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Abstract 
 

 

Traffic congestion is one of the biggest challenges facing modern services, it costs us 

time, money and even human lives in some extreme cases. In order to solve or rather prevent 

this problem, researchers must predict its state, and among all the techniques used we have 

chosen deep learning because studies show its superiority over all traditional methods in most 

fields. In our thesis, we understand the basics of car traffic and delve into its concepts, 

characteristics, challenges and methods used to predict its state, to this end, we offer a deep 

learning architecture. The main problem with the vehicular traffic is its unpredictable 

variables which are in most cases caused by human behavior and weather changes, so we 

need to include these factors in our research. In this context, the traffic state of vehicles is 

defined as the situation of vehicles on the road network, this state could be: free movement, 

congestion or a state between them. 

Based on a review of the literature on traffic forecasts, a sequential deep learning 

architecture was proposed, this model was formed by data sets extracted from a simulated 

scenario. The results indicate a great capacity for learning the proposed model with low loss 

values. In our work, we tried to explore different aspects of the problem of traffic congestion, 

and explored the solutions proposed by the researcher, we found that this field is very large, 

its problems evolve over time and become more difficult simultaneously with the 

development of the proposed solutions and their effectiveness. 

Keywords: Traffic Flow, Vehicular Ad-hoc Network, Machines Learning, Deep Learning, 

Traffic Simulation, Prediction Techniques 

 



Résumé 

 

 

La congestion du trafic est l'un des plus grands défis auxquels sont confrontées les 

sociétés modernes, il nous coûte du temps, de l'argent et même des vies humaines dans 

certains cas extrêmes. Afin de résoudre ou plutôt de prévenir ce problème, les chercheurs 

doivent prévoir son état, et parmi toutes les techniques utilisées nous avons choisi 

l’apprentissage profond car les études montrent sa supériorité sur toutes les méthodes 

traditionnelles dans la plupart des domaines. Dans notre thèse, nous comprenons les bases de 

la circulation automobile et plongeons dans ses notions, caractéristiques, défis et méthodes 

utilisées pour prévoir son état, à cette fin, nous proposons une architecture d'apprentissage en 

profondeur. Le principal problème de la circulation automobile est ses variables imprévisibles 

qui sont dans la plupart des cas causées par les comportements humains et les changements 

météorologiques, nous devons donc inclure ces facteurs dans nos recherches. Dans ce 

contexte, l'état de circulation des véhicules est défini comme la situation des véhicules sur le 

réseau routier, cet état pourrait être: la libre circulation, la congestion ou un état entre eux. 

 Sur la base d'une revue de la littérature sur les prévisions de trafic, une architecture 

séquentielle d'apprentissage en profondeur a été proposée, ce modèle a été formé par données 

extraites d'un scénario simulé. Les résultats indiquent une grande capacité d'apprentissage du 

modèle proposé avec de faibles valeurs de perte. Dans notre travail, nous avons essayé 

d'explorer différents aspects du problème de la congestion du trafic, et exploré les solutions 

proposées par les chercheurs, nous avons constaté que ce domaine est très vaste, ses 

problèmes évoluent avec le temps et deviennent plus difficiles simultanément avec le 

développement de les solutions proposées et leur efficacité. 

Mots Clés : Flux de Trafic, VANet, Apprentissage Automatique, Apprentissage Profond, 

Simulation de trafic, Techniques de Prédiction 

 



 

 ملخص

 
 
 

يعد الازدحام المروري أحد أكبر التحديات التي تواجه المجتمعات الحديثة ، ويكلفنا الوقت والمال وحتى حياة 

البشر في بعض الحالات القصوى. من أجل حل هذه المشكلة أو بالأحرى منعها ، يجب على الباحثين توقع حالتها ، ومن 

التعلم العميق لأن الدراسات تظهر تفوقها فوق جميع الأساليب التقليدية في معظم بين جميع التقنيات المستخدمة ، اخترنا 

المجالات. في أطروحتنا نحن نفهم أساسيات حركة مرور المركبات ونغوص في مفاهيمها وخصائصها وتحدياتها 

ية لحركة مرور المركبات هي والمعتقدات المستخدمة للتنبؤ بحالتها ، لهذا الغرض نقترح بنية تعلم عميقة. المشكلة الرئيس

متغيراتها التي لا يمكن التنبؤ بها والتي تحدث في معظم الحالات بسبب السلوكيات البشرية والتغيرات المناخية ، لذلك يجب 

علينا تضمين هذه العوامل في بحثنا. في هذا السياق ، يتم تعريف حالة مرور المركبات على أنها حالة المركبات في شبكة 

 .، ويمكن أن تكون هذه الحالة: التدفق الحر أو الازدحام أو حالة بينهماالطرق 

استناداً إلى مراجعة الأدبيات حول التنبؤ بالمرور ، تم اقتراح هيكل متعمق للتعلم العميق ، تم تدريب هذا 

يمية عالية للنموذج النموذج من خلال مجموعات البيانات المستخرجة من سيناريو محاكاة. تشير النتائج إلى قدرات تعل

المقترح مع قيم خسارة منخفضة. في عملنا ، حاولنا استكشاف جوانب مختلفة لمشكلة الازدحام المروري ، واستكشفنا 

الحلول التي اقترحها الباحث ، وجدنا أن هذا المجال كبير جداً ، ومشاكله تتغير بمرور الوقت وتصبح أكثر تحديًا في نفس 

 .المقترحة وكفاءتهالوقت مع تطور الحلول 
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General Introduction 

 
 

   

We’re living in a world that everything happens rapidly, and every aspect of our lives 

is changing and becoming more suitable to this word, technological development entered 

every field and made our daily tasks easier, but in the other hand it opened a myriad number 

of challenges and horizons, we are no longer facing the previous century issues, our nowadays 

challenges are more sophisticated, complex and were considered unattainable some decades 

ago. 

In its journey to build smart cities, humanity have come a long way, and this can be 

seen in the widespread of use of information and communication technologies, our cities 

today can make 

Intelligent responses to different kinds of needs. Among the various notable goals of smart 

cities, building intelligent traffic systems with its main component, vehicular urban traffic. 

Vehicular traffic is of great importance in modern societies, because of its 

contribution in the development of countries’ economies and fighting against poverty by 

providing access to employment, social, health and education services, and with the 

opportunities it gives us as individuals in our daily lives, it also opens more areas and 

stimulate economic and social development. Its quality became an indicator of countries’ 

levels of development. 

Despite the advancement of vehicular traffic there are still many problems that are 

continuously growing and have to be solved, these problems vary from air pollution, accidents 

to fuel consumption but the major issue is congestion, which became an inescapable condition 

in big metropolitan areas especially during peak-hours. There have been many attempts to to 

prevent or rather cope with traffic congestion, and the most promising solution is simply to 

predict it, which is the approach that we will discuss in our thesis. 

Predicting traffic means that drivers will know where and when congestion will 

occur, this idea was studied and developed in the last decades, and many techniques were 

created to increase the accuracy of prediction, these techniques started from basic statistical 

methods and turned to more complex mathematical models with more parameters taken in 
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consideration. In recent years, the emergence of the digital era resulted in a massive data 

explosion across the globe, and as a result of these developments, "big data" could now be 

"mined" from various open channels such as roadside detectors, car navigation systems and 

GPS-equipped smartphones, this data can be collected and analyzed, we need discover and 

recognize the patterns and regularities around this data, which is the area where artificial 

intelligence excels. 

Deep learning is the most used technique in traffic flow prediction; it’s a machine 

learning technique that teaches computers to do something that humans do naturally, Studies 

show that deep learning completely surpasses traditional methods in most of areas. The most 

important advantage of deep learning is replacing handcrafted features with efficient 

algorithms for unsupervised or semi-supervised feature learning and hierarchical feature 

extraction. Using Neural Network for modeling traffic flow and congestion prediction came to 

the picture in 1993 in[1], and in [2] the  difference between deep learning techniques and 

statistical techniques was shown. The data regarding Traffic Flow and Traffic Congestion are 

two instances of Spatio-temporal data. They embady a location (Spatial Feature) and a time 

(Temporal feature),  which create a non-linearity in data, that issue was addressed[3]. Because 

of thenature of traffic data as time series, many author applied Feed Forward Neural Networks 

(FFNNs) with a backpropagation algorithm[4], after that researcher implemented CNN[5], 

RNN[6] and LSTM[7]. 

Our thesis will be divided in three chapters, the first is an introduction to vehicular 

networks and traffic dynamics, in which we will dive into traffic flow notions, we will define 

traffic flow characteristics, challenges and how to manage it, after that we will its components 

and how to collect and measure them, in addition to their types, next we will talk about some 

vehicular traffic applications and performance indicators, at the end of the first chapter we 

will discuss traffic flow theories. The second chapter will be more about the problematic of 

our thesis which is the implementation of deep learning in traffic flow forecasting, with 

explanations of some used prediction techniques. The last chapter will be about our practical 

work, in which we will explain our chosen model and simulated scenario, at the end of this 

chapter there will the results of our applied model. 
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INTRODUCTION 

  

Drivers in daily life move to large cities experiencing significant congestion in their 

trajectory. Indeed, traffic congestion is not a current phenomenon, where it emerges with the start 

of the automobile and the continuous increase vehicles on the road. Congestion remains a global 

phenomenon, on most points of interest such as highways and major cities. This is a very 

important factor affecting the economic sectors, public transport, freight transport and travelers. 

Its impacts are reflected in an increase in travel time. This extra time leads to additional fuel 

consumption, a pollen environment, undesirable social behavior, risks of accidents and incidents. 

The evolution of large cities requires the deployment of Intelligent Transport Systems 

(ITS) in order to increase road safety. These systems promote safer driving by improving the 

driving experience and the travel time of cars to their points of interest. 

Instead of investing in transport infrastructure, traffic flow forecasting promotes 

forecasting tools to optimize the use of infrastructure. Understanding the nature of traffic flow 

trends for a road infrastructure rather than a single road is a big challenge. The objective of 

traffic prediction is to improve the quality of information disseminated by traffic applications. 

This information becomes precise and important in helping drivers make the best choices, 

helping traffic managers manage a large road network and dynamically allocating vehicle 

resources. 

In this chapter, we will highlight the phenomenon of vehicle traffic, vehicle dynamics and 

its recent challenges, how to manage it and what parameters can be managed. After that, we look 

at some vehicle applications that can increase the efficiency of the roads. Finally, we present 

traffic performance indicators and traffic flow theories. 

1. The Vehicular Traffic 

Looking back at the evolution of road safety, it is interesting to see how much has changed, 

most of which has happened in the past decades. From carriage to sensors, cameras and 

Bluetooth technology, a lot has happened in the area of road safety in recent decades. Traffic 

congestion, often severe enough to require drastic control measures, was at less a characteristic 

of urban life. from Roman times. A fundamental cause, then as today, was poor urban planning, 

with roads laid out in such a way as to bring traffic from all the districts to a central crossing  
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point. In the 1st century BC, Julius Caesar banned wheeled traffic from Rome during the day, a 

measure gradually extended to cities in the provinces. 

At the end of the 1st century AD, Emperor Hadrian was forced to limit the total number of 

carts entering Rome. 

Around 1500 Leonardo da Vinci, envisioning a revolutionary solution to the problems of 

urban traffic - then real in overcrowded and busy Italian cities - proposed to separate traffic on 

wheels and pedestrians by creating routes at different levels. With the exception of the railroad, 

however, few separate route systems were established before the 20th century. 

Congestion was severe enough in European cities in the 17th century to require orders 

prohibiting parking on certain streets and establishing one-way traffic. The advent of the railroad 

brought temporary relief to the growing problem of traffic control, although it created congestion 

in terminals inside cities. The automobile, with its growth first in speed and then in number in 

relation to horse-drawn transport, quickly created a new situation which would become one of 

the characteristic problems of urban industrialized society in the 20th century. 

Today, all drivers on the road can be victims on the roads. Road safety is essential for 

different users on the roads to ensure smooth driving. The transport services are still trying to put 

in place a set of measures to prevent road users from being killed or seriously injured in road 

accidents, or to mitigate the consequences. The road safety field of the last decades is completed 

in parallel with the information technology revolution. The term "road safety" instantly conjures 

up images of modern cars today, road accidents occurred even before the invention of the motor 

vehicle. The humble horse and cart, when used as both a freight and passenger carrier, combined 

with a lack of traffic rules, have resulted in numerous accidents, injuries and deaths. 

1.1. Vehicular Traffic Challenges 

The main difference between the traffic phenomenon and other social phenomena is its 

inverse growth. Simply, with the improvement of social indicators such as security, well-being 

and the economy, urban travel increases, which increase traffic congestion. With increasing 

urbanization and cheaper access to vehicles, traffic congestion is a major recurring problem in 

many large cities. Traffic jams cost us time, money and health. In addition, vehicles in 

congestion can burn up to 80% more fuel than those in free traffic, which results in greater air 

pollution [4]. According to data published in 2010, cars emit around 5.53 million kg of carbon 

dioxide into the atmosphere each year, or 16% of the world total [5].  

Motor vehicles also produce 72% nitrogen oxide and 52% reactive hydrocarbons worldwide [6]. 
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These greenhouse gases, by trapping heat in the atmosphere, cause a rise in global 

temperatures which was 0.71 C in 2017.  

A warmer global atmosphere affects agriculture, wildlife, sea level and natural landscapes. In 

addition, the health risks from air pollution are extremely serious. Poor air quality causes 

respiratory illnesses, such as asthma and bronchitis.and the risk of developing dangerous 

illnesses such as cancer is increased, and the healthcare system faces significant medical costs. 

Airborne particles alone are responsible for around 30,000 premature deaths worldwide [7] 

Moscow followed with 91 hours lost due to congestion, while London and Paris lost 74 and 69 

hours respectively [8]. On average, congestion costs in Los Angeles are $ 19.2 billion for the city 

as a whole. Costs are higher in New York, at $ 33.7 billion. This cost for all London commuters 

is $ 12.2 billion and for Berlin $ 7.5 billion. The economic damage caused by congestion last 

year in the United States, Germany and Great Britain totaled US $ 461 billion. These costs 

increase as the world's population and urbanization increase [9]. 

1.2. Vehicular Traffic Management 

Transport problems plagued humans long before the advent of cars. However, in recent 

years, traffic jams have become particularly acute in cities around the world: too many vehicles 

on too few roads! Traffic jams and congested   roads are a daily problem. The growing demand 

for mobility is also a major challenge. The increase in traffic increases safety, health, the 

environment and the economy. The resulting costs can be measured as differential delay, vehicle 

operating costs (fuel and wear), accidents, polluting emissions and driver stress. Intelligent 

traffic management systems can reduce congestion and associated costs by optimizing the use of 

transport resources and the infrastructure of the transport system as a whole, thereby bringing 

more efficiency in the areas of traffic flow and reliability of transport services. 

Congestion-reduction measures can be thought of as falling into two  categories:   

▪ Temporary measures free up road capacity that is soon filled by induced demand: 

people adapt their lifestyles to prevailing road conditions. Such measures are therefore 

worth pursuing only if they either buy time or lay the foundations for more radical 

interventions. 

▪ Virtuous measures start a feedback loop that induces more and more people to make a 

modal shift away from driving. Making a bus service more convenient or cheaper will 

increase patronage, which means that the service can be run more frequently and for longer 

hours, making it convenient and attractive to more people. 
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1.3. Parameters Of Vehicular Traffic 

Vehicular traffic is composed of many components, parameters of these components differ 

depending on our point of view, and we distinguish three categories of data. 

1.3.1. Microscopic data 

Road traffic flows are made up of drivers associated with individual vehicles, with its own 

characteristics. These characteristics are said to be microscopic when a traffic flow is considered 

to be composed of such a flow of vehicles. The dynamic aspects of these traffic flows are formed 

by the underlying interactions between the drivers of the vehicles. This is largely determined by 

the behavior of each driver, as well as by the physical characteristics of the vehicles. 

Because the process of participating in a traffic flow is strongly based on the behavioral 

aspects associated with human drivers [10], it seems important to include these human factors in 

the modeling equations. However, this leads to a sharp increase in complexity, which is not 

always a desired artifact [11]. 

In the microscopic model, we always consider a vehicle-driver combination as a single 

entity, taking into account only certain traffic characteristics linked to the vehicle. 

a. Vehicle related variables 

Considering the individual vehicles, we can say that each vehicle i in a lane of  a traffic flow has 

the following information variables : 

▪ a length, denoted by (𝑙𝑖) 

▪ a longitudinal position, denoted by (𝑥𝑖) 

▪ a speed, denoted by  𝑣𝑖 =
𝑑𝑥𝑖

𝑑𝑡
(1) 

▪ an acceleration, denoted by   𝛼𝑖 =
𝑑𝑣𝑖

𝑑𝑡
=

𝑑2 𝑥𝑖

𝑑𝑡2 (2) 

Note that the position xi of a vehicle is typically taken to be the position of its rear bumper. 

In this first approach, a vehicle’s other spatial characteristics (i.e., its width, height, and lane 

number) are neglected. And in spite of our narrow focus on the vehicle itself, the above list of 

variables is also complemented with a driver’s reaction time, denoted by τi . 

With respect to the acceleration characteristics, it should be noted that these are in fact not 

only dependent on the vehicle’s engine, but also on e.g., the road’s inclination, being a non-

negligible factor that plays an important role in the forming of congestion at bridges and tunnels. 

Except in the acceleration capabilities of a vehicle, we ignore the physical forces that act 

on a vehicle, e.g., the earth’s gravitational pull, road and wind friction, centrifugal forces [12]. 
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b. Traffic flow characteristics 

Referring to Figure 1 (𝑙), we can consider two consecutive vehicles in the same lane in a 

traffic stream: a follower (𝑖) and its leader(𝑖 + 𝑙). 

 From the Figure, it can be seen that vehicle (𝑖)has a certain space headway(ℎ𝑠𝑖)toits 

predecessor it is expressed in meters , composed of the distance called the space gap(𝑔𝑠𝑖)to this 

leader and its own length (𝑙𝑖): 

Hsi=gsi+li(3) 

By taking, as stated before, the rear bumper as a vehicle’s position, the space headway 

Hsi = 𝑥𝑖 + 1 − 𝑥𝑖      (4) 

The space gap is thus measured from a vehicle’s front bumper to its leader’s rear bumper. 

 

1.3.2. Macroscopic Data  

Macroscopic view is observing the phenomenon in a bigger picture and “zooming it out” 

Instead of considering each vehicle in individually, (traffic streams are regarded e.g., as a fluid). 

a. Density 

Density is a numeric macroscopic characteristic that means how crowded is a certain 

section of road, it’s a macroscopic characteristic, it’s expressed by the numbr of vehicle per  

kilometer/mile .Density only considers the abstract quantity ‘number of vehicles’ which means 

that it totally ignores the effects of traffic composition and vehicle lengths. 

Because density can be measured in a spatial region and computed for temporal regions., 

 

Figure 1 :Two vehicles ( i and i+ l)[113] 
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density has to be estimated when it cannot be exactly measured or computed, or when its 

measurements are faulty. To this end, several available techniques exist e.g., based on explicit 

simulation using a traffic flow propagation model [13], based on a vehicle reidentification 

system [14], based on a complete traffic state estimator using an extended Kalman filter [15], or 

based on a non-linear adaptive observer [16], . . . 

Using the spatial region Rs, the density k for single-lane traffic is defined as: 

𝑘 =
𝑁

𝐾 
   (5) 

With N the number of vehicles present on the road segment. If we consider multi-lane 

traffic, we have to sum the partial densities kl of each of the L lanes as follows: 

2. Traffic Data Collection 

The traffic data collection aims to capture traffic row data which accurately reflectthe 

traffic situation in a road section. For instance, it can be counting 

the number of vehicles traveling on a road or collecting information on journey time, current 

speed, density, passage time, delay time, occupation, etc. Indeed, there are two approaches for 

collecting traffic data, namely: 

2.1. Manual Traffic Data Collection 

The most common methods of collecting traffic data are manual methods. These methods 

can be classified as manual counting and survey. 

a. Manual counting 

A manual counting of traffic data is carried out to determine the classification of vehicles, 

the percentage of turns at intersections, the movement of pedestrians or the occupation of 

vehicles; it is generally applied by a person using a counting board to count all vehicles at the 

intersection or path selected for a predetermined period of time. Data can be manually recorded 

by one of these three methods [20]: tally sheets, mechanical counting boards, and electronic 

counting boards. 

▪ Tally Sheets: Data can be saved with a check sign in a pre-prepared dataset. A 

stopwatch is required to measure the desired time interval. 

▪ Mechanical Counting Boards: Mechanical meters include meters mounted on a page 

that record each line of the route. Common forms of these signs include the number of 

pedestrians, bicycles, vehicles and the volume of traffic. Typical counters are push  
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buttons with three to five registers. Each button is used to count a specific type of 

vehicle or pedestrian. A stopwatch or stopwatch is also required to measure the desired 

time interval. 

▪ Electronic Counting Boards: Electronic counting tables are tools used to collect traffic 

counting data that uses the battery. Electronic metering is more compact and easier to 

use than mechanical cards. They are supplied with battery and have an internal clock 

that automatically separates the time intervals for data collection. In addition, data can 

be downloaded to a computer, saving time and reducing human error. 

This method of data collection can be costly in terms of labor. However, in cases where it 

is necessary to collect data relating to the classification of different vehicles separately or where 

the infrastructure of automatic methods is not used, these methods must be used. [21]. 

b. Survey 

This method is used alongside household questionnaires to estimate the origin-destination 

matrix (ODM) [12], it requires experience, skills and a good understanding of the study area to 

obtain a correct estimate of the ODM. It is also important to know the purpose of the study and 

the detail of the modeling methods because the data are affected by these properties. In addition, 

many practical considerations, including the availability of time and money, have a great impact 

on the design of the survey. 

2.2. Automatic Data Collection 

The different types of sensors used today are different from those of the first generations of 

ATMS and ITS systems [22], because the data sources used were presence sensors in fixed 

positions such as inductive loop detectors, capable of detect the presence of nearby vehicles. 

 

▪ Inductive loop detectors are installed in the roads for measuring the change in the 

magnetic field, they can detect the presence of a conductive metal object. 

▪ Magnetic detectors to sense the magnetic anomaly ferrous metal objects cause in the 

Earth’s magnetic field. 

▪ Video image processing provide traffic flow data across several lanes through 

analyzing the video image of roadway surveillance cameras. 

▪ Microwave radar sensors transmit electromagnetic signals and receive echoes from 

objects of interest. 

▪ Infrared sensors operate in two modes, in active mode illuminate the detection zones 
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with low power infrared energy transmitted by laser diodes then use the reflected energy to 

detect vehicles. In passive mode, these sensors detect the energy emitted by vehicles or the 

energy emitted by the atmosphere and reflected by vehicles. 

▪ Laser radar sensors are active sensors that transmit scanning infrared beams in the 

near infrared spectrum over one or more lanes. 

▪ Audio sensors calculate traffic density or volume by using different audio signal 

processing techniques. 

Nowadays, traffic data can be collected from GPS systems that can be integrated in 

smartphones, vehicles or RSU. The provided datasets by traffic detectors presents traffic data 

sources with supplement presence-type sensors. These data include information about road 

infrastructure, smart devices, vehicles and roads, which have not been covered with presence 

sensors yet. The advantage of GPS sources is the historical and real-time traffic trajectories, 

which have allowed us to make better forecasts of traffic flows for ATMS and ITS. The use of 

mobile crowd sensing techniques have helped us collect the trajectories of pedestrian vehicles 

and cellphones [23], providing us with valuable data on the trajectories of vehicles and 

pedestrians. 

a. Data from Fixed Position Sensors 

The deployment of presence sensors / detectors at a fixed position in space (indicated by p) 

is the traditional approach; this approach meant that the sensors always measured at a specific 

point on the road (they could measure one or more lanes, depending on the capabilities of the 

sensor used). If we study only one direction of a road segment (for example, using an inductive 

loop detector), the data from a traditional fixed position sensor can be described as an ordered 

sequence of measurements m̄p in a position p given: 

𝒎̅𝒑 = {𝒎̅𝒑,𝒕}(6) 

𝑡 = 1,2, … 𝑇(7) 
Where 𝑚̅𝑝,𝑡 is the value of the measurement at time t and position p. 

b. Data from Moving Sensors 

As we mentioned earlier, we can collect mobile data from smartphones and GPS equipped 

vehicles (such as taxis or bikes), which are now considered mobile sensors, these sensors provide 

us with valuable data on the trajectories of vehicles and pedestrians using mobile crowd 

detection techniques. Many crowd-sensing applications deal with tasks related to urban transport 

systems, which include tracking public vehicles (buses, trams, subways and bikes for hire) or 

mapping bumps on the road to quickly notify authorities where to intervene [23]. 
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The obvious difference between these sensors and the fixed position sensors is that they are 

always in motion with their owner. Formally, () the data from the GPS sensors can be expressed 

as an ordered series of measurements where each sample of GPS coordinates is connected to the 

time data: 

𝑝̅ = {𝑝1 → 𝑝2 → ⋯ → 𝑝𝑡}(8) 

𝑡 = 1,2, … 𝑇(9) 

pt: latitude and longitude coordinates and a t timestamp. 

In another sense, the data is expressed as a connected series of points linked to their time 

stamps, each of which contains latitude and longitude. Due to this property, data from moving 

sensors is also called space-time data where the space part is the GPS coordinate and the time 

part is the time stamp. 

3. Traffic Applications 

 With the evolution of urban traffic, appeared new applications that contribute to the 

effectiveness of traffic networks: 

3.1. Vehicle –to-everything (V2X)  

V2X,Vehicle-to-Everything or Vehicle Connected to Everything is a communication 

technology that allows vehicles to connect to the mobile and fixed part of the road system that 

surrounds them. There are several components that make this technology usable and powerful, 

and promise more development in the future. 

▪ Vehicle-to-vehicle (V2V): The first element of this technology is the communication 

between two vehicles, which allows them to share crucial information that can allow 

them to prevent accidents and congestion. 

▪ Vehicle-to-infrastructure (V2I): Infrastructure is connected external systems such as 

street lights, buildings and even cyclists or pedestrians, and this component allows the 

vehicle to communicate with these systems. The future of this technology is promising 

due to improvements in everyday life and its rapidly expanding sophisticated 

capabilities.(V2X’s principal purpose is increasing safety and preventing collisions and 

this technology is applied in two types of vehicles) 

In a traditional vehicle, the V2X is simply applied to transmit important environmental 

information to the driver, including weather conditions, nearby accidents, road conditions and 

dangerous activities of nearby vehicles. 

In autonomous vehicles, the V2X provides additional information to the vehicle's existing 

navigation system. Security, automatic toll payment, parking and the like are all the benefits and  
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goals of V2X technology. This technology uses short-range, weather and interference-resistant 

wireless signals to communicate with vehicles and infrastructure. 

This technology uses short-range, weather and interference-resistant wireless signals to 

communicate with vehicles and infrastructure. 

Figure 2: showing V2X technology with its connected components 

 

▪ Standards of V2X 

a. IEEE 802.11p 

The initial V2X has been standardized on the basis of a Wi-Fi branch, IEEE 802.11p 

(which is part of the IEEE WAVE or Wireless Access for Vehicular Environments program), 

operating in the unauthorized frequency band 5.9 GHz. IEEE 802.11p, which was finalized in 

2012, underpins dedicated short-range communications (DSRC) in the United States, and ITS-

G5 in the European initiative Cooperative Intelligent Transport Systems (C-ITS). 

V2X communication via 802.11p goes beyond limited visibility sensors such as cameras, 

radars and LIDARs, and covers V2V and V2I use cases such as collision warnings, speed 

limitation alerts limit and electronic parking and toll payments. 

The functional characteristics of 802.11p include a short range (less than 1 km), low 

latency (2 m) and high reliability, according to the US Department of Transport, it "works in 

mobility conditions with high vehicle speed and offers performance insensitive to extreme  
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weather conditions (e.g. rain, fog, snow, etc.). “Essentially, 802.11p expands a vehicle's ability 

to” see the environment around it, even in bad weather time. 

b. Cellular V2X 

The main advantage of the C-V2X is that it has two game modes, of which, cover most of 

the possibilities. The first is direct low-latency C-V2X communication via the PC5 interface in 

the unauthorized range of 5.9 GHz, which is designed for active safety messages such as instant 

road alarms and other v2V positions, V2I and V2P at short range. This is closely aligned with 

what IEEE 802.11p technology offers, which also uses the 5.9 GHz range. 

Communications via the Uu interface on the regularly licensed band cellular network are 

secon mode, and it can handle V2N use cases such as infotainment and latency tolerant security 

messages for a range of longer road risks or traffic conditions. Due to non-use of cellular 

connectivity, IEEE 802.11p cannot correspond to this mode by establishing ad hoc connections 

with roadside base stations. 

3.2. Vehicular Ad-hoc Network (VANET) 
 

The ad-hoc vehicular network (VANET) is not a new subject like many technologies in our 

research, but there are still many research challenges and difficulties that have not been resolved 

so far, and researchers continue to develop it. 

 

 

 

 

 

 

 

 

 
 
 

  

 

 

 

 

Figure 3:Direct communication for active safety use cases 
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As its name suggests, VANET is an Ad Hoc network, its main objective is therefore to 

create a vehicle network without the need for a central base station or any controller, and to 

maintain communication. The emergency Critical medical is one of the example applications of 

VANETS, where there is no infrastructure when it is essential to transmit information to save 

human lives. 

Despite its applicability, there are new challenges and problems in complementing 

VANETs, which need to be resolved. control tasks, as well as their own communication needs.. 

3.2.1. History of Vanet 
 

VANET has crossed many forms before reaching the version that is applied today, and we 

must discuss these forms before going into the details of VANETS. As shown in Figure 4, 

WANET is the parent field of all ad hoc networks. VANET is a brother of MANET which 

organizes its own communication system without any dependence on any other infrastructure. 

The most common use of MANET is in the military due to its simple and basic communication 

method, as well as the sharing of data between different computers. VANET is similar to 

MANET with some modifications. VANET includes mobile nodes (MN), road units (RSU). 

Mobile nodes are the sensors built into vehicles which are called on-board units (OBUs) for 

signal processing (data sharing) to and from the RSUs. RSUs are installed fixed units which are 

the gateway for communication between MN and the servers or the Internet. There are many 

services provided by VANET, but the most important of all is road safety services for the 

reduction of road accidents by sharing data via the Internet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Classification of mobile Ad-hoc Networks 
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3.2.2. Architecture and Network Modeling 
 

Basically, VANET does not have a specific architecture or topology that must be followed. 

Despite this, VANET generally involves moving vehicles which must communicate with each 

other and with nearby RSUs. The main difference between VANET and MANET is the paths 

followed by the nodes, in MANET, these paths are random, but in VANET the vehicles follow 

fixed roads and highways. (VANET is part of MANET, but it is also an individual research field, 

particularly in terms of network architecture design). In the VANET architecture, an on-board 

unit (OBU) in a vehicle consists of a wireless transmitter and receiver.

Figure 6 :some network architectures in VANET[111] 

Figure 5 :VANET Communication System[111] 
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 There are three major communication architectures that are commonly used in VANETs: 

▪ First architecture: All vehicles communications pass through RSUs, this 

architecture can be seen as a wireless local area network (WLAN). 

▪ Second architecture: There is no need for RSU in this architecture, because all 

the communications are directly established between vehicle. This can be classified as Ad-

hoc architecture. 

▪ Third architecture: Is a hybrid architecture between the first two models, where 

some vehicles communicate directly with each other and while others may need an RSU to 

communicate. [26]. FIG6 shows these three possibilities. 

Understanding network architecture is important in order to realize the full potential of 

vehicular communication. According to most of published studies [27, 28], VANET scenarios are 

divided into three categories: Urban, Rural and Freeway/Highway. 

Ensuring that network interconnection needs for an entire vehicle environment are covered 

is one of the main reasons to investigate this way. The challenges differ from one environment to 

another and all must be overcome. For instance, in a sparse network like highways, low vehicle 

density remains the main problem. Even in some urban environments, low traffic volume at 

hours of darkness can cause long delays on the network. 

The high mobility of nodes in ad hoc wireless networks is a crucial attribute in this type of 

architecture, and this attribute makes modeling the communication scenario difficult and 

complicated. In order to model a VANET environment, we need to deepen the key characteristics 

of vehicle mobility such as acceleration, deceleration, lane changes and human driving habits. 

Much research [29,30,31] has been done to include mobility in the design of VANET in order to  

explore these characteristics. In the vehicular networks, the traffic mobility model must 

includethe behavior of moving vehicles individually and in groups for efficient and error-free 

packet transmission 

3.3. Intelligent Traffic Management 

With the increasing number of private motor vehicles, cities are becoming more congested 

and their surveillance becomes more difficult and complicated. This problem exhausts 

infrastructure managers around the world. Congestion and traffic accidents cause significant loss 

of time, property damage and environmental pollution, making it one of the biggest concerns. 

There is an urgent need to improve traffic management due to the financial losses caused by 

traffic congestion. The appearance of the Internet of Things (IoT) offers a new trend in the 

intelligent development of traffic.  
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Using IoT, agents, and other technologies can improve traffic conditions and reduce traffic 

pressure. The information generated by IoT traffic and collected on all routes can be presented to 

travelers and other users. The system can recognize current traffic, traffic conditions and future 

traffic thanks to traffic data collected in real time. The system can generate current and real-time 

traffic information to help drivers choose the best routes. The system can therefore precisely 

manage, monitor and control moving vehicles. Building an intelligent traffic system based on 

IoT has a number of advantages such as improved traffic conditions, reduced congestion and 

management costs, where there is no room for new roads, and many of the simplest ways to 

widen roads have already been used. Although all of the grassy central medians designed along 

freeways have been paved inward, many urban highway corridors in the United States still have 

ways to extend outward and replace the slopes with retaining walls. A recent study into the 

feasibility of expanding major highways in the Los Angeles area found that about 118 miles by 

136 miles had space in the existing reserve or required little land purchase to develop. 

Reliability, road safety and independence from bad weather.[32] [33] 

The traffic IoT must include all traffic elements such as roads, bridges, tunnels, traffic 

lights, vehicles and even drivers. All of these elements are connected to the Internet for practical 

identification and management by recognition devices such as RFID devices, infrared sensors, 

global positioning systems, laser scanners, etc. 

Traffic IoT provides the acquisition and integration of traffic information and supports the 

processing and analysis of all categories of traffic information on the streets of a large area 

automatically and intelligently. This is how modern traffic management turns into an intelligent 

traffic system based on IoT. 

4. Traffic Dataset Types  

Traffic data differs with the sources of this data, for that we distinguish thre types of data. 

4.1. Scalar-Based Datasets 

The simplest data model to predict traffic flow uses data from fixed position sensors 

without pretreatment. As mentioned in equation (6), each mp, t measure contains a scalar value 

and the time stamp of the measurement at position P. Data from mobile sensors can also be used 

in this model, but measured GPS lane data must be preprocessed, which means values only for 

those examined P positions are extracted. The purpose of the traffic prediction is to determine 

the value mp, t-1 based on mp, where p determines the position. Ordered sequences of scalar 

values can be modeled according to time series, which are a known data model. 
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The time series can be characterized by the following characteristics. The trend is a gradual 

increase or decrease in values in the series over time, which may be global, local, or both. It can 

also be linear or non-linear. A seasonal cycle is a repetitive and predictable pattern in series 

values, while a seasonal non-cycle repeats, which can be unpredictable. Variations in time series 

values that cannot be explained by the model are called residuals. 

The main drawback of using a scalar model is that it masks the spatial correlations and 

only describes the temporal correlations. Sometimes we only care about the flow at a certain 

point along the way. The scalar model is the right approach for this. In most cases, however, we 

also want to understand the behavior of the flow along the entire path, which is not possible with 

this model. 

Scalar models also have scalding problems because calculating forecasts for each sensor in 

a large sensor network is an intensive computing task. 

4.2. Vector-Based Datasets 

Instead of using a scalar value to characterize the flow at a point in space and time, vector 

models define a vector that describes the state of circulation (also called state vector). As input 

data sources for vector models, fixed position sensors (if it can be assumed that enough sensors 

are installed on roads) or moving position sensors or a mixture of them. With regard to the spatial 

factor, it is distinguished between the univariate and multivariate versions.  

A univariate model observes a sensor, while the multivariate versions observe more 

sensors. 

 

 

▪ Univariate Vector Models: 

The figure 7 show a univariate vector model for a given sensor of the transportation 

network, where the state vector of the current flow at time t can be defined as: 

Figure 7: Univariate and Multivariate models[109] 
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𝑓̅ = {𝑓𝑡 −  𝑙 ; 𝑓𝑡 − 𝑙 + 1 … , 𝑓𝑡}      (10) 

Where l (lag) is the number of time intervals handled by the model. f t−l denotes the 

measured value at time t − l. The goal is to predict the next f t+1 value. 

In most cases, authors use separate time intervals [58], but some works use overlapping 

intervals. To give an example of overlapping time intervals, we leave 2 and assume that we use 

time intervals of 5 minutes. Then f t indicates the actual interval, f t-1 indicates the previous 5-

minute interval, and f t-2 indicates the previous 10-minute interval. Unfortunately, the univariate 

vector model, like scalar models, is also unable to describe spatial correlations. 

▪ Multivariate Vector Models :   

In a multivariate vector model (Figure 1b), we observe more sensors of a transportation 

network. Thus, the state vector of the current flow at time t can be defined as: 

𝑓𝑡̅={𝑓1 , 𝑡– 𝑙, … , 𝑓1,𝑡, 𝑓2,𝑡 = 𝑙 … 𝑓𝑗,𝑡}  (11) 

Or 

𝑓𝑡̅={𝑓1 , 𝑡– 𝑙, … , 𝑓𝑗,𝑡 − 𝑙, 𝑓1,𝑡 − 𝑙 + 1, … , 𝑓𝑗,𝑡}(12) 

 Where l (lag) is the number of time intervals processed by the model, and j is the number 

of sensors present in the state vector. The purpose of traffic prediction here is to determine the  

value of f x, t + 1, where x is an arbitrary sensor and t + 1 is the next time interval. As you can 

see, the order of values for multivariate vector models can vary.  

4.3.Matrix-Based Datasets  

In a matrix model, matrices are defined that describe the current state of the flow. Fixed 

position (if it can be assumed that enough sensors are installed on the streets), mobile position 

sensors or a mixture of them can be used as data sources. Unlike scalar or vector models, matrix 

models always identify spatial and temporal correlations. These models can be classified as a 

macroscopic model, which means that instead of examining a point in space in detail, they are 

able to identify correlations between larger areas. 

In addition to the KNN prediction model [34] (or its extended variants), the most popular 

prediction models used for matrix models in related work are the convolutional neural network 

(CNN) [35], defined neural networks. by the user [36] and Bayesian networks [37]. Based on the 

properties of matrix models, they can be divided into two main groups: spatio-temporal matrix 

models and regional matrix models. 

▪ Time-space Matrix Models 

▪ Region Matrix Models     
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4.4.Environmental and Seasonal Information 
 

Traffic flows are not only influenced by the cardinality and the behaviors of their entities, 

they are also significantly affected by other factors such as weather, seasonality (holidays, day of 

the week, seasons, school hours), events, road construction, air quality or lighting conditions. 

Take for example heavy rain, which could lead to overcrowded sections, because pedestrians 

avoid open spaces and move under underground passages and covered areas. Another case is one 

where there is a high risk of accidents, such as poor vision or slippery roads which make car 

drivers slower than usual, which increases the likelihood and volume of traffic jams and 

congestion [24]. 

Unusual conditions produce remarkable changes in traffic flows, these conditions can be 

observed on different days of the week as well as in seasonality, in addition to this, holidays can 

also play a major role and cause heavy loads on the road network and cause severe congestion. 

Take the example of roads and walking paths near universities, which are considerably more 

burdened during the school period than during the exam period or the summer break, and this 

proves the effects of the seasons of the year on debits. 

All of these examples demonstrate the critical importance of these external factors such as 

weather forecasts and seasonal impact, and the need to use their data sources. By ignoring them,  

our forecasts would not be precise and refined [25], and huge inaccuracies could appear 

jeopardizing the applicability of forecasting traffic flows. 

5. Traffic Data Modeling 

Traffic modeling aims to accurately recreate the traffic observed and measured on the 

street. Traffic modeling assumed the appearance of a traffic system without eplication. It was 

developed on the basis of the experience of the modeller who integrates mathematical models in 

the traffic system [38]. Traffic modeling plays an important role in traffic engineering. It can be 

applied to plan and manage traffic within certain road networks [39]. For example, creating 

smooth traffic at an intersection, etc. [40] 

Primarily, simulation models specialize in three output values to solve traffic problems 

[41]. The first is that the traffic is fluid. In traffic flows, alternative routes are often identified 

based on the quantity of vehicles. Using the simulation model, the modeller can imagine a way to 

reduce the degree of congestion on certain roads. The second output is that of the network 

element. The network element in traffic simulation includes link, merge, cross link and other 

route elements [42]. this can be associated with the geometric layout of the road. With the help  
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of appropriate simulation software, the geometric design of the roads is often modified to 

determine how it can influence the current traffic situation. The third exit is that of the skim  

category. The simulation model can help estimate the time and price of the trip. this can be 

particularly used when the evaluation of traffic improvement needs to be measured. Transport 

planner can easily compare performance without additional cost in time and money. 

6. Traffic Performance Indicator 

Cities today face many common traffic problems and implement similar urban  traffic 

mnagement solutions, with intelligent transport systems (INTELLIGENT Transportation, ITS) 

playing a leading role. However, it is extremely difficult for a city to objectively assess the 

impact of specific policies and technologies and to use lessons learned from other cities without 

a set of widely accepted criteria and methods. 

We discuss the peak hours factor, the reliability of travel times, the number of services and 

a measure of road efficiency. 

6.1. Peak Hour Factor  

The peak hour factor (PHF) is a possible indicator of fluctuations in traffic flow during 

peak hours and periods of high current. It is calculated for a day as the average flow during the 

hour with the maximum flow, divided by the peak current for a quarter of an hour during this 

hour [44]: 

𝑃𝐻𝐹 =  
𝑞̅|60

𝑞̅|15
   (13) 

Suppose we measure the currents on a main three-lane road during a morning rush hour: 

from 7:00 a.m. to 8:00 a.m., we measure 3,500, 6,600, 6,200 and 4,500 vehicles per hour in a 

quarter. The average total flow q / 60 is 5,200 vehicles per hour, with a maximum flow of 15 

minutes q / 15 - 6,600 vehicles per hour. The PHF thus corresponds to 5200/6600 - 0.78. 

6.2. Travel Times And their reliability  

When traveling, people like to know how long a specific trip will take (for example, by 

public transport, car, bicycle, etc.). This notion of expected travel time is one of the most 

tangible aspects of the trip as it is perceived by travelers. When people get to work, they have to 

arrive at their destination on time. Based on this premise, we can naturally say that people reason 

with an integrated safety margin: they consider the average time it takes to reach a destination, 

and use it to decide their departure time. 
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In addition to the obvious human logic mentioned above, there is also increased interest in 

accurate travel time information in the context of Advanced Traveler Information Systems  

(ATIS). An essential ingredient here is the accurate forecast of future travel times. In addition to 

accident detection, drivers can, for example, receive correct journey time information so that 

they can stay informed of actual traffic conditions and possibly change their route. The requested 

information can be reached by a mobile phone (for example depending on the mobile phone 

provider), it can be broadcast by radio (for example the Traffic Message Channel - TMC), or 

accessible via certain road sections (for example, dynamic route information panels (DRIP), etc. 

A driver's journey time to the end of a journey can be defined as the time required for an 

intermediate route between two sites. "In this context, the dynamic travel time experienced, from 

a specific time t0, is plotted on a street section of length K defined as follows [46]: 

𝑇(𝑡0) =  ∫
1

𝑣(𝑡,𝑥)
𝑑𝑥∀𝑡 ≥ 𝑡0

𝑘

0
    (14) 

For which it is assumed that all the instantaneous local speeds of the vehicle v (t, x) are 

known at any point on the route and at all times (hence the term dynamic travel time). 

 In most cases, however, we do not know all of the v (t, x), but only a finite subset of them, 

which is defined by the location of the detection stations. Travel time can then be approximated 

using the speeds recorded at the start and end of a section (here, there is an underlying 

assumption, that vehicles move between the detector positions at a speed more or less constant). 

As already mentioned, the driving time experienced requires knowledge of the local vehicle  

speeds at all times after T0. As this is not always possible, a simplification can be used, which 

leads to the so-called experienced journey time: 

𝑇̃(𝑡0) =  ∫
1

𝑣(𝑡,𝑥)
𝑑𝑥

𝑘

0
     (15) 

6.3. Level of service  

Historically, one of the most important performance indicators for assessing the quality of 

transport operations was the level of service (LOS) introduced in the 1960s. It is represented as a 

classification system with one of the six letters ( AF), after which LOS A designates the best 

operating conditions and LOS F the worst. These LOS measurements are based on road 

characteristics such as speed, journey time and the perception of comfort, comfort, [47]. As is 

common among traffic engineers, these statistics, representative of these characteristics, are 

collectively called efficiency measures (MEO). 

Levels A to D are representative of the free flow conditions, in which LOS A corresponds 

to free flow, LOS B for reasonable freedom of flow, LOS C for stable transport operations and  
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LOS D for transport operations adjacent unstable transport. LOSE recalls almost unstable flow  

conditions near capacities, while LOS F corresponds to overloaded flow conditions (caused by 

structural or accidental overload) [44]. 

As an example, we give an overview of the different service levels in Table I (based on 

[44]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The calculation of service levels can be done using a multitude of methods; some examples 

include the use of density (on highways), the use of average space speed (in arterial streets), the 

use of delay (at signposted and unsignalized intersections), etc. [47]. 

6.4. Efficiency  

In the work of Chen et al [48], stresses that the main reason for congestion is not that 

demand exceeds capacity (i.e. the number of passengers wishing to use a certain part of the 

transport system exceeds the capacity of available infrastructure), but that it actually does this is 

inefficient highway operation in times of high demand. To quantify this efficiency, they first 

examine the speed that prevails when a highway operates at its maximum efficiency, i.e. the 

highest flow rate (corresponding to the actual capacity, which differs from the capacity of the 

HCM, which is calculated from the physical properties of the road). Based on the distribution of 

5-minute data samples from approximately 3,300 detectors, they examine the velocity in periods 

of very high throughput. This leads to a so-called continuous speed compared to only 60 miles 

per hour (which corresponds to 60 mph - 1,609 - 97 km/h). 

The performance indicator they offer is called efficiency η and it is based on the ratio of 

the total number of kilometers driven by the vehicle (VMT), divided by the total number of 

hours driven by vehicle (VHT). Note that since the units of VMT and Vsust must match, we 

suggest using the terminology of total distance traveled by the vehicle (VDT) instead of VMT, in 

order to eliminate any possible confusion. VDT and VHT are defined as follows: 

 

LOS Density (veh/km) Occpancy (%) Speed (km/h) 

A 0        7 0       5 ≥ 97 

B 7        12 5       8 ≥ 92 

C 12       19  8       12 ≥ 87 

D 19       26 12      17 ≥ 74 

E 26       42 17       28 ≥ 48 

F 42       62 

> 62 

28       42 

> 42 

< 48 

Table 1 : LOS indicators levels 



Introduction to Vehicular Networks and Traffic Dynamics Chapter 01  

  
25 

 

𝑉𝐷𝑇 = 𝑞𝐾       (16) 

𝑉𝐻𝑇 =  
𝑉𝐷𝑇

𝑣̅𝑠
     (17) 

 

With, as before, q-Flow, K the length of the road section and compared to the average 

space velocity. With the definitions above, we can see the effectiveness of a section of road like:   

𝜂 =
𝑉𝐷𝑇/𝑉𝐻𝑇

𝑣̅𝑠𝑢𝑠𝑡
      (18) 

7. Traffic Flow Theories 

Traffic is a complex system with similarities to the flow of physical particles. Successful 

applications of traffic physics include, for example, a hydrodynamic model of traffic. 

 A single vehicle can be treated as a particle flowing in a pipe. The compatibility of the 

physical approach with traffic theory has attracted many physicists for decades. Since many 

other collective physical systems are in an emerging state, traffic jams occur. Three-phase traffic 

theory developed by Russian physicist Boris Kerner explains congestion by phase transition in 

the traffic system 

7.1. The meaning of phases  

The concept of "phases" was originally used in fields such as thermodynamics, physics and 

chemistry. In these systems, "phases" denote different states of matter (for example solid, liquid 

or gaseous; or different compositions of materials in metallurgy; or different collective states in 

 solid state physics). If certain "control parameters" such as the pressure or the temperature in the 

system are modified, the global state can also change if the transition is abrupt, we speak of first 

order transition, otherwise we speak of second phase transitions order if the transition is 

continuous. 

When transferring these concepts to traffic flows, the researchers differentiated between 

single-phase, two-phase and three-phase models. The number of phases is mainly related to the 

stability characteristics (in) of traffic flows (i.e. the number of states that distinguish the 

instability diagram). 

7.2. Three-phase traffic theory  

In three-phase traffic theory, the three traffic phases are made up of free flows and two 

congestion phases: synchronized flow and large mobile congestion. The three phases offer 

qualitative characteristics of traffic congestion. Due to the complexity of the transport system,  
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such as. With regard to driver inhomogeneity and behavior, however, the theory is limited to 

quantitative correspondence with reality, although the most recent simulations may have shown 

qualitative characteristics. 

In traffic theory, there are a large number of parameters (safety distance between vehicles, 

average length of vehicles, acceleration time). Among these, it suffices to provide only three 

parameters to understand the empirical properties of three phases: speed v, density and speed q 

of the vehicles. They are not independent from each other. You are bound by a simple intuitive 

expression. 

𝑞 = 𝜌𝑣  (19) 

In other words, as long as both values are given, the other can be ignored. However, the 

correlation of the three complete variables is important to distinguish the three phases of traffic. 

 

 

 

 

 

 

 

7.2.1. Free flow and Congestion  

Free movement and traffic jams are more intuitively different than the three phases. Free 

flow and congestion can be easily defined using the basic diagram in the density flow level. In 

Figure 8, the points are divided into two areas. a positive slope corresponds to free flow. In free 

flow, since there is no significant drop in velocity, the flow is almost proportional to the density 

(its tendency tends to decrease with increasing density). This maximum point in the basic 

diagram is called the limit. Another set of points corresponds to traffic jams. Traffic jams mainly 

occur at the bottleneck. In a traffic jam, the average speed of vehicles decreases. In addition, the 

variance of points in traffic jams is much greater than the free state. [50] 

In free circulation, vehicles are not (much) influenced by each other and can move freely. In 

Figure 8 :Diagram showing the three phases (data taken from Japan highway). [49] 
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multi-lane traffic, this means that vehicles can pass freely. 

7.2.2. Synchronized Flow  

The vehicle speed decreases significantly in the synchronized flow, but no notable change 

in the flow is observed [50]. this is due to the increased density of the vehicle so that the product 

of speed and density remains almost the same. the term synchronized reflects the synchronization 

of vehicle speed in different lanes. The downstream front is mainly connected to the bottleneck. 

Synchronized flow can be divided into three models, depending on the development of the 

downstream fronts and the upstream front. [51] 

We distinguish three types of synchronized flow: 

▪ localized synchronized flow: the downstream front is connected to the bottleneck. The 

front oscillation, but the average width of the pattern does not change. 

▪ widening synchronized flow: the downstream front is attached to the bottleneck, the 

upstream front spreads continuously to the rear. 

▪ moving synchronized flow: a whole pattern is propagated, but cannot penetrate the 

adjacent bottleneck (capture effect). Capture effect distinguishes mobile synchronized 

stream with wide mobile congestion [52]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9 :A diagram showing the three phases in the space-time plan.49] 
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7.2.3. Wide Moving Jam  

A large mobile packing can only take place spontaneously thanks to a synchronized flow. 

At this point, the flow and speed decrease considerably and become relatively uniform with the 

synchronized flow. Therefore, there is empirically a large variance in the density flow level from 

a synchronized flow. Spreads backwards with average speed vg. this can happen through the next 

bottleneck. The line formed by points in the density flow plane is called line J. The slope of line 

J corresponds to the speed at which the pattern vg propagates. 

Figure 10 :a diagram showing the rapid drop of wide moving jam[53] 
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onclusion 
 

In this chapter dived into vehicular traffic notions, and we tried to understand the basics 

of urban traffic flow, and its challenges, in order to do that we had to understand the nature of 

its data, how to collect it and the methods used to model it, before that we talked about the 

sources of traffic data and the various technologies used. 

In the next chapter we will précis our problematic, and discover the techniques used to 

attain our objective by comparing used techniques. 
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INTRODUCTION 

In the literature, there are many prediction models that are used to predict traffic flow. 

However, the prediction must be defined as it is a fundamental property of traffic flow that 

affects the choice of the prediction model. 

According to [54], the forecasting of the traffic flow indicates the possibility that the 

prediction satisfies certain accuracy requirements over a desired forecast time horizon. In other 

words, what is the maximum time that can be predicted by a model with a limited error?  

The actual value of a prediction consists of a predictable component and an error [55], 

which includes both the prediction error and the unpredictability of the uncertainty. The 

predictable value is derived from the deterministic part, and the predictable part of the 

uncertainty depends on the ability of the model to predict the uncertain part of the traffic flow 

with the required precision. Uncertainty is influenced by many factors, such as weather, days of 

the week, events, road construction, lighting conditions, etc. Integrating external environmental 

factors and merged data [56] into the model is crucial to reduce forecast errors and increase the 

predictable part of the uncertainty. The predictability of traffic flows is directly linked to the time 

horizon of the forecast. Intuitively, forecast accuracy decreases with increasing forecast horizon 

[57]. 

In this chapter we will discuss the methods and techniques used to predict the state of 

traffic, we will begin by mentioning the common used methods in this field and distinguishing 

them by their characteristics and types, after that we clarify the method that interests us which is 

deep learning, and in the end of this chapter we will talk about two chosen deep learning 

algorithms and understand the basic notions of them. 

 

1. Deep Learning For Traffic Forecasting 

Neural networks are the main model for predicting traffic flow these days; their main 

property is their ability to model non-linear, stationary / non-stationary behavior, in addition to 

their extensibility. This means that the spatio-temporal property can also be taken into account 

and that environmental data sources can be easily integrated. All of these properties reduce the 

unpredictable part of the uncertainty, which could also significantly reduce the prediction error in 

extreme cases. 

NNs have long been used to predict time series in which data is modeled using scalar 

models. The authors began to study traffic flow as time series using the Feed Forward Neural 

standard. Networks (FFNN) with a backpropagation algorithm [102]. 
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Backpropagation is a monitored learning algorithm using Descent artificial neural 

networks. In the case of an artificial neural network and an error function, the process 

calculates the error function with respect to the weights of the neural network. These NNs can 

work better than simple parametric models. However, they cannot take advantage of the 

spatio-temporal property of traffic flows. 

Here are some New York algorithms almost used in traffic prediction 

▪ Time Delayed Neural Networks (TDNNs): augment the input scalar model with 

delayed copies 

▪ Recurrent Neural Networks (RNNs): retain an internal state (memory) by using a 

directed cycle in neurons, but they have problem of long-term dependancy [103] 

▪ Long-Short Term Recurrent Neural Networks (LSTMs): are the predecessors of 

RNNs because of their capabilities of long and short term dependency learning[104] 

▪ Gated Recurrent Units (GRUs): have the same capabilities as RNNs with a simpler 

architecture with fewer parameters 

▪ Convolutional Neural Networks (CNNs): with the using of convolution layers, they 

are capable of extracting spatial correlation over a map [105,106,107] 

2. TrafficPrediction Techniques 

Forecasting traffic is a vast field with many variables, we will mention them by their 

categories and types 

2.1. ParametricModels 

2.1.1. Traffic Simulation Models 

Traffic simulation models are mathematical models that help plan and design 

transportation systems. Instead of using historical and real-time traffic data, these models 

simulate traffic; because in the design phase of a road network, no historical data is available. 

It is important to emphasize that future traffic levels can be estimated using traffic simulation 

models to validate the relevance of the design of a transport system; however, these models 

are not capable of predicting the next traffic state based on historical data and in real time. 

The basic elements of traffic simulation models have been established by Beckmann, 

McGuire and Winsten [58]. In these models, traffic is simulated by an origin-destination (OD) 

matrix, which describes the movement of vehicles in a certain area. The OD matrix includes a 

cell representing the number of journeys from the origin (line) to the destination (column). 
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Traffic simulation models can be classified according to their scope as microscopic, 

macroscopic or mesoscopic. 

In the microscopic view, each individual actor in the street and their interactions are 

modeled in a multi-agent system [59], in which each agent keeps a record of his trip, 

including basic information or behaviors (for example, lane change behavior or acceptance of 

distance behavior, if conflicts with other vehicles may arise). A typical microscopic 

simulation approach is that of cellular automata (CA), in which the streets are divided into 

cells that can be empty or occupied by a vehicle, and time is dissected in the reflection phases 

of summer. CA has the ability to reproduce a wide range of different traffic phenomena and, 

due to the simplicity of the model, it is numerically very efficient. This model was combined 

with OD forecasts to obtain network-wide traffic forecasts [60]. 

In the macroscopic view, only the total variables of a road network are taken into 

account, e.g. B. density, speed or number of traffics if these variables are determined for each 

road segment of the road network [61]. There are two methods of allocating data traffic to the 

simulated road network: static and dynamic allocation. 

Mesoscopic models are combinations of macroscopic and microscopic models [62]. 

First, traffic is assigned to different road segments using macroscopic models, after which 

individual cars are moved across the network based on the calculated microscopic traffic 

variables. The great advantage of the mesoscopic approach is that a greater variety of 

phenomena can be modeled, such as the operation of installed traffic lights, highway mergers, 

weaving sections or lanes reserved for busy vehicles. 

2.1.2. Time SeriesModels 

The basic time series models assume that the value of the series at time t depends 

linearly only on its previous values with added random noise [51]. The autoregressive (AR) 

and moving average (MA) components are used to model the time series, thus forming a 

moving average autoregressive model (ARMA). AR predicts the variable of interest using a 

linear combination of past values of the variable, while MA uses past forecast errors in a 

regression model. Since most time series have non-stationary behavior in practice, the ARMA 

model can be generalized to manage non-stationarity byapplying differentiation (calculating 

the differences between consecutive observations). This extension of the ARMA model is 

called an autoregressive integrated moving average (ARIMA). The disadvantages of using 

time series models are that they cannot handle non-linear processes, and it is difficult to 

integrate environmental data sources into them. 
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2.2. Non-ParametericModels 

Non-parametric models assume that the distribution of data cannot be defined as a 

limited set of parameters, but they can often be defined by taking an infinite dimension. 

Therefore, more data is generally needed than for parametric models. Nonparametric models 

are more flexible than parametric models because the amount of information that data can 

collect can increase with the amount of data. The advantage of these models is that they are 

capable of managing nonlinear dynamic processes and can also use spatio-temporal 

relationships. Some of them are also capable of integrating environmental data sources, which 

can increase the accuracy of forecasts in extreme cases. The downside of nonparametric 

models is the training of the model or the prediction itself, which can be a computer intensive 

task, is the comparison with parametric models, since huge amounts of data have to be 

processed. 

2.3. Machine Learning Techniques 

2.3.1. Bayesian Network 

Bayesianprobability 

Is an interpretation of the concept of probability, which can be interpreted as a 

reasonable expectation representing a state of knowledge, rather than the frequency or 

prosperity of a phenomenon or as a quantification of a personal belief. 

The Bayesian interpretation of probability can be seen as an extension of propositional 

logic which allows us to think with hypotheses, that is to say with propositions whose truth or 

lie is unknown. In the Bayesian view, a hypothesis is assigned a probability, while in the 

frequency inference rule, a hypothesis is generally tested without a probability being affected. 

The Bayesian probability is classified as the probability of proof; To assess the 

probability of a hypothesis, the Bayesian probabilistic gives an earlier probability. This visit 

will then be updated in the light of new useful data for a later probability. 

Bayesian inference 

Is a method of statistical reasoning that uses the Bayesian theorem to update the 

likelihood of a hypothesis when more evidence or information becomes available. 

Probability 

The joint probability distribution of random variables A_0, A_1, …, A_n, denoted as 

P(A_0, A_1, …, A_n), is equal to P(A_1 | A_2, …, A_n) * P(A_2 | A_3, …, A_n) * … * 
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P(A_n) by the chain rule of probability. We can consider this a factorized representation of 

the distribution, since it is a product of N factors that are localized probabilities. 

𝑃(⋂ 𝐴𝑘) =  ∏ 𝑃𝑛
𝑘=1

𝑛
𝑘=1 (𝐴𝑘|⋂ 𝐴𝑗

𝑘−1
𝑗=1 )   (20) 

Conditional independence between two random variables, A and B, given another 

random variable, C, is equivalent to satisfying the following property: P(A,B|C) = P(A|C) * 

P(B|C). In other words, as long as the value of C is known and fixed, A and B are 

independent. Another way of stating this, which we will use later on, is that P(A|B,C) = 

P(A|C). 

▪ The Bayesian Network 

Bayesian networks are a kind of probabilistic graphical model that uses Bayesian 

inferences for probability calculations. Bayesian networks aim to model conditional 

dependence and therefore causality by displaying conditional dependence across the edges in 

a directional diagram. Thanks to these relationships, the return of random variables in the 

diagram can be done efficiently using factors. They can be used for a variety of tasks, 

including prediction, anomaly detection, diagnosis, automated comprehension, reasoning, 

time series prediction and uncertainty decision-making. 

 

 

Figure 1 :Example of a Bayesian network 

Connecting the random variables, A and B, this means that P (B | A) is a factor in the 

joint probability distribution, so we must know P (B | A) for all the values of B and A in order 

to proceed with the 'inference. In the example above, since Rain has an edge entering 
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WetGrass, this means that P (WetGrass | Rain) will be a factor, the probability values of 

which are specified next to the WetGrass node in a conditional probability table. 

Bayesian networks fulfill the local Markov property, which states that a node is 

conditionally independent of its non-offspring with respect to its parents. In the example 

above, this means that P (cloud watering, rain) - P (cloud watering) because the sprinkler is 

conditionally independent of its non-falling rain, when it is cloudy. This property allows us to 

simplify the common distribution obtained with the chain rule in the previous section to a 

smaller form. After simplification, the common distribution for a Bayesian network is equal to 

the product of P (node / parent (node)) for all nodes, see below: 

𝑃(𝑋1,….𝑋𝑛) =  ∏ 𝑝𝑛
𝑖=1 (𝑋𝑖|𝑋𝑖 , … . , 𝑋𝑖−1) =  ∏ 𝑃𝑛

𝑖=1 (𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))(21) 

In larger networks, this property allows us to significantly reduce the amount of 

computation required since most nodes generally have few relatives in relation to the overall 

size of the network. [66] 

▪ Notation 

Variables are represented with upper-case letters (A,B,C) and their values with lower-

case letters (a,b,c). If A = a we say that A has been instantiated.A set of variables is denoted 

by a bold upper-case letter (X), and a particular instantiation by a bold lower-case letter (x). 

For example if X represents the variables A,B,C then x is the instantiation a,b,c. The number 

of variables in X is denoted |X|. The number of possible states of a discrete variable A is 

denoted |A|.The notation pa(X) is used to refer to the parents of X in a graph. 

o We use P(A) to denote the probability of A. 

o We use P(A,B) to denote the joint probability of A and B. 

o  We use P(A | B) to denote the conditional probability of A given B. 

Probability 

P(A) is used to denote the probability of A. For example if A is discrete with states 

{True, False} then P(A) might equal [0.2, 0.8]. I.e. 20% chance of being True, 80% chance of 

being False. 

Joint probability 
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A joint probability refers to the probability of more than one variable occurring 

together, such as the probability of A and B, denoted P(A,B). 

Conditional probability 

Conditional probability is the probability of a variable (or set of variables) given another 

variable (or set of variables), denoted P(A|B). 

Distributions 

Once the structure has been defined (i.e. nodes and links), a Bayesian network requires 

a probability distribution to be assigned to each node.Each node X in a Bayesian network 

requires a probability distribution P(X | pa(X)).Distributions in a Bayesian network can be 

learned from data, or specified manually using expert opinion. 

Evidence 

Things that we know (evidence) can be set on each node/variable in a Bayesian 

network. For example, if we know that someone is a Smoker, we can set the state of the 

Smoker node to True. Similarly, if a network contained continuous variables, we could set 

evidence such as Age = 37.5. 

When evidence is set on a probability distribution we can reduce the number of 

variables in the distribution, as certain variables then have known values and hence are no 

longer variables. This process is termed Instantiation. 

Instantiation 

The figure below shows an example of instantiating a variable in a discrete 

probabilitydistribution. 
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2.4. Deep Learning Techniques 

Today, neural networks (NN) are the most commonly used predictive models for 

predicting traffic flow as they are capable of modeling non-linear, stationary / non-stationary 

behavior and are very scalable. This means that the property of space-time can also be taken 

into account and that environmental data sources can be easily integrated. All of these 

properties reduce the unpredictable part of the uncertainty, which could also significantly 

reduce the prediction error in extreme cases. 

2.4.1. Artificial Neural Networks 

The models of artificial neural networks (NAR) have been widely studied with the aim 

of obtaining human-type performances, in particular in the field of pattern recognition.  

These networks are made up of a series of non-linear computing elements that work in 

parallel and are arranged in a way that recalls biological neural connections. 

Some background work in the field of artificial neural networks (ARN) took place in the 

late 19th century and early 20th century. It was mainly an interdisciplinary work in physics, 

psychology and neurophysiology. This first work focused on general theories of learning, 

others, conditioning, etc., and did not contain any specific mathematical model of neural 

function. These new developments have revived the field of neural networks. In the past two 

decades, large offers of "items and many different types" of RNA have been published. 

Neural networks have been used in a variety of fields, including aerospace, automotive, 

banking, defense, electronics, entertainment, finance, insurance, manufacturing, medicine, oil 

and gas , voice, securities, telecommunications, transportation and the environment. In the 

ecological field, ANN models were used in the early 1990s, but became increasingly popular 

from the 1990s. 

2.4.2. Biological Inspiration 

A human brain is made up of approximately 10 10 neurons, computer elements that 

communicate via a connection network (approximately 10 4 connections per element). The 

years act as parallel distributed computer networks and are analogous to biological neural 

systems in some basic properties (Figure 13). There are many input signals (X 1⁄4 1⁄2 x 1; x 2; 

Figure 2 : An example showing Instatiation 
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...; X n #) to the neurons. Each entry receives a relative weight (W 1⁄4 1⁄2 w 1; w 2; ...; W n #) 

affects the impact of this entry. Weights are adaptive coefficients in the network that 

determine the intensity of the input signal. The neuron output signal (NET) is generated by 

the summing block, which roughly corresponds to the biological cell body, and adds all the 

weighted algebraic inputs. 

 

 

 

 

 

 

 

 

 

 

 

 

Different types of Ann have been developed over the past 10-15 years, but two main 

categories can be easily identified depending on how the learning process is: 

▪ In ‘supervised learning’, there is a teacher who in the learning phase ‘tells’ the 

ANN  

how well it performs or what the correct behavior would have been. 

▪ In ‘unsupervised learning’, the ANN autonomously analyzes the properties of the 

data set and learns to reflect these properties in its output. 

Figure 13 : (A) Biological neuron and (B) Artificial Neuron 
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Model name Model  type Data models 

Instantanerous Travel Time Naive Scalar 

Historical Average Naive Scalar 
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a. Convolutional Neural Networks (CNN): 
 

The only notable difference between CNNs and traditional ANNs is that CNNs are 

mainly 

used in 

image recognition. This allows us to encode image-specific functions in the architecture, 

which makes the network more suitable for image-based tasks - and at the same time further 

reduces the parameters required to configure the model. 

One of the biggest limitations of traditional ANN forms is that they face the 

computational complexity required to calculate image data. Common reference data sets for 

machine learning, such as the MNIST database for handwritten numbers, are suitable for most 

ANN forms due to their relatively small image size of only 28-28. With this dataset, a single 

neuron in the first hidden layer contains 784 weights 

ARIMA Parametric Scalar 

SARIMA Parametric Scalar 

STARIMA Parametric Scalar 

KARIMA Parametric Scalar 

ARIMAX Parametric Vector 

Kalman Filter Parametric Scalar 

Bayesian Networks Non-Parametric Scalar, Vector, Matrix 

K-Nearest Neighbors Non-Parametric Vector 

Feed Forward Neural Networks Non-Parametric Scalar 

Time Delayed Neural Networks Non-Parametric Scalar 

Recurrent Neural Networks Non-Parametric Scalar 

Long-Short Term Recurrent Neural 

Networks 
Non-Parametric Scalar 

Gated Recurrent Unit Neural Networks Non-Parametric Scalar 

Convolutional Neural Networks Non-Parametric Scalar, Vector, Matrix 

Combination of CNN and FFNN Non-Parametric Scalar, Vector, Matrix 

Combination of CNN and LSTM Non-Parametric Scalar, Vector, Matrix 

Table 1 : A comparative list of traffic prediction models[109] 
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 (28 * 28 * 1 or 1, knowing that MNIST is normalized in black and white values), which 

is manageable for most ANN forms. 

When looking at a larger input color image from 64 to 64, the number of weights on a 

single neuron in the first layer increases considerably to 12,288. Also take into account that 

the network to process this input scale must also be much larger than the network used to 

classify standardized MNIST numbers in color, we will therefore understand the 

disadvantages of using such models. 

CNNs are made up of three types of layers. These are convolutional layers, pooling 

layers and fully connected layers. When these layers are stacked, a CNN architecture was 

formed. 

 

 

Convolutional layer 

As its name suggests, the convolutional layer plays an essential role in the functioning 

of CNNs. The layer settings focus on the use of training kernels (filters). 

These grains are generally of small spatial dimension, but extend over the entire depth 

of the entrance. When the data reaches an entangled layer, the convolutional layer filters 

through the spatial dimension of the input to create a 2D activation map. 

If we slide into the entry, the dot product is calculated for each value of this kernel. 

From there, the network learns which nucleus "triggers" when it sees a certain characteristic 

for a certain spatial position of the entrance. These are commonly called activations. 

Figure 3: Layers of CNN 
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Pooling layer 
 

The pooling layers aim to gradually reduce the dimensionality of the representation, and 

therefore further reduce the number of parameters and the computational complexity of the 

model. 

The grouping layer operates on each input activation card and scales its dimensionality 

using the "MAX" function. In most CNNs, these are in the form of maximum grouping layers 

with 2 × 2 dimension kernels applied with a stride of 2 along the spatial dimensions of the 

entrance. This reduces the activation card to 25% of the original size - while keeping the 

depth volume at its standard size. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : Convolution operation[110] 

Figure 5 :Average and max pooling kernels 
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Fully-connected layer 
 

The fully connected layer contains neurons which are directly connected to the neurons 

in the two adjacent layers without being connected to a layer in them. This corresponds to the 

way neurons are arranged in traditional ANN forms. 

b. Recurrent Neural Networks (RNN) 

Recurrent neural networks (RNN) are a type of neural network in which the output of 

the previous floor is introduced into the entry of the current floor. In traditional neural 

networks, all inputs and outputs are independent of each other, but in cases where it is 

necessary to predict the next word in a sentence, the previous words are necessary and 

therefore it is necessary to memorize them. This is how RNN was created, which solved this 

problem using a hidden layer. The most important feature of RNN is The Hidden State, which 

stores certain information about a sequence. 

RNNs have a "memory" that remembers all the information about what has been 

calculated. It uses the same parameters for each input, it performs the same task on all the 

hidden inputs or layers to produce the output. This reduces the complexity of the parameters, 

unlike other neural networks. 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6 :Types of recurrent neural networks 
 



Deep Learning Architectures for Traffic Flow Prediction: State Of Art                     

 

Of Art Chaptre02 

45 

 

 

Chapter 02 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 : the difference between forward neural networks ans Recurrent neural networks 
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onclusion 
 

We talked more about the practical side in this chapter, we started from the standard 

methods used in traffic flow forecasting with examples, and by the end of the chapter we 

explained two of the most used deep learning algorithms. We also talked about the literature 

and the advancement of techniques used in this field. 

The next chapter will be the practical side of our work, it will contain a detailed review 

of our two phase work, and the results of the deep learning models implemented in Python 

learning language 
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ntroduction 
  

The purpose of this chapter is to introduce the research methodology for predicting the 

state of traffic using deep learning sequential model, and comparing it with a CNN model, to 

obtain a deep understanding of the advantages and disadvantages of proposed architectures 

and the difficulties of the previously mentioned problem. In this chapter we will also describe 

the steps we followed to achieve a satisfying result to our aimed objective. 

In our work we have applied a sequential model, implemented using TensorFlow and 

Keras libraries, exploiting the features of these packages helped us achieve better results with 

a reduced source code, before that we extracted a dataset from a simulated scenario created 

with SUMO. 

The applicability of the approach is discussed in depth in this chapter. The research plan, 

including the methodology, deep learning difficulties for predicting traffic congestion, the 

proposed method, the scenario and the software applications used to apply it, and conclusively 

we will evaluate the suggested models.  
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1. Traffic prediction problem 

Artificial intelligence has been a major reason for pushing the boundaries of many areas 

and achieving much better results. Our field of study, urban traffic forecasting, has improved 

remarkably over the years by applying different machine learning and deep learning models. 

Many problems and difficulties have been solved, and many more have appeared, each 

approach was a step forward and helped to achieve better performance. In the following, we 

present main issue in traffic flow prediction: 

▪ Sharp changes in flow: Traffic forecasting becomes difficult due to short-term (for 

example, accidents, construction) and long-term (for example, peak, seasonal, 

weather) traffic patterns. While most of the proposed techniques focus on forecasting 

normal conditions, a significant number of deep learning approaches do not include 

forecasting traffic under extreme conditions. 

▪ Non-linearity of data: Traffic flows are non-linear, mostly non-stationary processes, 

influenced by many factors such as weather, day of the week, unforeseen events, 

road construction and lighting conditions. 

▪ Drivers’ Behaviors: urban traffic is influenced by many factors; most of them can be 

predicted because of their linearity while some other variables are almost impossible 

to predict. In heavy rain, pedestrians try to move under covered paths like 

underground passages and avoid open spaces, which can lead to overcrowded areas. 

Motorists always drive slower when there are slippery roads and poor visual 

conditions, which increases the risk of accidents, which increases the likelihood and 

volume of traffic jams and congestion. 

2. Our aim 

In order to build a model capable of predicting the future state of traffic flows with great 

precision, we had to divide our work into two phases, simulation and implementation. 

•The first phase was necessary due to the lack of data we needed to train our deep 

learning model, so we had to simulate a scenario using SUMO 

•In the second phase, we implemented two models in Python programming language. 

3. A deep Learning Architecture For traffic flow prediction 



 

 

In this part, we created two deep learning models, but before implementing them, we 

had to process the data in a preprocessing phase, the application of these preprocessing 

procedures helped us to improve the capacities. of our models. 

 

3.1. Pretreatment phase  

The data were extracted from a simulated scenario, it is a matrix containing 4 columns 

and the number of rows differs according to the data set (training data set or test data set). The 

input data was the first three columns: time, density and speed, while the fourth column 

Traffic-Flow is the output data. 

The time column was in time format, ie "12:00:00 AM", we want all input data in float 

type so we changed the format of the column, we first converted it to 24h format, ie "04: 00: 

00 PM" becomes "16:00:00", after which we deleted the ":", therefore it becomes " 160000 ", 

the process was applied using the function time(t). 

The "Traffic-Flow" output column is the speed at which the vehicles pass the simulated 

point studied (vehicles per hour), its state can be: free traffic, congestion or congestion, and to 

demonstrate these states, we have applied the function flow (f), this function returns 0 when 

the traffic flow is between 0 and 1200, returns 1 when the traffic flow is between 1200 and 

2200 and returns 2 if the value of the traffic flow is greater than 2200, after what we applied 

the to_categorical () method from Keras Library to transform our column into a trainable 

model. 

This preprocessing process was sufficient to increase the accuracy of the first model to 

its highest values, but for the second model, additional procedures were applied. For the 

second model, we had to convert the values of the input data to make them between -1 and 1 

using the following formula: 

𝑋−𝑋̅

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
    (23) 

Where X is the actual,  is the average of the column’s values, Xmax is maximum value in the 

columns where Xmin is the minimum value of the column. 

We applied this formula on each column of the input data, by the following functions: 

convert_speed(), convert_density() and convert_time(). Because of using convolutional 

layer as an input layer for the second model, input data had to be converted from a matrix to a 

vector. 

3.2. Proposed ANN model for prediction 



 

 

The ANN model that we propose is based on fully connected layers to learn 

automatically and in a supervised manner the spatio-temporal characteristics for the 

classification of data extracted from the simulator. We will first describe the architecture, then 

we are interested in learning by playing with the parameters. 

 

 

 

3.2.1. Architecture 

The architecture proposed in the following figure on the data set generated by the 

SUMO simulator in the previous section. This example has 4 layers: an input layer, an output 

layer and 2 hidden layers. 

 

 

Figure 1 Proposed architecture of ANN 

The input layer takes a matrix containing 3 columns and 6898 rows, the columns are 

time, density and speed. this input data has been processed, as mentioned in the preprocessing 

phase. 

The output layer contains 3 neurons which represent the different traffic states, while the 

hidden layers are all of the same category which is fully connected. 

1024 512 



 

 

▪ First fully connected layer: The number of neurons in this layer is the number of 

rows of the dataset, the layer with 1024 units and a Rectified Linear Unit (ReLU) as 

an activation function, and input_dim = 3 (the number of columns in the input layer).   

▪ Second connected layer: The second fully connected layer has 512 units with ReLU 

as an activation function, which are the parameters as the first layer. 

▪ Output layer: is only with 3 neurons that represents the number of possible states, in 

this layer we applied a Softmax activation function. 

 

 

3.2.2. Learning phase 

Our classification model with this architecture (ANN), embodied with 530000 trainable 

parameters; and a number of samples from 627 before the increase in our data set. The 

increase in data improves the accuracy of the ANN and reduces over-adjustment [17]. To 

reduce over-fitting, we increase the number of rows in the dataset matrix. 

This Configuration Model (the parameters that are used in our architecture for learning) is as 

follows: 

▪ Model compilation: we are going to apply these parameters for compiling our models: 

✓ Compile (): Compile defines the loss function, the optimizer and the metrics 

✓ Adam Optimizer (): We will use the Adam optimization algorithm to update the 

iterative network weights that are based on training data. 

✓ loss = 'categorical_crossentropy' (): we use this loss function for categorizing a 

label. 

✓ Metrics = [‘accuracy’]: we use this function to evaluate the performance of our 

model. 

▪ Training the model: in the learning phase we use these parameters 

✓ fit_generator (): used to train our deep learning models (ANN). It requires a 

generator for training data 



 

 

✓ Batch size: (64): the batch size used in our ANN model is 64 because it is a good 

starting point. 

✓ Epochs: using the epochs to separate the training into separate phases, which is 

useful for journaling and periodic evaluation. We respectively use 50,60,70,100,150 

numbers of epochs to obtain perfect accuracy for our model. 

▪ Testing the data:  

To evaluate the approach, we performed experiments on a set of data in a variety of 

urban traffic states. The test data composed of 6898 rows of data. This scenario is to obtain an 

accuracy of 81% in the evaluation of our ANN model before the increase of our dataset. We 

have applied the same techniques on preprocessed data which explains the steps that we 

applied on the dataset. 

3.2.3. Interpretation of the proposed model 

The accuracy of learning and testing increases with the number of epochs, which 

reflects that each time the model learns more information. As seen in the fig above. 

Figure 20 shows changes in the accuracy of training where: 

▪ From 0 epoch to 60 epochs, the precision of the training increases up to the value 

80% at epoch 60. 

▪ The maximum training accuracy reaches 80%. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 21 shows changes in The Training Error where: 

▪ From 0 epoch to 60 epochs, the loss accuracy decreases from the value 3500 to the value 

close to 0.5004 at epoch 60. 

▪ The minimum training loss is 0.5004. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

And here is the precision and the learning loss in the following figure: 

 

Figure 2 : model accuracy 

Figure 3 : model training loss 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Proposed CNN model for prediction 

The CNN model that we propose is based on layers of convolution layers to learn 

automatically and in a supervised manner the spatio-temporal characteristics for the 

classification of data extracted from the simulator. We will first describe the architecture, and 

then we are interested in learning by playing with the parameters. 

3.3.1. Architecture  

The architecture proposed in the next figure on the dataset generated by SUMO 

simulator in the previous section. This example has 4 layers: An input layer, an output layer 

and 2 hidden layers. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 : model accuracy and loss 
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The input layer takes a matrix containing 3 columns and 6898 rows, the columns are 

time, density and speed. this input data has been processed, as mentioned in the preprocessing 

phase. 

The output layer contains 3 neurons which represent the different traffic states, while the 

hidden layers are all of the same category which is fully connected. 

▪ First Convolution Layer: the number of filters is 64,    

▪ Second Convolution Layer: The second fully connected layer has 50 units with ReLU as 

an activation function, which are the parameters as the first layer. 

▪ Max Pooling Layer: pool size of 3, with 2 stride and the padding is set to ‘same’. 

▪ The First Fully Connected Layer: 64 units and ReLU activation function 

▪ The second Fully Connected Layer: 32 units and ReLU activation function 

3.3.2. Learning phase 

Our classification model with this architecture (CNN), embodied with 530000 trainable 

parameters; and a number of samples from 627 before the increase in our dataset. The 

increase in data improves the accuracy of CNN and reduces overfitting [17]. To reduce over-

fitting, we increase the number of rows in the dataset matrix. 

This Configuration Model (the parameters that are used in our architecture for learning) is as 

follows: 

▪ Model compilation : we are going to apply these  parameters for compiling our 

models: 

✓ Compile (): Compile defines the loss function, the optimizer and the metrics 

✓ Adam Optimizer (): We will use the Adam optimization algorithm to update 

the iterative network weights that are based on training data. 

✓ loss = 'categorical_crossentropy' (): we use this loss function for categorizing 

a label. 

✓ Metrics = [‘accuracy’]: we use this function to evaluate the performance of 

our model. 

▪ Training the model: in the learning phase we use these parameters 

Figure 5 : Proposed architecture of CNN 

 



 

 

✓ fit_generator (): used to train our deep learning models (CNN). It requires a 

generator for training data. 

✓ Batch size: (64): the batch size used in our CNN model is 64 because it is a 

good starting point. 

✓ Epochs: using the epochs to separate the training into separate phases, which 

is useful for journaling and periodic evaluation. We respectively use 

50,100,150 number of epochs to obtain perfect accuracy for our model. 

 

3.3.3. Testing the data: 

To evaluate the approach, we performed experiments on a set of data in a variety of 

urban traffic states. The test data (test data) composed of 627 rows of data. This scenario is to 

obtain an accuracy of 50% in the evaluation of our ANN model before the increase of our 

dataset. We have applied the same techniques on preprocessed data which explains the steps 

that we applied on the dataset. 

4. Programming Tools 

The study was conducted using various tools in both phases (simulation and 

implementation) 

4.1. Simulation of Urban Mobility (SUMO) 

SUMO is an open source road traffic simulation software package designed to manage 

large road networks. It models intermodal traffic systems, including road vehicles, public 

transport and pedestrians. It covers a multitude of support tools, which manage tasks such as 

route searching, viewing, importing networks and calculating emissions. SUMO can be 

improved with custom models and provides various APIs to remotely control the simulation. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some SUMO features: 

▪ Microscopic simulation 

▪ Online interaction 

▪ Multimodal simulation incl. vehicles, public transport, pedestrians 

▪ Automatic generation of time schedules of traffic lights 

▪ No limitations in network size and number of simulated vehicles 

▪ Evaluation of eco-aware routing based on pollutant emission and investigations of 

autonomous route choice on the overall network. 

Using SUMO, we could build the dataset that we trained the deep learning model with. 

 

Figure 6: a screenshot of SUMO-GUI 



 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. OMNeT++(Objective Modular Network Testbed in C++) 

It is an extensible, modular, component-based C++ simulation library and framework which 

also includes an integrated development and a graphical runtime environment. Domain-

specific functionality (support for simulation of communication networks, queuing networks, 

performance evaluation, etc.) is provided by model frameworks, developed as independent 

projects. There are extensions for real-time simulation, network emulation, support for 

alternative programming languages (Java, C#), database integration, SystemC integration, 

HLA and several other functions. 

4.3. Veins  

Veins is an open source framework for running vehicular network simulations. It is 

based on two well-established simulators: OMNeT++, an event-based network simulator, and 

SUMO, a road traffic simulator. It extends these to offer a comprehensive suite of models for 

simulation. 

4.4. Python 

Python is an interpreted, high-level, general-purpose programming language. It supports 

several programming paradigms, including structured (in particular, procedural), object-

oriented and functional programming. 

Python is supposed to be an easily readable language. Its formatting is visually refined, 

and it often uses English keywords where other languages use punctuation. Unlike many other 

languages, it does not use square brackets to delimit blocks and semicolons after the 

instructions are optional. 

Figure 7 : a screenshot of NETEDIT 



 

 

In Python we imported some libraries that made the implementation of our model easier: 

4.4.1. NumPy 

NumPy is an arary-processing package that provides a high-performance 

multidimensional array object, and tools for working with these arrays, It contains various 

features: 

▪ A powerful N-dimensional array object 

▪ Sophisticated (broadcasting) functions 

▪ Tools for integrating C/C++ and Fortran code 

▪ Useful linear algebra, Fourier transform, and random number capabilities[115] 

4.4.2. Pandas 

Pandas is a package written for data manipulation and analysis, it offers data structures 

and operations for manipulating numerical tables and time series. 

Library features: 

▪ DataFrame object for data manipulation with integrated indexing. 

▪ Tools for reading and writing data between in-memory data structures and different 

file formats. 

▪ Data alignment and integrated handling of missing data. 

▪ Reshaping and pivoting of data sets. 

▪ Label-based slicing, fancy indexing, and subsetting of large data sets. 

▪ Data structure column insertion and deletion. 

▪ Data set merging and joining. 

4.4.3. TensorFlow 

TensorFlow is an open source artificial intelligence library, using data flow graphs to 

build models. It allows developers to create large-scale neural networks with many layers. 

This package is mainly used for: Classification, Perception, Understanding, Discovering, 

Prediction and Creation. 

4.4.4. Keras 

Keras is an open-source, user-friendly, modular, and extensible neural-network library 

that’s capable of running on top of TensorFlow, it’s designed to enable fast experimentation 

with deep neural networks. Keras contains numerous implementations of commonly used 

neural-network building blocks such as layers, objectives, activation functions, optimizers, 

and a host of tools to make working with image and text data easier to simplify the coding 

necessary for writing deep neural network code.  

https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Objective_function
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Mathematical_optimization


 

 

4.5. Spyder  

Spyder is an open source cross-platform integrated development environment (IDE) for 

scientific programming in the Python language. 

 

 

5. Scenario description 

To attain our objective which is the creation of a simulated scenario for traffic flow, we 

need some elements: 

▪ Data of the network 

▪ Traffic demand 

▪ Additional traffic infrastructure 

Figure 8 : a screenshot of Spyder graphical user interface 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Python_(programming_language)


 

 

We chose to simulate a scenario because of the unavailability of real-world traffic 

datasets that are convenient to our case, and it’s a time-consuming process to prepare a 

simulation scenario based on real-world data. 

Edges are an essential element in SUMO, their representation varies, it can be: street, 

waterways, tracks, bike lanes and walkways. They are unidirectional with one ore lanes 

running in parallel, their geometry is described by a series of line segments.  Attributes such 

as width, speed limit and access permissions (for example, bus permissions only) are modeled 

as a constant along a track. As a result, the distance should be modeled as an edge sequence if 

any of these attributes change along its length. SUMO networks contain detailed information 

on possible movements at intersections and the corresponding rules of conduct used to 

determine dynamic simulation behavior. To ensure consistent network representation, SUMO 

networks are created using the NETCONVERT and NETEDIT applications. NETCONVERT 

is a command line tool for importing road networks from different data sources. 

OpenStreetMap (OSM), Open DRIVE, Shapefile or other simulators such as MATSim 

and Vissim. An essential feature of NETCONVERT is the heuristic refinement of missing 

network data in order to achieve the level of detail required for microscopic simulation (for 

example, synthesis of traffic light plans, rules of conduct and reduction of geometry for OSM 

networks). 

NETEDIT is a graphical network editor that can be used to create, analyze and modify 

network files. This complements network generation heuristics with manual refinements and 

also supports the definition of additional transport infrastructure that could not be imported by 

NETCONVERT. Support features include: 

▪ Basic network elements 

▪ Advanced network elements 

▪ Polygons and points of interest 

Due to the frequent discrepancy between the available input data and the level of detail 

required for microscopic simulation, preparing the network and infrastructure is often a 

demanding task. For this reason, NETCONVERT is constantly evolving to improve its 

heuristics and reduce the amount of annual processing required. In recent years, there have 

been a number of improvements in terms of: 

▪ Modeling networks with left-hand traffic 

▪ the creation of multimodal networks for vehicles, wheels and pedestrians 

▪ Importing new data formats 



 

 

All output files written by SUMO are in XML-format by default. A SUMO network 

file describes the traffic-related part of a map, the roads and intersections of the simulated 

vehicles. On an approximate scale, a SUMO network is a directed graph. The nodes 

commonly called intersections in the sumo context represent intersections and "edge" routes, 

the SUMO network contains the following information: 

▪ Every street (edge) as a collection of lanes, including the position, shape and speed 

limit of every lane, 

▪ Traffic light logics referenced by junctions, 

▪ Junctions, including their right of way regulation, 

▪ Connections between lanes at junctions (nodes). 

 

5.1. Study scenario 

In this analytical study, a supplied empirical traffic model was adopted in order to 

analyze it. This road segment sometimes suffers from traffic congestion, especially in the last 

hours of the day. In general, traffic congestion comes from the unexpected occurrence of 

incidents such as accidents or slowing down of vehicle speed. 

We were interested in assessing the real state of traffic in this segment. The model 

provided is regenerated using an urban mobility simulator, called SUMO. The new traffic 

scenario includes a set of inductive loops to collect data between the start point and the end 

point of this segment. 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 
 

we followed the following steps to create the scenario in SUMO simulator: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Traffic variables model 

In this section, we will present adopted traffic variables model, the following figures 

show the changes off trraffic variables with time, the studied variables are: speed, density and 

Figure9 : the studied road segment opened in SUMO 

 

Figure 11 : Step2 of creating the scenario in SUMO 

 

Figure 10 : Step1 of creating the scenario in SUMO 

Figure 12 : Step 3 of creating the scenario in SUMO 

 



 

 

traffic flow 

 

Figure 13 : graph showing the evolution of density with time 

 

 

Figure 14: graph showing the evolution of Traffic Flow with time 
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Figure 15: graph showing the evolution of Speed with time 

 

 

 

5.3. Simulation files 

 

 

5.3.1. Configuration file 

The main file in our scenario is « variable_speed_signs »; this file contains the input 

files, which are:  

▪ Network file : "net.net.xml" 

0

20

40

60

80

100

120
1

2
:0

0
:0

0

1
2

:0
2

:3
6

1
2

:0
9

:1
2

1
2

:1
3

:4
8

1
2

:1
8

:2
4

1
2

:2
3

:0
0

1
2

:2
7

:3
6

1
2

:3
2

:1
2

1
2

:3
6

:4
8

1
2

:4
1

:1
8

1
2

:4
5

:5
4

1
2

:5
0

:3
0

1
2

:5
5

:0
6

1
2

:5
9

:4
2

1
3

:0
4

:1
8

1
3

:0
8

:5
4

1
3

:1
3

:3
0

1
3

:1
8

:0
6

1
3

:2
2

:4
2

1
3

:2
7

:1
8

1
3

:3
1

:5
4

1
3

:3
6

:3
0

1
3

:4
2

:0
6

1
3

:4
6

:4
2

Speed

Speed

Figure 16 :A diagram showing the hierarchy of simulation files in SUMO 



 

 

▪ Route-file : "input_routes.rou.xml" 

▪ Additional-files :  

"input_additional.add.xml,input_additional2.add.xml" 

The configuration file also contains the beginning and end of time values of the 

simulation 

<time> 

        <begin value="0"/> 

        <end value="1000"/> 

     </time> 

The final attribute in the configuration file is the report, in this section two variables are 

set :  

<report> 

        <no-duration-log value="true"/> 

        <no-step-log value="true"/> 

     </report> 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.2. Network file : net.net.xml 

It’s the first imported in the simulation document, in contains various informations about our 

network: 

▪ Location 

▪ Edges : our network is composed of 14 edges, 7 of them are internal, and the others 

with a priority equals -1 

Figure 17 : A screenshot of configuration file 



 

 

▪ Lanes:  Each edge includes the definitions of lanes it consists of. 

<edge id="<ID>" from="<FROM_NODE_ID>" to="<TO_NODE_ID>" 

priority="<PRIORITY>"> 

<lane id="<ID>_0" index="0" speed="<SPEED>" length="<LENGTH>" 

shape="0.00,495.05 248.50,495.05"/> 

<lane id="<ID>_1" index="1" speed="<SPEED>" length="<LENGTH>" 

shape="0.00,498.35,2.00 248.50,498.35,3.00"/> 

</edge> 

▪ Junctions :  our model contains 7 junctions, each of them is defined by an id, a type 

and coordinates, in addition to other attributes such as :  

▪ Inclanes : The ids of the lanes that end at the intersection 

▪ The ids of the lanes within the intersection the internal junction is located within and 

prohibit to cross the internal junction 

▪ Requests : they are usually declared within the Junction attributes, They describe, for 

each link which streams have a higher priority ) and force the vehicle on link to stop. 

▪ Connections : describe how a node's incoming and outgoing edges are connected, an 

example of connections is to prohibit left-turns at some junctions. In our scenario 

there are 14 connections. 

 

 

 

 

 

 

 

 

 

 

 

5.3.3. Routes file  

In this file, many components can be defined, but in our scenario, just three attributes 

were defined: 

▪ Vehicles’s type : the vehicles in our scenario have a length of 3, and the minimum 

gap between them is 2, their maxSpeed is set to 70km/h. 

Figure 18: A screeshot of the configurationfile Figure 19 : A screenshot of network file 



 

 

<vType id="KRAUSS_DEFAULT" accel="2.6" decel="4.5" sigma="0" length="3" 

minGap="2" maxSpeed="70" color="1,1,0"/> 

▪  The route : 

<route id="0" edges="beg middle end rend"/>the vehicles 

▪ Flow 

<flow id="0" type="KRAUSS_DEFAULT" route="0" begin="0" end="301" 

period="10" departPos="0"/>trip 

 

 

 

 

 

 

 

 

 

 

 

5.3.4.  

additional-files  

input_additional.add.xml : this file defins just one attribute, which 

is  variableSpeedSign, the parameters of this attribute are : 

▪ id : The id of the Variable Speed Signal element 

▪ lane : The id of the lanes of the simulation network 

▪ file : optional file in which the time and speed values are defined 

<additional xmlns: xsi = "http://www.w3.org/2001/XMLSchema-instance" xsi: 

noNamespaceSchemaLocation = "http://sumo-sim.org/xsd/additional_file.xsd"> 

<variableSpeedSign id = "vss" lanes = "middle_0" file = "input_definition.def.xml" /> 

</additional> 

Figure 20 : A screenshot of route file 

http://www.w3.org/2001/XMLSchema-instance
http://sumo-sim.org/xsd/additional_file.xsd


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

input_additional2.add : in this file edgedata is defined, its attributes are : 

▪ id : The id of the detector 

▪ file : The path to the output file. The path may be relative. 

▪ Freq : The aggregation period the values the detector collects shall be summed up. If 

not given, the whole time range between begin and end is aggregated. 

▪ excludeEmpty : If set to true, edges/lanes which were not use by a vehicle during this 

period will not be written; default: false. If set to "defaults" default values for travel 

time and emissions depending on edge length and maximum speed get printed. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.5. Input definition:  

Figure 21: A screenshot of additional file 

Figure 22: A screenshot ofthe second additional file 



 

 

« input_definition.def »: in this file, SUMO sets time and speed values of the 

Variable Speed Signs: 

<vss> 

<step time="100" speed="2.8"/> 

<step time="200" speed="47.22"/> 

</vss> 

▪ time : Time in which the speed will be changed 

▪ speed: New speed (if no value or a negative value is given, the speed will be reset to 

the original network value) 

 

 

 

 

 

 

 

 

 

 

 

5.3.6. aggregated_25.

xml:   In this file all aggregated data are collected, this data can be: 

 

▪ RouteLength: average route length 

Figure 23 : A screenshot of input definition file 



 

 

▪ Duration: average trip duration 

▪ WaitingTime: average time spent standing (involuntarily) 

▪ TimeLoss: average time lost due to driving slower than desired. 

▪ DepartDelay: average time vehicle departures were delayed due to lack of road space 

 

5.4. Launch traffic data in the Veins project 

We imported our sumo scenario and integrated it in OMNet, we 

implemented the proposed scenario using veins framework, we applied the 

following steps to scenario  in OMNet : 

 

 

 

 

 

 

 

 

 

 

Figure 24: A screenshot of aggregated file 

Figure 25 : Step 1 in creating a scenario in OMNet Figure 26: Step 2 in creating a scenario in OMNet 

https://sumo.dlr.de/docs/Simulation/VehicleInsertion.html


 

 

 

 

 

 

 

 

 

 

 

 

  

 

6. Model  Validation 

To give more concrete to our model, we opted for a validation phase, to do this we had 

to create a validation dataset. And for that we chose a road segment and we built a 

scenario using SUMO, the scenario created data which will be then used as test 

dataset, the aggregated data was stored in a csv file. The file composed of a matrix of 

3*636, where 3 is the number of columns or our input data: Time, Density and Speed. 

We read the file and validated it with our learned model to attain a the traffic state of 

traffic in the specified situation. 

The output of the prediction was a vector containing in each column another vector of 

size 3, the columns of the second vector contained the rate of each of the possible 

states, the highest value is the predicted value, for example in the first situation, the 

highest rate was the first which means that the traffic state of the studied road in that 

particular time of the day and with the extracted density and mean speed values will be 

in a free flow. The figure below shows the different validation steps: 

 

Figure 27: Step 3 in creating a scenario in OMNet 



 

 

 

                                Figure 28 : Validation Model for chosen traffic stat 

 

 

 

 

 

 

  

 

 

 



 

 

 

 

 

onclusion 

 

In the conclusion of the last chapter, the results we were looking to achieve were 

attained,     with the implementation of our sequential and CNN models. The purpose of this 

chapter was to show all the aspects of the applicability part of our work, from the simulated 

scenario to the results of the proposed methods, with mentioning the used tool to achieve our 

objective. 

The steps we followed to reach the end of our work were all shown in this chapter, in both 

phases. 

 

 

C 



General conclusion 
 

 

 

We arrived at the end  of our thesis with a clear vision of our problematic and satisfactory 

results, we conclude by recalling what our goal in writing it was. We sought to understand the problem 

of traffic congestion, and which methods are used to predict it, and by penetrating these techniques, 

we created ours and applied it with data sets extracted from a simulated scenario. 

Our trip was a mixture of theoretical research and the implementation of information entered 

and the results of experience of researchers in the field. In the theoretical part, we started from the 

definition of our examined subject, automobile traffic and the problems faced by its managers, which 

increase over time, in this part we determined the problem that our research will focus on its 

congestion. After that, we thought again about the techniques commonly used to manage the traffic 

flow, for which we had to mention the parameters of urban traffic and their categories. Then we 

clarified the techniques frequently used to extract traffic data with detailed information, the types of 

this data were mentioned in another part. In the next part; VANETs, V2X and intelligent traffic 

management were the chosen applications on which we focused to analyze, at the end of this chapter 

we talked about performance indicators and theories of traffic flows. 

The second chapter was part of the theoretical phase, and it was also an introduction to the 

applicable one. There, we plunged into the problem of predicting the flow of traffic, we started by 

evoking and the techniques which are not deep learning, to create a broader vision of our problem and 

its evolution, after which we spoke deep learning techniques that we have chosen to detail. 

Our applicable work was divided into two parts, the first was the simulation of the scenario 

that created our data sets, the second was the coding part, in which we presented the models that we 

chose to implement. In this chapter, we have cited all of the software that we used to apply this work. 

We concluded this chapter by showing the results of our models, which were satisfactory. 

In our work, we have tried to explore different aspects of the problem of traffic congestion, 

and explored the solutions proposed by the researcher, we have found that this field is very large, its 

problems evolve over time and become more difficult to solve with the development of the proposed 

solutions and their effectiveness. 

In conclusion, traffic congestion is still a daily problem that has not been completely 

eliminated, even if its terrible effects, there are still other problems to take into account and solving 

them is more crucial than our discussed problem., the most serious is traffic accidents, because their 

costs are human lives. 

 


