République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Tébessa

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département : Département des Sciences de la matière

MEMOIRE DE MASTER

Domaine: Sciences de la Matière Filière: Physique Option: Physique de la Matière Condensée

<u>Thème :</u>

Description des transitions électromagnétiques dans les isotopes du Phosphore avec A=25 à 36 moyennant l'interaction PSDPF

Présenté par:

Drar Fatma et Bouchiba Roumaissa

<u>Devant le jury</u> :

Président : BOUDIAR abíd	MCB	Université Larbi Tébessa
		Tébessa
Encadreur : BOUHELAL Mouna	MCA	Université Larbi Tébessa
		Tébessa
Examinateur: TAG Med l'amíne	MAA	Université Larbi Tébessa
		Tébessa

Date de soutenance: 24 / 05 /2017

Note :

Mention :.....

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Tébessa

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département : Département des Sciences de la matière

MEMOIRE DE MASTER

Domaine: Sciences de la Matière Filière: Physique Option: Physique de la Matière Condensée

Thème :

Description des transitions électromagnétiques dans les isotopes du Phosphore avec A=25 à 36 moyennant l'interaction PSDPF

Présenté par:

Drar Fatma et Bouchiba Roumaissa

Devant le jury : BOUDLAR abid Président : MCB Université Larbi Tébessa Tébessa Encadreur : BOUHELAL Mouna MCA Université Larbi Tébessa Tébessa Examinateur: TAG Med l'amíne MAA Université Larbi Tébessa Tébessa

Date de soutenance: 24 / 05 /2017

Note : 18,00

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE

ibered ESESNIV

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Larbi Tébessi - Tébessa

Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie

wind rate , in all rated into L.L. CONCEPTER PLACES

Déclaration sur l'honneur de non-plagiat

(à joindre obligatoirement au mémoire, remplie et signée)

Je soussigné(e), Nom, Prénom :...... Kare Régulièrement inscrit(e) en Master au département :... Sciences de N° de carte d'étudiant : 2012/1402 869 112/ _ 2012 / 4014 3 13 42 5 2016 -Année universitaire :... Domaine: Sciences C malion

Filière:.... . p rang

Spécialité: ... opulsique de Onden see Intitulé du mémoire :... escription des transition el ectromagneliques dans les isétéres du phosphore avec A: 25 à 36

6 interaction PSOPE Atteste que mon mémoire est un travail original et que toutes les sources utilisées ont été indiquées dans leur totalité. Je certifie également que je n'ai ni recopié ni utilisé des idées ou des formulations tirées d'un ouvrage, article ou mémoire, en version imprimée ou électronique, sans mentionner précisément leur origine et que les citations intégrales sont signalées entre guillemets.

Sanctions en cas de plagiat prouvé :

moyennont

L'étudiant sera convogué devant le conseil de discipline, les sanctions prévues selon la gravité du plagiat sont :

- L'annulation du mémoire avec possibilité de le refaire sur un sujet différent ;
- L'exclusion d'une année du master ;
- L'exclusion définitive.

Fait à Tébessa, le :.. 11 Juin 2019

Signature de l'étudiant(e) :

ملخص

نموذج الطبقات النووي يسمح بالخصوص بوصف الخصائص الطاقوية و الكهرومغناطيسية باستعمال تفاعلات فعالة للأنوية الذرية أحد أهم مناطق الأنوية التي تهم الفيزيائيون هي منطقة أنوية الطبقة sd

وصف الحالات ذات الزوجية الموجبة في هاته الأنوية يتم عن طريق التفاعلات الفعالة USDA أو USDA-B دراسة الأطياف الكاملة للطاقة للحالات ذات الزوجية الموجبة و السالبة بصفة منصقة ,عبر كل الطبقة sd يتم بواسطة التفاعل PSDPF

التفاعلPSDPF استعمل في هذا العمل لوصف بنية نظائر سلسلة الفوسفور من A=25 إلى A=36 النتائج المحصلة عليها تتطابق بشكل ملحوظ مع التجربة تنبوءات هامة حققت بواسطة هاته الدراسة .

Abstract

The nuclear shell model makes it possible, in particular, to describe the energetic and electromagnetic properties, using effective interactions, of atomic nuclei. One of the regions of nuclei, which interest a large part of the nuclear community, is the region of nuclei of sd shell.

The description of positive parity states in these nuclei is done using the effective USD or USDA/B interactions. The study of the complete energy spectra of positive and negative parity states, in consistent way, throughout the sd shell is carried out using the PSDPF interaction.

The PSDPF interaction has been used in this work, to describe the structure of the isotopes of the Phosphorus chain with A = 25 to 36. The results obtained are in remarkable agreement with experience. Important predictions were made using this study.

Résumé

Le modèle en couches nucléaire permet, en particulier, de décrire les propriétés énergétiques et électromagnétiques en utilisant des interactions effectives des noyaux atomiques. L'une des régions des noyaux qui intéresse une partie importante de la communauté nucléaire est la région des noyaux de la couche sd.

La description des états de parité positive dans ces noyaux se fait à l'aide des interactions effectives USD ou USDA/B. L'étude des spectres complets en énergie d'états de parités positive et négative, d'une façon consistante, à travers toute la couche sd s'effectue en utilisant l'interaction PSDPF.

L'interaction PSDPF a été utilisée dans ce travail, pour décrire la structure des isotopes de la chaine du Phosphore avec A= 25 à 36. Les résultats obtenus sont en accord remarquable avec l'expérience. Des prédictions importantes ont été réalisées à l'aide de cette étude.

Dédicace

Je dédie ce travail à : A mon père et à ma très chère mère pour leurs affections et leur amour Que dieu les garde et les protégé A Ma sœurs : **Amira** A Mes frères : **Amjed**, **ISLEM** et **Anasse.**

A Mes amis et collègues et à tous ceux qui sont dans mon cœur...

Roumaissa

Dédicace

Je dédie ce travail à : A mon père et à ma très chère mère pour leurs affections et leur amour Que dieu les garde et les protégé A Ma sœurs : Khadija A Mes frères : Khaled, ISLEM, EL MOUTASSAM BELLEH. A Mon amie chère Amina et Roumaissa A Mes amis et collègues et à tous ceux qui sont

dans mon cœur...

FATMA

Remerciement

Mes remerciements vont tout premièrement. A Dieu tout puissant pour la volonté, la santé Et la patience qu'il nous a donnée pour terminer ce mémoire Nous exprimons toutes mes gratitudes au Docteur BOUHELAL Mouna, pour l'effort fourni, les conseils prodigués, sa patience et sa Persévérance dans le suivi. Nous remercions très sincèrement. Nous teignons à remercier aussi à BOUDIAR abid d'avoir accepté d'être président du jury. Nous teignons à remercier aussi à TAG Med l'amine de M'honorer en acceptant d'examiner notre travail Nous remercions aussi tous **les enseignants** d'avoir répond a Aimablement afin de juger ce travail en participant au jery de thése particulièrement toute ma reconnaissance pour m'avoir fait bénéficier dès ses compétences scientifiques, ses qualités humaines et sa constante disponibilité A tous ceux qui ont contribué de près ou de loin à la Réalisation de ce travail.

f.drar - R.bouchiba

Table des matières

Remerciement	
Dédicace	
Table des matières	
Liste des figures	
Liste des tableaux	
Liste des symboles	
Résumé	
Introduction	1
Chapitre 01 : Modèle en couche et transition électromagnétiques	
1. Modèle en couches sphériques	2
2. Au–delà du champ moyen	3
3. Les ingrédients du modèle en couches	4
Choix de valence	4
Interaction effective	4
Codes de model en couche	4
4. Transition électromagnétique	5
4-1 Règle de la transition électromagnétique	5
4-2 Probabilité de transition et duré de vie	5
4-3 Charge effective	6
Chapitre 02 : Les noyaux de la couche sd	
1. Région de la couche sd	7
2. L'interaction PSDPF	8

3 . Etats normaux de parité positive et intrus parité négative						
4. Ingrédients des modèles en couche dans les cas des noyaux sd	9					
6. Transitions E2 et E3 dans les noyaux de la couche Sd	9					
Chapitre 03 : Description des isotopes ${}^{25-29}P$ avec (N <z)< th=""><th></th></z)<>						
1. Propriétés des isotopes de la chaine du phosphore	10					
L'isotope ${}^{25}P$	11					
L'isotope ²⁶ P	12					
L'isotope ²⁷ P	12					
L'isotope ²⁸ P	12					
L'isotope ²⁹ P	13					
Chapitre 04 : Description de la structure des isotopes du phosphore avec A : à 36	= 30					
L'isotope ³⁰ P	15					
L'isotope ³¹ P	16					
L'isotope ${}^{32}P$	17					
L'isotope ³³ P	18					
L'isotope ³⁴ P	19					
L'isotope ³⁵ P	21					
L'isotope ³⁶ P	22					
Chapitre 05 : Description des transitions électromagnétiques des isotopes de chaine du phosphore	e la					
1. Isotopes d'intérêt astrophysique	23					
2. Description des transitions électromagnétique	24					
1-1 Description des durées de vie des isotopes du phosphore	24					
1-2 Calcule de TEM dans ^{33,34,35} P	25					
Conclusion	32					

Liste des tableaux

Tableau N°	Titre	Page
Tableau 3-1	Caractéristique des isotopes du phosphore ²⁵⁻³⁶ p [11]	10
Tableau 3-2	Comparaison des états fondamentaux expérimentaux [11] est calculé des noyaux miroirs ²⁵ P et ²⁵ Ne	11
Tableau 3-3	Comparaison des spectres en énergie en (KeV) expérimentaux [11] et calculée des noyaux miroirs P et Na l'état avec * c'est pris de la réf [19]	11
Tableau 3-4	Comparaison des spectres en énergie en KeV) expérimentaux [11] est calculé des noyaux miroire ²⁷ P et ²⁷ Mg	12
Tableau 3-5	Comparaison des spectres en énergie (en KeV) expérimentaux [11] est calculée du ²⁸ p et ²⁸ Al.	13
Tableau 3-6	Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculés du ²⁹ p et ²⁹ Si	14
Tableau 4-1	Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculés du ³⁰ P	16
Tableau 4-2	Comparaison des spectres en énergie (en keV) expérimentaux [11, 20] et calculés du ³¹ P	17
Tableau 4-3	Comparaison des spectres en énergie (en keV) expérimentaux [11, 21] et calculés du ³² P	18
Tableau 4-4	Comparaison des spectres en énergie (en keV) expérimentaux [11, 22, 23] et calculés du ${}^{33}P$	19
Tableau 4-5	Comparaison des spectres en énergie (en keV) expérimentaux [11,23, 24] et calculés du ³⁴ P	20
Tableau 4-6	Comparaison entre les propriétés des états dégénérés 2 ⁻ et 2 ⁺ .	21

Tableau 4-7	Comparaison des spectres en énergie (en keV) expérimentaux [11, 25] et calculés du ³⁵ P	21
Tableau 4-8	Comparaison des spectres en énergie (en keV) expérimentaux [11, 25] et calculés du ³⁶ P	22
Tableau 5-1	Propriétés de niveaux d'intérêt astrophysique [26] du ³⁰ P	23
Tableau 5-2	Comparaison expérience versus théorie des durées de vie moyenne des premiers états du phosphore	25
Tableau 5-3	Comparaison entre les propriétés électromagnétique expérimentales [11] et calculée du ³⁵ P	27
Tableau 5-4	Comparaison entre les propriétés électromagnétique expérimentales [11] et calculée du ³⁴ P	29
Tableau 5-5	Comparaison entre les propriétés électromagnétique expérimentales [11] et calculée du ³³ P	31

Liste des figures

Figure Nº	Titre	Page
Figure 1-1	Différence entre niveaux d'énergie selon le modèle en couches sphériques.	3
Figure 1-2	Niveaux d'énergie individuels du noyau selon le modèle en couches [7].	4
Figure 1-3	Schéma de l'occupation des orbitaux nucléaires dans le modèle en couches.	4
Figure 1-4	Emission gamma d'un noyau	5
Figure 2-1	Charte des noyaux de la couche sd [11]. Pour les noyaux marqués d'une étoile « * », l'état fondamental est non lié, c'est–à–dire instable par rapport à l'émission de particule.	7
Figure 2-2	Schématique des premiers niveaux excités du ³⁴ P.	8
Figure 2-3	Paramètres ajustés pour les transitions E2, M1 et E3 (voir texte).	9
Figure 3-1	Variation de RMSD (en keV) en fonction de A des isotopes du Phosphore avec N <z. aussi<br="" des="" les="" miroirs="" noyaux="" rmsd="" sont="">présentés.</z.>	14
Figure 4-1	Variation de RMSD (en keV) en fonction de A des isotopes du Phosphore ³⁰⁻³⁶ P.	22

Liste des symboles

EL	:	Transition électrique
ML	:	Transition magnétique
π_{γ}	:	Parité d'une transition (du photon)
Z	:	Nombre de protons
N	:	Nombre de neutrons
A	:	Nombre atomique (de nucléons, A=Z+N)
Π	:	Proton
υ	:	Neutron
TEM	:	Transitions Electromagnétiques
S	:	Force d'une transition
Γ_{γ}	:	Les largeurs de transition
Γ_w	:	L'estimé de Weisskopf
$B(\sigma L)$:	Probabilité réduite de transition
E _{Th}	:	Energie théoriques
E _{Exp}	:	Energie expérimentales
$\lambda(SL)$:	Taux de transitions
E_i	:	Energie de l'état initial
E_{f}	:	Energie de d'état final
RMSD	:	Root Mean Square Deviation
PSDPF	:	Interaction effective
0ħw	:	Parité positive
1ħw	:	Parité négative
USD	:	Interaction
USDA	:	Interaction
USDB	:	Interaction
ep	:	La charge effective de proton
en	:	La charge effective de neutron
δр	:	polarisation de charge de proton
δn	:	polarisation de charge de neutron
$ au_m$:	La durée de vie moyenne

Introduction

Le noyau atomique, découvert en 1909 par Ernest Rutherford, est un système quantique à plusieurs corps très complexe. Depuis les années 1920, les physiciens ont formulé de nombreux modèles du noyau afin de décrire les propriétés et la structure nucléaires.

L'un des modèles de structure nucléaire les plus réussis est le modèle en couches nucléaire, qui a permis de comprendre nombreuses caractéristiques telles: les spectres en énergie d'excitation, les transitions électromagnétiques, les moments magnétiques ainsi que les transitions bêta.

L'interaction du modèle en couches USD a été très couronnée de succès pour décrire les propriétés des états de parité positive normaux appelés états 0ħ ∞ dans l'espace de valence sd (Les noyaux de la couche sd ayant un nombre de protons (Z) et un nombre de neutrons (N) compris entre 8 et 20) avec un cœur de ¹⁶O, ayant une configuration 0 particule – 0 trou. Les états intrus de parité négative ayant une configuration 1 particule – 1 trou appelés états 1ħ ∞ . Ces états résultent de l'excitation d'un nucléon de la couche p vers sd pour les noyaux proches de ¹⁶O ou de la couche sd vers pf pour les noyaux au voisinage du ⁴⁰Ca.

Afin de reproduire les états intrus, l'espace modèle devrait être étendu à l'espace complet p–sd–pf avec un cœur de ⁴He. Une interaction 1ħ ω appelée PSDPF compatible avec cette extension de l'espace a été développée par *M. BOUHELAL* à Strasbourg, qui assure une description consistante d'états 0 et 1 ħ ω à travers toute la couche *sd*.

Dans notre mémoire, nous avons utilisé l'interaction PSDPF pour calculer les spectres en énergie des isotopes de la chaîne du Phosphore avec A=25 à 36 et les comparés aux données expérimentales connues. Nous avons également calculé les transitions électromagnétiques dans ces isotopes.

Le plan de ce manuscrit sera réparti comme suit :

- Dans le chapitre 1, est présenté un rappelle d'historique du modèle en couches nucléaire et la nécessité d'utilisation d'interactions résiduelles à deux corps, et nous rappelons les notions des transitions électromagnétiques.
- Dans le chapitre 2, une introduction sur la structure des noyaux sd est exposée, avec une présentation de l'interaction PSDPF.
- Le chapitre 3, est dédié à la comparaison des spectres en énergie calculés et expérimentaux pour les isotopes du Phosphore avec N<Z, du ^{25}P au ^{29}P .
- Le chapitre 4, est consacré à la discussion des résultats obtenus et à leur comparaison avec les données expérimentales d'isotopes avec N> Z, du ${}^{30}P$ au ${}^{36}P$.
- Dans le chapitre 5, nous discutons les résultats de calcul des durées des états typiques ainsi que les transitions électromagnétiques dans ³³P, ³⁴P et ³⁵P. L'intérêt de l'étude du ³⁰P dans l'astrophysique nucléaire sera montré.

Chapitre1

Modèle en couches et transitions électromagnétiques

Le modèle en couche introduit pour expliquer les régularités des propriétés nucléaires associées aux nombres magiques. Ce modèle a eu des progrès quantitatifs et qualitatifs pour la compréhension de la structure des noyaux qui consiste à décrire la structure nucléaire à partir d'interactions élémentaires entre nucléons. Cette interaction ou encore la force nucléaire n'est pas connue avec précision, ce qui conduit à proposer des para-métrisations phénoménologiques et à utiliser des interactions effectives [1]. Pour que le modèle soit valable, il doit rendre compte des résultats expérimentaux observés. Les noyaux créés dans une réaction nucléaire se trouvent, en général, dans des états excités. Si ces états sont liés, leur décroissance vers le niveau fondamental se fait principalement par des émissions de rayonnements γ . Nous allons dans ce chapitre abordé les bases du modèle en couches.

1. Modèle en couches sphériques

Le plus simple des modèles microscopiques est le modèle en couches sphérique basé sur le fait que les nucléons sont arrangés dans des couches ou des niveaux dans le noyau. dans l'hypothèse d'un modèle de particules indépendantes, où chaque nucléon se meut librement dans un champ moyen créé par les autres nucléons sans aucune interaction entre eux. Afin de reproduire les nombres magiques (2, 8, 20, 28, 59, 82 et 126) et la structure en couches des noyaux il faut déterminer ce potentiel moyen qui ne peut être de forme quelconque [2]. En première approximation le champ moyen peut avoir la forme d'un oscillateur harmonique: $V_{0H} = \frac{1}{2} m\omega^2 r^2$. Ce potentiel reproduit seulement les premiers nombres magiques 2, 8 et 20, une amélioration a été apportée en introduisant un terme représentant l'effet de bord Dl^2 (D < 0). Il a permis de lever la dégénérescence en l des solutions de l'oscillateur harmonique [3]. Cependant, là encore on ne retrouve pas la bonne séquence de nombres magiques. En 1949, Goeppert-Mayer [4] (suite à une remarque de Fermi) ainsi que Haxel, Jensen et Suess [5], proposaient l'ajout d'un troisième terme dit «spin-orbite» au potentiel moyen. En effet, ce couplage spin-orbite permet de lever la dégénérescence d'un niveau étiqueté par n et ℓ et d'expliquer naturellement tous les nombres magiques de 2 à 126. L'hamiltonien d'un nucléon individuel « i » s'écrit alors [6] :

$$h_i = T_i + \frac{1}{2}m\omega^2 r_i^2 + Dl_i^2 + f(r)\vec{l}_i\vec{s}_i$$
(1-1)

En première approximation, l'hamiltonien du modèle de particules indépendantes peut être écrit comme la somme des hamiltonien des particules individuelles :

$$H_0 = \sum_{i}^{A} h_i \tag{1-2}$$

L'équation de Schrödinger a la forme suivante : $H_0\psi = E_0\psi$ (1-3) Les fonctions d'ondes propres de l'hamiltonien hi qui en résultent sont de la forme :

 $\psi_{nljm}^{i}(r,\sigma) = R_{nl}(r) \sum_{ml,ms} lm_l \frac{1}{2} m_s |jmY_l^{m_l}(\theta,\varphi) x_s^{m_s}(\sigma)|, \text{ avec } m = m_l + m_s \quad (1-4)$ L'énergie d'un niveau (nlj) peut être calculée par la relation:

$$E_{nlj}^{i} = (N + \frac{3}{2}) \hbar \omega + D l (l+1) \hbar^{2} + \frac{\hbar^{2}}{2} < f(r) >_{nl}$$

$$= \frac{-(l+1)}{l}, \quad j = l - \frac{1}{2}, \quad j = l + \frac{1}{2} \quad (1-5)$$

$$= l + \frac{1}{3} \text{ MeV}$$

$$(n+1),1$$
 $(n+1),1,j=1+\frac{1}{2}$

La figure 1-1 : Différence entre niveaux d'énergie selon le modèle en couches sphériques.

Le spectre des niveaux individuels du champ moyen est représenté sur la (Fig1-2). A partir de la gauche, la structure de l'oscillateur harmonique est illustrée, puis l'effet dû au terme en l^2 , à droite, sont présentés les niveaux individuels étiquetés par n, l et j en tenant compte de l'interaction spin-orbite. Les nombres magiques prévus sont également indiqués. Le remplissage de ces niveaux se fait au fur et à mesure en commençant par les orbitales les plus basses en énergie [2].

Figure 1-2: Niveaux d'énergie individuels du noyau selon le modèle en couches [7].

2. Au-delà du champ moyen

Considérer l'interaction résiduelle nulle est, toutefois, trop grossier pour décrire en détail la spectroscopie du noyau. Il est nécessaire de prendre en compte l'interaction nucléonnucléon et de la traiter comme une perturbation du potentiel central. La description correcte d'un tel noyau nécessite de prendre en compte l'interaction à 2 corps. L'hamiltonien de ce noyau se met alors sous la forme [6] :

$$H = \sum_{i=1}^{A} (T_i + U_i) + \left(\sum_{i>j}^{A} V_{ij} - \sum_{i=1}^{A} U_i\right) = H_0 + H_r$$
(1-6)

 H_0 décrit le mouvement indépendant des nucléons dans un potentiel à 1 corps U. h_i désigne l'hamiltonien individuel du nucléon i.

 H_r représente l'interaction résiduelle à 2 corps qui sont considérée comme une perturbation de l'hamiltonien H par un choix adéquat du champ moyen U [6].

L'équation de Schrödinger de ce système s'écrit :

$$H\Psi_{\alpha} = \left\{ \sum_{i=1}^{A} (T_i + U_i) + \left(\sum_{i>j}^{A} V_{ij} - \sum_{i=1}^{A} U_i \right) \right\} \Psi_{\alpha}$$
(1-7)

Où α désignent tous les nombres quantiques.

Les fonctions d'ondes propres Ψ_{α} sont représentées par les déterminants de Slater Φ de H_0 , à partir desquels sera diagonalisée la matrice de l'interaction résiduelle H_r ($\langle \psi | H_r | \psi \rangle$). Les solutions ψ de l'équation (1-3) forment une base complète de l'espace sur laquelle on peut décomposer les solutions Ψ de l'hamiltonien décrit par l'équation (1-7). Cependant, la taille de la matrice augmente très rapidement avec le nombre de nucléons dans l'espace complet d'Hilbert (l'espace des orbitales générées par le champ moyen montré sur la Fig (1-2) si bien qu'il devient impossible de procéder à la diagonalisation.

3. Les ingrédients du modèle en couches

Tout calcul de modèle en couches nécessite la mise en œuvre des trois ingrédients suivants :

- 1) la définition d'un espace de valence (cœur inerte, couches actives),
- 2) la dérivation d'une interaction effective compatible avec l'espace de valence,
- 3) un code de calcul pour construire et diagonaliser les hamiltoniens.

Choix de l'espace de valence

Pour un noyau donné (Z, N), le champ moyen définit les états occupés (situés sous le niveau de Fermi) et les états vides (situés au-dessus de ce niveau). L'interaction résiduelle agit essentiellement entre les nucléons situés autour du niveau de Fermi. L'ensemble des orbitales déterminées par le champ moyen se divise en trois groupes (Fig1-3) :

- Le cœur inerte: qui est fermé et dont toutes les orbitales sont pleines, en général un noyau magique ayant Z_c protons et N_c neutrons.
- Un espace de valence : qui contient le reste de nucléons actifs ($z = Z Z_c$) et (n =N N_c) qui interagissent via l'interaction H_r (orbitales partiellement pleines).
- **Un espace externe : qui est formé des orbitales toujours vide.**

Figure 1-3: Schéma de l'occupation des orbitaux nucléaires dans le modèle en couches.

✤ Interaction effective

À cause de la forte répulsion à courte portée, l'interaction nucléon-nucléon ne peut pas être utilisée directement pour les calculs de type modèle en couches. Ces calculs reposent donc sur la définition d'une interaction effective qui est fortement liée à l'espace de valence utilisé. Il existe deux types d'interactions effectives : les interactions effectives réalistes et les interactions effectives phénoménologiques.

Codes de modèle en couches

Les deux codes de modèle en couches développés à Strasbourg utilisent le même algorithme pour calculer les valeurs propres de H sont le code ANTOINE [8, 9] le code NATHAN [9, 10]. Nous utilisons dans nos calculs le code Nathan.

4. Transitions électromagnétiques

4-1 Règles de sélection des transitions électromagnétiques

Lors d'une transition électromagnétique dans un noyau d'un état initial (i) (d'énergie E_i) vers un état final (f) (d'énergie E_f), le nucléon émet un photon gamma d'énergie E_{γ} . Les principes de conservation de l'énergie et de la parité permettent d'écrire [6].

 $E\gamma = Ei - E_f \qquad \pi_i \ \pi_f \ \pi_{\gamma} = +1 \qquad (1-8)$

Figure 1-4 : Emission gamma d'un noyau.

La transition électromagnétique entre ces états nucléaires ne peut prendre place que si le photon gamma émis emporte un moment angulaire total \vec{L} , tel que : $\vec{J}_f = \vec{J}_i + \vec{L}$. Comme le spin intrinsèque du photon est égal à 1, la transition avec L=0 est interdite, et la transition gamma entre états $Ji = 0 \rightarrow J_f = 0$ est interdite. Le moment angulaire de la transition est appelé multipolarité de la radiation. Le caractère 2^L–Pole est dipolaire pour L=1, quadripolaire pour L=2, octupolaire pour L=3, etc... Le multipole est du type électrique EL lorsque $\pi_{\gamma} = (-1)^{L}$ et du type magnétique ML lorsque $\pi_{\gamma} = (-1)^{L+1}$. Par conséquent, les transitions γ qui connectent des états de même parité auront des EL pairs et ML impairs, celles qui connectent des états de parités différentes auront des EL impaire et ML paire.

4-2 Probabilité de transition et duré de vie

Les opérateurs de transition électrique et magnétique sont, respectivement, donnés par [6]:

$$Q_{L} = \sum_{k=1}^{A} e(k) r_{k}^{l} y_{Lm}(r(k))$$

$$M_{L} = \sum_{k=1}^{A} \left[\frac{2}{L+1} g_{l}^{(k)} l(k) + g_{s}^{(k)} s(k) \right] \Delta_{k} [r_{k}^{l} y_{LM}(r(k))]$$
(1-9)

Où Y_{LM} sont les harmoniques sphériques, e(k) est la charge du nucléon k, i.e. e(k)=0 pour un neutron, e(k)=e pour un proton, $g_s^{(k)}$; $g_l^{(k)}$ sont les facteurs gyromagnétiques en unité μ_N de spin et orbital du nucléon k, leurs valeur sont :

 $g_s = -3.826$, $g_l = 0$ pour un neutron

et $g_s = 5.586$, $g_l = 1$ pour un proton

Les expressions des probabilités réduites de transition sont données par [6]:

$$B(EL) = \frac{9}{4\rho(L+3)^2} e^2 R^{2L} \frac{G_g}{G_w} \qquad (e^2 fm^{2L})$$

$$B(ML) = \frac{90}{\rho(L+3)^2} m_N^2 R^{2L-2} \frac{G_g}{G_w} \qquad (m_N^2 fm^{2L-2})$$
(1-10)

Avec $R = 1.2A^{\frac{1}{3}}(fm)$, e est la charge électrique et $\mu_N = \frac{e\hbar}{2mc}$ est le magnéton nucléaire. Γ_{γ} et

 Γ_{w} sont la largeur de transition et l'estimé de Weisskopf (en eV).

Nous définissons "la force d'une transition" en unité de Weisskopf (u.W.) par la formule : $S = \frac{\Gamma_{\gamma}}{\Gamma_{w}}$

Remarques

La durée de vie d'un état excité est généralement comprise entre 10⁻⁶ et 10⁻⁸ s. Certains états peuvent avoir des durées de vie beaucoup plus grandes, jusqu'à des années. Ces états excités liés sont 'appelés états isomères'.

La relation d'incertitude d'Heisenberg : $\Delta E\Delta t \approx \hbar$, permet de définir la largeur d'un niveau (largeur de la transition gamma pour un état lié) par : $\Gamma = \frac{\hbar}{\tau}$ (ev), $\hbar = 6.582 \times 10^{-16} eV.s$. Sa demi-vie est déduite alors comme : $t_{\frac{1}{2}} = \tau \ln 2$ (1-11)

4-3 Charges effectives

On sait par ailleurs que pour les transitions E2, les dimensions réduites de l'espace modèle considéré peuvent être compensées par l'introduction de charges "*effectives*". Les valeurs typiques de ces charges effectives pour une transition E2 valent : ep=1.5e pour les protons et en=0.5e, pour les neutrons. Ces charges effectives, comme d'ailleurs les facteurs gyromagnétiques dépendent donc de l'espace modèle considéré et devraient retrouvées.

Chapitre 2

Noyaux de la couche sd et l'interaction PSDPF

1. Région de la couche sd

Les noyaux de la couche *sd* (définie par les orbites $d_{5/2}$, $s_{1/2} \operatorname{et} d_{3/2}$) possèdent un nombre de neutrons *N* et de protons *Z* compris entre *les nombres magiques* 8 et 20, donc limités par les noyaux doublement magiques ¹⁶*O* et ⁴⁰*Ca*. Dans le cadre du modèle en couches, pour les états dits normaux qui sont les plus importants les orbitales $2S_{1/2}$, $1P_{3/2}$, $1P_{1/2}$ sont occupées et les orbitales pf sont vides c'est-à-dire qu'ils ont une configuration principale (*sd*)^{*n*}, n'étant le nombre de nucléons de valence dans la couche *sd*.

– La couche « s » comporte une seule sous couche $s_{\frac{1}{2}}$ où Z, N ≤ 2 .

- La couche « p » formée de deux sous couches $0p_{\frac{1}{2}}$ et $0p_{\frac{3}{2}}$ avec 2 < Z, N < 8, le cœur inerte est le ⁴He qui est le cœur que nous avons choisi dans notre travail.

- La couche « sd » comporte les trois sous couches $0d_{\frac{5}{2}}$, $1s_{\frac{1}{2}}$, $0d_{\frac{3}{2}}$ avec 8 < Z, N < 20, le cœur inerte est ¹⁶O pour les états + et ⁴He pour les états -.

	Den	ii-vie											
		Stable Très cour	t				³⁴ Ca*	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca
		> 1 mir	ı			³² K*	³³ K*	³⁴ K*	³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K
		> 1 hre > 10 jrs	8		³⁰ Ar*	³¹ Ar	³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar
		> 100 jrs	3	²⁸ Cl*	²⁹ Cl*	³⁰ C1*	³¹ Cl	³² Cl	³³ Cl	³⁴ Cl	³⁵ Cl	³⁶ Cl	³⁷ Cl
	>	100.000 ans	$^{26}S^*$	²⁷ S	²⁸ S	²⁹ S	³⁰ S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S
		$^{24}P^{*}$	²⁵ P*	²⁶ P	²⁷ P	²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P
	²² Si	²³ Si	²⁴ Si	²⁵ Si	²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si
	$^{21}\text{Al}^*$	²² Al	²³ Al	²⁴ Al	²⁵ Al	²⁶ Al	²⁷ Al	²⁸ Al	²⁹ Al	³⁰ Al	³¹ Al	³² Al	³³ Al
	²⁰ Mg	²¹ Mg	²² Mg	²³ Mg	²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg
1	¹⁹ Na [*]	²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na
	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne
	¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F	$^{28}F^{*}$	²⁹ F
Z	¹⁶ O	¹⁷ O	¹⁸ O	¹⁹ O	²⁰ O	²¹ O	²² O	²³ O	²⁴ O	²⁵ O*	²⁶ O*		
Chaîne du Phosphore													

Figure 2–1: Charte des noyaux de la couche sd [11]. Pour les noyaux marqués d'une étoile « * », l'état fondamental est non lié, c'est–à–dire instable par rapport à l'émission de particule.

2. L'interaction PSDPF

Les spectres d'énergie des noyaux de la couche sd sont caractérisés par des énergies d'excitation faibles par la coexistence d'états de parité positive normaux appelés aussi états 0h ω et d'états intrus de parité négative appelés aussi états 1h ω . L'interaction PSDPF [2, 12] a été conçue pour décrire simultanément les niveaux de parités positive et négative dans ces noyaux. L'espace de valence utilisé est l'espace p-sd-pf complet en permettant à un nucléon pour passer de la couche p à sd ou de la couche sd à pf (1h ω espace) avec un cœur ⁴He. L'objectif est d'étendre description du modèle de couche des états de parité négative dans toute la couche sd. L'interaction PSDPF est sans coulomb et indépendant de l'isospin et donne donc les mêmes résultats pour les noyaux miroirs.

3. Etats « normaux » de parité positive et « intrus » parité négative

Les états normaux dits *états* $0\hbar\omega$ dans ces noyaux ont une parité positive et sont bien décrits dans espace de valence sd en utilisant l'interaction USD [13] (ou encore USDA/B [14]) avec un cœur de ¹⁶O. Dans un tel espace de valence, les états normaux correspondent au mouvement de A–16 nucléons à l'intérieur de la couche sd, les 16 nucléons du cœur restent inactifs, ce qui implique la configuration 0 particule–0 trou (0p–0t). Ces états coexistent à basse énergie d'excitation avec les états *intrus* de parité négative. Ces intrus $1\hbar\omega$ résultent de la promotion d'un nucléon de la couche p vers sd ou de la couche sd vers pf. Leur description requière l'extension de l'espace de valence du sd à l'espace complet p-sd-pf avec un cœur de $\frac{4}{2}He$. Ceci a exigé le développement d'une interaction $1\hbar\omega$ convenable avec cet espace modèle. Cette interaction est appelée PSDPF.

Figure 2–2: Schématique des premiers niveaux excités du ³⁴P.

Afin d'illustrer la différence entre états normaux et intrus dans la région *sd*, nous prenons comme exemple le cas du noyau de ³⁴P voir Figure 2-2. L'état fondamental de cet isotope est 1⁺, l'état 3⁺ est excité appelé "*état 0ħω*". Sa configuration correspond à la fermeture des couches protons et neutrons $1d_{5/2}$ ainsi que celle de neutrons $2s_{1/2}$ qui donnent un spin J=0. Il reste 1 proton et 3 neutrons dans la sous couche $1d_{3/2}$. L'état excité 3⁻ résulte de l'excitation d'un neutron de la couche $1d_{3/2}$ à la couche $1f_{7/2}$ (excitation 1p-1t). Ces deux configurations ont des probabilités 69.8% et 32.9%, respectivement.

4. Les ingrédients de modèle en couches dans les cas des noyaux sd

- ✓ Espace de valence est l'espace complet p-sd-pf.
- ✓ L'interaction compatible avec cet espace est l'interaction PSDPF.
- ✓ Code de calcule est le code NATHAN.

5. Transitions E2 et E3 dans les noyaux de la couche Sd

En plus des spectres en énergie qui ont été bien reproduites par l'interaction PSDPF, les grandeurs des TEM telles que *les forces de transitions* ont été également calculées et discutées en utilisant PSDPF. Ces grandeurs utilisent des paramètres (charges effectives et facteurs gyromagnétiques) ajustés en utilisant l'interaction USD ou USDA/B [15] pour des transitions M1 et E2 entre états de parité positive. Les paramètres des TEM entre états de parités opposées peuvent maintenant être ajustés en utilisant l'interaction PSDPF. L'intérêt a été porté sur les transitions E3 où de nouvelles charges effectives [16] proches de celles des transitions E2 obtenues dans la Ref. [15]. Les valeurs de ces paramètres sont présentées sur la Figure 2-3.

Figure 2–3: Paramètres ajustés pour les transitions E2, M1 et E3 (voir texte).

Tout calcul des TEM dans ce mémoire utilise ces charges effectives pour les transitions E2 et E3 et ces facteurs gyromagnétiques pour les transitions M1 et M2. Pour les transitions E1, les charges effectives utilisées sont : ep = N/A et en = -Z/A.

Chapitre 3

Description de la structure des isotopes du

Phosphore ²⁵⁻²⁹P

La description de la structure de la chaîne isotopique du Phosphore a été réalisée en 2014 dans le travail de Master du M. Abid [17]. Nous voudrions dans ce travail calculé les propriétés issues des transitions électromagnétiques dans les isotopes de cette chaîne, cependant, de nouvelles données expérimentales ont été apparues récemment. Nous avons alors décidé de faire une mise à jour des spectres de tous les isotopes étudiés auparavant. Dans ce chapitre, nous présentons une étude de la structure des isotopes riches en protons avec N < Z, $^{25-29}$ P.

1. Propriétés des isotopes de la chaîne du phosphore

Les caractéristiques importantes des différents isotopes du Phosphore, ²⁵⁻³⁶P, étudiés jusqu'à ce jour sont présentées dans le Tableau 3-1 [11].

	Z	N	Masse isotopique (u)	Demi-vie	Mode (s) de desintegration ²	Isotope Fils ^{n 1}	Spin nucléaire
²⁵ P	15	10	25.02119(430)	<30 ns	Р	²⁴ Si	1/2+
					β+(98.1%)	²⁶ Si	
$^{26}\mathbf{P}^{2n}$	15	11	26.01178(21)	43.7 (6) ms	β ⁺ 2 p (1.0 ^½)	²⁴ Mg	(3+)
					β ⁺ p (0.09½)	²⁵ Al	
27 D	15	10	26 000224406(28277)	260(80) mg	β ⁺ (99.93 ['] /)	²⁷ Si	1/2
- P	15	12	20.999224400(28277)	200(80) IIIs	β ⁺ p (0.0013½)	²⁶ Al	1/2+
					β+ (99,99 %)	²⁸ Si	
$^{28}\mathbf{P}$	15	13	27.992326585(1236)	270.3(5) ms	β ⁺ , p (0,0013 %)	²⁷ Al	3+
					β ⁺ , α (8,6×10–4 %)	²⁴ Mg	
²⁹ P	15	14	28.981800794(604)	4.142(15) s	β^+	²⁹ Si	1/2 +
³⁰ P	15	15	29.978313753(335)	2.498(4) min	β^+	³⁰ Si	1+
³¹ P	15	16	30.97376199842(70)	Stat	ole		1/2+
$^{32}\mathbf{P}$	15	17	31.973907643(42)	14.268(5) d	β-	32 S	1+
³³ P	15	18	32.971725694(1170)	25.35(11) d	β-	³³ S	1/2+
$^{34}\mathbf{P}$	15	19	33.973645886(870)	12.43(10) s	β-	³⁴ S	1+
³⁵ P	15	20	34.973314062(2003)	47.3(8) s	β-	³⁵ S	1/2+
³⁶ P	15	21	35.978260(14)	5.6(3) s	β-	³⁶ S	4-

 Tableau 3-1: Caractéristiques des isotopes du Phosphore ²⁵⁻³⁶P [11].

2. Description des isotopes avec N<Z

Tous nos calculs ont été réalisés en utilisant le code Nathan. La formule des RMSD "*Root Mean Square Deviation*" est donné par $_{RMSD} = \sqrt{\frac{1}{N} \sum_{k=1}^{N} \frac{(S_{kxp}^k - S_{Th}^k)^2}{erreur^k}}$

La différence en énergie entre états dans les noyaux miroirs, montrée dans la dernière colonne sur tous les Tableaux ci-dessous, est due à l'énergie coulombienne. Les états observés récemment sont colorés en vert.

L'isotope²⁵P

Le ²⁵P, isotopes riche en protons avec N=10, a été étudié récemment [11]. Son état fondamental a un J^{π} n'est pas bien déterminé (1/2⁺) expérimentalement et aucun état excité a été observé. La comparaison (voir le Tableau 3-2) avec son noyau miroir, ²⁵Ne et le calcul de PSDPF permet de confirmer les spin/parité de l'état fondamental.

²⁵ p		PSDP	F	²⁵ Ne		
\mathbf{J}^{π}	Eexp	Ji^π	Eth	Jπ	Eexp	
(1/2+)	0.0	1/2+	0.0	1/2 +	0.0	

Tableau 3-2: Comparaison des états fondamentaux expérimentaux [11] est calculé desnoyaux miroirs ²⁵P et ²⁵Ne

L'isotope²⁶P

La découverte expérimentale du ²⁶*P* a été signalée en 1983 par Câble [18]. Nous comparons dans le Tableau 3-3 les énergies d'excitation calculées, à l'aide de PSDPF, et expérimentales [11] des états observés dans ²⁶*P* ainsi que dans son miroir ²⁶*Na*. Les spins des deux seuls états observés dans ²⁶P ne sont pas encore confirmés [11] contrairement au ²⁶*Na* dont le spectre contient 5 états bien définis. Nous remarquons que les deux premiers états excités dans les deux miroirs sont pareillement dégénérés, ce qui rend leur description théorique difficile. Notons que le J^{π} de l'état excité, 164.4 keV, est estimé sur des considérations théoriques [19] d'être 1⁺.

	^{26}P		PSDPF	²⁶ Na		
J ^π	Eexp	J ^π i	Eth	J^{π}	Eexp	E _P -E _{Na}
(3+)	0	3+1	31	3+	0	0
(1+)*	164.4	1^{+}_{1}	0	1+	82	82.4
		2^{+}_{1}	33	2+	233	
		2^{+}_{2}	335	2+	406	
		5 ⁺ 1	2290	5+	2284	

Tableau 3-3: Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculé des noyaux miroirs ${}^{26}P$ et ${}^{26}Na$. L'état avec * est pris de la Ref. [19].

L'isotope 27P

Benenson et al, ont été les premiers à observer le ${}^{27}P$ en 1977 [18]. La comparaison entre les énergies d'excitation expérimentales [11] versus calculées avec PSDPF des noyaux miroirs ${}^{27}P$ et ${}^{27}Mg$ est montrée sur le Tableau 3-4. Le spectre expérimental du ${}^{27}P$ contient 10 états dont un de parité négative incertains. Le spectre expérimental du miroir, ${}^{27}Mg$, contient 11 états. L'interaction PSDPF prévoit 12 états dans cet intervalle d'énergie. PSDPF reproduit assez bien l'ensemble de ces niveaux observés et leurs énergies d'excitation. L'état $3/2^+_4$ est prédit d'être plus haut que l'expérience, nous pensons qu'il a des contributions collectives de type (np–nt) et ne peuvent donc pas être décrit dans notre espace modèle. Deux états, $(3/2^+, 5/2^+)$, dégénérés dans ${}^{27}P$, observés à 3395 et 3541 keV ont seulement une seule contrepartie dans ${}^{27}Mg$ observé à 3491 keV. Nous proposons un J^π= $3/2^+_2$ et $3/2^+_3$. L'états observé 3504 keV de J^π= $5/2^+$ incertain est plus bas que $5/2^+_3$ de 500 keV. Son miroir a également incertain un J^π= $(5/2^+, 7/2^+)$, les énergies de ces états miroirs colle très bien avec l'énergie calculée du $7/2^+_2$. Le RMSD, sans prendre l'énergie de l'état collectif, est faible et vaut 182 keV pour ${}^{27}P$ et 104 keV dans ${}^{27}Mg$.

	^{27}P				^{27}Mg			
J^{π}	Eexp	J ^π i	Eth	ΔΕ	J^{π}	Eexp	ΔΕ	E _p -E _{Mg}
1/2+	0	$1/2^{+}_{1}$	0	0	$1/2^{+}$	0	0	0
3/2+	1199	3/2+1	917	-282	3/2+	984	-67	215
5/2+	1631	5/2+1	1679	48	5/2+	1689	-20	-58
5/2+	2230	5/2+2	1934	-296	$5/2^{+}$	1940	-6	740
(7/2+)	2880	7/2+1	3116	236	(7/2+)	3110	6	-230
(1/2+)	2978	1/2+2	3406	428	1/2+	3476	-70	-498
(3/2,5/2)+	3395 3341	$ \begin{cases} 3/2^{+}_{2} \\ 3/2_{3}^{+} \end{cases} $	{3384 3478	{-11 137	3/2+,5/2+	3491	{-107 -13	-96 -150
(5/2+)	3504	5/2 ⁺ 3 7/2 ⁺ 2	4004 3325	<mark>500</mark> -179	(5/2+,7/2+)	3427	577 -102	77 34
(3/2)-	3595	3/21-	3740	145	3/2-	3561	179	
		7/21-	3996		5/2-, 7/2-	3760	236	
		3/24+	4988		3/2+	3787	1201	

Tableau 3-4: Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculé
des noyaux miroirs ${}^{27}P$ et ${}^{27}Mg$.

L'isotope 28P

En 1953 ²⁸*P* a été découvert par Glass et al, [18]. La comparaison entre spectres en énergie d'excitation expérimentaux [11] versus calculées, en utilisant PSDPF, des noyaux miroirs ²⁸*P* et ²⁸*Al* est montrée sur Tableau 3-5. Le spectre expérimental contient 17 états entre 0 et ~ 3200 keV. A l'exception de l'état fondamental, tous ces états ont des J^{π} incertains voire inconnus. La comparaison avec le spectre calculé ainsi qu'avec le spectre expérimental du ²⁸*Al*, contenant aussi 17 états permet de confirmer les J^{π} dans ²⁸*P*. Nous remarquons qu'il y une correspondance un à un entre états miroirs avec des énergies très proches. L'interaction PSDPF reproduit assez bien l'ensemble de ces niveaux et leurs énergies d'excitation. Le

	^{28}P					$^{28}\!Al$		
J^{π}	Eexp	J ^π i	Eth	ΔΕ	J^{π}	Eexp	ΔΕ	$E_P - E_{Al}$
3+	0	3 ⁺ 1	0	0	3+	0	0	0
(2+)	106	2^{+}_{1}	89	-17	2+	31	58	75
	877	$0^{+}{}_{1}$	1067	190	0^+	972	95	-95
(3+)	1134	3 ⁺ 2	1067	-67	3+	1014	53	120
(1+)	1313	1^{+}_{1}	1175	-138	1^{+}	1373	-198	-60
(2+)	1516	2^{+}_{2}	1404	-112	2^{+}	1623	-197	-107
(1+)	1567	1^{+}_{2}	1426	-141	1^{+}	1620	-216	-53
(2+)	2104	2 ⁺ 3	2010	-94	2+	2139	-129	-35
(1+)	2143	1 ₃ +	2043	-100	1+	2201	-158	-58
(3,4)+	2216	4 ₁ +	2114	-102	4+	2272	-158	-56
$(0,1,2)^+$	2406	24+	2377	-29	2+	2486	-109	-80
	2483	5 ₁ ⁺	2609	126	5+	2582	27	-99
(3,4)+	2628	4 ₂ +	2501	-127	4+	2656	-155	-28
	2857	3 ₃ +	2806	-51	(3,1)+	2988	-182	-131
(3,4)+	2896	02+	2759	-137	0+	3011	-252	-115
(1+)	2973	14+	3081	108	1+	3105	-24	-132
(3,4)+	3164	34+	3091	-74	(3+)	3296	-206	-225

RMSD est faible et vaut 107 keV pour ²⁸*P* et 150 keV pour ²⁸*Al*. Cette étude permet de fixer les J^{π} des états observé à 2483 et 2857 keV d'être 5⁺₁ et 3⁺₃.

Tableau 3-5: Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculé
des noyaux miroirs ${}^{28}P$ et ${}^{28}Al$.

L'isotope 29P

White et al., décrivaient la première observation de ²⁹*P* en 1941 [18]. La comparaison entre les énergies d'excitation expérimentales [11] versus calculées à l'aide de l'interaction PSDPF des noyaux miroirs ²⁹*P* et ²⁹*Si* est montrée sur Tableau 3-6. Le spectre expérimental du ²⁹*P* contient 14 états, la majorité de ces états ont une parité positive dont 4 états de spins incertains. Le spectre expérimental du ²⁹*Si* contient également 14 états dont deux de J^{π} incertains. L'interaction PSDPF reproduit assez bien l'ensemble de ces niveaux et leurs énergies d'excitation. Nous confirmons les spins/parités de tous les niveaux. L'état observé à 5047 keV (7/2⁺, 9/2⁺) proposé d'avoir une parité +, n'as pas de correspondant miroir ni théorique. Un état d'énergie très proche, 5254 keV, de J^{π} = 9/2⁻, qui colle assez bien avec l'énergie calculée de ce 9/2⁻ est un bon candidat. Les RMSD égalent 121 keV et 165 keV, pour les ²⁹*P* et ²⁹*Si*, respectivement.

	²⁹ P					²⁹ Si		
J ^π	Eexp	J ^π i	Eth	ΔΕ	\mathbf{J}^{π}	Eexp	ΔΕ	$E_p - E_{si}$
1/2+	0	$1/2^{+}1$	0	0	1/2+	0	0	0
3/2+	1384	3/2+1	1280	-104	3/2+	1273	7	111
5/2+	1954	$5/2^{+}1$	1993	39	5/2+	2028	-35	-74
3/2+	2423	3/2+2	2446	23	3/2+	2426	20	-3
5/2+	3106	$5/2^{+}2^{+}$	3273	167	5/2+	3067	206	39
7/2-	3448	7/2-1	3431	-17	7/2-	3623	-192	-175
7/2+	4081	$7/2^{+}1$	4076	-5	7/2+	4080	-4	1
3/2-	4343	3/2-1	4666	323	3/2-	4934	-268	-591
(7/2+,9/2+)	4642	$9/2^{+}1$	4682	40	(9/2+)	4741	-59	-99
1/2+	4759	$1/2^{+}_{2}$	4707	-52	1/2+	4840	-133	-81
(5/2+)	4954	5/2+3	4996	42	5/2+	4895	101	59
(7/2+,9/2+)	5047	9/2-1	4864	-183	(9/2-)	5254	-390	-207
(7/2+)	5293	$7/2^{+}2$	5147	-146	7/2+	5285	-138	8
1/2-	5527	$1/2^{-1}$	5539	12	1/2-	6381	-842	-854

Tableau 3-6: Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculé
des noyaux miroirs ${}^{29}P$ et ${}^{29}Si$.

Nous avons calculé les spectres complet d'états + et – des isotopes du Phosphore avec N < Z et les comparés aux spectres expérimentaux ainsi qu'à ceux de leurs noyaux miroirs. L'interaction PSDPF reproduit assez bien les énergies d'excitation de tous les états dans noyaux étudiés. Les RMSD sont très faibles et ne dépassent pas 230 keV, comme la montre la figure ci-dessous.

Figure 3-1 : Variation de RMSD (en keV) en fonction de A des isotopes du Phosphore avec N<Z. Les RMSD des noyaux miroirs sont aussi présentés.

Chapitre 4

Description de la structure des isotopes du Phosphore ³⁰⁻³⁶P

Comme application de l'interaction PSDPF dans cette première partie de ce travail, nous l'avons utilisée pour calculer les spectres en énergie des isotopes du Phosphore avec N< Z, ³⁰⁻³⁶P. Les résultats obtenus sont comparés aux données expérimentales [11]. Dans ce chapitre pareillement, nous faisons une mise à jour des énergies d'excitation émergées dernièrement. Ces états sont présentés en vert.

La comparaison un à un des spectres expérimentaux versus calculés en utilisant PSDPF permet de confirmer les états ambigus et de faire des prédictions importantes pour les états ayant des spins et/ou parités inconnus. Nous allons traiter ces isotopes cas par cas. Les états 0 et 1 h ω calculés et n'ont encore observés serviront de prédictions pour des futures expériences. Tous nos calculs ont été réalisés en utilisant le code Nathon.

<u>L'isotope</u> ³⁰P

Curie et Joliot ont présenté la première preuve expérimentale du ${}^{30}P$ en 1934 [18]. Nous avons calculé, en utilisant l'interaction PSDPF [2, 12], le spectre en énergie d'excitation du ³⁰P. La comparaison des résultats obtenus avec les données expérimentales [11], contenues entre 0 et 6.5 MeV, est montrée dans le Tableau 4-1. Nous remarquons qu'il y a 49 niveaux expérimentaux contre 50 théorique. La majorité de ces états ont une parité positive. L'ensemble de ces états est bien reproduit par PSDPF et leurs énergies d'excitation sont bien décrites. La différence entre énergie théorique et expérimentale, ΔE , varie de 4 keV pour le 1^+_2 à 379 keV pour le 2^-_4 . A l'aide de cette comparaison nous pouvons confirmer les états incertains (J^{π} entre parenthèse). Nous avons déterminé également les spins/parités des états ambigus (avec plus d'un J^{π} probable), à l'aide non seulement de leurs énergies d'excitation mais aussi de leurs transitions électromagnétiques [11]. Nous rappelons que si l'énergie calculée d'un état est plus haute (> 500 keV) que celle expérimentale alors ce dernier n'est plus sphérique et possède une contribution collective de type np-nt qui ne rentre pas dans le cadre de notre étude et PSDPF ne peut pas la reproduire, c'est le cas de 1^+_9 et le 6^+_1 . Les états Yrast de hauts spins, non encore observés sont été également calculés, il s'agit du 7⁺ et 7⁻. Nous n'avons pas trouvé un candidat théorique pour l'état observé à 3304, qui ne possède aucune transition observée et il est vu seulement dans une seul expérience: ²⁹S (³He, d)³⁰P (voir Ref. [11]). Le RMSD, sans prendre en compte les états collectifs, est faible et égale de 168 keV. PSDPF prévoit un état 0⁻, difficilement à observer expérimentalement, à 5454 keV.

J ^π	Eexp	J ^π i	Eth	ΔΕ	J ^π	Eexp	Jπi	Eth	ΔΕ
1+	0	1^{+}_{1}	0	0		5230	5 ⁺ 2	5133	-97
0^+	677	$0^{+}1$	721	44	(2-)	5411	2^{-2}	5766	355
1^{+}	709	1^{+}_{2}	713	4			0-1	5454	
2^{+}	1454	2^{+}_{1}	1766	312	(1+)	5506	1^{+}_{7}	5807	301
3+	1973	3^{+}_{1}	2012	39	(2,3)	5509	3+7	5508	-1
(3+)	2539	3+2	2351	-188	2^{+}	5576	2+7	5552	-24
2^{+}	2724	2^{+}_{2}	2570	-154	4+	5597	4 ⁺ 3	5396	-201
(3+)	2839	3+3	3030	191	1+	5701	1^{+}_{8}	5899	198
2+	2937	2^{+}_{3}	2955	18	(5,7)+	5716	5 ⁺ 3	5670	-46
1+	3019	1^{+}_{3}	3085	66	(3+-5+)	5788	4+4	5995	207
(1+)	3304				(3+, 5+)	5808	3+8	5836	28
(1+)	3734	1^{+}_{4}	3782	48	(2-)	5896	2-3	6076	180
2^{+}	3836	2^{+}_{4}	3734	-102	(2-, 1-)	5908	1-2	5918	10
3+	3929	3^{+}_{4}	4091	162	(3+)	5934	3+9	5955	21
2-	4144	2^{-1}	4228	84	$(0, 1, 2)^{-}$	5993	2^{-}_{4}	6372	379
2^{+}	4183	2+5	4177	-6	(1+)	5997	1+9	6916	919
4-	4232	4^{-1}	4144	-88	(3+)	6006	3+10	6100	94
4+	4299	4^{+}_{1}	4445	146	3-	6094	3-3	5786	-308
5+	4343	5^{+}_{1}	4337	-7	(5, 6, 7)+	6178	6 ⁺ ₁	7142	964
2+	4423	2^{+}_{6}	4542	119	(4, 5, 6)-	6354	6 ⁻ 1	6449	95
0^+	4468	$0^{+}{}_{2}$	4781	313			7 ⁻ 1	8255	
1^{+}	4502	1^{+}_{5}	4764	262			7 ⁺ 1	8500	
3-	4626	3-1	4619	-7					
3+	4736	3+5	4941	205					
(3-,5-)	4926	5^{-1}	5143	217					
1	4937	1 ⁻ 1	4984	47					
(1+)	4941	1^{+}_{6}	4896	-45					
	4951	4^{+}_{2}	5088	137					
5-(4-, 6-)	5027	5 ⁻ 2	5143	117					
3+	5207	3_{6}^{+}	5472	265					

Tableau 4-1: Comparaison des spectres en énergie (en keV) expérimentaux [11] et calculés
du ${}^{30}P$

L'isotope 31P

Aston a découvert le ³¹P en 1920 [18]. Nous avons calculé, en utilisant PSDPF, le spectre en énergie d'excitation du ³¹P. La comparaison des résultats obtenus avec les données expérimentales [11, 20], comprises entre 0 et 14 MeV, est présentée dans le Tableau 4-2. 11 états ont une parité négative bien déterminée. Tous ces états ont des correspondants théoriques et sont bien reproduit par PSDPF à l'exception du $13/2^{+}_{4}$, prédit à une énergie plus basse que celle observée de ~ 600 keV. Nous pensons que cet état n'est pas encore observé surtout que le $13/2^{+}_{5}$ est prédit à 11214 keV coïncidant avec celle observée. Cette comparaison permet de confirmer les états incertains (entre parenthèse). Nous avons déterminé également les spins/parités des états ambigus, à l'aide non seulement de leurs énergies d'excitation mais aussi de leurs transitions électromagnétiques [11]. Les états prédits à des énergies d'excitation plus haute que l'expérience de > 500 keV sont, comme nous l'avons expliqué précédemment, collective de type np–nt qui ne rentre pas dans le cadre de notre étude et PSDPF ne peut pas le reproduire. Le RMSD est de 183 keV.

J ^π	Eexp	J ^π i	Eth	ΔΕ	J^{π}	Eexp	J πi	Eth	ΔΕ
1/2+	0	1/2+1	0	0	7/2+	6046	7/2+5	6014	-32
3/2+	1266	3/2+1	1199	-67	9/2+	6078	9/2+3	6060	-18
5/2+	2234	$5/2^{+}1$	2212	-22	11/2+*	6454	$11/2^{+}_{1}$	6439	-15
1/2+	3134	$1/2^{+}_{2}$	3260	126	9/2-*	6501	9/2-1	6333	-168
5/2+	3295	$5/2^{+}2$	3303	8	11/2-*	6824	$11/2^{-1}$	6980	156
7/2+	3415	7/2+1	3438	23	11/2**	7442	$11/2^{+}_{2}$	7692	250
3/2+	3506	3/2+2	3429	-77	11/2-*	7800	11/2-2	7601	-259
5/2+	4191	5/2+3	4081	-110	11/2-*	8077	11/2-3	8292	215
3/2+	4260	3/2+3	4335	75	11/2+*	8344	$11/2^{+}_{3}$	8039	-305
7/2-	4431	7/2-1	4786	355	11/2-*	8414	$11/2_{4}^{-}$	8552	138
3/2+	4593	3/2+4	4846	253	13/2-*	8705	13/2-1	8709	4
7/2+	4634	$7/2^{+}2$	4791	157	13/2-*	9176	13/2-2	9195	19
5/2+	4783	$5/2^{+}_{4}$	4718	-65	13/2**	9313	$13/2^{+}_{1}$	8925	-388
(3/2+)	5015	3/2+5	5814	799	13/2-*	9450	13/2-3	9446	-4
$(1/2,3/2)^{-}$	5015	3/2-1	5604	589	13/2+*	9600	$13/2^{+}_{2}$	10140	540
5/2+	5116	$5/2^{+}_{5}$	5213	97	13/2+*	10037	13/2+3	10322	285
1/2+	5257	$1/2^{+}_{3}$	5090	-167	15/2-*	10217	15/2-1	10015	-202
9/2+	5343	$9/2^{+}_{1}$	5345	2	15/2+*	10520	$15/2^{+}_{1}$	11424	904
(5/2,7/2)+	5530	7/2+3	5471	-59	15/2-*	10759	15/2-2	10750	-189
(3/2)+	5559	$3/2^{+}_{6}$	6062	503	(13/2+)	11297	13/2+4	10718	-597
(5/2)	5672	5/2-1	5771	99	15/2+*	11734	$15/2^{+}_{2}$	12096	362
(7/2+)	5774	7/2+4	5778	4	$(19/2^+_1)^*$	13879	$19/2^{+}_{1}$	16046	2167
9/2+	5892	$9/2^{+}2$	5778	-114					
(3/2)+	5988	3/2+7	6435	447					

* Etats pris de la Réf. [20]

Tableau 4-2: Comparaison des spectres en énergie (en keV) expérimentaux [11, 20] et
calculés du ${}^{31}P$

L'isotope 32P

L'isotope ${}^{32}P$ a été vu pour la première fois par Fermi et al., En 1934 [18]. Nous avons calculé, en utilisant PSDPF, le spectre en énergie d'excitation complet du ${}^{32}P$. La comparaison des résultats obtenus versus expérience [11, 21], contenues entre 0 et 9.7 MeV, est montrée dans le Tableau 4-3. Nous remarquons qu'il y a 49 niveaux théoriques contre 53 expérimentaux. 9 de ces états possèdent une parité négative bien déterminée. En général, les énergies d'excitation des états observés sont bien reproduites. A l'aide de cette comparaison nous pouvons confirmer les états incertains (entre parenthèse). Nous avons déterminé également les spins/parités des états ambigus, à l'aide non seulement de leurs énergies d'excitation mais aussi de leurs transitions électromagnétiques [11, 21]. Les différences en énergies états collectifs sont colorées en rouge. Le RMSD est très faible et vaut 378 keV.

J ^π	Eexp	J ^π i	Eth	ΔΕ	J ^π	Eexp	J ^π i	Eth	ΔΕ
1^{+}	0	1^{+}_{1}	0	0	3-	4149	3-2	4381	232
2+	78	2^{+}_{1}	168	90	1+	4204	1^{+}_{6}	4077	-127
0+	513	0^{+}_{1}	663	150	5-	4275	5-1	4225	-50
1+	1149	1^{+}_{2}	1059	-90	3+	4313	3 ⁺ ₆	4205	-108
2+	1323	2^{+}_{2}	1258	-65	0-	4410	0^{-1}	4113	-297
	1510				1+	4548	1^{+}_{7}	4692	144
3+	1755	3^{+}_{1}	1675	-80	2^{+}	4555	2^{+}_{7}	4557	2
3+	2177	3^{+}_{2}	2153	-24	(3)+	4613	3+7	4495	-118
2+	2218	2^{+}_{3}	2267	49	(0+)	4620	$0^{+}2$	4463	-157
1+	2230	1+3	2043	-187	2-	4661	2-3	4425	-236
	2313	5			$(3.5)^+$	4697	3+°	4637	-60
	2579				1+	4711	1+o	5403	692
2+	2658	2+,	2580	-78	5+	4711	1 8 5+.	A713	-30
1+	2058	2 4	2300	-78	(2+ 4- 5+)	4050	5 I	4715	-30
1'	2740	1'4	2837	97	(3',4',5')	4850	4^{-}_{2}	4615	-235
3+	3005	3+3	2826	-179	1-	4877	1^{-}_{3}	4816	-61
	3074								
4+	3149	4^{+}_{1}	3146	-3		4990*	5 ⁻ 2	4959	-31
2-	3264	2^{-1}	2909	-355	5(-)	5481*	5 ⁻ 3	5139	-342
3-	3319	3^{-1}	3283	-36		5550*	5^{+}_{2}	5523	-27
(1,2+)	3444	1^{-1}	3464	20	6(-)	5862*	6 ⁻ 1	5682	-180
4-	3445	4^{-1}	3181	-264		6415*	6 ⁻ 2	6016	-399
(1+)	3792	1^{+}_{5}	3765	-27	(6-)	6814*	6 ⁻ 3	6522	-192
(3+)	3797	3+4	3632	-165		6835*	6 ⁺ 1	7148	313
2^{+}	3875	2+5	3311	-564	7	7417*	7^{-1}	6966	-451
2^{+}	3881	2^{+}_{6}	3543	-338	(8)	9637*	8-1	8579	-1058
(3)+	3989	3+5	4008	19					
2-	4009	2^{-2}	4052	43					
4+	4035	4 ⁺ 2	3565	-470					
1-	4036	1^{-2}	4395	359					

* Etats pris de la Réf. [21]

Tableau 4-3: Comparaison des spectres en énergie (en keV) expérimentaux [11, 21] etcalculés du 32P

L'isotope 33P

Sheline et al. Ont rapporté l'observation de ${}^{33}P$ en 1951 [18]. Le spectre en énergie d'excitation du ${}^{33}P$ a été calculé en utilisant PSDPF. La comparaison des résultats obtenus avec les données expérimentales [11], contenues entre 0 et 5.7 MeV, est montrée dans le Tableau 4-4. Nous remarquons qu'il y a 31 niveaux théoriques contre 27 expérimentaux. Trois de ces états ont une parité négative bien déterminée. L'ensemble de ces états est bien reproduit par PSDPF et leurs énergies d'excitation sont bien décrites. La différence entre énergie théorique et expérimentale, Δ , varie de 9 keV pour le $3/2^+_1$ à 401 keV pour le $1/2^+_2$. A

l'aide de cette comparaison, nous confirmons les états incertains. Les états ambigus: (3/2,5/2), $(3/2^+,5/2)$, $(3/2, 5/2,7/2^+)$, $(3/2^-:9/2^+)$, $(1/2^+: 9/2^+)$, 3/2 et 3/2 sont prédits d'avoir les spins et parités suivants: $3/2^+4$, $5/2^-1$, $5/2^-2$, $9/2^+1$, $7/2^-2$, $3/2^-2$ et $3/2^-3$, respectivement. Les états $5/2^+4$ et $5/2^+5$ sont plus hauts que l'expérience de 818 et 1486 keV, respectivement, et ont des configurations au-delà de 0p-0t. Le RMSD est de 165 keV, est très faible. Les états Yrast de hauts spins, non encore observés, ont été également calculés.

J ^π	Eexp	Jπi	Eth	ΔΕ	J ^π	Eexp	Jπi	Eth	ΔΕ
1/2+	0	$1/2^{+}1$	0	0		5207	3/2-1	5110	-97
3/2+	1432	$3/2^{+}_{1}$	1441	9		5221	$1/2^{-1}$	5301	80
5/2+	1848	$5/2^{+}1$	1905	57		5235	1/2-2	5482	247
3/2+	2539	$3/2^{+}_{2}$	2679	141	(3/2, 5/2,7/2+)	5411	5/2-2	5560	149
3/2+	3275	$3/2^{+}_{3}$	3433	158	9/2-	5452	9/2-1	5696	244
5/2+	3491	$5/2^{+}_{2}$	3508	17	(3/2-:9/2+)	5498	$9/2^{+}_{1}$	5470	-28
7/2+	3629	$7/2^{+}1$	3778	149	(1/2+: 9/2+)	5549	7/2-2	5639	90
	3990	$1/2^{+}_{2}$	4391	401	3/2	5558	3/2-2	5490	-68
5/2+	4048	$5/2^{+}_{3}$	3971	-77	11/2-	5638	$11/2^{-1}$	5812	174
5/2+	4194	$5/2^{+}_{4}$	5012	818	1/2+	5674	$1/2^{+}_{3}$	5830	156
7/2-	4226	7/2-1	4470	244	3/2	5731	3/2-3	5959	228
(3/2,5/2)	4856	$3/2^{+}_{4}$	5075	219			13/2-1	7222	
5/2+	5049	$5/2^{+}_{5}$	6535	1486			$13/2^{+}_{1}$	8950	
(3/2+,5/2)	5191	5/2-1	5167	-24			15/2-1	9094	
							$15/2^{+}_{1}$	12477	
					(7/2-15/2) ^a	6518	9/23-	6720	202
					(5/2,9/2,13/2,17/2) ^a	10106	$13/2_2^+$	10554	4485

^a J^{π} pris de la Réf. [22]

Tableau 4-4: Comparaison des spectres en énergie (en keV) expérimentaux [11, 22, 23] etcalculés du ³³P

L'isotope ³⁴*p*

En 1945, le ³⁴*P* a été identifié par Zünti et Bleuler [18]. Nous avons calculé son spectre en énergie d'excitation comprises entre 0 et 8 MeV, déterminé récemment [11, 23, 24], et le comparé aux données expérimentales sur le Tableau 4-5. Ce spectre contient 59 niveaux théoriques contre 51 expérimentaux. La plupart de ces états ont une parité négative, puisque nous sommes à la limite de la couche sd, N=20. L'ensemble de ces états est bien reproduit par PSDPF et leurs énergies d'excitation sont bien décrites reflétées par le RMSD faible qui vaut 141 keV. Nous avons déterminé les spins/parités des états ambigus, à l'aide non seulement de leurs énergies d'excitation mais aussi de leurs transitions électromagnétiques [11, 24].

J^{π}	Eexp	J ^π i	Eth	ΔΕ	J ^π	Eexp	J ^π i	Eth	ΔΕ
1+	0	$1^{+}1$	0	0	3+*	4721	3 ⁺ 2	4526	-195
2^{+}	429	2^{+}_{1}	382	-47		4723	3-6	4676	-47
1^{+}	1608	1^{+}_{2}	1479	-129	(1+,2-,3+,4-	4744	1^{+}_{5}	4881	137
2(-)	2229	2^{-1}	2181	-48)	5013	2^{-8}	5033	20
4(-)	2305	4 ⁻ 1	2195	-110	(2-)	5188 ^k	4 ⁻ 5	5079	-109
3(-)	2321	3-1	2354	33		5281	3-7	4892	-389
	2372	2^{+}_{2}	2211	-161	(3-)	5344	5-4	5218	-126
	2628	1^{+}_{3}	2963	335	5-*		4 ⁻ 6	5348	
$(1, 2^{-}, 3^{+})$	2676*	3+1	2761	85			4 ⁻ 7	5376	
	3086	2 ⁺ 3	3100	14	(6-)	5394	6-2	5422	28
	3201	0 ⁻ 1	3205	4	5-*	5594	5 ⁻ 5	5469	-125
	3291	2^{-2}	3289	-2			4^{-}_{8}	5536	
5(-)	3353	5 ⁻ 1	3328	-25			4-9	5622	
	3482	4^{+}_{1}	3526	44	(3-,4,5,6-)	5726	6-3	5710	-16
	3546	4 ⁻ 2	3837	291	5-*	5787	5 ⁻ 6	5836	49
(3-,4-)	3752	3-2	3723	-29	4-*	5975*	4^{-}_{10}	5843	-132
1^{+*}	3806	1^{+}_{4}	4053	247	4-*	6119*	4 ⁻ 11	5993	-126
(3-,4-)4-*	3912	4 ⁻ 3	3972	61	4-*	6174*	4 ⁻ 12	6143	-31
	3943	3-3	3804	-139		6181	4 ⁻ 13	6272	91
(5-)	3951	5 ⁻ 2	3936	-15	5-*	6193	5-7	6301	108
(1+,2-,3+)	4306	2-,3-	**		7(+)	6237	7^{+}_{1}	10712	4475
		3-4	3962		6-*	6292	6-4	6623	331
		2-3	3987		5-*	6317	5 ⁻ 8	6415	98
		2^{-}_{4}	4042		(7-)	6357	7^{-}_{1}	6371	14
		2^{-}_{5}	4156		4-*	6445	4 ⁻ 14	6545	100
2**	4421	2^{+}_{4}	4206	-215	6-*	6922	6-5	6778	-144
	4438	2-6	4317	-121	7-*	6990	7 ⁻ ₂	6950	-40
(4-)*	4447*	4-4	4387	-60	5-*	7065	5 ⁻ 10	7050	-15
3-*	4570	3-5	4210	-360	6-*	7166	6 ⁻ 6	7219	53
		2-7	4588		7-*	7256	7 ⁻ 3	7256	0
6(-)	4630	6 ⁻ 1	4774	144		7426	6 ⁺ 1	7519	93
5-*	4708	5 ⁻ 3	4811	103	6-*	7589	6 ⁻ 8	7614	25
							7-4	7786	
					7-*	7919	7 ⁻ 5	8069	150

* Etats pris de la Réf. [23]

^k Etats pris de la Réf. [24]

Tableau 4-5: Comparaison des spectres en énergie (en keV) expérimentaux [11, 23, 24] etcalculés du 34P

Notons que l'état 7⁺₁ a un ΔE =4475 keV, et il est donc collectif. L'état observé à 4306 keV (indiqué sur le Tableau avec **) peut avoir des J^π =3⁻₄ ou 2⁻_{3,4,5}. L'état observé à 2229 keV a une parité incertaine, nous avons dans le spectre théorique deux états dégénérés, 2⁻₁ et 2⁺₂ d'énergies : 2181 et 2211 keV, respectivement. Pour déterminer la parité de cet état, nous avons calculé leurs propriétés de TEM et avons trouvé qu'elles se coïncident avec celles de l'état 2⁻, comme le montre le Tableau 4-6.

J_i^{π}	T _{1/2}	BR %	J_{i}^{f}	γ Multi	$S_{Exp}(E1)W.u.$	$S_{Th}(E1)$ W.u.
		30 (6)	1_{2}^{+}	((E1 (+M2))		
2 ⁽⁻⁾ Exp (2229)	> 2 Ps	44 (7)	$2^{+}1$	(E1)	< 2.4 10 ⁻⁵	
		26 (6)	1_{1}^{+}	(E1)	< 7.6 10 ⁻⁶	
		83	1^{+}_{2}	E1		1.36 10-3
	1.63 ps	17	$2^{+}1$	E1		1.15 10-5
2 ⁻ _{Th} (2181)		0	1^{+}_{1}	E1		6.31 10 ⁻⁹
		1	1^{+}_{2}	M1		
	0.82 fs	94	2^{+}_{1}	E2+M1		
2 ⁺ _{Th} (2211)		5	1^{+}_{1}	E2		

Tableau 4-6: Comparaison entre les propriétés des états dégénérés 2⁻ et 2⁺.

L'isotope 35P

Artukh et al. ont mis en évidence, l'existence du ${}^{35}P$, en 1971 [18]. Le spectre en énergie d'excitation du ${}^{35}P$, que nous avons calculé, a été observé récemment [11, 25]. La comparaison expérience versus théorie, contenues entre 0 et 7.6 MeV, est montrée dans le Tableau 4-7. 22 niveaux théoriques contre 20 expérimentaux sont contenus dans ce spectre. L'ensemble de ces états est bien reproduit par PSDPF et leurs énergies d'excitation sont bien décrites. Cet isotope a N=19, ce qui rend facile l'excitation de multi-neutrons à travers le gap N=20. Ceci explique les énergies d'excitation calculées plus hautes que celles expérimentales pour plusieurs états dans cet isotope. Le RMSD, sans prendre en compte les états collectifs, est de 211 keV. Des prédictions de spins/parités importantes des états inconnus ont été faites en comparant vis-à-vis les énergies d'excitation observées et calculées ainsi que les TEM issues de ces états. Les états Yrast de hauts spins, non encore observés, ont été également calculés.

J ^π	Eexp	J ^π i	Eth	ΔΕ	J ^π	Eexp	J ^π i	Eth	ΔΕ
1/2+	0	$1/2^{+}_{1}$	0	0		5088	11/2-1	5241	153
3/2+	2387	$3/2^{+}_{1}$	2553	166	5/2+	5198	5/2+3	7873	2675
5/2+	3860	$5/2^{+}1$	3976	116		5488	7/2-3	5281	-207
(7/2-)	4102	7/2-1	4185	83	(1/2-)*	5561 5709	$5/2_{3}$ $1/2_{2}$	6023 5672	462 -37
	4250 4382	1/2 ⁻ 1 5/2 ⁻ 1	4654 4786	404 404		5859	5/2-4	6282	423
(7/2-)	4494	7/2-2	4754	260	(1/2-)*	6221 7526	$\frac{11/2^{-}_{2}}{1/2^{-}_{3}}$	6108	-113
5/2+	4664 4766	5/2 ⁺ 2 9/2 ⁻ 1	6820 4892	2156 126			13/2-1	7013	
	4869	5/2-2	4994	125			15/2-1	8595	
	4959	9/2 ⁻ 2	5089	130			$11/2^{+}1$	11077	
	5022						13/2+1	15111	

* Etats pris de la Réf. [25]

Tableau 4-7: Comparaison des spectres en énergie (en keV) expérimentaux [11, 25] et
calculés du ${}^{35}P$

<u>L'isotope</u>³⁶P

Artukh et al, ont découvert le ${}^{36}P$, en 1971 [18]. Nous avons calculé, en utilisant PSDPF, le spectre en énergie d'excitation les états 0p-0t du ${}^{36}P$, avec N = 21. La comparaison des résultats obtenus avec les données expérimentales [11, 25] est montrée sur le Tableau 4-8. Les états 1ħ ω , de parité positive observés à 1303, 2281 et 5212 keV, ne peuvent pas être calculés par PSDPF qui décrit les états intrus seulement dans les noyaux avec N et/ou Z compris entre 8 et 20. Les états proposés de parité normale – sont assez bien décrits par l'interaction PSDPF. Les états de J^{π} inconnus sont prédits d'avoir également une parité normale –. Le RMSD des états 0ħ ω est très faible et vaut 150.

J ^π	Eexp	J ^π i	Eth	ΔΕ	J^{π}	Eexp	J ^π i	Eth	ΔΕ
4-	0	4^{-1}	0	0	(4-)*	2644	4^{-}_{2}	2687	47
(3-)*	249	3^{-1}	238	-12	~ /	3060	2^{-}_{3}	3351	291
(2-)*	423	2^{-1}	281	-142		3630	4 ⁻ 3	3699	69
1+	1303				7**	5212			
(1-)*	1344	1^{-1}	1552	208			6-1	4048	
	2000	2^{-}_{2}	1945	-55			7 ⁻ 1	6191	
(5-)*	2030	5 ⁻ 1	1817	-213			8-1	6791	
1+	2281								

* Spin et parité attribués dans la Réf [25]

Tableau 4-8: Comparaison des spectres en énergie (en keV) expérimentaux [11, 25] et
calculés du ${}^{36}P$

Nous avons calculé les spectres complet d'états normaux et intrus dans les isotopes du Phosphore avec A=30 à 36 et les comparés aux données expérimentales connues. L'interaction PSDPF reproduit assez bien les énergies d'excitation de tous les états dans les isotopes investigués. Les RMSD sont très faibles et ne dépassent pas 230 keV, comme le montre la Figure ci-dessous. Des prédictions importantes ont été proposées dans cette étude.

Figure 4-1 : Variation de RMSD (en keV) en fonction de A des isotopes du Phosphore ³⁰⁻³⁶P.

Chapitre 05 Descriptions des transitions électromagnétiques des isotopes de la chaine du Phosphore

Nous avons montré dans les précédents chapitres la comparaison de nos calculs concernant les énergies d'excitation dans les isotopes de la chaine du Phosphore. Cette chaine, avec Z=16, appartient au milieu de la couche sd et constitue donc un bon test de la fiabilité de l'interaction PSDPF dont ces paramètres ont été ajustés que pour les noyaux de début et de fin de couche. Nous avons remarqué la réussite de cette interaction dans la description consistante des états normaux $0\hbar\omega$ et intrus $1\hbar\omega$ dans tous les isotopes étudiés. A l'aide de cette description, nous avons pu déterminer quels sont les états collectifs dans chaque nucléide. Nous voudrions étendre la description dans ce chapitre aux transitions électromagnétiques dans les isotopes récemment mesurés où la détermination des J^π reste encore ambiguë, qui sont 33,34,35 P. Les durés de vie moyennes sont également calculées et comparées aux mesures expérimentales. Avant de présenter nos résultats, nous allons exposer l'étude du noyau d'intérêt astrophysique, le 30 P.

1. Isotopes d'intérêt astrophysique

	1	1		
J^{π}	E _{exp}	PSDPF	J^{π}_{i}	ΔE
4+	5597	5396	4 ₃ +	-201
1+	5701	5899	1_{8}^{+}	198
$(5,7)^+$	5716	5670	5 ₃ +	-46
(3+- 5+)	5788	5995	4_{4}^{+}	207
(3 ⁺ , 5 ⁺)	5808	5836	3_8^+	28
(2-)	5896	6076	2_{3}^{-}	180
$(2^{-},1^{-})$	5908	5918	12^{-1}	10
(3+)	5934	5955	39^{+}	21
$(0,1,2)^{-}$	5993	6372	24-	379
(1^{+})	5997	7142	19^{+}	1145
(3+)	6006	6100	3_{10}^{+}	94
3-	6094	5786	33-	-308
$(5,6,7)^+$	6178	7142	61 ⁺	964
$(4,5,6)^{-}$	6354	6449	61-	95

Le ³⁰P (Z=30) est un nuclide auto-conjugué impair-impair, dont la densité de niveau est raisonnablement élevée.

Tableau 5-1 : Propriétés de niveaux d'intérêt astrophysique [27] du ³⁰P

La structure de résonance-protons de ³⁰P a une signification d'intérêt astrophysique dans la détermination du taux de la réaction ²⁹Si(p, γ)³⁰P à la température caractéristique de la combustion explosive d'hydrogène (T> 0.1 GK) [26]. Rappelons que les assignements du

spin/parité des niveaux d'intérêt astrophysique est très important pour déterminer les taux des réactions. Nous décrivant sur le Tableau 5-1, les énergies d'excitation d'intérêt astrophysique du ³⁰P et essayons de fixer les assignements de J^{π} de ces états. Nous remarquons que tous les états observés ont des correspondances théoriques et tous les J^{π} incertains ont été fixé à l'aide de cette comparaison. Les différences entre énergies d'excitation théoriques et expérimentales sont faibles à l'exception de celle du 1⁺9 et 6⁺1, qui sont prédits plus hauts que l'expérience, reflétant leur caractère collectif.

2. Description des transitions électromagnétiques

2-1 Description des durées de vie des isotopes du phosphore

L'un des grandeurs les plus importants du point de vue expérimentale, car il caractérise le niveau, que théorique, car c'est un bon test de la fiabilité de l'interaction, est la durée de vie. La durée de vie d'un état excité est généralement comprise entre 10^{-12} et 10^{-15} s pour les états liés, certains états peuvent avoir des durées de vie beaucoup plus grandes, jusqu'à des années. Ces états excités sont appelés "*états isomères*" [2].

La mesure de la durée de vie des états nucléaires excités est une technique expérimentale importante en physique nucléaire. Afin de mesurer la durée de vie d'un état excité, il doit être peuplé à l'aide d'une réaction nucléaire. Le type et les conditions de la réaction sont choisis pour optimiser la population des états excités. Une fois peuplé, L'état restera excité pour une durée de vie moyenne ζ qui est liée à la largeur Γ de l'état par le principe d'incertitude de Heisenberg [26]. (voir Ch.1.4.2).

Afin de tester la fiabilité de l'interaction PSDPF en profondeur, nous l'avons utilisé pour calculer les probabilités des TEM des états sphériques permettant d'obtenir les durées de vie moyenne ζ . Nous présentons dans le Tableau 5-2, les résultats obtenus des ζ connues pour les premiers états des isotopes de Phosphore avec (A=29 à 36). Les durées de vie de ces états sont pareillement en bon accord avec ce qui portées expérimentalement. Le même ordre du grandeur a été obtenu entre calcul et expérience, ceci peut être vu en comparons les unités des durées de vie moyennes. Nous n'avons pas calculé la durée de vie de l'état 7⁺ dans ³⁶P, car cet état est collectif, comme nous l'avons montré dans le chapitre précédent.

Noyaux	J^{π_i}	ζexp	ζpsdpf
²⁹ P	7/21	13(9) fs	2.19fs
³⁰ P	3_1^{-1} 4_1^{-1} 5_1^{-1}	247 (25) fs 1.9 (10) ps 375 (50) ps	0.122 fs 111 ps 21.9 ps
³¹ p	$3/2_{1}^{+}$ $5/2_{1}^{+}$ $7/2_{1}^{+}$ $9/2_{1}^{+}$ $11/2_{1}^{+}$ $7/2_{1}^{-}$ $9/2_{1}^{-}$ $11/2_{1}^{-}$	0.755(26) ps 388(26) fs 316(25) fs 52(12) fs 33(14) fs 598(35) fs 55(14) fs 89(30) fs	2.11ps 298fs 257fs 84.8 fs 50.5 fs 302 fs 31.64 fs 240fs
³² P	$0_{1}^{+} \\ 2_{1}^{+} \\ 3_{1}^{+} \\ 2_{1}^{-} \\ 3_{1}^{-} \\ 4_{1}^{-} \\ 5_{1}^{-} $	2.64(12) ps 401(13) ps 620(40) fs 130(29) fs 361(14) fs 387(19) fs 0.782(12) fs	37.9ps 587.6 ps 460 fs 0.181 fs 197.6 fs 4.948 fs 1.196 fs
³³ P	$3/2_{1}^{+}$ $5/2_{1}^{+}$ $7/2_{1}^{+}$ $7/2_{1}^{-}$ $9/2_{1}^{-}$ $11/2_{1}^{-}$	0.623(0) ps 1.115(16) ps 0.201(4) ps 0.461(10) ps 35(7) ps 14(20) ps	1.988ps 1.03 ps 2.376 ps 4.875 ps 2.731 ps 1.55 ps
³⁴ p	$ \begin{array}{c} 2^{+}_{1} \\ 2_{1}^{-} \\ 3_{1}^{-} \\ 41 \\ 5_{1}^{-} \\ 6_{1}^{-} \end{array} $	2.8(9) ps, 2.8(4) ps 2.88 ps 10ps 2.88(1) ns 0.52(17) ps, 0.52(12) ps 0.43(7) ps	1.41 ps 2.35 ps 2.69 ps 0.00235 ns 2.23 ps 0.351 ps
³⁵ P	3/2 ⁺ 1 5/2 ⁺ 1 7/2 ⁻ 1 7/2 ⁻ 2	< 1ps < 1ps > 100ps 5(11) ps	0.12 ps 0.03 ps 58.6ps 5ps
³⁶ p	(51 ⁻) (7 ^{+*})	<1ps 4(2) ps	0.35ps

Tableaux 5-2 : Comparaison expérience versus théorie des durées de vie moyenne des premiers états du Phosphore .

5-2-2 Calcul de transitions électromagnétiques dans les ^{33,34,35}P

Les TEM se font entre deux types d'états. Soit entre états de parités identiques, cas des transitions E2 et M1, soit entre états de parités opposées, cas des transitions E1, E3 et M2. Nous avons utilisant l'interaction PSDPF pour calculer les TEM des isotopes ³³P, ³⁴P et ³⁵P,

qui sont les isotopes les plus étudiés récemment. Rappelons que les TEM ont été calculées en utilisant les paramètres montrés sur la Figure 2-3.

Dans les Tableaux 5-(3,4,5), nous présentons une comparaison expérimentale et théorique des propriétés EMT (voir Ch.1.4) suivantes: durée de vie moyenne ζ , multiplicité γ et les rapports d'embranchant R_k, dans ³⁵P, ³⁴P et ³³P, respectivement. En fait, les propriétés nucléaires de désintégration γ sont quelques-uns des meilleurs indicateurs de spin et de parité nucléaire (J^{π}) des états excités et sont également un bon test des fonctions d'ondes obtenues par une interaction effective. En général, toutes les durées de vie moyennes presque sont connues dans ³⁴P sauf pour les 3⁺₁ et 3⁻₃ et sont bien décrits par PSDPF. Ce n'est pas le cas dans ³⁵P dans lequel, pratiquement, il n'y a pas de durée de vie moyenne bien déterminée. Mais notre calcul prédit des valeurs très similaires pour chaque état en ³⁴P. En ce qui concerne les rapports d'embranchant, les transitions prédites sont, presque en accord avec les observés.

Les résultats calculés du ³⁴P pour les premiers états 2^+_1 , 1^+_2 , 2^-_1 , 4^-_1 , sont en bon accord avec la donnée expérimentale. La durée de vie moyenne observée du 6^-_1 est courte, en revanche, les calculés sont longue. Ce dernier niveau se désintègre aux états 5^-_2 et 4^-_1 par des transitions (M1 (+E2)) pour le deux, mais le théoriquement prédit une transition M₁ (le E₂ très faible).

Les TEM des premiers états dans ³⁵P sont en bon accord avec les données expérimentales. L'état d'énergie 3860 keV se désexcite par transitions M_1 vers l'état $3/2^+_1$ observé à 2387 keV et par E_2 vers l'état fondamental. Leurs rapports d'embranchements sont, respectivement, R_k (exp)=13.04%, R_k (exp)=87% et le calcul prévoit les valeurs suivantes R_k (PSDPF) = 12.1, R_k (PSDPF)= 87.9, ceci est compatible avec l'expérience. Tandis que pour l'état à 4382 keV se désexcitant par E_1 avec R_k (PSDPF)=99.7% est compatible avec l'expérience.

En ce qui concerne le ³³ P, les TEM des états 1431, 1848, 2538 kev sont en très bon accord avec les données expérimentales. Par contre l'état $7/2^{+_1}$ est loin de l'expérience. La durée de vie moyenne observée du pour l'état $(3/2^{+_3})$ est compatible avec l'expérience. PSDPF prévoit une transition mixte M_1+E_2 de l'état $5/2^{+_1}$, avec $R_k=10.2\%$ contre R_k (exp)= 3.03%.

$\mathbf{E}_{\mathbf{i}}$ $(\mathbf{J}^{\pi}_{\mathbf{i}})$		Ef	$(\mathbf{J}^{\pi}_{\mathbf{f}})$	ζ (EXP)	ζ (PSDPF)	γ mult. R _k (EXP)			γ		
Ε	XP	TH								mult.	R _k (PSDPF)
2.387	$(3/2^+_1)$	2,553	0	$(1/2^{+}_{1})$		7.0210 ⁻⁶ fs		100		E2	100
3.860	$(5/2^+1)$	3.976	2.387	$(3/2^+1)$		1.99 ps		13.04	1.74	M1	12.1
			0	$(1/2^{+}_{1})$				87		E2	87.9
4.102	$(7/2^{-}1)$	4.185	3.860	$(5/2^{+}_{1})$		31.6 ps		62.11		E1	55.2
			2.387	$(3/2^{+}_{1})$			M2	4.35	1.24	M2	16.2
			0	$(1/2^{+}1)$			E3	33,54	4.79	E3	28.6
4 2 9 2	(5/2-)	4 796	4 102	(7/2)		20.2.6				M1	0.001
4.382	$(5/2_1)$	4.786	4.102	$(1/2_1)$		20.3 IS					0.281
			3.860	$(5/2^{+}1)$				100			0.0088
			2.387	$(3/2^{+}1)$				100		EI	99.7
4 4 9 4	$(7/2^{-2})$	4 754	4 102	$(7/2^{-1})$		4 94 ps		85 47	4 27	M1	26.9
	(1122)		3.860	$(7/2^{+})$				14.53	2.56	E1	71.9
				(= 1)							
4.766	$(9/2^{-}_{1})$	4.892	4.494	$(7/2^{-}2)$		1.43 ps		20.63	3.97	M1	39.6
			4.102	$(7/2^{-1})$		-		79.37		M1	60.4
4.869	$(5/2^{-}2)$	4.994	4.766	$(9/2^{-}1)$		0.281 ps				E2	0.107
			4.494	$(7/2^{-}2)$				20	6.66	M1	0.0361
			4.102	$(7/2^{-1})$				33.33		M1	84.6
			4.382	$(5/2^{-1})$				20	6.66	M1	3.65
			3.860	$(5/2^{+}_{1})$				< 6.66		E1	10.6
1	(0 (n)			(a. (a .).							
4.959	(9/2 ⁻ ₂)	5.089	4.766	$(9/2^{-1})$		5.56 ps		51.01		E2	0.183
			4.494	$(7/2^{-2})$				51.81		MI	94.8
			4.382	$(5/2_1)$				40.10		M1	4.07
			4.102	$(1/2_1)$				48.19		MI	4.07
5 088	$(11/2^{-1})$	5 241	4 959	$(9/2^{-})$		4 84 ps		34.21	11 84	M1	10.6
5.000	(11/21)	5.211	4 766	$(9/2^{-1})$		1.01 ps		65 79	11.01	M1	89.3
				() = 1)				00117			07.0
6.221	$(11/2^{-}_{1})$	6.108	5.088	(11/2-1)		0.148 ps		<7.70		M1	29.2
			4.959	$(9/2^{-}2)$		-		3.77		M1	49.8
			4.765	$(9/2^{-}1)$						M1	62
			4.494	$(7/2^{-}_{2})$				61.54		E2	0.128

Tableaux 5-3: Comparaison entre les propriétés électromagnétiques expérimentales [11] et calculées du ³⁵P.

$E_i (J^{\pi}_i)$		E_f (J^{π}_f)	ζ (EXP)	ζ (PSDPF)	γ mult. $R_k(EXP)$	γmult.R _k (PSDPF)
$\begin{array}{c} \mathbf{EXP} \\ 0.429 (2^{+}_{1}) \end{array}$	3.82	0 (1 ⁺ ₁)	1.88 ps - 4 1.88 ps +9	1.41 ps	(M1(+E2) 100	M1 100
1.608 (1 ⁺ ₂)	1.479	0.429 (2+1)	0.75 ps +64	0.948 ps	(M1+E2) 64.52 1.94	E2+M1 23.7
		0 (1 ⁺ ₁)	0.75 ps -20		(M1+E2) 35.49 2.58	E2+M1 76.3
2.229 (2 ⁻ ₁)	2.181	$\begin{array}{ccc} 1.608 & (1^+{}_2) \\ 0.429 & (2^+{}_1) \end{array}$	>2.89 ps	2.3 ps	(E1(+M2) 30 6.17 (E1) 44.05	E282.9E217.1E20.0266
2.305 (4-1)	2.195	$\begin{array}{ccc} 2.229 & (2^{-}_{1}) \\ 0.429 & (2^{+}_{1}) \end{array}$	2.89 ns 1.44	2.29 ns	7.05 (E1) 25.99 6.17	E20.0149M299.5E30.42
2.321 (3-1)	2.354	$\begin{array}{ccc} 0.429 & (2^+{}_1) \\ 2.305 & (4^-{}_1) \\ 2.229 & (2^-{}_1) \end{array}$	>10.9 ps	2.69 ps	(M2(+E3) 100)	E3 99.9 M1 0.15 M1 0.0152
2.676 (3 ⁺ ₁)	2.761	$\begin{array}{cccc} 2.305 & (4^{\text{-}}_{1}) \\ 1.608 & (1^{\text{+}}_{2}) \\ 0.429 & (2^{\text{+}}_{1}) \\ 0 & (1^{\text{+}}_{1}) \end{array}$		0.201 ps	(E1(+M2)) 100 <9 23 0	E1 0.000009 E2 0.206 E2+M1 69.7 E2 29.9
3.353 (5-1)	3.328	$\begin{array}{ccc} 2.321 & (3^{-}_{1}) \\ 2.305 & (4^{-}_{1}) \end{array}$	0.90 ps 17 0.90 ps 12	2.23 ps	23 9 50 13 18 10	E2 6.14 E2+M1 93.9
3.752 (3-2)	3.723	$\begin{array}{cccc} 2.321 & (3^{-}1) \\ 2.305 & (4^{-}1) \\ 2.229 & (2^{-}1) \\ 2.372 & (2^{+}2) \\ 0.429 & (2^{+}1) \end{array}$	0.38 ps 9	0.0310 ps	(E2) (M1(+E2)) (M1 (+E2)) 93 1.8	E2+M10.399M129.9M19.21E12.63E157.9
3.912 (4-3)	3.972	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.20 ps 10	1.33 ps	(E2, M1) 6.9 (M1,E2) 100	E21.62E2+M136.9M11.08M157E13.29
3.943 (3 ⁻ ₃)	3.804	$\begin{array}{ccc} 2.305 & (4^{-}_{1}) \\ 2.321 & (3^{-}_{1}) \end{array}$		0.034ps		M1 82.7 M1 17.2
3.951 (5 ⁻ ₂)	3.936	$\begin{array}{cccc} 2.321 & (3^{-}_{1}) \\ 2.305 & (4^{-}_{1}) \\ 3.546 & (4^{-}_{2}) \end{array}$	0.16 ps 50	0.079 ps		E2 1.18 E2+M1 96.9 E2 1.54
4.446 (4-4)	4.387	$\begin{array}{cccc} 2.321 & (3^{-}_{1}) \\ 2.305 & (4^{-}_{1}) \\ 2.676 & (3^{+}_{1}) \end{array}$	<0.14 ps	0.0000786ps	(E2) 4.0 20.1 (M1(+E2)) 95.97 1.92	E2+M145E222.9E131.9
4.630 (6-1)	4.774	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.43 ps 50	0.352 ps	(M1, E2) 100	M1 27.7 E2 58.4 E2+M1 13.7

-							
5.282	(3-7)	4.892	$\begin{array}{cccc} 2.321 & (3^{-}_{1}) \\ 3.752 & (3^{-}_{2}) \\ 2.676 & (3^{+}_{1}) \end{array}$	<0.10 ps	0.0127 ps	(M1(+E2)) 40.11 6.6 (E2(+M1)) 59.88 2.4	M1 87.7 M1 7.5 E1 4.73
5.394	(6-2)	5.422	$\begin{array}{cccc} 4.630 & (6^{-}_{1}) \\ 3.951 & (5^{-}_{2}) \\ 3.353 & (5^{-}_{1}) \\ 2.305 & (4^{-}_{1}) \end{array}$	0.16 ps +11 0.16 ps -7	4.510 ⁻² fs	(M1, E2) 100	M1 0.013 M1 1.71 E2+M1 46.5 E2 51.8
5.726	(6-3)	5.710	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		0.0291 ps	(M1(+E2)) 8.02	M1 94.7 E2 5.29
6.237	(7 ⁺ 1)	10.712	5.394 (6-2) 4.630 (6-1) 3.353 (5-1) 2.305 (4-1)	>9.95 ps	3.78 ps	(M1(+E2)) 53.47 55.88 (M1(+E2)) 23.53 4.81 (E2) 14.97 4.81 14.97	E1 6.94 E1 93.1 M2 0 E3 0
6.357	(7 ⁻ 1)	6.371	$\begin{array}{ccc} 3.951 & (5^{-}_{2}) \\ 3.353 & (5^{-}_{1}) \end{array}$	<0.050 ps	0.0987 ps	78.126.2521.866.25	E2 6.44 E2 93.6
7.426	(6 ⁺ 1)	7.519	$\begin{array}{cccc} 6.237 & (7^+{}_1) \\ 3.951 & (5^-{}_2) \\ 3.353 & (5^-{}_1) \end{array}$		0.0597 ps	(E1(M2)) 19.12 3.98 (E1(+M2)) 39.84 5.18 (M2(+E3)) 35.86 5.18 (E3) 5.18 3.19 (E2) 42.86 8	M1 46.8 E1 84.5 E1 10.8
						(E2) 57.14 8 D E2 100	

Tableaux 5-4 : Comparaison entre les propriétés électromagnétiques expérimentales [11] et	et
calculées du ³⁴ P.	

$\mathbf{E}_{\mathbf{i}} (\mathbf{J}^{\pi}_{\mathbf{i}})$		$\mathbf{E}_{\mathbf{f}} (\mathbf{J}_{\mathbf{f}}^{\pi})$		ζ(EXP)	ζ	γ mult. $R_k(EXP)$	γ	
Eey	кр	TH			• • •	(PSDPF)	•	mult.R _k (PSDPF)
1.431	(3/21+)	1.441	0	$(1/2_1^+)$	0.62(10) ps	1.99ps	M1 (+M2) 100	M1+E2 100
1.848	$(5/2_1^+)$	1.905	1.432 0	$(3/2_1^+)$ $(1/2_1^+)$	1.11(16) ps	150ps	M1+(E2) 6.36 5.6 E2+(M3) 93.6 1.06	E2 6.65 E2+M1 93.1
2.538	(3/22+)	2.697	1.848 1.432 0	$(5/2_1^+)$ $(3/2_1^+)$ $(1/2_1^+)$	50 (10) fs	32.1fs	(M1) 6.97 10.20 (M1) 7.99 10.20 (M1+E2) 100 29.76	M1+E2 89.5 M1+E2 10.4 E2+M1 0.139
3.629	(7/21+)	3.778	3.491 3.275 2.538 1.848 1.431	$(5/2_2^+) (3/2_3^+) (3/2_2^+) (5/2_1^+) (3/2_1^+)$	0.20 (4) ps	0.237 fs	M1 (+E2) 26 2.4 E2 (+M3) 60.5 2.4	M1+E2 0 E2 0 E2 0 E2+M1 0 E2 100
3.275	(3/23+)	3.433	2.538 1.847 1432 0	$(3/2_{2}^{+})$ $(5/2_{1}^{+})$ $(3/2_{1}^{+})$ $(1/2_{1}^{+})$	0.20 (4) ps	0.215ps	3.03 M1+E2 50.63 3.04 (M1) 5.06 M1+E2 46 3.03	E2+M10.0696E20.039E2+M16.68E2+M193.2
3.491	(5/2 ₂ ⁺)	3.508	3.275 2.538 1.848 1.432 0	$\begin{array}{c} (3/2_3^+) \\ (3/2_2^+) \\ (5/2_1^+) \\ (3/2_1^+) \\ (1/2_1^+) \end{array}$	83.67(17) fs	0.022 fs	3.23 3.23 (M1(+E2)) 53.9 3.23 (M1+E2) 42.07 3.23 E2(+M3) 3.99 19.95	M1 0.0048 E2+M1 0.39 M1 48.1 E2+M1 42.1 E2 9.36
4.048	(5/23 ⁺)	3.971	3.629 3.491 3.275 2.538 1.847 1.431 0	$\begin{array}{c} (7/2_1^+) \\ (5/2_2^+) \\ (3/2_3^+) \\ (3/2_2^+) \\ (5/2_1^+) \\ (3/2_1^+) \\ (1/2_1^+) \end{array}$	89.44(30) fs	0.022 ps	3.41 3.41 (M1) 5.90 2.60 (M1) 9.18 3.28 7.87 M1+E2 65.6 3.2 E2 4.5 2.60	E2 0.000293 M1 0.277 M1 4.94 M1 14.8 E2+M1 1.92 M1+E2 75.8 E2 2.25
4.194	(1/22+)	4.391	1.848 1.432 0	$(5/2_1^+)$ $(3/2_1^+)$ $(1/2_1^+)$	150(50) fs	1.25fs	4.58 3.66 (E2) 91	E2 0.0485 E2+M1 53 M1 46.94391
4.226	(7/21-)	4.470	3.990 3.490 1.848 1.432	$(5/2_2^+)$ $(5/2_1^+)$ $(3/2_1^+)$	0.46(10) ps	0.475 ps	9.05 17.474 E1 97.42 17.47 (E1(+M2)) 3.6 7.94	E1 16.6 E1 79.9 M2+E3 3.08 E3 0.412

			0	(1/2 +)				
			0	$(1/2_1)$				
4 856	3/24+	5 075	4 226	$(7/2_1^{-})$			3 14	E3+M2 0
1.050	5/ 24	5.075	4 194	$(1/2_{2}^{+})$			3.14	M1 0.0563
			4.124	$(1/2_2)$ $(5/2_2^+)$			3.14	$F_{2+M1} = 0.0505$
			3 628	$(7/2_1^+)$	<109 fs	472fs	3.14	M1 0.263
			3 4 9 0	$(7/2_1^+)$	(10) 15	17215	3.14	M1 0.387
			3 275	$(3/2_2)$ $(3/2_2^+)$			2 51	$E_{2}+M_{1} 240$
			2.538	$(3/2^{+})$			1.50	E2+M1 2.10 E2+M1 9.54
			1.847	$(5/2_1^+)$			62.8 3	E2+M1 58.9
			1.431	$(3/2_1^+)$			1.57	E2+M1 1.87
			0	$(1/2_1^+)$			15.72 3	E2+M1 26.6
				(-)				
5.638	$11/2_1^{-1}$		5.453	$(9/2_1)$	13(20) ps	15.7ps	M1 45.9 2.16	
		5.812	4.226	$(7/2_1)$			E2 (+E3) 54 2	M1 42
5 101	F / O =		1.000	(7 2)	100.6	0.0046.6	0.75	E2 58
5.191	$5/2_1^{-1}$		4.226	$(1/2_1)$	<180 fs	0.0246 fs	2.75	E2 M1 0 0220
		5.167	4.194	$(1/2_2)$			2.75	E2+ M1 0.0339
			4.048	$(5/23^{+})$ $(7/2^{+})$			4.81	MZ = 0 E2+E1+M1 0
			2 400	$(1/2_1)$ $(5/2_1^+)$			4.61	$E_{3}+E_{1}+M_{1}=0$
			3.490	$(3/2_2)$ $(3/2_2^+)$			2.10	$F_{1} = 0.0162$
			2 538	$(3/2_3)$ $(3/2_2^+)$			4.81	E1 0.0102 E1 0.00446
			1 848	$(5/2_2)$			25.83 2.62	E1 -48 7
			1.010	(3/21) $(3/21^+)$			43.78 2.6	$E_{3+E_{1}+M_{1}}^{E_{1}}$
			0	$(1/2_1^+)$			3.50	E3+E1+M2 149
			Ĩ	(
						4.246		
5.040	5/2 +		1 226	(7/2 -)	< 90.44 fg	4.34fs	-1.49	E1 0.0291
5.049	3/24	5.012	4.220	$(1/2_1)$	<07.44 18		<1.48	E1 0.0381 E2 0.000679
			4.194	$(1/2_2)$ $(5/2_2^+)$			< 5.20	$E_2 = 0.000078$ $E_2 \pm M_1 = 1.04$
			3 629	(3/23) $(7/21^+)$			< 5.20	E2+M1 = 1.04 E2+M1 = 0.00252
			3 491	$(\frac{1}{2})^{-1}$			<5.20	$E_2+M1 = 0.00232$ E2+M1 = 1.04
			3.275	$(3/2_3^+)$			<5.20	M1 6.47
			2.538	$(3/2^{+})$			M1 3.71 1.48	E2+M1 4.6
			1.848	$(5/2_1^+)$			M1(+E2) 26.39 3.71	M1 55.8
			1.432	$(3/2_1^+)$			M1 8.92 2.97	M1 30.8
			0	$(1/2_1^+)$			E2 37.17 2.97	E2 0.148

Tableaux 5-5 : Comparaison entre les propriétés électromagnétiques expérimentales [11]	et
calculées du ³³ P.	

Conclusion

Après le succès de l'interaction du modèle en couches USD (et les plus récentes USDA/B) dans la description des propriétés des états de parité positive des noyaux dans l'espace sd avec un cœur ¹⁶O. Une interaction appelée PSDPF, compatible avec l'espace de valence p-sd-pf complet avec un cœur ⁴He, a été développée pour décrire de façons consistante les états de parités + et – dans les noyaux à travers toute la couche sd.

Le but principal de notre travail était, le calcul des propriétés spectroscopiques (spectres en énergie d'excitation et transitions électromagnétiques) en utilisant l'interaction PSDPF dans les isotopes du Phosphore ²⁹⁻³⁶P. Les transitions électromagnétiques complètes, entre états de mêmes parités et des états de parités opposées, ont été calculées dans les isotopes étudiés récemment ^{33,34,35}P. Nous avons calculée aussi les durées de vie moyenne pour la chaîne des isotopes du Phosphore.

Les résultats obtenus montrent un bon accord expérience-théorie pour les spectres en énergie d'excitation à travers toute la chaîne. Concernant les noyaux avec N<Z, nous avons utilisé en plus du calcul, les noyaux miroirs pour déterminer les J^{π} des états. Les transitions électromagnétiques dans les isotopes étudiés sont en agrément avec l'expérience.

Notre étude montre que l'interaction PSDPF décrit assez bien les spectres en énergie d'excitation et les transitions électromagnétiques de l'ensemble des états 0 et 1 h ω connues dans les isotopes de phosphores. Des prédictions importantes ont été proposées pour chaque isotope étudié.

Bibliographie

[1] M -Houry, Thèse de Doctorat, Université Paris XI. ORSAY, 2000.

[2] M. Bouhelal, Thèse de Doctorat, Université e Batna, Alegria et Université de Strasbourg, France (2010).

[3] Luc Valentin, Physique Subatomique : noyaux et particules, Hermann (1975)

[4] M. Mayer, phys. Rev .75, 1969 (1949)

[5] O. Axel, J. H. D. Jensen, HE. Suess , Phys. Rev .75, 1766 (1949)

[6] P. J. Brussaard, P. W. M. Glaudemans, Shell-Model Application in Nuclear Spectroscopy North -Halland, 1977

[7] J. L. Basdevant, J. Rich, and M spiro : Fundamentals in Nuclear Physics : from Nuclear Structure to consmology, spring science + Business Media, Inc. (2005)

[8] E. Caurier, F. Nowacki, Acta Physica Polonica., B 30, 705, 1999

[9] E. Caurier, G. Martínez – Pinedo, F. Nowacki, A . Poves , A.P. Zuker, Rev. of Mod. Phys., 77, 427, 2005

[10] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves , J. Retamosa , A.P. Zuker, *Phys. Rev*, C 59, 2033 1999.

[11] http://www.nndc.bnl.gov/nudat2

[12] M. Bouhelal, F. Haas, E. Caurier, F. Nowacki, A. Bouldjedri, *Nucl. Phys.*, A 864, 113, 2011.

[13] B. A. Brown, B.H. Wildenthal, Nucl. Phys, A474, 290, 1987.

[14] B. A. Brown, W. A. Richter, Phys. Rev., C 74, 034315, 2006.

- [15] W. A. Richter, S. Mkhize, and B. Alex Brown, Phys. Rev., C 78, 064302, 2008.
- [16] M. Labidi, Mémoire de Master, Université de Tébessa, Algérie (2013)

[17] M. Abid, Mémoire de Master, Université de Tébessa, Algérie (2014)

[18] M. Thoennessen, At. Data Nucl. Data Tables 98, 2012, 933-959

[19] D. Nishimura et al. EPJ Web of Conferences 66, 02072 (2014).

[20] M. Ionescu – Bujor et al., phys. Rev C 73, 024310 (2016).

[21] R. Chakrabarti et al phys. Rev c 84, 054325 (2011).

[22] B. Fu et al phys. Rev c 94, 034318-4(2016)

[23] L. S. Rebeka, PhD student at florida state university. Communication privée.

[24] R. Chapman et al., phys Rev C 92-044308 (2015).

[25] A. Mutschler et al phys Rev C 93, 034333 (2016).

[26] Laura Grocutt, these of doctorat, University of the West of Scotland (2015)

[27] E. M cneice et al Nuclear Data Sheets 120 (2014) 88–90