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  ملخص

راث اىَ٘اد  اىظذفٍت اىَظْعت ٍِيٍٖبمو ىخ٘اء اىذٌْبٍٍنً ىٗالا تغٍش خطٍاى اىذٌْبٍٍنٍتسخجببت لافً ٕزا اىعَو، حَج دساست ا

أُ  أخزّب ببلاعخببسبىحشاسة. ب ٍخغٍشةاىخظبئض اىَبدٌت  ٍع اعخببسفً اىبٍئبث اىحشاسٌت  (FGM)اىَخذسجت اىخظبئض 

اىسَبمت فقط. ىيخغيب عيى  فً احجبٓ ٗظٍفٍبً حخغٍشاىخظبئض اىفعبىت ىيَبدة اىَخذسجت ٗظٍفٍبً حعخَذ عيى دسجت اىحشاسة ٌَٗنِ أُ 

ٍِ اجو حنبٍو  ٍبذد /ٍحبفع ، حٌ اعخَبد حنبٍو ٍخفغ ٍعذه ٗفعبه. حٌ اسخخذاً ٍخطط حنبٍو صًٍْ ئًاىغشباىقفو قفو اىقض ٗ

 اىلاخطٍت اىْٖذسٍت فً إطبس اىظٍغت ًاىظذف اىَحذد عْظشاىعقذ. حَج طٍبغت  8ٍْحًْ ٍنُ٘ ٍِ  ًعْظش طذفاىضٍِ ٍع 

حظٖش اىْخبئج اىعذدٌت اىخً حٌ اىحظ٘ه . Green-Lagrangeجٖبداث رشاسٌت ببسخخذاً الإ اعخببس ٍع Lagrangeـ اىنيٍت ى

اىذٌْبٍٍنً خ٘اء ىالاقبدس عيى رو ٍشبمو  َبذداى / فعبحىَاىَْحًْ اىَط٘س ٍع ٍخطط حنبٍو اى٘قج ا اىظذفً عْظشاىعيٍٖب أُ 

فً اىَخذسجت راث اىخظبئض اىَ٘اد  اىظذفٍت اىَظْعت ٍِيٍٖبمو ىلإصارت اىنبٍشة راحب ا غٍش اىخطً ٗاىَشبمو اىذٌْبٍٍنٍت

-لاث اىحشاسٌت٘الإّشبئٍت ٗاىحَ اىخظبئضاىبٍئبث اىحشاسٌت اىشذٌذة. حٌ بعذ رىل دساست حأثٍش اىَبدة اىَنّ٘ت، ٗحذسج اىَبدة، ٗ

دسجت اىحشاسة خلاه ٗخذسج اىحٌ عشع ٍْٗبقشت حأثٍشاث قبُّ٘  ٍٍنبٍّنٍت عيى اىسي٘ك اىذٌْبٍٍنً. عيى ٗجٔ اىخظ٘ص،

 .ٗاىذٌْبٍٍنٍت نٍتٍىسخبحغٍش اىخطٍت ا سي٘مبثاىسَبمت عيى اى
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Abstract 

In this work, the nonlinear time history response and dynamic-buckling of functionally 

graded material (FGM) shell structures in thermal environments with temperature-dependent 

material properties are studied. The effective properties of the functionally graded material are 

assumed to be temperature-dependent and can vary through the thickness only. To overcome 

shear and membrane locking, an efficient modified reduced integration is adopted. An implicit 

conservative/decaying time integration scheme and a curved 8-node degenerated shell element 

are used for the time and spatial discretization respectively. The shell element is formulated in 

the framework of the Total Lagrangian Formulation with thermal strains/stresses taken into 

account using the Green-Lagrange geometric nonlinearity. Numerical results obtained here, show 

that the developed curved shell element with the implicit conservative time integration scheme is 

capable of solving nonlinear dynamic-buckling and large displacement dynamic problems of 

FGM shell structures in severe thermal environments. The effects of the constituent material, 

material gradient, parameters of structural geometry and thermo-mechanical loadings on the 

dynamic behavior are then investigated. In particular, the effects of the power-law indexes and 

temperature gradient through-thickness on the nonlinear static, dynamic and dynamic-buckling 

phenomena are presented and discussed. 

 

Keywords: Degenerated shell; FGM; Functionally graded; Thermo-mechanical; Nonlinear 

dynamic; Dynamic-buckling; Thermal effect. 

 

 

 

 

 

 

 

 



 
 

Résumé  

Dans ce travail, la réponse dynamique non linéaire et le flambement dynamique des 

coques en matériaux fonctionnellement graduées (FGM) dans des environnement thermiques 

avec des propriétés de matériau dépendantes de la température sont étudiés. Les propriétés 

effectives du matériau à gradation fonctionnelle sont supposées dépendantes de la température et 

ne peuvent varier que suivant l'épaisseur. Pour surmonter les blocages de cisaillement et de 

membrane, une intégration réduite modifiée efficace est adoptée. Un schéma d'intégration 

dynamique implicite conservatif/dissipatif et un élément de coque dégénéré courbe à 8-nœuds 

sont utilisés pour la discrétisation dans le temps et dans l’espaces respectivement. L'élément de 

coque est formulé dans le cadre de la Formulation Lagrangienne Totale avec prise en compte des 

déformations/contraintes thermiques en utilisant la déformation non-linéaire géométrique de 

Green-Lagrange. Les résultats numériques obtenus montrent que la formulation d'élément coque 

courbe développée avec le schéma d'intégration implicite composite est capable de résoudre les 

problèmes de la dynamique non-linéaire et les problèmes de flambement-dynamique des 

structures de coque FGM dans des environnements thermiques sévères L’influence de différents 

constituants, l’indice de gradient de matériau, des paramètres de géométrie structurelle et des 

chargements thermomécaniques sur le comportement dynamique sont étudiés. En particulier, les 

effets des indices de loi de puissance et du gradient de température à travers l'épaisseur sur les 

phénomènes non linéaires statiques, dynamiques et de flambement dynamique sont présentés et 

discutés. 

 

Mots-clés: Coque dégénéré ; FGM ; Fonctionnellement gradué; Thermo-mécanique ; Dynamique 

non linéaire; Flambement dynamique ; Effet thermique.  
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ij  Non-linear Green–Lagrangian strain in the global Cartesian system. 

J The Jacobian matrix. 

I Unit matrix. 
1

ijj  The element ij of the inverse of the Jacobian J.  

A
 

Auxiliary matrix. 

BNL 
Nonlinear strain-displacement matrix. 

th
 

Thermal strain. 

sk
 

Shear correction factor. 

C
 

Constitutive matrix.  

0

t t

ijS

0

t t

ij


 
The second Piola-Kirchhoff stress tensor and the incremental Green-

Lagrange strain tensor at ( t t ) referred to the configuration at a time (t = 

0). 
t tW

 
Represents the external virtual work. 



0

t t

kt


 
Surface traction. 

0

t t

kf


 
Stands for body forces. 

B
 

Represents the overall strain-displacement matrix. 

H
m 

 H
th

 
Mechanical and thermal stress. 
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 IF t
 

The inertia forces. 

 DF t
 

The damping forces. 

 intF t
 

The internal (nodal) forces including forces due to initial stresses in the 

system. 

 extF t
 

The external forces. 

C
 

The damping matrix. 

 f u
 

The nonlinear internal nodal force vector. 

0u  0u
 

The given initial displacement and velocity. 

     
Parameters that control the stability and accuracy of the algorithm. 

t t

R


 
The effective load vector. 

      
The damping coefficients. 

S
 

Stands for the displacement matrix. 
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INTRODUCTION 

As Functionally Graded Material (FGM) plates/shells are devoted to work in thermal 

environments with high temperature, there is a growing concern on considering the effect of 

temperature on the effective properties of the FGM constituent materials. Consequently, several 

works handling the linear and nonlinear analysis of FGM structures with temperature-dependent 

material properties have been presented in recent years.  

The main purpose of this work is to develop a powerful and reliable numerical tool to efficiently 

study nonlinear dynamic behavior, dynamic-buckling and post-buckling of FGM shell structures 

in thermal environments. The salient features of this numerical too consists of using: curved 

geometry, membrane/bending/thermo-mechanical coupling, efficient numerical quadrature, and 

an implicit conservative dynamic scheme. These considerations are expected to be efficient to 

perform nonlinear transient dynamic and dynamic-buckling analysis with minimum mesh and 

larger time steps in order to minimize the computational time which is a prime advantage in the 

field of nonlinear transient dynamic analysis. 

Then, the aim of this thesis is considering the effect of temperature on the effective 

properties of the FGM constituent materials on the nonlinear transient dynamic, dynamic-

buckling, and post-buckling behaviours of FGM cylindrical and spherical shells in thermal 

environments using an implicit conservative/decaying time integration scheme, which, can be 

considered as an important addition to the state of the art of large-displacement dynamic 

behaviour of FGM shells. For this purpose, an 8-noded curved degenerated shell element is used 

for finite element discretization. The shell element is formulated in the framework of the Total 

Lagrangian Formulation with thermal strains/stresses taken into account using the Green-

Lagrange geometric nonlinearity. 

The material properties are assumed to be temperature dependent and are graded in the thickness 

direction according to the power-law distribution in terms of volume fractions of the constituents 

of the material. The bending and membrane strain-coupling considered in the element 

formulation allows to efficiently capture the high membrane-bending interaction in FGM 

plates/shells. In addition, the mass matrix formulation includes translational and rotary inertia 

effects. Consequently, a minimal number of elements can be used to mesh plane and curved 

geometries, which is a crucial concern to minimize the computational time, especially in 
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nonlinear dynamic analysis. Moreover, to overcome membrane and transverse shear locking, an 

efficient modified reduced numerical integration scheme is adopted allowing for more gain in 

computational time. 

   It  is much common to use explicit schemes for solving highly nonlinear dynamic buckling and 

post-buckling problems, despite the fact that implicit dynamics time integration schemes are 

generally more stable and accurate than explicit ones, and can use larger time steps. Therefore, 

the present thesis examined dynamic buckling behaviour of functionally graded material shells in 

thermal environments based on an implicit time integration scheme. Indeed, an implicit 

conservative/decaying direct time integration scheme is used herein to obtain the time-history 

responses and to study the dynamic-buckling phenomena of FGM shell structures subjected to 

dynamic loading. The conservative/decaying scheme is expected to be efficient in energy 

conservation and parasitic high-frequency dissipation providing stable and accurate dynamic 

responses. It is important to remark that implicit schemes for shell buckling and post-buckling 

are still generally lacking in the FE analysis literature. 

 

The present thesis has been subdivided in five chapters as follows: 

An introduction is being given to describe the scope and objective of the present research work 

and explaining the way to achieve the planned objectives.   

 

Chapter 1: Presents a general background, summary and the topics that are related to 

functionally graded materials (FGMs). In addition, a literature review of recent 

studies of functionally graded plate/shell structures is provided.  

Chapter 2: In this chapter, gives a different shell theory, including different kinematics is 

presented. Additionally, different finite element approaches to generate shell 

elements is represented. Finally, an in-depth review of the literature focused on the 

development of degenerated shell elements, with a focus on recent published work.  

Chapter 3: Dealing with the derivation of the degenerated curved shell element in the 

geometrically nonlinear formulation based on the total Lagrangian approach with 

regarding thermal environment is described.  
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Chapter 4: In this chapter, the nonlinear dynamic and buckling response of FGM shells in a 

thermal environment with temperature-dependent properties are obtained using 

direct time integration method.  

Chapter 5: Results and discussion on FGM plate/shell structures based on the resulting    

formulation described in the previous chapters. 

Finally, we present a general conclusion which incorporates all the results obtained in the 

previous sections of the numerical analysis. 
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Chapter 1 

 General Background on Functionally Graded Materials 

1. Introduction 

Composite materials have been playing a significant role during the history, and widely used 

in various industrial applications due to their improved properties, such as automobiles, energy 

and aerospace engineering fields. Composite materials reached great attention from researchers 

because they have enhanced properties, in which they are lighter, can also offer design flexibility 

and provide resistance to corrosion as well as wear. In spite of traditional composites that may 

suffer high amounts of stress concentration at dissimilar material interfaces, leading to 

delamination failure. However, the traditional composite material is incapable to employ under 

the high-temperature environments [1]. In general, the metals have been used in the engineering 

field for many years on account of their excellent strength and toughness. In the high-

temperature condition, the strength of the metal is reduced similar to the traditional composite 

material. The ceramic materials have excellent characteristics in heat resistance. However, the 

applications of ceramic are usually limited due to their low toughness.  

This chapter is an attempt to give a general introduction, identify and highlight the topics that are 

most relevant for functionally graded material (FGM) structures. Thus, a brief representation that 

define the effective properties of the materials.  

2. Functionally graded materials concept 

As stated above, the traditional composite materials were unable to withstand such extreme 

working conditions, the failure mode was due to delamination [2], that is, this was as a result of 

the mismatch in the properties of the two materials. The discontinuity at the interface is 

responsible for the high-stress concentration that exists at this interface. Hence, when the thermal 

load is applied to this composite material, the thermal mismatch caused the two materials to be 

separated, because of the different expansion properties of the two materials, which eventually 

resulted in the failure of the composite material. The researchers knew that if the sharp interface 

between the two materials that form the composite material could be eliminated. Then the 

problem would be solved. The researchers changed this sharp interface into a gradient interface 
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by gradually introducing the second material into the first material as against joining 100% of 

one material and 100% of the second material together, that is, using this process of gradually 

introducing the second material into the first material helped to exchange the sharp interface with 

the gradually changing interface and the composite material thus developed was able to 

withstand the intended high-temperature application.  

This composite material that was developed with the gradient interface is referred to as 

“Functionally Graded Materials (FGMs)”. The schematic diagram of the functionally graded 

composite material is shown in Figure 1.1. 

 

Fig. 1.1 An FGM with the volume fractions of the constituent phases graded and vary in the thickness 

direction [3]. 

 

Functionally graded materials (FGMs) are novel composite materials in which the volume 

fraction of constituent materials varying gradually through the thickness direction as shown in 

Figure 1.2, their mechanical and thermo-physical properties exhibit a smooth and continuous 

variation from one surface to another presented in Figure 1.3, thus eliminating interface 

problems and mitigating thermal stress concentrations [4]. This is because the ceramic 

constituents of FGMs can withstand high-temperature environments due to their better thermal 

resistance characteristics, while the metal constituents provide stronger mechanical performance. 

FGMs can survive in a harsh working environment with high-temperature gradation without 

losing their properties, and without failing during the service, see for instance [5-7]. The idea of 

functionally graded material for engineering application was first introduced in 1984, by a group 

of Japanese researchers for the core purpose of their aerospace project [8-10] that required 

thermal barrier with the outside temperature of 2000 K and inside 1000 K within 10 mm 
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thickness. FGMs were initially designed as thermal barrier materials for aerospace structures and 

fusion reactors [11-13].  

 

Fig. 1.2 Schematic representation of functionally graded material. 

 

The applications of functionally graded materials have now been extended to other practices, 

such as in an environment of extreme wear-resistant application [14, 15], and they are being used 

in several industries and sectors like aerospace, nuclear, defence, automotive, communication, 

energy etc. as well as they are produced artificially, the primitive forms of FGMs exist in nature. 

Bones, human skin, the bamboo tree can be considered as organic forms of FGM.  

 

Fig. 1.3 Variation of properties in traditional composites and FGM [16]. 
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The application areas of FGMs can be summarized as follows: 

 Aerospace: Spacecraft heat shields, heat exchanger tubes. 

 Biomedical: Artificial bones, skins, teeth. 

 Communication: Optical fibres, lenses, semiconductors. 

 Nuclear field: Fuel palettes, plasma-wall of fusion reactors. 

 Energy sector: Thermoelectric generators, solar cells, sensors. 

 Automotive: Power transmission systems, braking systems. 

Moreover, Potential applications of FGM are both diverse and numerous have recently been 

reported in the open literature, FGM sensors [17] and actuators [18], FGM metal/ceramic armour 

[19]. Figure 1.4, represents the hierarchy of modern material. 

 

 

 

Fig. 1.4 Representation of modern material hierarchy [20]. 
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3. Literature review of recent studies of FGM plates/shells 

      With the growing concern on FGMs in recent years, numerous studies have been performed 

to predict the dynamic behaviour “ free vibration/transient response ” of FGM plate/shell 

structures. Tornabene et al. [21] analysed the dynamic behaviour of moderately thick FGM 

conical and cylindrical shells, and annular plates, using the FSDT and the Generalized 

Differential Quadrature (GDQ) method. They concluded that the power-law distribution choice 

does not affect the free vibrations frequencies for shells with zero curvature such as annular 

panels and plates. On the other hand, for curved shells, it has been observed that the influence of 

the distribution choice is marked and can be considered. However, it can be concluded that the 

frequency vibration of functionally graded shells depends on the type of vibration mode, 

thickness, power-law distribution, power-law exponent and curvature of the structure. Yas et al. 

[22] developed a layer-wise finite element formulation for the analysis of FGM cylindrical shells 

with finite length under dynamic loads. In this study, the FGM cylinder was divided into many 

sub-layers and then the full layer-wise shell theory was used. In the research by Jung et al. [23] 

interesting research on the transient analysis of  FGMs and laminated composite structures using 

a refined 8-node ANS shell element by taking into account the effects of shear deformations and 

rotatory inertia was presented. A study on the dynamic behaviour of double-curved shells made 

of functionally graded materials was presented by Tornabene et al. [24] using various higher-

order equivalent single layer theories. The three dimensional double directors shell element with 

third-order shear deformation theory for FGM shell structure analysis was presented by Wali et 

al. [25]. In his work, static, free vibration and buckling analyses of FGM shells were carried out. 

Asemi et al. [26] investigated the static and dynamic behaviour of functionally graded skew plate 

structures based on a 3D theory of elasticity, the equation of motion was solved via Newmark’s 

time integration method. Mahmoudkhani [27] analysed the nonlinear vibration and normal 

shapes of functionally graded cylindrical shell structures using an efficient analytical method, the 

equations of motion are based on Donnell’s nonlinear shallow shell. In Khan et al [28] the 

authors investigated the static behaviour and free vibration of the functionally graded material 

beam using one-dimensional finite element model based on the  effective Zig-Zag concept, 

eigenvalue problem was solved using the subspace iteration method to obtain natural frequencies 

and the corresponding mode shapes. Jin et al. [29] worked on thick functionally graded plates 
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and cylindrical shells using the three-dimensional vibration analysis employing the  Rayleigh-

Ritz procedure to yield an accurate solution. Dynamic behaviour of FGM shell structures 

subjected to time-varying excitation using a 3D-shell model based on a discrete double directors 

shell element was examined by Frikhaa et al. [30] using the Newmark method. Hajlaoui et al. 

[31]  worked on the nonlinear dynamics analysis of FGM shell structures using a solid shell 

element with higher-order transverse shear stress based on the Enhanced Assumed Strain (EAS) 

formulation. The free vibration analysis of functionally graded carbon nanotubes-reinforced shell 

structures was predicted by Mellouli et al. [32] using the mesh-free radial point interpolation 

method (RPIM) and modified first-order shear deformation theory. Moita et al. [33] studied the 

axisymmetric free-vibration analysis of FGM plate-shell structures. The finite element model 

was formulated on the Kirchhoff-Love theory that includes the transverse shear deformations by 

introducing a penalty function to study both thin and thick axisymmetric plate/shells structures. 

Considerable literature [34-37] exists on the topic of general dynamic analysis of FGMs beam, 

plate and shell structures.  

As a consequence of their outstanding features, FGMs have been extensively used as thermal 

barriers and protective coating in various applications, especially in the energy and aerospace 

engineering. In these applications, FGM plates/shells frequently subject to extreme static and 

dynamic loadings, which leads to vibratory responses of large amplitude. Therefore, in order to 

efficiently assess the transient response of FGM structures, a reliable nonlinear dynamic analysis 

of functionally graded plates and shells in thermal environments is highly required. Huang et al. 

[38]  investigated the nonlinear transient response and vibration of FGM plates in thermal 

environments. Heat conduction and temperature-dependent material properties were considered. 

The formulations were based on the higher-order shear deformation plate theory and general von 

Kármán-type equation. Pradyumna et al. [39] analysed the nonlinear dynamic response of 

functionally graded shell panels in thermal environments having initial geometric imperfection. 

The material properties were assumed to be temperature-dependent. Aliaga et al. [40] examined 

the nonlinear static and dynamic thermo-elastic response of functionally graded plates using 

third-order shear deformation theory based on the von Kármán geometric nonlinearity. Newmark 

time integration scheme was used for direct time integration of the nonlinear algebraic equations.  
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Recent studies in the field of nonlinear dynamic analysis are focused on the dynamic-buckling 

and post-buckling behaviour of structures made of composite and advanced materials. In 

practice, the FGM structures, which have been developed to withstand thermal stresses in 

extremely high-temperature environments, are usually subjected to thermo-mechanical dynamic 

loading. The dynamic response of thin structural FGM shells may lead to the phenomenon of 

dynamic-buckling. Hence, the nonlinear dynamic behaviour and dynamic-buckling phenomena 

in thermal environment of such structures, in particular, cylindrical and spherical shells, must be 

considered during the design of FGM structures for their optimum design. As above mentioned, 

in addition to static analysis and thermal stress, the dynamic studies of FGM shell structures are 

mainly limited to linear transient and free-vibration response of beam, plate and shell structures. 

Works on nonlinear transient response of FGM plates in thermal environments have also 

reported in the literature. Static buckling analysis of stability for functionally graded plates under 

mechanical, thermal, thermo-mechanical and Thermo-Electro-Mechanical loads are being 

reported by several authors, see for instance [41-53]. However, As far as the authors know, 

works on the dynamic-buckling and post-buckling behaviour of functionally graded material 

cylindrical and spherical shells in thermal environments are meagre in the literature, moreover, 

nonlinear transient dynamic behaviour of shell structures with temperature dependent material 

properties have not yet presented in the literature. Therefore, as such studies are important to the 

structural designers. 

A comprehensive survey for bending, buckling, and vibration analysis of plate and shell 

structures made of FGMs was presented by [54, 55]. Recently, [56] presented a review of the 

principal developments in FGMs that includes heat transfer issues, stress, stability and dynamic 

analyses, testing, manufacturing and design, applications, and fracture. 

4. Effective properties of  an FGM  

The material properties of an FGMs plate/shell structures are assumed to change 

continuously through the thickness, according to the volume fraction of the metal and ceramic 

constituent materials. Hence, several models were proposed to define the variation of the volume 

fraction of each constituent material [57]. Three main functions are usually employed, which are: 

The power-law function (P-FGM), the exponential function (E-FGM) and Sigmoid function (S-

FGM).  
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4.1. Power law function (P-FGM) 

The power law function is quite a simple model that pertains to grading attributes of 

functionally graded shells through the thickness path from a bottom to the top surface. The 

variation in material properties of FGM along thickness direction is represented as [58]: 

 
1

2

n

c

z
V z

h

 
  
                 

(1.1)        

Which, should add up to unity for all the constituents materials: 

1c mV V                        (1.2)          

In which, the power-law index (n) is a non-negative real number, h is the shell thickness and z is 

the thickness direction coordinate (-0.5h ≤ z ≤ 0.5h). According to Eq. (1.1), when n = 0 a fully 

ceramic material is represented, though, when n approaches infinity a fully metallic structure is 

retrieved. Figure 1.5, illustrates the through-thickness volume fraction variation with the power-

law index (n).  

4.2. Sigmoidal law function (S-FGM) 

Sigmoidal law function was first introduced by Chinese mathematician [59], by combining 

two power law functions. This law is used to mitigate stress intensity factor of fractured FGM. 

The sigmoidal function is also helpful to ensure the continuous distribution of stress at the 

junction of FGM having ceramic core surrounded by metal or vice versa. The variation of 

volume fraction of the constituents from upper to lower surfaces of FGM are given by: 
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            (1.4) 

4.3. Exponential law function (E-FGM) 

The exponential law (E-FGM) is basically used to deal with problems related to fracture 

mechanism of FGM. The effective material properties of FGM from given surface to any other 

point is shown as follows: 
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In the present work, a simple power-law distribution function is adopted here to describe the 

volume fraction variation  cV z . 

The through-thickness material properties of an FGM, such as elastic modulus E, Poisson's ratio 

 , mass density  , thermal expansion coefficient  , and thermal conductivity K , can be stated 

as: 

     c m c mP z P P V z P                   (1.6) 

Where, cP  and mP  denote the effective material properties of the ceramic and metal phases, 

respectively. Since the material properties of an FGM constituent experience significant changes 

with the temperature rise, the temperature-dependency of the constituent material properties is 

considered.  

 

Fig. 1.5 Variation of the volume fraction versus the non-dimensional thickness. 

In this study, the temperature variation is assumed to occur in the thickness direction only [60]. 

The temperature dependence of the mechanical and thermophysical properties of the metal or 

ceramic phases is given by: 

   1 2 3

0 1 1 2 31P T P P T PT PT PT

                     (1.7) 
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Where, T is the temperature (in Kelvin), P0, P-1, P1, P2 and P3 are the coefficients of temperature, 

which are unique for each constituent. The temperature rise is expressed by T = T0 + ∆T, with T0 

denotes reference temperature at which there are no thermal strains (usually taken as 300 K), and 

∆T denotes the temperature change.  

Figures 1.6 and 1.7 show the variation of the Young’s modulus E, thermal conductivity K, 

coefficient of thermal expansion   and Poisson’s ration v for the constituent materials 

2 / - 6 1- 4ZrO Ti A V  and 3 4 / 304Si N SUS  with temperature. These properties vary significantly with 

temperature.  

 

 

Fig. 1.6 Variation of material properties of 2 / - 6 1- 4ZrO Ti A V with temperature: (a) Young’s modulus, 

(b) thermal conductivity, (c) coefficient of thermal expansion and (d) Poisson’s ration. 
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Fig. 1.7 Variation of material properties of 3 4 / 304Si N SUS with temperature: (a) Young’s modulus, (b) 

thermal conductivity, (c) coefficient of thermal expansion and (d) Poisson’s ration. 

In order to accurately describe the effect of temperature rise across the thickness direction, the 

non-uniform temperature distribution is considered. The temperature distribution across the 

FGM shell thickness is obtained by solving the steady-state heat transfer equation and boundary 

conditions given by: 

  0
d dT

K z
dz dz

 
 

 
,    2 cT z h T  ,    2 mT z h T              (1.8) 



 
 

15 
 

Where K(z) is the thermal conductivity. Tc and Tm denote the temperature of the ceramic-rich and 

metal-rich surfaces of the shell, respectively. The solution for Eq. (1.8) is given by: 

   mT z T T z   ,   c mT T T   ,    
   

2

2 2

hz

h h

dz dz
z

K z K z


 

 
  
 
 
         (1.9) 

In this work, integrals in Eq. (1.9), are evaluated using numerical integration. Figure 1.8, 

indicates the temperature distribution across the thickness of an Aluminum-Zirconia FGM plate 

for various values of the power low index (n).  

 

Fig. 1.8 Temperature distribution through the thickness Al/ZrO2 FGM plate. 

 

5. Conclusion  

In this chapter, we have presented a general introduction on functionally graded materials, “ 

the history of their development, their properties and fields of application”. Then, literature 

review mainly deals with the work done on functionally graded plate-shell structures over the 

years, and finally, a brief representation that describe the effective properties of the materials. 

The spatial and gradual variation of the material properties makes it possible to create innovate 

structures that can be exploited in many areas of application in special structures in civil 

engineering. 
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Chapter 2 

Plates and shells theories 

 

1. Introduction  

Shell structures represent a particular type of structural components characterized by their 

curved geometry, being a three-dimensional solid whose thickness is much smaller than the other 

two dimensions. These elements are light weight constructions enclosing space using one or 

more curved surfaces. However, due to their shape, heavy loads can be sustained efficiently due 

to the membrane effect. The property of these elements , is that they are characterized by the 

stress resultants in the middle surface presenting in-plane components due to membrane 

behaviour and normal to the surface components due to bending behaviour. Therefore, thin shell 

structures, with their high mechanical performance, have been widely used in various fields of 

structural engineering such as “ industrial, aerospace, automobiles, marine, and constructions 

that offer large internal space ”. Thus, the capability of analysis and design of these structures, is 

pushed to discover more efficient and accurate solutions for economic and environmental issues. 

Shell structures are becoming thinner lighter, and more flexible, so their deflections may have an 

important order of magnitude under either static or dynamic loads, which makes their behaviour 

often considered as geometrically nonlinear. The importance of performing a dynamic analysis 

of the shell structures, is so because often such structures are subjected to time varying loadings 

such as impact, explosion or seismic effects. The computational mechanics has now reached a 

level of maturity enabling complex simulations. However, one of the difficulties of nonlinear 

analysis is the fact that they are based on incremental iterative algorithms. Nevertheless, recent 

developments in computer technology and in computational mechanics, allow us to formulate 

computational models capable of delivering accurate results especially by means of the Finite 

Elements Method. 

In this chapter we will form kinematic relation of different shell theories. These ones are 

established related to the mid-plane’s displacement and rotations, including classical shell theory 

(CST), theory of first order shear strain (FSDT) and high order theories shear strain (HSDTs), 

since they have been widely used in shell modeling. In addition, a short presentation of the 
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different finite element approaches to generate shell elements is represented with focus on 

advantages, disadvantages, and disregarding the element formulation insights. Also, an extensive 

review of the literature related the development of degenerated shell element with emphasis on 

the work recently published. Finally, numerical integration method of the governing finite 

element equations derived in the next chapter is described.  

2. An overview on shell theories  

The specific geometry of this oriented structures encourage the use of particular kinematic 

instead of general kinematic of solid bodies. Shell theory is concerned with reducing the three 

dimensional stress problem of elasticity to two dimensions for that particular class of structures. 

For this purpose, governing equations are reduced, via imposing some hypothesis on the 

displacement field, to a set of bi-dimensional equations related to a reference surface commonly 

situated at mid-thickness so called the mid-surface. This objective may be realized if the 

deformations of any point in the shell can be uniquely described in terms of the displacements of 

the middle surface. 

The reduction of the three dimensional problem requires the use of some kinematic assumptions, 

when employed together with the standard variational procedure lead to the two dimensional 

shell equations, which provide the basis for the finite element discretization.  

2.1 Shell theories 

Shell theories are commonly regarded as originating from one of three classes, classical 

theory, first-order shear deformation theory (FSDT) and higher-order theories. Within each class 

of shell theories several modified versions exist, developed to fulfill specific needs. Classical 

theory and first order shear deformation theory refer to the theories of  Kirchhoff-Love and 

Mindlin-Reissner respectively. In the following each class of theories will be treated separately, 

emphasizing the assumptions made during the derivation of the theory and the implications of 

these assumptions. The development of these theories was motivated by the successful 

development of plate theory by [1]. This theory was based on the assumption that a normal to the 

undeformed mid-surface remains unstretched and normal to the deformed mid-surface. 
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2.1.1 Classical shell theory 

The classical shell theory (CST)  is based on the Kirchhoff-Love hypothesis for plates and 

shells, in which a linear distribution of displacements in the thickness direction [2, 3], that are an 

extension of the Euler-Bernoulli beam theory: 

 

 Transverse normal to the mid-surface before deformation remain normal, straight  and 

inextensible after deformation. 

 Deformations due to transverse shear are neglected. 

 Normal strains and stresses in the out-of plane direction are also considered negligible. 

 

Thus, the deformation of the shell can be described fully from the deformation of the mid-surface 

whereby the theory is reduced to a two dimensional description. The displacement field of the 

classical theory is given as: 
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                (2.1) 

Where,  u0, v0  and  w0  are displacements of a point on the mid-surface and   is the distance 

from the middle surface to the point considered. The displacement field in Eq. (2.1) is linear and 

rotations are only dependent on the transverse displacement, w0. The displacements are 

represented in Figure 2.1, where the assumptions done can be observed.  

 

One of the main advantages of the classical shell theory is its simplicity and that only depends on 

three variables. From the displacement field it is also obvious that the strains are functions of the 

second order derivative of w0. Thus the displacement field is called C1-continuous. 
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Fig. 2.1 Kirchhoff-Love assumptions represented in a deformed configuration. 

 

The basic limitations of the classical shell theory are similar to the ones in the Euler-Bernoulli 

beam theory and therefore, the results are only accurate for low curvature and low thickness to 

in-plane dimension ratio. Regarding laminated plates/shells, the classical shell theory yields 

unsatisfactory results if the in-plane stiffness is significantly higher than the transverse stiffness 

because relatively high transverse shear strains can occur that are not accounted for in the 

Kirchhoff-Love assumptions. 

2.1.2 Reissner-Mindlin (FSDT) shell theory 

The first order shear deformation theory (FSDT) is an extension of the classical shell theory 

which includes some of the effects of the transverse strains neglected in CST [4, 5]. As the 

classical theory it disregards the effects of transverse normal strains but accounts for transverse 

shearing strains by allowing the normal to rotate: 

 

 Transverse normal to the mid-surface before deformation remain inextensible after 

deformation. 

 The transverse normal stress, σ33, is negligible. 

 The transverse normal remains straight but not perpendicular to the mid-surface after 

having deformed. 
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The displacement field of the FSDT is given as in Figure 2.2: 
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Fig. 2.2 Reissner-Mindlin assumptions represented in a deformed configuration. 

 

Unlike the classical shell theory, the Mindlin-Reissner theory provides a good result for thin and 

moderately thick shells. The numerical codes that are formulated with this theory are simpler 

to implement because lower order derivatives are needed. Actually, the basic assumptions 

employed in the Mindlin-Reissner shell theory exclude the transverse normal deformation and 

thus they are restricted to small strain problems. From the computational point of view the main 

advantage compared with the Kirchhoff-Love type shell theory is the fact that only C° inter 

element continuity is required, which simplifies considerably the construction of finite elements. 

2.1.3 Higher-order theory 

Several contributors have proposed higher-order theories in order to overcome the limitations 

of the classical and first order shell/plate theories [6-13]. These higher-order theories are more 
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accurate than the first order theory. They are based on a nonlinear distribution through the 

thickness trying to represent the warping of transversal section in the deformed configuration. 

Figure 2.3. 

 

 

Fig. 2.3 Higher-order assumptions represented in a deformed configuration. 

 

These higher-order theories described in the references are increasing the computational cost due 

to the increase in variables. Hence, the displacement field is generally written as follows: 
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          (2.3) 

Where,     is a transverse shear function characterizing the theories corresponding. Actually, 

the displacements of the classical plate theory (CST) is obtained by taking    =0  while the 

first order theory (FSDT) can be obtained by    = . 
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(FSDT) remains the most widely used in engineering today for determining the gross behavior of 

structures in spite of its theoretical short comings.  

3. Overview of shell finites elements 

Curved shell structures constitute possibly the most difficult class of structures to analysis by 

the finite element method and the difficulties involved have lead to the development of 

considerable variety of approaches to the problems and a large number of element types. The 

following different approaches used to generate the shell elements. 

3.1 Flat shell element 

The geometry of these types of elements is assumed as flat. The curved geometry of shell is 

obtained by assembling number of flat shell elements. These elements are based on combination 

of membrane element and bending element that enforced Kirchhoff’s hypothesis. It is important 

to note that the coupling of membrane and bending effects due to curvature of the shell is absent 

in the interior of the individual elements. Some of the major attractive features of these elements 

are:  

 Simplicity of formulation. 

 Capability of modelling rigid body motion without including strains. 

 The use of these elements would still less expensive than using elements based on three 

dimensional continuum mechanics. 

 

3.2 Curved shell element 

Curved shell elements are symmetrical about an axis of rotation. As in case of axisymmetric 

plate elements, membrane forces for these elements are represented with respected to meridian 

direction as (𝑢,𝑁𝑧,𝑀𝜃) and in circumferential directions as (𝑤,𝑁𝜃,𝑀𝑧). However, the difficulties 

associated with these elements includes, difficulty in describing geometry and achieving inter-

elemental compatibility. Also, the satisfaction of rigid body modes of behaviour is acute in 

curved shell elements. 
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3.3 Solid shell element 

Though, use of 3D solid element is another option for analysis of shell structure, dealing with 

too many degrees of freedom makes it uneconomic in terms of computation time. Further, due to 

small thickness of shell element, the strain normal to the mid surface is associated with very 

large stiffness coefficients and thus makes the equations ill conditioned. 

4. Shells degenerated from 3D solid elements 

The appearance of the bi-dimensional shell element derived from a three- dimensional Iso-

parametric element was by AHMAD [14,15]. This approach has the advantage of being 

independent of any particular shell theory and can be used to formulate a general shell element 

for geometric nonlinear dynamic analysis. Moderately thick shells can be analysed using such 

elements. However, selective and reduced integration techniques are necessary to use due to 

shear locking effects in case of thin shells. The assumptions for degenerated shell are similar to 

the Reissner-Mindlin assumptions. 

The idea of the degeneration concept is to eliminate nodes from a solid element by imposing on 

it kinematic constraints and assumptions yield to shell surface element as shown in Figure 2.4. 

More details on the concept of degeneration procedure, can be found in chapter 3. 

 

       
 

(a) 3D solid element                                                             (b) Degenerated shell element 

 

Fig. 2.4 Degeneration of 3D element. 
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There is a large number of publication concerning degenerated shell element in the framework of 

linear, geometrically nonlinear and free vibration analyses. Bath [16] presented an insight of the 

formulation of a 4 and 8-node shell element using a mixed interpolation of tensorial components, 

for linear and nonlinear analysis in practical engineering environments.  

Dvorkin and Bath [17] proposed a new 4-node quadrilateral shell element for general nonlinear 

geometric and material analysis. The element formulation was based on 3D continuum 

mechanics theory and applicable for both thin and thick shells. Swamy Naidu and Sateesh [18] 

developed a new 4-node bilinear degenerated shell element for analysis of shell structures. 

Assumed transverse shear and in-plane membrane strains, respectively were considered in the 

shell formulation to avoid the shear and membrane locking phenomenon. Norachan et al. [19] 

analysed plate and shell structures using 8-node degenerated thin-walled element based on the 

nonlinear co-rotational formulation in linear and geometrically nonlinear analysis. They also 

used the assumed natural strain (ANS) and enhanced assumed strain (EAS) to overcome locking 

problems. Jayasankar et al. [20] studied the free vibration behaviour of thick laminated 

composites shell structures using nine-node degenerated shell element, an enhanced interpolation 

of the transverse shear and membrane strains were introduced in the element formulation to 

produce shear and membrane locking free element. Tuan et al. [21] studied the free vibration 

analysis of stiffened laminated composite cylindrical shell using eight-noded Iso-parametric 

degenerated shell element based on Reissner-Mindlin assumptions which taking into account the 

shear deformation and rotatory effect. Patel et al. [22] performed static and dynamic instability of 

stiffened shell panels subjected to uniform in-plane harmonic edge loading using eight-noded 

degenerated shell element and a compatible three-noded curved beam was introduced to model 

the stiffeners. The method of Hill’s infinite determinant was applied to analyse the dynamic 

instability regions. Lee and Han [23] investigated the free vibration analysis of plates and shells 

using nine-node degenerated shell element to determine the natural frequencies. The assumed 

natural strains were derived to alleviate the locking problems. Choi and Yoo [24] have developed 

an improved degenerated shell element for the analysis of the shell structures undergoing large 

deflection. In the formulation of the element stiffness, the combined use of three different 

techniques was made. They are: (1) an enhanced interpolation of transverse shear strains in the 

natural coordinate system to overcome the shear locking problem, (2) the reduced integration 

technique in in-plane strains to avoid the membrane locking behaviour, and (3) selective addition 
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of the nonconforming displacement modes to improve the element performances. This element 

was free of serious shear/membrane locking problems and undesirable compatible/commutable 

spurious kinematic deformation modes. Marinkovic et al. [25] offered a degenerated shell 

element and a simplified formulation that relies on small incremental steps for the geometrically 

nonlinear analysis of piezoelectric composite structures. Chen [26] used a four node quadrilateral 

degenerated shell element to create an elastoplastic incremental finite element computer code to 

simulate a circular rail drawing process of sheet metals. HosseiniKordkheili et al. [27] developed a 

degenerated shell element by using explicit hybrid stabilization method with a reduced order 

integration scheme to stabilize spurious zero energy modes from the sub-integration. This 

stabilization was achieved after employing appropriate contravariant higher order stress modes. 

The relevant finite element formulation of the piezolaminated nine nodded shell element was 

then derived to analyse smart structures behaviours. Lei et al. [28] developed a new isogeometric 

Reissner–Mindlin degenerated shell element for linear analysis. It is based on the mixed use of 

non-uniform rational basis spline and Lagrange basis functions in the same domain. The mid-

surface of the shell was represented and discretized using non-uniform rational basis spline and 

the directors of the shell were discretized using Lagrange polynomials.  

5. Numerical solution and obtainable results 

The governing equations in the finite element method are given on integral form. 

Consequently, the tangent stiffness matrix, KT , the mass matrix, M, and the nodal load vector r 

must be evaluated by integration. Thus, the integration is performed numerically. 

5.1 Modified numerical integration 

When full numerical integration is employed, curved degenerated shell elements might 

exhibit membrane/shear locking in curved/thin applications. Several techniques have been 

proposed to mitigate membrane and shear locking. The most commonly used are: the assumed 

natural strain (ANS) [29], the mixed interpolation of tensorial components (MITC) [30], and the 

reduced/selective integration. As our shell element is meant to nonlinear dynamic analysis, full 

numerical integration with ANS or MITC technics are avoided in the aim to save computational 

time. An efficient modified reduced (2x2) numerical integration scheme is used instead. 
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It is well-known that reduced/selective numerical integration produces a soft higher-order 

deformation modes, which increases numerical accuracy considerably as compared to full 

integration. However, reduced integration may possess zero energy hourglass modes. 

Nevertheless, a modified five-point reduced integration has been applied to membrane and shell 

elements successfully [31, 32]. 

 The numerical approximation to the exact integral using the 5-point integration scheme is 

defined as follows: 

   *

0 0,0 ,I w f w f        ,   01
4

w
w

 
  

 
,    

0.5

1

3w


 

  
 

              (2.4) 

Where, f  is the function to be integrated, iw  is a weighting factor, and   indicates the location 

of integration points. The 5-point scheme converges to the 2 x 2 Gaussian scheme as 0 0w  . In 

this study,  0w  is taken as 0.01. 

All components of the element stiffness matrix are evaluated using the modified 5-points 

reduced numerical integration scheme. This modified integration scheme provides a full rank 

stiffness matrix with no need for hourglass control, resulting in a highly efficient shell element. 

6. Shear correction factor  

It is well known that in the first-order shear deformation theory (FSDT), the shear 

distribution across the shell thickness is constant and require the introduction of shear correction 

factors. The computational algorithm (see Appendix A) for the transverse shear correction factors 

is presented [33, 34]. This algorithm is based on the static equilibrium and energy equivalence 

between the shear energy of the shell or plate and the energy from three-dimensional theory. 

Consider 
1

U  the transverse shear energy obtained for a three-dimensional stress distribution and 
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U  the energy associated with the 2D shell model: 
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Where, 
T

xz yz
      is the transverse shear stress, 

T

x y
T T T    is the transverse shear forces 

and H , cH  are the 2x2 reduced transverse local and global shear stiffness matrix respectively. 

cH  is to be calculated and for an FGM, H  is defined as: 
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Where,  G z  is the transverse shear modulus at location z . In the case of pure bending-shear 

behaviour, the in plane strain are: 
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Where,  H z  is the 3x3 reduced in plane elasticity tensor which is given for an FGM as: 

 
 

 

 

 

 

2

1 0

1 0
1

1
0 0

2

z

E z
H z z

z

z













 
 
 
 
 
 
  

             (2.9) 

The following expression of the plane stresses: 

     t
z H z A z M        ,           mf f

A z H z F zF                      (2.10) 

The transverse shear stresses are derived classically from the homogeneous equilibrium equation 

which leads to: 

  , ,
2

z

xz xx x xy y
h

dz  


       ,     , ,
2

z

yz xy x yy y
h

dz  


           (2.11) 
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The shear stresses are consequently given by: 

      1 2
z D z T D z                (2.12) 

Where, T ,  ,  1
D z  and  2

D z  are given by: 

, , , ,

T T

x y x x xy x xy x y y
T T T M M M M                  (2.13) 

, , , , , ,

T

x x xy y xy x y y y x x y
M M M M M M                          (2.14) 
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                      (2.15) 
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2 21

2 2 2

z

h

A A A A A A
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A A A A A A

 
 

 

 
 
 

        (2.16) 

With ijA  are the components of  A z  Eq. (2.10). Hence the energy 
1

U , Eq. (2.5) becomes: 

11 12

1

12 22

1

2

T

T

F FT T
U

F F 


    
    

    
                                   (2.17) 

With,  

2
1

2

h
T

ij i j
h

F D H D dz





     , 1,2i j                           (2.18) 

The energy equivalence between 
1

U  and 
2

U  allows us to write: 

1

11cH F                 (2.19) 

The appropriate shear correction factors will then be obtained: 
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   1 11 11
cc

k H H    ,     2 22 22
cc

k H H    ,    12 12 12
cc

k H H       (2.20) 

With,    
2

2

h

c
h

H H z dz



                            (2.21) 

For the case of homogenous isotropic material:  

 
2

2

1 23

6

2

h
D z z I

h
  

  
  

  
    

1

11

6

5
F H

h



            (2.22) 

The correction factors are then: 

1 2
5 6k k     

12
0k               (2.23) 

7. Conclusion  

A review of the various research carried out in the literature for stress, free vibration and 

geometrically nonlinear of plates/shells was presented. An effort has been made to include all 

major contributions in the area of current interest highlighting evidence the most relevant 

literature available for different elements. The use of 2D theoretical models which now seem to 

provide accuracy as good as 3D models should be pursued in the interest of computational cost 

and efficient analyses. In addition, modified reduced numerical evaluation of element matrices 

which results a great efficiency. Furthermore, A computational algorithm for the transverse shear 

correction factors is established. 
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Chapter 3 

Formulation of a nonlinear curved 8-node degenerated shell element in thermal 

environments 

 

1. Introduction 

In many engineering problems, the structural behaviour can be nonlinear. However, 

displacements may be so large that they can change the structure‟s shape, which can significantly 

change the stiffness and orientation of the structure. Besides, boundary conditions may change 

during loading. The nonlinearity structural behaviour can be either classified into geometrical 

nonlinear, in which the relation between strain-displacement becomes nonlinear due to the effect 

of large displacements and rotations on the global geometric configuration of the structure, 

material nonlinear and contacts nonlinear. 

Structures that exhibit nonlinear behaviour are of special importance, and require special 

treatment. For instance, the initial state of stress commonly known as „residual stresses‟ is 

important and requires special handling. Also, the structural behavior is remarkably non-

proportional to the applied load and hence, the principle of superposition cannot be applied. 

Therefore, the sequence of application of loads (loading history) may be important. This is a 

reason for dividing loads into small increments in nonlinear FE analysis. As a consequence, 

nonlinear analysis is generally carried out using a method of incremental resolution. It is based 

upon the progressive increase of the applied forces, to obtain in an incremental way, the 

nonlinear response of the structure satisfying the equilibrium equations in successive discrete 

time increments. During each time step between time t and t t  , the configuration t tC  to be 

calculated, is obtained starting from the configuration tC  considered as known. Often, the 

analysis introduces a reference configuration, which is a particular known state of the structure at 

a time t0. This known configuration is used as reference when describing the geometrical 

transformations undergone by the structure as it moves between two successive configurations.  

In this chapter, the derivation of the degenerated curved shell element in the geometrically 

nonlinear formulation based on the total Lagrangian approach with regarding thermal 
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environment are described for analysis of shells of arbitrary shape. Curved shell element 

formulation is interesting both from the theoretical and practical points of view. 

2. Geometrically nonlinear behaviour  

In linear analysis, the change in geometry and spatial orientation of structures, are considered 

small enough that the change in its stiffness can be ignored. However, in large displacement 

analysis, the displacement induced deformations, could be a major source of nonlinearities. 

Structures undergoing large displacements due to load-induced deformations, can have 

significant changes in their overall configuration, which can cause the structure to respond 

nonlinearly in a stiffening and or a softening manner. In finite element analysis, the overall 

stiffness of a structure depends on the stiffness contribution of each of its finite elements. During 

large displacements, the nodal coordinates will change causing the elements to deform and to 

change their spatial orientations. Subsequently, the element stiffness contribution in the overall 

stiffness will also change.  

There are two common formulations for the description of structural behavior [1,2]. A 

description of the solid body movement is called: 

 Total Lagrangian Description (TLD): in which the initial un-deformed configuration is 

the reference geometry to which strains and stresses are referred. In this formulation, the 

strains are Green strains and the corresponding work-conjugate stresses are second Piola–

Kirchhoff stresses. 

 Updated Lagrangian Description (ULD): in which the reference system is the current 

configuration to which the strains (Almansi strains) and the corresponding stresses 

(Cauchy stresses, often termed true stresses) are referred. 

 Co-rotational Lagrangian Description (CLD): if the reference configuration is replaced by 

a very close un-deformed configuration. This co-rotational un-deformed configuration is 

much easier to handle. 
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2.1 Total Lagrangian formulation    

The „TLD‟ uses the initial un-deformed configuration as a reference. In this formulation, all 

quantities “displacements, strains and stresses” that describe the response of the structure are 

expressed with respect to the initial un-deformed configuration. Consequently, to obtain the 

exact nonlinear solution, the nonlinear Green-Lagrange strain tensor must be complete “no terms 

neglected”. The Green-Lagrange second order terms imply second derivatives of all the 

components of the displacement vector. 

3. Measurement of strains and stresses 

In nonlinear mechanics, the method of measuring strain and stress becomes more difficult. 

Many measures of strain and stress can be defined [3,4]. A stress definition must be energetically 

conjugate to the strain adopted, the integral of the product of the stress and the strain for a 

volume would correctly represent the deformation energy in the same volume. In geometrically 

nonlinear analysis, “Green-Lagrange and Cauchy strain tensors” with their conjugate stress “2
nd

 

Piola-Kirchhoff and Cauchy stress tensors” must be introduced. 

4. Formulation of the degenerated shell element  

General three-dimensional elasticity theory does not benefit from the simplifications intrinsic 

to shell theory, such as the inextensible straight normal and zero normal stress. These 

assumptions can be adequately introduced in the formulation of solid elements to yield the so-

called “degenerated shell elements”. Once again, the motivation for the development of a 

degenerated shell finite element is mainly due to the computational difficulties associated with 

three-dimensional models for thin plate and shell structures on the one hand, and complex 

mathematical hypotheses and expressions shell theories on the other hand. These complexities 

could be avoided by using a degenerate three-dimensional Iso-parametric solid element 

(reduced) to a surface shell element having only nodal variables of typical surface area. Curved 

shell element should be capable to model complex curved shell geometries and also account for 

both membrane and flexural effects [5]. The measure of the transverse shear deformation, is 

permitted since the mid-surface normal are not necessarily to be kept normal during deformation. 

Therefore, degenerated shell elements give good results for thick shells. Moreover, It should be 
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able to satisfy the rigid body and constant strain patch tests, be free of membrane and shear 

locking as well as of spurious internal mechanisms. Unfortunately, fully integrated stiffness 

matrix overestimates the stiffness of the shell as its thickness decreases “the shear-locking 

problem”. The satisfaction of all these conditions is still a major and, to some extent, unsolved 

challenge.  

In a degenerated shell model, the numbers of unknowns present are five per node (three mid-

surface displacements and two director rotations). However, these elements can be considered as 

a generalization of  Reissner-Mindlin shell theory regarding the non– orthogonal of the surface 

normal and, therefore, they suffer from transverse shear locking. In their curved shapes they can 

also suffer from membrane locking. Shear and membrane locking in degenerated shell elements 

can be eliminated by using selective/reduced integration or assumed strain fields [6]. The 

degenerated shell elements are in general cheap in computational cost due to the reduced number 

of DOF and using coarse mesh.  

4.1 Basic concepts 

In the formulation of degenerated shell element, a three-dimensional solid element is 

degenerated (reduced) to a shell element having only mid-surface nodal variables. The process of 

creating degenerated shell elements, consists to eliminate nodes by imposing different constraints 

on the behaviour of the element [7]. Figure 3.1 shows a 20-noded quadratic hexahedron and the 

corresponding degenerated shell element. The top, middle and bottom surfaces are curved 

whereas the transverse sections are limited by straight lines (fibres). The degeneration procedure 

implies the definition of a reference surface (generally coinciding with the shell middle surface) 

with respect to which all displacements of the shell points are defined. The displacement field is 

specified assuming that the fibres remain straight and inextensible after deformation [6]. In 

addition, the stress normal to the reference surface is ignored (plane stress condition). The first 

assumption introduces transverse shear deformation and it also allows using a C
0
 continuous 

interpolation for all the kinematic variables (displacement and rotations). It is interesting that this 

formulation is identical to Reissner-Mindlin theory. 

The reference surface is discretized into C
0
 continuous curved shell elements with n nodes. Each 

node typically has five DOFs “ three Cartesian displacements and two rotations defining the 

motion of the normal to the shell surface ”. 
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(a) 

 

 

                                                                                         (b) 

Fig. 3.1 Degeneration process of (a) 20-noded hexahedron into (b) a 8-noded degenerated shell 

element. Global, nodal and curvilinear coordinate systems. 

 

Before proceeding any further, we will define the different coordinate systems necessary for the 

shell formulation. 

5. Coordinate systems and bases 

Different coordinate systems and space bases are needed in the formulation of the 8-node 

curved shell element, they are used to properly define the features that characterize the shell 

element and its enhancements. The relation within coordinate systems varies depending on 

which field is being transformed. When dealing with positions or displacements they can be 

graphically represented by a vector. Therefore, their expression in another coordinate system 
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requires the use of a rotation matrix. If we seek the relation between the strain or stress quantities 

in one coordinate system and the same quantity is expressed in another coordinate system, the 

transformation becomes more complex. In order to formulate the shell element of this work the 

following coordinate systems and bases are needed [8]: 

 Cartesian 3D coordinate system. Global coordinate system  , ,X Y Z . 

 Curvilinear coordinate system. Natural element mapping  , ,   . 

 Nodal coordinate system 1 2 3, ,i i iv v v . 

 Covariant coordinate system  1 2 3, ,g g g . 

 Local coordinate system ', ', 'x y z . 

Each of the previously listed coordinate systems has some properties that make them being 

defined in a specific manner and gives them useful features to be used while performing 

calculations on the finite element. These are described in the following subsections [6]. 

5.1 Cartesian 3D coordinate system 

The geometry of the shell is defined with respect to a global Cartesian coordinate system 

, ,X Y Z  with associated unit vectors 1 2 3, ,e e e , see Figure 3.1. This system defines the directions 

for the global displacements , ,u v w  associated with the axes , ,X Y Z  respectively. 

5.2 Curvilinear coordinate system 

A normalized curvilinear system , ,    is defined such that ζ is a linear coordinate in the 

thickness direction at each point on the reference surface as defined in Figures 3.1 and 3.2. ζ 

takes the values +1 and −1 at the top and bottom surfaces, respectively and zero at the middle 

surface. The thickness direction at a point is obtained by standard interpolation of the nodal 

thickness (fibre) directions. 

Clearly, the direction of  coincides with that of 
3iV  at each node. A thickness coordinate z  

 in the direction of   is defined as: 

   0-
2

i
i

h
z                                                                (3.1) 
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Where, ih  is the shell thickness and 0  
is the value of  at the reference surface (

0 = 0 if the 

reference surface coincides with the shell middle surface, as usually happens). Coordinate  

measures the distance of a point to the reference surface along the thickness direction. 

Such reference system is defined by attaching the axes of coordinates to the middle point of both 

element edges. The transversal axis is defined as normal to the surface in the element centre (see 

Figure 3.3). 

5.3 Nodal coordinate system 

A Cartesian coordinate system formed by unit vectors 1 2 3, ,i i iv v v  is defined at each node on 

the reference surface (Figure 3.1). This system is used to define the nodal rotations. The fibre (or 

pseudo-normal) vector 3iv  can be derived by the following  way: 

It is simpler to define 3iV  as a vector in the normal direction at node i with a modulus equal to the 

shell thickness. 

 

 

 

Fig. 3.2 Definition of the fibre vector V3i. 
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Fig. 3.3 Degenerated shell element with the global coordinates , ,X Y Z and the convective curvilinear 

coordinates ξ, η, ζ. 

 

 

The nodal normal vector at node (i) can be obtained by the cross product of two vectors that are 

tangent to the reference surface at (i): 

   
3 0 0

1

, ,n
j i i j i i

i j j

j

N N
V r r

   

 

  
  

  
              (3.2) 

Where, 0 jr  defines the position vector of a point on the reference surface as shown in Figure 3.2 

and  ,j i iN    is the 2D shape function of node j (see Appendix B). Then, the director vector is 

given by: 3
3

3

i
i

i

v
v
v

. 

5.4 Covariant coordinate system 

Additional coordinate systems is usually defined for shell analysis (Figure 3.4). The 

covariant system 1 2 3, ,g g g  where 1g dr d   and 2g dr d   are vectors tangent to the lines 

  = constant and   = constant, respectively and 3g  is the normal vector.  
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Fig. 3.4 Curvilinear coordinates ξ, η, ζ and its covariant base 
1 2 3, ,g g g in the 

current configuration. 

 

The covariant systems is used these coordinate systems to formulate curved shell elements such 

as the definition of the strain fields. 

5.5 Local Coordinate System 

A Cartesian coordinate system ', ', 'x y z  is chosen at each shell point defining the direction 

for the local displacement ', ', 'u v w  (Figure 1.5). The so called lamina (or local) coordinate 

system changes from point to point in the shell. The local system is used for defining and 

computing the local strain and stress fields.  

The unit vectors associated to directions ', ', 'x y z are , ,l m n  respectively. The normal vector 'z

is obtained as the cross product of two tangent vectors to the curves    = constant and    = 

constant at each point: 

'
r r

z
 

    
    

    
              

 

(3.3) 

Where,   , ,
T

r X Y Z  is the position vector of a shell point (Figure 3.2). 

The unit normal vector n  is obtained as: 

'

'

z
n

z


                   

(3.4) 

The direction of 'x  is taken as tangent to the curvilinear coordinate  = constant at each point, 

Thus: 
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' , ,

T

r X Y Z
x

   

      
    

      
             (3.5) 

and the associated unit vector is ' 'l x x  . 

The unit vector 'm  associated to 'y  is obtained by the cross product of vectors n  and l ,   

m n l  . 

 

 

Fig. 3.5 Local and global coordinates. 

 

6. Formulation of element matrices 

In the following, the interpolation matrix N , the strain-displacement matrix B , and the 

tangent stiffness matrix 
TK , are determined for the degenerated shell element.  

6.1 Geometry and kinematics of shell 

The position vector of an arbitrary point “ p ” within an element is determined by the Iso-

parametric interpolation of the nodal coordinates as [9]: 

   
1 1

1 1-
  , ,

2 2

n n
top bot

i i i i

i i

r N r N r
 

   
 


              (3.6) 

Where, top

ir and bot

ir  are the position vectors for the top and bottom surfaces at each node i, see 

Figure 3.2. ζ defines the position of the point in the thickness direction and n is the number of 
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element nodes. The above expression can be rewritten in terms of a vector connecting the top 

and bottom points of shell as: 

 
1

1
, -

2 2

i i i in

i i i i i

i

i i i itop bottom top bottom

x x x x x

y N y y y y

z z z z z


 



             
               

              
            
              

           (3.7) 

Or, 

  3

1

1
, V

2

in

i i i

i

i mid

x x

y N y

z z

  


    
    

     
    
    

                          (3.8) 

Where, 

1

2

i i i

i i i

i i itop bottom

x x x

y y y

z z z

      
      

       
      
      

         and     3V

i i

i i i

i itop bottom

x x

y y

z z

   
   

    
   
   

                                    (3.9) 

 

For relatively thin shells, it is convenient to replace the vector V3i  by a unit vector v3i in the 

direction normal to the mid-surface: 

  3

1

1
,

2

in

i i i i

i

i mid

x x

y N y h v

z z

  


    
    

     
    
    

             (3.10) 

 

Eq. (3.10) can be rewritten in standard formula as: 

      3
1 1

, , , ,
2

n n
t t t

i i i i i
i i

x N r h N v


      
 

            (3.11) 

Where t

ir  denotes the Cartesian coordinates of nodal points at a time “ t ”, hi is the shell  

thickness at node i and  3 3 3 3iv l m n  where, 3il  , 3im and 3in  are  the unit vectors with 

respect to a global Cartesian coordinate system X, Y, Z. 

Form Eq. (3.11), the global coordinate of an arbitrary point within an element at time “ t ” is 

determined by the interpolation of the global coordinates and the direction cosines of the normal 

vectors of all nodes of the element using shape functions by Eq. (3.11). Once the interpolation of 
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the position has been derived, the last step in order to obtain the kinematics of the degenerated 

element is to interpolate the nodal displacements. The displacement can be expressed as the 

difference between the position of the point after and before deformation, then using the 

geometry interpolation in Eq. (3.11), the displacement vector u from the initial configuration to 

the configuration at a time “ t ” is [10]: 

     0, , , , , ,t         u x x           (3.12) 

Where, the superscript 
0
(.) and 

t
(.) denotes, the initial configuration and the configuration at time 

“ t ” respectively. Substituting Eq. (3.11) in Eq. (3.12) yields: 

      0

3 3

1 1

, , , ,
2

n n
t

i i i i i i

i i

N u h N


      
 

   u v v        (3.13) 

The next step is expressing the difference between the node directors in Eq. (3.13) in a more 

"useful" way for the analysis. In the above equation, two orthogonal unit vector 1

t

iv  and 2

t

iv  are 

introduced to express the director vector in terms of i  and i , where, i  and i  are the 

incremental rotation angles of the director vector 3

t

iv  about the tangent vectors 1

t

iv  and 2

t

iv  

respectively. Note that 1

t

iv  and 2

t

iv  are also orthogonal to 3

t

iv . Thus, the displacement becomes: 

0

3 3 2 1

t t t

i i i i i i    v v v v                   (3.14)                                                                 

By using the Eqs. (3.13) and (3.14), the incremental displacement vector of an arbitrary point “ p 

” inside the element “ e ” can be found from the following relation: 

      2 1

1 1

, , , ,
2

n n
it t

i i i i i i

i i i

N u h N


      
 

  
      

  
 u v v       (3.15)                                                                

Hence, each node has three global displacements and two rotations about the local in-plane axis 

respectively  ˆ
T

x yu v w  u = . Form the displacement interpolation in Eq. (3.15), the 

interpolation matrix can be determined by collecting terms and forming a matrix equation as: 
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2 1

2 1

2 1

0 0

0 0

0 0

i i z i z

i i z i z

i i z i z

N N h l N h l

N N N h m N h m

N N h n N h n

 
 

       
 

  

         (3.16) 

Where, 1 2z ih h    . 

The interpolation matrix is also used when the strain-displacement matrix is defined. 

6.2 Strain-displacement matrix 

To define strain, we first consider the concept of deformation since strain is the “ change in 

displacement”. The displacement from 0 to time t of a point “ P ” in a body is described by the 

displacement vector u, defined naturally as the difference between the position vector v of point 

“ P ” at time 0 and time t respectively. 0tu v v   where we note that 0t v v u  . In differential 

terms this may be expressed using the “ change in displacement” analogy: 

0t v v u

x x x


  
  
  

                 (3.17) 

The strain expression in Eq. (3.17) is the normal strain definition (change in longitudinal 

displacement) and does not account for angular deformation, shearing strains. From a geometric 

consideration the shearing strain for the plane case can be shown to be: 

2 1
12

u u

x y


 
 
 

                  (3.18) 

The out-of-plane shearing strains can also be defined naturally from this expression. Using Eqs. 

(3.17) and (3.18) we easily arrive at the well-known linear strain definition: 

1

2

j i
ij

i j

u u

x x


  
     

                          (3.19) 

The total strain definition containing both linear and non-linear terms can be expressed as: 

1

2
ij

j i i j

u u u u

x x x x


    
        

           (3.20)  
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In the formulation of shell elements, it is more convenient to use a local covariant base to express 

displacement and strain. The covariant base vectors of the shell‟s coordinate system are denoted 

as gi. They are obtained by partial derivatives of the position vectors with respect to convective 

coordinates: 

t
t

i

i





x
g ,   

0
0

i

i





x
g            (3.21)  

In which ( , , )i     for (i = 1, 2, 3). Likewise, the contravariant base vectors are denoted as g 

i
. They are defined by: 

j

i ij g g . In the global Cartesian coordinate system, the displacement 

vector u satisfies:  

0t

i i

i


 



u
g g             (3.22) 

The Green-Lagrange strain in the configuration at time “ t ” with respect to the reference 

configuration, can be written in terms of the covariant components as: 

 0 0

0

1

2

t t t

ij i j i j    g g g g            (3.23) 

The incremental covariant Green-Lagrange strain components are: 

0 0 0

1

2

t t t t t

ij ij ij j i

i j i j   


    

          

  
u u u u

g g         (3.24) 

It is frequently used in finite element analysis to decompose the strains into linear and nonlinear 

parts as: 

0 0 0ij ij ij  e             (3.25) 

With, 0

1

2

t t

ij j i

i j 

  
     

u u
e g g  stands for the linear part, while 0

1

2
ij

i j 

  
     


u u

 presents the 

nonlinear part.  
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Furthermore, Green–Lagrangian strain components in the global Cartesian system 
ij  can be 

expressed in terms of covariant Green–Lagrangian strain components 
ij  using the relation: 

i j

ij i j ij e e g g             (3.26) 

In which, ei denotes Cartesian system base vectors, while g
i
 denotes the contravariant base 

vectors. Yet, the contravariant base vectors can be expressed in terms of the Cartesian system 

base vectors as: 
i

ij jg Q e . 

Substituting in Eq. (3.26), we get: 

ki lj

ij kl Q Q                            (3.27) 

With, 
i

ij jQ g e . Using Voight notation, Eq. (3.27) yields: 

 Q                                   (3.28) 

With,  11 22 33 12 13 23

T
      ,  11 22 33 12 13 23

T
      and Q is the 

transformation matrix: 

2 2 2

1 1 1 1 1 1 1 1 1

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2

3 3 3 3 3 3 3 3 3

1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2 2 1

2 3 2 3 2 3 2 3 3 2 2 3 3 2 2 3 3 2

3 1 3 1 3 1 3 1 1 3 3 1 1 3 3 1 1 3

2 2 2

2 2 2

2 2 2

l m n l m m n n l

l m n l m m n n l

l m n l m m n n l

l l m m n n l m l m m n m n n l n l

l l m m n n l m l m m n m n n l n l

l l m m n n l m l m m n m n n l n l







 
  


  

  

Q










 
 



     (3.29) 

Green–Lagrangian strain, in the global Cartesian system, can be written in terms of 

displacements as:  

1

2

ji k k
ij

j i i j

   
        


uu u u

x x x x
               (3.30) 

The linear strain is written as:  
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1

2

ji
ij

j i

 
     

uu
e

x x
               (3.31) 

And the non-linear strain, in Cartesian coordinates, is: 

1

2

k k
ij

i j

  
     


u u

x x
                  (3.32) 

By inserting the displacement interpolations in Eq. (3.31) it is possible to derive a discretized 

expression for the linear strains. However, since the displacements are derived with respect to the 

global coordinates and the displacement interpolations are functions of the natural coordinates. 

The global Cartesian derivatives of the vector ε are next expressed in terms of the curvilinear 

derivatives of the displacement by: 

 

1

u v wu v w

x x x

u v w u v w
J

y y y

u v wu v w

z z z

  

  

  



      
          
       

   
       

          
        

          (3.33) 

 

Where, J is the Jacobian matrix formed as: 

 

x y z

x y z
J

x y z

  

  

  

   
 
  
 
   

  
   
 
   

    

             (3.34) 

 

The derivatives of the displacement with respect to the natural coordinates can be determined 

directly from the displacement interpolation in Eq. (3.15) which yields the following relation: 



 
 

53 
 

 

 

 

1

1

1

ˆ, , ,

ˆ, , ,

ˆ, , 0,
2

T
n

ei
i i

i

T
n

ei
i i

i

T
n

ei
i i

i

Nu u v w
I z A

Nu u v w
I z A

hu u v w
N A

    

    

   







      
           


     

           


                 







u

u

u

        (3.35) 

Where,  ˆ
T

x yu v w  u =  stands for the vector of nodal degrees of freedom, I is unit 

matrix,  2 1i i iA v v   and 2i iz h   . 

 

Proceeding the process and computing the terms in  J matrix in Eq. (3.34) from Eq. (3.11) as:     

3

1

3

1

3

1

, ,

, ,

, ,
2

T
n

i
ii i

i

T
n

i
ii i

i

T
n

i
i i

i

Nr x y z
r z v

Nr x y z
r z v

hr x y z
N v

    

    

   







      
            


     

            


       
    







              (3.36) 

 

In which  , ,i i i ir x y z . 

 

The derivatives of the displacements with respect to the global coordinate can be found. 

Practically, this is done by multiplying the inverse Jacobian matrix with the derivative of the 

displacements in (3.35). Thereby an expression for the derivatives of the displacements with 

respect to the global coordinates is obtained: 

1 1 1 1

11 12 13 1 13 2

1 1 1 12 2

n n n n
i i i i

i i i yi i i xi

i i i i

N N h hu
j j u R j N l R j N l

x
 

 

   

   

       
                 

                      (3.37) 

Where, 
1 1

11 12

1 1

n n
i i

i

i i

N N
R j j z

 

 

 

   
  

  
    and  

1

ijj  is the element ij of the inverse of the Jacobian 

J.  

Performing similarly for all the derivatives of the displacements with respect to the global 

coordinates yield to the global strain vector in terms of global displacements well-defined as: 
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11 2 1

1

22 2 1

1

33 2 1

1

12 2 1 1 2

1 1

23

n
i

i i xi i yi

i

n
i

i i xi i yi

i
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i

i i xi i yi

i

n n
i i

i i xi i yi i i yi i xi

i i

N g g
u l l

x x x

N g g
v m m

y y y

N g g
w n n

z z z

N Nu v g g g g
v m m u l l

y x x x x y y y

  

  

  

    









 

  
  

  

  
  

  

  
  

  

      
       
       







 

1 2 2 1

1 1

13 1 2 1 2

1 1

n n
i i

i i yi i xi i i xi i yi

i i

n n
i i

i i yi i xi i i yi i xi

i i

N Nw v g g g g
w n n v m m

y z y y y z z z

N Nw u g g g g
w n n u l l

x z x x x z z z

   

    

 

 















              
        


      
       

        

 

 

                (3.38) 

Where, 

1 1

1 1

1 1

n n
ii

i i

i i

n n
ii

i i

i i

n n
ii

i i

i i

Ng z
z N

x x x

Ng z
z N

y y y

Ng z
z N

z z z

 

 

 

   
   

   


  
   

   


     
    

 

 

 

       (3.39) 

Hence, The linear strain vector can be expressed as: 0
ˆe B u , where the B0 is the linear strain-

displacement matrix, B0 is given as: 

2 1

2 1

2 1
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2 2 1 1

2 2 1 1

0 0

0 0

0 0
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                         (3.40) 
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As can be seen the expression in Eq. (3.40) is independent of the displacements which is due to 

the distinction between linear and non-linear terms made in Eq. (3.25). Consequently, the 

variation of the linear strain vector is simply 0
ˆ e B u . 

When determining the non-linear strain-displacement matrix from the variation   we consider 

the variation of the non-linear part of the strain vector as given from the strain definition in Eq. 

(3.25), stated again as: 

1

2

k k
ij

i j

  
     

u u

x x
             (3.41) 

When expressing the variation of the non-linear strain vector, it proves convenient to define an 

auxiliary matrix, A, whereby Eq. (3.41) is written as: 
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2
 A                                   (3.42) 

With,  
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,   and  0 0 0 0  .  

The vector θ is given as:  
T

x y z    . 

However, taking the variation of   in Eq. (3.42) yields the following expression: 

1 1

2 2
    A A                             (3.43) 

Since both A and θ are functions of the nodal displacements. In order to obtain the variation of 

A, an interesting property of the matrix is used. By inserting the expressions for θ and A in Eq. 

(3.43) it is easily shown that the variation can be written as δAθ = Aδθ. Thereby Eq. (3.43) can 

be written simply as δη = Aδθ. The matrix A is not suitable as a strain-displacement relation 

since η must be a direct function of the nodal displacements. Therefore, another expression is 

needed and to this end an auxiliary matrix is again introduced. Consequently, the vector θ is 
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written as a product of the matrix G and the nodal displacements, ˆ Gu . The matrix G is the 

auxiliary matrix determined directly from Eq. (3.37) due to the definition of θ: 

 

 

 

 

 

 

 

                (3.44) 

 

 

Inserting the expression for θ in η yields δη = AGδ û , whereby the nonlinear strain-displacement 

matrix can be determined as BNL = AG. 

Now, both the linear and non-linear strain-displacement matrices have been determined and the 

overall strain-displacement matrix can be found as B = B0+BNL. From B the tangent stiffness 

matrix can be determined. 

6.3 Constitutive relation 

Once the strain tensor has been defined, stresses are related to strains and hence 

displacements through a constitutive relation which for linear material behaviour is Hook‟s 

general law. Regarding thermal effect, the thermal strain th  in the global system coordinates, 

using Voight notation, can be calculated as follows: 
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     , 1 1 1 0 0 0
Tth T z T z             (3.45) 

In which,  T z  is the temperature change and  ,T z  is the effective thermal expansion 

coefficient. Note that  ,T z is variable with the thickness coordinate and temperature. The 

temperature change ΔT is defined as: 

    0T z T z T                 (3.46) 

Where, 0T  is the reference temperature. 

The Voight form of the stress tensor in global Cartesian coordinates is determined by the 

following relation: 

 
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       
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      
      
            

C           (3.47) 

According to shell assumptions, the strain energy associated with the stresses along the thickness 

direction is neglected. Then, since the normal stress and strain along the thickness direction is 

ignored in the local convected coordinates, the following vector of stresses is obtained in local 

coordinates: 

 11 22 12 13 230
T

               (3.48) 

Accordingly, the linear constitutive matrix is expressed in the local coordinates by: 
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Where, 
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The elastic modulus  ,E T z  and the Poisson's ratio  ,T z  vary with the thickness and 

temperature. The shear correction factor sk , is introduced to improve the shear distribution 

across the shell thickness. The constitutive matrix C  in the global coordinates can be obtained 

by using the following transformation: 

TC Q C Q              (3.51) 

where Q stands for the transformation matrix in Eq. (3.29). 

6.4 Incremental equilibrium governing equations 

The basis of this incremental formulation is the use of the virtual work principle. Considering 

the equilibrium of the body at a time ( t t ), the principle of virtual displacements is written 

referred to the initial configuration at a time (t = 0) in the following form: 

0

0

0 0

t t t t t t

ij ij
V

S d V W                         (3.52) 

Where, 0

t t

ijS  and 0

t t

ij
  denote the second Piola-Kirchhoff stress tensor and the incremental 

Green-Lagrange strain tensor at ( t t ) referred to the configuration at a time (t = 0). The 

quantity t tW
 represents the external virtual work. In dynamic analysis, the incremental total 

external virtual work is given by:  

0 0

0 0

0 0

t t t t t t

k k k k
V V

W t u d A f u d V                   (3.53) 

Where, 0

t t

kt
  denotes surface traction, and 0

t t

kf
  stands for body forces. In dynamic analysis, 

body forces arise from mass inertia and acceleration. 

For the incremental solution, the stresses and strains are decomposed into known quantities  0

t

ijS  

and 0

t

ij , and unknown increments 0 ijS  and 0 ij , so that: 
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            (3.54) 

By considering thermal stresses, stress and incremental stress tensors are given by: 
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            (3.55) 

Where, the subscripts (m) and (th) stands for mechanical and thermal quantities respectively.  

After splitting the strain increment into linear and nonlinear parts 0 ij 0 0ij ije    and using the 

linearized expression 
0 0 0ij ijkl klS C e , the incremental stress can be written as:  

 0 0 0 0

m th

ij ijkl kl klS C e e                           (3.56) 

Then, by substituting from (3.54) to (3.56) into (3.52) and linearizing the principle of virtual 

work in the configuration at time ( t t ) about the known configuration at time (t), the 

following total Lagrangian formulation is obtained: 
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This equation is the basic equilibrium relation employed to develop the governing finite element 

matrices and vectors. For the actual solution of problems, it is frequently important to use 

equilibrium iterations ( Newton-Raphson method ). 

Introducing finite element discretization [11], Eq. (3.57) can be written in the following matrix 

form: 
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 
      (3.58) 

Finally, we obtain the incremental equilibrium equation written in condensed form as: 

t t t t m t th

T ext int intMU CU K U F f f                 (3.59) 

Where, U is the incremental displacement vector, and KT  is the tangent matrix defined as: 

( )T m thK K K K                     (3.60) 

With,  
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The matrix B, represents the overall strain-displacement matrix with 0 NLB B B  . The external, 

internal and thermal nodal force vectors are described as follows: 
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Mechanical and thermal stress H
m
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th
 are: 

x xy xz

m

xy y yz

xz yz z

I I I

H I I I

I I I

  

  

  

   
 

    
 

    

,   

th th th

x xy xz

th th th th

xy y yz

th th th

xz yz z

I I I

H I I I

I I I

  

  

  

   
 

    
 

    

,   

1 0 0

0 1 0

0 0 1

I

 
 

  
 
 

   (3.63) 

7. Numerical methods for nonlinear problems 

The finite element discretization of the equations governing the geometric nonlinear 

behaviour presented in this chapter, leads to a set of non-linear algebraic equations called 

“equations of residual forces”. The numerical solution of this resulting nonlinear system of 

equations usually counts on incremental algorithms. They have become standard methods for 

nonlinear structural analysis. Most of these algorithms is based on the iterative Newton-Raphson 

method. The aim of the iterative procedure is to minimize the out-of-balance residual forces till 

equilibrium is achieved. For this purpose, several techniques of path-following methods, based 

on different approaches, have been proposed. Actually an effective path-following solution 

method should be able to trace the entire static load-displacement curve, which may include load 

limit points, turning points, and possibly bifurcation points. Basically, iterative methods add a 

constraint equation to the original non-linear governing equations, and then solve the extended 

system of equations by incremental-iterative procedures such as Newton-Raphson, or modified 

Newton Raphson to obtain the solution in discrete points along the equilibrium path. The 

additional constraint equation could be linear [12] or quadratic [13, 14]. Also, these algorithms 

differ in efficiency, and ability to handle different types of nonlinear behaviour. 
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7.1 Load-displacement equilibrium path 

In general, static behaviour of structural systems can be characterized by a load-displacement 

curve, this response is plotted in a two dimensions coordinate system. The curve drawn in the 

load displacement diagram is called the equilibrium path. There exist a wide variety of methods 

of numerical resolution that are used to get the equilibrium path. The most common are iterative 

methods, they are based on the minimization of a residual imbalanced force after constructing a 

sequence of approximate solutions. Incremental solution methods can be classified as: 

7.1.1 Incremental-Iterative method 

Also called predictor-corrector methods. Unlike the pure incremental method, in which, 

no equilibrium check is performed, a predictor step is followed by a corrective iterations step. Its 

purpose is to eliminate the residual forces. The residual forces are the differences between the 

internal forces due existing internal strains, and the externally applied loads. By minimizing the 

residual unbalanced forces, the solution is more accurate, and the computational time is reduced 

when compared to the pure incremental method. 

The incremental-iterative methods consist of two parts: the increment part and the iteration part. 

The iteration part, is based on the minimization of the out of balance residue by the use of an 

iterative process for each load increment. Once convergence is achieved, the next solution step is 

applied. The correction of balance minimization of a residue, can be done in many iterative 

methods. They differ from each other mainly by the nature of the matrix used for the correction. 

These methods include: 

7.1.1.1 Newton-Raphson method 

It requires the computation of the tangent stiffness matrix at every iteration, and hence, 

the convergence is fast, but the computer time required for each iteration is extensive. This 

method is well suited for analyzing highly nonlinear problems, Figure 3.6. 
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Fig. 3.6 Newton-Raphson method. 

 

7.2 Incremental-Iterative procedure 

An incremental iterative method has four essential aspects: 

 Parameterization: The solution path is parameterized using a general scalar equation 

or an auxiliary surface. The aim is to find its intersection with the equation of 

equilibrium. 

 Prediction: During the prediction phase, a linear estimation for the next point on the 

equilibrium path is established from a known converged solution on the equilibrium 

path. 

 Corrector: Newton-Raphson iterations are employed during the correction phase to 

find a new point on the equilibrium curve. 

 Convergence criterion. 

7.2.1 Prediction 

In the predictor phase, informations determined from the point previously computed (the last 

known geometry) are used to compute a suitable starting value for the corrector phase. 
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Considering an external forces load increment ΔPthe corresponding elastic solution is given 

by: 

ΔUK

ΔP          (3.64)

For each finite element, this solution corresponds to a strain increment such as: 

ΔεBΔu          (3.65)

By assembling the elementary vectors, we define an equivalent nodal force vector 

ΔQcorresponds to the stress state calculated from the constitutive laws. Thus, the residue is 

defined by: 

RΔPΔQ         (3.66)

If the residual is zero, this corresponds to a linear load increment, elsewhere, we must iterate 

seeking for a new solution of the equation ΔUK 

ΔP, till the residue is sufficiently 

close to zero. This is the purpose of the correction phase. 

7.2.2 Correction of equilibrium 

Newton-Raphson method is based on writing, at each iteration, the residue around the 

preceding iteration: 

          1i i i i
R R K U

    
 

          (3.67) 

Where,         1i i i
U U U


    presents the correction applied to the solution at the current 

iteration. The correction is then, found by minimizing the residue till it falls under a specified 

value determined by the convergence criterion. This is thru solving the following system of 

linear equations: 

         0i i i
R K U   

 
        (3.68) 

 i
K    is the considered stiffness matrix. 

In the conventional Newton-Raphson method, the tangent stiffness matrix is reformed „updated‟ 

at every iteration, while for the modified Newton-Raphson method, the tangent stiffness matrix 

is only formed in the first iteration, and is kept constant in the subsequent iterations of each load 

increment. It may then be advantageous sometimes to replace the Newton-Raphson method by 

one of its variants, the “Modified Newton-Raphson” or the “Secant Newton-Raphson”. 
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The iterative process stops when satisfies the convergence criterion, which is chosen based on 

residual forces, or other variables (displacement, energy, strain...). 

7.2.3 Parameterization 

The incremental method is based on considering the known equilibrium configuration tC

defined at time t, and seek for the unknown configuration t tC  which is in equilibrium with the 

external applied loads at time t t  . A proportional loading with a load factor λ is assumed. 

Thus, the discrete equilibrium equation is        ,
ext

Q q P q   where the internal forces 

{Q} are a function of the displacements {q}, and  ext
P is a function of {q} and λ. 

If the external and internal forces are not in equilibrium in any deformed configuration, a 

residual vector remains. The equation governing the nonlinear equilibrium of a structure is 

discretized by finite elements to the following form: 

          , , 0extR q P q Q q             (3.69) 

In case, when external forces are dependent on the deformed shape of a structure (exp: 

hydrostatic load), the contribution of the follower forces stiffness matrix is essential. In the other 

case, when external forces do not depend on the deformation of the structure, follower forces 

stiffness matrix is zero (the case of our study), Eq. (3.69) is written: 

        , 0extR q P Q q            (3.70) 

 extP : is the fixed external loading vector. 

 : loading level parameter that multiplies  ext
P . 

 q : nodal displacement vector. 

  Q q : internal force vector. 

 extP : the applied load level. 

The iterative Newton-Raphson procedure, constructs a sequence of approximations of the 

equilibrium configuration trying to find a solution that satisfies the Eq. (3.69). At each 

incremental step, a series of iterations is performed until convergence is achieved. 

We denote here, the increment by the subscript n, and the iteration by the superscript (i). The 

incremental-iterative procedure is given by: 
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   

 
 

    
1 1i i i i

n n n ext nK q P R
 

     
 

       (3.71) 

Where,        

 
 

  ,
i i

i i

n n n n
R R q    and  

 i

n
K 
 

 is the tangent stiffness matrix. 

The displacements and load factor, are computed through additive contributions from each 

Iteration: 

 

 
 

 
 

 
1 1i i i

n n nq q q
 

              (3.72) 

     1 1i i i

n n n  
 

            (3.73) 

In the (i
th

) iteration of the n
th

 increment, the load factor is incremented by 
 1i

n


  , and the 

resulting displacement increment 
 

 
1i

n
q



  is found. Then, the total displacement and total load 

factor are updated according to Eq. (3.72) and Eq. (3.73) respectively. The residual in Eq. (3.70) 

is given by:  

  
 

    ( ) ( )
ii i i

n n ext n nR P Q q          (3.74) 

The displacement vector {q} contains (p) unknown degrees of freedom. Thus, the total number 

of unknowns is (p+1): p degrees of freedom {q}, and a load factor λ. Therefore, in addition to 

the n equilibrium equations of Eq. (3.70), a scalar constraint equation called the “control” or the 

“parameterization” equation is required. In general, it has the following form: 

  , 0f q C C             (3.75) 

This equation is used to set the incremental parameter to be imposed. 

7.2.4 Convergence criterion 

The iterative processes will continues as long as residual forces exists, until they become 

negligible. A convergence criterion is therefore necessary and should be pre-determined to check 

the equilibrium and terminate the iterations process. Thus, the equilibrium is satisfied when the 

norm of the residual is sufficiently small compared to a given tolerance ε. 

 Residual force Criterion: 

1

n

ri

n

R

R
               (3.76) 
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1

nR , i

nR  are respectively the residue at the iteration (1), and the residue at the iteration (i). 

 Displacement criterion: 

( )

( )

1

i

n

di

n n

q

q q








            (3.77) 

 

 
i

nq  : incremental displacement at the considered iteration (i). 

 

 
i

nq   : the current displacement (solution to be checked). 

 1nq   : the last converged solution (at increment n-1). 

 

 Energy Criterion: 

The above two criteria could be combined to give an energy based criteria: The norm to be 

used for the residue or the displacement criteria can be selected from any one of the classic 

norms (Absolute, Euclidean, or maximum). Also, a maximum number of iterations is usually set. 

If the convergence criterion is not satisfied after this number, the process stops, and the solution 

is considered as diverged. 

 

8. Conclusion  

The aim of this chapter is to derive the governing finite element equations of structural 

mechanics for nonlinear static analysis with thermal effects. From the principle of virtual work, 

the governing equations are derived, which upon discretization results in the nonlinear finite 

element equilibrium equations. The use of Newton-Raphson method is adequate for solving 

equations governing the geometric nonlinear behaviour. Moreover, the formulation of 

degenerated shell elements is then extended in the next chapter as a specialization of the 

developments above to nonlinear transient dynamic analysis.  
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Chapter 4 

Direct time integration dynamic analysis 

 

1. Introduction 

Structural analysis is primarily concerned with finding out the behaviour of a physical 

structure when subjected to load. This action can be in the form load due to the weight of things 

such as wind and snow, etc. Or some other kind of excitation such as an earthquake, impact and 

explosions, etc. In essence, all these loads are dynamic, which are of considerable importance in 

the safety studies. The distinction is made between the dynamic and the static analysis, when the 

external loads and displacements are applied very slowly, the inertia forces can be ignored and a 

static analysis which is a simplified approach of the problem can be justified. However, if a body 

is in motion, the inertia forces, from Newton’s second law, are equal to the mass times the 

acceleration, then at any instant of time (t), Newton’s law of motion implies that the sum of all 

forces must be equal to the inertial force. Therefore, the governing equations lead to a dynamical 

problem. 

In general, if the loading varies over time with frequencies higher than the Eigen frequencies of 

the structure, a dynamic analysis will be required. Structural dynamics are a type of structural 

analysis, which covers the behaviour of a structure subjected to dynamic (actions having high 

acceleration) loading. Dynamic analysis is the most general case that can be considered as it 

takes into account all the forces acting on it, also it used to find dynamic displacements, time 

history, and modal analysis. In dynamic analysis, to solve transient structural problems 

numerically, the equations of motion are first discretized in space, this procedure is called a semi 

discretization and will reduce the problem to a system of ordinary differential equations in time, 

which in turn must be integrated to complete the solution process. 

In this chapter, the nonlinear dynamic response of FGM shells in a thermal environment with 

temperature-dependent properties is obtained using direct time integration scheme which include 

Newmark and composite implicit time integration methods respectively in which they are the 
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most widely used for solving discrete equations of motion that represent dynamic analysis of 

structural problems. 

2. Governing equations for structural dynamics 

It is assumed that a known equilibrium configuration exists at time t , and the solution at time 

t t   has to be computed. 

The governing semi-discrete equations of motion are obtained by considering the static 

equilibrium at time t , which includes the effect of acceleration dependent inertia forces and 

velocity dependent damping forces in addition to the externally applied discretized forces and the 

internal nodal forces of the structure, and may be written as: 

       I D int extF t F t F t F t                                        (4.1) 

Where,  IF t  are the inertia forces,  DF t  are the damping forces,  intF t  are the internal (nodal) 

forces, including forces due to initial stresses in the system and  extF t  are the external forces, all 

of them being time dependent. 

Eq. (4.1), is valid for both linear and nonlinear systems if equilibrium is formulated with respect 

to the deformed (current) geometry of the structure. The equation of equilibrium governing the 

dynamic response of shell structures at a time t t   is approximated to the following set of 

second-order, nonlinear, differential equations, written in matrix form as: 

 t t t t t t t t

extM u C u f u F                   (4.2) 

Where, M and C  are the mass and damping matrices. Fext, u , u  and u  are the nodal external 

force, displacement, velocity and acceleration vectors, respectively.  f u : is the nonlinear 

internal nodal force vector, with: 

  int int( ) ( ) ( , )m th

Tf u K u u f u f u T                (4.3) 

Where, T stands for temperature. 

The initial value problem for Eq. (4.2), consists of finding the time history response of a system, 

and the initial conditions: 
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 

 

0

0

0

0

u u

u u

 



                   (4.4) 

Where, 0u and 0u  are the given initial displacement and velocity data, substituting Eq. (4.4) and 

Eq. (4.5) into Eq. (4.2), we get: 

  1
0 0 00Extu M F Cu Ku                   (4.5) 

In principle, the equilibrium equations may be solved by any standard numerical integration 

scheme for both linear and nonlinear systems. 

3. Methods of integration 

Eq. (4.2), represent a system of nonlinear differential equations of second order. The standard 

procedures for the solution of differential equations can be very expensive. Therefore, there exist 

several different methods of integration to solve the dynamic equilibrium problem. Each method 

has advantages and disadvantages that depend on the type of structure and loading, these 

methods of analysis are commonly used such as mode superposition analysis [1, 2], response 

spectra analysis and direct time integration analysis. 

3.1 Direct time integration methods 

Direct time integration is a more general method for dynamic analysis, which treats the entire 

frequency content of the load imposed on the structure. It nevertheless remains very time 

consuming calculation. It is an incremental method performs a step by step integration of the 

equations of motion Eq. (4.2). This involves, after the solution is defined at time zero, the 

attempt to satisfy dynamic equilibrium at discrete points in time. Most methods use equal time 

intervals (t+Δt), (t+2Δt)…, (t+nΔt). There are a large number of different incremental solution 

methods. In general, they involve a solution of the complete set of equilibrium equations at each 

time increment. 

With direct integration, the governing ordinary second order differential equations in time, 

resulting from the semi discretization of the structural system (by means of finite element 

methods), given by Eq. (4.2), is integrated using a numerical step by step procedure. The term 

‘direct’ means that the equations are solved in their original form with no transformation into a 

different form prior to the numerical integration process. In essence, direct numerical integration 
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is based on two ideas, firstly the dynamic equilibrium Eq. (4.2), is satisfied at time steps ‘ at 

discrete times with intervals t ’. This means that, basically, (static) equilibrium, which includes 

the effect of inertia and damping forces, is required at discrete time points within the interval of 

the solution. Secondly, a particular variation of displacements, velocities and accelerations 

within each time interval t  is assumed. 

 

Different forms of these assumed variations give rise to different direct integration schemes [3-

11], each of which have different accuracy, stability and cost. The available direct integration 

can be subdivided into explicit and implicit methods, each with distinct advantages and 

disadvantages. The critical parameter in the use of each of these methods is generally the largest 

value of the time step which can be used to provide sufficiently accurate results. Explicit 

methods employs finite difference methods and is particularly efficient for short duration 

dynamical problems or wave propagation problems ( high frequency structural modes), in which 

the solution at time t t  is obtained by considering the equilibrium conditions at time t , and 

such integration schemes do not require factorization of the effective stiffness matrix in the step 

by step solution. However, explicit time integration schemes are only conditionally stable and 

generally require small time steps to be employed to ensure numerical stability. Typically, most 

used explicit methods include: central difference method [12], Runge-Kutta method [13, 14], and 

the Newmark method with ( 0  , 1 2  ). 

Generally, implicit algorithms are most effective for structural dynamics problems (in which the 

response is controlled by a relatively small number of low frequency modes), where the 

equations for displacements at the current time step involve the velocities and accelerations at the 

current step itself, t t . The most implicit methods are unconditionally stable, typical most 

used implicit methods include: Newmark method [4], Houbolt method [3], and Wilson-    

method [5]. In principle, it had been shown in many works [15-17], that the classical Newmark 

and Wilson-   [18] fails to produce stable and accurate solutions in severe nonlinear problems, 

especially when nonlinear dynamics problems must be integrated for a long time steps [19, 20]. 

Hughes et al. [21] proposed the constraint energy method by extending the trapezoidal rule [4] 

with the constraint of energy conservation via the method of Lagrange multipliers. However, 

Kuhl and Ramm [22] had observed that this algorithm conserves the total energy perfectly, but 

leads to final failure in the Newton-Raphson iteration of equilibrium. Simo et al. [20, 23-24] 
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introduced the energy-momentum method where the average of the strains was used to exactly 

enforce energy conservation. However, these methods are computationally costly that solve a 

scalar variable either at the integration point or over each element in an averaged sense and may 

result in non-symmetric tangent stiffness matrices. Hence, to obtain stable and accurate solutions 

for a long time nonlinear problems, an efficient conservative and/or decaying scheme is required. 

Bath and Baig [17] proposed a composite implicit time integration scheme method, which basis 

in the work of Bank et al. [25] for solving first order equations arising in the simulation of silicon 

devices and circuits. This method is a simple combination of the trapezoidal rule and the three-

point Euler backward method that displays some numerical damping in the time integration 

process. Their success to manage stability in the geometrically nonlinear dynamic regime is 

mainly due to their ability to offer the minimal numerical damping for low-frequency responses 

and the maximal numerical damping for parasitic high-frequency modes.  

Some facts with the algorithm for the solution of linear and nonlinear structural dynamics and 

wave propagation problems had been presented in [17, 26-30], this problem motivated the 

development of many algorithms, based on the idea of conserving or decaying the system energy 

[15, 17, 22, 31-32]. In this work, composite implicit time integration and Newmark methods are 

adopted, in which they are the most widely used for solving discrete equations of motion that 

represent dynamic analysis of structural problems. 

3.1.1 Newmark method  

  Newmark [4], presented a family of single step by step integration methods, this 

algorithm is the most widely used implicit methods of direct time integration for solving semi 

discrete equations of equilibrium, it has been applied to the dynamic analysis of many practical 

engineering structures. 

Let us assume that a known solution of dynamic equilibrium equations exists at time t . The 

solution of this nonlinear dynamic equilibrium equations at time t t  is to be calculated, Eq. 

(4.2), is considered at time t t  as: 

 t t t t t t t t

extM u C u f u F                    (4.6) 

Where, 
t tu

, 
t tu

  and 
t tu

 are respectively, the approximations at time t t . 
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In Newmark acceleration method, to begin the iterative process the Eq. (4.5), must be initialized. 

Hence, Taylor’s series displays an accurate approach to obtain the following two additional 

equations: 

2 3

2

......
2 6

.....
2

t t t t t t

t t t t t

t t
u u t u u u

t
u u t u u












 
       


      

                   (4.7)  

Newmark, reduced these equations and expressed them in the following form: 

2
3

2

2
t t t t t

t t t t

t
u u t u u t u

u u t u t u
















       

      

                          (4.8) 

Assuming the acceleration to be linear within the time step, the term u  could be written as: 

 t t tu u
u

t

 



                (4.9) 

The substitution of Eq. (4.9) into Eq. (4.8), provides Newmark’s equations in standard form: 

2 2

2

1

2

1

t t t t t t t

t t t t t t

u u t u t u t u

u u t u t u

 

 

 

 

  
  

 
   

          

       

         (4.10) 

Newmark used Eq. (4.10) and Eq. (4.6) iteratively, for each time step. Later, Wilson formulated 

Newmark’s method in matrix notation, added stiffness and mass proportional damping, and 

eliminated the need for iteration by introducing the direct solution of equations at each time step, 

this requires that Eq. (4.10) be rewritten in the following form: 

1 2 3

4 5 6

t t t t t t t

t t t t t t t

u b u u b u b u

u b u u b u b u

 

 

       


      
            (4.11)  

The substitution of Eq. (4.11) into Eq. (4.6), allows the dynamic equilibrium of the system at 

time t t  to be written in terms of the unknown node displacements t tu  as: 

51 4 1 2 3 4 6
t t t t t t t t t t

Tb M b C K u R M b u b u b u C b u b u b u                           (4.12) 
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Where, the constants 1b  to 6b  are defined as: 

1 2 32

54 1 2 6 3

1 -1 1
,  ,  1-  

2

,  1 ,  1 -   

b b b
tt

b t b b t b b t b

 

   

  
  

 


 
  

  


          

       (4.13)  

  and   are parameters that control the stability and accuracy of the algorithm. Newmark, had 

originally proposed an unconditionally stable scheme with constant acceleration over the time 

step, in this case: 1 2   and 1 4  . Note that the constants ib  need to be calculated only once 

for both linear and nonlinear analysis. The matrix 1 4TK K b M b C    is usually considered as 

the effective stiffness matrix, where M , C  and TK  are time invariant mass, damping and 

tangent stiffness matrices. 

In the other hand, the effective load vector is taken to be: 

51 2 3 4 6

t t t t t t t t t tR R M b u b u b u C b u b u b u
     

                  (4.14) 

Where, m th

ext int intR F f f   . 

Common forms of the Newmark’s method are: Newmark average acceleration: 1 4  , 1 2  , 

Newmark linear acceleration: 1 6  , 1 2  , Newmark central difference: 0  , 1 2  . The 

average acceleration form appears to be the most popular one and it is used exclusively in this 

study. 

It is possible to form the damping matrix based on mass proportional and/or stiffness 

proportional damping as follows [33]: 

C a M b K                (4.15) 

Where,   and  are the damping coefficients, they are determined experimentally.  

The recurrence scheme of Newmark method is presented in appendix C. 

3.1.2 Composite implicit time integration scheme 

The time integration method for the nonlinear dynamics should keep the energy (and 

momentum) conserving and / or decaying to guarantee the stability [27]. The composite implicit 
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time integration scheme proposed by [26], which is also called Bath method, for solving 

nonlinear dynamics shows good stability and fully implicit second-order accurate method. This 

approach is used to calculate the unknown displacements, velocities and accelerations by 

considering the complete time step t  is subdivided into two equal sub-steps, therefore the 

method is a ‘composite scheme’. For the first sub step solution, the well-known trapezoidal rule 

is used, and for the second sub step solution, the well-known 3-point Euler backward formula is 

employed with resulting equations: 

2 2
2

2 2

16 8

4

t t
t t

t t t

t t
t t

t t

u u u u u
t t

u u u u
t

 
 

 
 

  
     
   


 

                           

(4.16-1)
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2

1 4 3

1 4 3

t
t

t t t t t

t
t

t t t t t

u u u u
t t t

u u u u
t t t




 




 


  

   

   
                        

(4.16-2) 

 

Applying the equation of equilibrium Eq. (4.6) at time 2t t   and t t   respectively yields: 

2 2 2 2( )

( )

t t t t
t t t t

ext

t t t t t t t t

ext

M u C u f u F

M u C u f u F

   
   

   


   

   

         (4.17) 

Substituting Eqs. (4.16-1) and (4.16-2) into Eq. (17) yields: 

2
1 1

2 2

t
t

t t

K u R

K u R







 

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             (4.18) 

In which: 
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
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  (4.19) 
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2 2 2 2
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(4.20)
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                                              

(4.21) 

With, m th

TK K K K     denotes the tangent stiffness matrix, and m th

ext int intR F f f    denotes 

the residue. With the initial conditions corresponding to time (t0), the Newton-Raphson algorithm 

is employed for iterating within each time sub-step increment until equilibrium is achieved over 

the complete time domain. The recurrence scheme of Bathe method is presented in appendix D. 

4. Mass matrix 

The extension of a finite element from static analysis to dynamic analysis implies the 

construction of mass matrix, to consider the effect of rotational inertia, the formulation and use 

of the consistent mass matrix are required.  

Generally, the consistent mass element matrix is derived from the kinetic energy expression 

using the virtual work principle including translational and rotary inertia effects. It is given by 

using interpolation functions: 

0

0  T

V
M S S d V                        (4.22) 

Where, S stands for the displacement matrix, and ρ is the density matrix. 

4.1 Mass matrix formulation of the degenerated shell element 

The consistent mass matrix for an iso-parametric element can be computed using numerical 

integration. So, for the degenerated shell element, the mass matrix is given by: 

1

  
n

e T T

i j

i

M S S J d d d S S J W W    


                    (4.23) 

Where, the matrix S  that contain the displacement interpolation vector defined as: 
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1 2 8...   S S S S               (4.24) 
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(4.26)
 

 

5. Conclusion  

Implicit time integration schemes are used in this work, to obtain the nonlinear dynamic 

response of FGM shells in a thermal environment with temperature-dependent properties. 

However, the classical Newmark scheme fail to produce stable and accurate solutions in severe 

nonlinear problems, especially when nonlinear dynamics problems must be integrated for a long 

time period. Hence, to obtain stable and accurate solutions for a long time nonlinear problems, an 

efficient conservative and/or decaying scheme is required. 
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Chapter 5 

Results and discussion  

 

1. Introduction  

In this chapter, the nonlinear static and dynamic response of FGM shells with temperature-

dependent material properties under thermo-mechanical loading is investigated. The nonlinear 

dynamic-buckling and post-buckling behaviour of functionally graded cylindrical and spherical 

shells in thermal environment is also considered using the implicit conservative time integration 

scheme. Before proceeding to the dynamic thermal buckling characteristics of FGM cases, the 

efficacy of the formulation is tested for the problems for which the analytical solutions are 

available in the literature. 

Numerical comparisons are drawn between the developed finite element formulation and the 

existing solutions available in literature. These comparisons demonstrate the validity and 

reliability of the present element, and the ability of the present shell element to describe the 

nonlinear static and dynamic responses of FGM structures. For convenience, material properties 

are assumed to be independent of temperature in some examples. The temperature is assumed to 

be uniform on any surface lies between the top and bottom surfaces and can be varied through 

the thickness direction only as a nonlinear function. 

In all tested examples herein, for the geometrically nonlinear analysis, a displacement 

convergence criteria is used where the precision criteria is taken to be: ε = 0.001. In the frame of 

this research work, the data-processing developments enabled us to have a finite elements 

program developed in MATLAB platform, which runs on a personal computer, devoted to the 

geometrically nonlinear static and dynamic analysis of FGM shell structures. The presented shell 

finite element was implemented in the above mentioned MATLAB program. 
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2. Numerical results 

2.1 Eigen-values analysis 

Here, we start with the eigenvalue analyses of an arbitrary single element. The eigenvalue 

analyses are performed to check for the presence of spurious zero-energy modes. The stiffness 

matrix is integrated by using the modified reduced numerical integration. The numerical results 

of the eigenvalue analysis confirm that the stiffness matrix has no rank deficiency. 

2.2 Cantilever Plate 

The nonlinear static response of an FGM plate subjected to a distributed end shear load F 

without temperature effect as shown in Figure 5.1, is investigated. The geometry, boundary 

conditions and load are also described. Zirconia and Aluminium ceramic-metal are considered, 

the material properties of each constituent (computed at temperature T = 300 K) are listed in 

Table 5.1. The lower surface of the plate  is assumed to be metal rich and the top surface is 

assumed to be ceramic. The mesh consists of 8x1 elements.  

 
 

Fig. 5.1 Cantilever plate. 

 

Table 5.1: Material properties of Aluminium and Zirconia [1] 

Materials E (GPa) v ρ (Kg/m
3
) α (1/C) κ (W/m K) 

Zirconia 151  0.3 3000 10.10
-6

 2.09 

Aluminium 70  0.3 2707 23.10
-6

 204 
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Figure 5.2, shows the effect of volume fraction index n, on the nonlinear response of FGM plate. 

It can be seen that the plate deflections are increased by increasing the volume fraction index n. 

The deflection of metallic plate is greater than ceramic due to the high bending stiffness of 

ceramic plate. 

 

 

Fig. 5.2 Tip deflection of FGM cantilever plate versus shear load: (a) In-plane and (b) Out of plane 

deflection.  
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2.3 Square plate 

The nonlinear forced vibration is performed, on a square plate of side length  L= 0.2 m, 

thickness h= 0.01 m. Then, uniform pressure load applied suddenly of intensity equal to, p(t) = - 

10
6
 Pa, as illustrated in Figure 5.3. The FGM square plate is simply supported on all its edges 

and made of Aluminium and Zirconia, their material properties defined in Table 5.1. The 

dimensionless parameters are centre deflection,  2

0mw wE h q L , and time 2

m mt t E L  . Only 

one-quarter of the square plate is modelled. The mesh consists of 4x4 elements and the material 

properties are assumed to be independent of temperature. A time step of 10
-5

 s was used in the 

computations.  

 

Fig. 5.3 Simply supported square plate. 

Figure 5.4 shows the non-dimensional central deflection as function of non-dimensional time for 

an FGM square plate subjected to a suddenly applied uniform load. The dynamic response of the 

graded plate is intermediate to that of the metal and ceramic plates. However, the amplitude of 

vibration is the maximum for the metallic plate and a minimum for the ceramic one. It is seen 

that the amplitude of vibration increases smoothly as the amount of metal in the plate increases. 

Hence, the higher the bending rigidity, the lower the magnitude of deflection. Also, it is clear 

that the frequency of vibration of the ceramic plates is much higher than that of the metallic 

plates.  



 
 

84 
 

 

Fig. 5.4 Temporal variation of centre deflection of simply supported FGM square plate. 

 

 

Fig. 5.5 Temporal variation of centre deflection of clamped FGM square plate. 
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Thus, the gradients in material properties play an important role in determining the response of 

the FGM plates. The computational domain for the dynamic analysis with clamped boundary 

conditions is the same as that of Figure 5.4. The analysis was performed for the two material 

combinations. Figure 5.5 shows the clamped FGM plates is much lower than the simply 

supported case. The effective stiffness of clamped plate is higher than the simply supported 

plates. 

2.4 A square plate under thermo-mechanical loading 

In this example, we investigated the nonlinear static and dynamic response of an FGM plate 

subjected to a uniformly distributed load in a thermal environment. The geometrically nonlinear 

behaviour of the plate was presented in [1], while an analytical solution for geometrically 

nonlinear dynamic analysis of an FGM plate with temperature-dependent material properties is 

presented in [2]. 

2.4.1 Static analysis 

In this static analysis assessment, we investigated the behaviour of an FGM square plate of 

side length a = 0.2 m and thickness h = 0.01 m subjected to a thermo-mechanical loading. As 

illustrated in Figure 5.3, the plate is simply supported on all its edges.  

The thermal load consists of applying a through-thickness temperature field by holding the 

bottom surface temperature at Tm = 20°C while the top surface temperature is held at Tc = 300 °C 

in the first case, and 600 °C in the second case, with the subscripts (c) and (m), denote,  Zirconia 

and Aluminium respectively. The mechanical load consists of applying a uniformly distributed 

load, statically increased from 0 up to q = -10
7
 N/m

2
 . The plate’s FGM is composed of 

Aluminium and Zirconia (Al/ZrO2). In order to compare the obtained results against the solution 

presented in [1], the materiel proprieties are considered as independent of temperature. The 

material properties (computed at temperature T = 300 K) are listed in Table 5.1. Due to the 

double symmetry of geometry, loading and boundary conditions, only one-quarter of the plate is 

modelled. The mesh of the one-quarter of the plate consists of 3×3 square elements. For 

convenience, the non-dimensional parameters used in the analysis, are the non-dimensional 

central deflection w w h  and the load parameter 4 4

0 mq q a E h , respectively. 
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Fig. 5.6 Non-dimensional central deflection of the FGM square plate under thermo-mechanical loading: 

(a) Tc=300 °C and (b) Tc=600 °C. 

Figure 5.6(a), shows the obtained thermo-mechanical non-dimensional load-deflection curves. 

An excellent agreement with the reference solution presented in [1] is observed for different 

power-law indexes. During the thermal loading, the plates result in upward deflections. This is 
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because the high temperature at the top surface causes higher thermal expansion than that of the 

bottom surface. One can notice that in the second load case, in which the top surface temperature 

is Tc = 600 °C, the behaviour of the isotropic plates becomes quasi-linear because of the higher 

curvature due to the thermal loading.  

In contrast, the behaviour of the FGM plate with index n=2  becomes highly nonlinear. It can be 

easily seen from Figures 5.6(a) and 5.6(b),  that the maximum deflection of the FGM plates is 

less sensitive to the thermal effect than that of isotropic plates. 

2.4.2 Dynamic analysis 

The presented formulation is deployed to carry out the nonlinear dynamic response of the 

FGM plate in a thermal environment with temperature-dependent material properties. In this 

time history analysis, the simply supported plate studied in [2], with no in-plane displacements is 

subjected to the thermal loading, then a uniform load equal to q (t) = -50 MPa, shown in Figure 

5.7 is suddenly applied. In this dynamic analysis, the thickness of the plate is h = 0.025 m, and 

the time step is taken as Δt = 2 μs. Two different material mixtures are considered, the first one is 

zirconium oxide and titanium alloy referred to as ( 2 / - 6 1- 4ZrO Ti A V ), and the second one is 

silicon nitride and stainless steel referred to as ( 3 4 / 304Si N SUS ). The materials “mechanical and 

thermo-physical” properties are taken as temperature-dependent as listed in Table 5.2.  

 

Fig. 5.7 Square plate under suddenly applied dynamic uniform load. 
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Table 5.2: Temperature-dependents material properties of metal and ceramic [3]  

Materials Properties P0 P-1 P1 P2 P3 

 

 

Silicon Nitride 

(Si3N4) 

 

E (Pa) 348.43 x109 0 -3.070 x10-4 2.160 x10-7 -8.946 x10-11 

Ν 0.24 0 0 0 0 

ρ (Kg/m3
) 

2370 0 0 0 0 

α (K
-1

) 5.8723 x10-6 0 9.095 x10-4 0 0 

K (Wm
-1

 K
-1

) 13.723 0 -1.032 x10-3 5.466 x10-7 -7.876 x10-11 

 

 

Stainless Steel 

(SUS304) 

 

E (Pa) 201.04 x109 0 3.079 x10-4 -6.534 x10-7 0 

ν 0.3262 0 -2.002 x10-4 3.797 x10-7 0 

ρ (Kg/m3
) 

8166 0 0 0 0 

α (K
-1

) 12.330 x10-6 0 8.086 x10-4 0 0 

K (Wm
-1

 K
-1

) 15.379 0 -1.264 x10-3 2.092 x10-6 -7.223 x10-10 

 

 

Zirconium Oxide 

(ZrO2) 

E (Pa) 244.27 x109 0 -1.371 x10-3 1.214 x10-6 -3.681 x10-10 

ν 0.2882 0 1.133 x10-4 0 0 

ρ (Kg/m3
) 

3000 0 0 0 0 

α (K
-1

) 12.766 x10-6 0 -1.491 x10-3 1.006 x10-5 -6.778 x10-11 

K (Wm
-1

 K
-1

) 1.7 0 1.276 x10-4 6.648 x10-8 0 

 

 

Titanium Alloy 

(Ti-6AL-4V) 

E (Pa) 122.56 x109 0 -4.586 x10-4 0 0 

ν 0.2884 0 1.121 x10-4 0 0 

ρ (Kg/m3
) 

4429 0 0 0 0 

α (K
-1

) 7.578 x10-6 0 6.638 x10-4 -3.147 x10-6 0 

K (Wm
-1

 K
-1

) 1 0 1.704 x10-2 0 0 

  

In this dynamic analysis assessment, a temperature field is applied by holding the bottom surface 

temperature at Tm = 300 K while for the top surface temperature, three cases are considered: (Tc 

= 300 K, Tc = 400 K and Tc = 600 K). The temperature-deflection is evaluated by considering 

geometric nonlinearity, see Figure 5.8, then the uniform load q is suddenly applied. 

The obtained results shown in Figures 5.9 and 5.10 are in good agreement with the reference 

solution presented in [2], in which, the equations of motion are solved analytically by using an 

improved perturbation technique to determine the nonlinear frequencies and dynamic responses 

of FGM plates. Temperature-dependent material properties are taken into account. The excellent 
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agreements between the present results and those of the reference demonstrate the accuracy and 

effectiveness of the presented formulation. 

 

Fig. 5.8 Temperature vs. displacement curve of ( 2 / - 6 1- 4ZrO Ti A V ) material. 

The effect of the power-law index n and the effect of thermal conditions on the dynamic 

response of the FGM plate are exhibited in Figures 5.9 and 5.10 for the ( 2ZrO /Ti-6A1-4V ) and (

3 4Si N /SUS304 ) respectively. Figures 5.9(a) and 5.10(a) show the obtained time history responses 

of the first load case for different power-law indexes using temperature-dependent material 

properties. Figures 5.9(b-c-d) and 5.10(b-c-d) show the obtained responses for the three thermal 

loading cases (Tc = 300 K, Tc = 400 K, Tc = 600 K) for a power-law index (n = 2), Zirconia/ 

Titanium alloy and Silicon Nitride/Stainless Steel respectively. In these figures the responses for 

temperature-dependent and temperature-independent properties for each constituent are shown 

together for comparison. 
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Fig. 5.9 Effect of the power-law index n and temperature field on the dynamic response of square plate: 

(a) 2 / - 6 1- 4ZrO Ti A V : Tc=400 K, (b) 2 / - 6 1- 4ZrO Ti A V : n=2, Tc=300, 400 and 600 K, (c) 2ZrO , 

Tc=300, 400 and 600 K, (d) - 6 1- 4Ti A V , Tc=300, 400 and 600 K. 
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Fig. 5.10 Effect of the power-law index n and temperature field on the dynamic response of square plate: 

(a) 3 4 / 304Si N SUS : Tc=400 K, (b) 3 4 / 304Si N SUS : n=2, Tc=300, 400 and 600 K, (c) 3 4Si N , Tc=300, 

400 and 600 K, (d) 304SUS , Tc=300, 400 and 600 K. 

The results show, that on the one hand, the temperature field and the power-law index have an 

important effect on the dynamic response of FGM plates. On the other hand, taking into account 

the material properties as temperature dependent can have a significant outcome on the overall 

dynamic response especially in high temperature environments. In this example, the (

2 / - 6 1- 4ZrO Ti A V ) material mixture seems to be more sensitive to the effect of temperature on 

the effective material properties than the ( 3 4 / 304Si N SUS ) material mixture. It seems that this 

effect depends on the ration between the thermal expansion coefficient and Young’s modulus for 

each constituent material. 

2.5 Pinching of a clamped-free cylinder 

One end clamped cylindrical shell is studied in this example. The shell is subjected to two 

diametrically opposite forces applied at the free end. This test was carried out for nonlinear 

analyses with FG material in [4] under purely mechanical loading. It is extended here to perform 
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dynamic nonlinear analysis in a thermal environment. Due to the double symmetry of geometry, 

loading and boundary conditions, only one-quarter of the shell is modelled. The dimensions and 

boundary conditions for one-fourth of the geometry are illustrated in Figure 5.11. A 6×8 

elements mesh is employed for the spatial discretisation.  

2.5.1 Static Analysis 

Two cases are considered in this static analysis. The first case is purely mechanical (thermal 

conditions were not considered). The mechanical load consists of applying two diametrically 

opposite forces applied at the free end. The load is statically increased from 0 up to P = 100 KN. 

The shell’s FGM is composed of Aluminium and Zirconia (Al/ZrO2) in which the materiel 

proprieties are considered as independent of temperature. The material properties (computed at 

temperature  T = 300 K ) are listed in Table 5.1. The load-deflection curves are compared against 

the reference solution [4] in Figure 5.12(a). Excellent agreement between the obtained results 

and those of the reference is obtained. 

 

 

The second loading case consists of a thermo-mechanical loading, in which, the shell is subjected 

to a through-thickness temperature field by holding the inner surface temperature at Tm = 300 K, 

while the outer surface temperature is held at Tc = 600 K. Then, the mechanical load consists of 

applying two diametrically opposite forces applied at the free end statically increased from 0 up 

to P = 10 MN. In this case, the shell’s FGM is composed of  ( 2 / - 6 1- 4ZrO Ti A V ) material 

mixture in which the materiel proprieties are considered as temperature-dependent. 
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Fig. 5.11 Pinching of a short fixed-free cylinder. 

The static nonlinear responses with different power low indexes for the thermo-mechanical 

loading are presented in Figure 5.12(b). In Figure 5.12(b) the load-deflection curves for 

temperature-dependent and temperature-independent material properties are shown. 

It can be noticed that there is a significant difference between the responses depending on which 

the material properties are considered as temperature-dependent or not. It is clear that the effect 

of considering the material properties as temperature-dependent yields softer behaviour. 

However, in both cases the response of the FGM shell with the properties that are intermediate to 

metal and ceramic keep lies in between the responses of those made of ceramic and metal. 
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Fig. 5.12 Central deflection of the FGM fixed-free cylinder: (a) mechanical load and (b) thermo-

mechanical load. 
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2.5.2 Dynamic Analysis 

In this thermo-mechanical dynamic analysis, the inner surface temperature is held at Tm = 

300 K while the outer surface temperature is raised to Tc = 600 K. Then, the cylindrical shell is 

subjected to two concentrated loads defined as:     0 1 cos 50P t P t  , where P0 = 5×10
5
 N. The 

analyses were performed using a time step t = 0.005 s.  

This example is performed with ( 2 / - 6 1- 4ZrO Ti A V ) and ( 3 4 / 304Si N SUS ) materials. The 

materials mechanical and thermo-physical proprieties are taken as temperature-dependent.  

 

The time history responses depicted in Figures 5.13 and 5.14 show that while deflection is 

affected by the power-law distribution and temperature, however, they do not affect the 

vibrations frequencies of the cylindrical shell. Moreover, the results show that the consequences 

of increasing the temperature gradient are similar to that of increasing the power-law index. This 

is due to the fact that material properties are temperature dependent. Which means that, the 

temperature gradient significantly influences the material properties such as the Young’s 

modulus and thermal expansion coefficient gradually through the thickness direction similarly to 

the power-law distribution on the through thickness material properties. By comparing the effect 
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of temperature on ( 2ZrO /Ti-6A1-4V ) and ( 3 4Si N /SUS304 ) materials mixtures, it seems that the 

importance of this effect depends on the ratio between the thermal expansion coefficient and 

Young’s modulus for each constituent material. 

 

Fig. 5.13 Time history behaviour of the deflection using the conservative/decaying scheme: (a) 

2 / - 6 1- 4ZrO Ti A V : Tc=600 K, (b) 2 / - 6 1- 4ZrO Ti A V : n=2, Tc=300, 400 and 600 K. 

The dynamic response of the FGM cylinder is intermediate to that of the metal and ceramic ones. 

A significant difference can be noticed between the maximum deflection of the time history 

responses of the case when material properties are considered as temperature-dependent and 

those when the material properties are considered as independent of temperature, especially in 

high temperature, see Figures 5.13(b) and 5.14(b).  
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Fig. 5.14 Time history behaviour of the deflection using the conservative/decaying scheme: (a) 

3 4 / 304Si N SUS : Tc=600 K, (b) 3 4 / 304Si N SUS : n=2, Tc=300, 400 and 600 K. 
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2.6 Dynamic Buckling of a Cylindrical Shell Panel 

In this example, we investigated the nonlinear static and dynamic response of an FGM 

cylindrical shell panel subjected to a uniformly distributed radial load in a thermal environment. 

The dynamic nonlinear buckling of the FGM cylindrical shell under thermo-mechanical loading 

is analysed. As in the first example, we start by assessing the nonlinear static response of the 

present element in comparison with the solutions available in the literature. Due to the double 

symmetry of geometry, loading and boundary conditions, only one-quarter of the shell is 

modelled using 4×4 elements in both static and dynamic analysis. 

 

2.6.1 Static Analysis 

In this static analysis test, we investigated the nonlinear static response of the fully clamped 

FGM cylindrical shell panel subjected to a thermo-mechanical loading presented in Figure 5.15. 

The thermal load consists of applying a through-thickness temperature field by holding the 

bottom surface temperature at Tb = 20 °C, while the top surface temperature is held at Tt = 200 

°C. The mechanical load consists of applying a uniform radial load statically increased from 0 up 

to q = -10
7
 N/m

2
. The shell’s FGM is composed of Aluminium and Zirconia (Al/ZrO2). In this 

example, the material properties are considered independent of temperature as taken in [5].  

 

Fig. 5.15 Clamped cylindrical shell panel. 
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The geometric properties of the panel are a = 0.2 m, R = 1 m,  = 0.2 rad and h = 0.01 m. The 

material properties (computed at temperature T = 300 K ) are listed in Table 5.1. 

Figure 5.16 depicts the central deflection with the load for clamped Aluminium-Zirconia panel 

under a uniform load only. It is worth to mention that the displacement of the panel that 

corresponds to a larger volume fraction exponent is greater than that of the panel that 

corresponds to a smaller exponent. Note that the response of the panel with properties that are 

intermediate to metal and ceramic lies in between the response of the ceramic and metal. The 

same conclusion, the deflections are increased by increasing the volume fraction index n. 

 

Fig. 5.16 Central deflection of FGM clamped shell panel versus load 

The non-dimensional central deflection of the shell panel is depicted versus the load parameter in 

Figure 5.17. The non-dimensional parameters used in Figure 5.17, are the non-dimensional 

central deflection w w h  and the load parameter 4 4

0 mq q a E h . 

It can be seen that the obtained results are in good agreement with those presented in [5]. The 

slight difference is due to the use of von Kármán theory in [5]. It is worth mentioning that the 

initial displacement in Figure 5.17 is due to the applied temperature field. Note that the initial 

central deflection that corresponds to a larger volume fraction exponent is greater than that which 
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corresponds to a smaller exponent. Under the thermo-mechanical load, the response of the FGM 

shell with the properties that are intermediate to metal and ceramic lies in between the responses 

of those made of ceramic and metal. 

 

Fig. 5.17 Non-dimensional central deflection vs. load parameter. 

2.6.2 Dynamic Analysis 

The geometry, loading, and boundary conditions of the cylindrical shell investigated in the 

dynamic analysis are shown in Figure 5.18. The two straight edges of the shell are simply 

supported, while the curved edges are free. This example has been used extensively as a 

benchmark test for nonlinear shell dynamic problems [6-8]. In this dynamic analysis, a 

temperature field is applied by holding the bottom surface temperature at Tb = 300 K while for 

the top surface temperature, three cases are considered: (Tt = 300 K, Tt = 400 K, Tt = 600 K). 

Then, a concentrated load is applied at the central node of the shell. The value of the applied load 

increases linearly from 0 to 5×10
4
 KN in 0.2 s and held constant at that value. This test was 

performed using the Newmark scheme and the conservative/decaying scheme in order to assess 

the stability of the conservative/decaying scheme compared to that of Newmark scheme. 
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Fig. 5.18 Cylindrical shell panel: geometry, supports and loading. 

 

The time step size for the Newmark scheme is taken equal to Δt = 0.002 s, while in the 

composite scheme is  Δt = 0.004 s because two sub-steps are performed inside the composite 

scheme for each time step. In this example, the material’s mechanical and thermo-physical 

properties are taken as temperature-dependent. Two different materials mixture is considered. 

The first one is the ( 2 / - 6 1- 4ZrO Ti A V ), and the second one is the ( 3 4 / 304Si N SUS ). 

The results produced by the Newmark and the conservative/decaying schemes are shown in 

Figures 5.19 and 5.20 respectively. As shown in Fig. 5.19, when the Newmark scheme is used, 

accumulation of numerical errors is soon noticed, the energy is not properly conserved/decayed 

and a point is reached at which the solution cannot proceed any further. On the other hand, the 

conservative/decaying scheme produced a stable solution until the end of the reported time. 

These outcomes demonstrate the stability and effectiveness of the predicted nonlinear dynamic 

response of shells when using conservative/decaying schemes. 
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Fig. 5.19 Time history of the central deflection using Newmark scheme: (a) 2 / - 6 1- 4ZrO Ti A V : Tc=600 

K, (b) 2 / - 6 1- 4ZrO Ti A V : n=2, Tc=300, 400 and 600 K, (c) 3 4 / 304Si N SUS : Tc=600 K, (d) 

3 4 / 304Si N SUS : n=2, Tc=300, 400 and 600 K. 
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Fig. 5.20 Time history of the central deflection using the conservative/decaying scheme: (a) 

2 / - 6 1- 4ZrO Ti A V : Tc=600 K, (b) 2 / - 6 1- 4ZrO Ti A V : n=2, Tc=300, 400 and 600 K, (c) 

3 4 / 304Si N SUS : Tc=600 K, (d) 3 4 / 304Si N SUS : n=2, Tc=300, 400 and 600 K. 

In Figure 5.20, the pre-buckling, buckling and the post-buckling behaviours of the cylindrical 

panel are clearly shown. It can be seen that the buckling in the metal cylindrical panel is reached 

faster than that in the ceramic panel, then, the shells keep vibrating around the new equilibrium 

position. The response of the shell with the properties that are intermediate to metal and ceramic 

lies in between the responses of those made of ceramic and metal over the whole reported time. 

Figures 5.19 and 5.20 clearly show that the power law index has a major effect on the pre-

buckling behaviour of FGM shells. Note that the applied loading increases linearly with time and 

the maximum load is reached at 0.2 s. It can be seen from Figure 5.20(a) that buckling occurs 

before reaching the maximum load in all the tested FGM shells expect the (Si3N4) shell, in 

which, the buckling occurs after 0.2 s. On the other hand, the temperature has an important effect 

on the pre-buckling behaviour of the shell, especially in the ( 3 4 / 304Si N SUS ) material mixture. 

For both materials, it can be seen that higher temperatures provoke faster buckling. One can also 

notice that the post-buckling behaviour has similar profile for all the studied parameters. 

2.7 Dynamic-Buckling of a Spherical Cap 

In this example, dynamic behaviour of clamped spherical cap with isotropic material subjected to 

concentrated apex load is examined, this test was proposed in [9]. Due to the double symmetry of 

geometry, loading and boundary conditions, only one-quarter of the shell is modelled using 8×8 

elements. The time step is taken as Δt = 2 μs. The nonlinear dynamic response, represented by 

the normalized vertical displacement at shell apex is shown in Figure. 5.21. The present results 

are found to be in good agreement with those reported by [9]. 
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Fig. 5.21 Nonlinear dynamic response of the isotropic shallow spherical cap. 

Next, dynamic nonlinear response and post-buckling behaviour of an FGM spherical cap 

subjected to concentrated apex dynamic load in addition to a thermal load is investigated. 

Material and geometric properties of the spherical cap presented in [10] are given in Table 5.3 

and Figure 5.22. Two different material mixtures are considered, The first one is the (

2ZrO /Ti-6A1-4V ), and the second one is the ( 3 4Si N /SUS304 ). The materials mechanical and 

thermo-physical proprieties are taken as temperature-dependent. 

 

Fig. 5.22 Spherical cap: geometry, loading and mesh. 
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Table 5.3: Material and geometric properties of the spherical cap 

Parameter R (mm) Θ h (mm) H (mm) 

Value 120.9 10.9°
 

0.4 2.182 

 

At first, the temperature field is applied by holding the bottom surface temperature at Tb = 300 K 

while for the top surface temperature Tt, three cases are considered: (Tt = 300 K, Tt = 400 K, Tt = 

600 K). Then, a concentrated mechanical load is applied at the shell apex. The time step size for 

the composite scheme is  Δt = 10 μs. Dynamic-buckling of the spherical cap is investigated with 

two boundary conditions: 

1- Clamped Edge BC 

In this case, the value of the applied mechanical load increases linearly from 0 to 2 KN in 

100 μs and held constant at that value. The nonlinear dynamic response, represented by the 

normalized vertical displacement at the shell apex is shown in Figure 5.23. 

It is observed that as the power-law index increases the maximum displacement of the dynamic 

response increases. This is due to the fact that the stiffness reduces with the increase in the 

power-law index. Similar behaviour is also observed by increasing the temperature gradient 

because Young’s modulus becomes weak as temperature goes up. In this example, the (

2ZrO /Ti-6A1-4V ) material mixture seems to be more sensitive to the effect of temperature than 

the ( 3 4Si N /SUS304 ) material mixture. It seems that, according to the ratio between the thermal 

expansion coefficient and Young’s modulus for each constituent material, the effect of 

temperature can be more or less significant than the power law index effect. 
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Fig. 5.23  Time history of the normalized deflection of the clamped spherical cap: (a) 2ZrO /Ti-6A1-4 : 

Tc=600 K, (b) 2ZrO /Ti-6A1-4V : n=2, Tc=300, 400 and 600 K, (c) 3 4Si N /SUS304 : Tc=600 K, (d) 

3 4Si N /SUS304 : n=2, Tc=300, 400 and 600 K. 
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2- Hinged Edge BC 

In this case, the value of the applied mechanical load increases linearly from 0 to 1 KN in 

100 μs and held constant at that value. The adopted boundary conditions are: u = v = w = 0 at 

H=0. The nonlinear dynamic response, represented by the normalized vertical displacement at 

the shell apex is shown in Figure 5.24. 

 

 

 

Similar behaviour is also found for hinged boundary conditions as shown in Figure 5.24. It 

seems that the influence of the temperature gradient on the post-buckling behaviour of the hinged 

spherical cap is marked and can be considerable. post-buckling behaviour can radically change 

by the volume fraction index as well as temperature gradient due to the shell stiffness decrease. It 

is worth mentioning that for the ( 3 4Si N /SUS304 ) material mixture, in the case when Tc=600 K , 

the initial displacement due to the temperature applied field is considerable compared to the 

initial geometry, which leads to a considerable change of the initial stiffness and geometry of the 

shell. As a result, the dynamic response of the spherical cap can radically change as clearly 

shown in Figure 5.24(d) .  
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Fig. 5.24  Time history of the normalized deflection of the clamped spherical cap: (a) 2ZrO /Ti-6A1-4V : 

Tc=600 K, (b) 2ZrO /Ti-6A1-4V : n=2, Tc=300, 400 and 600 K, (c) 3 4Si N /SUS304 : Tc=600 K, (d) 

3 4Si N /SUS304 : n=2, Tc=300, 400 and 600 K 

 

 

 

Most of these results were published in an international journal as part of this study found in 

[11]. 

3. Conclusion 

Nonlinear transient dynamic, dynamic buckling, and post-buckling responses of FGM plates 

and shells with temperature-dependent material properties subjected to thermo-mechanical 

loading has been investigated through using an implicit conservative/decaying direct time 

integration scheme. In the numerical analysis, some comparisons are shown to verify the 

correctness and effectiveness of the present formulation, then, the thermo-mechanical behaviour 

of several examples is investigated using different values of volume fraction index and under 

different sets of thermal environmental conditions. The parametric study show and confirm that 

the power-law index of the volume fraction has the most significant effect on both static and 

dynamic responses of FGM structures under different sets of thermal environmental conditions. 
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Moreover, it is shown that the influence of temperature on the effective material properties such 

as Young’s modulus and thermal expansion coefficient is non-negligible. 

Dynamic-buckling of cylindrical and spherical FGM shells in thermal environments for different 

volume fraction indices, temperature gradient along with different boundary conditions have 

been presented. It is concluded that the gradation in the material properties and the temperature 

field have a considerable influence on the characteristics of the buckling and post-buckling 

behaviour of FGM shells. The study confirm that the characteristics of the nonlinear dynamic 

buckling can be significantly influenced by the through thickness gradient of temperature as 

much as the power-law index. 

The use of a conservative/decaying integration scheme allowed us to efficiently study the 

dynamic buckling of a cylindrical shell. The conservative/decaying scheme exhibits high 

stability and accuracy during the pre-buckling, buckling and post buckling phases. The study 

confirm that the characteristics of the nonlinear dynamic buckling are significantly influenced by 

the temperature and by the effect of considering the material properties as temperature 

dependent. 
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Conclusion 

 

In this thesis, we present the formulation of a curved degenerated shell element for 

geometrically nonlinear static, transient dynamic, dynamic-buckling, and post-buckling analysis 

of functionally graded plates, cylindrical and spherical shells with temperature-dependent 

material properties in thermal environments using a conservative/decaying time integration 

scheme. For this purpose, an 8-node curved degenerated shell element is used for finite element 

discretization. The shell element is formulated in the framework of the Total Lagrangian 

Formulation with thermal strains/stresses taken into account using the Green-Lagrange geometric 

nonlinearity. The bending and membrane strain-coupling considered in the element formulation 

allows to efficiently capture the high membrane-bending interaction in FGM plates/shells. 

Consequently, a minimal number of elements can be used to mesh plane and curved geometries, 

compared to plane elements, which is a crucial concern to minimise the computational time, 

especially in nonlinear dynamic analysis. In the presented formulation, to overcome membrane 

and transverse shear locking, an efficient modified reduced numerical integration scheme is 

adopted. Furthermore, an implicit conservative/decaying direct time integration scheme is used 

herein to obtain the time-history response of FGM shells. The conservative/decaying scheme is 

expected to be efficient in energy conservation and parasitic high-frequency dissipation 

providing stable and accurate dynamic responses. These desired properties of the 

conservative/decaying scheme allow us to efficiently study the nonlinear dynamic buckling 

behaviour of an FGM shell in a thermal environment. 

In the numerical analysis, some comparisons are shown to verify the correctness and 

effectiveness of the present formulation, then, the thermo-mechanical behaviour of several 

examples is investigated using different values of volume fraction index and under different sets 

of thermal environmental conditions. The parametric study show and confirm that the power-law 

index of the volume fraction has the most significant effect on both static and dynamic responses 

of FGM structures under different sets of thermal environmental conditions. Moreover, it is 

shown that considering the material properties as temperature-dependent has a significant 

influence on the nonlinear static and dynamic behaviour of FGM shells. It is shown that the 
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influence of temperature on the effective material properties such as Young’s modulus and 

thermal expansion coefficient is non-negligible. It is concluded that the gradation in the material 

properties and the temperature field have a considerable influence on the characteristics of the 

buckling and post-buckling behaviour of FGM shells. The study confirm that the characteristics 

of the nonlinear dynamic buckling can be significantly influenced by the through thickness 

gradient of temperature as much as the power-law index. The use of a conservative/decaying 

integration scheme allowed us to efficiently study the dynamic buckling of a cylindrical shell. 

The conservative/decaying scheme exhibits high stability and accuracy during the pre-buckling, 

buckling and post buckling phases. The study confirm that the characteristics of the nonlinear 

dynamic buckling are significantly influenced by the temperature and by the effect of 

considering the material properties as temperature dependent. 
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APPENDIX A 

Shear correction factor pseudo algorithm: 

 Calculate the stiffness matrix mH , 
mfH , 

fH  and cH . 

     
2

2

2
, , 1, ,

h

m mf f
h

H H H z z H z dz


  ,    
2

2

h

c
h

H H z dz


   

 Calculate flexibility matrix mF , 
mfF  and 

fF  

1

m mf m mf

mf f mf f

F F H H

F F H H



   
   

      

 

 Initialization  

11 0F   

 Loop on thickness 

 Loop on integration points 

             mf fA z H z F zF   

         
11 33 13 32

1
2

31 23 22 33

1

2

z

h

A A A A
D z dz

A A A A

  
   

   
  

         
2

1

11 1 1
2

h
T

h
F D H D dz




   

End loop 

  End loop 

                     
1

11cH F   

                       1 11 11
cck H H    ,     2 22 22

cck H H    ,    12 12 12
cck H H    
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APPENDIX B 

 

The two dimensional shape function are defined as follows: 

                                                                                    

     1

1
, 1 1 1

4
N           

 
     2

1
, 1 1 1

4
N           

 

     3

1
, 1 1 1

4
N           

 
     4

1
, 1 1 1

4
N           

 

    2
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, 1 1
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APPENDIX C 

Newmark integration scheme procedure:  

 

A. Initial calculations: 

 Select time step size t  and calculate the constants ib . 

 Initialize   00u u ,   00u u  and solve for the initial acceleration: 

  1

0 0 00Extu M F Cu Ku   . 

 

 Form the matrices ,K M and C . 

B. For each time step: 

 Calculate tangent stiffness matrix :  T T m T th

T

V

K B C B G H G G H G dV          . 

 Form and triangularize the effective stiffness matrix : 1 4TK K b M b C   . 

 Form the effective load vector t tR  . 

C. For each iteration (Newton-Raphson algorithm):  

 Solve for displacements at time t t   : 
t t

t tK u R


  . 

 The internal strains and stresses are calculated in the initial un-deformed 

configuration of the precedent step. 

 The new solution is obtained after linearization of the problem by calculating the 

internal strains and stresses in the initial un-deformed configuration of the 

precedent step. 

 The solution is used to proceed to the next step. 

 Check for convergence of the iteration process (if OK continue, else go to C). 

 Calculate velocities and accelerations at t t  : 

1 2 3

4 5 6

t t t t t t t

t t t t t t t

u b u u b u b u

u b u u b u b u

 

 

       


      

 

 t t t  . 

 Go to B. 
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APPENDIX D 

Bathe integration scheme procedure:  

 

A. Initial calculations: 

 Select time step size t  and calculate the constants ib  ( / 2t t   ). 

 Initialize   00u u ,   00u u  and solve for the initial acceleration: 

  1

0 0 00Extu M F Cu Ku   . 

 

 Form the matrices ,K M and C . 

 

B. For each time step: ( t ) is subdivided into two equal sub-steps:         

 Calculate tangent stiffness matrix :  T T m T th

T

V

K B C B G H G G H G dV          . 

 Form and triangularize the effective stiffness matrix :  

   For t t :                    29 3TK K t M t C        

   For  / 2t t  :           216 4TK K t M t C        

 Form the effective load vector for the two sub-steps t tR   and  2t tR   . 

 

C. For each iteration (Newton-Raphson algorithm):  

 Solve for displacements at time t t   and  / 2t t  : 

                        
t t

t tK u R


     and   
   2

2
t t

t t
K u R  

 
   

 The internal strains and stresses are calculated in the initial un-deformed 

configuration of the precedent step. 

 The new solution is obtained after linearization of the problem by calculating the 

internal strains and stresses in the initial un-deformed configuration of the 

precedent step. 

 The solution is used to proceed to the next step. 

 Check for convergence of the iteration process (if OK continue, else go to C). 
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 Calculate velocities and accelerations at t t   and  / 2t t  : 

                   

2

2

1 4 3

1 4 3

t
t

t t t t t

t
t

t t t t t

u u u u
t t t

u u u u
t t t




 




 


  

   

   
   

 

 

         

2 2
2

2 2

16 8

4

t t
t t

t t t

t t
t t

t t

u u u u u
t t

u u u u
t

 
 

 
 

  
     
   


 

      

 

 Go to B. 

 

 

 

 


