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بادئا ذي بدء، تم تقدیم دراسة مبسطة  حول 
غیر المستقرة و نخصُ و المجموعات المستقرة

  .بالذكر المنوعات
ل تعرضنا إلى تعریفات و خصائص   في الفصل الأوّ
أساسیة  و أھم ما جاء فیھا تصنیفات 
عات، حیث صنّفناھا إلى ثلاث أنوع:  المنوّ

 ةالغیر مستقر ةو المنوع ةالمستقر ةالمنوع
 .ةمركزیال ةو المنوع

ظاھرة الفوضى من  في الفصل الثاني درسنا
خلال المحول في معادلات ذات شكل معین. قمنا 
بتحلیل دقیق للسلوك الفوضوي في عدّة معلمات 
ثمّ توصلنا أخیرا للحالة التي تحدث فیھا 

  .فوضى قویّة
في الفصل الثالث أولینا أھمیّة بالغة 

لنظریات الاستقرار بمفھوم لیابونوف ثمّ  
ك مررنا كذل توسعنا إلى نظریات لاسال.

 بنظریات عدم الاستقرار .
نشیر إلى أنّنا ذیّلنا أغلب التعریفات و  

تنا من الوقوف على النظریات بعدة أمثلة مكنَ 
 .أھمیّة ھذه النظریات في حیاتنا العملیّة

 ملخص



 

 

 
First of all, a simplified study of stable and unstable sets is 
presented, with special mention of manifolds. 
 
In the first chapter, we dealt with definitions and basic 
characteristics and the most important thing it was the 
classification of the manifolds, where we classified them into 
three types: the stable manifold, the unstable manifold, and 
the central manifold. 
 
In the second chapter, we examined the phenomenon of chaos 
through the boost converter in equations of a certain shape. 
We carefully analyzed complex behavior in several 
parameters and then finally arrived at the case in which  
robust chaos occurs. 
 
In the third chapter, we attached great importance to stability 
theories with Lyapunov’s concept, and then expanded to the 
LaSalle’s principle. We also passed instability theories.  
 
We point out that we have annotated most of the definitions 
and theories with several examples that enabled us to identify 
the importance of these theories in our practical life. 

  Abstract 



 

 

 
 

 
Tout d'abord, une étude simplifiée des ensembles stables et 
instables est présentée, avec une mention spéciale des variétés. 
 
Dans le premier chapitre, nous avons traité des définitions et 
des caractéristiques de base et le plus important était la 
classification des variétés, où nous les avons classées en trois 
types: la variété stable, la variété instable et la variété centrale. 
 
Dans le deuxième chapitre, nous avons examiné le phénomène 
du chaos à travers le convertisseur boost dans des équations 
d'une certaine forme. Nous avons soigneusement analysé le 
comportement complexe dans plusieurs paramètres et sommes 
finalement arrivés au cas dans lequel un chaos robuste se 
produit. 
 
Dans le troisième chapitre, nous avons attaché une grande 
importance aux théories de stabilité avec le concept de 
Lyapunov, puis nous avons élargi à celle du LaSalle. Nous 
avons également adopté les théories de l'instabilité. 
 
Nous rappelons que nous avons annoté la plupart des 
définitions et théories avec plusieurs exemples qui nous ont 
permis d'identifier l'importance de ces théories dans notre vie 
pratique. 

Résumé 
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Generale Introduction

The motion in dynamic systems around equilibrium is modeled by linear differential equations

which are the best approximation of nonlinear differential equations under certain conditions.

This notion is related to Taylor series expansion of the forces around the equilibrium point. So

the behavior of the dynamic system is considered in the vicinity of this point/set. In this study,

the three chapters are presented in a simple way.

The first chapter includes basic definitions regarding stable and unstable sets and manifolds. We

also deal with the problem of attractors and periodic orbits in smooth systems and we will give

two simple examples: The Lindemann mechanism and a simple AIDS model.

In second chapter, we use the mechanism current-mode control as a simple and easy chaos gen-

erator. The form represents the current mode controlled boost converter transformer. We’ll be

exposed to the behavior of a dynamic system under chaos and robust chaos. We will also give the

causes of occururrence of border collision bifurcations.

In third chapter, we present Lyapunov’s stability theory which depending on the construction

of a function that meets the two conditions: The function is positive definite and its derivative

is negative semi-definite or negative definite. We went through the classical LaSalle invariance

principle theory. After that we concluded this chapter with a theory of unstability and some

examples.

2



Chapter 1

Invariant Manifolds

We will study the local structure of a derivable function which is what we call mathematically

manifolds. We trace the behavior of the dynamical system in the vicinity of the equilibrium point.

For this purpose, we need to introduce the following definitions: Stable and unstable sets, stable,

unstable and central manifolds[2]. These sets have the advantage of being invariant in the vicinity

of the equilibrium point under the influence of flow. In this chapter, we offer some definitions and

explain how is formed slow manifold and its role during the absence of the centre manifold and

most important we will review the main results of centre manifold theory for finite dimensional

systems through two simple examples: The Lindemann mechanism and a simple AIDS model.

1.1 The direction of movement in a dynamical system

The autonomous ordinary differential equation in the vicinity to the equilibrium point x∗ ∈ Rn is

given by:

x′ =
dx

dt
= f (x) , x ∈ Rn, t ∈ R (1.1)

The basic idea is to approximate this equation to a linear differential equation of the form:

δx′ = J∗δx (1.2)

where there no eigenvalue of J∗ is equal to zero, δx = x− x∗, and J∗ is a constant. The constant

J∗ represents the Jacobian at the equilibrium point x∗. The general solution to the equation (1.2)

is:

δx (t) =
∑
i>1

αie
λit, αi = ciei

The λi represent the eigenvalues of J∗ and ei represent the corresponding eigenvectors. While

ci are coefficients chosen to meet the initial conditions.The importance of eigenvalues is that

3



Chapter 1. Invariant Manifolds

they give us an approximation of how fast eigenvalues converge towards the equilibrium point.

Eigenvectors also give us an idea of the direction of convergence (do they converge towards the

center of equilibrium or diverge). We consider the origin to be the point of equilibrium. All

eigenvalues are negative, meaning that the equilibrium point is stable, this means that

0 < |λ1| < |λ2| < · · · < |λi| < · · · < |λn|

hence

0 < eλnt < · · · < eλit < · · · < eλ2t < eλ1t

so all terms eλit for i > 1 will decay more quickly than eλ1t, and on it δx (t) → c1e1e
λ1t, and thus

the limit of the sum δx (t) devolves to c1e
λ1te1 when t → ∞. The previous result, geometrically,

means that there is convergence towards the equilibrium point along the eigenvector e1 which we

call the slow eigenvector.

1.2 Dynamic flow behavior around the equilibrium point

Assume that x1 and x2 are arbitrary points in the phase space, where x2 are close to x1. Now, we

symbolize the evolution of movement from position x1 to position x2 it is the vector δx, and we

write:

δx = x2 − x1

We obtain the evolution of motion in time of δx by the following formula:

δx′ = x′2 − x′1 = f (x2)− f (x1)

but we know that

x2 = δx+ x1

so

δx′ = f (x1 + δx)− f (x1)

We extend the function f (x1 + δx) using Taylor series about the equilibrium point δx = 0:

f (x1 + δx) = f (x1) + J1δx+ · · ·

f (x1 + δx)− f (x1) = J1δx+ · · ·

δ̇x = J1δx+ · · ·

We approximate the previous equation to the lowest order (we only take the first term), where J1
represents the Jacobian value at x1. Thus the differential equation becomes linear from the form:

(δx)′ ≈ J1 × δx (1.3)

1.2. Dynamic flow behavior around the equilibrium point 4



Chapter 1. Invariant Manifolds

The geometric interpretation of the solutions x = x (t) to the equation x′ = f (x) represents a

curve in the space X ⊂ R. If we take into account the variable t, a representative of time, then

the solution x (t) represents the law of motion of a moving point in space X ⊂ R with velocity J1,

so the set of solutions x = x (t) is called a local dynamic system .These curves corresponding to

solutions we call them system trajectories. Note that equation (1.3) above is almost like a linear

differential equation about the equilibrium point x∗. The Jacobean matrix J1 is a constant that

does not change over time. In general, we will face a difficulty in explaining the decomposition

of eigenvectors of J1, but locally we will say that the trajectories converge or diverge from the

equilibrium point according to the eigenvalues and the direction determined by the eigenvectors.

But if we had two systems controlled by the first equation, the Jacobean matrix changes over

time, and the same goes for eigenvalues and eigenvectors.

Definition 1.1 We call a differentiable manifold if each point inside it, is identified by a unique

identifier, in other words, it can be said that it is a geometric object that parameterizable continuously

and smoothly.

The word smooth indicates that the differentiable manifold has at least more than tow continuous

derivatives. It is also possible to express the locally differentiable manifold in the vicinity of an

equilibrium point, for example, by drawing a diagram of a certain function, because the differen-

tiable manifolds accept extension continuously, that is,for each point in a manifold of d-dimension

from a space with n-dimension we have z = h (y) . The variable y represents a set of d coordinates

from the space on which the study is being conducted, and z represents the set of coordinates

that remain n− d also h represents a differentiable function for a set of variables.

Definition 1.2 Consider C group of points in a dynamic system are mapped by the evolution oper-

ator into other points under the condition that the latter are from the same group. If this definition

is met, we say that group C is an invariant set.

Example 1.1 The simplest example of an invariant set is the points of equilibrium, where they are

mapped by the evolution operator to an other groups that apply to them (in fact they are itself ).

Example 1.2 A trajectory is a set of points, each point that belongs to it that evolves under effect of

the evolution operator to another point but still belongs to the same trajectory so a trajectory is an

invariant set.

Definition 1.3 An invariant manifold is a topological group characterized by being invariant under

the effect the dynamic system.

1.2. Dynamic flow behavior around the equilibrium point 5



Chapter 1. Invariant Manifolds

Figure 1.1: Diagram of the 2D invariant manifold.

Example 1.3 The single equilibrium point, which is a simple example of a invariant manifold of

zero dimension. But if we look at the set of equilibrium points, we will find that it lacks the condition

of continuity, then it is not a invariant manifold.We know that invariant manifolds are distinguished

by being differentiable manifolds, so we can write at every point of the two-dimensional manifold

z = z (y) and dz
dt

=
∑d

i=1
∂z
∂yi

dyi
dt
.

1.3 Special eigenspaces of equilibrium points

The extension of two eigenvectors (a pair) will generate a surface, and the extension of three ei-

genvectors is a three-dimensional hypersurface. In fact, this type of extension of the eigenvectors

is very important. Because it defines the eigenvectors combinations that we need in this study,

which are the invariant manifolds. In the following we will present three types of eigenspaces

each with different characteristics:

Definition 1.4 We say of an eigenspace Es is stable if the eigenvector spanned by its corresponding

eigenvalues has a completely negative real part.

Definition 1.5 We say of an eigenspace Eu is unstable if the eigenvector spanned by its corresponding

eigenvalues has a completely positive real part.

Definition 1.6 We say of an eigenspace that it is a centre eigenspace Ec, if it is generated by eigen-

vectors whose corresponding eigenvalues are purely imaginary, then its true part is absent.

1.3. Special eigenspaces of equilibrium points 6



Chapter 1. Invariant Manifolds

Figure 1.2: Flow diagram near the equilibrium point according.

In the case where the eigenvectors and their eigenvalues are complex conjugate pairs, the eigen-

space is expanding in both the real and imaginary parts of the eigenvector. For more clarity, about

flow near the equilibrium point we will give some examples[2].

Example 1.4 In a three-dimensional system, assum we have a pair of complex conjugate eigenvalues

where their real parts are negative and a positive eigenvalue. Figure 1.2 shows what this flow looks

like precisely near the point of equilibrium.We observe two types of vectors, and thus there are at

least two types of trajectories near the point of equilibrium. Es represents a stable eigenspace, every

trajectorie that started from this eigenspace is downing towards the equilibrium point (in the form of

a spiral). But Eu represents an unstable eigenvector, so the systems escape away from the equilibrium

point along this eigenvector. There is another trajectorie that combines the two previous trajectories,

it concerns trajectories that do not start from eigenspace where the systems rotate spirally away from

the equilibrium point along the Eu eigenvector. The movement corresponding to the stable spiral,

is the reason for the system’s bring onto unstable eigenspace. For the system, the latter represents a

long-term development.

Example 1.5 In a three-dimensional system, we will assume that we have eigenvalues with negative

real parts and two purely imaginary eigenvalues (the real part is zero). All paths starting from the

centre manifold Ec are taken along a path approximately parallel to Es. So the flow is concentrated

in the center eigenspace. However, we could not know which directions the paths would follow on Ec.

See Figure 1.3.

1.3. Special eigenspaces of equilibrium points 7



Chapter 1. Invariant Manifolds

Figure 1.3: Schematic diagram of the strange dynamic behavior described.

1.4 Classification of invariant manifolds

We know from the previous definitions, that the extension of eigenspaces are only invariant man-

ifolds, the following we present definitions of stable and unstable manifolds with some important

notes:

Definition 1.7 W s is stable manifold of the equilibrium point p. It is a set of points in the phase

space with two simple properties: (1) For x ∈ W s, ϕt (x)→ p as t −→ ∞. (2) W s is tangent to Es

at p.

Definition 1.8 W u is unstable manifold of the equilibrium point p. It is a set of points in the phase

space with two simple properties: (1) For x ∈ W u, ϕt (x)→ p as t→ −∞. (2) W u is tangent to Eu

at p.

These definitions are not only specific to equilibria, we can generalize them to qualitative attract-

ors. In general, these definitions concern the attractor of a dynamic system (i.e., equilibrium

point) each of the attractors has its own set of manifolds. Often when we talk about a stable and

unstable manifold, we must specify the attractor to which this manifold belongs.

We face difficulty in defining the central manifold, because we wanted the above centre manifold

to be tangent to the centre eigenspace, but we are don′t know the behavior of the system in the

centre manifold and we are also ignorant of what is happening in the centre eigenspace near the

equilibrium point, and accordingly, we cannot use stability to define this type of manifolds.

Definition 1.9 The centre manifold of an equilibrium point p is an invariant manifold of the differ-

ential equations with the added property that the manifold is tangent to Ec at p.

1.4. Classification of invariant manifolds 8



Chapter 1. Invariant Manifolds

Figure 1.4: The flow for a planar system with a stable and a centre manifold like.

When we compare this definition with previous definitions of stable and unstable manifolds, we

find that it is weaker[2]. So there is more than one central manifold. To understand why there

are more than one central manifold. The Figure 1.4 shows the flow for a planar system with a

stable and a centre manifold:Assume that none of the eigenvalues of the Jacobian matrix of an

equilibrium point have positive real parts, and that some of the eigenvalues have zero real parts.

Theorem 1.1 In some neighborhood U of the equilibrium point, there exists a unique centre mani-

fold W c such that, for any x ∈ U,ϕt (x) 7−→ W c as t −→∞.

In this case, t 7−→ ∞ is just a sneaky way to avoidi making estimates of how long it takes for

trajectories to collapse to the manifold. The importance of the centre manifold theory is to explain

the behavior of systems that have a centre and no unstable manifold[2].

1.5 Applications of invariant manifolds

We will give two examples containing the central manifold. We can say that the principles of

calculating local approximations for other types of invariant manifolds are often the same.

1.5.1 The Lindemann mechanism

The rate equations for the Lindemann mechanism are given by
a′ = −a2 + αab

b′ = a2 − αab− b

1.5. Applications of invariant manifolds 9



Chapter 1. Invariant Manifolds

The value of the Jacobian matrix at the origin (equilibrium point according to hypothesis (0, 0))

is equal to J? =

(
0 0

0 −1

)
. After a simple calculation, we find two eigenvalues λ0 = 0 and

λ1 = −1. So we have a system with a centre manifold. we can use centre manifold theory to

determine the stability of the equilibrium point. First, we determine the eigenvectors of J?. The

eigenvectors satisfy J?ei = λiei , or (λiI − J?) ei = 0. For λ0, we get(
0 0

0 1

)(
e01

e02

)
= 0

from which we conclude that e02 = 0, i.e., e0 = (1, 0) that (or any multiple there of). Similarly,

for λ1, we get (
−1 0

0 0

)(
e11

e12

)
= 0

so e1 = (0, 1). In this case, the two eigenvectors are the two coordinate axes. But this is generally

not true. The centre manifold therefore approach the equilibrium point along the a axis. We

conclude that it is possible to write an equation for the centre manifold of the form b = b (a).

We’ll also have a problem if we wrote a = a (b), because the manifold in this case will be vertical

at the origen. We write the following equation:

a′ = −a2 + α× a× b (a) (1.4)

for the slow evolution along the centre manifold. Because the equilibrium point is at (0, 0) and

the centre manifold enters the equilibrium point at a slope of zero, we know that the Taylor

expansion of b (a) is of the form

b = b2a
2 + b3a

3 + 0
(
a4
)

(1.5)

The symbol O (a4) indicates that the next term in the expansion, which we aren’t writing down,

would be proportional to a4. This means that α× a× b (a) = 0 (a3). Thus, on the centre manifold

near the equilibrium point, we have

a′ = −a2 + 0 (a3) (1.6)

Here we have an equilibrium point having a stable and a centre manifold. As we said before

the parallel movement of the stable manifold quickly leads to the central manifold at this rate

eλ1t = e−t . Thus any movement in the system follows equation (1.4), without forgetting that it

has been reduced to equation (1.6) near the equilibrium point. When a > 0 this indicates that

the equilibrium point is stable. But here, the equilibrium point is semi-stable (stable only from

the right), and even though equation (1.6) still controls in the system for small and negative

1.5. Applications of invariant manifolds 10



Chapter 1. Invariant Manifolds

(negligible) values of a, the trajectories move away from the equilibrium point, this is a strange

behavior. When we use a centre manifold argument to determine the stability of an equilibrium,

we generally need to do more work than we have done here. It is not typically the case that we

can determine the behavior on the manifold by inspection. Usually in fact, we have to use the

manifold equation to determine the coefficients of the Taylor expansion (1.5), then substitute the

resultin equation into (1.4) and simplify to determine the leading-order behavior of the rate. As

an exercise, let’s work out the coefficients b2 and b3. The manifold equation for a planar system is

b′ =
db

da
a′

We can evaluate db
da

, the derivative on the manifold, directly:

db

da
= 2b2a+ 3b3a

2 +O
(
a3
)

Substituting in the rate equations and the derivative of b on the manifold is:

a2 − αa
[
b2a

2 + b3a
3 + 0

(
a4
)]
−
[
b2a

2 + b3a
3 + 0

(
a4
)]

=
[
2b2a+ 3b3a

2 + 0
(
a3
)] {
−a2 + αa

[
b2a

2 + b3a
3 + 0

(
a4
)]}

We now collect on one side in powers of a.

a2 (1− b2) + a3 (2b2 − αb2 − b3) + 0
(
a4
)

= 0

Since this equation must be valid for any value of a, the coefficients of each term must individually

be equal to zero. Thus we get

b2 = 1, b3 = (2− α) b2 = 2− α

1.5.2 A simple AIDS model

We will present a simple example of the spread of AIDS, through two groups of the population,

the relationship between them is characterized by being infrequent and high risk:

c′1 = −αc+ p1 (c1 + β1c2) (7a)

p′1 = p1 (1− c1 − β1c2) (7b)

c′2 = −αc2 + p2 (c1 + β2c1) (7c)

p′2 = p2 (1− c2 − β2c1) (7d)

1.5. Applications of invariant manifolds 11



Chapter 1. Invariant Manifolds

where pj represents the number of healthy individuals in subpopulation j, while cj represents the

number of contagious individuals. Terms in αcj represent increased mortality in the contagious

group due to the disease. Terms of the form pjck (whether j = k or not) represent the transmission

of the disease from contagious individuals. Due to the assumptions of the model, α > 0 and

0 < βj < 1. There are four steady states. The first one corresponds to extinction of the entire

population, the second and third to extinction of one subpopulation or the other, and the last

to coexistence of both subpopulations. We will now determine the stability of these four steady

states.

J =


−α + p1 c1 + β1c2 p1β1 0

−p1 1− c1 − β1c2 −p1β1 0

p2β2 0 −α + p2 c2 + β2c1

−p2β2 0 −p2 1− c2 − β2c1



J1 =


−α 0 0 0

0 1 0 0

0 0 −α 0

0 0 0 1


The eigenvalues of a diagonal matrix are just the diagonal elements. In this case, the eigenvalues

are therefore −α (twice) and 1 (twice). The positive eigenvalues make the extinction fixed point

unstable.

J2 =


−α β1 0 0

0 1− β1 0 0

αβ2 0 0 1

−αβ2 0 −α 0


The eigenvalues are

−α, 1− β1,
√
−α,−

√
−α

Since β1 < 1, the second eigenvalue is positive, so this steady state, in which population becomes

extinct, it is also unstable. The third steady state is unstable too. The final steady state leads to

a slightly more complex, but still tractable problem. We won’t show the matrix J4, the Jacobian

evaluated at the fourth steady state. It’s computed like the others, and its form doesn’t suggest

anything in particular. We’ll just go straight to calculating the characteristic polynomial:(
α + λ2

) (
2λαβ2β1 + αβ1 − λαβ1 + αβ2 − λαβ2 − αβ2β1 − α− λ2 + λ2β2β1

)
−1 + β2β1

= 0

1.5. Applications of invariant manifolds 12



Chapter 1. Invariant Manifolds

Since the eigenvalues are the solutions to this equation, it will follow that one of the terms in the

numerator is equal to zero:

λc± = ±
√
−α

Based on this we get a two-dimensional centre manifold associated with these eigenvalues. For

simplicity, we arrange the powers of λ from largest to smallest in the second term:

(−1 + β2β1)λ
2 + (2αβ2β1 − αβ2 − αβ1)λ+ αβ1 − α + αβ2 − αβ2β1 = 0

To find a value of λ we multiply the entire equation by −1 , then we rearrange the terms again

according to the powers and get:

λ2 (1− β1β2) + λα [β1 (1− β2) + β2 (1− β1) + α (1− β1) (1− β2)] = 0

We get positive coefficients for this equation. In this case, we will accept that the quadratic

equation has roots where the real parts are negative. We conclude that the two eigenvalues and

their corresponding eigenvectors are related to a stable manifold.

So the fourth equilibrium point therefore has a two-dimensional stable manifold and a two-

dimensional centre manifold. We can apply the centre manifold theorem again, which says

that, eventually, the system will collapse onto the centre manifold so that we need only con-

cern ourselves with the dynamics in this plane. Let’s compute the eigenvectors corresponding to

the centre-manifold eigenvalues: This command calculates all the eigenvectors and eigenvalues.

I’ll only show the output corresponding to λc±.[√
−α, 1,

{[
−
√
−α (−1 + β1)

α (−1 + β2)
,
−1 + β1
−1 + β2

,−
√
−α
α

, 1

]}]
,

[
−
√
−α, 1,

{[√
−α (−1 + β1)

α (−1 + β2)
,
−1 + β1
−1 + β2

,

√
−α
α

, 1

]}]
In each line above, the first value is the eigenvalue, and the second is its multiplicity (how many

different eigenvectors there are for this eigenvalue). The eigenvector itself appears after these

two quantities. Note that the eigenvectors are of the form

ec± =

(
∓i
√
α (1− β1)
α (1− β2)

,
1− β1
1− β2

,∓i
√
α

α
, 1

)
The basis of the centre eigenspace can be obtained simply by taking the real and imaginary parts

of one of these vectors:

e1 =

(
0,

1− β1
1− β2

, 0, 1

)
and e2 =

(
1− β1√
α (1− β2)

, 0,
1√
α
, 0

)

1.5. Applications of invariant manifolds 13



Chapter 1. Invariant Manifolds

If we let x = (c1, p1, c2, p2) and call the steady state we’re currently analyzing x4, then the centre

eigenspace of this steady state can be written in the form:

x = x4 + a1e1 + a2e2

We have

c1 =
1− β1

1− β1β2
+ a2

1− β1√
α (1− β2)

p1 =
α (1− β1)
1− β1β2

+ a1
1− β1
1− β2

c2 =
1− β1

1− β1β2
+

a2√
α

p2 =
α (1− β2)
1− β1β2

+ a1

We normally like to express manifolds and eigenspaces as explicit rather than parametric func-

tions. In other words, we would prefer to write c2 = g (c1, p1) and p2 = h (c1, p1). To do this, all

we have to do is to eliminate a1 and a2 from the above equations. If we do, we get a very simple

result:

c1 =
1− β2
1− β1

c1 (8a)

and p2 =
1− β2
1− β1

p1 (8b)

We could now think about expanding the centre manifold in a series by adding quadratic terms

(in c21, c
2
2 and c1c

2) to the above expressions, and then figuring out the coefficients using the

manifold equation. For this particular model, the centre eigenspace turns out to be exactly the

centre manifold, i.e., there are no quadratic or higher-order correction terms. We start by writing

down the manifold equations:

c′2 =
∂c2
∂c1

c′1 +
∂c2
∂p1

p′1, and p′2 =
∂p2
∂c1

c′1 +
∂p2
∂p1

p′1

On the centre eigenspace, we have
∂c2
∂p1

=
∂p2
∂c1

= 0,

which simplifies our manifold equations considerably. Now substitute the relevant equations into

the remaining terms. For the c2 equation, we get

−αc1
1− β2
1− β1

+ p1
1− β2
1− β1

(
c1

1− β2
1− β1

+ β2c1

)
=

1− β2
1− β1

[
−αc1 + p1

(
c1 + β1c1

1− β2
1− β1

)]
.

−α + p1

(
1− β2
1− β1

+ β2

)
= −α + p1

(
1 + β1

1− β2
1− β1

)

1.5. Applications of invariant manifolds 14
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−α + p1
1− β1β2
1− β1

= −α + p1
1− β1β2
1− β1

.

The equation is identically satisfied by the centre eigenspace. It is easy to verify that the p2

equation is also identically satisfied. This means that the centre eigenspace is actually an invariant

manifold, and thus that it is the centre manifold for this problem.

If we now substitute our centre manifold equations (1.8) into equations 7a and 7b, we get the

ODEs governing motion on the manifold:

c′ = −αc1 + c1p1
1− β1β2
1− β1

(9a)

p′1 = p1

(
1− c1

1− β1β2
1− β1

)
9b

This is the Lotka-Volterra model.

1.5. Applications of invariant manifolds 15



Chapter 2

Robust Chaos

Assume that f (x̂, ŷ, ρ) represent a two-dimensional piecewise smooth map with the parameter ρ

and assume that Γρ where x̂ = h (ŷ, ρ) indicate a smooth curve, the latter separates the phase

plane into two Ra and Rb.

f (x̂, ŷ, ρ) =


f1 (x̂, ŷ, ρ) for x̂, ŷ ∈ Ra

f2 (x̂, ŷ, ρ) for x̂, ŷ ∈ Rb

(2.1)

The two functions f1 and f2 must be continuous, and their derivatives are exist and continuous.

The derivative of the continuous function f is not continuous at the border Γρ. It is further

assumed that the one-sided partial derivatives at the border are finite and the partial derivatives

must be finite by one side. We will study the bifurcations of the system for different parameter

ρ. One of the following standard types occurs: period doubling, saddle-node or Hopf bifurcation

when the fixed point of the map is located in one of the smooth regions Ra or Rb and this is a kind

of bifurcations. Also, a discontinuous change in the elements of the Jacobian matrix will occur

where ρ is diverse and that is when the fixed point falls on the border and this is another type

of bifurcations. Robust chaos (attractor is unique) occurs as a result of collision bifurcation under

special conditions [6, 7, 8].

16



Chapter 2. Robust Chaos

2.1 Normal form of two-dimensional piecewise smooth map

In some areas neighborhood to the collision bifurcation, we change the coordinates [6] and notice

the reduction of the piecewise smooth map to the normal shape[8, 9] equation (2.1):

Gµ =



(
TL 1

−δL 0

)(
x

y

)
+ µ

(
1

0

)
, for x ≤ 0

(
TR 1

−δR 0

)(
x

y

)
+ µ

(
1

0

)
, for x > 0

(2.2)

Both x and y represent the new coordinates where the line x = 0 is the border that divides the

phase space into L and R. The new parameter is obtained by scaling ρ. On the side L we have the

trace τL and determinant δL of the Jacobian matrix. On the R side, we find their corresponding

values τR and δR. The trace and determinant are the same in the map f which were calculated

near the boundary collision point, because they are not affected by changing the coordinates.

2.2 Invariant manifolds and regions for robust chaos

To explore the boundary collision bifurcation in the piecewise smooth map (2.1)[5, 6, 7, 8, 13], it

suffices to study the normal form in (2.1), because local bifurcations[2, 3] do not depend on µ

(because it is a variable through zero) but rather they depend on each of τL, δL, τR and δR. We

can write the fixed points of the system on both sides as follows:
L∗ =

(
µ

1−τL+δL ,
−δLµ

1−τL+δL

)
R∗ =

(
µ

1−τR+δR ,
−δRµ

1−τR+δR

)
Egenvalues λ1,2 =

1

2

(
τ ±
√
τ 2 − 4δ

)
tell us about the stability or unstability of the system. If it is

τL > (1 + δL) and τR < (1 + δR) (2.3)

We have the following results:

1. There are no fixed points for µ < 0.

2. For µ > 0 there are two fixed points in each of L and R.

2.1. Normal form of two-dimensional piecewise smooth map 17



Chapter 2. Robust Chaos

Figure 2.1: The stable and unstable manifolds of L∗for τL = 1.7, δL = 0.5, τR = −1.7, δR =

0.5.R∗is marked by the small cross in side the attractor.

Figure 2.2: Schematic diagram of the parameter space region of the normal form eqution (2.8)

where robust chaos is observed for 1 > δL > 0, 1 > δR > 0 and µ > 0.

2.2. Invariant manifolds and regions for robust chaos 18
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3. For µ = 0 the two border points will be born known as a border collision pair bifurcation. A

similar state if τL < (1 + δL) and τR > (1 + δR) where µ is moving through zero. We notice

that the two cases are similar, so we take the parameter region (2.2). We say about the fixed

point that lies in L is regular saddle and we say about the other that lies in R is an attractor

in the case of

(1 + δR) > τR > − (1 + δR)

for µ > 0. The previous result resembles the bifurcation of the saddle-node resulting on

the border. We will exclude this region in the parameter space from our analysis related to

chaotic behavior, due to the permanent existence of the periodic attractor in this region for

µ > 0.

4. For the condition τR = − (1 + δR) all fixed points on the line containing the points
(

µ

1 + δR
, 0

)
and

(
0,
−δRµ
1 + δR

)
will be fixed points also in the next iteration. So we’ll focus on this para-

meter from space region:

τL > (1 + δL) and τR < − (1 + δR) (2.4)

We’ll check the property related to the attractor for µ > 0.

5. If 1 > τL ≥ 0 and 1 > δR ≥ 0, then [7]we will have a flip saddle R∗ and a regular saddle L∗.

6. Suppose SL is the stable manifold and that UL is the unstable manifold of L∗ and SR be the

stable andUR unstable manifold of R∗. For (2.1), all intersections of the unstable manifolds

with x = 0 map to the line y = 0. Note that one linear map moves to another linear map

through line x = 0, UL and UR will experience folds along the x-axis. Each image of fold

point is a fold point as well. By a similar argument we conclude that SL and SR fold along

the y-axis, and all pre-images of fold points are fold points.

7. Assume that λ1R, λ2R are the eigenvalues at side R and λ1L, λ2L are that the eigenvalues in

side L. For condition (2.3), λ1L > λ2L > 0 and 0 > λ1R > λ2R. The stable eigenvector at R∗

has a slope m1 = (−δR/λ1R) and the unstable eigenvector has a slope m2 = (−λR/λ2R) .

8. Since points on an eigenvector map to points on the same eigenvector and since points on

the y-axis map to the x-axis, we conclude that points of UR to the left of y-axis map to

points above x-axis. From this we find thatUR has an angle m3 =
δLλ2L

δR − τLλ2R
after the first

fold. Under condition (2.3) we have m1 > m2 > 0 and m3 < 0. Therefore there must be

a transverse homoclinic intersection in R. This implies an infinity of homoclinic intersections

and the existence of a chaotic orbit.

2.2. Invariant manifolds and regions for robust chaos 19
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9. We now investigate the stability of this orbit. The basin boundary consist by SL. SL folds

at the y-axis and intersects the x-axis at point C. The portion of UL to the left of L∗ goes

to infinity and the portion to the right of L∗ leads to the chaotic orbit. UL meets the x-axis

at point D, and then undergoes repeated foldings leading to an intricately folded compact

structure as shown in Figure 2.3. The unstable eigenvector at L∗ has a negative slope given

by − (δL/λ1L). Therefore it must have a heteroclinic intersection with SR. Since both UL

and UR have transverse intersections with SR, by the Lambda Lemma [6, 10] we conclude

that for each point q on UR and for each ∈-neighborhood Nε (q), there exist points of UL in

Nε (q). SinceUL comes arbitrarily close toUR, the attractor must spanUL in one side of the

heteroclinic point. Since all initial conditions in L converge on UL and all initial conditions

in R converge on UR, and since there are points of UL in every neighborhood of UR, we

conclude that the attractor is unique.

10. Simple changes in parameters will cause minor changes to the Lyapunov exponents and will

not destroy the attractor. Wherever the chaotic attractor is stable it is definitely robust. It

is impossible for any point of the attractanr to be located to the right of the point D. The

chaotic orbit is stable if the point D is to the left of the point C will be a chaotic saddle or

an unstable chaotic orbit when D is located outside the basin of attraction. Here, we arrive

at the condition for the stability of the chaotic attractor as follows:

δLτRλ1L − δRλ1Lλ2L + δRλ2L − δLτR + τLδL − δ2L − λ2LδL > 0 (2.5)

If δL = δR = δ this condition reduces to τRλ1L − λ1Lλ2 + τL − τR − δ > 0.

11. The robust chaotic orbit continues to exist as τL is reduced below (1 + δL).

12. With τL slightly below (1 + δL), there is no fixed point in L for µ > 0 but the invariant

manifolds suffer only slight change. The invariant manifold of L associated with λ1L still

forms the attractor. The invariant manifolds in L, however, cease to exist for τL < 2
√
δL

since the eigenvalues become complex.

13. As τL is reduced below 2
√
δL there is a sudden reduction in the size of the attractor as it spans

only UR. So long as UL exists, multiple attractors can not exist and therefore if the main

attractor is chaotic, it is also robust. Therefore we see that for 1 > δL > 0, 1 > δR > 0, the

normal form equation (2.2) exhibits robust chaos in a portion of parameter space bounded

by the conditions:

τR = −(1 + δR), τL > 2
√
δL

and (5) as shown in Figure 2.2.
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14. There is a symmetric region of the parameter space with the roles of R and L interchanged,

where the same phenomena are observed for µ < 0. When the system approaches being

one-dimensional, precisely for low values of the determinant, the principal attractor may

not be able to remain chaotic even for τL > 2
√
δL where the periodic orbits are stable.

15. Through the conditions for the existence of periodic windows in one-dimensional systems

we determine the minimum for τLwhere the the parameter range for robust chaos is limited

by

τR = 1, τR >
−τL
τL − 1

where τ represents the slopes of the piecewise linear function that line x = 0 divides into

two halves.

16. Region for robust chaos will shrink in space τL-τR to zero region when the determinants on

both sides are unity. For cases whose determinant is negative, we follow the same steps.

17. For −1 < δR < 0, we have 1 > λ1R > 0, λ2R < −1, and R∗ is located above the x-axis. UL

converges on UR from one side since the eigenvalue λ1R is positive. If

λ1L − 1

τL − 1− δL
>

λ2R − 1

τR − 1− δR
(2.6)

then the intersection of UL with the x-axis remains the rightmost point of the attractor and

(5) still gives the parameter range for boundary crisis.

18. But if (2.5) is not satisfied, the intersection of UR with the x-axis becomes the rightmost

point of the attractor and the condition of existence of the chaotic attractor will change to

λ1L − 1

τL − 1− δL
<

δL (τL − δL − λ2L)

(τL − 1− δL) (δRλ2L − δLτR)
(2.7)

19. For δL < 0 and δR < 0, L∗ is below the x-axis and the same logic as above applies. UL will

not converge from UR from one side because the stable manifold of R∗ will have negative

eigenvalue in the case of δL < 0 and δR > 0.

20. Where (2.7) is not satisfied we determine the boundary crisis numerically, because in this

case there is no analytical condition. Since the eigenvalues are real for all τL, invariant

manifolds SL and UL are always exist and this is in the case of δL < 0.

21. For δL < 0 multiple attractors cannot exist.
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Under the condition that there is no more than one period-1 fixed point in both Ra and Rb, we

would expect robust chaos in many piecewise smooth maps near of the border collision bifurca-

tion because (2.2) is a normal form of the piecewise smooth map (2.1). There are also homoclinic

intersections of the invariant manifolds linked to these fixed points and the same for heteroclinic

and it is worth noting that both trace and determinant fulfill every condition mentioned.
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Lyapunov stability theory

From the seventeenth century to the beginning of the twentieth century, the concepts of classical

stability was developed in an impressive way until the emergence of Lyapunov’s theory[14, 15]. On

12 October 1892 Lyapunov presented his thesis on the stability of the movement, which is one

of the greatest ideas in the development of modern technology. He has performed the unstable

of steam engines led to a significant rise in the number of accidents and is the main reason for

the development of stability theories. The theory of Lyapunov is considered a cornerstone in the

theories of system control almost, as it describes the stability of a dynamic system. Then the

Lyapunov’s second stability theory is the most popular[15]. Also, Lyapunov’s second method is ap-

plicable to both linear and nonlinear systems: We construct a function with two basic conditions:

The function is positive definite and its derivative is negative semi-definite or negative definite.

The method for constructing the Lyapunov function is extremely difficult, since it is not easy to

find a function that satisfies both conditions. Notice that the classical LaSalle invariance principle

is used in the analysis and stability of autonomous systems, it is based on invariant set. So the

principle of LaSalle also faces another difficulty if the set is not invariant, that is when the systems

are no autonomous. In this chapter we present Lyapunov’s stability theorem, then the LaSalle’s

invariance principle and its generalization, and finally we dealt with the unstability theory with

the inclusion of illustrative examples.

3.1 Some definitions and consequences

In this chapter, we focus on the differential equations from the formula

x′ = f (x, t) , x (to) = xo, x ∈ Rn (3.1)

23
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where t ≥ 0. The system defined by (3.1) is said to be autonomous or time-invariant if f does

not depend explicitly on t. It is said to be linear if f (x, t) = A (t)x for some A (.) : R+ 7−→ Rn×n

and nonlinear otherwise. In this chapter, we will assurne that f (x, t) is piecewise continuous with

respect to t, that is, there are only finitely many discontinuity points in any compact set. The

notation Bh will be short-hand for B (0, h), the ball of radius h centered at 0. Properties will be

said to be true

• Locally if they are true for all x0 in some ball Bh,

• Globally if they are true for all x0 ∈ Rn.

• Semi-globally if they are true for all x0 ∈ Bh with h arbitrary.

• Uniformly if they are true for all t0 ≥ 0.

The properties are considered locally true.

3.1.1 Lipschitz’s condition and its consequences

Definition 3.1 We can say that the function f is a Lipschitz local function continuous in x if for

some h > 0 there exists l ≥ 0 such that

|f (x1, t)− f (x2, t)| ≤ l |x1 − x2| , for all x1, x2 ∈ Bh, t ≥ 0 (3.2)

The constant l is the Lipschitz’s constant. A definition for globally Lipschitz continuous functions

follows by requiring equation (3.1) to hold for x1, x2 ∈ Rn. The definition [9]of semi-globally

Lipschitz continuous functions holds as well by requiring that equation (3.2) hold in Bh for ar-

bitrary h but with l possibly a function of h. The Lipschitz property is by default assumed to

be uniform in t. If f is Lipschitz continuous in x, it is continuous in x. On the other hand,

if f has bounded partial derivatives in x, then it is Lipschitz. Formally, if D1f (x, t) =
(
∂fi
∂xj

)
indicates the partial derivative matrix of f with respect to x (the symbol 1 stands for the first

argument of f (x, t) ), then |D1f (x, t)| ≤ l: implies that f is Lipschitz continuous with Lipschitz

constant l (again locally, globally or semi-globally depending on the region in x that the bound

on |D2f (x, t)| is valid). If f is locally bounded and Lipschitz continuous in x, then the differential

equation (3.1) has a unique solution on some time interval (so long as x ∈ Bh).

Definition 3.2 (Equilibrium point) We say about x∗ an equilibrium point to the equation (3.1) if

f (x∗, t) ≡ 0 for all t ≥ 0. If f (x, t) is Lipschitz continuous in x, then the solution x (t) ≡ x∗ for all t

is called an equilibrium solution.
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By translating the origin to the equilibrium point x∗we can make 0 an equilibrium point of (3.1).

The Lipschitz’s hypothesis gives us bounds on the rates of convergence or divergence of solutions

from the origin.

Proposition 3.1 ( Rate of Growth/Decay) Under the assumption that the origin x = 0 is an equi-

librium point of (3.2) and f is Lipschitz in x with Lipschitz constant l and piecewise constant with

respect to t, so the solution x (t) will satisfie the following

|x0| el(t−t0) ≥ |x (t)| ≥ |x0| e−l(t−t0) (3.3)

as lang as x (t) remains in Bh.

Proof. Because |x|2 = xTx , it follows that∣∣∣∣ ddt |x|2
∣∣∣∣ = 2 |x|

∣∣∣∣ ddt |x|
∣∣∣∣ (3.4)

= 2

∣∣∣∣xT ddtx
∣∣∣∣ ≤ 2 |x|

(
d

dt
|x|
)

and for that ∣∣∣∣ ddt |x|
∣∣∣∣ ≤ d

dt
|x|

Since the function f (x, t) is Lipschitz continuous and satisfies f (x, 0) = 0, then

− l |x| ≤ d

dt
|x| ≤ l |x| (3.5)

This includes that every trajectory that begins inside the ball Bh will not leave it for at least a

finite period of time. Also, if f (x, t) is globally Lipschitz, it guarantees that the solution has no

finite escape time, that is, it is finite at every finite instant. This proposition also proves that the

exponential convergence to zero is faster than the convergence of the solutions x (t).

Based on that, we will present stability definitions. lnformally x = 0 is stable equilibrium point if

trajectories x (t) of (3.1) remain close to the origin if the initial condition x0 is close to the origin.

For more clarity, we follow the next definitions:

Definition 3.3 (Stability in the sense of Lyapunov) The equilibrium point x = 0 is called a stable

equilibrium point of (3.1) if for all t0 ≥ 0 and ε < 0, there exists δ (t0, ε) such that

|x0| < δ (t0, ε) =⇒ |x (t)| < ε, ∀t ≥ t0 (3.6)

The solution x (t) of (3.1) starts from x0 at to t0. Figure 3.1 illustrates the trajectories that start

in the ball Bδ and not leave the ball Bε. We call this definition stability in the sense of Lyapunov

[11, 12]at time to t0.
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Figure 3.1: Diagram of stability definition.

Definition 3.4 ( Uniform Stability) The equilibrium point x = 0 is called a uniformly stable equi-

librium point of (3.1) if in the preceding definition δ can be chosen independent of t0.

The definition of uniform stability captures the notion that the equilibrium point is not getting

progressively less stable wilh time [15]. Then, it prohibits a situation in which given an ε > 0, the

ball of initial conditions of radius δ (t0, ε) in the definition of stability required to hold trajectories

in the ε ball tends to zero as t0 −→∞. There is a weakness in the definition of stability, as it does

not require the trajectories to begin near the origin to tend to the origin asymptotically. The next

definition includes this property.

Definition 3.5 (Asymptotic Stability) The equilibrium point x = 0 is an asymptotically stable

equilibrium point of (3.1) if (1) x = 0 is a stable equilibrium point of (3.1). (2) x = 0 is attractive[1],

that is for all t0 ≥ 0 there exists a δ (t0) such that

|x0| < δ =⇒ lim
t−→∞

|x (t)| = 0

Asymptotic stability indicates that the convergence of paths with the origin does not necessarily

mean that the equilibrium point is stable.The example below illustrates the concept of asymptotic

stability. 
x′1 = x21 − x22

x′2 = 2x1x2

(3.7)

We notice that all trajectories tend to the origin when t −→ ∞, except for the trajectory that

follows the positive x1 axis to +∞. If we assume that this point at infinity is the same as the point
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Figure 3.2: Equilibrium point whichis not stable and their trajectories.

at x1 = −∞. In this case, all trajectories go to the origin and the equilibrium point is not stable

in the sense of Lyapunov: Given any ε > 0, no matter how small a δ we choose for the ball of

initial condition, there are always some initial conditions close to the x1 axis which will exit the ε

ball before converging to the origin. The trajectory starting from the x1 axis gives us a prediction

about this behavior.

Definition 3.6 (Uniform Asymptotic Stability) The equilibrium point x = 0 is a uniformly asymp-

totically stable equilibrium point of (3.1) if (1) x = 0 is a uniformly stable equilibrium point of

(3.1). (2) The trajectory x (t) converges uniformly to 0, that is, there exists δ > 0 and a function

γ (τ , x0) : R+ × Rn −→ R+ such that limτ−→∞ γ (τ , x0) = 0 for all x0 ∈ Bδ and

|x0| < δ =⇒ |x (t)| ≤ γ (t− t0, x0) , ∀ t ≥ t0.

The previous definitions are local, since they concern neighborhoods of the equilibrium point.

Global asymptotic stability and global uniform asymptotic stability are defined as folIows:

Definition 3.7 (Global asymptotic stability) The equilibrium point x = 0 is a globally asymptot-

ically stable equilibrium point of (3.1) if it is stable and limt−→∞ x (t) = 0 for all x0 ∈ Rn.

Definition 3.8 (Global uniform asymptotic stability.) The equilibrium point x = 0 is a globally,

uniformly, asymptotically stable equilibrium point of (3.1) if it is globally asymptotically stable and

if in addition, the convergence to the origin of trajectories is uniform in time, that is to say that there

is a function γ : Rn × R+ 7→ R such that

|x (t)| ≤ γ (x0, t− t0) , ∀ t ≥ 0

In the definitions of asymptotic stability we cannot know how fast the trajectories converge to the

origin. For time varying and nonlinear systems, the rate of convergence can be of many different
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types. Otherwise, time-invariant linear systems, the speed of convergence of trajectories either to

or from the origin is exponential. In the following we will present the strongest stability types,

which depend on an exponential rate of convergence.

Definition 3.9 (Exponential stability, rate of convergence) The equilibrium point x = 0 is an

exponentially stable equilibrium point of (3.1) if there exist m,α > 0 such that

|x (t)| ≤ me−α(t−t0) |x0| (3.8)

for all x0 ∈ Bh, t ≥ t0 ≥ 0. The constant α is called (an estimate of) the rate of convergence.

For global exponential stability, we define it by requiring equation (3.8) to hold for aII x0 ∈ Rn.
Also, semi-global exponential stability is defined similarly except that the constants m,α become a

functions to h. For linear systems, the exponential stability appears equivalent to the asymptotic

stability. The exponential stability is considered stronger than the asymptotic stability.

3.2 Lyapunov stability theorems

Lyapunov’s second method or direct method is based on this concept: If we have a system, and this

system has a point or equilibrium state, then the total energy stored in that system will reduce

over time until it reaches its lowest value at a point or state of equilibrium. Therefore, to determ-

ine the stability of the systems, the Lyapunov function must be defined. The determination of this

function is related to the concept of energy dissipation. So, we will provide some definitions and

characteristics that will help us to understand Lyapunov’s mechanism[14].

Definition 3.10 (Class K, KR Functions) A function α (.) : R+ 7−→ R+ belongs to class K if it is

continuous, strictly increasing and α (0) = 0. The function α (.) is said to belong to class KR if α is

of class K and in addition, α (p) −→∞ as p −→∞.(denoted by α (.) ∈ K).

Definition 3.11 ( Locally positive definite functions) A continuous function v (x, t) : Rn×R+ 7−→
R+ is called a locally positive definite function (l.p.d.f) if, for some h > 0 and some α (.) of class K,

v (0, t) = 0 and v (x, t) ≥ α (|x|) , ∀ x ∈ Bh, t ≥ 0. (3.9)

Definition 3.12 (Positive definite functions) A continuous function v (x, t) : Rn × R+ 7−→ R+ is

called a positive definite function (p.d.f.) if for some α (.) of class KR

v (0, t) = 0 and v (x, t) ≥ α (|x|) , ∀ x ∈ Rn, t ≥ 0. (3.10)

and α (p) −→∞ as p −→∞.
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In the previous definitions of l.p.d.f.s and p.d.f.s, the energy was not bounded from the top due

to variety of t.

Definition 3.13 (Decrescent functions) A continuous function v (x, t) : Rn ×R+ 7−→ R+ is called

a decrescent function if, there exists a function β (.) class K, such that

v (x, t) ≤ β (|x|) , ∀ x ∈ Bh, t ≥ 0 (3.11)

Example 3.1 ( Examples of energy-like functions) In the following we will see examples of K

and KR-class energy-like function. Which achieve these properties:

1. v (x, t) = |x|2: p.d.f., decrescent.

2. v (x, t) = xTPx, with P ∈ Rn×n > 0: p.d.f , decrescent.

3. v (x, t) = (t+ 1) |x|2 : p.d.f .

4. v (x, t) = e−t |x|2 : decrescent.

5. v (x, t) = sin2
(
|x|2
)
: l.p.d.f , decrescent.

6. v (x, t) = etxTPx with P not positive definite: not in any of the above classes.

7. v (x, t) not explicitly depending on time t: decrescent.

Generally speaking, the basic theorem of Lyapunov states that when v (x, t) is a p.d.f . or an l.p.d.f .

and dv(x,t)
dt
≤ 0 then we can conclude stability of the equilibrium point. The time derivative is taken

along the trajectories of (3.1), i.e.,

dv (x, t)

dt
p(3.1)=

∂v (x, t)

∂t
+
∂v (x, t)

∂x
f (x, t) (3.12)

The rate of change of v (x, t) along the trajectories of the vector field (3.1) is also called the Lie

derivative of v (x, t) along f (x, t). The following table is based on translated the origin to the

equilibrium point.
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Proof. 1. Since v is an l.p.d.f ., we have that for some α (.) ∈ K,

v (x, t) ≥ α (|x|) ,∀ x ∈ Bs, (3.13)

also, the hypothesis is that

v′ (x, t) ≤ 0 , ∀ t ≥ t0,∀ x ∈ Br (3.14)

Given ∈> 0, define ε1 = min (ε, r, s). Choose δ > 0 such that

β (t0, δ) = sup
|x|≤δ

v (x, t0) < α (ε1)

Such a δ always exists, since β (t0, δ) is a continuous function of δ and α (ε1) > 0. We now claim

tha |x (t0)| ≤ δ indicates that |x (t)| ≤ ε1, ∀t ≥ t0. The proof is by contradiction. Clearly since

α (|x (t0)|) ≤ v (x (t0) , t0) < α (ε1)

it follows that |x (t0)| < ε1. Now, if it is not true that |x (t)| < ε1 for all t, let t1 > t0 be the first

instant such that |x (t)| ≥ ε1. Then

v (x (t1) , t1) ≥ α (ε1) > v (x (t0) , t0) (3.15)

But this is a contradiction, since v′ (x (t) , t) ≤ 0 for all |x| < ε1. Thus,

|x (t)| < ε1, ∀ t ≥ t0

2. Since v is decrescent,

β (δ) = sup
|x|≤δ

sup
t≥t0

v (x, t) (3.16)

is nondecreasing and satisfies for some d

β (δ) <∞ for 0 ≤ δ ≤ d

Now choose δ such that β (δ) < α (ε1) .If −v̇ (x, t) is an l.p.d.f ., then v′ (x, t) satisfies the conditions

of the previous proof so that 0 is a uniformly stable equilibrium point. We need to show the

existence of δ1 > 0 such that for ε > 0 there exists T (ε) <∞ such that

|x0| < δ1 =⇒ |φ (t1 + t, x0, t1)| < ε when t > T (ε)

The hypotheses guarantee that there exist functions α (.) , β (.) , γ (.) ∈ K such that ∀t ≥ t0,∀xε
Br, such that 

α (|x|) ≤ v (x, t) ≤ β (|x|) ,

v′ (x, t) ≤ −γ (|x|)
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Given ε > 0, define δ1, δ2 and T by

β (δ1) < α (r) ,

β (δ2) < min (α (ε) , β (δ1)) ,

T = α (r) /γ (δ2) .

This choice is explained in Figure 3.3. We now show that there exists at least one instant t2 ∈
[t1, t1 + T ] when |x0| < δ2. The proof is by contradiction. The notation φ (t, x0, t0) stands for the

trajectory of (3.1) starting from x0 at time t0. Indeed, if

|φ (t, x0, t1)| ≥ δ2, ∀t ∈ [t1, t1 + T ] ,

then it follows that

0 ≤ α (δ2) ≤ v (s (t1 + T, x0, t1) , t1 + T )

= v (t1, x0) +

∫ t1+T

t1

v̇ (τ , φ (τ , x0, t1)) dτ

≤ β (δ1)− Tγ (δ2)

≤ β (δ1)− α (r)

< 0

To create a contradiction, we compare the ends of previous chain of inequalities. Now, if t ≥ t1+T ,

then

α (|φ (t, x0, t1)|) ≤ v (t, φ (t, x0, t1)) ≤ v (t2, φ (t2, x0, t1)) ,

since v′ (x, t) ≤ 0 (the definition of δ1 guarantees that the trajectory stays in Br, so that v′ (x, t) ≤
0). Thus, we get

α (|φ (t, x0, t1)|) ≤ v (t2, φ (t2, x0, t1)) ≤ β (|φ (t2, x0, t1)|)

≤ β (δ2)

< α (ε)

so that φ (t2, x0, t1) < ε for t ≥ t1 + T.

The tabular version of Lyapunov’s theorem is meant to focus the following correlations between

the assumptions on v (x, t) , v′ (x, t) and the conclusions: Decrescence of v (x, t) is related with uni-

form stability and the local positive definite character of v′ (x, t) being associated with asymptotic

stability.

(a) −v′ (x, t) is required to be an I.p.d.f for asymptotic stability.
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Figure 3.3: Lyapunov′s theorem and their constants.

(b) v (x, t) being a p.d.f is associated with global stability. However, this correlation is not per-

fect, since v (x, t) being I.p.d.f . and −v′ (x, t) being l.p.d.f does not guarantee local asymptotic

stability.

3.2.1 Example of Lyapunov’s theory

The next figure represent an RLC circuit wich consisting of the following elements linear in-

ductor, nonlinear capacitor and inductor. Also, we have a model for a mechanical system with a

mass coupled to a nonlinear spring and nonlinear damper. Using as state variables x1, the charge

on the capacitor (respectively, the position of the block) and x2, the current through the inductor

(respectively, the velocity of the block). The following equations describe this system:
x′1 = x2

x′2 = −f (x2)− g (x1)

(3.17)

f (.) represent a continuous function modeling the resistor current-voltage characteristic, and g (.)

the capacitor charge-voltage characteristic (respectively the friction and restoring force models in

the mechanical analog). We suppose that f, g both modellocally passive elements, i.e., there exists

a σ0 such that

σf (σ) ≥ 0 ∀σε [−σ0, σ0]

σg (σ) ≥ 0 ∀σε [−σ0, σ0]
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Figure 3.4: RLC circuit simple application of Lyapunov therem.

The Lyapunov function candidate is the total energy of the system, namely:

v (x) =
x22
2

+

∫ x1

0

g (σ) dσ

The first term is the energy stored in the inductor (kinetic energy of the body) and the second

term the energy stored in the capacitor (potential energy stored in the spring).The function v (x)

is an l.p.d.f ., provided that g (x1) is not identically zero on any interval. Also, we have

v′ (x) = x2 [−f (x2)− g (x1)] + g (x1)x2 = −x2f (x2) ≤ 0

while |x2| is less than σ0. This establishes the stability but not asymptotic stability of the origin.

In effect, the origin is actually asymptotically stable, but this needs the LaSalle principle. We will

return to this point later.

3.2.2 Exponential Stability Theorems

Lyapunov’s basic theorems depend on giving explicit rates of convergence towards equilibrium.

We can modify these theorems to accommodate exponentially stable equilibria. Since a stable

equilibrium is robust for perturbation, all practical applications seek it.

Theorem 3.1 (Exponential stability theorem and its converse) Suppose that f (x, t) : R+×Rn 7−→
Rn has a continuous first partial derivatives in x and is piecewise continuous in t , Then the two state-

ments below are equivalent[15]:

(1) x = 0 is a locally exponentially stable equilibrium point of x′ = f (x, t) , i.e., if x ∈ Bh for h small

enough, there exist m,α > 0 such that

|φ (τ , x, t)| ≤ me−α(τ−t)
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(2) There exists a function v (x, t) and some constants h, α1, α2, α3, α4 > 0 such that for all x ∈ Bh

,t ≥ 0 we have 

α1 |x|2 ≤ v (x, t) ≤ α2 |x|2

dv(x,t)
dt

p(5.1)≤ −α3 |x|2

∣∣∣∂v(x,t)∂t

∣∣∣ ≤ α4 |x|2

(3.18)

Proof. (1) =⇒ (2) : We will prove the inequalities of (3.18) in turn, starting from the definition

of v (x, t): indicate by φ (τ , x, t) the solution of (3.1) at time r starting from x at time t, and define

v (x, t) =

∫ t+T

t

|φ (τ , x, t)|2 dτ (3.19)

where T will be defined later. From the exponential stability of the system at rate α and the lower

bound on the rate of growth, we have

m |x| e−α(τ−t) ≥ |φ (τ , x, t)| ≥ |x| e−l(τ−t) (3.20)

for x ∈ Bh for some h. Also l the Lipschitz constant of f (x, t) exists because of the assumption

that f (x, t) has continuous first partial derivatives with respect to x. This, when used in (3.19),

yields the first inequality of (3.18) for x ∈ Bh (where h′ is chosen to be h /m) with

α1 =

(
1− e−2lT

)
2l

, α2 = m2

(
1− e−2αT

)
2α

(3.21)

Differentiating (3.19) with respect to t yields

dv (x, t)

dt
= |φ (t+ T, x, t)|2 − |φ (t, x, t)|2 +

∫ t+T

t

d

dt

(
|φ (τ , x (t) , t)|2

)
dτ (3.22)

Note that d /dt is the derivative with respect to the initial time t along the trajectories of (3.1).

However, since for all ∆t the solution satisfies

φ (τ , x (t+ ∆t) , t+ ∆t) , t+ ∆t = φ (τ , x (t) , t)

we have that that
d

dt

(
|φ (τ , x (t) , t)|2

)
≡ 0. Using the fact that φ (t, x (t) , t) = x and the exponential

bound on the solution, we have that

dv (x, t)

dt
≤ −

(
1−m2e−2αT

)
|x|2

The second inequality of (3.18) now folIows, provided that T >
(
1
α

)
In m and

α3 = 1−m2e−2αT

3.2. Lyapunov stability theorems 34



Chapter 3. Lyapunov stability theory

Differentiating (3.19) with respect to xj, we have

∂v (x, t)

∂xi
= 2

∫ t+T

t

n∑
j=1

φj (τ , x, t)
∂φj (τ , x, t)

∂xi
dτ (3.23)

By way of notation define

Qij (τ , x, t) =
∂φj (τ , x, t)

∂xi
and

Aij (x, t) =
∂fi (x, t)

∂xj

Interchanging the order of differentiation by τ , with differentiation by xj yields that

d

dτ
Q (τ , x, t) = A (ϕ (τ , x, t) , t) .Q (τ , x, t) (3.24)

Thus Q (τ , x, t) is the state transition matrix associated with the matrix A (φ (τ , x, t) , t) . By the

assumption on boundedness of the partials of f with respect to x, it follows that |A (., .)| ≤ k

for some k, so that

|Q (τ , x, t)| ≤ ek(τ−t)

using this and the bound for exponential convergence in (3.23) yields∣∣∣∣∂v (x, t)

∂x

∣∣∣∣ ≤ 2

∫ t+T

t

m |x| e(k−α)(τ−t)dτ

which is the last equation of (3.18) if we define

α4 =
2m
(
e(k−α)T − 1

)
(k − α)

This completes the proof, but note that v (x, t) is only defined for xεBh′ with h′ = h /m, to

guarantee that φ (τ , x, t) εBh for all τ ≥ t.

(2) =⇒ (1) : This is simple, as may be verified by noting that equation (3.18) reveals that

v′ (x, t) ≤ −α3
α2
v (x, t) (3.25)

This in turn indicates that

v (t, x (t)) ≤ v (t0, x (t0)) e
−α3
α2
(t−t0) (3.26)

Using the lower bound for v (t, x (t)) and the upper bound for v (t0, x (t0)) we get

α1 |x (t)|2 ≤ α2 |x (t0)|2 e−
α3
α2
(t−t0). (3.27)

Using the estimate of (3.27) it follows that

|x (t)| ≤ m |x (t0)| e−α(t−t0).

with m =
(
α2
α1

) 1
2
, α = α3

2α2
.
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3.3 LaSalle’s invariance principle

Lyapunov’s function does not guarantee that the solution will be attracted to the equilibrium

point/set, so we need to extend the theory of Lyapunov. We will now turn to the famous LaSalle

principle[12], which assures that a solution will always gravitate towards the point of equilibrium

even when dv ≤ 0. The importance of the Lassalle principle lies in two main points:

1. Conclusion of asymptotic stability even when −v′ (x, t) is not an l.p.d.f.

2. Prove that the trajectories that start in a certain region will converge with one of the points

of equilibrium in that region.

Definition 3.14 (ω-limit set) A set S ⊂ Rn is the ω-limit set of a trajectory φ (., x0, t0) if for every,

y ∈ there exists a sequence of times tn −→∞ such that φ (tn, x0, t0) −→ y.

Definition 3.15 ( Invariant set ) A set M ⊂ Rn is said to be an invariant set if whenever y ∈ M
and t0 ≥ 0, we have

φ (t, y, t0) ∈M, ∀t ≥ t0

The following propositions gives some properties of invariant sets and ω-limit sets:

Proposition 3.2 If φ (., x0, t0) is a bounded trajectory, its ω-limit set is compact. Further, φ (t, x0, t0)

approaches its ω-limit set as t −→∞.

Proposition 3.3 Assume that the system (3.1) is autonomous and let S be the ω-limit set of any

trajectory. Then S is invariant.

Proof. Let y ∈ S and t1 ≥ 0 be arbitrary. We need to show that φ (t, y, t1) ∈ S for all t ≥ t1. Now

y ∈ S =⇒ ∃tn −→ ∞ such that φ (tn, x0, t0) −→ y as n −→ ∞. Since trajectories are continuous

in initial conditions, it follows that

φ (t, y, t1) = lim
n−→∞

φ (t, φ (tn, x0, t0) , t1) = lim
n−→∞

φ (t+ tn − t1, x0, t0)

since the system is autonomous. Now, tn −→∞ as n −→∞ so that the right hand side converges

to an element of S.

Proposition 3.4 (LaSalle’s Principle) Let v : Rn −→ R be continuously differentiable and suppose

that

Ωc = {x ∈ Rn : v (x) ≤ c}
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is bounded and that v′ ≤ 0 for all x ∈ Ωc. Define S ⊂ Ωc by

S = {x ∈ Ωc : v′ (x) = 0}

and let M be the largest invariant set inS. Then, whenever x0 ∈ Ωc, φ (t, x0, 0) approaches M as

t −→∞.

Proof. Let x0 ∈ Ωc. Since v (φ (t, x0, 0)) is a nonincreasing function of time we see that φ (t, x0, 0) ∈
Ωc, ∀t. Further, since Ωc is bounded v (φ (t, x0, 0)) is also bounded below. Let

c0 = lim
t−→∞

v (φ (t, x0, 0))

and let L be the ω limit set of the trajectory. Then v (y) = c0 for y ∈ L. Since L is invariant we

have that v′ (y) = 0, ∀y ∈ L so that L ⊂ S. Since M is the largest invariant set inside S, we have

that L ⊂ M . Since s (t, x0, 0) approaches L as t −→ ∞, we have that s (t, x0, 0) approaches M as

t −→∞.

Theorem 3.2 (LaSalle’s principle to establish asymptotic stability) Let v : Rn 7−→ R be such

that on Ωc = {x ∈ Rn : v (x) ≤ c}, a compact set we have v′ (x) ≤ 0. Define

S = {x ∈ Ωc : v′ (x) = 0}

Then, if S contains no trajectories other than x = 0 then 0 is asymptotically stable.

Theorem 3.3 (Application of LaSalle’s principle to prove global asymptotic stability) Let v (x) :

Rn 7−→ R be a p.d.f . and v′ (x) ≤ 0 for all x ∈ Rn. Also, let the set

S = {x ∈ Rn : v′ (x) = 0}

contain no nontrivial trajectories. Then 0 is globally, asymptvtically stable.

Example 3.2 Spring-mass system with damper: This system is described by
x′1 = x2

x′2 = −f (x2)− g (x1)

(3.28)

If f.g are locally passive. i.e.,

σf (σ) ≥ 0, ∀σ ∈ [−σ0, σ0]

A suitable Lyapunov function (I.p.d.f) is

v (x1, x2) =
x22
2

+

∫ x1

0

g (σ) dσ
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We have

v′ (x1, x2) = −x2f (x2) ≤ 0 for x2 ∈ [−σ0, σ0]

Now choose

c = min (v (−σ0, 0) , v (σ0, 0))

Then v′ ≤ 0 for

x ∈ Ωc = {(x1, x2) : v (x1, x2) ≤ c}

As a consequence of LaSalle’s principle, the trajectory enters the largest invariant set in

Ωc ∩ {(x1, x2) : v′ = 0} = Ωc ∩ {x1, 0}

To obtain the largest invariant set in this region note that x2 (t) ≡ 0 =⇒ x1 (t) ≡ x10 =⇒
x′1 (t) ≡ 0 = −f (0) − g (x10) , then g (x10) = 0 =⇒ x10 = 0. Thus, the largest invariant set inside

Ωc ∩{(x1, x2) : v′ = 0} is the origin. Thus, the origin is locally asymptotically stable. The application

of LaSalle’s principle shows that one can give interesting conditions for the convergence of trajectories

of the system of (3.28) even when g (.) is not passive. It is easy to see that the arguments given above

can be easily modified to obtain convergence results for the systern (3.28), provided that
∫ x1
0
g (σ) dσ

is merely bounded below.

Now, we are introducing a generalization of LaSalle’s principle:

Theorem 3.4 (Global LaSalle’s principle) Consider the system of (3.1). Let v (x) be a p.d.f with

v′ ≤ 0, ∀x ∈ Rn. If the set

s = {x ∈ Rn, v′ (x) = 0}

contains no trajectories other than x = 0 then 0 is globally asymptotically stable.

There is a remarkable aversion to LaSalle’s theory that holds for periodic systems:

Theorem 3.5 (LaSalle’s principle for periodic systems) Suppose that the system of (3.1) is peri-

odic, i.e.,

f (x, t) = f (x, t+ T ) , ∀t, ∀x ∈ Rn

Moreover, let v (x, t) be a p.d.f, which is periodic in t also with period T . Define

s = {x ∈ Rn, v′ (x, t) = 0, ∀t ≥ 0}

Then if v′ (x, t) ≤ 0, ∀t ≥ 0, ∀x ∈ Rn and the largest invariant set in S is the origin, then the origin

is globally (uniformly) asymptotically stable.
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The Lassalle invariance principle is limited in its applications due to the fact that it applies to

periodic and time-invariant systems. Therefore, we face some difficulties in extending the result

of this principle to arbitrary time-varying systems:

1. {x : v′ (x, t) = 0} may be a time-varying set.

2. Tbe ω-limit set of a trajectory is itself not invariant. However, if we have the hypothesis that

v′ (x, t) ≤ −ω (x) ≤ 0

then the set S may bedefined to be

{x : ω (x) = 0}

We may state the following gencralization of LaSalle’s theorem:

Theorem 3.6 (Generalization of LaSalle’s theorem) Suppose that the vector field f (x, t) of (3.1)

is locally Lipschitz continuous in x, uniformly in t, in a ball ofradius r. Let v (x, t) satisfy for

functions α1, α2 of class K

α1 (|x|) ≤ v (x, t) ≤ α2 (|x|) (3.29)

Moreover, for some non-negative function ω (x), assume that

v′ (x, t) =
∂v

∂t
+
∂v

∂x
f (x, t) ≤ −ω (x) ≤ 0 (3.30)

Then for all |x (t0)| ≤ α−12 (α1 (r)), the trajectories x (.) are bounded and

lim
t−→∞

ω (x (t)) = 0 (3.31)

Proof. The proof of this theorem needs a fact from analysis called Barbalat’s lemma, which states

that if if φ (.) : R 7−→ R is a uniformly continuous integrable function with
∫∞
0
φ (t) < ∞ then

limt−→∞ φ (t) = 0. The requirement of uniform continuity of if φ (.) is necessary for this lemma, as

easy counterexamples will show. We will use this lemma in what folIows. First, note that a simple

contradiction argument shows that for any p < r,

|x (t0)| ≤ α−12 (α1 (p)) =⇒ |x (t)| ≤ p, ∀t ≥ t0

Thus |x (t)| < r for all t ≥ t0, so that v (x (t) , t) is monotone decreasing. This yields that∫ t

t0

ω (x (τ)) dτ ≤
∫ t0

t

v̇ (x (τ) , τ) dτ = v (x (t0) , t0)− v (x (t) t) (3.32)
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Since v (x, t) is bounded below by 0, it follows that
∫ t
t0
ω (x (τ)) dτ <∞. By the continuity of f (x, t)

(Lipschitz in x, uniformly in t) and the boundedness of x (t), it follows that x (t) is uniformly

continuous, and so is ω (x (t)). Using Barbalat’s lemma it follows that limt−→∞ ω (x (t)) = 0.

The theorem indicates that x (t) approaches a set E defined by

E = {x ∈ Br : ω (x) = 0}

In fact, it is very difficult to show that the set is invariant. However, this becomes possible if the

function f (x, t) is: Autonomous, T -periodic or asymptotically autonomous.

3.4 Unstability theorems

In previous definitions, we discussed Lyapunov’s theorems of stability and were able to prove

the stability of the equilibrium point. Now we will deal with the theorems of unstability of the

equilibrium point.

Definition 3.16 (Unstable equilibrium) The equilibrium point 0 is unstable at t0 if it is not stable.

We may parse the definition, by systematically negating the definition of stability: There exists

an ε > 0, such that for all δ balls of initial conditions (no matter how small the ball), there

exists at least one initial condition, such that the trajectory is not confined to the ε ball; that is to

say:∀δ∃x0εBδ such that ∃tδ with |xtδ | ≥ ε.

Note that unstability is a local concept. However, there are not many who can provide a definition

of unstability. The definition of unstability does not require every initial condition starting arbit-

rarily near the origin to be expelied from a neighborhood of the origin, it just requires one from

each arbitrarily small neighborhood of the origin to be expelled away. We’ll see this in the static

linear systems ẋ = Ax is unstable, if just one eigenvalue of A lies in C◦+. The unstability theorems

have the same mechanism: They insist on v′ being an l.p.d.f , so as to have a mechanism for the

increase of v. However, since we do not need to guarantee that every initial condition close to the

origin is repelled from the origin, we do not need to assurne that v is an l.p.d.f.

We state and prove two examples of unstability theorems:

Theorem 3.7 (Unstability theorem) The equilibrium point 0 is unstable at time t0 if there exists

a decrescent function φ (.) : Rn × R+ 7−→ R such that (1) v̇ (x, t) is an l.p.d.f . (2) v (0, t) = 0 and

there exist po ints x arbitrarily close to 0 such that v (x, t0) > 0.
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Proof. We are given that there exists a function v (x, t) such that

v (x, t) ≤ β (|x|) , x ∈ Br

v̇ (x, t) ≥ α (|x|) , x ∈ Bδ

We need to show that for some ε > 0, there is no δ such that

|x0| < δ =⇒ |x (t)| ≤ ε,∀t ≥ t0

Now choose ε = min (r, s). Given δ > 0 choose x0 with |x0| < δ and v (x0, t0) > 0. Such a choice

is possible by the hypothesis on v (x, t0). So long as φ (t, x, t0) lies in Bε, we have v′ (x (t) , t) ≥ 0,

which shows that

v (x (t) , t) ≥ v (x0, t0) > 0

This implies that |x (t)| is bounded away from 0. Thus v′ (x (t) , t) is bounded away from zero.

Thus, v (x (t) , t) will exceed β (ε) in finite time.then |x (t)| will exceed ε in finite time.

Theorem 3.8 (Chetaev’s theorem.) The equilibrium point 0 is unstable at time if there is a de-

crescent function v : R+ × Rn 7−→ R such that: (1) v′ (x, t) = λv (x, t) + v1 (x, t) where λ > 0 and

v1 (x, t) ≥ 0, ∀t ≥ 0, ∀ x ∈ Br. (2) v (0, t) = 0 and there exist points x arbitrarily close to 0 such that

v (x, t0) > 0.

Proof. Choose ε = r and given δ > 0 pick x0 such that |x0| < δ and v (x0, t0) > 0. When |x (t)| ≤ r,

we have

v′ (x, t) = λv (x, t) + v1 (x, t) ≥ λv (x, t)

If we multiply the inequality above by integrating factor e−λt, it follows that

dv (x, t) e−λt

dt
≥ 0

Integrating this inequality from t0 to t yields

v (x (t) , t) ≥ eλ(t−t0)v (x0, t0)

Thus v (x (t) , t) grows without bound. Since v (x, t) is decrescent

v (x, t) ≥ β (|x|)

for some function of dass K, so that for some tδ, v (x (t) , t) > β (ε) establishing that |x (tδ)| ≤ ε.
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3.5 General conclusion

First of all, a simplified study of stable and unstable sets is presented, with special mention of

manifolds.

In the first chapter, we dealt with definitions and basic characteristics and the most important

thing it was the classification of the manifolds, where we classified them into three types: the

stable manifold, the unstable manifold, and the central manifold.

In the second chapter, we examined the phenomenon of chaos through the boost converter in

equations of a certain shape. We carefully analyzed complex behavior in several parameters and

then finally arrived at the case in which robust chaos occurs.

In the third chapter, we attached great importance to stability theories with Lyapunov’s concept,

and then expanded to the LaSalle’s principle. We also studied unstability theories.

We point out that we have annotated most of the definitions and theories with several examples

that enabled us to identify the importance of these theories in our practical life.
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