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Résumeé

Dans ce travail , on presénte le modele mathématique de Caputo-
Fabrizio de la déerivation fractionnelle de la rosacée (FPWD). Et on va
étudier les caractéristiques de base du modele, ainsi I’existence et
I’unicité de la solution du modéele, sont vérifiées par la théorie du
point fixe du Banach.on voit que les résulttats obtenus avec ce modele
fractionnaire de Caputo-Fabrizio sont mieux et donnent plus

d’information que le modéle ordinnaire .

Les mots clés : Dérivé fractionnaire de Caputo — Fabrizio

(CF); Maladie du fletrissement de la pinte; Mathéematigue

modele; Théoreme du point fixe de Banach



Abstract

A Caputo—Fabrizio type fractional order mathematical model for
the dynamics of pine wilt disease (FPWD) is presented. The basic
properties of the model are investigated. The existence and uniqueness
of the solution for the proposed FPWD model are given via the fixed
point theorem. The non-integer order derivative provides more flexible
and deeper information about the complexity of the dynamics of the
proposed FPWD model than the integer order models established

before .

Keywords: Caputo—Fabrizio (CF) fractional derivative; Pint wilt

disease; Mathematical model; Fixed point theorem .
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Introduction

Mathematical models in epidemiology are used widely in order to understand better the
dynamics of an infectious disease [1, 2]. The application of the mathematical models
is not limited to only human diseases, but they are also widely applied in other phe-
nomena of biological sciences, such as ecology, forest, etc. In the human life, forest has
an important role, therefore, it is necessary to ensure the safety strategies to protect it
from being infected with diseases. The forest provides greenery to the environment and
pleasant atmosphere for humans. The pine wilt disease (PWD) infects pine trees and is
one of the main threats to the ecosystem and forest. The PWD is considered to be the
most destructive disease which damages pine trees in a short period of time, that is, a
year or sometimes in a few months. The initial symptoms of the PWD include discol-
oration of needles, which turn from yellow to green then to reddish brown. The main
agent of the disease is small worms, known as pinewood nematode (bursaphelenchus
xylophilus), causing tree decline [3]. As the trees begin to die, they are attacked by
insects, known as sawyers, which are species that transfer the nematode to healthy
trees, which is one of the causes of pine wilt disease [4-6]. Native to North America,
the PW nematode was introduced while the first epidemic of the PWD was accursed
in Japan in 1905 [7], and it has spread in southern China, Korea, Taiwan, and other
regions of Europe since the early 1980s [4-6, 8].

The PWD has three main organisms: the gymnosperm host, the pine wood nematode,
and the insect vector. At the stage of primary transmission, dauer juveniles (JIV stage)
of bursaphelenchus xylophilus are carried vertically in the tracheae of their beetle host
to young twigs of susceptible trees, where they enter through resin canals in wounds
made during maturation feeding by the insect [8].

Recently, some mathematical models have been presented to explore the dynamics of

PWD consisting of a system of nonlinear differential equations. Lee and Kwang [9]
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explored the stability analysis of PWD and proposed some suitable controlling strate-
gies for this disease. Khan et al. [10] introduced a model on PWD and its optimal
control. A mathematical model with variable population and suggested optimal con-
trol was developed in [11]. Most recently, in [12] the dynamics of PWD with saturated
incidence rate was explored. All of the above PWD models are restricted to classical
integer order differential equations. In the present paper we consider a PWD model
with saturated incidence rate in fractional environment using the CF derivative. First,
we give an overview of recently published papers on fractional mathematical models
using the CF derivative.

Fractional order models are more reliable and helpful in the real phenomena than the
classical models due to hereditary properties and the description of memory [13, 14].
Also, in the real world explanation, the integer order derivative does not explore the
dynamics between two different points. To deal with such failures of classical local
differentiation, different concepts on differentiation with non-local or fractional orders
have been developed in the existing literature. For instance, Riemann and Liouville
introduced the concept of fractional orders differentiation in [14]. Recently, Caputo
and Fabrizio [15] introduced a new derivative with fractional order based on the expo-
nential kernel. The new CF fractional order derivative has been used successfully in
modeling of various real phenomena. For example, a fractional Adams—Bashforth tech-
nique via the CF derivative was presented in [16]. A study of magnetohydrodynamic
electroosmotic flow of Maxwell fluids with CF derivatives was carried out by Abdulh
et al. [17]. In [18], the CF fractional derivative was used for numerical approach of
the Fokker—Planck equation using Ritz approximation. A mathematical comparative
analysis of RL and RC electrical circuits using AB and CF fractional derivatives was
recently done in [19]. Mustafa et al.[20] explored the dynamics of the cancer treatment
model with the CF fractional derivative. Recently, a new fractional model of hepatitis
B virus in the CF derivative sense was presented in [21].

The classical integer order mathematical model is useful for a local dynamic system
with no external forces. These models cannot therefore replicate the complexity of the
dynamics of the communicable disease like PWD as the model can sometimes have a
crossover behavior and this cannot be handled by the classical differential operators.

Further, in the literature fractional order models provide a better fit to the real data
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for different diseases and other experimental work in fluid mechanics. For example,
Diethelm [22] provided a good agreement to the real data of the 2009 dengue outbreak
in Cape Verde using a noninteger order biological model instead of the ordinary one.
A fractional order model for Ebola epidemic was applied to provide a suitable approx-
imation to the real data on Ebola virus [23]. Makris et al. [24] used a fractional order
Maxwell model to attain a better fit to the experimental work.

Therefore, motivated by the above work, in this paper, we aim to extend the recently
published PWD model [12] to a fractional case by using the newly established deriva-
tive known as CF derivative of order 7 € (0,1]. The details of the remaining chapter
of this paper are as follows:

we remember some definitions, general notions and fundamental theorems. We start
by recall briefly some general notions, spaces, and the basic reproduction number ,
free and endemic equilibrum and The basic definition and results of fractional order
derivative are stated in chapiter. 1. In chapiter. 2, we explore the model formulation,
model equilibria, and the basic reproduction number. chapiter 3 deals with the exis-
tence of solution in the spread PWD disease model via the fixed point theorem. Also,
the uniqueness of a model solution isobtained.

Finally, the concluding remarks are given in the conclusion Section.
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Preliminary knowledge — chapter 1

1.1 Preliminary

In this chapter, we present some preliminaries that will be used in the next chapters.
This chapter is devoted to remember some definitions, general notions and fundamen-
tal theorems. We start by recall briefly some general notions, spaces, and the basic
reproduction number , free and endemic equilibrum , then we give definitions of the

new fractional derevative definition of caputo-fabrizio.

1.2  Functional analysis

1.2.1 L? spaces

Definition 1.2.1 Let I = la,b] provided with the Borel tribe and a measure on
(I,By). For 1 < p < oo, We denote by LP(I,z) the set of measurable functions

f:I—Ras 1
Hf!lp=< i dx)‘”<oo.

It is clear that L'(I,z) is a vector space. To obtain a similar result in the case p > 1,

We need the following theorem.
Definition 1.2.2 We set
L>=(Q)={f:Q — R such that |f(x)| < C on Q}.

with
[/l = [[fllo = inf{C; [f(z)] < C on Q}

the following remark implies that |||, is a norm

Remark 1.2.1 if f € L™ then we have and

lf(@)] < |flly a.eon.

indeed there exists a sequence C,, such that C, — || f|, and for each n, |f(x)] < C, a
e on Q. there fore |f(x)| < C for all x € Q,,.With |Ex| =0 We set E = UX | E, . So
that |E| =0 and

|f(z)] < C, Vn Vz e

it follows that |f(x)| < ||fll,, Vz € Q
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1 1
Theorem 1.2.1 Let p,q €]1,00[ such that —+ — = 1. So for any measurable functions
P q

/ Fada| <|fI Igll,  (Holder)
I
VF+gll, < 171, + llgll,  (Minkouwski).

fyg: 1 — R we have

proof 1.2.1 We first demonstrate the inequality of Holder. Without loss of generality,

we can suppose that || f[|, = |lg|l, = 1. For every x,y > 0, we have
P
xy < T + y_'
p q
Then

p q p q
[rom] = [iroae< [ (M0 100) B 7 T
I I I p q p q

Let us now show Minkowski’s inequality. We obtain

£+l = [1f o do < [1749P7 151+ ol do

< (fireapas)” (firras) (i)

This inequality immediately implies the desired result.

1.2.2 Sobolev space

Definition 1.2.3 (Weak derivative) A functin f € L}, (Q) is weakly differentiable with

loc

respect to x; if there exists a function g; € L () such that

loc

/ foip do = — / gi¢ dz for all ¢ € C°(Q)
Q Q

The function g; is called the weak it’s partial derivative of and is denoted by O;f. Thus

for weak derivative, the integration by parts formula

[ 100 4= [ ag0 as
Q Q
holds by definition for all ¢ € C=(). Since C=° is dense in L} () . the weak

loc
derivative of a function. If it exists is unique up to pointwise almost everywhere
equivalence moreover. The weak derivative of a continuously differentiable function

agree with the pointwise derivative. The existence of a weak derivative is however.

Not equivalent to the existence of a point wise derivative almost every where.

10
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Definition 1.2.4 suppose that ) is an open set in R", k € N, and 1 < p < oo, the

Sobolev space wkP(Q) consists of all locally integrable functions f : Q@ — R™ such that
0°f € LP(Q2) for 0 < la| < k.

We write wh2(Q) = H*(Q). the sobolev space w*P(Q) is a banach space when equipped

with the norm

D=

[ fllprper = Z/\ﬁ“ﬂp dx

la|<k

for1 <p<oo and

Il pkn = ‘m|z<u]§sup 10" f] .

proposition 1.2.1 if f € L} (Q) has weak partial derivative 0;f € L},. and ¢ € C*.

loc

Then Y f is weakly differentiable with respect to x; and

(v f) = (0) f +(0:f).
proof 1.2.2 let ¢ € CX(QQ) be any test function. Then ¢ € C® and the weak
differentiability of f implies that
/ Fouvo) do == [ @p)vo de

expanding 0; (Vo) = ¥(0;¢) + (0:0)¢ in this equation and rearranging the result. We
get

/ G (06) do = — / (00) f+ 0 (B:)] 6 da
Q Q

thus. Y f is weakly differentiable and its weak derivative.

proposition 1.2.2 if f € L} (Q) has weak partial derivative 8;f € L}, and ¢ € C*.

loc

Then Y f is weakly differentiable with respect to x; and

(W f) = (O) f + (9 f).
proof 1.2.3 let ¢ € CX(Q) be any test function. Then ¢ € C® and the weak

differentiability of f implies that

/ J0,(6) d / (0o de
6 +

(0;)¢ in this equation and rearranging the result. We

expanding 0;(Yp) = ¢ (0;
get

/Q G f(0i6) de = / (00) f + 0 (D)) 6 da

thus. W f is weakly differentiable and its weak derivative.

11



Preliminary knowledge chapter 1

Theorem 1.2.2 (basic properties of Sobolev spaces) e Each Sobolev space W5P()

is a Banach space

Remark 1.2.2 we know that w*2(Q) = H*(Q).

Lemma 1.2.1 (convergence of weak derivatives) Consider a sequence of func-
tions f, € L. (Q). For a fized multi-index o, assume that each f, admits the weak

loc

derivative g, = D f,. If f,, — f and g, — g in L} (), then g = Df.

loc

proof 1.2.4 we need to show that the space W*P(Q) is complete, hence it is a Banach
space. Let (u,) 1 <mn be a Cauchy sequence in W*P(Q). For any multi-index o with
la| < k, the sequence of weak derivatives D*u,, is Cauchy in LP(Q2). Since the space

LP(Q) is complete, there exist functions u and w, such that

lwn —ully, =0, [[D%y — uall,, =0, forall o] <k

By Lemma 2.1 , the limit function w is precisely the weak derivative D*u. Since this
holds for every multi-index o with || < k , the convergence u, — u holds in W*»(Q).

This completes the proof .

Banach Fixed Point Theorem

Definition 1.2.5 A Banach space is a vector space X over the field R of real numbers,

or over the field C of complex numbers, which is equipped with a norm || .||, and which

x

is complete with respect to the distance function induced by the norm, that is to say,

for every Cauchy sequence {x,} in X, there exists an element x in X such that :

lim z,, =z
n—o0

Definition 1.2.6 (Lipschitz condition) a function f(t,y) satisfies aLipschitz con-

dition in the variable y on a set D C X if a constant | > 0 exists with:

1 (& y1) = f (G y)ll < Ly — gl

whenever (t,yl), (t,y2) are in D. 1 is Lipschitz constant.

12
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Definition 1.2.7 (Contraction) Let X be a normed vector space, and f : X —
X: We will say that f is a contraction if there exists some 0 < k < 1 such that
| f(2); fF()ll < kllz;yll for all x;y € X. The inf of such k is called the contraction

coefcient.

Theorem 1.2.3 (Banach’s Fixed Point Theorem) Let X be a complete normed
space, and f be a contraction on X . Then there exists a unique x* such that f(z*) = x*.
The Banach Fixed Point theorem is also called the contraction mapping theorem, and
it is in general use to prove that an unique solution to a given equation exists. There

are several examples of where Banach Fixed Point theorem can be used .

1.2.3 basic reproduction number

In epidemiology, the basic reproduction number (sometimes called basic reproductive
ratio, or incorrectly basic reproductive rate, and denoted Ry, r nought) of an infection
can be thought of as the number of cases one case generates on average over the course

of its infectious period, in an otherwise uninfected population.

This metric is useful because it helps determine whether or not an infectious disease
can spread through a population. The roots of the basic reproduction concept can be
traced through the work of Alfred Lotka, Ronald Ross, and others, but its first mod-
ern application in epidemiology was by George MacDonald in 1952, who constructed

population models of the spread of malaria. and we have When

Ro<1

the infection will die out in the long run. But if :

Ro>1

the infection will be able to spread in a population.

Generally, the larger the value of Ry, the harder it is to control the epidemic. For simple

models and a 100 effective vaccine, the proportion of the population that needs to be

13
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vaccinated to prevent sustained spread of the infection is given by 1 — Rio. The basic
reproduction number is affected by several factors including the duration of infectivity
of affected patients, the infectiousness of the organism, and the number of susceptible
people in the population that the affected patients are in contact with.

In populations that are not homogeneous, the definition of R is more subtle. The
definition must account for the fact that a typical infected individual may not be an
average individual. As an extreme example, consider a population in which a small
portion of the individuals mix fully with one another while the remaining individuals
are all isolated. A disease may be able to spread in the fully mixed portion even though
a randomly selected individual would lead to fewer than one secondary case. This is
because the typical infected individual is in the fully mixed portion and thus is able to
successfully cause infections. In general, if the individuals who become infected early in
an epidemic may be more (or less) likely to transmit than a randomly chosen individual
late in the epidemic, then our computation of Ry must account for this tendency. An
appropriate definition for Ry in this case is "the expected number of secondary cases

produced by a typical infected individual early in an epidemic”

1.2.4 endemic and free equilibrum

In epidemiology, an infection is said to be endemic in a population when that infec-
tion is constantly maintained at a baseline level in a geographic area without external
inputs. For example, chickenpox is endemic (steady state) in the UK, but malaria
is not. Every year, there are a few cases of malaria reported in the UK, but these
do not lead to sustained transmission in the population due to the lack of a suitable
vector (mosquitoes of the genus Anopheles). While it might be common to say that
AIDS is "endemic” in Africa, meaning found in an area, this is a use of the word in its
etymological, rather than epidemiological, form. AIDS cases in Africa are increasing,
so the disease is not in an endemic steady state. It is correct to call the spread of AIDS
in Africa an epidemic. For an infection that relies on person-to-person transmission
to be endemic, each person who becomes infected with the disease must pass it on
to one other person on average. Assuming a completely susceptible population, that

means that the basic reproduction number (Ry) of the infection must equal 1. In a

14
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population with some immune individuals, the basic reproduction number multiplied
by the proportion of susceptible individuals in the population (S) must be 1. This takes
account of the probability of each individual to whom the disease may be transmitted
being susceptible to it, effectively discounting the immune sector of the population.

So, for a disease to be in an endemic steady state it is:

R,()XSIl.

In this way, the infection neither dies out nor does the number of infected people
increase exponentially but the infection is said to be in an endemic steady state. An
infection that starts as an epidemic will eventually either die out (with the possibility of
it resurging in a theoretically predictable cyclical manner) or reach the endemic steady
state, depending on a number of factors, including the virulence of the disease and its
mode of transmission.

If a disease is in endemic steady state in a population, the relation above allows us to
estimate the RO (an important parameter) of a particular infection. This in turn can

be fed into the mathematical model of an epidemic.

1.2.5 The Caputo-Fabrizio fractional derivative

Here, we give some basic definitions of the fractional calculus that will be used in the

onward analysis of the model.see [10]

Definition 1.2.8 Let g € Hi(a,b), with b greater than a, 7 € [0,1], then the CF

fractional derivative [15] is given as :

Df (9(t)) = M [ ¢ ()exp [-r==] da 1)

In Eq. (1) . M (1) represents a normality with M(0) = M(1) =1 [15]. However, if

g & Hi(a,b), then the following expression of the derivative is obtained:

D7 (9.(8) = M0 [ (g.(t) — g (a)) oxp [—rt=2] da (1.2)

Remark 1.2.3 0 = =L € [0,00),7 = 135 € [0,1] then Eq. (2) gives the following

form:

D7 (g(t) = 22 [ ¢ (a)exp [~52] do, N(O) =N (o) =1 (L3
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Moreover,

lim Lexp [-2=2] =6 (z —1) (1.4)

o—0

Nieto and Losada [25] give the following definition of the integral.

Let 0 < 7 < 1, then the fractional integral of the function g having order 7 is given

below.

t
17 (9(1) = o9 (O + o= j [ 9(t)ds, =0 (1.5)

Remark 1.2.4 From Definition 2, we have

2(1—1) N 27
2-=7)M(r)  (2—7)M(7)

2

which implies M (1) = 5= , 0 < 7 < 1. In view of (6), a new Caputo derivative of

—1 (1.6)

order 0 < T < 1 is suggested by Nieto and Losada [25], given as follows:

T

t
Dy (g(t) = = 6fg’ exp [T4=2]dx (1.7)

The CF derivative [15], given in the above definitions, has been recently used in the
mathematical modeling of HBV [21], Mazwell fluid with slip effects [26], and diabetes
model [27].

16
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2.1 Model formulation

Here, in this section, we extend the PWD model [12] to fractional order using a CF
derivative of order 7 € [0, 1]. The classical integer order PWD model is formulated by

the following nonlinear system of differential equations:

dSy K\Suly  KypSuly

a YT 1yen, 1+60y BRCEL
dExg K\Suly
— — g Sy — o FE

dl Ko)Sp I
" 2wHV+5HEH_'7HIH7

dt  1+6.,1, 91
dn o BSvlu =y
i 1% 1+ 6515 YoV,
dEy BrSviy
= —wEy — v E
dt 1+ 051 YLy vy,
dly
— =ovEy —wlv.
I vey —Yviv
b
g !

SV dy Iy

|’.i.L'.'”
KaaxSy v

Figure 2.1: Flow chart for the transmission for the Pine wilt disease PWD

18
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In the above model (1), the total host population (pine trees) is denoted by Ny (t). It
is subdivided into three classes: susceptible Sy (), exposed Ey(t), and infected Iy (t)
pine trees.

The total vector population (beetles) is further divided into three subclasses: suscep-
tible vector Sy (t), exposed vectors Ey (t), and infected vector Iy (t). The recruitment
rates of pine trees and vector population are denoted by my and my , respectively.
The rate of contact between suspectable trees and infected vectors is K4, while K5 is
the contact rate between suspectable trees and infected vectors when the nematode
is transmitted by the infected vector at oviposition. The natural death rates of pine
trees and vector population are denoted by parameters vy and g , respectively. The
natural death rate of pine trees which are uninfected through beetles is denoted by
parameter ©. The constants of saturation are #; and 6. The exposed pine trees join
the infected class at the rate d; while the transfer rate of an exposed vector to become
an infected vector is denoted by dy . The parameter 5, is the contact rate of a sus-
pectable vector with infected pine trees. We reformulate the classical PWD model (1)
by replacing the ordinary integer order derivative by the new CF fractional derivative
and it can be written as follows:

KiSulv — KyYSulv

CF 1
DISy =1l — —vgS
O TeH =R T 0T T 16,0,
K{SyI
CF nyr 1XYHLV
DEy=——— —~vgSy — 0yF
0 t &H 1+ 6,1, YHOH HLH,
Ko Syl
g’FDZ—]H: 2t HV+5HEH_'7HIH7
CF pyr p1SvIn
DISy =11y, — — S
0 t OH Vv 1+ 0s1p YoV,
D] Ey, = —whky —o0vE
0 1 Lv 1+ 6ol v Ly vy,

gFDZ-[V = 5VEV — ’VVIV-

19
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Su(0) = c1,
Ep(0) = e,
I5(0) = cs,
Sv(0) = ¢4,
Ev(0) = ¢,

2.2 Equilibria and basic reproduction number

Model (2) has a disease free equilibrium Ey = (5%,0,0,5¢,0,0) and is obtained by

solving the system :
SEDTSy =St DI Fy =5"Dl Iy =§YDISy =5 DIy =S5 DI Ty, =0,
and is given by:
E* = (%2,0,0,2¢,0,0)
YH Y Y ) v ) ) *

The model (2) has a unique endemic equilibrium, denoted by FE;, given by

. Iy (1+ 6,17
By + I (K + Ko+ yuy)’
5K

(Yu + 0m) (KoL + KoLy + vy + vy L)
Uyl (Kyyyg + Kidg + Kooy )

T Yu (i + 0n) (K Ly + KoLy + v + 01y Lyy)’
. Iy (1 + «92[‘*/)
Vo + I (B b))

o M, K T
Vo (o) (v + I (B + Oayv))’

I+ Iy B1ov I

Y o (w + 0v) (v + Ty (B + B

The basic reproduction number Ry is obtained by using the next generation technique

[28] and is given as follows:

R _\/5V515?,53(K16H+sz(wH+6H))
0 ya YV (YH+IH) (Vv +0V)
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Hence, we state the following theorem.

Theorem 2.2.1 The FPWD model (2) has a unique endemic equilibrium if Ro > 1.

see[20]
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Existence and uniqueness S chapitr 3

3.1 Existence and uniqueness of FPWD model

This section describes the existence of model solutions by using fixed point theory. We

use the fractional integral operator in [25] on (2) to obtain

K\ Syl
_ _CFjr _ HMPHIV
Su (t) = Su (0) = ¢ 1 {HH T4 o0, ’YHSH},
K\ SyI
Ey (t) — By (0) = SFT; {ﬁ —fyHEH—(SHEH},
KoySyl
Iy () — 1 (0) = oCFItT {M +oubn — VHIH} )
B _CFpr _ Budvie
Sv (t) = Sv (0) =¢" I} {Hv 10,0, stv}y

6ISVIH
1+ 92]}[

IV (t) - IV (0) = gFItT {5VEV - ’lev} .

By (t) - By (0) = F17 {

Applying the theorem in [25]:

Theorem 3.1.1 Let0<a<1,T>0andy :[0,T]xR — R a continuous function
such that there exits L > 0 satisfying,

lp(t,s1) —@(t,s2)] < L|sy —sa| forall s;,s9 € R

If (aq + b T)L < 1, then the initial value problem given by

EDUf(t) =t f(1)  tel0T]

fO)=fo €R

has a unique solution in H' .
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we obtain
(1) =500 = i = 0~ 1)
L j { L KiSuly _ KavSuly SH} "
(2—7)M (1) J 1+6. Iy 14611y
Ep(t)— By (0) = (a 2_<71_)_]\;)(T) {fj_séﬁ: —YuEn — 5HEH}
e 7w / [T B b
I (0) = I 0) = s f?fjffvv sl + duEn
+ m / {% —yuln + 5HEH} dy,
0
Sy (T) = Sv (0) = % {HV - f(f—ﬁvlz - VVSV}
+ m ] {HV - f:_sgg; - ’VVSV} dy,
0
Ey (t) — Ev (0) = § 2_(;_]\;)(7) { ffgjg/ —wEv — 5VEV}
Tz TQ)TM @ /t { 16 fevi —why = 5vEV}dy’
0
Iy () — Iy (0) = % {6v By — iy}
+ @T/{dva —wlv}dy.
(3.2)
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Existence and uniqueness chapitr 3
For simplicity, we replace as follows:
Ki\Suly  KyYSply
Fy(t,Sy) =1y — — —vuS
1 (t, Su) H 1+ 6,1, 1+ 6,1y YHOH,
K, Sulyv
F(t,E —_— Eyg —éuyFE
(t,Bu) = 1+ 0,1, — YHLH HEUH,
KoSyl
By (t, In) = KatSuly +0uEn — yulu,
B1SvIn
Fyt,S)=1ly — —— —wS
4 (t, Sy) 1% 1+ Ou1p MoV,
B1Svin
Fs(t,By) =1y — ——— —ywEy —0vE
5 (¢, Ev) % 1+ 0,15 v Ev vy,

Fs (t, Iyv) = oy Ey — ywly.

Theorem 3.1.2 The kernels Fy, Iy, Fs, Fy, F5, and Fg fulfill the Lipschitz condition

and contraction if the following inequality holds:
0< (K1+K1w)€+'7[-[ <1

proof 3.1.1 Here, we start from Fy . Suppose S and Sy are two functions, then we

assess the following:

13 (8, Se) = Fy (4 S| =

[ R ) B L CHOREN S BEMEAUREA O

(3.4)
Using the triangular inequality on Eq. (4), we obtain

K Iy

173 05) = £ Sl < | 0 5 ) = 5 e+ |22

e CHURC “”}H
vt (S (8) = S ()}

K. T Koyl

Ky Ky
— < K d —— < K t:
1+ 0.1y 2 an 1+ 6.1y L e ge

< (K1 + Ko) [Iv|| + v [{Su (t) — Su (t)}|
< (K1 + Ka¥) e +vm) [{Su (t) — Su (t1) ]
i [ {Su (t) — Su (t1) ] -

because

IA

(3.5)
Taking 1 = (K1 + Kov) e + vy where || Iy (t)|| < e is a bounded function, we get

|Fy (t, Su) — Fi (8, Sim) || < pa ||Su (8) — Su (1)) (3.6)
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Hence, the Lipschitz condition is fulfilled for Fy, and if in addition 0 < (K14 K2)e +

yu < 1, then it is also a contraction.

For the second kernel Fy we have :

En (1)} = vu{En (1) = En ()} -

{Eu (1) — En (tl)}H +yu [{Eu (1) = Eu (@)} + 0 [{Eu (8) = Eg (t) ]

Eu (t)} + 0m [{Er (t) — Eu (t)}],

(3.7)

Kily
Fy(t, Ey) — By (t, Bl = |2V By (1) —
IFa (0. Bn) = Pt Bun)l = | {557 (B ()
o {En (t) — En (t1)},
< || Kl
1461y
K Iy
Sivol, {En (t) — En (t) | + v [{En (1) —
KiIy
< _
< { S+ + 0w 1w () = B ()},
< o I En () — B ()]
Taking po =

1F% (¢, ) —

Fy (t, Bvg)l| < po || En (t) -

(K1 +du) e+ vy where ||Ig ()| < e is a bounded function, we get

Ey (t1)]] - (3.8)

For the remaining cases, in a similar way the Lipschitz conditions are given as follows:

| Fs (t, Irr) —
| Fy (¢, Sv) —
| F5 (¢, Bv) —

(t,

| Fs (t, Iy) —

By (t, L) || < ps|[1a () —
By (8, Sw)]l < pal|Sv (2) —
By (t, BEw)ll < ps || Bv (1) —

By (4 )l < s || Iv (1) =

I ()|,
Sv ()l
Ey (t)]l,

Ty (Bl
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Using notations for kernels, Eq. (2) becomes

S (8) :SH(O)+% (050 + T
Ey (t) = En (0) + %Fg (t, Bx) +
n(t) = I (0) + Gy oDy Falt )+ Gy
Sy (1) = Sy (0) + %m (t.5v) +

Ey (t) = Ey (0) + %R (t, By) +

Iy (8) = Iy (0) + %Fﬁ 1)+ G

The following recursive formula is presented:

2(1—1)

St (t) :m 1 (¢, Stn-1))

Bin (0 = o1y e (Bt + =7
Iy () = %Fg (t, In(n-1))
Svn(t) = Gorrar P (6 Svon) + =
Bra(t) = oo s (0 Bvon) + =y
T () = ey o 6 o) + 7

@ nMm

/Fl?JSH
0

/ (Fy (4, En)) dy,

/F3y]H

0

; (3.10)
/ (Fi(y,Sv)) dy,
0

t

m/(ﬂs (y, Ev)) dy,

/Fﬁyfv

0

Fl yaanl dya

0/
/F2 Z/EHnl
o/

F3 yIHnl

t

/F4 ySan

0

/ F5 yEV(n 1
0

t

/ F6 yvl\/(n 1)
0

(3.11)
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Existence and uniqueness chapitr 3
with the initial conditions given below
(t) = S (1)
(t) = En (1)
Iy (t) =In (1),
. (3.12)

Sy (t) = Sv (1),
I (t) =Ty (t).

The difference of the successive terms is calculated as follows:

i (6 = S ()= Sty (1) = 5o 20 (Fy (6 Sn) = i (6 Sr-2)

W (8) = Epn (t) = Brgnoyy () = (22_(17)—_]\27) (P2 (t, Ern-v) — 2 (t, Ern-2))
+ @_;—TM(T)/(B (v, 1) = F2 (y, Enn-2)) dy ,

wan (t) = Lnn () = L) () = % (F5 (¢ Tn-n) — F3 (6 Tn-2))
+ (2_7_2)—TM(T> /t (B3 (y: Tun—1)) — F3 (y: Tum-2))) dy

i (8) = S (8) = Svtan) (0 = e 20 (B4 (1 Svmn) — Fi (8 Sv0-2)
+ @_;—TMW j (s (4: Svn-1) = Fa (4, Sva-2)) dy,

wsn (t) = Bvn () = By (t) = % (Fi (8. Byn-1) = Fa (t, Eviu-2)))
+ T / (Fs (9 Bve) = s (3 Byn2)) dy.

o () = By (1)~ oty () = G (Fo (0 vuon) = B (e
+ T / (Fs (3 Tvun) = B (3 Tvi-)) dy.

0

(3.13)
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Notice that

St (1) = Z wy; (1),
Ep, (t) = Z wy; (1),
4 = (3.14)
Sy (t) = Z wy; (1),
By (t) = Z ws; (1),
Iy, (t) = Z we; (1)

On continuing the same process, we assess

i (O = || San () = Sun-1) 1)
2(1—71) 27
i * ()

X / (Fl (y7 SH(nfl)) - F (yﬂS’H(an))) dyH .
0

(3.15)

Using the triangular inequality, Eq. (15) is simplified to

_7—)

[San () = Sum-1) ()| < m [(F1 (¢, Suin-1) = F1 (¢, Stn-2)) |

t

2T
+ m / (Fl (y7SH(n—1)) - <y7SH(n—2))) dy|| -
0
(3.16)
As the kernel fulfills the Lipschitz condition,
2(1—1)
HSHn (t) — SH(n—l) (t)H < m/ﬂ HSH(n—l) - SH(n—2)H
t (3.17)
2T
+ mm / HSH(n—l) - 5H(n—2) H dy .
0
then we have
2(1—1)
lwi, ()] < mul le(n—l)H
5 (3.18)

+

2- T)TM " / [win-1) )] dy -
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for the second case we have :

[war ()| = || Ern (£) = Errneyy (1)]]

2(1—1) (Fz (t, EH(n—Z))) + (2_7_2)—TM(7_) (3.19)

NERIG

t

[ (B (0 B ) ~ o (0. Birr-) dyH

0

Using the triangular inequality, Eq. (19) is simplified to

| Etin (t) = Ergn-yy ()| < H(Fz (t, Brn-1)) = o (t: Eun-)) ||

M
t
2T
+ m / (FQ (yaEH(nfl)) Ey (?J>EH (n—2 )) dy
0

(3.20)

As the kernel fulfills the Lipschitz condition,

2(1—71
100 () = By O] < G52 o) = B |
(3.21)
2T
+ mlh / | Etrn-1) — Errm-2|| dy,
0
then we have
2(1—1)
[[wan (8] < mm Hw2(n—1)H
(3.22)
+ 2_7_ /Hw2n1 de7
for the third case we have :
[wsn (O = [[Zrra () = Ty (1)]]
2(1—1) 27
— - (B (t Ty +
a—nar(m ) ey (523

t

X / (12 (yajH(nfl)) F3 (y7[H (n—2 )) dyH
0

Using the triangular mequality, Eq. (25’) is simplified to

10 0~ oy 01 £ 52 e o) o )|
2T /
"’m /(F3(y>IH(n 1))_11 (yalHn 2))dy

' (3.24)
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As the kernel fulfills the Lipschitz condition,

[ () = Ty ()| < —M()MS [ 1rt0-1) = Trn—2)||
+(2_TQ)—TM(7)M3/||IHW—1)—wa—z)Hd% o
then we have
s (0] < s s |
+(2_TQ)—TM(7)M3/H@U3W—1) ()| dy- o
for the forth case we have :
lwan ()] = [|Sva () = Sy (1)]]
- (22—(17)—_MT)(T) (£ (- Sv-a) +#TM(T) (3.27)

t

X / (Fi (v, Svn-1)) — F1 (y, Svin-2))) d?/H :

0

Using the triangular inequality, Eq. (27) is simplified to

[9vn @) = Sy Ol < =77y 1 (1 Svan) = Fa(t: Svinz)) |
2T /
+ m / (F4 (y, SV(n—l)) — Fy (?J» SV(n—Q))) dy|| -
’ (3.28)
As the kernel fulfills the Lipschitz condition,
(1—
v () = Svtumsy (O] < gy [Svia = Svin-a
. (3.29)
+ m/m/ |Sv(n=1) = Svin—2)|| dy -
then we have
2(1—
o (0] < s oy |
(3.30)

27
" W/M/ Hw4(n—1) (y)H dy .
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Existence and uniqueness S chapitr 3

for the fifth case we have :

lwsn (B)]] = || Bva () = By ()]

2027 (B (1 Bygos)) + (2_7-2)—TM(T> (3:31)

“le—nM@

t

X / (F5 (v, Bvin-1)) — F5 (v, Bv(n-2))) d?JH :

0

Using the triangular inequality, Eq. (5’1) is simplified to

B (8) = Bvinny O < =537y 15 (4 Bvinon) = F5 (1 Bvinn)) |
27 /
+ m / (Fs (y,EV(nq)) E, (?J,EV (n— 2))) dy
’ (3.32)
As the kernel fulfills the Lipschitz condition,
HEVn (t) — Evn-) H > M( )M5 HEV(n—l) - EV(n—2)H
(3.33)
27
+ m% / HEV(n—l) - EV(n—Q)H dy,
0
then we have
2(1—1)
[[wsy (O] < PRI [wsg—)||
NENE S (T— o
O MM 5(n—1) )
CEERICI
for the sixth case we have :
lwsn ()] = [|Tva (8) = Tvu-) ()|
2(1—1) 27
=l|l—————— (F5 (t, [y (n— + -
|37 (7 o) + =37 (539

t

X/(FG (v, Ivin—1y) — F (¥, Ly (n— 2))dyH
0

Using the triangular inequality, Eq. (35) is simplified to

[Ty () = Iv(u-ny ()] < #M(T) | (Fo (t, Ivn-1) = Fs (t, Ivn-2))) ||
+(2_TQ)—TM(7) /(FG (v, Iven-1)) = 1 (ys Ivn-2)) ) dy

(3.36)
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As the kernel fulfills the Lipschitz condition,
1—
| Zvn (8) = L1y B)]| < %Ms | vin-1) = Iv(n-2)|
(3.37)
27
+ m%/ HIV(n—l) - IV(n—2)H dy,
then we have
2(1—
o (01 < sy oo |
or (3.38)
+ m%‘/ Hw6(n—1) (y)H dy .
0
we have :
2(1—
Jwi, ()] < #Ml ||w1 (n—1 H + /”wl (n—1) |dy.
2(1—
s O < sy ool + =7 / -
2(1—
Jws, ()] < #Ms | wsn—1)|] + M3/||w3n y )| dy.
(3.39)
2(1—
o 01 < o gp g oo | + = gy / [
2(1—
[wsn (E)]| < #% | ws -1y | + M5/||w5n y ()|l dy-
2(1—
oo ()] < s o | + =g / —

Now we state the theorem below.
Theorem 3.1.3 The FPWD model (2.2) has exact coupled solutions if the conditions
below hold. That is, we can find ty such that

2(1—7)
@i T e te < 1

proof 3.1.2 Since all the functions Sg(t), Ex(t), Ig(t) and Sy (t), Ev(t), Iy (t) are bounded,
we have shown that the kernels fulfill the Lipschitz condition, thus on using of Fgs.
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(39) and by using the recursive method, we obtain the succeeding relation as follows:

w11 15 O | ( G253 0mm) + o]
iz (O < 1 O | (b ) + ]

2(1—7) )) 2r W}"’

s @01 < 1 O | (s 2777 ) *+ =37

+

. (3.40)
21
2- T>M<T>“4> e —T>M<r>“4t] ’

[wsn (DI < [[Evn O)]

+

|
i (O] < 1S O |
|

m’”) W“ﬁtr’

oo (011 = v O | (g2t ) + et

Hence, the existence and continuity of the said solutions is proved. Furthermore, to

ensure that the above function is a solution of Eq. (2.2), we proceed as follows:
Su(t) = Su(0) = Sun(t) — Bu(?),
En(t) — En(0) = Enn(t) — Ca(t),
Iy (t) = 11(0) = Iun(t) — Dn(t),
Sy (t) = Sv(0) = Svn(t) — Fu(t),
Ey(t) — Ev(0) = Evy(t) — Ga(1),
Iy (t) = Iv(0) = Iva(t) — Ha(?).

(3.41)

Therefore, we have

1B (8]l
2(1—1) 27
(1—7)M(r) (2—7)M(7)

X /t (F1 (t, Stn) — Fi (t, Su-1))) dyH (3.42)

0

2(1—1) 27
TN G- nary" 19 = Suenllt:

Using the process in a recursive manner gives

2(1—71) 27 ntl il
B0 < (o ) e @A)

Then at tg we have

(Fy (t, Srn) = Fi (£ Stn-)) +

H1 HSHn - SH(nfl)H +

2(1—7 ntl n
I1B: 0l < (5t + omto) e (3.44)

By applying the limit on Eq. (44) as n tends to infinity, we get
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1B ()] = 0

for the second case we have :

2(1—71)
16, 0 = | 2P (Pt ) — Fat, Buy)
t
2T
+ m X (Fg(t, EHn) — Fz(t, EH(nfl)))dy .
0
2(1—1) 27
(3.45)
Using the process in a recursive manner gives
2(1—71) o s
C, ()] < t . 3.46
00l < (P b e t) i (3.6
Then at to we have
—r . n+1 n
G (O < ((23(71)M27) + (2_72)M(T)t0> Mfla. (3.47)

By applying the limit on Eq. (47) as n tends to infinity, we get
1Cn ()] =0

Similarly, we get
[1Dn @)l =0, [[E. @] =0
1Gn (O =0 [[Ha (O[] =0
For the uniqueness the system (2.2) solution, we take on contrary that there exists
another solution of (2.2) given by Sig(t), Erg(t), [1u(t), S1v(t), Eiv(t), and Ly (1).

Then

_20-7) _ o
(2—7')M<7') (Fl(tvsH> Fl(t’SH))+(2—T)M<T)

‘ (3.48)
x / (Fy (v, i) — Fi (v, Sx)) dy

0

Sp (t) = Sim (t) =

Taking norm on Eq. (48), we get

B 2(1—71) B 27
(3.49)

t
x / IFy (9, Si) — Fi (9, Sl dy
0
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By applying the Lipschitz condition of kernel, we have
2(1—1) 27
S ) —Sig®)]| < ———u1 ISy (t) — Sig (t —_—
1 (1) = Su ()] < G5 s 1S () = Sur O+ =575

! (3.50)
< / unt IS (£) — Si ()] dy.

0
It gives

IS4 () = S ()] (1 - Z55m + =i at) <O (351)
Theorem 3.1.4 The model (2.2) solution will be unique if
2(1—7’) T
<1 — m,&l + (2_7_2)—M(7_);L1t> >0 (352)
proof 3.1.3 If condition (52) holds, then (51) implies that

1Su (t) = Sim ()] =0

that’s implies the equality betwen the two deferent soulution .
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Conclusion

In the present work, we extended the PWD model [12] to fractional order using the
Caputo-Fabrizio fractional derivative. The model equilibria and basic reproduction
number are explored. The existence and uniqueness of the solution for the FPWD
model with CF derivative are proved in detail. From theoritical points of view one
can see that when fractional order of derivative decreases, the CF derivative provides
more biologically feasible behavior about the dynamic of pine wilt disease. Therefore,
we concluded that the newly fractional derivative is very useful for modeling such

phenomena
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