counts. 

• Laplace Test 

 
Figure 2.6. The results of applying the running arithmetic average. 

The graph shows a decreasing in the failures count. 

Step 7, 8: Apply Reliability Model and View Results 

Let us look at model results and model evaluation statistics for the following scenario (see figures: 

2.7, …, 2.11). 
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• Failure data: Same as that used before (time between failures data). 

• Data Range: We've selected point’s 100-194 as the interval to which to apply the data. 

• The Parameter Estimation End Point is 150. 

• No of future failures is 20. 

• Models selected: We'll be looking at the results of the Musa Basic, Musa-Okumoto, Linear-LV, 

and Quadratic-LV models. 

 

Figure 2.7. Model Sub Menu. 

The first move is to click Model from the Main Menu. 

 

Figure 2.8. Select Data Range. 

Model -> Select and run Models… 

Then a new dialog will show up (see the next figure). 
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Figure 2.9. Shows the list of models. 

From the Graph Window select -> "Select model results” 

 

Figure 2.10. Shows the select and display model results window. 

Then the result will be displayed, in figure bellow 

 

Figure 2.11. Shows the Results. 
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It shows the results of the Musa Basic, Musa-Okumoto, Linear-LV, and Quadratic-LV models 

selected in the previous steps. 

1.1.2. Advantages of CASRE 

CASRE have several advantages that we will mention [30]: 

• Increased time of execution: Fast execution of tasks especially for the ones with diagramming 

and associated specifications, and with rate of improvement from 355 to more than 200%. 

• Increased Accuracy: Due to the debugging and error checking, that’s key component in early 

bug detection and removal. 

• Reduced Lifetime Maintenance: because of the overall quality of the systems and 

documentation. The efforts and costs associated with maintenance are reduced ,  and thanks to 

CASRE's reengineering tools, it makes this process more efficient, less time consuming and 

less expensive by updating to latest version . 

• Documentation: A lot of documents produced during the construction life cycle for better 

comprehension end explanation of the tool. 

• Facility of the use: CASRE easy to use and understand by the users, and it leads to less 

training time and better acceptance of the tool. 

1.1.3. Disadvantages of CASRE 

• Necessitate significant work in the analysis phase to extract customer needs. 

• Difficult to customize. 

• Require training for maintenance personnel. 

• Does not support cohabitation with other systems. 

2. Reliability estimation and prediction tools 

2.1. SOFTREL - The software reliability process simulator  

SOFTREL mechanism is more based on incorporating the users and computers in all 

development phases to study the reliability of the life cycle and the effects between different 

phases, it also admit that testing requires the preparation and utilization of test cases, and that 

repairs must follow identification and isolation. 

Configured to simulate processes having constant event rates per causal unit, It is considered as 

framework for experimentation, data generation for comparison with actual collected project data, 

The input to SoftRel is one file that define the dt time slice, and a model that shows the data 

structure contains about 70 traits of the software project and its reliability process, and a list of 

activity, schedule, and resource allocations.  

Also, internally, the set of status monitors at any given time are stored in a data structure called 

facts, which records the overall clock time, the time and resources consumed by each activity (42 

measures in total), and a snapshot of 48 measures of project status. The output is one file 

contains the facts series of each dt interval of time [31]. SoftRel simulates two kinds of failure 

events, defects in specification documents and faults in code. 
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Figure 2.12. SOFTREL execution context [31]. 

2.1.1. The Major Components of the Simulator 

To equal the goal values given in the model, SoftRel is initialized by setting sizes of items for 

construction, integration, and inspection, but the model values are considered only approximate. 

We have 14 major components in the simulator: 

a. Document Construction: both documentation and there integration, it is approximated to be 

piece-Poisson, with constant average rates per working day sited in the model, not surpass the 

target values. 

Defects are injected with a constant probability per unit of documentation. At each injection of a 

default, the document risk rises according to the fault detection characteristic. 

b. Document Integration: Based on document reusability by applying small changes like: 

deletion of undesirable parts, addition of new material, the defects are created as a result of each 

sub-activity. 

Documentation is integrated per average regular paste per day and the defects are injected with a 

regular probability per unit of documentation. The danger increases each defect according to the 

fault detection assumed characteristic. 

c. Document Inspection: has a similar type to documents construction, it is a goal-limited 

piecewise-Poisson approximation Documents inspected at mean regular paste per workday.  

Inspected units are dived to new documents and reused documents in proportion to the relative 

amounts of documentation in these two categories.  

The defect discovery rate is proportional to the current collected document hazard and the 

inspection efficiency. 

d. Document Correction: The staff level set the rate of the defect correction, and it may lid to 

add new defects the actual corrections are made according to the efficiency of the correction of 

defects, not to exceed the actual number of defects discovered, and can change the alter the 

documents total. 
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e. Code Construction: With same steps like document building however, the average rate at 

which mistakes are created is performed by the usual fault the density that is the consequence of 

coding, and by the density of not discovered defects in documentation and by the amount of 

missing documentation. 

Each fault injected increases the risk of code. But while document defects are only discovered by 

inspection, code defects are detected both by inspection and by test, and different rates. 

f. Code Integration: Has the same structure as document integration, the difference that code 

units replace document units and coding rates replace documentation rates. Each fault increases 

the code hazard. 

g. Code Inspection: Reflects the document inspection process, but the number of faults 

discovered will not passe the total number of as-yet undiscovered faults. The rate of fault 

discovery is proportional to the current accumulated fault hazard and the inspection efficiency. 

The discovered faults may not yet have been removed at the time of discovery, the number of 

newly discovered faults is assumed to be in proportion to the number of as-yet undiscovered 

faults. 

h. Code Correction: Apply the same algorithm given for document correction, translated to code 

units. Fault risque is reduced in the correction of a fault, and can increase in case of new faults 

are added by the correction process. Documentation alterations are produced at assumed regular 

mean pace per attempted correction. 

i. Test preparation: Produces a number of test cases in each dt, in proportion to the test 

preparation rate, which is a constant average number of tests per workday. 

j. Testing: The testing activity simulation consists of two parts:  

If a test crushes in effect, the crush times indicator decrements and the time and effort 

increment. If a crush is not in effect, failures occur at the modeled rate; the number observed is 

computed as a binomial process that is regulated by the probability of observation.   

The failure rate function returns a value relative to the current risque level. The function 

consumes computer resources and test cases, the latter at a mean constant rate. 

k. Fault Identification: The total number of failures analyzed does not pass the number of 

failures observed. Failures are analyzed at a mean workday pace, because of the failures still 

remaining in the system. 

The identification of faults is limited in number. The isolation process is regulated by the fraction 

of faults remaining undiscovered, the adequacy of the analysis process, and the probability of 

faithful isolation. 

l. Fault Repair: The attempted repairs number cannot pass the number of faults identified by 

inspections and testing, plus faults corrected after inspection, and the identified for rework by 

validation and retesting. 

Of those attempted, a select number will really be repaired, while the rest will wrongly be 

reported as repaired. Repairs are assumed here to be made on faults identified for rework first.  

A select number of new faults may be generated by the attempt, and code units may be changed. 
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m. Validation of repairs: Validation of repair attempts occurs at a steady pace assumed to be 

average per workday. 

The number of defective repairs detected is a selected number determined by the probability that 

the validation will recognize an unrepaired failure, if any, and the probability unrepaired defects 

are among those repair attempts are validated. 

n. Retesting: There is an average constant number of retests per workday and consumes 

computer resources at the planned rate per day, without any new test cases generation, because 

the original test cases are assumed available for regression. 

As example we will run FRESTIMATE TOOL to show the process execution [32], with the 

following steps: 

Step1: open file: We can open an existing file. 

 

Figure 2.13. Main menu. 

After we create a new project (see figure 2.14) another panel will display (figure 2.15), in this 

panel we need to select a model for predicting defects, after it another panel will open for more 

inputs. 

 

Figure 2.14. New project panel. 

Step 2: Enter General inputs and size. 

When starting a new prediction, you will need to enter a size prediction to see any results [7]. The 

other inputs have default values which should be reviewed and modified. There are wizards to 

help you enter these inputs. 
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Figure 2.15. Prediction general inputs panel. 

 

Figure 2.16. Tool option. 
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In the Tool option (figure 2.16) we select the model of predicting defects, and then select the 

“Survey Inputs for this Model”, we will be then directed to the survey for the selected model, with 

three kind of surveys “Full scale model”, “Full scale model B”, “Full scale model C”. 

ALL prediction surveys were developed by a research organization that collected and organized 

lots of defect data from many real projects. 

 

Figure 2.17. Survey Model. 

The defect density is predicted by how many of each you check yes. The prediction formula can be 

viewed by pressing the Help button. 

This is one page of the Full-scale model survey (see figure 2.18). Some surveys have one question, 

some have a few questions and some have many questions. 

 

Figure 2.18. Full-scale Survey Model. 



Chapter 2                                                                                                                              Reliability Testing Tools: State of art  

Reliability Prediction Approach for MAS 29   

 

Step 3. View results, profiles, trends. 

 

Figure 2.19. Prediction panel. 

The results are filtered by criticality, we can save the exact page using ‘print’ option, or we can 

also save this as a report ‘.txt’ using the ‘REPORTS’ option. 

 

Figure 2.20. View profiles. 
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A profile is a metric with respect to some particular point in time. 

 

Figure 2.21. Trends panel. 

Press the Trends button.  Select any one of the trends from the list. The trends are graphical 

representations of the profiles and results. You can save them as a bitmap or copy to clipboard or 

print; we can select or even reduce the result metrics, by using the ‘FILTER REPORT’ option. 

Step 4:  Compare the results to others in our DB. 

If we select the ‘Compare RESULTS’ option in the previous panel, it allows us to compare results 

of different projects in the same domain. 

 

Figure 2.22. Results comparison. 
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It allows us to conclude decision and get a better view, and see similar projects. 

2.1.2. SOFTREL advantages 

• Designed for real word systems. 

• Test of reliability of each activity. 

• Project documentation. 

• Provides practical feedback for the users. 

• Provides higher reliability due to overlapping tests. 

2.1.3. SOFTREL disadvantages 

• Time and resources consuming. 

• Excessive calculations. 

• Necessitate experts’ helps of the domain. 

2.2. MEADEP - MEAsure and DEPendability 

MEADEP is a failure data-based dependability analysis and modeling tool of critical systems, 

Dependability measures created, have two sources either directly obtained from data, such as 

failure rate and event distribution, or evaluated by combined use of failure data and 

dependability models. 

It consists of four software modules: a data preprocessor for converting data from different 

formats to MEADEP format, a data analyzer for graphical data presentation and parameter 

estimation, a graphical modeling interface for building block diagrams (including the exponential 

block, Weibull block, and k-out-of-n block) and Markov reward chains, and a model solution 

module for availability/reliability calculations with graphical parametric analysis. 

The result of MEADEP consists of results obtained from data and results evaluated from models 

[33]. 

 

Figure 2.23. Layout of MEADEP [33]. 

Figure 2.23 illustrate the components of MEADEP. All modules are integrated with the graphical 

user Interface (GUI). 
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• The data preprocessor module (DPP) interacts with the user to convert source data to 

MEADEP internal data. Source data can be manually generated structured reports, usually in 

database format or computer-generated event logs.  

• The Data Editor and Analyzer (DEA) module is used to edit internal data. Data and perform a 

statistical analysis of the data. The parameter values estimated from the data in this module 

can be inserted in the text modeling file generated by another module, the model generator 

(MG) [33]. 

• The MG module provides a graphical user interface that allows the user to draw model 

diagrams and then generate text modeling from the diagrams file that contains the 

appropriate model specifications for the solution. Template diagrams can be imported from 

library files containing predefined templates to save development time.  

• The Model Evaluator (ME) module produces results based on: the specifications and 

parameters of the model in the text modeling file.  

2.2.1. MEADEP modules 

a. The DEA module: Works on data converted by the DPP module and performs statistical 

analysis. It has three categories of functions: data editing, graphical analysis, and parameter 

estimation.  

In addition to individual parameter estimates, it can generate multiple parameters and 

confidence intervals by processing a query file.  

The module can also plot, over a histogram, five different analytical probability distribution 

functions determined by the sample mean and sample variance: exponential, gamma, Weibull, 

normal and lognormal. Meanwhile, the estimated parameters for these functions as well as the 

results of the Chi-Square and Kolmogorov-Smirnov goodness-of-fit tests [34] are provided on the 

screen. 

b. The MG module:  Is a graphical “drag and drop” interface for constructing dependability 

models. A model is developed hierarchically, from the top level to the bottom level, forming a tree-

structure. Each node in the tree is diagram of serial or parallel reliability blocks, a diagram of 

weighted blocks, or a diagram of Markov reward chain.  

The user can navigate from one diagram to another to build models. 

c. The ME module:  Has two principal functions: edit the text modeling file (publisher) and 

evaluate the model (evaluator). The editor allows the user to review templates and settings, and 

then see immediately the effects of the revisions on the results.  

The evaluator provides regular results and parametric analysis. For the regular results, the 

modeling file is evaluated once and the results of all the diagrams (models) listed in the 

specification are generated. 

In parametric analysis, the user specifies a loop and several sets of results are generated 

graphically for one or more diagrams. 

2.2.2. MEADEP on screen 

The MEADEP installation program will guide you through the process and at the end of the 

installation [34]. 
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In the end of the installation you should find the following MEADEP modules: Data Editor & 

Analyzer, Data Pre-Processor, Model Evaluator, Model Generator, and User’s Manual. 

 

Figure 2.24. Sample Database [34]. 

Click on the Data Editor & Analyzer (DEA) icon on the desktop, after the DEA main form 

appears, choose the “Open” command under the File menu and then follow the instructions below: 

1. In the “Open” box, go to the C:\MEADEP\Example directory (unless you specify otherwise), 

pick the database file called “Plant.mdb” and then click the “Open” button. 

2. In the “Choose Table Name” box, choose the “Channel” table and click “OK”. 

It contains an example database, contains information on component failures in an assumed 

digital safety system in a plant for a period of two years (1995/1/1 to 1996/12/31). This form 

contains 12 records that holds information’s about the possible failures. We can draw this 

information’s using the DEA graph capabilities: 

• Select the “Event Pie Chart” option in the Graphical-Analysis menu. 

• Under “Select a field by which to draw chart” choose “Component” and click“OK”. 

• Specify “4” for the number of top items and click “OK”. 

 

Figure 2.25. Example of Event Pie Chart [34]. 
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We can also draw an MTBE Line Graph (Mean Time Between Events Line Graph). 

 

Figure 2.26. MTBE Line Graph [34]. 

1. Select the “MTBE Line Graph” option in the Graphical-Analysis menu. 

2. Choose a value of 0.8 for the confidence level, also, enter the amount of time to be considered in 

the calculation. 

For this example, let us pick a time interval from January 1, 1995 to December 31, 1996. Finally, 

enter “3 months” for the time between plotted points and click “OK”. 

2.2.3. MEADEP avantages  

• Based on measurements dependability. 

• Dedicated for critical systems. 

• Ability to handle sensitive parameters. 

2.2.4. MEADEP disadvantages 

• For expert users. 

• Require previous domain analysis. 

• Executed on windows OS only. 

2.3. SREPT - Software Reliability Estimation and Prediction Tool  

SREPT developers knew the importance of keeping track of the software quality during the entire 

life cycle development of the software. It has several techniques adequate to each phase. All of it 

goes under a unified framework for software reliability estimation and prediction. SREPT 

combines the capabilities of the existing tools in a unified framework [35]. 

SREPT supports the following two approaches to software reliability prediction—the black-box-

based and the architecture-based approaches. 

2.3.1. Design and architecture of SREPT 

a. Approaches based on a black box 

Black box approaches treat the software as a whole regardless of its internal structure. The 

following measures can be obtained to help predict the black box: 

• Software/process product metrics include number of lines of code, number of decisions, loops, 

the average length of the variable names and other static attributes of the code, or 

characteristics of the process. 
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• Test coverage is defined as the ratio of potential failure sites exerted by test cases divided by 

the total number of potential failure sites in the study [35]. 

 
Figure 2.27. Architecture of SREPT [36]. 

 

Figure 2.28. Black-box quantification [36]. 

• Inter-failure time data refers to the times observed between failures during software testing. 

When product / process metrics are available, the total number of defects in the software can be 

estimated using the fault density approach or the regression tree model. In the fault density 

approach, experience from similar projects in the past is used to estimate the fault density (FD) of 

the software as: FD = total number of faults ÷ number of lines of code. 

Now, if the number of lines of code in the current software is NL, the expected number of faults 

can be estimated as: FD =  NLFD. 
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• The regression tree model is a goal-oriented statistical technique that attempts to predict the 

number of failures in a software module based on static complementarity metrics. 

We use historical data sets to build the tree which is then used as a forecasting device for the 

current project. Inter-failure times data obtained from the test phase can be used to parameterize 

the ENHPP model (non-homogeneous enhanced Poisson process) to obtain estimates of the 

intensity of the failure, the number of remaining faults, the reliability after the publication and 

coverage of the software. 

Coverage functions include Exponential, Weibull, S-shaped, Log-logistic [36]. 

b. Architecture Based Approach 

Software reliability predicted using the internal software control structure. This assumes 

additional importance in assessing the reliability of modern software systems that are not 

monolithic entities, but are likely to consist of several modules distributed around the world. 

SREPT can predict reliability based on: 

• Architecture of the Software:  specify how the different modules in the software interact, and 

are given by the inter-modular transition probabilities, or in a very broad sense, the 

operational profile of the software. 

 The architecture of the application can be modeled as a DTMC (Markov chain in discrete time), 

CTMC (Markov chain in continuous time), SMP (Semi-Markov process) or DAG (directed acyclic 

graph). 

The state of the application at any time is given by the module running at that moment, and state 

transitions represent the transfer of control between the modules. 

• Failure Behavior: This specifies the behavior in case of module failure and that interfaces 

between modules, in terms of probability of failure (or reliability) or failure rate (constant / 

time dependent). Transitions between modules may be either instantaneous or there may be 

an overhead in terms of time. 

2.3.2. SREPT advantages 

• User friendly. 

• Graphics supporting. 

• Estimation and prediction tool. 

2.4. SMERFS- Statistical Modeling and Estimation of Reliability Functions for Software 

The Statistical Modeling and Estimation of Reliability Functions for Software (SMERFS) is one of 

earliest tools that proved his efficiency, it incorporates eight different models, due their 

performance in comparative studies and for embedding collected data from homogeneous testing 

domains. IT incorporates eight different models, four using as input data the time between error 

occurrences and four using the number of detected errors per testing period.  

The former includes: Littlewood and Verrall’s model [37], Moranda’s geometric model [38], John 

Musa’s execution-time model [39], and an adaptation of Goal’s non-homogeneous Poisson process 

(NHPP) model to time between-error data [39]. 

The latter models include: The generalized Poisson model [35], Goel’s NHPP model [40], Brooks 

and MotIey’s model [41], and Norman Schneidewind’s model [42].  
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The process of determining the parameters of these models based on maximum likelihood and 

least squares. 

2.4.1. The main functionalities that SMERFS provides [43, 44]: 

• Data input. 

• Data edit. 

• Unit conversions. 

• Data transformations. 

• Data statistics. 

• Plot(s) of the raw data. 

• Model applicability analyses. 

• Execution of the models. 

The previous represents the SMERFS structure, which gives us more general idea on the 

different steps that can be established with this tool. 

Data input 

Smerfs offers two ways to enter the input data by a previously created ASCII file or the computer 

keyboard, with the ability to append new data on the currently executed; a different dataset 

cannot be analyzed only at the end of the program. 

Edit module 

In case of error during data input or discovered errors in the error vector values this module 

allows altering it instead of destroying the entire data file a various modification options can be 

performed like insert, combine, changing or deleting specified elements. 

Unit conversions module  

It concerns the time unit’s transformation from unit to another, its useful in handling with 

history files, with a specified scale: 

a. 60.0 for seconds to minutes. 

b. 60.0 for minutes to hours. 

c. 24.0 for hours to days. 

d. 07.0 for days to weeks. 

e. 04.0 for weeks to months. 

f. 12.0 for months to years. 

Transformation module 

It allows the scaling of a software error data vector.  With Five types of transformations are 

allowed as well as options for restoring the data vector in its unprocessed state and listing the 

data. The available transformation options are: LOG (A* X(I) + B), EXP(A * X(I) + B), X **A, X+A, 

X * A, restore the data, and list the current data. 

Statistics module 

This module generates summary statistics of the software error data, and its automatically 

generated without the user interferes. 
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From the obtained values we mention: MEDIAN OF THE DATA, LOWER & UPPER HINGES, 

MINIMUM AND MAXIMUM, NUMBER OF ENTRIES, AVERAGE OF THE DATA, SKEWNES 

& KURTOSIS… 

Raw data module 

'Raw data' expression is to distinguish real data and not predicted by the tool, this module 

generates plots of this data, which are the result of an internal tracer. 

The internal plotter produces very coarse graphics to help the user during a quick interactive 

review of the data. 

Model applicability module 

SMERFS performs analyses to determine the models applicability on the failure data  

All four analyses Accuracy (Prequential Likelihood), Bias, Noise, and Trend) have been 

implemented for the execution time models. Only the Accuracy has been implemented for the 

interval data models. 

SMERFS on screen 

We will try to demonstrate the main steps that we will apply: 

Step 1: Running SMERFS. 

 

Figure 2.29. SMERFS home panel. 

 

Figure 2.30. Data option. 
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The header toolbar contains all the options from data, transformation, execution …etc. 

Step 2: Choosing the data set. 

The first thing we need to enter a data set  

• Select “Data” from the toolbar. 

• Select “New”. 

• Select “File” 

 

Figure 2.31. Data addition. 

If we choose “Data Entry” instead of “File” and specify the data, Data Type and Error History 

manually, The SMERFS package contains data samples that we can execute or we can create our 

own data using NOTEPAD, Respecting the SMERFS data format which can be software, system 

or hardware time between error or interval counts as example we have: 

For Software “Time Between Errors” the format is: 

Column 1 Column 2 

“Elapsed Time” “0” to denote a software failure 

1.00000 

1.50000 

2.00000 

2.50000 

0 

0 

0 

0 

For Software “Interval Counts” the format is: 

Column 1 Column 2 

“Software Error Count” “Interval length” usually normalized to 1 (1 

day, week ,,,etc.) 

20.0 

18.0 

45.0 

62.0 

63.0 

1.0 

1.0 

1.0 

1.0 

1.0 

In our case I will use a sample from the SMRF TOOL package; a window will show up. In this 

window we can choose the data files for the execution, another window will be opened (figures: 

2.32 and 2.33). This window is to specify the data type executed with two options time between 

failure data or interval data counts. We will choose TBF. 
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Figure 2.32. File selection. 

 

Figure 2.33. Data type. 

 

Figure 2.34. Input file format. 

In window shown in figure 2.34 we can indicate a parameter to each column. We click ok to 

proceed. 

Step 3: Execution option. 

 

Figure 2.35. Execution panel. 
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In Execution we can choose the Numerical Method wanted Maximum Likelihood or Least 

Squares in choose the Maximum Likelihood method. 

To choose the models we click: Execution, Numerical Method and Model Execution. 

 

Figure 2.36. Models execution. 

In this window we select the models and we can use the model Applicability Analyses option, for 

accuracy comparison of models. 

 

Figure 2.37. Model Applicability Analyses. 

In this panel we can select the model Applicability Analyses methods. 

 

Figure 2.38. Analyses report. 

Then the result of the Accuracy Analyses is presented in figure 2.38, the selected models are 

applicable. 
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Figure 2.39. Execution Summary. 

In the execution summary panel, the green values are successful fit for, and the red values not 

applicable models, we click on Plot to draw the graph. 

In the right column we have the software Statistics with multiple values like: 

• The median of the data: It represents the value such that 50 percent of the data have values 

below it; analogously, 50 percent of the values are greater. 

• The minimum and maximum values are, respectively, the smallest and largest values in the 

data base; the number of entries simply shows the number of points in the data base. 

• The lower and upper hinges represent a breakup of each of the two sections of the data, 

determined by the median, into two equal parts. They both are a measure of the spread of the 

data. 

Step 4: The plot.  

 

Figure 2.40. RAW and Predicted Data Plot. 
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In the left side we can scroll to see the models selected values and the TBF and Severity level in 

time. In the top of the panel we have few options like the 3D-glasses. And we can see other 

options like print and ZOOM option to know the exact coordination’s of any point in the plot and 

other options. 

 

Figure 2.41. Plot on 3D. 

2.4.2. Advantages of SMERFS                                                                                            

From the features of the SMERFS we mention [43]: 

• Maintainability: Ensure it by complying with the structured programming standards in a 

Naval Surface Weapons Center (NSWC) publication, this document direct code generation 

toward   top-down design. 

Additionally, the document contains scenarios with details author, purpose, description, 

Restrictions, local glossary, errors, associated subprograms, references, language declarations, 

and formats. 

• Complete Reliability Analysis Environment: IT aims the completeness of the output, with the 

eight models, additional modules integrated like data input, data edit, transformations of the 

data, general summary statistics of the data, plots of the originally collected data, plots of the 

original and predicted values according to the fitted model, and a goodness-of-fit module to aid 

in determining the model adequacy. 

• Interactive in Nature: Giving the user the experience of control was important factor, and this 

experience was guided by the choices that the user makes while the program execution and it 

was established by SMERFS interactive mode.  

Through various menus and questions, and the user inputs a response via the terminal 

keyboard. Free-format input of user responses was elected in order to reduce potential 

operational errors. 

• Error Detection Capability: The program has a complete error detection code in place. 

This significant it was designed with the ability to emit information error message and still 

guided by the user, if it enters an illegal value response to a prompt or to the numeric 

procedure it can jeopardize   the select of the proper model. 
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• Machine Transportability: Is designed to be compatible with all operating systems. It has been 

written in perfect accordance with FORTRAN V declarations approved by ANSI. This should 

minimize the transportability difficulties of the machine, but not eliminate all the problems. 

Therefore, SMERFS has been divided into two sections, a library and a "pilot".  

Currently, two of these drivers are available, one for a VAl 1 l / 780 with an operating system 

(OS) VAX / VMS 4.4 and the other for a 170f865 CDC with a NOS 2.2 OS. For all other system, 

the only driver modifications would be the Date and Time functions, possibly the graphs 

package, and the input/output instructions for special ‘I/O’ characteristics imposed by the 

operating system. 

2.4.3. SMERFS Disadvantages  

• complexity of the program construction 

• More chances of the human error. 

• Lack of specification due to the number of models embedded. 

3. Comparison 

The reliability tools comparison is a way of showing the point of strength and weakness of the 

compared tools and common points also. There are different articles who worked such 

comparisons with different aspects and criterions like [29][52]. In this part we will do a 

comparison between the tools viewed and detailed in the previous part. 

3.1. Criterions 

Based on different criterions that we will explain first: 

• Language: A programming language is a vocabulary and set of grammatical rules for 

instructing a computer or computing device to perform specific tasks. Both tools CASRE and 

SMERFS uses FORTRAN language which is mostly used in numeric             

computation and scientific computing, SOFTREL created with C language an efficient 

procedural programming language, MEADEP coded with CV++ language which is Visual C++ 

a Microsoft implementation language of C++, SREPT coded with java which is class based 

object-oriented language. 

• Operating system: The OS factor is very important because it reflects the tool 

transportability. MEADEP, SOFTREL, SREPT executed on WINDOWS environment, CASRE 

and SMERFS UNIX-WINDOWS environment. 

• Number of models: This means the evaluation models and the reliability test models. CASRE 

has 14 models plus 2 evaluation models, SMERFS with 8 models plus 4 evaluation models, 

MEADEP based on Markov chain model, SREPT based on ENHPP model, SOFTREL based on 

piecewise-Poisson Markov processes with explicitly defined event rate functions. 

• Models for Estimation/Prediction: Estimation is done with the failure data of the software 

but the prediction is done throw surveys or measurements evaluation, CASRE is an estimation 

tool, SOFTREL, MEADEP, SREPT, and SMERFS are hybrid tools. 
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• Phase of application: The first approach is assessment of the system in a later phase, 

typically, by test like CASRE and SMERFS the second approach modeling of a system in the 

design phase which used mostly in the reliability prediction during the system life cycle like 

MEADEP, SOFTREL and SREPT. 

• Input type: Mostly there are three sources of input to apply reliability estimation or 

prediction. SMERFS incorporates eight different models, four using as input data the time 

between error occurrence’s and four using the number of detected errors per testing period. 

CASRE input in the form of inter-failure times or failure frequencies. SREPT input consist of 

Complexity Metrics, Inter-failure Times & Release Criteria, Inter-failure times, Architecture, 

failure behavior of components. Input to SOFTREL consists of a single file that specifies the dt 

time slice, about 70 traits of the software project and its reliability process, and a list of 

activity, schedule, and resource allocations. Input to MEADEP are Data structured failure 

reports containing information on failure time, location, type, impact and other failure 

characteristics and reliability blocks. 

• Input format: Can be an ASCII input data set (contains multiple fields: set of values 

consisting either of the time between discoveries of defects or the number of defects discovered 

per time period, or can be one of inter-failure times data only, inter-failure times and coverage 

data, or estimated faults and coverage data) like: CASRE, SMERFS, SOFTREL, SREPT. Or 

like MEADEP (which can be in a variety of formats such as ASCII Delimited Text, Access, 

dBASE, Paradox, etc.). 

• Output type: All the tools output has similarity points and differences due to the model’s 

nature applied in each model. CASRE output consists of inter-failure times/failure frequencies 

actual and estimated, cumulative failure actual and estimated, and reliability growth actual 

and estimated. For SREPT the output is estimation of the number of faults, failure intensity, 

fault remaining, reliability, estimated coverage. SOFTREL output is in form of facts data 

structure consists of products CPU, resources, fault, failure and outage values. MEADEP 

output is failure rate, recovery rate, and coverage, Time Between Events, Time to Recovery 

(TTR) distributions, event distribution, Mean Time Between Events distributions. Finally, 

SMERFS output consist of Total number of faults, Number of faults remaining, expected 

reliability for a specified time, Number of failures expected in a specified time. 

• User friendly: We mean by it the ease flow of the tool use, by the available menus and their 

simplicity, which is a common option between all the tools. 

• Graphics: This option is very important. MEADEP and SREPT both offer this option with 

multiple views of the results like histogram graphs, pie chart graphs and line graphs…etc. 
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3.2. Comparison table 

In the next part we will summarize all the above criterions for each tool in a table: 

                                Tools 

 

Parametre 

    CASRE    SMERFS   SOFTREL     SREPT   MEADEP 

Application Phase TEST Life Cycle 

Models Type Estimation Hybrid 

Language   FORTRAN   FORTRAN         C      JAVA      VC++ 

Operating System             UNIX/WIDOWS                       WINDOXS 

Number of Models 16 14 2 1 1 

Input 

Type  

Failure data ✓ ✓ ✓ ✓ ✓ 

Architecture ✗ ✗ ✗ ✓ ✗ 

Parametre ✗ ✗ ✓ ✓ ✓ 

            Input Format ASCII TXT        ✴ 

Output 

type : 

Reliability        ✓        ✓          ✓         ✓        ✓ 

Total Failure        ✓        ✓          ✓         ✓        ✗ 

Remaining 

Failure        ✓        ✓          ✓         ✓        ✗ 

            Graphics : 
       ✗ 3        ✗ 3         ✗ 2         ✓ 0        ✓ 2 

  USER FRIENDLY 

Table 2.1. Reliability tools comparison. 

✗ : no. 

✓ : yes. 

✴ : ASCII Delimited Text, Access, dBase, Paradox, etc. 

Hybrid: Estimation and prediction tool. 

3.3. Tools ranking 

Tool Ranking 

SREPT 1 

MEADEP 2 

SOFTREL 3 

SMERFS 4 

CASRE 5 

Table 2.2. Tools ranking. 

This ranking is based on the previous tools study, and mainly on our criterions that we set in the 

comparison; as we see the hybrid tools has better outcomes than the estimation tools. 
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Conclusion 

In this chapter, we detailed each tool going through their main functionalities with their 

interfaces, advantages and disadvantages. 

We concluded with comparison between the tools, proposing parameters for comparison. As a 

conclusion, the reliability testing tools showed their performance in the industry, as obvious 

result the hybrid tools that are based on both estimation and reliability prediction gives better 

results due to the early detection and faults avoid in the design phase with the prediction models 

and then validation of this results with the estimation models in the test phase leading to 

reduction in time and cost consumed in the software construction. 
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Chapter 3 

Multi Agent Systems   

 

 

 

 

"It is strange that only extraordinary men make the discoveries 

                                                                                           which later appear so easy and simple."                                 

                                                                                                                 Georg C. Lichtenberg 

 

Introduction 

Multi-agent systems (MAS) have received considerable attention and have been developed in 

different disciplines to solve complex problems by subdividing them into smaller tasks. 

In this chapter we have entered to the Distributed artificial intelligence (DAI) then to one of his 

subfields Multi Agent Systems concentrating on the agents as an entity. 

1. Distributed Artificial Intelligence 

Distributed artificial intelligence (DAI) is a subfield of Artificial Intelligence that is used to solve 

complex real-world problems [45]. 

It comprises three different areas. These are parallel AI, Distributed problem solving (DPS) and 

Multi-agent systems (MAS). 

Multi-agent systems deal with the behavior of the computing entities available to solve a given 

problem. In a multi-agent system, each computing entity is referred to as an agent [46]. 

According to P.G. Balaji and D. Srinivasan ‘MAS can be defined as a network of individual agents 

that share knowledge and communicate with each other in order to solve a problem that is beyond 

the scope of a single agent.’ 

2. Agent 

According to Russell, 1997 an agent is an entity that perceives its environment and act on it. And 

according to IBM, Smart agents are software entities that perform operations in the place of a user 

or another program, with some kind of independence or of autonomy, and to do that they use some 

kind of knowledge or representation of goals or desires of the user. 

The goal of each agent is to accomplish his task with conditions as a deadline. the agent first detects 

the environment settings. With this data, the agent can acquire knowledge about the environment. 
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It can use the knowledge of his neighbors. This knowledge as well as the history of previous actions 

undertaken and the objective are fed by an inference engine that decides the appropriate action to 

be taken by the agent [47]. 

 

Figure 3.1 The structure of an agent [47]. 

 

From these previous definitions we conclude that agent is a smart entity that is driven by it goals 

with the ability to react and analyze his environment. through the features that it has like [46]: 

• Sociability: This is the ability of change information between agents as form of a request. 

• Autonomy: the ability to perform actions independently. 

• Proactivity: based on its history, the detected parameters, and information from other agents to 

predict the possible future actions, as a result, agents take better actions to serve their goals. 

An agent works alone is able to take actions (autonomy), the actual profit of the agents can only to 

be exploited when they work in collaboration with others agents. The result of this collaboration is 

multi-agent systems (MAS). 

3. Multi-Agent Systems 

The agents play different roles in MAS but all for serving a common goal that all share, it's more 

obvious with the MAS main features: 

Features Categories 

Leadership Leader-follow 

Leaderless 

Decision function Linear 

Non-linear 

Heterogeneity Heterogeneous 

Homogenize 

Agreement parameters First order 

Second order 

High order 

Delay consideration Time delay 

Without time delay 

Topology Static topology 

Dynamic topology 

Data transmission frequency Time triggered 

Event triggered 
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Mobility Static agents 

Mobile agents 

Table 3.1. MAS features [47]. 

3.1. MAS features 

• Leadership: done by agent that plays the role of leader which, it defines the roles of agents, 

the MAS also can be leaderless in this case the agent's acts autonomously based on its own 

goals. 

• Decision function: MAS is classified as follows: linear and nonlinear. In linear MAS, the 

decision of an agent is proportional to the detected parameters of the environment, In non-

linear MAS, the decision of the agent is not proportional to the measurements detected 

because of the non-linearity of entry into the decision-making process. 

• Heterogeneity: On the basis of the heterogeneity of MAS agents, we have: homogeneous 

and heterogeneous. A homogeneous MAS includes agents who all have the same features 

and functionality, while heterogeneous MAS include agents with various characteristics. 

• Agreement parameters: In some applications of MAS, agents need to agree on particular 

parameters known as metrics. Based on the number of metrics, MAS are classified as first, 

second or higher order. 

• Delay consideration: Agents can face multiple sources of delay to perform Tasks. MAS 

can be classified in two groups, namely with or without delay, most real-world applications 

experience significant delays. 

• Topology: MAS topology can be static or dynamic. In a static topology, the position and 

relationships of an agent remain unchanged throughout the life of the agent. In dynamic 

MAS topology, an agent's position and relationships change as the agent moves, leaves, or 

joins. MAS, or establishes new communications. 

• Data transmission frequency: Agents detect the environment and share the detected 

data with other agents either in a time or event triggered way, in the time triggered, it 

continuously sends the data to other agents. In MAS triggered by an event, when a 

particular event occurs, the agent sends the collected data to other agents. 

• Mobility: Static or mobile agents, a static agent is always located in same position in the 

environment, while mobile agents can move in the environment, a mobile agent can be 

hosted by other agents and use their resources. 

3.2. Classification of Multi Agent System 

The classification of MAS is a difficult task as it can be done based on several different attributes 

such as Architecture, Learning, Communication, Coordination.  

A general classification encompassing most of these features is shown in the figure bellow [46]. 

• Internal Architecture: multi-agent system, it may be classified as two types [46]: 

1. Homogeneous structure 

2. Heterogeneous structure 



Chapter 3                                                                                                                                                       Multi Agent Systems  

 

Reliability Prediction Approach for MAS 51   

 

a) Homogeneous Structure: all agents forming the multi-agent system have the same internal 

architecture. Internal architecture refers to the Local Goals, Sensor Capabilities, Internal states, 

Inference Mechanism and Possible Actions. environment. There may be overlap in the sensor 

inputs received. In a typical distributed environment, overlap of sensory inputs is rarely present. 

b) Heterogeneous Structure: the agents may differ in ability, structure and functionality, Based 

on the dynamics of the environment and the location of the particular agent. 

 

 

Figure 3.2 Classification of a multi agent system based on the use of different attributes [46]. 
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3.3. MAS Application 

 

 

Figure 3.3 MAS application summary [47]. 

The MAS are impended in multiple fields that we can mention like [47]: 

. COMPUTER NETWORKS: The complexity of computer networks increases dramatically 

because of the emergence of new technologies and proliferation devices connected to the Internet. 

Agents are widely used to overcome this complexity. Due to the wide range of MAS applications in 

networks 

. ROBOTICS AGENTS: Cena et al. Argued that there are two main challenges in robotics, namely: 

1- cooperation and coordination between the robots  

2- plan their movement path. 

The authors then proposed a method using material and software agents to overcome the 

challenges. 

. MODELING AGENTS FOR COMPLEX SYSTEMS: Modeling complex dynamic systems is 

expensive and involves high processing overhead due to the demand for powerful modeling 

platforms and high complexity Flexibility, autonomy and scalability offered by agents makes agent-

based modeling a low-cost, low-resource solution for modeling complex systems. 

. AGENTS IN THE CITY AND BUILDING ENVIRONMENTS: The use of agents for the 

management of cities and buildings has received considerable attention from researchers. In a city, 
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unorganized freight distribution increases the cost, pollution and congestion. Khayyat and Awasthi 

proposed an agent-based approach to this challenge using six agents, namely: RFIDG, retailer, 

supplier, carrier, network agents and the city. 

. AGENTS IN INTELLIGENT GRIDS: Agents are used to address the multiple challenges of 

smart grids, including balancing generated and generated resources. The energy demanded, the 

negotiation between the energy consumer and the producer on the price of energy. 

3.4. MAS Challenges 

MAS challenges are typically application-specific [47]: 

 

 

Figure 3.4 MAS challenges summary [47]. 

Even with the increasing applicability of MAS in multiple disciplines, important research 

indicates that the following challenges must be addressed: 

. coordination between agents: The agents actions reflects on the environment and therefore 

the decision made by other agents. Coordination control refers to management agents to achieve 

collaboration their goals. 

. learning: In MAS, each agent decides autonomously action to achieve its objective according to 

several measures. Agents can use machine learning algorithms to discover and predict changes to 

the environment, adapt to unexpected situations, and thus form multi-agent learning systems. 

. fault detection: faulty agents can infect the agents in collaboration with him, that’s why 

Detecting and isolating of defective agent is a fundamental task with. Current methods to detect 

and isolate defects (FDI) are mainly centralized, where a center to detect and then isolate the 

defective agents. 
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. task allocation: Task Allocation refers to assigning tasks to agents considering cost, time and 

communication costs and treatment overhead. The division of tasks can be centralized or 

decentralized.  

. Localization:  Remember that each agent has a limited view (only his neighbors) MAS topology. 

With this limited view, locate a particular agent, namely localization, can be difficult. An agent can 

be located based on: 1) having resources known as resource localization, (2) specific services, or (3) 

have a specific identity.  

. Agent organization: Organization refers to how agent communications and the connections are 

defined. 

. security: Security is very difficult in MAS because of decentralization, sociability and mobility. 

Conclusion 

in this chapter we entered to the Distributed artificial intelligence (DAI) then we focused on one of 

his subfields which is Multi Agent Systems and also focusing on the Agents as an autonomous 

Entity and his behavior, we have citate the MAS features, Applications and challenges.  

In the next chapter we will show case our hypothesis on MAS reliability Prediction. 
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Chapter 4 

Multi Agent System Reliability: 

Hypothesis & Experimentation 

 

 

 

 

"There is no law except the law that there is no law."                                                     

                                                                                                                 John Archibald Wheeler 

 

Introduction 

The need for reliable programs has become crucial with all the technological revolution we are 

experiencing. In this chapter, we want to manifest it in multi-agent systems, we propose our 

hypothesis. Finally, we finish with the experimentation. 

1. Hypothesis 

Due to the complex construction of the agent, we focus on how to predict agent reliability 

integrating agent behavior into the prediction process. 

We created our own metrics based on the agent definition and the SMA definition, as well as on 

their different characteristics. The results of the forecast can be validated with a selected 

reliability growth model based on the agent failure data. To explain the approach, we introduce 

the following figure: 

 

Figure 4.1. Proposed approach. 
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In our approach we are not depending on failure data only, we tried to add different measures to 

better judge reliability. We choose the designer to answer the survey, because the questions are 

more relevant to the coded behavior of the agent and his environment. 

The survey contains, the metrics that we have proposed to measure the agent reliability as form 

of questions with predefined answers also include entering data on the agent code. Then we apply 

supervised machine learning algorithm regression, it predicts discrete outputs like our data, 

because we have multiple categories (variables) and we will work with multiple linear regression. 

As a result, we got the predicted mean time between failures. We can validate the predicted 

result with the failure data that is processed with the reliability growth model giving an 

estimated reliability growth of the agent; the choice of the appropriate model is based on the 

obtained failure data from the agent to get the appropriate fit model. 

1.1. MAS reliability metrics 

The metrics are inspired from the agent behavior and MAS's environment, which can be used to 

measure the agent reliability; we tried to capture the metrics from the different definitions of the 

agent and MAS as bellow: 

Definition 1: “An agent is an entity that perceives its environment and interacts with it "(Russell, 

1997); 

• The rate of sending/receiving messages: the agents are capable to interact with each other 

throw sending and receiving messages, which very important metric to evaluate the ability of 

communication of agents. 

• Environment perception rate: the ability of an agent to perceive his environment means his 

ability to use the resources needed to achieve his goal. 

Definition 2: “An agent is a computer system, located in an environment that acts autonomously to 

achieve the goals for which it was designed” (Wooldridge and Jennings, 1995). 

• Agent statue: We mean by whether it works autonomously or collaborating with other agents. 

• Goal accomplishment: the most important factor that we can with it measures the agent 

reliability. 

Definition 3: “Intelligent agents are software entities that perform operations in place of a user or 

another program, with some kind of independence or autonomy, and to do that they use some kind 

of knowledge or representation of goals or desires of the user"(The IBM agent). 

• Mobility: whether static or mobile agent that can percept multiple environments and react 

with other agents to serve his goal. 

• MAS topology: can be static or dynamic, unlike static in dynamic topology, the agent moves, 

leaves, or joins. MAS, or establishes new communications. 

Definition 4: “An agent is an autonomous entity, real or abstract, which is able to act on itself and 

on its environment, who, in a multi-agent universe, can communicate with other agents, and whose 

behavior is the consequence of his observations, knowledge and interactions with other 

agents“(Ferber, 1995). 

• Proactive: The agent must exhibit proactive and opportunistic behavior, while being able to 

take the initiative at the right time. 
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With this different metrics we can predict the agent reliability in accomplishment of his goal. 

2. Work environment 

2.1. Google Colab 

Our work environment is Google Colab or "the Colaboratory", which is a free cloud service hosted 

by Google to encourage research on machine learning and artificial intelligence for academics or 

experts [48]. 

2.1.1. Colab strength  

• Python 2.7 and Python 3.6 support. 

• Free GPU acceleration. 

• Pre-installed libraries: All major Python libraries like Scikit-learn, Matplotlib and others are 

pre-installed and ready to be imported. 

• Built on top of Jupyter Notebook. 

• Allow Collaboration between developers to use and share Jupyter notebook among each other 

using google drive. 

• Available documentation. 

• Google Colab notebooks are stored on the drive. 

2.2. Programming language: Python 

Python is a high-level programming language widely used for versatile programming. Python is 

an excellent, object-oriented, interpreted and interactive programming language. It includes 

modules, classes, exceptions, high-level dynamic data types, and dynamic typing. 

There are interfaces for many system calls and libraries, as well as for various windowing 

systems. Python can also be used as an extension language for applications written in other 

languages that require easy-to-use scripting or automation interfaces [49]. 

2.2.1. Python strength 

• It’s simple to learn. 

• Open source programming language. 

• Clear syntax. 

• Capability of interacting with almost all the third-party languages and platforms. 
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3. Experimentation 

In This section, we will explain the regression algorithm and our dataset. Concluding with the 

code of the experimentation and the obtain results. 

3.1. Dataset 

We have based our experimentation on theoretical data; to obtain the data for the 

experimentation we need a study case on the agent’s behavior in MAS. 

 

Figure 4.2. Proposed data. 

This table contains the data on the metrics previously explained in addition to number of failures 

detected in the code test and the code size, our target value to predict reliability is the mean time 

between failures which is an important indicator of the reliability. 

Mean time between failures defined as [11]: 

MTBF = MTTF + MTTR, an MTBF of 300 indicates that once the failure has occurred, the next 

failure should only occur after 300 hours; Where: MTTF is defined as the time interval between 

the successive failures, And MTTR measures the average time it takes to track the errors causing 

the failure & to fix them. 

3.2. Regression algorithm 

3.2.1. Multiple Linear Regression 

We used the multiple linear regression algorithm because this algorithm consists of a target 

variable/result (or dependent variable) to predict from a given set of predictors (independent 

variables).  

we can use it to find out which factor has the highest impact on the predicted output and how 

different variables relate to each other. That is known with the correlation. 

Using these sets of variables, we generate a function that maps the inputs to the desired outputs 

[50]. 
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Figure 4.3. Multiple Linear Regression [51]. 

 

To evaluate the performance of algorithm, three evaluation metrics are commonly used [51]: 

1. Mean Absolute Error (MAE) is the mean of the absolute value of the errors. It is calculated as: 1��|����	
 − ��������|�
���  

2. Mean Squared Error (MSE) is the mean of the squared errors and is calculated as: 1��|����	
 − ��������|��
���  

3. Root Mean Squared Error (RMSE) is the square root of the mean of the squared errors: 

�1��|����	
 − ��������|��
���  

3.3. Code explanation 

In this part we will go through all the steps of the code execution to the final result, with each 

code segment we will incorporate a comment to explain briefly how it works. 

Step1: importing libraries 

import pandas as pd 

import numpy as np 

from pandas import DataFrame 

import matplotlib.pyplot as plt   

import seaborn as seabornInstance  

from sklearn.model_selection import train_test_split  

from sklearn.linear_model import LinearRegression 

from sklearn import metrics 

%matplotlib inline 

import seaborn as sns 

from pandas.plotting import scatter_matrix 

Comment: Scikit-learn provides a range of supervised and unsupervised learning algorithms via a 

consistent interface in Python and our used libraries are included in her stack like [58]: 

• Pandas: Data structures and analysis. 

• NumPy: Base n-dimensional array package. 

• Matplotlib: Comprehensive 2D/3D plotting. 
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• IPython: Enhanced interactive console. 

Step2: Uploading the dataset file. 

from google.colab import files 

uploaded = files.upload() 

Comment: files.upload (), allows you to upload from the device, which is very useful in case of 

constant changes in the dataset. 

Step 3: reading the data. 

dataset = pd.read_csv('dd.csv', delimiter=";") 

dataset.head() 

dataset.shape -> (13, 9) 

Comment: After reading the data with panda csv reader, we poste our data with the head function 

it only displays the first columns, to know the data dimensions we use the shape function. Our 

data comprises 13 lines and 9 columns. 

 

Figure 4.4. The dataset. 

Step 4: Identifying the Nan values and removing theme. 

dataset.isna().sum() 

 

 

Figure 4.5. Displaying the null values. 

dataset.dropna(inplace=True) 

dataset.describe() 
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Figure 4.6. Data information. 

Step5: Data normalization. 

d1=pd.get_dummies(dataset.communication) 

dataset2=pd.concat([dataset,d1],axis='columns') 

dataset2=dataset2.drop(['communication','no'],axis='columns') 

 

d2=pd.get_dummies(dataset.statu) 

dataset3=pd.concat([dataset2,d2],axis='columns') 

dataset3=dataset3.drop(['statu','autonomous'],axis='columns') 

 

d3=pd.get_dummies(dataset.proactive) 

dataset4=pd.concat([dataset3,d3],axis='columns') 

dataset4=dataset4.drop(['proactive'],axis='columns') 

 

d4=pd.get_dummies(dataset.goal) 

dataset5=pd.concat([dataset4,d4],axis='columns') 

dataset5=dataset5.drop(['goal','not_achieved'],axis='columns') 

 

d5=pd.get_dummies(dataset.mobility) 

dataset6=pd.concat([dataset5,d5],axis='columns') 

dataset6=dataset6.drop(['mobility','static'],axis='columns') 

 

d6=pd.get_dummies(dataset.topologie) 

dataset7=pd.concat([dataset6,d6],axis='columns') 

dataset7=dataset7.drop(['topologie','static-topo'],axis='columns') 

 

dataset7=dataset7.drop(['number_failures','code_size','mean_tbf'],axis='columns') 

dataset7=pd.concat([dataset7,dataset.number_failures],axis='columns') 

dataset7=pd.concat([dataset7,dataset.code_size],axis='columns') 

dataset7=pd.concat([dataset7,dataset.mean_tbf],axis='columns') 

dataset7 

 

Figure 4.7. Normalized data. 
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Comment: We normalize data from string to numerical data, using the dummies function from 

panda, then we drop the main column and one of the dummies columns, after that we concatenate 

the selected column to the normalized data set. 

Step6: Identifying the correlation between columns. 

corr=dataset7.corr() 

axes =pd.plotting.scatter_matrix(dataset7,alpha=0.2,figsize=(10,10) ,s=80) 

corr = dataset7.corr().as_matrix() 

plt.title('Correlation Between Features',x=-5,y=13,fontsize=25) 

# to change fontsize  

plt.xticks(fontsize =10,rotation =0) 

plt.yticks(fontsize =10) 

for ax in axes.ravel(): 

    ax.set_xlabel(ax.get_xlabel(),fontsize = 12, rotation = 60) 

    ax.set_ylabel(ax.get_ylabel(),fontsize = 12, rotation = 60) 

# put the correlation between each pair of variables on each graph 

for i, j in zip(*np.triu_indices_from(axes, k=1)): 

    axes[i, j].annotate("%.3f" %corr[i, j], (0.8,0.8), xycoords="axes 

fraction", ha="center", va="center") 

 

Figure 4.8. Scatter matrix correlation. 
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Plt.figure(figsize=(14,6)) 

sns.heatmap(corr,annot=True) 

 

Figure 4.9. Heatmap correlation. 

Step 7: Splitting the data to train set and test set. 

X=dataset7[['communicates','collaborative','not_proa','achieved','mobile','

dynamic-topo','number_failures','code_size']].values 

y = dataset7['mean_tbf'].values 

print('X=',X) 

 

Figure 4.10. The categories values. 

print('y=',y) 

Y= [100   2   1   3   80   5   90  70  70  60  50  90] 

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_sta

te=0) 
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Step 8: running the regression. 

regressor = LinearRegression()   

regressor.fit(X_train, y_train) 

print('regressor intercept=',regressor.intercept_)  

print('Coefficients: \n','Communication proactive statu goal\n',regressor. 

coef_) 

print(' mobility topologi number_failures code_size') 

 

 

 

Figure 4.11. Intercept and coefficient. 

Step 9: Prediction execution. 

y_pred = regressor.predict(X_test) 

df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred}) 

df1 = df.head(25) 

 

df1.plot(kind='bar',figsize=(8,6)) 

plt.grid(which='major', linestyle='-', linewidth='0.3', color='coral') 

plt.grid(which='minor', linestyle=':', linewidth='0.3', color='black') 

plt.show() 

 

Figure 4.12. Comparison of the actual and predicted data. 

 

 



Chapter 4                                                                                   Multi Agent System Reliability: Hypothesis & Experimentation 

Reliability Prediction Approach for MAS 65   

 

Step 10: Regression evaluation. 

Print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred))  

Print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))   

print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test, y_pred))) 

 

Figure 4.13. Algorithm evaluation. 

Comment: Our root mean squared error is 0.8% bigger than the mean absolute error. That means 

that our algorithm was not very accurate but can still make reasonably good predictions. 

Conclusion 

Investments in multi-agent systems have reached billions of dollars, demonstrating the need for 

reliable agents. That shows the importance of the early prediction of the MAS reliability, leading 

to more accurate results, less cost and less development time. 

In this chapter, we accomplished the agent prediction using machine learning algorithm 

regression, integrating metrics inspired from the agent behavior and MAS environment.  

Next, we will conclude our manuscript. 
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"Your imagination is your preview of life’s coming attractions." 

Albert Einstein 

 

Conclusion 

Reliability measurement has been an active area of research for decades; software reliability 

modeling has attracted a lot of research attention in the estimation (measurement of the current 

state) as well as the prediction (assessment of the future state) of the reliability of a software 

system. 

The time domain approach, proved its effectiveness by performing an adjustment of the curve of 

observed failure data as a function of time with a model formula and parameters. Models can 

then provide an estimate of existing resources reliability or predictability of future reliability by 

extrapolation techniques. 

Software reliability tools that provides both estimation and prediction had more effective results, 

that reflects on the development process of the software’s in term of time consumption and cost 

reduction and correctness level. 

In our hypothesis we tried to focus on the reliability prediction of multi agent systems, 

introducing metrics based on the behavior of the agents and MAS characteristics like agent 

mobility, ability to communicate, MAS topology, number of failures detected and number of code 

lines …etc. In the experimentation we developed our idea using machine learning regression 

algorithm to determine the correlation between our proposed metrics and to predict the reliability 

of agents. 

Perspective 

As perspective, to lack of time we have built our experimentation on theoretical data, that is only 

obtained through a study case of long duration to analyze a MAS community and agent behavior 

as units to obtain and enhance our dataset; and even further we could validate the results 

obtained in the prediction by adopting an appropriate SRGM. 
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