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Résumé 

Dans ce travail , on presénte le modèle mathématique de Caputo-

Fabrizio de la dérivation fractionnelle  de la rosacée (FPWD). Et on va 

étudier  les caractéristiques de base du modèle, ainsi l’existence et 

l’unicité de la solution du modèle, sont vérifiées par  la théorie du 

point fixe du Banach.on voit que les résulttats obtenus avec ce modèle 

fractionnaire de Caputo-Fabrizio sont mieux et donnent plus 

d’information que le modéle ordinnaire . 
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(CF); Maladie du flétrissement de la pinte; Mathématique 

modèle; Théorème du point fixe de Banach 

 
 

 

 

 



  

 

 

 

 

 

 

 

Abstract 
 A Caputo–Fabrizio type fractional order mathematical model for 

the dynamics of pine wilt disease (FPWD) is presented. The basic 

properties of the model are investigated. The existence and uniqueness 

of the solution for the proposed FPWD model are given via the fixed 

point theorem. The non-integer order derivative provides more flexible 

and deeper information about the complexity of the dynamics of the 

proposed FPWD model than the integer order models established 

before . 
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 ملخص

ياضي للإشتقاق ال كسري  لديناميكية مرض الذبول  Caputo-Fabrizioنموذج  الر
(. يتم التحقق من الخصائص الأساسية للنموذج,  وجود و وحدانية  FPWDالصنوبري )

ية النقطة الثابتة لبناخ . الحل للنموذج , وتتم هذه العملية  يق او بإستخدام نظر عن طر
المشتق برتبة غير صحيحة يوفر معلومات أكثر مرونة وواقعية ومتعمقة حول التعقيدات و 

( , وهي نتائج أفضل من دراستها FPWDالروابط الموجودة في  ديناميكية هذا المرض)
 .  صحيحةبمشتق ذو رتبة 

 

 

, مرض الذبول  Fabrizio-Caputoالمشتق ال كسوري نموذج  المفتاحية:الكلمات 

ية النقطة الثابة لبنا خ .الصنوبري , نظر
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Figure 1: the Pine wilt disease PWD
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Introduction

Mathematical models in epidemiology are used widely in order to understand better the

dynamics of an infectious disease [1, 2]. The application of the mathematical models

is not limited to only human diseases, but they are also widely applied in other phe-

nomena of biological sciences, such as ecology, forest, etc. In the human life, forest has

an important role, therefore, it is necessary to ensure the safety strategies to protect it

from being infected with diseases. The forest provides greenery to the environment and

pleasant atmosphere for humans. The pine wilt disease (PWD) infects pine trees and is

one of the main threats to the ecosystem and forest. The PWD is considered to be the

most destructive disease which damages pine trees in a short period of time, that is, a

year or sometimes in a few months. The initial symptoms of the PWD include discol-

oration of needles, which turn from yellow to green then to reddish brown. The main

agent of the disease is small worms, known as pinewood nematode (bursaphelenchus

xylophilus), causing tree decline [3]. As the trees begin to die, they are attacked by

insects, known as sawyers, which are species that transfer the nematode to healthy

trees, which is one of the causes of pine wilt disease [4–6]. Native to North America,

the PW nematode was introduced while the first epidemic of the PWD was accursed

in Japan in 1905 [7], and it has spread in southern China, Korea, Taiwan, and other

regions of Europe since the early 1980s [4–6, 8].

The PWD has three main organisms: the gymnosperm host, the pine wood nematode,

and the insect vector. At the stage of primary transmission, dauer juveniles (JIV stage)

of bursaphelenchus xylophilus are carried vertically in the tracheae of their beetle host

to young twigs of susceptible trees, where they enter through resin canals in wounds

made during maturation feeding by the insect [8].

Recently, some mathematical models have been presented to explore the dynamics of

PWD consisting of a system of nonlinear differential equations. Lee and Kwang [9]
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Introduction Introduction

explored the stability analysis of PWD and proposed some suitable controlling strate-

gies for this disease. Khan et al. [10] introduced a model on PWD and its optimal

control. A mathematical model with variable population and suggested optimal con-

trol was developed in [11]. Most recently, in [12] the dynamics of PWD with saturated

incidence rate was explored. All of the above PWD models are restricted to classical

integer order differential equations. In the present paper we consider a PWD model

with saturated incidence rate in fractional environment using the CF derivative. First,

we give an overview of recently published papers on fractional mathematical models

using the CF derivative.

Fractional order models are more reliable and helpful in the real phenomena than the

classical models due to hereditary properties and the description of memory [13, 14].

Also, in the real world explanation, the integer order derivative does not explore the

dynamics between two different points. To deal with such failures of classical local

differentiation, different concepts on differentiation with non-local or fractional orders

have been developed in the existing literature. For instance, Riemann and Liouville

introduced the concept of fractional orders differentiation in [14]. Recently, Caputo

and Fabrizio [15] introduced a new derivative with fractional order based on the expo-

nential kernel. The new CF fractional order derivative has been used successfully in

modeling of various real phenomena. For example, a fractional Adams–Bashforth tech-

nique via the CF derivative was presented in [16]. A study of magnetohydrodynamic

electroosmotic flow of Maxwell fluids with CF derivatives was carried out by Abdulh

et al. [17]. In [18], the CF fractional derivative was used for numerical approach of

the Fokker–Planck equation using Ritz approximation. A mathematical comparative

analysis of RL and RC electrical circuits using AB and CF fractional derivatives was

recently done in [19]. Mustafa et al.[20] explored the dynamics of the cancer treatment

model with the CF fractional derivative. Recently, a new fractional model of hepatitis

B virus in the CF derivative sense was presented in [21].

The classical integer order mathematical model is useful for a local dynamic system

with no external forces. These models cannot therefore replicate the complexity of the

dynamics of the communicable disease like PWD as the model can sometimes have a

crossover behavior and this cannot be handled by the classical differential operators.

Further, in the literature fractional order models provide a better fit to the real data
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for different diseases and other experimental work in fluid mechanics. For example,

Diethelm [22] provided a good agreement to the real data of the 2009 dengue outbreak

in Cape Verde using a noninteger order biological model instead of the ordinary one.

A fractional order model for Ebola epidemic was applied to provide a suitable approx-

imation to the real data on Ebola virus [23]. Makris et al. [24] used a fractional order

Maxwell model to attain a better fit to the experimental work.

Therefore, motivated by the above work, in this paper, we aim to extend the recently

published PWD model [12] to a fractional case by using the newly established deriva-

tive known as CF derivative of order τ ∈ (0, 1]. The details of the remaining chapter

of this paper are as follows:

we remember some definitions, general notions and fundamental theorems. We start

by recall briefly some general notions, spaces, and the basic reproduction number ,

free and endemic equilibrum and The basic definition and results of fractional order

derivative are stated in chapiter. 1. In chapiter. 2, we explore the model formulation,

model equilibria, and the basic reproduction number. chapiter 3 deals with the exis-

tence of solution in the spread PWD disease model via the fixed point theorem. Also,

the uniqueness of a model solution isobtained.

Finally, the concluding remarks are given in the conclusion Section.
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Preliminary knowledge chapter 1

1.1 Preliminary

In this chapter, we present some preliminaries that will be used in the next chapters.

This chapter is devoted to remember some definitions, general notions and fundamen-

tal theorems. We start by recall briefly some general notions, spaces, and the basic

reproduction number , free and endemic equilibrum , then we give definitions of the

new fractional derevative definition of caputo-fabrizio.

1.2 Functional analysis

1.2.1 Lp spaces

Definition 1.2.1 Let I = [a, b] provided with the Borel tribe and a measure on

(I, BI).For 1 ≤ p < ∞, We denote by Lp(I, x) the set of measurable functions

f : I → R as

∥f∥p =
(∫

I

|f |p dx
) 1

p

<∞.

It is clear that L1(I, x) is a vector space. To obtain a similar result in the case p > 1,

We need the following theorem.

Definition 1.2.2 We set

L∞(Ω) = {f : Ω → R such that |f(x)| ≤ C on Ω}.

with

∥f∥L∞ = ∥f∥∞ = inf{C; |f(x)| ≤ C on Ω}

the following remark implies that ∥.∥∞ is a norm

Remark 1.2.1 if f ∈ L∞ then we have and

|f(x)| ≤ ∥f∥∞ a.e on Ω .

indeed there exists a sequence Cn such that Cn → ∥f∥∞ and for each n, |f(x)| ≤ Cn a

e on Ω. there fore |f(x)| ≤ C for all x ∈ Ωn.With |EN | = 0 We set E = ∪∞
n=1En . So

that |E| = 0 and

|f(x)| ≤ Cn ∀n ∀x ∈ Ω

it follows that |f(x)| ≤ ∥f∥∞ ∀x ∈ Ω
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Theorem 1.2.1 Let p, q ∈]1,∞[ such that 1

p
+
1

q
= 1. So for any measurable functions

f, g : I → R we have ∣∣∣∣∫
I

f g dx

∣∣∣∣ ≤ ∥f∥p ∥g∥q (Hölder).

∥f + g∥p ≤ ∥f∥p + ∥g∥p (Minkowski).

proof 1.2.1 We first demonstrate the inequality of Hölder. Without loss of generality,

we can suppose that ∥f∥p = ∥g∥q = 1. For every x, y ≥ 0, we have

xy ≤ xp

p
+
yq

q
.

Then ∣∣∣∣∫
I

f g dx

∣∣∣∣ ≤ ∫
I

|fg| dx ≤
∫
I

(
|f |p

p
+

|g|q

q

)
dx =

∥f∥pp
p

+
∥g∥qq
q

= 1.

Let us now show Minkowski’s inequality. We obtain

∥f + g∥pp =
∫
I

|f + g|p dx ≤
∫
I

|f + g|p−1 (|f |+ |g|) dx

≤
(∫

I

|f + g|p dx
) p−1

p
(∫

I

|f |p dx
) 1

p

+

(∫
I

|g|p dx
) 1

p

.

This inequality immediately implies the desired result.

1.2.2 Sobolev space

Definition 1.2.3 (Weak derivative) A functin f ∈ L1
loc(Ω) is weakly differentiable with

respect to xi if there exists a function gi ∈ L1
loc(Ω) such that∫

Ω

f∂iϕ dx = −
∫
Ω

giϕ dx for all ϕ ∈ C∞
c (Ω)

The function gi is called the weak it’s partial derivative of and is denoted by ∂if . Thus

for weak derivative, the integration by parts formula∫
Ω

f∂iϕ dx =

∫
Ω

∂ifϕ dx

holds by definition for all ϕ ∈ C∞
c (Ω). Since C∞

c is dense in L1
loc(Ω) . the weak

derivative of a function. If it exists is unique up to pointwise almost everywhere

equivalence moreover. The weak derivative of a continuously differentiable function

agree with the pointwise derivative. The existence of a weak derivative is however.

Not equivalent to the existence of a point wise derivative almost every where.
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Definition 1.2.4 suppose that Ω is an open set in Rn, k ∈ N, and 1 ≤ p ≤ ∞, the

Sobolev space wk.p(Ω) consists of all locally integrable functions f : Ω → Rn such that

∂af ∈ Lp(Ω) for 0 ≤ |a| ≤ k.

We write wk.2(Ω) = Hk(Ω). the sobolev space wk.p(Ω) is a banach space when equipped

with the norm

∥f∥wk.p(Ω) =

∑
|a|≤k

∫
Ω

|∂af |p dx

 1
p

for 1 ≤ p ≤ ∞ and

∥f∥wk.p(Ω) = max
|a|≤k

sup
Ω

|∂af | .

proposition 1.2.1 if f ∈ L1
loc(Ω) has weak partial derivative ∂if ∈ L1

loc and ψ ∈ C∞.

Then ψf is weakly differentiable with respect to xi and

∂i(ψf) = (∂iψ)f + ψ(∂if).

proof 1.2.2 let ϕ ∈ C∞
c (Ω) be any test function. Then ψϕ ∈ C∞

c and the weak

differentiability of f implies that∫
Ω

f∂i(ψϕ) dx = −
∫
Ω

(∂if)ψϕ dx.

expanding ∂i(ψϕ) = ψ(∂iϕ) + (∂iψ)ϕ in this equation and rearranging the result. We

get ∫
Ω

ψf(∂iϕ) dx = −
∫
Ω

[(∂iψ) f + ψ (∂if)]ϕ dx

thus. ψf is weakly differentiable and its weak derivative.

proposition 1.2.2 if f ∈ L1
loc(Ω) has weak partial derivative ∂if ∈ L1

loc and ψ ∈ C∞.

Then ψf is weakly differentiable with respect to xi and

∂i(ψf) = (∂iψ)f + ψ(∂if).

proof 1.2.3 let ϕ ∈ C∞
c (Ω) be any test function. Then ψϕ ∈ C∞

c and the weak

differentiability of f implies that∫
Ω

f∂i(ψϕ) dx = −
∫
Ω

(∂if)ψϕ dx.

expanding ∂i(ψϕ) = ψ(∂iϕ) + (∂iψ)ϕ in this equation and rearranging the result. We

get ∫
Ω

ψf(∂iϕ) dx = −
∫
Ω

[(∂iψ) f + ψ (∂if)]ϕ dx

thus. ψf is weakly differentiable and its weak derivative.

11
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Theorem 1.2.2 (basic properties of Sobolev spaces) •Each Sobolev space W k;p(Ω)

is a Banach space

Remark 1.2.2 we know that wk.2(Ω) = Hk(Ω).

Lemma 1.2.1 (convergence of weak derivatives) Consider a sequence of func-

tions fn ∈ L1
loc(Ω). For a fixed multi-index α, assume that each fn admits the weak

derivative gn = Dfn. If fn → f and gn → g in L1
loc(Ω), then g = Df .

proof 1.2.4 we need to show that the space W k;p(Ω) is complete, hence it is a Banach

space. Let (un) 1 ≤ n be a Cauchy sequence in W k;p(Ω). For any multi-index α with

|α| ≤ k, the sequence of weak derivatives Dαun is Cauchy in Lp(Ω). Since the space

Lp(Ω) is complete, there exist functions u and u, such that

∥un − u∥Lp
→ 0 , ∥Dαun − uα∥Lp

→ 0 , for all |α| ≤ k

By Lemma 2.1 , the limit function u is precisely the weak derivative Dαu. Since this

holds for every multi-index α with |α| ≤ k , the convergence un → u holds in W k;p(Ω).

This completes the proof .

Banach Fixed Point Theorem

Definition 1.2.5 A Banach space is a vector space X over the field R of real numbers,

or over the field C of complex numbers, which is equipped with a norm ∥ . ∥x , and which

is complete with respect to the distance function induced by the norm, that is to say,

for every Cauchy sequence {xn} in X, there exists an element x in X such that :

lim
n→∞

xn = x

Definition 1.2.6 (Lipschitz condition) a function f(t, y) satisfies aLipschitz con-

dition in the variable y on a set D ⊂ X if a constant l > 0 exists with:

∥f (t, y1)− f (t, y2)∥ ≤ l ∥y1 − y2∥

whenever (t, y1), (t, y2) are in D. l is Lipschitz constant.

12
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Definition 1.2.7 (Contraction) Let X be a normed vector space, and f : X →

X: We will say that f is a contraction if there exists some 0 < k < 1 such that

∥f(x); f(y)∥ < k ∥x; y∥ for all x; y ∈ X. The inf of such k is called the contraction

coefcient.

Theorem 1.2.3 (Banach’s Fixed Point Theorem) Let X be a complete normed

space, and f be a contraction on X . Then there exists a unique x∗ such that f(x∗) = x∗.

The Banach Fixed Point theorem is also called the contraction mapping theorem, and

it is in general use to prove that an unique solution to a given equation exists. There

are several examples of where Banach Fixed Point theorem can be used .

1.2.3 basic reproduction number

In epidemiology, the basic reproduction number (sometimes called basic reproductive

ratio, or incorrectly basic reproductive rate, and denoted R0, r nought) of an infection

can be thought of as the number of cases one case generates on average over the course

of its infectious period, in an otherwise uninfected population.

This metric is useful because it helps determine whether or not an infectious disease

can spread through a population. The roots of the basic reproduction concept can be

traced through the work of Alfred Lotka, Ronald Ross, and others, but its first mod-

ern application in epidemiology was by George MacDonald in 1952, who constructed

population models of the spread of malaria. and we have When

R0 < 1

the infection will die out in the long run. But if :

R0 > 1

the infection will be able to spread in a population.

Generally, the larger the value of R0, the harder it is to control the epidemic. For simple

models and a 100 effective vaccine, the proportion of the population that needs to be

13
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vaccinated to prevent sustained spread of the infection is given by 1 − 1
R0

. The basic

reproduction number is affected by several factors including the duration of infectivity

of affected patients, the infectiousness of the organism, and the number of susceptible

people in the population that the affected patients are in contact with.

In populations that are not homogeneous, the definition of R0 is more subtle. The

definition must account for the fact that a typical infected individual may not be an

average individual. As an extreme example, consider a population in which a small

portion of the individuals mix fully with one another while the remaining individuals

are all isolated. A disease may be able to spread in the fully mixed portion even though

a randomly selected individual would lead to fewer than one secondary case. This is

because the typical infected individual is in the fully mixed portion and thus is able to

successfully cause infections. In general, if the individuals who become infected early in

an epidemic may be more (or less) likely to transmit than a randomly chosen individual

late in the epidemic, then our computation of R0 must account for this tendency. An

appropriate definition for R0 in this case is ”the expected number of secondary cases

produced by a typical infected individual early in an epidemic”

1.2.4 endemic and free equilibrum

In epidemiology, an infection is said to be endemic in a population when that infec-

tion is constantly maintained at a baseline level in a geographic area without external

inputs. For example, chickenpox is endemic (steady state) in the UK, but malaria

is not. Every year, there are a few cases of malaria reported in the UK, but these

do not lead to sustained transmission in the population due to the lack of a suitable

vector (mosquitoes of the genus Anopheles). While it might be common to say that

AIDS is ”endemic” in Africa, meaning found in an area, this is a use of the word in its

etymological, rather than epidemiological, form. AIDS cases in Africa are increasing,

so the disease is not in an endemic steady state. It is correct to call the spread of AIDS

in Africa an epidemic. For an infection that relies on person-to-person transmission

to be endemic, each person who becomes infected with the disease must pass it on

to one other person on average. Assuming a completely susceptible population, that

means that the basic reproduction number (R0) of the infection must equal 1. In a

14
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population with some immune individuals, the basic reproduction number multiplied

by the proportion of susceptible individuals in the population (S) must be 1. This takes

account of the probability of each individual to whom the disease may be transmitted

being susceptible to it, effectively discounting the immune sector of the population.

So, for a disease to be in an endemic steady state it is:

R0 × S = 1 .

In this way, the infection neither dies out nor does the number of infected people

increase exponentially but the infection is said to be in an endemic steady state. An

infection that starts as an epidemic will eventually either die out (with the possibility of

it resurging in a theoretically predictable cyclical manner) or reach the endemic steady

state, depending on a number of factors, including the virulence of the disease and its

mode of transmission.

If a disease is in endemic steady state in a population, the relation above allows us to

estimate the R0 (an important parameter) of a particular infection. This in turn can

be fed into the mathematical model of an epidemic.

1.2.5 The Caputo-Fabrizio fractional derivative

Here, we give some basic definitions of the fractional calculus that will be used in the

onward analysis of the model.see [16]

Definition 1.2.8 Let g ∈ H1(a, b), with b greater than a, τ ∈ [0, 1], then the CF

fractional derivative [15] is given as :

Dτ
t (g (t)) =

M(τ)
1−τ

t∫
a

g′(x)exp
[
−τ t−x

1−τ

]
dx (1.1)

In Eq. (1) . M (τ) represents a normality with M(0) = M(1) = 1 [15]. However, if

g /∈ H1(a, b), then the following expression of the derivative is obtained:

Dτ
t (g (t)) =

τM(τ)
1−τ

t∫
a

(g (t)− g (x)) exp
[
−τ t−x

1−τ

]
dx (1.2)

Remark 1.2.3 σ = 1−τ
τ

∈ [0,∞), τ = 1
1+σ

∈ [0, 1] then Eq. (2) gives the following

form:

Dτ
t (g (t)) =

N(σ)
σ

t∫
a

g′ (x) exp
[
− t−x

σ

]
dx , N (0) = N (∞) = 1 (1.3)

15
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Moreover,

lim
σ→0

1
σ

exp
[
− t−x

σ

]
= δ (x− t) (1.4)

Nieto and Losada [25] give the following definition of the integral.

Let 0 < τ < 1 , then the fractional integral of the function g having order τ is given

below.

Iτt (g (t)) =
2(1−τ)

(2−τ)M(τ)
g (t) + 2τ

(2−τ)M(τ)

t∫
0

g(t)ds, t ≥ 0 (1.5)

Remark 1.2.4 From Definition 2, we have

2 (1− τ)

(2− τ)M (τ)
+

2τ

(2− τ)M (τ)
= 1 (1.6)

which implies M (τ) = 2
2−τ , 0 < τ < 1. In view of (6), a new Caputo derivative of

order 0 < τ < 1 is suggested by Nieto and Losada [25], given as follows:

Dτ
t (g (t)) =

1
1−τ

t∫
0

g′ (x) exp
[
τ t−x
1−τ

]
dx (1.7)

The CF derivative [15], given in the above definitions, has been recently used in the

mathematical modeling of HBV [21], Maxwell fluid with slip effects [26], and diabetes

model [27].
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2.1 Model formulation

Here, in this section, we extend the PWD model [12] to fractional order using a CF

derivative of order τ ∈ [0, 1]. The classical integer order PWD model is formulated by

the following nonlinear system of differential equations:

dSH
dt

= ΠH − K1SHIV
1 + θ1IV

− K2ψSHIV
1 + θ1IV

− γHSH ,

dEH
dt

=
K1SHIV
1 + θ1IV

− γHSH − δHEH ,

dIH
dt

=
K2ψSHIV
1 + θ1IV

+ δHEH − γHIH ,

dIH
dt

= ΠV − β1SV IH
1 + θ2IH

− γV SV ,

dEV
dt

=
β1SV IH
1 + θ2IH

− γVEV − δVEV ,

dIV
dt

= δVEV − γV IV .

(2.1)

Figure 2.1: Flow chart for the transmission for the Pine wilt disease PWD
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In the above model (1), the total host population (pine trees) is denoted by NH(t). It

is subdivided into three classes: susceptible SH(t), exposed EH(t), and infected IH(t)

pine trees.

The total vector population (beetles) is further divided into three subclasses: suscep-

tible vector SV (t), exposed vectors EV (t), and infected vector IV (t). The recruitment

rates of pine trees and vector population are denoted by πH and πV , respectively.

The rate of contact between suspectable trees and infected vectors is K1, while K2 is

the contact rate between suspectable trees and infected vectors when the nematode

is transmitted by the infected vector at oviposition. The natural death rates of pine

trees and vector population are denoted by parameters γH and γH , respectively. The

natural death rate of pine trees which are uninfected through beetles is denoted by

parameter ψ. The constants of saturation are θ1 and θ2. The exposed pine trees join

the infected class at the rate δH while the transfer rate of an exposed vector to become

an infected vector is denoted by δV . The parameter β1 is the contact rate of a sus-

pectable vector with infected pine trees. We reformulate the classical PWD model (1)

by replacing the ordinary integer order derivative by the new CF fractional derivative

and it can be written as follows:

CF
0 Dτ

t SH = ΠH − K1SHIV
1 + θ1IV

− K2ψSHIV
1 + θ1IV

− γHSH ,

CF
0 Dτ

tEH =
K1SHIV
1 + θ1IV

− γHSH − δHEH ,

CF
0 Dτ

t IH =
K2ψSHIV
1 + θ1IV

+ δHEH − γHIH ,

CF
0 Dτ

t SH = ΠV − β1SV IH
1 + θ2IH

− γV SV ,

CF
0 Dτ

tEV =
β1SV IH
1 + θ2IH

− γVEV − δVEV ,

CF
0 Dτ

t IV = δVEV − γV IV .

(2.2)
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The initial conditions involved in (2) are :

SH(0) = c1,

EH(0) = c2,

IH(0) = c3,

SV (0) = c4,

EV (0) = c5,

and IV (0) = c6.

2.2 Equilibria and basic reproduction number

Model (2) has a disease free equilibrium E0 = (SoH , 0, 0, S
o
V , 0, 0) and is obtained by

solving the system :

CF
0 Dτ

t SH = CF
0 Dτ

t FH = CF
0 Dτ

t IH = CF
0 Dτ

t SV = CF
0 Dτ

tEV = CF
0 Dτ

t IV = 0 ,

and is given by:

E0 =
(

ΠH

γH
, 0, 0, ΠV

γV
, 0, 0

)
.

The model (2) has a unique endemic equilibrium, denoted by E1, given by

S∗
H =

ΠH (1 + θ1I
∗
V )

γH + I∗V (K1 +K2ψ + γHθ1)
,

E∗
H =

ΠHK1I
∗
V

(γH + δH) (K1I∗V +K2ψI∗V + γH + θ1γHI∗V )
,

I∗H =
ΠHI

∗
V (K1ψγH +K1δH +K2ψδH)

γH (γH + δH) (K1I∗V +K2I∗V + γH + θ1γHI∗V )
,

S∗
V =

ΠV (1 + θ2I
∗
V )

γV + I∗H (β1 + γV θ1)
,

E∗
V =

ΠHK1I
∗
V

(γV + δV ) (γV + I∗V (β1 + θ2γV ))
,

I∗V =
ΠV β1δV I

∗
H

γV (γV + δV ) (γH + I∗H (β1 + θ2γV ))
.

The basic reproduction number R0 is obtained by using the next generation technique

[28] and is given as follows:

R0 =
√

δV β1S
0
HS

0
V (K1δH+K2ψ(γH+δH))

γHγV (γH+δH)(γV +δV )
.
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Hence, we state the following theorem.

Theorem 2.2.1 The FPWD model (2) has a unique endemic equilibrium if R0 > 1.

see[29]
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3.1 Existence and uniqueness of FPWD model

This section describes the existence of model solutions by using fixed point theory. We

use the fractional integral operator in [25] on (2) to obtain

SH (t)− SH (0) = CF
0 Iτt

{
ΠH − K1SHIV

1 + θ1IV
− γHSH

}
,

EH (t)− EH (0) = CF
0 Iτt

{
K1SHIV
1 + θ1IV

− γHEH − δHEH

}
,

IH (t)− IH (0) = CF
0 Iτt

{
K2ψSHIV
1 + θ1IV

+ δHEH − γHIH

}
,

SV (t)− SV (0) = CF
0 Iτt

{
ΠV − β1SV IH

1 + θ2IH
− γV SV

}
,

EV (t)− EV (0) = CF
0 Iτt

{
β1SV IH
1 + θ2IH

− γVEV − δVEV

}
,

IV (t)− IV (0) = CF
0 Iτt {δVEV − γV IV } .

(3.1)

Applying the theorem in [25]:

Theorem 3.1.1 Let 0 < α < 1, T > 0 and φ : [0, T ]×R → R a continuous function

such that there exits L > 0 satisfying,

|φ (t, s1)− φ (t, s2)| ≤ L |s1 − s2| for all s1, s2 ∈ R

If (aα + bαT )L < 1, then the initial value problem given by

CFDαf(t) = φ(t, f(t)) , t ∈ [0;T ]

f(0) = f0 ∈ R

has a unique solution in H1 .
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we obtain

SH (T )− SH (0) =
2 (1− τ)

(1− τ)M (τ)

{
ΠH − K1SHIV

1 + θ1IV
− K2ψSHIV

1 + θ1IV
− γHSH

}

+
2τ

(2− τ)M (τ)

t∫
0

{
ΠH − K1SHIV

1 + θ1IV
− K2ψSHIV

1 + θ1IV
− γHSH

}
dy,

EH (t)− EH (0) =
2 (1− τ)

(1− τ)M (τ)

{
K1SHIV
1 + θ1IV

− γHEH − δHEH

}

+
2τ

(2− τ)M (τ)

t∫
0

{
K1SHIV
1 + θ1IV

− γHEH − δHEH

}
dy,

IH (t)− IH (0) =
2 (1− τ)

(1− τ)M (τ)

{
K2ψSHIV
1 + θ1IV

− γHIH + δHEH

}

+
2τ

(2− τ)M (τ)

t∫
0

{
K2ψSHIV
1 + θ1IV

− γHIH + δHEH

}
dy,

SV (T )− SV (0) =
2 (1− τ)

(1− τ)M (τ)

{
ΠV − K1SV IH

1 + θ1IH
− γV SV

}

+
2τ

(2− τ)M (τ)

t∫
0

{
ΠV − β1SV IH

1 + θ1IH
− γV SV

}
dy,

EV (t)− EV (0) =
2 (1− τ)

(1− τ)M (τ)

{
β1SV IH
1 + θ2IV

− γVEV − δVEV

}

+
2τ

(2− τ)M (τ)

t∫
0

{
β1SV IH
1 + θ2IH

− γVEV − δVEV

}
dy,

IV (t)− IV (0) =
2 (1− τ)

(1− τ)M (τ)
{δVEV − γV IV }

+
2τ

(2− τ)M (τ)

t∫
0

{δVEV − γV IV } dy.

(3.2)
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For simplicity, we replace as follows:

F1 (t, SH) = ΠH − K1SHIV
1 + θ1IV

− K2ψSHIV
1 + θ1IV

− γHSH ,

F2 (t, EH) =
K1SHIV
1 + θ1IV

− γHEH − δHEH ,

F3 (t, IH) =
K2ψSHIV
1 + θ1IV

+ δHEH − γHIH ,

F4 (t, SV ) = ΠV − β1SV IH
1 + θ2IH

− γV SV ,

F5 (t, EV ) = ΠV − β1SV IH
1 + θ2IH

− γVEV − δVEV ,

F6 (t, IV ) = δVEV − γV IV .

(3.3)

Theorem 3.1.2 The kernels F1, F2, F3, F4, F5, and F6 fulfill the Lipschitz condition

and contraction if the following inequality holds:

0 ≤ (K1 +K1ψ) e+ γH < 1

proof 3.1.1 Here, we start from F1 . Suppose S and S1 are two functions, then we

assess the following:

∥F1 (t, SH)− F1 (t, S1H)∥ =∥∥∥∥− K1IV
1 + θ1IV

{SH (t)− SH (t1)} −
K2ψIV
1 + θ1IV

{SH (t)− SH (t1)} − γH {SH (t)− SH (t1)}
∥∥∥∥

(3.4)

Using the triangular inequality on Eq. (4), we obtain

∥F1 (t, SH)− F1 (t, S1H)∥ ≤
∥∥∥∥ K1IV
1 + θ1IV

{SH (t)− SH (t1)}
∥∥∥∥+

∥∥∥∥ K2ψIV
1 + θ1IV

{SH (t)− SH (t1)}
∥∥∥∥

+ γH ∥{SH (t)− SH (t1)}∥

≤
{

K1IV
1 + θ1IV

∥IV (t)∥+ K2ψIV
1 + θ1IV

∥IV (t)∥+ γH

}
∥{SH (t)− SH (t1)}∥

because
K2ψ

1 + θ1IV
< K2ψ and

K1

1 + θ1IV
< K1 we get :

≤ (K1 +K2ψ) ∥IV ∥+ γH ∥{SH (t)− SH (t1)}∥

≤ ((K1 +K2ψ) e+ γH) ∥{SH (t)− SH (t1)}∥

≤ µ1 ∥{SH (t)− SH (t1)}∥ .
(3.5)

Taking µ1 = (K1 +K2ψ) e+ γH where ∥IH (t)∥ ≤ e is a bounded function, we get

∥F1 (t, SH)− F1 (t, S1H)∥ ≤ µ1 ∥SH (t)− SH (t1)∥ (3.6)
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Hence, the Lipschitz condition is fulfilled for F1, and if in addition 0 ≤ (K1 +K2)e+

γH < 1, then it is also a contraction.

For the second kernel F2 we have :

∥F2 (t, EH)− F2 (t, E1H)∥ =

∥∥∥∥ K1IV
1 + θ1IV

{EH (t)− EH (t1)} − γH {EH (t)− EH (t1)}−

δH {EH (t)− EH (t1)},

≤
∥∥∥∥ K1IV
1 + θ1IV

{EH (t)− EH (t1)}
∥∥∥∥+ γH ∥{EH (t)− EH (t1)}∥+ δH ∥{EH (t)− EH (t1)}∥ ,

≤ K1IV
1 + θ1IV

∥{EH (t)− EH (t1)}∥+ γH ∥{EH (t)− EH (t1)}∥ + δH ∥{EH (t)− EH (t1)}∥ ,

≤
{

K1IV
1 + θ1IV

+ γH + δH

}
∥{EH (t)− EH (t1)}∥ ,

≤ µ2 ∥{EH (t)− EH (t1)}∥ .
(3.7)

Taking µ2 = (K1 + δHψ) e+ γH where ∥IH (t)∥ ≤ e is a bounded function, we get

∥F2 (t, EH)− F2 (t, E1H)∥ ≤ µ2 ∥EH (t)− EH (t1)∥ . (3.8)

For the remaining cases, in a similar way the Lipschitz conditions are given as follows:

∥F3 (t, IH)− F2 (t, I1H)∥ ≤ µ3 ∥IH (t)− IH (t1)∥ ,

∥F4 (t, SV )− F2 (t, S1V )∥ ≤ µ4 ∥SV (t)− SV (t1)∥ ,

∥F5 (t, EV )− F2 (t, E1V )∥ ≤ µ5 ∥EV (t)− EV (t1)∥ ,

∥F6 (t, IV )− F2 (t, I1V )∥ ≤ µ6 ∥IV (t)− IV (t1)∥ .

(3.9)
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Using notations for kernels, Eq. (2) becomes

SH (t) = SH (0) +
2 (1− τ)

(2− τ)M (τ)
F1 (t, SH) +

2τ

(2− τ)M (τ)

t∫
0

(F1 (y, SH)) dy,

EH (t) = EH (0) +
2 (1− τ)

(2− τ)M (τ)
F2 (t, EH) +

2τ

(2− τ)M (τ)

t∫
0

(F2 (y, EH)) dy,

IH (t) = IH (0) +
2 (1− τ)

(2− τ)M (τ)
F3 (t, IH) +

2τ

(2− τ)M (τ)

t∫
0

(F3 (y, IH)) dy,

SV (t) = SV (0) +
2 (1− τ)

(2− τ)M (τ)
F4 (t, SV ) +

2τ

(2− τ)M (τ)

t∫
0

(F4 (y, SV )) dy,

EV (t) = EV (0) +
2 (1− τ)

(2− τ)M (τ)
F5 (t, EV ) +

2τ

(2− τ)M (τ)

t∫
0

(F5 (y, EV )) dy,

IV (t) = IV (0) +
2 (1− τ)

(2− τ)M (τ)
F6 (t, IV ) +

2τ

(2− τ)M (τ)

t∫
0

(F6 (y, IV )) dy

(3.10)

The following recursive formula is presented:

SHn (t) =
2 (1− τ)

(2− τ)M (τ)
F1

(
t, SH(n−1)

)
+

2τ

(2− τ)M (τ)

t∫
0

(
F1

(
y, SH(n−1)

))
dy,

EHn (t) =
2 (1− τ)

(2− τ)M (τ)
F2

(
t, EH(n−1)

)
+

2τ

(2− τ)M (τ)

t∫
0

(
F2

(
y, EH(n−1)

))
dy,

IHn (t) =
2 (1− τ)

(2− τ)M (τ)
F3

(
t, IH(n−1)

)
+

2τ

(2− τ)M (τ)

t∫
0

(
F3

(
y, IH(n−1)

))
dy,

SV n (t) =
2 (1− τ)

(2− τ)M (τ)
F4

(
t, SV (n−1)

)
+

2τ

(2− τ)M (τ)

t∫
0

(
F4

(
y, SV (n−1)

))
dy,

EV n (t) =
2 (1− τ)

(2− τ)M (τ)
F5

(
t, EV (n−1)

)
+

2τ

(2− τ)M (τ)

t∫
0

(
F5

(
y, EV (n−1)

))
dy,

IV n (t) =
2 (1− τ)

(2− τ)M (τ)
F6

(
t, IV (n−1)

)
+

2τ

(2− τ)M (τ)

t∫
0

(
F6

(
y, IV (n−1)

))
dy.

(3.11)
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with the initial conditions given below

S0
H (t) = SH (t) ,

E0
H (t) = EH (t) ,

I0H (t) = IH (t) ,

S0
V (t) = SV (t) ,

E0
V (t) = EV (t) ,

I0V (t) = IV (t) .

(3.12)

The difference of the successive terms is calculated as follows:

w1n (t) = SHn (t)− SH(n−1) (t) =
2 (1− τ)

(2− τ)M (τ)

(
F1

(
t, SH(n−1)

)
− F1

(
t, SH(n−2)

))
+

2τ

(2− τ)M (τ)

t∫
0

(
F1

(
y, SH(n−1)

)
− F1

(
y, SH(n−2)

))
dy ,

w2n (t) = EHn (t)− EH(n−1) (t) =
2 (1− τ)

(2− τ)M (τ)

(
F2

(
t, EH(n−1)

)
− F2

(
t, EH(n−2)

))
+

2τ

(2− τ)M (τ)

t∫
0

(
F2

(
y, EH(n−1)

)
− F2

(
y, EH(n−2)

))
dy ,

w3n (t) = IHn (t)− IH(n−1) (t) =
2 (1− τ)

(2− τ)M (τ)

(
F3

(
t, IH(n−1)

)
− F3

(
t, IH(n−2)

))
+

2τ

(2− τ)M (τ)

t∫
0

(
F3

(
y, IH(n−1)

)
− F3

(
y, IH(n−2)

))
dy ,

w4n (t) = SV n (t)− SV (n−1) (t) =
2 (1− τ)

(2− τ)M (τ)

(
F4

(
t, SV (n−1)

)
− F4

(
t, SV (n−2)

))
+

2τ

(2− τ)M (τ)

t∫
0

(
F4

(
y, SV (n−1)

)
− F4

(
y, SV (n−2)

))
dy ,

w5n (t) = EV n (t)− EV (n−1) (t) =
2 (1− τ)

(2− τ)M (τ)

(
F4

(
t, EV (n−1)

)
− F4

(
t, EV (n−2)

))
+

2τ

(2− τ)M (τ)

t∫
0

(
F4

(
y, EV (n−1)

)
− F4

(
y, EV (n−2)

))
dy ,

w6n (t) = IV n (t)− IV (n−1) (t) =
2 (1− τ)

(2− τ)M (τ)

(
F6

(
t, IV (n−1)

)
− F6

(
t, IV (n−2)

))
+

2τ

(2− τ)M (τ)

t∫
0

(
F6

(
y, IV (n−1)

)
− F4

(
y, IV (n−2)

))
dy ,

(3.13)
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Notice that 

SHn (t) =
n∑
i=1

w1i (t) ,

EHn (t) =
n∑
i=1

w2i (t) ,

IHn (t) =
n∑
i=1

w3i (t) ,

SV n (t) =
n∑
i=1

w4i (t) ,

EV n (t) =
n∑
i=1

w5i (t) ,

IV n (t) =
n∑
i=1

w6i (t) .

(3.14)

On continuing the same process, we assess

∥w1n (t)∥ =
∥∥SHn (t)− SH(n−1) (t)

∥∥
=

∥∥∥∥ 2 (1− τ)

(2− τ)M (τ)
×

(
F1

(
t, SH(n−2)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
F1

(
y, SH(n−1)

)
− F1

(
y, SH(n−2)

))
dy

∥∥∥∥ .
(3.15)

Using the triangular inequality, Eq. (15) is simplified to∥∥SHn (t)− SH(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)

∥∥(F1

(
t, SH(n−1)

)
− F1

(
t, SH(n−2)

))∥∥
+

2τ

(2− τ)M (τ)

∥∥∥∥∥∥
t∫

0

(
F1

(
y, SH(n−1)

)
− F1

(
y, SH(n−2)

))
dy

∥∥∥∥∥∥ .
(3.16)

As the kernel fulfills the Lipschitz condition,∥∥SHn (t)− SH(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ1

∥∥SH(n−1) − SH(n−2)

∥∥
+

2τ

(2− τ)M (τ)
µ1

t∫
0

∥∥SH(n−1) − SH(n−2)

∥∥ dy . (3.17)

then we have

∥w1n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ1

∥∥w1(n−1)

∥∥
+

2τ

(2− τ)M (τ)
µ1

t∫
0

∥∥w1(n−1) (y)
∥∥ dy . (3.18)
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for the second case we have :

∥w2n (t)∥ =
∥∥EHn (t)− EH(n−1) (t)

∥∥
=

∥∥∥∥ 2 (1− τ)

(2− τ)M (τ)

(
F2

(
t, EH(n−2)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
F2

(
y, EH(n−1)

)
− F2

(
y, EH(n−2)

))
dy

∥∥∥∥ .
(3.19)

Using the triangular inequality, Eq. (19) is simplified to∥∥EHn (t)− EH(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)

∥∥(F2

(
t, EH(n−1)

)
− F2

(
t, EH(n−2)

))∥∥
+

2τ

(2− τ)M (τ)

∥∥∥∥∥∥
t∫

0

(
F2

(
y, EH(n−1)

)
− E1

(
y, EH(n−2)

))
dy

∥∥∥∥∥∥
(3.20)

As the kernel fulfills the Lipschitz condition,∥∥EHn (t)− EH(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ2

∥∥EH(n−1) − EH(n−2)

∥∥
+

2τ

(2− τ)M (τ)
µ2

t∫
0

∥∥EH(n−1) − EH(n−2)

∥∥ dy , (3.21)

then we have

∥w2n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ2

∥∥w2(n−1)

∥∥
+

2τ

(2− τ)M (τ)
µ2

t∫
0

∥∥w2(n−1) (y)
∥∥ dy , (3.22)

for the third case we have :

∥w3n (t)∥ =
∥∥IHn (t)− IH(n−1) (t)

∥∥
=

∥∥∥∥ 2 (1− τ)

(2− τ)M (τ)

(
F3

(
t, IH(n−2)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
I2
(
y, IH(n−1)

)
− F3

(
y, IH(n−2)

))
dy

∥∥∥∥ .
(3.23)

Using the triangular inequality, Eq. (23) is simplified to∥∥IHn (t)− IH(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)

∥∥(F3

(
t, IH(n−1)

)
− F3

(
t, IH(n−2)

))∥∥
+

2τ

(2− τ)M (τ)

∥∥∥∥∥∥
t∫

0

(
F3

(
y, IH(n−1)

)
− I1

(
y, IH(n−2)

))
dy

∥∥∥∥∥∥
(3.24)

30



Existence and uniqueness chapitr 3

As the kernel fulfills the Lipschitz condition,∥∥IHn (t)− IH(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ3

∥∥IH(n−1) − IH(n−2)

∥∥
+

2τ

(2− τ)M (τ)
µ3

t∫
0

∥∥IH(n−1) − IH(n−2)

∥∥ dy , (3.25)

then we have

∥w3n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ3

∥∥w3(n−1)

∥∥
+

2τ

(2− τ)M (τ)
µ3

t∫
0

∥∥w3(n−1) (y)
∥∥ dy . (3.26)

for the forth case we have :

∥w4n (t)∥ =
∥∥SV n (t)− SV (n−1) (t)

∥∥
=

∥∥∥∥ 2 (1− τ)

(2− τ)M (τ)

(
F4

(
t, SV (n−2)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
F4

(
y, SV (n−1)

)
− F4

(
y, SV (n−2)

))
dy

∥∥∥∥ .
(3.27)

Using the triangular inequality, Eq. (27) is simplified to

∥∥SV n (t)− SV (n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)

∥∥(F4

(
t, SV (n−1)

)
− F4

(
t, SV (n−2)

))∥∥
+

2τ

(2− τ)M (τ)

∥∥∥∥∥∥
t∫

0

(
F4

(
y, SV (n−1)

)
− F4

(
y, SV (n−2)

))
dy

∥∥∥∥∥∥ .
(3.28)

As the kernel fulfills the Lipschitz condition,∥∥SV n (t)− SV (n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ4

∥∥SV (n−1) − SV (n−2)

∥∥
+

2τ

(2− τ)M (τ)
µ4

t∫
0

∥∥SV (n−1) − SV (n−2)

∥∥ dy . (3.29)

then we have

∥w4n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ4

∥∥w4(n−1)

∥∥
+

2τ

(2− τ)M (τ)
µ4

t∫
0

∥∥w4(n−1) (y)
∥∥ dy . (3.30)
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for the fifth case we have :

∥w5n (t)∥ =
∥∥EV n (t)− EV (n−1) (t)

∥∥
=

∥∥∥∥ 2 (1− τ)

(2− τ)M (τ)

(
F5

(
t, EV (n−2)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
F5

(
y, EV (n−1)

)
− F5

(
y, EV (n−2)

))
dy

∥∥∥∥ .
(3.31)

Using the triangular inequality, Eq. (31) is simplified to∥∥EV n (t)− EV (n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)

∥∥(F5

(
t, EV (n−1)

)
− F5

(
t, EV (n−2)

))∥∥
+

2τ

(2− τ)M (τ)

∥∥∥∥∥∥
t∫

0

(
F5

(
y, EV (n−1)

)
− E1

(
y, EV (n−2)

))
dy

∥∥∥∥∥∥
(3.32)

As the kernel fulfills the Lipschitz condition,∥∥EV n (t)− EV (n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ5

∥∥EV (n−1) − EV (n−2)

∥∥
+

2τ

(2− τ)M (τ)
µ5

t∫
0

∥∥EV (n−1) − EV (n−2)

∥∥ dy , (3.33)

then we have

∥w5n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ5

∥∥w5(n−1)

∥∥
+

2τ

(2− τ)M (τ)
µ5

t∫
0

∥∥w5(n−1) (y)
∥∥ dy , (3.34)

for the sixth case we have :

∥w6n (t)∥ =
∥∥IV n (t)− IV (n−1) (t)

∥∥
=

∥∥∥∥ 2 (1− τ)

(2− τ)M (τ)

(
F6

(
t, IV (n−2)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
F6

(
y, IV (n−1)

)
− F6

(
y, IV (n−2)

))
dy

∥∥∥∥ .
(3.35)

Using the triangular inequality, Eq. (35) is simplified to∥∥IV n (t)− IV (n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)

∥∥(F6

(
t, IV (n−1)

)
− F6

(
t, IV (n−2)

))∥∥
+

2τ

(2− τ)M (τ)

∥∥∥∥∥∥
t∫

0

(
F6

(
y, IV (n−1)

)
− I1

(
y, IV (n−2)

))
dy

∥∥∥∥∥∥
(3.36)
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As the kernel fulfills the Lipschitz condition,∥∥IV n (t)− Iv(n−1) (t)
∥∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ6

∥∥IV (n−1) − IV (n−2)

∥∥
+

2τ

(2− τ)M (τ)
µ6

t∫
0

∥∥IV (n−1) − IV (n−2)

∥∥ dy , (3.37)

then we have

∥w6n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ6

∥∥w6(n−1)

∥∥
+

2τ

(2− τ)M (τ)
µ6

t∫
0

∥∥w6(n−1) (y)
∥∥ dy . (3.38)

we have :

∥w1n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ1

∥∥w1(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ1

t∫
0

∥∥w1(n−1) (y)
∥∥ dy .

∥w2n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ2

∥∥w2(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ2

t∫
0

∥∥w2(n−1) (y)
∥∥ dy .

∥w3n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ3

∥∥w3(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ3

t∫
0

∥∥w3(n−1) (y)
∥∥ dy .

∥w4n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ4

∥∥w4(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ4

t∫
0

∥∥w4(n−1) (y)
∥∥ dy .

∥w5n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ5

∥∥w5(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ5

t∫
0

∥∥w5(n−1) (y)
∥∥ dy .

∥w6n (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ6

∥∥w6(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ6

t∫
0

∥∥w6(n−1) (y)
∥∥ dy .

(3.39)

Now we state the theorem below.

Theorem 3.1.3 The FPWD model (2.2) has exact coupled solutions if the conditions

below hold. That is, we can find t0 such that

2(1−τ)
(2−τ)M(τ)

µ1 ++ 2τ
(2−τ)M(τ)

µ1t0 < 1

proof 3.1.2 Since all the functions SH(t), EH(t), IH(t) and SV (t), EV (t), IV (t) are bounded,

we have shown that the kernels fulfill the Lipschitz condition, thus on using of Eqs.
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(39) and by using the recursive method, we obtain the succeeding relation as follows:

∥w1n (t)∥ ≤ ∥SHn (0)∥
[(

2 (1− τ)

(2− τ)M (τ)
µ1

)
+

2τ

(2− τ)M (τ)
µ1t

]n
,

∥w2n (t)∥ ≤ ∥EHn (0)∥
[(

2 (1− τ)

(2− τ)M (τ)
µ2

)
+

2τ

(2− τ)M (τ)
µ2t

]n
,

∥w3n (t)∥ ≤ ∥IHn (0)∥
[(

2 (1− τ)

(2− τ)M (τ)
µ3

)
+

2τ

(2− τ)M (τ)
µ3t

]n
,

∥w4n (t)∥ ≤ ∥SV n (0)∥
[(

2 (1− τ)

(2− τ)M (τ)
µ4

)
+

2τ

(2− τ)M (τ)
µ4t

]n
,

∥w5n (t)∥ ≤ ∥EV n (0)∥
[(

2 (1− τ)

(2− τ)M (τ)
µ5

)
+

2τ

(2− τ)M (τ)
µ5t

]n
,

∥w6n (t)∥ ≤ ∥IV n (0)∥
[(

2 (1− τ)

(2− τ)M (τ)
µ6

)
+

2τ

(2− τ)M (τ)
µ6t

]n
.

(3.40)

Hence, the existence and continuity of the said solutions is proved. Furthermore, to

ensure that the above function is a solution of Eq. (2.2), we proceed as follows:

SH(t)− SH(0) = SHn(t)−Bn(t),

EH(t)− EH(0) = EHn(t)− Cn(t),

IH(t)− IH(0) = IHn(t)−Dn(t),

SV (t)− SV (0) = SV n(t)− Fn(t),

EV (t)− EV (0) = EV n(t)−Gn(t),

IV (t)− IV (0) = IV n(t)−Hn(t).

(3.41)

Therefore, we have

∥Bn (t)∥

=

∥∥∥∥ 2 (1− τ)

(1− τ)M (τ)

(
F1 (t, SHn)− F1

(
t, SH(n−1)

))
+

2τ

(2− τ)M (τ)

×
t∫

0

(
F1 (t, SHn)− F1

(
t, SH(n−1)

))
dy

∥∥∥∥
≤ 2 (1− τ)

(1− τ)M (τ)
µ1

∥∥SHn − SH(n−1)

∥∥+
2τ

(2− τ)M (τ)
µ1

∥∥SHn − SH(n−1)

∥∥ t .
(3.42)

Using the process in a recursive manner gives

∥Bn (t)∥ ≤
(

2 (1− τ)

(2− τ)M (τ)
+

2τ

(2− τ)M (τ)
t

)n+1

µn+1
1 a . (3.43)

Then at t0 we have

∥Bn (t)∥ ≤
(

2(1−τ)
(2−τ)M(τ)

+ 2τ
(2−τ)M(τ)

t0

)n+1

µn+1
1 a . (3.44)

By applying the limit on Eq. (44) as n tends to infinity, we get
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∥Bn (t)∥ → 0

for the second case we have :

∥Cn (t)∥ =

∥∥∥∥ 2 (1− τ)

(1− τ)M (τ)

(
F2(t, EHn)− F2(t, EH(n−1))

)
+

2τ

(2− τ)M(τ)
×

t∫
0

(F2(t, EHn)− F2(t, EH(n−1)))dy

∥∥∥∥.
≤ 2(1− τ)

(1− τ)M(τ)
µ2

∥∥EHn − EH(n−1)

∥∥+
2τ

(2− τ)M(τ)
µ2

∥∥EHn − EH(n−1)

∥∥
(3.45)

Using the process in a recursive manner gives

∥Cn (t)∥ ≤
(

2 (1− τ)

(2− τ)M (τ)
+

2τ

(2− τ)M (τ)
t

)n+1

µn+1
2 a . (3.46)

Then at t0 we have

∥Cn (t)∥ ≤
(

2(1−τ)
(2−τ)M(τ)

+ 2τ
(2−τ)M(τ)

t0

)n+1

µn+1
2 a . (3.47)

By applying the limit on Eq. (47) as n tends to infinity, we get

∥Cn (t)∥ → 0

Similarly, we get
∥Dn (t)∥ → 0 , ∥Fn (t)∥ → 0

∥Gn (t)∥ → 0 , ∥Hn (t)∥ → 0 .

For the uniqueness the system (2.2) solution, we take on contrary that there exists

another solution of (2.2) given by S1H(t), E1H(t), I1H(t), S1V (t), E1V (t), and I1V (t).

Then

SH (t)− S1H (t) =
2 (1− τ)

(2− τ)M (τ)
(F1 (t, SH)− F1 (t, SH)) +

2τ

(2− τ)M (τ)

×
t∫

0

(F1 (y, SH)− F1 (y, SH)) dy

(3.48)

Taking norm on Eq. (48), we get

∥SH (t)− S1H (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
∥F1 (t, SH)− F1 (t, SH)∥+

2τ

(2− τ)M (τ)

×
t∫

0

∥F1 (y, SH)− F1 (y, SH)∥ dy .
(3.49)
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By applying the Lipschitz condition of kernel, we have

∥SH (t)− S1H (t)∥ ≤ 2 (1− τ)

(2− τ)M (τ)
µ1 ∥SH (t)− S1H (t)∥+ 2τ

(2− τ)M (τ)

×
t∫

0

µ1t ∥SH (t)− S1H (t)∥ dy .
(3.50)

It gives

∥SH (t)− S1H (t)∥
(
1− 2(1−τ)

(2−τ)M(τ)
µ1 +

2τ
(2−τ)M(τ)

µ1t
)
≤ 0. (3.51)

Theorem 3.1.4 The model (2.2) solution will be unique if(
1− 2(1−τ)

(2−τ)M(τ)
µ1 +

2τ
(2−τ)M(τ)

µ1t
)
> 0 (3.52)

proof 3.1.3 If condition (52) holds, then (51) implies that

∥SH (t)− S1H (t)∥ = 0

that’s implies the equality betwen the two deferent soulution .
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Conclusion

In the present work, we extended the PWD model [12] to fractional order using the

Caputo–Fabrizio fractional derivative. The model equilibria and basic reproduction

number are explored. The existence and uniqueness of the solution for the FPWD

model with CF derivative are proved in detail. From theoritical points of view one

can see that when fractional order of derivative � decreases, the CF derivative provides

more biologically feasible behavior about the dynamic of pine wilt disease. Therefore,

we concluded that the newly fractional derivative is very useful for modeling such

phenomena
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