
People's Democratic Republic of Algeria
Ministry of Higher Education and Scienti�c Research

University Of Larbi Tebessi Tebessa
Faculty Of Exact Sciences And Science Nature and life
Department Of Mathematics And computer science

MASTER'S THESIS
Quantum Computing

Prepared by :
Chihani Aymen

Supervised by :
Mr. Mekhaznia.T

Presented on : June 27, 2020

Before the jury:

Pr.MR. Bendjena. H
Mr. Tag. S

2019-2020

Abstract

Over time and increasing of power Computers are getting smaller

and smaller. There is more crunching capability in today phones

compared with room sized computer developed 5 decades ago. al-

though of these continuous improvement, many complex problems

still unsolved even with the most powerful computers. One critical

problem is computer's memory and switching unit (transistor) that

have achieved a level where they will be just an atom. This rise

the necessity of powerful possibilities of quantum computing that

have millions times faster processors than the used ones in clas-

sical computers. quantum computing still more complexed than

classical computing and based on quantum physics where classical

physics laws don't apply. This work gives a brief overview about

quantum basics, detailed analysis and comparison between clas-

sical computers and quantum computers, bene�ts, disadvantages

and future prospects.

Dedication.

To my mother and father to my

family and my friends

To my teachers

To my colleagues and colleagues

To candles that burn to light up for others to

everyone who taught me characters

I dedicate this humble research to the Lord

Almighty to find acceptance and success

Thanks.

Thanks, and gratitude We must take our last steps in university life from a stand

back to years

We spent it in the university with our distinguished professors who gave us a lot

 ... there is a great effort in building the future generation to re-emit the nation

And before we go forward, my name is the signs of thanksgiving, gratitude,

appreciation, and love to those

 ... They carried the most sacred message in life

... to those who paved our way to knowledge and knowledge

... to all our illustrious professors Thanks and appreciation to Dr.Mekhaznia I

don‘t forget the Examiner Pr.MR. Bendjena. H and Mr.Tag.S.

Which we say to them with the words of the Messenger of Allah peace be upon

all of you

"The whale in the sea and the bird in the sky to guard the teacher of the people"

We thank all those who helped to complete this research, gave us help and

provided us with a helping hand

Be a scientist ... If you cannot be educated ... If you cannot love scientists ... if

not You cannot hate them

Contents

General Introduction 11

1 Introduction to Quantum Computing 13
1.1 Introduction . 13
1.2 Computers and Quantum Mechanics 14

1.2.1 Moore's Law 15
1.2.2 Quantum Decoherence 15

1.3 Quantum Calculations 17
1.3.1 Di�erence between Quantum and Classical

Computers 17
1.4 Quantum Computing Prerequisites 18

1.4.1 Qubit . 18
1.4.2 Quantum Register 18
1.4.3 Quantum Logic Gates 19
1.4.4 Quantum Process 19

1.5 Comparison between Classical and Quantum com-
puting . 20

1.6 Quantum Reversibility 22
1.7 Quantum Entanglement 23

1.7.1 Forecasts 23
1.7.2 Calculations 24

1.8 Quantum Programming 24

3

1.8.1 Imperative Quantum Programming Languages 24
1.8.1.1 Quantum Pseudocode 25
1.8.1.2 Quantum Computer Language . . 25
1.8.1.3 Q Language 26
1.8.1.4 qGCL 27

1.8.2 Functional Quantum Programming Languages 27
1.8.2.1 QFC and QPL 27
1.8.2.2 QML 27

1.8.3 Quantum Lambda Calculi 28
1.9 Quantum Interest 28

1.9.1 Cryptography 28
1.9.1.1 IronBridge 29

1.9.2 Arti�cial Intelligence 30
1.9.2.1 HHL: Solving Linear Systems of

Equations 30
1.10 Realistic Quantum Computers 31

1.10.1 IBM Q . 31
1.10.1.1 Ibmqx5 32
1.10.1.2 QISKit 32
1.10.1.3 The IBM Q Network 33

1.10.2 The D-Wave 2000Q 33
1.10.2.1 D-Wave 2000Q Speci�cation . . . 34
1.10.2.2 The D-Wave 2000Q Application . 41
1.10.2.3 Software and Programming 41

1.10.3 Quantum Computers Price and forecasts . . 42
1.11 Conclusion . 44

2 Quantum Software 45
2.1 Introduction . 45
2.2 Quantum circuits 45
2.3 Elementary quantum gates 46

4

2.4 Quantum Algorithms 48
2.4.1 Deutsch-Jozsa 48
2.4.2 Bernstein-Vazirani 50

2.4.2.1 Bernstein-Vazirani Problem 50
2.4.3 Shor's Factoring Algorithm 51

2.4.3.1 Factoring 51
2.4.3.2 Reduction From Factoring to Pe-

riod Finding 51
2.4.3.3 Shor's Period Finding Algorithm . 54

2.4.4 Grover's Search Algorithm 56
2.4.4.1 The Problem 56
2.4.4.2 Grover's Algorithm 57

2.4.5 Hidden Subgroup Problem 58
2.4.5.1 De�nition And Some Instances Of

The HSP 58
2.5 Conclusion . 59

3 Quantum Algorithms Implementation 60
3.1 Introduction . 60
3.2 Quantum Computing Known Simulators 60

3.2.1 QX Simulator 61
3.2.2 Q-Kit . 62

3.2.2.1 Q-Kit Feauters 63
3.2.3 IBM's Q Experience 63

3.2.3.1 IBM QX: Web Interface 64
3.2.3.2 Graphical composer 64

3.3 Grover's Algorithm On IBM's Q Experience: . . . 65
3.3.1 Simulation 66
3.3.2 Experiment on 5-Qubits Machine(ibmqx2) . 67
3.3.3 Results . 68

3.4 Shor's algorithm for integer factorization 69

5

3.4.1 Sho'r Experiment 70
3.4.2 Results . 71

3.5 Conclusion . 71

4 Analysis and Forecasts 73
4.1 Introduction . 73
4.2 A Comparison Of Classical and Quantum Program-

ming Tools . 74
4.2.1 Quantum Computer Compiler 74
4.2.2 Error Correction 74
4.2.3 Software Engineering 76

4.3 Quantum Computers Complexity 78
4.4 Analysis . 79
4.5 Conclusion . 79

General Conclusion 81

6

List of Figures

1.1 Logic technology node and transistor gate length
versus calendar year.(Published at the International
Electron Devices Meeting 2006.) 14

1.2 An electron States 17
1.3 Server-rack device Entangled photonics 16 Mbp.

(Published at Supercomputing asia 2019) 29
1.4 coupling map of di�erent IBM quantum devices . . 31
1.5 Coupling map of ibmqx5 32
1.6 D-Wave 200Q Architecture 34
1.7 Starting at room temperature at the top, the tem-

perature decreases at each level until it is close to
absolute zero where the QPU itself is located. . . 36

1.8 D-Wave2000Q QPU 38
1.9 Qubits inside QPU 39

2.1 The Deutsch-Jozsa algorithm for n= 3 48
2.2 Shor's period-�nding algorithm 54
2.3 Shor's resolution run time estimation 56
2.4 Grover's algorithm, with k Grover iterates 57

7

3.1 Quantum-Kit Graphical User-Interface.Panels for
(1) graphical quantum circuit builder, (2) quantum
circuit command script, and (3) simulation execu-
tion status.(b) Visualization of quantum state after
each quantum gate operation in the circuit.Single
qubit states shown on a Bloch Sphere and multi-
qubit gates on bar charts for probability distribu-
tions and amplitudes. 62

3.2 IBM QX Web interface 64
3.3 IBM's Q Experience Circuite composer(Drag and

Drop) . 64
3.4 Basic Operation 65
3.5 IBM Simulator . 66
3.6 2-bit Grover's Circuit 66
3.7 Histogram Of IBM Q EXPERIENCE X=00 SIM-

ULATION . 67
3.8 2-bit Grover's Original Circuit On Real Device ib-

mqx2 . 67
3.9 2-bit Grover's Transpiled Circuit 68
3.10 IBMQ EXPERIENCE X=00 5-QUBITMACHINE

RUN(ibmqx2) . 68
3.11 Circuit for Shor's algorithm for N=15 and x=11 . 69
3.12 Shor's transpiled circuit 70
3.13 Shor's simulation histogram 70
3.14 Shor's circuit on ibmqx2 histogram 70

4.1 The e�ect of increasing qubits compared to error
rate. source IBM research 76

8

4.2 the prime factorization problem, the basis of many
current encryption protocols. All the computational
capacity in the entire world could not factor ex-
tremely large numbers within a reasonable amount
of time. 78

9

List of Tables

1.1 Comparison Between Classical and Quantum Com-
puting . 21

1.2 D-Wave 2000Q Application Areas 41

10

General Introduction

Since the middle of the 20th century and, for the past 60 years,

Quantum technologies contributed to small scale developments and

improvements. However, this �eld has grown signi�cantly and its

technologies are becoming increasingly relevant across di�erent sec-

tors, with great potential impact on community. We are about

entering new era, the age of quantum technology.

Quantum technologies will e�ect most of the emerging tech-

nologies we know today, empowering many of them and at the

same time will threat others security. They will disrupt current

technology used in biology, genetics, medicine, education, economy

and �nance, energy, agriculture, transportation, and meteorology,

among others, achieving a high social impact as well. So the global

forces and the well known technology �rms are investing massively

to understand, develop and implement these new technologies.

This report is divided into four chapters that explain di�erent as-

pects of quantum technologies, including the way they work, their

inevitable impact, and the actions technology �rms are taking to

incorporate them into their programs and infrastructure.

In this work we will explain some quantum basics from Qubits,

superposition,logic gates, Quantum Dechoerence, Quantum Re-

versibility, Quantum entanglement and how this quantum com-

11

puters works and their forecasts also we will discuss the di�erents

between classical and quantum computers, programming language

useually used to solve problems and the impact of quantum com-

puting on some industries and present some details of today real-

istic quantum computers for public use that belongs to IBM and

D-Wave companies, then we will pass to the soft side of quantum

computing some known algorithms and problems Grover search al-

gorithm, Deutsch-Jozsa, Bernstein-Vazirani, shor's factoring ...etc

with the implemantation of grover's and shor's algorithms on real

quantum computers (IBM Q EXPERIENCE) and discuss the re-

sults of outputs, then we will �nish with analysis of quantum pro-

gramming environment such quantum complexity, programming

tools and compared it to the tools used in classical programming.

12

Chapter 1

Introduction to Quantum

Computing

1.1 Introduction

Nowadays, it is more important to think about changing modern

computing because processor manufacturing is reaching its limits.

The specialists in this �eld said that the limit will be reached with

the arrival of the processors etched in 5 nm by the horizon 2021,

the engraving �neness being the minimum width of a channel of a

transistor. Other solutions must be found, and quantum computing

is one of them.

In this chapter, the basic principle of this new technology will be

detailed, as well as its usefulness in computing through quantum

processors. We will also discuss what a Qubit is, superposition...

Finally, we will study the possible applications of quantum compu-

tation that will improve our daily lives.

13

1.2 Computers and Quantum Mechanics

Figure 1.1: Logic technology node and transistor gate length versus calendar
year.(Published at the International Electron Devices Meeting 2006.)

To understand quantum computing, we must �rst understand what

quantum mechanics are, Quantum mechanics is the set of laws

showing that all the particles of the universe are matter and there-

fore are subject to force �elds. [1] According to these laws, parti-

cles such as photons or electrons are also, in a way, waves and are

therefore subject to other physical principles than those described

in classical physics. For example, a particle can be in two places

at once. All quantum physics is based on probability amplitudes,

that is, all the stated principles are governed by a probability of

success. These amplitudes represent phenomena of interference,

of di�raction, because these particles are also considered as waves

and thus respond to the speci�c laws of these. Following these

principles, energy is then quanti�ed in many physical processes,

including the electromagnetic �eld and atoms. [2]

14

1.2.1 Moore's Law

The micro devices and digital electronics development related to

the advance of semi conductors manufacturing that have paved the

way to smaller, powerful and faster components. [3] This decreas-

ing in size precisely has allowed the chip to be loaded with more

components, this will add more functions the chip so it will be

more powerful. Simultaneously, the decreasing in size is necessary

to make faster devices. As early as 1965, Gordon Moore noticed

that the number of components that could be implanted on a chip

had increased exponentially over many years, while the feature size

had shrunk at a similar rate (Figure1.1) [4]

. the feature size of electronic devices is now in the range of 20 nm

and decreasing at a rate of some 10% per year.

1.2.2 Quantum Decoherence

The decoherence is making a quantum system into an clearly clas-

sical state. the di�erence between quantum system and a classical

system is the notion of a superposition. In classical physics, we

say that a particle is at a position (x,y,z), but in quantum, the

formalism allows us to state that a particle is in a superposition

of positions (say (x1, y1, z1) and (x2, y2, z2)). [5] However, as the

quantum mechanics laws postulates, when we actually measure the

position of this particle, we will �nd it at either of the two posi-

tions, that is, we will have "collapsed the wave function" into one

or the other state. We call this "measurement problem". [5] David

Albert puts it better when he writes, The dynamics and the postu-

late of collapse are �atly in contradiction with one another ... the

postulate of collapse seems to be right about what happens when

we make measurements, and the dynamics seems to be bizarrely

wrong about what happens when we make measurements, and yet

15

the dynamics seems to be right about what happens whenever we

aren't making measurements.

Let us be more explicit about what he means here.

It was von Neumann who �rst articulated the so called �dynam-

ical dualism� that haunted the original formulations of quantum

mechanics, though Bohr touched on the issue earlier in propos-

ing the �quantum leap� into states which, like the wave collapse,

is proposed as a dynamically discontinuous process. Primarily,

the evolution of a quantum system is described by the Shrödinger

equation [5] :

i~
δ

δt
|ψ〉 = H |ψ〉 (1.1)

where i is the imaginary unit, ~ is the reduced Planck constant, ψ

is the state vector of the quantum system, t is time, and H is the

Hamiltonian operator.

applying to a system under isolation. There is also the evolution

that occurs due to measurement, and this is the infamous collapse:

|ψ〉 = Σcn |n〉 −→ |ni〉 (1.2)

Technically, Equation 2 is called by von Neumann the ��rst inter-

vention� and Equation 1 is the �second intervention.� The �rst in-

tervention is what we will identify as the wave collapse. It describes

a superposition of states suddenly `collapsing' into one eigenstate,

the measurement. [5]

16

1.3 Quantum Calculations

1.3.1 Di�erence between Quantum and Classical Com-
puters

Consider some physical system that can be in N di�erent, mutually

exclusive classical states, Because we will typically start counting

from 0, we call these states |0〉 , |1〉 , ... |N − 1〉 Roughly, by a "classi-

cal" state we mean a state in which the system can be found if we

observe it.

Figure 1.2: An electron States

A pure quantum state |φ〉 is a superposition of classical states,

written |φ〉 = α0 |0〉+ α1 |1〉+, ...,+αN−1 |N − 1〉 .

The memory of a classical computer is composed from strings of

0s and 1s, and it can execute operations on only one set of numbers

simultaneously. The memory of a quantum computer is a quantum

state that can be a superposition of di�erent numbers. Quantum

computer can do an arbitrary reversible classical computation on

all the numbers simultaneously, making a computation on many

di�erent numbers at the same time and then interfering all the

results to get a single answer, This makes the quantum computer

much powerful than a classical one. [6]

17

1.4 Quantum Computing Prerequisites

1.4.1 Qubit

A qubit is a quantum system in which the Boolean states 0 and

1 are represented by a prescribed pair of normalised and mu-

tu-ally orthogonal quantum states labeled as |0〉 , |1〉.The |0〉 is called
�ground state;� the |1〉 is the �excited state�. [9] As the most gen-

eral electronic state is a superposition of the two basic states [9],

we then have

|Ψ〉 = a |0〉+ b |1〉 (1.3)

that is, a normalized vector, with a, b ∈ C. [9, 10, 11]

The two states form a computational basis and any other (pure)

state of the qubit can be written as a superposition α |0〉 + β |1〉
for α and β such as | α |2 + | β |2= 1. [9] Habitually, a qubit is a

microscopic system, such as an atom, a nuclear spin, or apolarised

photon. [9]

1.4.2 Quantum Register

A quantum register is the quantum mechanical analogue of a clas-

sical processor register. A mathematical description of a quantum

register is achieved by using tensor products of qubit bra or ket

vectors. For example, a quantum register of size 4 can store indi-

vidual numbers such as 13:

|1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ≡ |1101〉 ≡ |13〉 (1.4)

where ⊗ denotes the tensor product.It can also store the two of

them simultaneously.

18

1.4.3 Quantum Logic Gates

For this, and for other manipulations on qubits, uni-tary operations

have to be performed. Naturally, the de�nitions of quantum logic

gate and quantum net-work follow. [12]

A quantum logic gate is a device which performs a �xed unitary

operation on selected qubits in a �xed period of time. [9]

A quantum network is a device consisting of quantum logic

gates whose computational steps are synchronised in time. A quan-

tum gate acts on superpositions of di�erent basis states of qubits,

whereas classically this option is nonexistent. [11] Basic gates used

in quantum computation are namely the Hadamard gate, the NOT

gate, the C-NOT (Controlled-NOT, also known as as the XOR or

the measurement gate [9]) gate, the controlled phase-shift gate, the

To�oli gate and the Fredkin gate. [9, 10, 11]

1.4.4 Quantum Process

Quantum computers do calculations based on the probability of an

object's state before it is measured instead of just 1s or 0s which

means they have the potential to process exponentially more data

compared to classical computers that carry out logical operations

using the de�nite position of a physical state, These are usually

binary, meaning its operations are based on one of two positions

[13].

However in quantum computing operations use the quantum state

of an object to produce the qubit. These states are the unde�ned

properties of an object before they've been detected, such as the

spin of an electron or the polarisation of a photon.

Rather than having a clear position, unmeasured quantum states

19

occur in a mixed superposition, not unlike a coin spinning through

the air before it lands in your hand, these superpositions can be

entangled with those of other objects, meaning their �nal outcomes

will be mathematically related even if we don't know yet what

they are, the complex mathematics behind these unsettled states of

entangled 'spinning coins' can be plugged into special algorithms to

make short work of problems that would take a classical computer

a long time to work out if they could ever calculate them at all,

Such algorithms would be useful in solving complex mathematical

problems, producing hard-to-break security codes, or predicting

multiple particle interactions in chemical reactions. [13]

1.5 Comparison between Classical and Quan-

tum computing

Quantum Computing is the use of all the possibilities of quantum

mechanics laws to solve computational problems.

Conventional, or Classical computers only use only a small part

of these possibilities. basically, they compute in the same way

as our brains.[14] We would achieve great results if only we had

a large enough quantum computer, we would be able to perform

simulations of quantum mechanical processes in physics, chemistry

and biology, which will never make it using classical computers.

Let's compare some aspects of classical and quantum computers.

[14] See Table 1

20

Specif Comparison

Information In Classical Computing

a Information is stored in bits, which take the discrete
values 0 and 1.

b storing one number takes 64 bits, then storing N
numbers takes N times 64 bits.

In Quantum Computing

a Information is stored in quantum bits, or qbits. A
qbit can be in states labelled |0〉 and |1〉, but it can
also be in a superposition of
these states,a |0〉+ b |1〉, where a and b are complex
numbers.

b If we think of the state of a qbit as a vector, then
superposition of states is just vector addition.For
every extra qbit you get, you can store twice as many
numbers

Calculation In Classical Computing

a Calculations are done essentially in the same way as
by hand.

In Quantum Computing

a perform calculation by unitary transformations on
the state of the qbits. Using the principle of
superposition, this creates possibilities impossible for
hand calculations. This is the base of e�cient
algorithms like factoring algorithm, searching and
simulation algorithms of quantum mechanical
systems.

Table 1.1: Comparison Between Classical and Quantum Computing
[14]

21

1.6 Quantum Reversibility

Consider the Boolean AND gate. We can't conclude the inputs of

an AND gate from the outputs, because of its truth table, the And

gate is not reversible.

A gate of AND type produces waste heat when working (i.e. giv-

ing outputs to its inputs). The �lost� information about the inputs

are contained in this waste heat, this situation must not appear in

quantum computers, the radiation of the heat depends on the state

of the inputs to the quantum gate. Thus, in e�ect, the radiation of

the heat would be a measurement on the inputs and decoherence

would ensue. The universes would be so far apart as to be un-

able to interfere with each and the result, which depends upon the

interference of these universes, would be invalid. Thus, quantum

gates have to be reversible.

Reversible gates must, by their very de�nition, have an equal num-

ber of inputs and outputs n [15]. More formally, an n-bit reversible

gate is a bijective map-ping f from the set 0, 1n of n-bit data to itself.

Reversible gates are also useful as they would be the only poten-

tial way to improve the energy e�ciency of computers beyond the

fundamental von Neumann-Landauer limit of [12]

kT ln2 (1.5)

energy dissipated per irreversible bit operation, where k is Boltz-

mann's constant of 1.38 · 1023J/K, and T is the temperature of the

environment into which unwanted entropy will be expelled. [16]

in Conclusion because Quantum computers work by applying

quantum gates to quantum states. The evolution of quantum states

is restricted by the unitarity property of quantum mechanics; that

22

is, every operation on a (normalized) quantum state must keep

the sum of probabilities of all possible outcomes at exactly 1.Any

quantum gate must thus be implemented as a unitary operator,and

is therefore reversible.

1.7 Quantum Entanglement

We say that a pure state of two qubits is entangled if it cannot

be written as a product of the individual states of the two qubits

(thus, with a tensor product), such as |v1〉 ⊗ |v2〉 For example, the

EPR (Einstein-Podolski-Rosen) state is not decomposable into a

direct product of any form, and is therefore entangled:

|ΨEPR〉 =
(|01〉+ |10〉)√

2
(1.6)

as two qubits in this state display a degree of correla- tion im-

possible in classical physics and hence violate the Bell inequality

which is satis�ed by all local (i.e. classical) states. At the opposite,

for two qubits (n = 2), the state

α |00〉+ β |01〉 = |0〉 ⊗ (α |0〉+ β |1〉) (1.7)

is separable: |Ψ1〉 = |0〉 and |Ψ2〉 = α |0〉+ β |1〉 .
The exploitation of a number of entangled qubits can lead to a con-

siderable computational speed-up in a quantum computer over its

classical counterpart.This leads us to the interest of using quantum

computers.[11]

1.7.1 Forecasts

The interest of these machines also makes it possible, through its

unique computing capabilities, to make predictive calculations in

23

the �eld of �nance, thanks to an easy calculation of the stochastic

nature of the stock markets. We could also easily calculate climate

models, and thus make weather forecasts safer.

1.7.2 Calculations

Finally, in basic mathematics, which is at the origin of quantum

mechanics, the applications are many, but the most obvious, by

their combinatorial nature, are : [17]

1. Products of prime factors and prime numbers

2. The discrete logarithm

3. Searching a database

1.8 Quantum Programming

Using quantum programming, one can allow the expression of quan-

tum algorithms using high-level constructs. Its aim is to provide a

tool for researchers to understand better how quantum computa-

tion works and how to formally reason about quantum algorithms.

[12]

1.8.1 Imperative Quantum Programming Languages

Imperative languages are described by specifying how the execu-

tion of a given program modi�es a global state. The imperative

approach has the following two advantages: First, it models more

closely how actual hardware works and thus makes it easier to

actually implement these languages. Second, programmers with-

out a background in formal languages tend to �nd the imperative

approachmore natural; in fact, programming is mostly done in im-

perative programming languages like C++ and Java. [18]

24

1.8.1.1 Quantum Pseudocode

Quantum pseudocode proposed by E. Knill is the �rst formalised

language for description of quantum algorithms was introduced

and, moreover, it was tightly connected with model of quantum

machine called Quantum Random Access Machine (QRAM) [19].

1.8.1.2 Quantum Computer Language

After it, a Quantum Computer Language (QCL) was proposed. It

is one of the �rst implemented quantum programming languages.

Its syntax similar to the syntax of the C programming language

and classical data types are similar to data types in C. Quantum

data type in QCL is based on the qureg (quantum register). It can

be interpreted as an array of qubits (quantum bits). An example

of such a code will be like this. [20]

qureg x1[2]; // 2-qubit quantum register x1 (1.8)

qureg x2[2]; // 2-qubit quantum register x2 (1.9)

H(x1);// Hadamard operation on x1 (1.10)

H(x2[1]);// Hadamard operation on the �rst qubit of the register x2
(1.11)

As the qcl interpreter uses qlib simulation library, it is possi-

ble to observe the internal state of the quantum machine during

execution of the quantum program:

qcl> dump: STATE: 4 / 32 qubits allocated,

25

28 / 32 qubits free 0.35355 |0>+ 0.35355 |1> + 0.35355 |2>
+ 0.35355 |3> + 0.35355 |8> + 0.35355 |9> + 0.35355 |10> +
0.35355 |11>

Fortunately, the dump operation is di�erent from measure-

ment, since it does not in�uence the state of the quantum ma-

chine and can be realised only using a simulator. Mainly, the QCL

standard library pro- vides standard quantum operators used in

quantum algorithms such as: [21]

1. controlled-not with many target qubits,

2. Hadamard operation on many qubits,

3. parse and controlled phase.

The most important feature of QCL appears to be the support

for user-de�ned operators and functions. Like in modern program-

ming languages, it is possible to de�ne new operations which can

be used to manipulate quantum data. [21]

1.8.1.3 Q Language

Q Language was implemented as an extension of C++. It o�ers

classes for basic quantum operations like QFourier, QHadamard,

QNot, and QSwap, New operators can be de�ned using C++ class

mechanism. Q code example. [22]

Qreg x1(); // 1-qubit quantum register with initial value 0
(1.12)

Qreg x2(2,0); // 2-qubit quantum register with initial value 0
(1.13)

26

Computation process is executed using provided simulator. Noisy

environment can be simulated using parameters of the simulator.[22]

1.8.1.4 qGCL

Quantum Guarded Command Language (qGCL) was de�ned by

P. Zuliani in his PhD thesis. It is based on Guarded Command

Language created by Edsger Dijkstra. It can be described as a

language of quantum programmes speci�cation. [23]

1.8.2 Functional Quantum Programming Languages

During the last few years many quantum program- ming languages

based on the functional program- ming paradigm were proposed.

Functional program- ming languages are well-suited for reasoning

about programs.

1.8.2.1 QFC and QPL

QFC and QPL are two closely related quantum programming lan-

guages de�ned by Peter Selinger. They di�er only in their syntax:

QFC uses a �ow chart syntax, whereas QPL uses a textual syn-

tax. These languages have classical control �ow, but can operate

on quantum or classical data. Selinger gives a denotational seman-

tics for these languages in a category of superoperators. [12]

1.8.2.2 QML

QML is a Haskell like quantum programming language by Al-

tenkirch and Grattage. Un like Selinger's QPL, this language takes

duplication, rather than discarding, of quantum information as a

primitive operation. Duplication in this context is understood to

be the operation that maps |φ〉 to |φ〉 ⊗ |φ〉. [24]

27

1.8.3 Quantum Lambda Calculi

Quantum lambda calculi are extensions of the lambda calculus, in-

troduced by Alonzo Church and Stephen Cole Kleene in the 1930s.

The purpose of quantum lambda calculi is to extend quantum pro-

gramming languages with a theory of higher order functions. [24]

The �rst attempt to de�ne a quantum lambda calculus was made by

Philip Maymin in 1996, His lambda-q calculus is powerful enough

to express any quantum computation. This language can e�ciently

solve NP-complete problems, and therefore appears to be strictly

stronger than the standard quantum computational models (such

as the quantum Turing machine or the quantum circuit model).

[24]

In 2003, Andre van Tonder de�ned an extension of the lambda cal-

culus suitable for proving correctness of quantum programs. He

also provided an implementation in the Scheme programming lan-

guage.

In 2004, Selinger and Valiron de�ned a strongly typed lambda cal-

culus for quantum computation with a type system based on linear

logic. [24]

1.9 Quantum Interest

1.9.1 Cryptography

Quantum computation will a�ect Cryptography and cryptanalysis,

because cryptography is controled by algorithms that are not easy

to compute using standard computer, the complexity of calcula-

tions increases directly according to the size of the key (a 4096-RSA

key bits is now very hard to calculate and even more to decode

without the encoding key). But with quantum computation, we

28

get rid of the binarity computations, composed of 0 and 1, and

bases of almost in�nite size could be used. [25]

The bene�t of a qubit in cryptography is that we can't reproduce

the state of a qubit, so only machines with the decryption key cre-

ated according to the state of the qubit at the moment of creation

of the key would read the encrypted data. [25]

1.9.1.1 IronBridge

Figure 1.3: Server-rack device Entangled photonics 16 Mbp. (Published at
Supercomputing asia 2019)

Cambridge Quantum Computing has recently developed IronBridgeTM

The world's �rst commercially ready certi�able quantum crypto-

graphic device.

Cambridge Quantum Computing uses photonics and quantum en-

tanglement to generate truly random numbers. They also con-

stantly verify that quantum randomness is being maintained. Fail-

ure to quantum randomness tests indicates that there has been

interference and tampering.

This practical solution allows governments and businesses around

the world to attain unparalleled levels of quantum-enhanced en-

cryption and security relating to much of the technology that un-

derpins daily digital interactions including IoT, big data, cloud

infrastructure, networks and communications, By slotting neatly

29

into existing network con�gurations, IronBridge provides a solu-

tion that works today whilst simultaneously protecting against the

threats of tomorrow. [26]

1.9.2 Arti�cial Intelligence

The applications in the �eld of arti�cial intelligence are huge, be-

cause the fact that we are able to get rid of the calculation of the

possibilities on a binary basis makes it possible to perform com-

plex combinatorial computations, which is the calculation principle

making it possible to solve all the possibilities of an equation (For

Exmple HHL Alogrithme). An arti�cial intelligence must be able

to perform this task extremely quickly, which is impossible with

conventional processors without using a super computer, for ex-

emple arti�cial intelligence such as machine learning muche more

powerful when data sets are very large such as in searching images

or video. [27]

1.9.2.1 HHL: Solving Linear Systems of Equations

HHL (named after its discoverers: Harrow, Hassidim and Lloyd)

is an algorithm for solving a system of linear equations: given

a matrix A and a vector b, �nd a vector x such that Ax = b.

While this may seem like an esoteric problem unrelated to machine

learning, they are in fact intimately related. For example, the

HHL algorithm can be employed to give a speedup in perceptron

training, that is exponential in the size of the training vectors. It is

also the underlying mechanism behind data-�tting procedures such

as linear regression and, as such,becomes a workhorse for generic

classi�cation problems. [28, 29]

30

1.10 Realistic Quantum Computers

1.10.1 IBM Q

Figure 1.4: coupling map of di�erent IBM quantum devices
[32]

IBM's project IBM Q, which launched in March 2017 with the goal

to provide access to a quantum computer to the broad audience,

can be seen as evidence of this progress.Initially, they started with

the 5 qubit quantum processor IBM QX2, on which anyone could

run experiments through cloud access. In June 2017, IBM added

a 16 qubit quantum processor named IBM QX3 to their cloud [30]

and, thus,more than tripled the number of available qubits within

afew months. Since then, IBM has been working intensely on im-

proving their quantum computers � leading to 5-qubit and 16-qubit

quantum computers (named IBM QX4 and IBM QX5,respectively)

which were added to the cloud in September 2017. [31]

31

The rapid progress in the number of available qubits is still go-

ing on. While IBM has already manufactured a 20-qubit quantum

computer which is available for their partners and members of the

IBM Q network show quantum supremac. [31]

1.10.1.1 Ibmqx5

The ibmqx5 is a 16-qubit quantum computer manufactured by IBM

available to the public as a part of the IBM Q cloud service. It is

accessible through a programming interface called QISKit.

Figure 1.5: Coupling map of ibmqx5
[34]

The computer uses a superconductivity transmon qubit implemen-

tation which has consequences for algorithm design. The possible

inter-actions between qubits are controled by the superconducting

bus connections between them [33] and can be described by the

ibmqx5 coupling map. In the coupling map in Figure 1.5 an ar-

row from qubit A to qubit B represents that a cNOT gate can be

created with A as the control bit and B as target.

1.10.1.2 QISKit

QISKit is a Python-based programming interface for programming

quantum computers. The interface provides access to the quantum

computers available though IBM Q and also provides access to a

local simulator for making simulation runs. The simulator can be

32

con�gured to have a coupling map equal to that of ibmqx5.The

QISKit interface provides a built in mapper for mapping a qubit

in thecode to a hardware qubit. Because of this the qubits can be

arbitrarily named in the QISKit code. The mapper works provided

that the requested implementation can be made to �t the coupling

map. [33]

1.10.1.3 The IBM Q Network

IBM Q Network is a worldwide organization of hubs, members,

and partners enabled by IBM Q systems with the shared mission

to :

a Collaborate with the most advanced academic and research
organizations to advance quantum computing technology.

b Engage industry leaders to combine IBM's quantum comput-
ing expertise with industry speci�c expertise to accelerate
development of the �rst commercial use cases

c Expand and train the ecosystem of users, developers, and
application specialists that will be essential to the adoption
and scaling of quantum computing.

1.10.2 The D-Wave 2000Q

The D-Wave 2000QTM quantum computer leverages quantum dy-

namics to accelerate and enable new methods for solving discrete

optimization, sampling, and machine learning problems. D-Wave

systems use a process called quantum annealing to search for solu-

tions to a problem. Quantum annealing is fundamentally di�erent

from classical computing.

33

The Computation is performed by initializing the quantum pro-

cessing unit (QPU) into a ground state of a known problem and

annealing the system toward the problem to be solved such that it

remains in a low energy state throughout the process. At the end

of the computation, each qubit ends up as either a 0 or 1. This

�nal state is the optimal or near-optimal solution to the problem

to be solved. [35]

1.10.2.1 D-Wave 2000Q Speci�cation

Figure 1.6: D-Wave 200Q Architecture
[35]

The D-Wave 2000Q system has a footprint of approximately 10' x

7' x 10'(L x W x H). Its physical enclosure houses sophisticated

cryogenic refrigeration, shielding, and I/O systems to support a

single thumbnail-sized QPU. Most of the physical volume of the

system is required to accommodate the refrigeration system and

to provide easy service access.For quantum e�ects to play a role in

computation, the QPU requires an extreme, isolated environment.

34

The refrigerator and layers of shielding create an internal high

vacuum environment with a temperature close to absolute zero that

is isolated from external magnetic �elds, vibration, and RF signals

of any form. Adjoining cabinets contain the control subsystems and

the front-end servers that provide connectivity to the system.[36]

35

Figure 1.7: Starting at room temperature at the top, the temperature de-
creases at each level until it is close to absolute zero where the QPU itself is
located.

[35]

The D-Wave 2000Q system operates near absolute zero. This ex-

tremely low temperature, along with the shielded environment that

isolates the QPU from its surroundings, enables the QPU to behave

quantum mechanically, D-Wave systems operate at less than 15

millikelvin, approximately 180 times colder than interstellar space.

36

D-Wave's �dry� dilution refrigerator uses liquid helium refrigerant

in a closed-loop system, avoiding the need for on-site replenish-

ment.While dilution refrigerators are not uncommon in research

environments, D-Wave has advanced the technology to ensure long

run-life and reliability in a commercial product setting. Despite

the extreme environment inside the system, a standard data center

can normally accommodate the D-Wave 2000Q quantum computer.

[35]

The extreme isolated environment required for the QPU places un-

usual demands on the design, materials, and manufacturing pro-

cesses required for the various subsystems. [35] The I/O subsystem

that passes information to the QPU and back while �ltering out

all unwanted noise requires a variety of normal and superconduct-

ing materials to provide the required performance.The magnetic

shielding subsystem provides the low-�eld environment required

for the QPU, using high-permeability and superconducting mate-

rials to achieve �elds below 1 nanotesla. This is 50,000 times less

than the Earth's magnetic �eld. [35]

37

Figure 1.8: D-Wave2000Q QPU
[35]

38

Figure 1.9: Qubits inside QPU
[35]

The D-Wave QPU is built from a lattice of tiny loops of the metal

niobium, each of which is one qubit(shown on the Figure 1.9). Be-

low temperatures of 9.2 kelvin, niobium becomes a superconductor

and exhibits quantum mechanical e�ects.When in a quantum state,

current �ows in both directions simultaneously, which means that

the qubit is in superposition�that is, in both a 0 and a 1 state

at the same time. At the end of the problem-solving process, this

superposition collapses into one of the two classical states, 0 or 1.

[35]

Going from a single qubit to a multi-qubit QPU requires that the

qubits be inter connected to exchange information. Qubits are

connected via couplers, which are also superconducting loops. The

39

interconnection of qubits and couplers, together with control cir-

cuitry to manage the magnetic �elds, creates an integrated fabric

of programmable quantum devices [37]. When the QPU arrives at

a solution to a problem, all qubits settle into their �nal states and

the values they hold are returned to the user as a bit string.The

D-Wave 2000Q system has up to 2048 qubits and 5600 couplers. To

reach this scale, it uses 128,000 Josephson junctions, which makes

the D-Wave 2000Q QPU by far the most complex superconducting

integrated circuit ever built.

Unlike the CPUs of classical computers, D-Wave's superconduct-

ing QPU dissipates negligible amounts of heat during computa-

tion. While traditional supercomputers generate massive amounts

of heat and consume massive amounts of power, the D-Wave sys-

tem consumes less than 25 kW of power, most of which goes to-

wards operating the cooling and front-end servers. This low power

consumption has remained constant since the introduction of the

�rst D-Wave system despite the dramatic increase in system per-

formance with each successive product generation. The required

water cooling is on par with what a kitchen tap can provide. The

required air conditioning is one-tenth of what would be expected in

a data center for a system with a similar footprint.As more power-

ful D-Wave systems are released in the future, power consumption

will remain constant, resulting in huge increases in performance

per watt and per dollar. Tens of kilowatts means tens of thousands

of dollars in operating costs per year in contrast to millions of dol-

lars per year for even a modest high-performance computer system

that consumes megawatts of power. If realized today, exascale su-

percomputers would consume power on the order of that produced

by the Hoover dam. [35]

40

1.10.2.2 The D-Wave 2000Q Application

Table 1.2: D-Wave 2000Q Application Areas

Machine Learning & Computer Science Security & Mission Planning
• Detecting statistical anomalies
• Finding compressed models
• Recognizing images and patterns
• Training neural networks
• Verifying and validating software
• Classifying unstructured data
• Diagnosing circuit faults

• Detecting computer viruses
• Detecting network intrusion
• Scheduling resources & optimal paths
• Determining set membership
• Analyzing graph properties
• Factoring integers

Financial Modeling Healthcare & Medicine
• Detecting market instabilities
• Developing trading strategies
• Optimizing trading trajectories
• Optimizing asset pricing and hedging
• Optimizing portfolios

• Detecting fraud
• Generating targeted cancer drug therapies
• Optimizing radiotherapy treatments
• Creating protein models

D-Wave quantum computers are ideally suited to solving many

hard problems in optimization, machine learning, sampling and

cyber security. With 2000 qubits and new control features, the

D-Wave 2000Q quantum computer can solve larger problems than

was previously possible, and with better performance. A grow-

ing community of developers are using the unique capabilities of

D-Wave systems to solve challenging problems in a diverse set of

application areas. [35] (See Table 1.2).

1.10.2.3 Software and Programming

Just Like classical computing community need a software ecosys-

tem to build a society of application developers and users, the

quantum computing world does as well. D-Wave, new quantum

software companies, D-Wave customers, and users are starting

41

to develop system software, higher level tools [38], and applica-

tions that leverage the power of the D-Wave system, the D-Wave

2000Q system provides a standard Internet API (based on REST-

ful services), with client libraries available for C/C++, Python,

and MATLAB, This interface allows users to access the system ei-

ther as a cloud resource over a network, or integrated into their

high-performance computing environments and data centers [39].

Access is also available through D-Wave's hosted cloud service.

Using D-Wave's development tools and client libraries, developers

can create algorithms and applications within their existing envi-

ronments using industry-standard tools. While users can submit

problems to the system in a number of di�erent ways, ultimately a

problem represents a set of values that correspond to the weights

of the qubits and the strength of the couplers, the system takes

these values along with other user-speci�ed parameters and sends

a single quantum machine instruction (QMI) to the QPU [37], Be-

cause quantum computers are probabilistic rather than determin-

istic, multiple values can be returned, providing not only the best

solution found, but also other very good alternatives from which

to choose. Users can specify the number of solutions they want the

system to return. [40]

1.10.3 Quantum Computers Price and forecasts

Today, a single qubit will cost you 10, 000 without mentioning re-

search and development costs, Temporal Defense Systems a cyber

security company bought D-wave 2000Q with 15 million dollar and

aim to use it for cyber security problems. For public it will be possi-

ble to access the 2000Q online through a subscription service, there

is also a quantum computing platform named The "IBM Quantum

Experience" available via the IBM Cloud service for public to test

42

algorithms and experiments.

Initial applications will leverage algorithms that can tolerate or

mitigate errors found in approximate quantum computers. [41]

43

1.11 Conclusion

The quantum computing revolution just started and it will replace

today techniques and solve previously complexed problems, creat-

ing real solutions for di�erent secteurs.

Quantum computers is the ideal solution for complexed systems

that needs to be simulated, predicting the �nancial markets, im-

proving forecasts, to modelling the behaviour of individual elec-

trons, using quantum computing to understand quantum physics,

Cryptography will be another key application, in a world with

quantum computers, the systems that currently safe guard busi-

ness transactions on the Internet (based on the RSA) will no longer

be secure.

44

Chapter 2

Quantum Software

2.1 Introduction

In this chapter we explain how a quantum computer can apply

computational steps to its register of qubits. Two models exist for

this: the quantum Turing machine [42] and the quantum circuit

model [43]. These models are equivalent, in the sense that they

can simulate each other in polynomialtime, assuming the circuits

are appropriately �uniform.� We only explain the circuit model

here,which is more popular among researchers,Then we pass to

the di�erent elementary quantum gates and explain its operations

and the most known quantum algorithmes Like Grover search algo-

rithm, Shor's Factoring algorithm, Deutsch-Jozsa Algorithm with

their mathematical implemantation.

2.2 Quantum circuits

In classical complexity theory, a Boolean circuit is a �nite directed

a cyclic graph with AND, OR,and NOT gates. It has n input nodes,

which contain the n input bits (n0). The internal nodes are AND,

OR, and NOT gates, and there are one or more designated output

45

nodes. The initial input bits are fed into AND, OR, and NOT gates

according to the circuit, and eventually the output nodes assume

some value. We say that a circuit computes some Boolean function

f : {0 , 1}n → {0 , 1}m if the output nodes get the right value f(x) for

every input x ∈ {0, 1}n. A circuit family is a set C = {Cn} of circuits,
one for each input sizen. Each circuit has one output bit. Such

a family recognizes or decides a language L ⊆ {0, 1}∗ = Un≥0 {0, 1}n

if, for every n and every input x ∈ {0, 1}n .the circuit Cn outputs 1

x ∈ L and outputs 0 otherwise.Such a circuit family is uniformly

polynomial if there is a deterministic Turing machine that outputs

Cn given n as input, using space logarithmic in n.Note that the

size (number of gates) of the circuits Cn can then grow at most

polynomially with n. It is known that uniformly polynomial circuit

families are equal in power to polynomial-time deterministic Turing

machines: a languageL can be decided by a uniformly polynomial

circuit family if L ∈ P where P is the class of languages decidable

by polynomial-time Turing machines.

In quantum computers can carry out a Fourier transform exponen-

tially faster than classical computers. But what do these comput-

ers actually look like? What is a quantum circuit made up of, and

exactly how does it compute Fourier transforms so quickly? [6].

2.3 Elementary quantum gates

An elementary quantum operation is analogous to an elementary

gate like the AND or NOT gate in a classical circuit. It operates

upon either a single qubit or two qubits. One of the most important

examples is the Hadamard gate, denoted by H, which operates on

a single qubit.On input |0〉 [44]

46

it outputs

H(|0〉) =
1√
2
|0〉+

1√
2
|1〉 (2.1)

And for input |1〉

H(|1〉) =
1√
2
|0〉 − 1√

2
|1〉 (2.2)

Notice that in either case, measuring the resulting qubit yields 0

with probability 1/2 and 1 with probability 1/2. But what happens

if the input to the Hadamard gate is an arbitrary superposition

α0 |0〉 + α1 |1〉? The answer, dictated by the linearity of quantum

physics, is the superposition [44]

α0H(|0〉) + α1H(|1〉) =
α0 + α1√

2
|0〉+

α0 − α1√
2
|1〉 (2.3)

And so,if we apply the Hadamard gate to the output of a Hadamard

gate, it restores the qubit to its original state!

Another basic gate is the controlled-NOT, or CNOT. It operates

upon two qubits, with the �rst acting as a control qubit and the

second as the target qubit. The CNOT gate �ips the second bit

if and only if the �rst qubit is a 1. Thus CNOT(|00〉) = |00〉 and
CNOT|10〉 = |11〉 :

(2.4)

Yet another basic gate, the controlled phase gate, is described be-

low in the subsection describing the quantum circuit for the QFT.

47

Now let us consider the following question: Suppose we have a

quantum state on n qubits, |α〉 =
∑

xε{0,1}n αx |x〉.How many of these

2n amplitudes change if we apply the Hadamard gate to only the

�rst qubit? The answer is all of them! Now the new superposi-

tion becomes |β〉 =
∑

xε{0,1}n βx |x〉, where ,where β0y = α0y+α1y√
2

and

β1y = α0y−α1y√
2

. Looking at the results more closely, the quantum

operation on the �rst qubit deals with each n − 1 bit su�x y sep-

arately. Thus the pair of amplitudes α0y and α1y are transformed

into (α0y+α1y√
2

) and (α0y−α1y√
2

). This is exactly the feature that will give

us an exponential speedup in the quantum Fourier transform.

2.4 Quantum Algorithms

2.4.1 Deutsch-Jozsa

For N = 2n , we are given x ∈ {0, 1}N such that either (1) all xi

have the same value (�constant�), or (2) N/2 of the xi are 0 and N/2

are 1 (�balanced�).The goal is to �nd out whether x is constant or

balanced.

Figure 2.1: The Deutsch-Jozsa algorithm for n= 3
[45]

The algorithm of Deutsch and Jozsa is as follows. We start in the

n−qubit zero state |0n〉, apply a Hadamard transform to each qubit,

48

apply a query (in its ±− form), apply another Hadamard to each

qubit, and then measure the �nal state. As a unitary transfor-

mation, the algorithm would be H
⊗
nOx,±H

⊗
n We have drawn the

corresponding quantum circuit in Figure 4 (where time again pro-

gresses from left to right). Note that the number of wires going

into the query is n, not N; the basis states on this sequence of wires

specify an n-bit address. [45]

H
⊗
n |i〉 =

1√
2n

∑
j∈{0,1}n

(−1)i.j |j〉 (2.5)

Let us follow the state through these operations. Initially we have

the state |0n〉. By Equa-tion (23), after the �rst Hadamard trans-

forms we have obtained the uniform superpo-sition of all i :

1√
2n

∑
i∈{0,1}n

|i〉 (2.6)

The Ox,±− query turns this into :

1

2n

∑
i∈{0,1}n

(−1)xi |i〉 (2.7)

Applying the second batch of Hadamards gives (again by Equation

(23)) the �nal superposition

1

2n

∑
i∈{0,1}n

(−1)xi
∑

j∈{0,1}n
(−1)i.j |j〉 (2.8)

49

where i.j =
∑n

k=1 ikjk denotes the inner product of then n-bit strings

i, j ∈ {0, 1}n. For example:

1

2n

∑
i∈{0,1}n

(−1)xi =

1 if xi = 0 for all i,
−1 if xi = 1 for all i,
0 if x is balanced

(2.9)

2.4.2 Bernstein-Vazirani

2.4.2.1 Bernstein-Vazirani Problem

For N = 2n, we are given x ∈ {0, 1}N with the property that there

is some unknown a ∈ {0, 1}n such that xi = (i · a) mod 2. The goal

to �nd a.

The Bernstein-Vazirani algorithm is exactly the same as the Deutsch-Jozsa

algorithm, but now the �nal observation miraculously yields a.

Since (−1)xi = (−1)(i·a)mod2 = (−1)(i·a),we can write the state obtained

after the query as:

1√
2n

∑
i∈{0,1}n

(−1)xi |i〉 =
1√
2n

∑
i∈{0,1}n

(−1)i·a |i〉 (2.10)

Since Hadamard is its own inverse, applying a Hadamard to each

qubit of the above state will turn it into the classical state jai and

hence solves the Bernstein-Vazirani problem with 1 query and O(n)

other operations. In contrast, any classical algorithm (even a ran-

domized one with small error probability) needs to ask n queries

for information-theoretic reasons, the �nal answer consists of n bits

and one classical query gives at most 1 bit of information.

Bernstein and Vazirani also de�ned a recursive version of this prob-

lem, which can be solved exactly by a quantum algorithm in poly(n)

steps, but for which every classical randomized algorithm needs

nΩ(logn) steps.

50

2.4.3 Shor's Factoring Algorithm

2.4.3.1 Factoring

Probably the most important quantum algorithm so far is Shor's

factoring algorithm [46]. It can �nd a factor of a composite number

N in roughly (logN)2 steps, which is polynomial in the length log

N of the input. On the other hand, there is no known classical

(deterministic or randomized) algorithm that can factor N in poly-

nomial time. The best known classical randomized algorithms run

in time roughly

2(logN)α, (2.11)

where α = 1/3 for a heuristic upper bound [47] and α = 1/2 for a

rigorous upper bound [48]. In fact, much of modern cryptography

is based on the conjecture that no fast classical factoring algorithm

exists [49]. All this cryptography (for example RSA) would be bro-

ken if Shor's algorithm could be physically realized. In terms of

complexity classes, factoring (rather, the decision problem equiv-

alent to it) is provably in BQP but is not known to be in BPP. If

indeed factoring is not in BPP, then the quantum computer would

be the �rst counter example to the "Strong" Church-Turing the-

sis, which states that all "reasonable" models of computation are

polynomially equivalent (see [50] and [51],p.31,36).

2.4.3.2 Reduction From Factoring to Period Finding

The crucial observation of Shor was that there is an e�cient quan-

tum algorithm for the problem of period-�nding and that factoring

can be reduced to this, in the sense that an e�cient algorithm for

period-�nnding implies an e�cient algorithm for factoring.

51

We �rst explain the reduction. Suppose we want to �nd factors

of the composite number N > 1. We may assume N is odd and

not a prime power, since those cases can easily be �ltered out

by a classical algorithm. Now randomly choose some integer x

∈ {2, ..., N − 1} which is coprime to N . If x is not coprime to N ,

then the greatest common divisor of x and N is a nontrivial factor

of N , so then we are already done. From now on consider x and

N are coprime, so x is an element of the multiplicative group Z∗N
Consider the sequence

1 = x0(mod N), x1(mod N), x2(mod N), ...

This sequence will cycle after a while: there is a least 0 < r ≤ N

such that x
r

= 1 (mod N) This r is called the period of the sequence

(a.k.a. the order of the element x in the group Z∗N).Assuming N is

odd and not a prime power (those cases are easy to factor anyway),

it can be shown that with probability ≥ 1
2
the period r is even and

x(r
2) + 1 and x(r

2) − 1 are not multiples of N. In that case we have:

xr ≡ 1 mod N ⇔

(
x
r
2

)2
≡ 1 mod N ⇔

(
x
r
2 + 1

)(
x
r
2 − 1

)
≡ 0 mod N ⇔

(
x
r
2 + 1

)(
x
r
2 − 1

)
≡ kNforsomeK.

Note that k > 0 because both x
r
2 + 1 > 0 and x

r
2 − 1 > 0(x+ 1).Hence

x
r
2 +1 or x

r
2 −1 will share a factor with N. Because x

r
2 +1 and x

r
2 −1

52

are not multiples of N this factor will be < N , and in fact both

these numbers will share a non-trivial factor with N. Accordingly,

if we have r then we can compute the greatest common divisors

gcd(x
r
2 +1, N) and gcd(x

r
2 −1, N), and both of these two numbers will

be non-trivial factors of N. If we are unlucky we might have chosen

an x that does not give a factor (which we can detect e�ciently),

but trying a few di�erent random x gives a high probability of

�nding a factor. [52]

Thus the problem of factoring reduces to �nding the period r of

the function given by modular exponentiation f(a) = xa mod N In

general, the period-�nding problem can be stated as follows:

The period-�nding problem:

We are given some function f : N → {0, ..., N − 1} with the

property that there is some unknown r ∈ {0, ..., N − 1} such thar

f(a) = f(b) if a = b mod r The goal is to �nd r.

We will show below how we can solve this problem e�ciently,

using O(log logN) evaluations of f and O(log logN) quantum Fourier

transforms. An evaluation of f can be viewed as analogous to

the application of a query in the previous algorithms. Even a

some what more general kind of period-�nding can be solved by

Shor's algorithm with very few f-evaluations, whereas any classi-

cal bounded-error algorithm would need to evaluate the function

Ω
(
N

1
3/
√

logN
)
times in order to �nd the period [53].

53

2.4.3.3 Shor's Period Finding Algorithm

Figure 2.2: Shor's period-�nding algorithm
[53]

Now we will show how Shor's algorithm �nds the period r of the

function f , given a "black-box" that maps |a〉 |0n〉 7→ |a〉 |f(a)〉.We

can always e�ciently pick some q = 2l such that N2 < q ≤ 2N2,Then

we can implement the Fourier transform Fq using O((logN)2) gates.

Let Of denote the unitary that maps |a〉 |0n〉 7→ |a〉 |f(a)〉 where the
�rst register consists of l qubits, and the second of n = [logN] qubits.

Shor's period-�nding algorithm is illustrated in Figure 2.2 Start

with |0l〉 |0n〉. Apply the QFT (or just ` Hadamard gates) to the

�rst register to build the uniform superposition.

1
√
q

q−1∑
a=0

|a〉 |0n〉 .

54

The second register still consists of zeroes. Now use the "black-

-box" to compute f(a) in quantum parallel:

1
√
q

q−1∑
a=0

|a〉 |f(a)〉 .

Observing the second register gives some value f(s), with s < r.

Let m be the number of elements of {0, ..., q − 1} that map to the

observed value f(s). Because f(a) = f(s) i� a = s mod r, the

a of the form a = jr + s (0 ≤ j < m) are exactly the a for which

f(a) = f(s). Thus the �rst register collapses to a superposition of

|s〉 , |r + s〉 , |r2 + s〉 , |r3 + s〉 , ...; this superposition runs until the last

number of the form jr + s that is < q, let's de�ne ne m to be the

number of elements in this superposition, i.e., the number of in-

tegers j such that jr + s ∈ {0, ..., q − 1} (depending on s,this m will

be
⌈
q
r

⌉
or
⌊
q
r

⌋
). The second register collapses to the classical state

|f(s)〉. We can now ignore the second register, and have in the �rst:

1√
m

m−1∑
j=0

|jr + s〉 .

55

Figure 2.3: Shor's resolution run time estimation
[54]

A task taking 300 years(233 seconds) on classical computer might

take a minute on a quantum computer.

2.4.4 Grover's Search Algorithm

The second-most important quantum algorithm after Shor's, is

Grover's quantum search problem from 1996. While it doesn't

provide an exponential speed-up, it is much more widely applica-

ble than Shor's algorithm.

2.4.4.1 The Problem

For N = 2n, we are given an arbitrary x ∈ {0, 1}N . The goal is to

�nnd an i such that xi = 1 (and to output `no solutions' if there are

no such i).

This problem may be viewed as a simpli�cation of the problem of

searching an N-slot unordered database. Classi�cally, a random-

ized algorithm would need O(N) queries to solve the search prob-

56

lem.Grover's algorithm solves it in O
(√

N
)
queries, and O

(√
N logN

)
other gates.

2.4.4.2 Grover's Algorithm

Let O{x,i±}|i〉=(−1)xi|i〉 denote the ± type oracle for the input x, and R

be the unitary transformation that puts a-1 in front all basis states

|i〉 where i 6= 0n,and that does nothing to the other basis states

|0n〉.The Grover iterate ζ = H
⊗
nRH

⊗
nOx,±.Note that 1 Grover it-

erate makes 1 query.

Grover's algorithm starts in the n-bit state |0n〉,applies a Hadamard

transformation to each qubit to get the uniform superposition |U〉 = 1√
N

∑
i |i〉of

all N indices, applies ζ to this state k times, and then measures the

�nal state. Intuitively, what happens is that in each iteration some

amplitude is moved from the indices of the 0-bits to the indices of

the 1-bits. The algorithm stops when almost all of the amplitude

is on the 1-bits, in which case a measurement of the �nal state will

probably give the index of a 1-bit. Figure 10 illustrates this. To

analyze this, de�ne the following "good" and "bad" states:

|G〉 =
1√
t

∑
i:xi=1

and |B〉 =
1√
N − t

∑
i:xi=1

(2.12)

Figure 2.4: Grover's algorithm, with k Grover iterates
[6]

57

2.4.5 Hidden Subgroup Problem

2.4.5.1 De�nition And Some Instances Of The HSP

The Hidden Subgroup Problem is the following:

Given a known group G and a function f : G→ S where S is some

�nite set, suppose f has the property that there exists a subgroup

H ≤ G such that f is constant within each coset, and distinct on

di�erent cosets: f(g) = f(g′) i� gH = g′H,the Goal is �nd H.

We assume f can be computed e�ciently, meaning in time poly-

nomial in log |G| (the latter is the number of bits needed to describe
an input g ∈ G for f). Since H may be large, "�nding H" typically

means �nding a generating set for H.

This looks like a rather abstract algebraic problem, but many im-

portant problems can be written as an instance of the HSP. We

will start with some examples where G is Abelian.

Simon's problem. This is a very natural instance of HSP. Here

G is the additive group Zn2 = {0, 1}n of size 2n, H = {0, s} for a "hid-
den" s ∈ {0, 1}n ,and f satis�es f(x) = f(y) i�x− y 2 ∈ H.
Clearly,�nding the generator of H (i.e., �nding s) solves Simon's

problem. [6]

Discrete logarithm. Another problem often used in classical pub-

lic-key cryptography is the discrete logarithm problem: given a

generator γ of a cyclic multiplicative group C of size N(so C = {γa|a ∈ {0, ..., N − 1}}),and
A ∈ C, can we �nd the unique a ∈ {0, 1, ..., N − 1} such that γa = A?

This a is called the discrete logarithm of A (w.r.t. generator γ).

[55]

It is generally believed that classical computers need time roughly

exponential in log N to compute a from A (and one can actually

prove this in a model where we can only implement group opera-

58

tions via some "blackbox"). This assumption underlies for instance

the security of Di�e-Hellman key exchange(where C = Z∗p for some

large prime p),as well as elliptic curve cryptography.

Discrete log is an instance of the HSP as follows:

we take G = ZN×ZN and de�ne function f : G→ C by f(x, y) = γxA−y,

which is e�ciently computable by repeated squaring. For group el-

ements g1 = (x1; y1); g2 = (x2; y2) ∈ G we have:

f(g1) = f(g2)⇔ γx1−ay1 = γx2−ay2 ⇔ (x1− x2) = a (y1− y2) mod N ⇔ g1−g2 ∈< (a, 1) >.

Let H be the subgroup of G generated by the element (a; 1), then

we have an instance of the HSP.

Finding the generator of the hidden subgroup H gives us a, solving

the discrete logarithm problem. [6]

2.5 Conclusion

Many of other interesting quantum algorithms, for example quan-

tum simulated annealing or quantum Bayesian networks needs some

understanding of the underlying math. The study of quantum al-

gorithms will soon be common place. Until then, this work at least

demonstrates that simple quantum algorithms are not beyond the

understanding of the average undergraduate computer science stu-

dent, providing a gentle introduction to the basics of quantum

computation to the undergraduate population.

59

Chapter 3

Quantum Algorithms

Implementation

3.1 Introduction

Quantum computers will be available to the public so building a

community of quantum programmers is important. In this chap-

ter we will see some quantum algorithms and the implementation

on IBM's quantum computer and simulator, and in each case, we

discuss the results of the implementation with respect to di�er-

ences between the simulator and the actual hardware runs, we

used the IBM Q Experience because it's easy to compose quan-

tum algorithms circuits by using it's graphical interface circuit

composer(drag and drop) and available for public with powerful

machines to test on.

3.2 Quantum Computing Known Simulators

Quantum simulators are controllable quantum systems used to sim-

ulate other quantum systems, and can solve problems impossible

for classical computers, we will see some known existen simulators

60

such QX, Q-Kit and IBM Q.

3.2.1 QX Simulator

The QX Simulator is a universal quantum computer simulator de-

velopped at QuTech by Nader Khammassi. The QX allows quan-

tum algorithm designers to simulate the execution of their quan-

tum circuits on a quantum computer. [56] The simulator de�nes

the Quantum Code(a low level quantum assembly language), which

allows the users to describe their circuits in a simple textual source

code �le. The source code �le is then used as the input of the sim-

ulator which executes its content.

The Quantum Code language allows the users to [57] :

1. De�ning quantum register with a given qubits number.

2. Building the circuit through a sequence of quantum gates.

3. Simulating the calssical-quantum interface through binary-
controlled gates.

4. Splitting the main circuit into several smaller sub-circuit.

5. ...

61

3.2.2 Q-Kit

Figure 3.1: Quantum-Kit Graphical User-Interface.Panels for (1) graphical
quantum circuit builder, (2) quantum circuit command script, and (3) simula-
tion execution status.(b) Visualization of quantum state after each quantum
gate operation in the circuit.Single qubit states shown on a Bloch Sphere and
multi-qubit gates on bar charts for probability distributions and amplitudes.

[58]

Q-Kit is a graphical quantum circuit composer, no e�orts needed

to construct quantum circuits, analyzing them and visualizing the

quantum states after every quantum operation. While there are

several existing software freely available for these quantum simula-

tions, they are either focused on learning or on large scale simula-

tion capabilities. The former kind are equipped witha user-friendly

interface-speci�cally set-up for learning on fewer qubits, while the

latter require a knowledge of quantum programming languages to

truly exploit the potential of these softwareon super computing

clusters. [58] (Figure 3.1)

62

3.2.2.1 Q-Kit Feauters

Q-Kit has many features including the capability to copy data from

measured qubits to classical bits and using classical controls for

quantum operations. This feature of using classical bits and con-

trols in a quantum circuit, specially in certain algorithms, provide

exponential advantages in simulations, both in speed and memory

requirements, as discussed in the next section. Q-Kit can be run

both in performance-enhanced or memory-enhanced mode and is

demonstrated to be extremely e�ciental though it currently runs

only on a single core. A parallelized Q-Kit is expected to enable

much more powerful computations, with far fewer resources. [58]

3.2.3 IBM's Q Experience

IBM is one of the major companies that are investing massively

to understand and develop quantum technologies, IBM currently

has three quantum computers (one 5-qubit and two 16-qubit de-

vices) available for public use over the cloud. They also have a

publicly usable quantum simulator (32-qubit), which allows users

to simulate quantum algorithms without any error.

63

3.2.3.1 IBM QX: Web Interface

Figure 3.2: IBM QX Web interface

3.2.3.2 Graphical composer

1. Compose quantum circuits using drag and drop interface.

2. Save circuits online or as QASM text, and import later.

3. Run circuits on real hardware and simulator.

Figure 3.3: IBM's Q Experience Circuite composer(Drag and Drop)

64

Figure 3.4: Basic Operation

The symbols on the circuit considred as quantum gates. The H

stand for Hadamard, the + stand for a CNOT , X would be a Pauli

X, and the S is called a Phase gate, the S gate is an extension of

the Hadamard gate to allow complex superposition of each qubit's

axes which IBM called a Phase gate.

3.3 Grover's Algorithm On IBM's Q Experi-

ence:

I used Circuite composer provided by IBM's Q Experience I was

able to run a 2-bit Grover's algorithm on their quantum computer

in addition to simulating the result. Below are the results of the

experiment, it was ran on the IBM QuantumMachine ibmqx2(IBM

5 qubit Real Processer) 1024 times each;

65

3.3.1 Simulation

Figure 3.5: IBM Simulator

Figure 3.6: 2-bit Grover's Circuit

66

Figure 3.7: Histogram Of IBM Q EXPERIENCE X=00 SIMULATION

The simulator results of IBM Q for value 00 was 100% probability

3.3.2 Experiment on 5-Qubits Machine(ibmqx2)

Figure 3.8: 2-bit Grover's Original Circuit On Real Device ibmqx2

67

Figure 3.9: 2-bit Grover's Transpiled Circuit

Figure 3.10: IBM Q EXPERIENCE X=00 5-QUBIT MACHINE
RUN(ibmqx2)

3.3.3 Results

The results i found from the actual run on the quantum machine

and the simulators was as i expected. Error correction for quan-

tum computers is almost absent and not advanced as conventional

computers. Because of hardware and environmental factors the

results from this test seems to be highly prone to errors, similar

68

to early classical computers where error correction had not been

implemented. The simulator results of IBM Q for value was 100%

probability.

3.4 Shor's algorithm for integer factorization

Figure 3.11: Circuit for Shor's algorithm for N=15 and x=11
[59]

We implemented the algorithm on ibmqx2, a 5-qubit quantum pro-

cessor from the IBM Quantum Experience, in order to factor num-

ber 15 with x = 11, i used a optimized/compiled version from [59]

that uses 5 qubit and 11 gates (Fig 3.10).

69

3.4.1 Sho'r Experiment

Figure 3.12: Shor's transpiled circuit

Figure 3.13: Shor's simulation histogram

Figure 3.14: Shor's circuit on ibmqx2 histogram

70

3.4.2 Results

The output from the simulation �nds the periods 0 and 4 with the

highest probabilities (Fig 3.12), the same in ibmqx2 but contains

much more noise(Fig 3.13).

The periods found by the simulator are p = 0, we can ignore it

because it's a trivial period, and p = 4, which is a good one. Since

M=8, we can conclude that r dividesM/p = 8/4 = 2 (M is the length

vector of x input), hence r = 2(r is the period), Then 15 divides

(xr − 1) = (112 − 1) = (11− 1)(11 + 1) = 10 · 12.

By computing gcd(15, 10) = 5 and gcd(15, 12) = 3, we �nd the factors

of 15.

3.5 Conclusion

We found amazing simulation results for Grover's algorithm ex-

perimentation on IBM Q, I got a 100% probability of �nding the

correct value when the quantum system is stable. However, when

the quantum system is not stable, we found that the results would

decrease the probability of Grover's algorithm.

For shor's algorithme experimentation on simulation we found the

periods 0 and 4 with the heighest probabilities, in ibmqx4 we �nd

the same heighest periods but with other trivial periods due to

machine errors and noise.

quantum computation is the computing revolution, as classical

computer is reaching its limit, we reviewed the basics of quantum

algorithms and went into the analysis of Grover's algorithm and

shor's algorithm, The results show that Quantum algorithms and

classical algorithms are quite similar to each other but complete

di�erent at the same time. soon quantum algorithms may possibly

pass the current standards. With more companies like IBM fund-

71

ing research in to the �eld of quantum computing and tools such

as IBM Q experience, quantum computing is not far from reality

and the time of classical algorithms may be coming to an end.

72

Chapter 4

Analysis and Forecasts

4.1 Introduction

The quantum programming environment have many requirements.

First, it needs a high level quantum programming language to ex-

ecute quantum operations. quantum unitary transforms, complex

numbers, gate libraries support. In addition, the environment and

the programming language should be based on familiar concepts

and constructs to make writing, debuging, and runing a quantum

program much easier than using a totally di�erent environment.

The quantum programming environment also needs to allow easy

separation of classical and quantum computations. Because a quan-

tum computer has noise and limited coherence time, this separa-

tion necessary to limit computation time, quantum programming

language compiler must translate a source code into an robust and

useful quantum circuit or physical implementation. [60]

73

4.2 A Comparison Of Classical and Quantum

Programming Tools

4.2.1 Quantum Computer Compiler

A generic compiler for a classical language on a classical machine

consists of a sequence of phases that transform the source program

from one representation into another.This partitioning of the com-

pilation process has led to the development of e�cient algorithms

and tools for each phase. Because the front end processes for QCCs

are similar to those of classical compilers, researchers can use the

algorithms and tools to build lexical, syntactic, and semantic ana-

lyzers for QCCs. How ever, the intermediate representations, theo

ptimization phase, and the code generation phase of QCCs dif-

fer greatly from classical compilers and require novel approaches,

such as a way to insert error correction operations into the target

language program. [60]

4.2.2 Error Correction

In experimental realizations of quantum computers, dealing with

errors in the operations is so important, and we must �nd a way

to protect the computation from such errors. [61]

Error correction in classical computers is essentially based on two

facts:

a Computing with classical bits itself provides a simple way of
error correction in the form of a lock in place mechanism. If
the two bits are for instance realized by two di�erent voltages
(like it is the case in our computers as well as in our brains)
then the di�erence can simply be chosen large enough such
that typical �uctuations are small compared to the threshold

74

separating the two bits.

b The information can be copied and then stored or processed
in a redundant way. If, for instance, an error occurs to one of
three copies of a bit, we can recover the original information
by applying a majority vote. Of course, there are much more
re�ned versions of this method.

Unfortunately, in quantum computers we can not use either of

these ideas :

a There is no lock-in-place mechanism

b Cant't copy the state of the qubits because of the no-cloning
theorem.

Measuring the system state to �nd out what error has actually

happened before correcting it does not help, as any such attempt

would necessarily disturb the state in an irreversible manner. So

it was at the very beginning of quantum information science not

clear whether or not under physically reasonable assumptions fault

tolerant quantum computing would be possible. [61]

75

Figure 4.1: The e�ect of increasing qubits compared to error rate.
source IBM research

[62]

Increasing qubit number will not necessary Increase the com-

putation power unless we decreased error rate as shown in

(Figure 4.1), we see that how much we added qubits the quantum

computer power volume is �xed with a high error rate but when

we decrease error rate the results is di�erent in eache case.

4.2.3 Software Engineering

In classic software engineering, a test case is a speci�cation of the

inputs, execution conditions, testing procedure, and expected re-

76

sults that de�ne a single test to be executed to achieve a particular

software testing objective. One of the desired characteristics of test

cases is their repeatability: this is, the verdict of a test must be al-

ways the same. The �verdict� is the result of the test execution,

usually Pass (if the test has not found any error in the system

under test, the SUT) or Fail (if the system has shown a behavior

di�erent than the expected one). So, a test case has three parts:

(1) speci�cation of the initial situation, (2) execution of operations

on the SUT and (3) an oracle, which compares the actual and ex-

pected outputs, so determining the verdict.

executing a test case on a quantum computer actually requires exe-

cuting the same test case a number of times then compare the most

repeated output to the expected output, as well as this adaptation

is required, quantum software testing requires both the adaptation

of other techniques, as well as the creation of new ones. [63]

77

4.3 Quantum Computers Complexity

Figure 4.2: the prime factorization problem, the basis of many current en-
cryption protocols. All the computational capacity in the entire world could
not factor extremely large numbers within a reasonable amount of time.

[64]

Quantum computers can solve certain types of problems faster than

any classical computer, the boundary between easy and hard is

di�erent for quantum computers than classical computers. that

means the time for solving the problem grows polynomially with

the length of the input data like the problem of multiplying two

numbers, where hard problems are those which the required time

grows exponentially Prominent like the problem of factoring a num-

ber into primes. (Figure 4.2)

With any algorithm, we want to limit used resources(running time

78

and number of queries), the Grover's Algorithm in a perfect envi-

ronment for a quantum computer would run in O
√
n time and take

O
√
n operations, which is a quadratic speed up compared to the

fastest search over an unordered data set in a classical algorithm

which is O(n).

Grover's Algorithm relies on the concept of quantum superposi-

tion of states to improve upon the computing/runtime of classical

computer. [61]

4.4 Analysis

Search algorithms like Grover's database search and integer fac-

toring algorithms Like Shor's algorithm are very promising. they

distinguished with an exponential speed up compared to the best

known classical algorithms. [61]

If we consider a quantum computer unitarily acting on a pure in-

put state, then an exponential speed-up compared to conventional

computers can only be achieved if the entanglement present in in-

termediate states of the computation increases with size of the in-

put, it apears that computations based on such quantum evolutions

can in general not be simulated e�ciently on classical computers.

4.5 Conclusion

Quantum computing opens doors to solve some real problems which

are simply impossible using conventional computers, this makes a

threat and at the same time enormous opportunities. First, it

threatens data authentication, having the greatest impact on areas

where cryptography plays a fundamental role, like cyber security

and blockchain.

quantum computing will be a signi�cant threat for them as well.

79

Second, the computational capacity it o�ers will be essential in

speeding up the development of many emerging technologies, es-

pecially those related to arti�cial intelligence. It will also be re-

markably bene�cial in the �elds of medicine, biology, and genetics

where, for example, quantum technologies will allow for the simu-

lation of the e�ects of clinical drugs, exponentially reducing time

and resources. More e�cient research can be done in the quest

to �nd cures for cancer and other diseases, including Alzheimer's,

Parkinson's, and multiple sclerosis, among many others. In the

�eld of �nance, it will be possible to create much more precise

mathematical models and to process data in real time in a more

e�cient manner for decision making. In energy and sustainable

agriculture, it will be possible to explore new techniques for am-

monia production at a lower energy and economic cost, replacing

the current process that consumes 2% of the world's energy and

drives up the cost of food.

80

General Conclusion

Today's computing machines uses classical physics laws to under-

stand and represent the logical processing of information.

These classical descriptions of Newtonian physics provide an intu-

itive explanation of the physical universe, but they can't predict

all observable phenomena. This awareness is the reason of the

most important revolution in physics: the discovery of quantum

mechanics laws.

In recent years we have seen amazing computing innovations. How-

ever, the architecture behind them has not changed (based on bi-

nary calculation 1's and 0's), With quantum computing, we can

think of amazing possibilities in terms of power, speed and even

more than that: a new way of solving problems considered impos-

sible for classical computers.

Quantum computing is at its earliest stages of development and

still has a long way to go compared to its much matured classical

counterpart.

Throughout this work, we have discussed the concept, bene�ts, po-

tential applications of quantum computers and some known quan-

tum algorithms and their implemantation and we can say that

quantum computing is the next industrial revolution, however there

is technical barriers remain before a practical quantum computer

can be fully achieved.

Di�erent error sources due to the interactions between qubits and

81

the environment which add noise to qubits in turn a�ecting the

robustness of gate operation. Current state of the art gate based

quantum computer contains 20 qubits with gate error rate of about

5%. It is estimated that for a quantum computer to perform some

task impossible for classical computer we need over 50 qubits with

less than 0.1% error rate.

The challenges to create a large, error corrected quantum com-

puter is important. unprecedented control of quantum coherence

and improving existing tools and techniques or even by developing

new ones is required for Successful quantum computation.

82

Bibliography

[1] Florent NOURRISSON NITSCH. The fundamentals of quan-
tum computing, 2019.

[2] Sophie Laplante et Frédéric Magniez Julia Kempe.
L'ordinateur quantique, La Recherche, no 398,. 2006.

[3] Dieter Suter Joachim Stolze. Quantum Computing: A Short
Course from Theory to Experiment. 2004.

[4] Gordon E. Moore. Cramming more components onto inte-
grated circuits. Electronics,. 1965.

[5] Timothy Jones. Is quantum decoherence the von neumann
wave collapse?, 2007.

[6] Ronald de Wolf. Quantum Computing. 2012.

[7] Edgard Elbaz. Quantique Ellipses/edition marketing S.A.
1995.

[8] Mark Sa�man. Dirac Notation and rules of Quantum Me-
chanics. 2006.

[9] Hayden Patrick Ekert, Artur and Hitoshi Inamori. Coherent
atomic matter waves. 2001.

83

[10] John Preskill. Quantum Information And Computation.
1998.

[11] Vlatko Vedral and Martin B. Plenio. Basics Of Quantum
Computation. 2002.

[12] Merciadri Luca. Quantum Computers: A Brief Overview.
2009.

[13] Quantum how do quantum computers work? https://www.

sciencealert.com/quantum-computers. Accessed: 2020-4-
14.

[14] Quantum vs classical computation. http://www.thphys.

nuim.ie/staff/joost/TQM/QvC.html. Accessed: 2020-4-
18.

[15] Jonathan Marshall. ,Simulating Quantum Circuits. 2009.

[16] Neil Gershenfeld and Isaac L. Chuang. Quantum computing
with molecules. Scienti�c American, 1998.

[17] Florent NOURRISSON NITSCH. The fundamentals of quan-
tum computing. 2018.

[18] Dominique Unruh. Quantum programming languages, 2006.

[19] E. Knill. Conventions for quantum pseudocode, Los Alamos
National Laboratory technical report, LAUR-96-2724,. 1996.

[20] B. Ömer. A procedural formalism for quantum computing�
1998.

[21] Jarosªaw AdamMiszczak. Introduction to models of quantum
computation and quantum programming languages. 2010.

84

https://www.sciencealert.com/quantum-computers
https://www.sciencealert.com/quantum-computers
http://www.thphys.nuim.ie/staff/joost/TQM/QvC.html
http://www.thphys.nuim.ie/staff/joost/TQM/QvC.html

[22] S. Bettelli. Toward an architecture for quantum programming.
PhD thesis, 2003.

[23] P. Zuliani. Quantum programming with mixed states, Pro-
ceedings of the 3rd International Workshop on Quantum Pro-
gramming Languages, pages 169-179. PhD thesis, Princeton
University, 2005.

[24] Jonathan Grattage. QML: A Functional Quantum Program-
ming Language.

[25] Seth Lloyd. Con�dentialité et Internet quantique, Pour la
science, vol. 391, mai 2010, p. 60�65. 2010.

[26] IronBridge commercially-ready certi�able quantum cryp-
tographic device. https://cambridgequantum.com/

cqc-unveils-the-worlds-first-commercially-ready-certifiable-quantum-cryptographic-device/.
Accessed: 2020-5-10.

[27] National Academies of Sciences Engineering and Medicine.
Quantum Computing: Progress and Prospects. 2019.

[28] M. Day* S. Frick J. Hinchli� M. Johnson S. Morley-Short
S. Pallister A. B. Price S. Stanisic J. C. Adcock, E. Allen.
Advances in quantum machine learning. 2015.

[29] Seth Lloyd. Con�dentialité et Internet quantique �, Pour la
science, vol. 391, p. 60�65. 2010.

[30] [ibmqx backend information. https://github.com/qiskit/
ibmqx-backend-information. Accessed: 2020-4-14.

[31] Robert Wille Alwin Zulehner, Alexandru Paler. An e�cient
methodology for mappingquantum circuits to the ibm qx ar-
chitectures. 2018.

85

https://cambridgequantum.com/cqc-unveils-the-worlds-first-commercially-ready-certifiable-quantum-cryptographic-device/
https://cambridgequantum.com/cqc-unveils-the-worlds-first-commercially-ready-certifiable-quantum-cryptographic-device/
https://github.com/qiskit/ibmqx-backend-information
https://github.com/qiskit/ibmqx-backend-information

[32] Ibmqx backend information. https://github.com/QISKit/
ibmqx-backend-information. Accessed: 2020-4-14.

[33] VERA BLOMKVIST KARLSSON PHILIP STRÖM-
BERG. 4-qubit grover's algorithmimplemented for the
ibmqx5architecture. 2018.

[34] VERA BLOMKVIST KARLSSON PHILIP STRÖM-
BERG. 4-qubit grover's algorithmimplemented for the
ibmqx5architecture, 2018.

[35] D-wave 2000q quantum computer. https://www.dwavesys.
com. Accessed: 2020-4-14.

[36] D-wave 2000q speci�cation.
https://www.linkedin.com/pulse/

quantum-computers-more-secrets-michael-mather.
Accessed: 2020-4-14.

[37] D-wave 2000q working. https://aws.amazon.com/braket/
hardware-providers. Accessed: 2020-4-14.

[38] D-wave 2000q software. https://www.dwavesys.com/

software. Accessed: 2020-4-14.

[39] How do you write a simple program for a d-
wave device? https://quantumcomputing.

stackexchange.com/questions/1451/

how-do-you-write-a-simple-program-for-a-d-wave-device.
Accessed: 2020-4-14.

[40] D-wave 2000q system. https://dwavefederal.com/

system. Accessed: 2020-4-14.

86

https://github.com/QISKit/ibmqx-backend-information
https://github.com/QISKit/ibmqx-backend-information
https://www.dwavesys.com
https://www.dwavesys.com
https://www.linkedin.com/pulse/quantum-computers-more-secrets-michael-mather
https://www.linkedin.com/pulse/quantum-computers-more-secrets-michael-mather
https://aws.amazon.com/braket/hardware-providers
https://aws.amazon.com/braket/hardware-providers
https://www.dwavesys.com/software
https://www.dwavesys.com/software
https://quantumcomputing.stackexchange.com/questions/1451/how-do-you-write-a-simple-program-for-a-d-wave-device
https://quantumcomputing.stackexchange.com/questions/1451/how-do-you-write-a-simple-program-for-a-d-wave-device
https://quantumcomputing.stackexchange.com/questions/1451/how-do-you-write-a-simple-program-for-a-d-wave-device
https://dwavefederal.com/system
https://dwavefederal.com/system

[41] Ingolf Wittmann. An-60-min-introduction-into-ibm-q-
strategy-and-o�ering-v1-1, 2018.

[42] D. Deutsch. Quantum theory, the Church-Turing principle,
and the universal quantum Turing machine. InProceedings of
the Royal Society of London, volume A400, pages 97�117.
1985.

[43] D. Deutsch. Quantum computational networks. InProceedings
of the Royal Society of London,volume A425. 1989.

[44] U.V. Vazirani S. Dasgupta, C.H.Papadimitriou. algorithms
dasgupta c h papadimitriou and u v vazirani solution manual.
2019.

[45] D. Deutsch and R. Jozsa. Rapid solution of problems by quan-
tum computation. InProceedings of the Royal Society of Lon-
don, volume A439, pages 553�558. 1992.

[46] U. Schoning. A probabilistic algorithm for k-SAT and con-
straint satisfaction problems. In Proceedings of 40th IEEE
FOCS, pages 410. 1999.

[47] A. K. Lenstra and Jr H. W. Lenstra. The Development of
the Number Field Sieve, volume 1554 of Lecture Notes in
Mathematics. Springer. 1993.

[48] Jr. H. W. Lenstra and C. Pomerance. A rigorous time bound
for factoring integers. Journal of the American Mathematical
Society, 5:483. 1992.

[49] R. L. Rivest. Cryptography. In van Leeuwen pages 717-755.

[50] P. van Emde Boas. Machine models and simulations.

87

[51] C. H. Papadimitriou. Computational Complexity. Addison-
Wesley. 1994.

[52] D.P. DiVincenzo and IBM. The physical implementation of
quantum computation. 2000.

[53] R. Cleve. The query complexity of order-nding. in proceed-
ings of 15th ieee conference on computational complexity,
pages 54:59. 2000.

[54] Ingolf Wittmann. Ibm q. In AN 60 minute introduction into
IBM Q Strategy and o�ering, 2018.

[55] Ronald de Wolf. Quantum Computing Lecture Notes, Extra
Chapter. 2012.

[56] The qx simulator. http://quantum-studio.net/. Accessed:
2020-4-14.

[57] Quantum programming tools. https://

quantumcomputingreport.com/tools/. Accessed: 2020-4-
14.

[58] Hesameddin Ilatikhameneh Archana Tankasala. Quantum-
kit:simulatingshor's factorization of 24-bit number on desk-
top.

[59] G. Breyta C. S. Yannoni M. H. Sherwood L. M. K. Van-
dersypen, M. Ste�en and I. L. Chuang. Experimental real-
izationof shor's quantum factoring algorithm using nuclear
magnetic resonance 414:883�887,. Nature, December 2001.

[60] Andrew W. Cross Isaac Chuangn Igor L. Markov Krysta
M. Svore, Alfred V. Aho. A layered softwarearchitecture for
quantumcomputing design tools, 2006.

88

http://quantum-studio.net/
https://quantumcomputingreport.com/tools/
https://quantumcomputingreport.com/tools/

[61] Albert Y. Zomaya. Handbook of Nature-Inspired and Innova-
tive Computing: Integrating Classical models with the emerg-
ing technologies. 2006.

[62] ibm. Ibm q. https://www.research.ibm.com/ibm-q/, 2017.

[63] Macario Polo Usaola. Quantum software testing. 2020.

[64] Marcos Allende López. QUANTUM TECHNOLOGIES Digi-
tal transformation, social impact, and crosssector disruption.
2019.

89

	General Introduction
	Introduction to Quantum Computing
	Introduction
	Computers and Quantum Mechanics
	Moore's Law
	Quantum Decoherence

	Quantum Calculations
	Difference between Quantum and Classical Computers

	Quantum Computing Prerequisites
	Qubit
	Quantum Register
	Quantum Logic Gates
	Quantum Process

	Comparison between Classical and Quantum computing
	Quantum Reversibility
	Quantum Entanglement
	Forecasts
	Calculations

	Quantum Programming
	Imperative Quantum Programming Languages
	Quantum Pseudocode
	Quantum Computer Language
	Q Language
	qGCL

	Functional Quantum Programming Languages
	QFC and QPL
	QML

	Quantum Lambda Calculi

	Quantum Interest
	Cryptography
	IronBridge

	Artificial Intelligence
	HHL: Solving Linear Systems of Equations

	Realistic Quantum Computers
	IBM Q
	Ibmqx5
	QISKit
	The IBM Q Network

	The D-Wave 2000Q
	D-Wave 2000Q Specification
	The D-Wave 2000Q Application
	Software and Programming

	Quantum Computers Price and forecasts

	Conclusion

	Quantum Software
	Introduction
	Quantum circuits
	Elementary quantum gates
	Quantum Algorithms
	Deutsch-Jozsa
	Bernstein-Vazirani
	Bernstein-Vazirani Problem

	Shor's Factoring Algorithm
	Factoring
	Reduction From Factoring to Period Finding
	Shor's Period Finding Algorithm

	Grover's Search Algorithm
	The Problem
	Grover's Algorithm

	Hidden Subgroup Problem
	Definition And Some Instances Of The HSP

	Conclusion

	Quantum Algorithms Implementation
	Introduction
	Quantum Computing Known Simulators
	QX Simulator
	Q-Kit
	Q-Kit Feauters

	IBM’s Q Experience
	IBM QX: Web Interface
	Graphical composer

	Grover’s Algorithm On IBM’s Q Experience:
	Simulation
	Experiment on 5-Qubits Machine(ibmqx2)
	Results

	Shor's algorithm for integer factorization
	Sho'r Experiment
	Results

	Conclusion

	Analysis and Forecasts
	Introduction
	A Comparison Of Classical and Quantum Programming Tools
	Quantum Computer Compiler
	Error Correction
	Software Engineering

	Quantum Computers Complexity
	Analysis
	Conclusion

	General Conclusion

