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Abstract 
We are interested in our work to the sd shell nuclei whose 

energy spectra contain, at low excitation energies, positive- 

and negative- parity states.   

The normal positive parity states are well described using 

the well-known interactions (USD and USDA/B) within the sd 

shell valence space. The intruder negative parity states require 

the extension of the valence space to the full p-sd-pf. A 

PSDPF interaction was built to describe, simultaneously, both 

types of states coexisting in the sd shell nuclei using a fitting 

procedure. As the states of the middle of sd-shell nuclei could 

not be fitted, due to computational limitations, we decided to 

study a set of those nuclei, which are the silicon isotopic 

chain. 

In this work, we will systematically study the excitation 

energy evolutions for first excited positive- and negative- 

parity states in the even-A silicon isotopic chain using the 

PSDPF interaction. A detailed discussion of the obtained 

results will be presented.   
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Résumé 
Nous sommes intéressés dans notre travail aux noyaux de 

la couche sd dont les spectres en énergie contiennent, à basses 

énergies d'excitation, des états de parité- positive et négative. 

Les états normaux de parité positive sont bien décrits en 

utilisant les interactions bien connues (USD et USDA/B) dans 

l'espace de valence de la couche sd. Les états intrus de parité 

négative nécessitent l'extension de l'espace de valence à 

l’espace p-sd-pf complet. Une interaction PSDPF a été 

construite pour décrire, simultanément, les deux types d'états 

coexistant dans les noyaux de la couche sd en utilisant une 

procédure d'ajustement. Comme les états des noyaux du 

milieu de la couche sd n'ont pas pu être ajustés, en raison de 

limitations informatiques, nous avons décidé d'étudier un 

ensemble de ces noyaux, qui sont la chaîne isotopique du 

silicium. 

Dans ce travail, nous étudierons systématiquement 

l'évolution des énergies d'excitation pour les premiers excités 

états de parité- positive et négative dans la chaîne isotopique 

du silicium avec A-pair en utilisant l'interaction PSDPF. Une 

discussion détaillée des résultats obtenus sera présentée. 
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   ملخص                   
 ، انخٍ أطُاف طاقخهاsdطبقت ال  أَىَتَحٍ يهخًىٌ فٍ عًهُا ب

 يىجبت راث صوجُتـ حالاث عهً انًُخفضت، الإثاسة طاقاث عُذ ،ححىٌ

 .انبتوس

 باسخخذاو انخفاعلاث انًىجبت راث انضوجُت حالاث انعادَتان وصف حى

. sdانخكافؤ نطبقت ال  فضاءفٍ  (USD,USDA/B) جُذا انًعشوفت

إنً  انخكافؤ فضاء حًذَذ انسانبت راث انضوجُت انذخُهت حالاثان حخطهب

، فٍ وقج نىصف PSDPFحفاعم  إَشاء . حىp-sd-pf فضاء انكايمان

باسخخذاو  sd طبقت َىي فٍ حخعاَش انخٍ انحالاث يٍ ُىعٍُان واحذ،

 حعذَهها، ًَكٍ لا sdيُخصف انطبقت  أَىَت. بًا أٌ حالاث خعذَمطشَقت ان

 وهٍ ،َىَتالأ هزِ يجًىعت دساستقشسَا  انحسابُت، فقذ انقُىد بسبب

 انسُهُكىٌ. َظائش سهسهت

 الإثاسة طاقاث حطىس يُهجٍ بشكم َذسط سىف انعًم، هزا فٍ

 Aراث  انُظائشَت انسهسهت فٍ لأونًا انسانبت و انًىجبت نهحالاث انًثاسة

 يفصهت يُاقشت حقذَى سُخى. PSDPF حفاعم باسخخذاو نهسُهُكىٌ صوجٍ

 .عهُها انحصىل حى انخٍ نهُخائج
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        General introduction 
uclear structure physics has been evolving to adapt to the growing knowledge of the 

nuclear landscape since the conception of an atomic nuclear core by Rutherford’s 

early 1900s scattering experiments [1]. Afterwards, the consideration of the proton, 

as a fundamental particle, was exposed by Rutherford in 1919 [2]. However, it was 

not until the work of Chadwick in 1932 [3], that the existence of the neutron as a 

fundamental particle was also discovered. 

 Nowadays, we have a good understanding of the properties of the structure of the 

nucleus; containing two types of particles: protons and neutrons. It is clear that experimental 

and theoretical studies in nuclear physics have played a notable part in the development of 

twentieth-century physics. 

 The understanding of the nuclei’s properties such as nuclear masses, energy spectra, 

wave functions, electromagnetic transitions, and nucleon density distributions is always the 

key problem. Therefore, several models have been developed to solve these problems; among 

them is the nuclear shell model, which is often referred to as the naive shell model or the 

independent particle shell model.  

The sd shell nuclei, whose number of protons (Z) and of neutrons (N) between 8 and 

20. This area is one of the most studied regions using state-of-the-art shell model. The 

structure of those nuclei has been the subject of renewed interest in recent years [4]. These 

nuclei are characterized by the coexistence, at low excitation energies, of normal positive 

parity states, called also 0ħω states, and intruder negative parity states called also 1ħω states. 

These two kinds of states are described by the PSDPF interaction, developed by M. 

BOUHELAL et al., using a fitting procedure. This interaction describes quite well the intruder 

negative parity states of nuclei at the beginning of the sd shell around 
16

O and at the end of the 

sd shell near 
40

Ca, which were included in the fit. During the fit, states belonging to nuclei of 

the middle of the sd shell could not be adjusted, we decided thus to study such states in an 

isotopic chain. 

 We used the PSDPF [5,6] interaction to make a systematic study about the evolution 

of the excitation energies of the first positive- and negative- parity states in the even-A 

isotopes of silicon: 
22

Si, 
24

Si, 
26

Si, 
28

Si,
30

Si,
32

Si,
34

Si. The calculations were performed using 

the shell model code Nathan, developed by E. Caurier in the IPHC theoretical physics group. 

The obtained results will be compared to available experimental data.  

 In this sense, our thesis contains three fundamental chapters distributed as follows: 

 Chapter Ⅰ: provides an overview of the development of the nuclear shell model, its 

basics, and how it simplifies the understanding of the nuclear structure. 

 Chapter Ⅱ: introduces the properties of the sd shell nuclei and the PSDPF interaction. 

 Chapter Ⅲ: exposes a detailed discussion of the obtained results and a systematic 

study of the even-A silicon isotopic chain first excited states. 

This dissertation ends with a general conclusion. 

N 
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Chapter Ⅰ 

  The Nuclear Shell Model 

The Liquid Drop Model, which examines the global properties of nuclei, 

underestimated the binding energies of “magic nuclei” for which either the number of 

neutrons N or the number of protons Z is equal to one of the following “magic numbers” 2, 8 

20, 28, 50, 82, 126. The nuclear shell model was first proposed by Bartlett in 1932 and further 

developed in 1949 independently by several physicists such as Maria Goeppert–Mayer [7] 

(following a remark of Fermi) as well as Hans Jensen and H.E Suess [8], and independently 

by D. Haxel who shared the Nobel Prize in Physics in 1963 with Eugène Wigner for this 

work. 

                                                                

Maria Goeppert-Mayer                     J. Hans D. Jensen                1963 Nobel Prize in Physics  

The aim of this chapter and our work is to understand how this model offers the 

possibility of exploring different properties of nuclei (such nuclear systematics and the 

internal structure of the nucleus), in particular the stability of magic nuclei. 

1. Magic nuclei 

A magic nucleus has a proton number Z or a neutron number N equals to 2, 8, 20, 28, 50, 

82 and 126 known as “magic numbers”. Such nucleus has a higher average binding energy 

per nucleon than one would expect based upon predictions like the Liquid Drop Model and 

hence, it is more stable against nuclear decay and then its nearby nuclei. 

Nuclei, which have both neutron number and proton number equal to one of the magic 

numbers, can be called “doubly magic“, and are found to be particularly stable. 

 

1.1  Special features of magic nuclei 

 The strong indication of the magic numbers is the stability of these nuclei. All the 

stable elements at the end of the natural radioactive series have a magic N or a magic Z or 

both. We mention a few examples: 

 Stable magic nuclei:     
         

         
         

   . 

 Stable doubly magic nuclei:     
     

         
          

   . 

https://www.nuclear-power.net/wp-content/uploads/magic-numbers-doubly-magic-nuclei.png
https://www.nuclear-power.net/wp-content/uploads/magic-numbers-doubly-magic-nuclei.png
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There are more stable isotopes, nuclei with same Z, if Z is a magic number, and more 

stable isotones, nuclei with same N, if N is a magic number. 

 The neutron (proton) separation energies of such magic nuclei are higher than those of 

their neighbours. 

 The binding energy of magic nuclei is much larger than the nearby nuclei as shown on 

Fig. I-1. 

 

 

Figure Ⅰ-1: The binding energy of nuclei per nucleon [9]. The circled elements have a 

magic number of N or Z. 

 

To illustrate the differences in binding energies in nearby nuclei, we take example of 

nuclei with nucleon number between        , their binding energies are presented on 

Table I-1 and on Fig Ⅰ-2. 

 

   
       

       
       

       
        

       
       

      
   

Binding 

energy 

(keV) 

4541 5880 7100 7699.46 4285 5507.3 6922.05 7976.21 

     
       

       
      

   

6640.50 6558 5270 7542.33 

                     

Table Ⅰ-1: Binding energy of nuclei with         [10]. Magic and doubly 

magic are highlighted in yellow. 
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N.B: we can see that the binding energy of the magic nuclei is larger than their nearby ones 

and the largest binding energy is found for the doubly magic nucleus    
  . 

Figure Ⅰ-2: Binding energy [10] of nuclei with          

 Magic number nuclei have higher first excitation energy. 

 There are more stable isotopes (isotones) if Z (N) is a magic number. We take as an 

example the stable Tin isotopes: 

⁕     
        

        
        

        
        

        
        

        
        

     

For the sd shell, region of our interest, the stable isotopes for Oxygen and Calcium 

nuclei are: 

 ⁕ Oxygen:       
  

 
  

 
  . 

 ⁕ Calcium:           
  

  
  

  
           

  
  
   

 Nuclides with a magic number of neutrons are observed to have a relatively low 

probability of absorbing an extra neutron, i.e. they have the lowest cross section for 

neutron absorption (neutron-capture cross sections). 

These magic numbers can be explained in terms of the Nuclear Shell Model. 
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2. Shell Model 

The nuclear shell model has two essential features: first, the identification of the shell 

structure itself, based on the evidence for nuclear stability (magic nuclei mentioned earlier) 

and leading to the basic assumption that the nucleus can be described by a Single Particle 

Model. Second, the assumption of the strong spin-orbit interaction between nucleons that 

explains the splitting of their energy levels [11]. 

3. Independent particle model 

The Independent Particle Model can be applied to complicated systems of identical 

particles to determine their ground state and the first excited states. It has been used with real 

success so far only for atoms [12]. The main idea of this model is that a nucleon moves inside 

a certain potential well (which keeps it bound to the nucleus) independently from the other 

nucleons. This amounts to replace an N-body problem (N particles interacting) by N single-

body problems. One of the most used central potential is the harmonic oscillator, which will 

be discussed, in the next part. 

3.1  The harmonic oscillator potential  

It is assumed that the interaction between one nucleon and the (A-1) nucleons, in the 

nucleus, can be approached to a central potential like the harmonic-oscillator potential which 

can be written as [13]: 

                                
 

 
   

                                       Ⅰ                                 

Where   is the frequency of oscillation of the particle with mass     r is the distance 

between the nucleon and the origin. 

The Schrödinger equation for the nucleons in the harmonic oscillator potential takes 

the form:  

                                                              Ⅰ    

   is the Hamiltonian of the independent particles which can be written as: 

   ∑   

 

 

     ∑   

 

 

                                                  Ⅰ    

    is single-particle Hamiltonian: 

                               
 

 
                          Ⅰ    

We note that, for any spherically symmetric potential well V(r), the eigenvalues and 

eigenfunctions of the single-particle Hamiltonian, issued from the harmonic-oscillator 

potential, have the form: 
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            ̀     
          ̀      

                        Ⅰ            

    (   ̀    
 

 
)   ̀                     Ⅰ    

We pose:  ̀ =(n  )  

     (         
 

 
)    (  

 

 
)                   Ⅰ    

The constant    of the harmonic oscillator potential is found to be:       
  

 ⁄ MeV 

(e.g.,     MeV for medium and heavy nuclei) 

        
                

                                        Ⅰ    

Here Ɩ and    are the quantum numbers of angular momentum and its projection, 

respectively, while n is the radial quantum number. Note that the quantum orbitals are 

represented by the symbols s, p, d, f, g…. corresponding to  =0, 1, 2, 3, 4,… , respectively. 

N denotes the major oscillator quantum number that determines the major shells of the 

harmonic oscillator potential defined as: N = 2(n-1)+Ɩ. 

Unfortunately, using the harmonic oscillator potential we obtain, as shown on Fig. I-3, only 

the first three magic numbers: 2, 8, 20. 

                                 3p         2f               1h           42        112 

                           3s        2d           1g                      30         70 

                                 2p         1f                              20          40 

                            2s        1d                                    12          20           

                                 1p                                           6            8           

                             1s                                                2            2 

                                                                                       ∑   

                                                                                               

 

Figure Ⅰ-3: Shematic of the harmonic oscillator potential major shells whose energy 

degeneration is given by GN. 

The degeneration in   is an accidental degeneration resulting from     potential that does not 

appear using another central potential such as the Wood-Saxon potential well [14]. To deal 

with this problem we apply the so-called «the edge effect» in order to remove partially this 
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degeneration in   by simulating the harmonic oscillator potential to Wood-Saxon well, see 

Fig. I-4, as following:  

                                                          Ⅰ    

Where: the Wood-Saxon potential is an example of a mean field central potential (it’s details 

adjusted using experimental observations) was parameterized in 1954 by R. Woods and D. 

Saxon [14], this admits that the shape of the potential is the same as that of the Fermi 

distribution, and the same also as the nuclear density, its formula is given by: 

       
  

   
(
    

 
)
                                                                   Ⅰ     

 

 

 

 

 

 

 

 

 

 

 

Figure Ⅰ-4: Difference between the wood-Saxon potential and the harmonic oscillator 

potential [15]. 

The simulation between the Wood-Saxon and harmonic oscillator potentials is given by the 

expression [14]: 

                                                                                      Ⅰ     

Where D is a positive parameter adjusted to reproduce the reduction -D( +1) of the observed 

states, with the condition of          to consider the «the edge effect» as a perturbation 

of the main potential    . This corrective term of type      has been added to the main 

previous Hamiltonian as: 

                
 

 
                                                              Ⅰ      
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The solution of the Schrödinger equation using the new Hamiltonian, in the theory of 

perturbation, gives the eigenenergy as: 

                       
    (  

 

 
)                                                                    Ⅰ     

In this case, the energy is related to the quantum numbers   and  , as in Wood-Saxon 

potential. The degeneration on Ɩ is partially removed but only the first three magic numbers 2, 

8, 20 were obtained, see Fig Ⅰ-5. 

 

                                                                                            3p (6) 

                                                                                        2f (14)       

                                                                                            1h (22) 

                                                                                            3s (2) 

                                                                                        2d (10)        

                                                                                            1g (18) 

                                                                                            2p (6) 

                                                                                                             

                                                                                            1f (14) 

                                                                                            2s (2) 

                                                                                                                  

                                                                                           1d (10)                     

 

                                                                                        1p (6)           8                 

 

                                                                                         1s (2)            2 

                                                                      

 

Figure Ⅰ-5: Diagram of the shell model using the potential VHO D  . 
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40 
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3.2 The spin-orbit interaction 

         It was pointed out (independently by Mayer (1949, 1950) and Haxel, Jensen and Suess 

(1949, 1950)) that a contribution to the average field felt by each individual nucleon should 

contain a spin-orbit term [16]. 

The single-particle Hamiltonian becomes thus: 

       
 

 
     

            ⃗  ⃗                                                                     Ⅰ     

 The corresponding eigenfunctions have the following form: 

     
             ∑ ⟨   

 

 
  |  ⟩

 

     

  
         

             Ⅰ     

                                                with         

The corresponding eigenvalues, now become:  

                
  (  

 

 
)              

  

 
〈    〉   {

                 
 

 

                         
 

 

       (Ⅰ  16) 

The radial function 〈    〉 is negative, which means that the states with     
 

 
 are always 

lower in energy than the states with     
 

 
 ; as shown on the Fig Ⅰ-6. 

 

                                         
 ⁄  

                           

                                                                                      
    

 
 

 

                                                                           
 ⁄  

                                         

                                 Figure Ⅰ-6: The degeneration of states with    . 

The spin-orbit interaction leads to all the magic numbers 2, 20, 28, 50, 82 and 126. The 

schematic representation of the single-particle energies (individual orbitals) including the 

three previous potential terms is shown in the Fig Ⅰ-7. 
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                Figure Ⅰ-7: Diagram of the shell model single-particle orbitals [17]. 
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Despite the success of the independent particle model in reproducing all the magic numbers, 

but it could not be sufficient. For example, the model cannot explain why an even-even 

nucleus always has a J
π 

= 0
+
 in the ground state, or more generally, why any even number of 

similar nucleons couple to a 0
+
 state. There is clearly a (residual) interaction between a 

nucleon “i” and a nucleon “j”, which favors the coupling of the nucleons with opposing 

angular momentum. 

3.3 The nucleon-nucleon interaction 

The nucleon-nucleon interaction (N-N) is the interaction between two free nucleons. 

With a very rare exception, it is assumed in nuclear structure calculations that the degrees of 

freedom related to the exchange of mesons between nucleons can be replaced by a potential 

acting between two nucleons [18]. Thus, the determination of the N-N potential appears as 

one of the fundamental tasks of theoretical nuclear physics. In fact, the binding energy of a 

nucleus depends critically on the nature of the N-N interaction. Let’s also remember that no 

experiment has yet succeeded in measuring short-range interaction that connects the nucleons. 

The determination of the nucleon-nucleon strength is an interesting problem in itself since we 

have a lot of data by studying the nucleon-nucleon diffusion [18]. We will see later how this 

effective interaction can be primarily determined in two ways. 

4. Beyond the mean field 

          The independent particle model (mean field) is applicable only for spherical nuclei 

(closed shell or near to a closed shell). Considering the case of a nucleus with A nucleons (Z 

protons and N neutrons) interacting to each other, we assume that these nucleons interact in 

pairs. The spherical mean field provides a global zero-order view of the structure of this 

nucleus. The correct description of such a nucleus requires taking into account the two-body 

interaction    .  

The Hamiltonian of this nucleus is then put in the form [13]: 

  ∑       

 

   

 (∑   

 

   

 ∑  

 

   

)        ∑  

 

   

          Ⅰ     

   describes the independent movement of nucleons in a 1-body potential U. 

   denotes the individual Hamiltonian of a nucleon  . 

   represents the residual two‒body interaction, which is considered as a perturbation of the 

   Hamiltonian by an adequate choice of the mean field U. 

The    Hamiltonian is generally determined by two methods: the first (used in our 

calculations) is the shell model with the previously mentioned independent particle model; the 

second is the Hartree-Fock method. 
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The Schrodinger’s equation of this system is written [13]: 

    {∑       

 

   

 (∑   

 

   

 ∑  

 

   

)}                     Ⅰ     

where α denotes all quantum numbers. 

The eigenwave function    is represented by the Slater determinants   of   , from which the 

residual interaction matrix    will be diagonalized  ⟨ |  | ⟩ . 

Since the size of the matrix increases very quickly with the increasing number of nucleons in 

the complete Hilbert’s space (shown on Fig Ⅰ-7) so it becomes impossible to proceed to the 

diagonalization. To overcome this, we choose a subset of configurations guided by physical 

considerations. 

Hilbert’s space is divided into three parts [5]: 

 An inert core composed of shells, which are always occupied (usually a magic 

nucleus with    protons and    neutrons). 

 A valence space containing the rest of the active nucleons          and    

      which interact via the    interaction. 

 An external space formed of orbitals, which are always unoccupied. 

The approximation of considering the nucleons occupying the orbits of the core as “inactive” 

is justified by the existence of a large difference in energy separating these orbits from those 

immediately superior. For example, the energy difference between the 0  
 ⁄
 and 0  

 ⁄
 

subshells is 11.5 MeV [5]. 

5. Ingredients of the shell model 

 Any shell model calculation requires the employment of the following three ingredients [5]: 

 The definition of a valence space (inert core, active shells).  

 The derivation of an effective interaction compatible with the chosen valence space. 

 A computational code to build and diagonalize the Hamiltonians. 

 

5.1  Choice of the valence space 

        As previously defined, the inert core (see figureⅠ-8) is often associated with a magic or 

doubly magic nuclei (    
 ,   

  ,     
    …) then comes the valence space which could include 

closed shells but must necessarily contain partial or unfilled shells. If we take our example of 

    
  , the normal positive parity states, are well reproduced within the sd valence space, while 

the intruder negative parity ones need a larger valence space such as p-sd-pf space (the 

probability of excitation of 
28

Si nucleons here are equal), we will explain them well in the 

next chapter. 
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Figure Ⅰ-8: Diagram of the valence space. 

 

We give some examples of valence (named also model) spaces (truncated from figureⅠ-7): 

 The   shell is a space formed of both orbital 0  
 ⁄
 and 0  

 ⁄
, in which can be 

described the properties of nuclei with 2 < N, Z < 8, the inert core is the    
 . 

 The    shell valence space is composed of the three orbital    
 ⁄
, 1  

 ⁄
 and 0  

 ⁄
, 

only the positive parity states of nuclei with 8 < N, Z < 20 can be described, the inert 

core is the   
  . 

 The    shell is the space containing the four sub-shells 0  
 ⁄
, 1  

 ⁄
, 0  

 ⁄
 and 1  

 ⁄
 

which is adequate for nuclei with 20 < N, Z < 40, the inert core is the 
40

Ca. 

 

5.2  Effective interaction 

         Because of the strong short-range repulsion, the nucleon-nucleon interaction cannot be 

used directly in shell model calculations [19]. Therefore, these calculations are based on the 

definition of an effective interaction that is strongly connected to the valence space used. 

There are two types of effective interactions [19]: 

o Realistic effective interaction. 

o Phenomenological effective interaction. 

The first type is realistic calculated directly from nucleon-nucleon potential. The second type 

is phenomenology, which consists in selecting the initiating Hamiltonians and in considering 

the individual energies and the cross-matrix elements as parameters to be adjusted directly on 

the experimental data, as it was done for the development of the PSDPF interaction [5] used 

in the calculation of our work. 

 

The inerte core 

Empty The external space 

The valence space 

Full 
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5.3  The computational code 

        The two shell model codes developed in Strasbourg are the ANTOINE code [20, 21] and 

the code NATHAN [21, 22]. We will use the code NATHAN in our calculations. 

For our knowledge, we mention some of the other international codes: GLASGOW [23], 

VECSSE [24], MSHELL [25], REDSTICK [26], RITSSCHIL [27], OXBASH [28], and 

DUPSM [29]. 

 

In this chapter, we have presented the basic concepts of the shell model, which makes it 

possible to describe the nuclear structure.  

In the next chapter we will introduce the sd shell nuclei, a region of our current work, and 

their properties as well the PSDPF interaction. 
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Chapter Ⅱ 

             The sd-Shell Nuclei  

      Nuclei in the sd shell (i.e. with valence nucleons confined in the orbitals   
 ⁄
   

 ⁄
 

and   
 ⁄
) have a number of neutrons N and protons Z between magic numbers 8 and 20. 

Thus, this area is limited by the two doubly magic nuclei 
16

O and 
40

Ca (see Fig Ⅰ-7). These 

nuclei have been studied since 1960 and their structure has been the subject of many 

experimental and theoretical investigations. The chart regrouping these nuclei is presented in 

Fig II-1.  

In this chapter we will introduce some properties of the sd-shell nuclei, and we present the 

PSDPF interaction developed by M. BOUHELAL [5,6] to reproduce the spectroscopic 

properties and the structure of these nuclei. 

 

 

Figure Ⅱ-1: Chart of sd shell nuclei [10]. For nuclei selected with star «*» the ground state is 

unbound, i.e. unstable compared to particle emission. Nuclei with «   » are all even-A silicon 

isotopes. 

 

The Silicon isotopic chain 
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          The sd shell area includes 146 experimentally known nuclei, 26 of them are stable. 

These sd-shell nuclei are characterized, at low excitation energies, by the coexistence of 

spherical normal positive parity (+) and intruder negative parity (‒) states (also intruder 

collective positive parity may also be found) [10].  

Nuclei of particular interest in our work are the even-A Si isotopic chain. The Si isotopes 

(Z=14) are located in the middle of the sd shell. 

 

1. The spherical normal states  

The normal positive parity states correspond to the movement of A-16 nucleons within the 

sd shell, since the 16 nucleons of the core are considered to be inert. The valence space in this 

case is limited to the sd orbitals,    
 ⁄
    

 ⁄
    

 ⁄
, and thus the inert core is 

16
O, i.e. the s 

and p shells are filled and inactive. 

In the sd shell nuclei, these states appear at low excitation energies for the mass range 

varies from A=17 to A=39. This implies the 0 particles and 0 holes configuration (0p–0h), 

hence the name of the normal states is also 0ħω. 

Various interactions have been developed to describe the spherical normal states, in particular 

the USD [30, 31] (Universal SD interaction) or the updated interactions USDA/B [32].  

 

2. The intruder states 

Not all states of the nuclei in the sd shell can be reproduced by the above interactions (by 

increasing the excitation energy and/or moving away from the stability valley, intruder states 

appear) [5]. In an sd shell nucleus, two types of intruder states can exist with positive- or 

negative- parity. These states differ in their parities but result from the promotion of nucleons 

between major shells; from p to sd or sd to pf shells. Thus, intruder states have configurations 

outside the sd valence space. 

2.1 The intruder spherical negative parity states  

In these same nuclei, there is also a set of negative parity states of type (1p–1h) named 

also     states, reported among the adopted levels [10]. Such states result from the 

promotion of one nucleon from shells p to sd (for nuclei at the beginning of the sd shell 

around 
16

O) or from sd to pf (for nuclei at the end of the sd shell near 
40

Ca). Their SM 

description requires in addition of the sd shell, the inclusion of the p and the pf shells needed 

to treat the p–sd and sd–pf excitations which are mainly responsible for the negative parity 

states at the beginning and at the end of the sd shell, respectively [5,6]. Concerning nuclei at 

the middle of sd shell, it is found that the     states may have a competition between the two 

excitations p–sd and sd–pf. Diverse interactions have been developed to describe separately 

these states in these two regions. The interaction that describes in a consistent way these states 
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in all nuclei throughout the sd shell is the PSDPF developed by M. BOUHELAL [5, 6]. The 

sd-shell nuclei having known negative parity intruder states are shown in Fig Ⅱ-2. 

                 

Figure Ⅱ-2: Chart of sd nuclei with known negative parity intruder states [10]. 

 

2.2 The positive- and negative- parity intruder states  

In the sd nuclei, intruder states with positive- and/ or negative- parity, whose 

configurations is outside the sd valence space, can coexist. These states result from the 

promotion of one nucleon or more across major shells, and are thus of type (np–nh) called 

also     states, n>1. The states in question here have positive parity if the jump numbers 

between the two major shells (p–sd or sd–pf) are even (even n). Recent shell model 

calculations have shown that this type of levels result mostly from 2p-2h excitations       or 

4p-4h excitations      . This means that these nuclei are generally deformed and these states 

contribute strongly to the collective character of the nucleus, as it is observed near the doubly 

magic nuclei 
16

O and 
40

Ca. States corresponding to odd excitation number, odd n, have 

negative parity, example the     states of configuration (3p-3h) type. 

3. The PSDPF interaction 

In order to describe simultaneously both negative and positive parity states in sd shell 

nuclei, and the transitions between these different states, we use the PSDPF interaction 

developed in Strasbourg by M. Bouhelal et al. [5,6]. In this case, the core used is restricted to 

the 
4
He doubly magic nucleus and the valence space includes the p, sd and pf shells 

(containing 9 sub-shells).  
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3.1 The construction of the PSDPF interaction 

 

 The aim: description of 0 and     states in sd shell nuclei. 

 The model space used: 
4
He core, the 9 p-sd-pf sub-shells. 

 One nucleon jump between major shells is allowed. 

 

3.2 Shell model ingredients in case of sd shell nuclei 

 

 Valence space: the full p-sd-pf model space. 

 The compatible interaction with this space: the PSDPF interaction. 

 Code of calculation: the shell model code NATHAN [20, 21]. 

 

The Si isotopic chain, in which we are particularly interested in this work, is located in the 

middle of the sd shell. Accordingly, the     states in these isotopes have a competition 

between the two excitations p-sd and sd-pf. Both positive and negative parity states in these 

isotopes can simultaneously be described within the full p-sd-pf valence space with 
4
He core 

and using the PSDPF interaction, as we will see in the next chapter. 

 

4. Application of the shell model 

 

Some of the shell model applications are the calculation of the parity, spin and isospin 

corresponding to the energy level in the nucleus. We give in the next sections a brief 

definition of each of these observables. 

4.1 Parity 

It is possible to show that the stationary states in nucleus, solutions of the time 

independent Schrodinger equation, have a definite parity that depends of the sum of   values 

of all the individual nucleons. Actually, the more technically correct statement is that Π 

=    ∑ . Two possible values are obtained for the parity, Π = 1 (even parity), and Π = −1 

(odd parity) [13]. 

4.2 Nuclear spin 

Nuclear spin is a physical quantity characteristic of a nucleus that describes its magnetic 

properties. The nuclear spin can be described by a vector operator J of module ‖ ‖ whose 

projection on a fixed axis is denoted   . The choice of the vertical direction OZ as the 

quantization axis is convenient but is not imperative. It is dictated by the fact that this axis is 

chosen as the direction of the static magnetic field in the following. The quantum description 
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involves operators, which is expressed as a function of the quantum number of nuclear spin J, 

by the following relation: 

‖ ‖  
 

  
√                                                                           

(h is the Planck constant h = 6,62.10-34J.s). 

Particular cases for spin & parity of the nuclei’s ground state: 

Even-Even Nuclei:      . 

Even-Odd Nuclei:    given by unpaired nucleon or hole;        . 

Odd-Odd Nuclei:    is obtained using the J values of the unpaired p and n, then apply j-j 

coupling. 

i.e. |     |             ;   =            

An example is shown on Fig Ⅱ-3. 

 

        

 

 

 

      

             

  

 

Figure Ⅱ-3:  Different nucleon distributions that gives the ground state    values in some 

nuclei. Obs: Observed state 

4.3 Isospin 

After the discovery of the neutron by Chadwick [3], W. Heisenberg proposed the isospin 

in 1932 [33] in the aim of constructing a mathematical basis that represents the similarity of 

proton-neutron with respect to the strong nuclear force. Indeed, the masses of the proton and 

the neutron are very close,   = 938.272013(23) MeV/   and   = 939.565346(23) MeV/   

[34], and the mass ratio is about one, i.e., 
  

  
 = 1.001378. 

:𝜋 

: 𝜐 
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Assuming that the proton and the neutron have very similar masses, Heisenberg proposed to 

consider them as two different states of charge of the same nucleon. To distinguish between 

them he introduced a new observable, the isospin t whose projection on the OZ axis is ��, 

and assigning   = +1/2 for the neutron and   = −1/2 for the proton [13]. 

                                                Q = 0 neutron              =+1/2              isospin up 

Nucleon                                       

                                                Q = +1 proton              = -1/2            isospin down  

The mathematical formalism of the isospin used by Heisenberg is analogous to the formalism 

of the intrinsic spin developed by Pauli. 

The single-particle wave functions of a neutron and a proton can be expressed with the help of 

t =1/2 spinors as [13]: 

          (
 
 
)                                    (

 
 
)                        

Similarly, to the angular momentum, we can introduce an isospin operator, a vector   
 

 
 , 

where three components of the vector τ have a form of the Pauli matrices: 

   (
  
  

)     (
   
  

)     (
  
   

)                                  

On the other hand, we can summarize: 

  ∑  

 

 

   ⇒   
 

 
⇒    

 

 
 

 

  
 

 

 
 

 

 
⇒   (

 

 
   )              

Where Q is the electric charge of a nucleus, and Tz is the projection of the total isospin, A 

denoting the total number of nucleons in nucleus 

 

4.4 Shell occupation 

The Eigenfunctions are obtained as a product of a single-particle wave function [13]. 

          
           ∏                                                         

 

   

 

For identical nucleons, i.e. either neutrons or protons, the simple product wave function 

given by eq. (Ⅱ-5) is not appropriate, since it must describe indistinguishable particles.  
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For nucleons, which are fermions. This implies according to the Pauli exclusion principle 

that the wave functions should be anti-symmetric. For two particles, the normalized, anti-

symmetric wave function is written as [13]: 

         √
 

 
 [                     ]                                           

Or, equivalently, as a Slater determinant 

         √
 

 
|
          

          
|                                                 

The wave function          is antisymmetric, since the operator     that interchanges 

particles 1 and 2 yields to                               . The normalization of 

         is guaranteed by the orthonormality of the single-particle wave functions    and 

  . 

Similarly, a normalized, antisymmetric A-particle wave function is defined by the Slater 

determinant: 

         
           

 

√  
||

   
      

      
   

   
      

      
   

   
   

                       

||                 

Explicit use of these determinantal wave functions soon leads to complicated expressions 

for matrix elements [13]. 

The quantum wave is not located anywhere in the space like a real wave and it possesses 

no energy. Since the quantum wave does not carry energy it is not directly detectable. The 

presence of the quantum wave is identified after many particle events. According to this 

interpretation, the quantum wave described usually with the quantum function     ⃗⃗⃗   . The 

probability of finding the particle (nucleon) in point r and at time t in the volume element    ⃗ 

(inside the nucleus volume) is defined as [35]: 

   |   ⃗   |                                                                    

   ⃗                                   ⃗    ⃗    ⃗    ⃗⃗                 ⃗            

As Fig Ⅱ-4 indicated, the particle (nucleon) could be found anywhere in space (nucleus), 

however it is most likely to be found where the probability of its wave function is large. By 

integrating the Eq. (Ⅱ-9) over all the possible positions in the space inside the nucleus, the 

integral will give the total probability of finding the nucleon in all the nucleus volume. Since 

the nucleon will certainly be found somewhere inside the nucleus, the integral must be equal 

to unity. 
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  ∭|   ⃗   |   

 

 

                                                         

                                    . 

                               

Figure Ⅱ-4: Wave-particle duality [35]. 

For a nucleon moving along one dimension, the Eq. (Ⅱ-10) takes the following form: 

  ∫ |      |                                                   
  

  

 

The probability of finding a    state (a certain slater determinant) that results from a certain 

distribution of nucleons forming the nucleus    
  is given by: 

   |   ⃗   |                                                          

  is the nucleus’ volume. 

The probability of finding a    state resulting from all the different distribution of the 

nucleons inside the nucleus (all slater determinants) is given by: 

  ∭|   ⃗   | 
 

 

                                                            

5. Nucleons Distribution   

We have seen that a nucleus    
 , where Z and N are magic numbers, acts as an inert core. 

The total angular momentum of this core is zero and a nucleon moving outside of it, feels the 

interaction of the nucleons inside the core as a whole. The core induces a central field which 

generates the shell model set of single-particle states, that is the individual orbits represented 
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on Fig Ⅰ-7. Each one of the nucleons in the nucleus occupies one of those orbits in the 

sequence shown on Fig Ⅰ-7.  

For instance, the + states in sd nuclei result from the distribution of the valence nucleons 

within the sd shell formed of the 3 orbits    
 ⁄
    

 ⁄
        

 ⁄
, and considering   

  
  

nucleus as a core. As an example, we consider the 
26

Si nucleus having 10 valence nucleons 

outside 
16

O, whose 8 neutrons and 8 protons occupying the orbits    
 ⁄
    

 ⁄
        

 ⁄
. We 

illustrate on Figure II-5, the distribution of protons and neutrons to form the 
26

Si ground state. 

 

   

  

 

 

 

 

 

 

 

  

Figure Ⅱ-5: Distribution of nucleons forming the ground state of 
26

Si. 

 

 Using the PSDPF interaction and the NATHAN code, we calculated the probability to 

distribute nucleons called also shell occupation probabilities to obtain the first + and ‒ 

states excited in 
26

Si, which are 2
+
 and 3

‒ 
respectively. The nucleon distribution that has 

the highest probability for each of these states is illustrated on Fig Ⅱ-6.  

From Fig Ⅱ-6 we remark that: 

 The PSDPF interaction predicts that first excited state of parity 2
+
 has the same 

configuration (distribution of nucleons) as that of the ground state corresponding 

to the filling of the orbit    
 ⁄
, but with only 18.6% probability.  

 The first – excited state resulting from one neutron jump from the    
 ⁄
shell to 

the    
 ⁄
 with only a probability of only 8%. 
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The small values of the highest probabilities mean that these states have fragmented 

configurations resulting from different nucleon distribution within the sd shell for the + state 

and p–sd for the – state.  

 

 

 

 

 

 

 

. 

 

 

 

 

 

 

 

 

 

    

Figure Ⅱ-6: Schematic of the configurations of the first excited states 

                    
    

 

All the calculated probabilities of nucleons distributions for 2
+
 and 3

- 
states in 

26
Si are 

presented on Table Ⅱ-1 and Table Ⅱ-2, respectively. 
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For the state 2
+
 

         The distribution for neutrons          The distribution for protons 

Proba

bility 

1p

1/2 

1p

3/2 

1d

5/2 

2s

1/2 

1d

3/2 

1f

7/2 

2p

3/2 

1f

5/2 

2p

1/2 

1p

1/2 

1p

3/2 

1d

5/2 

2s

1/2 

1d

3/2 

1f

7/2 

2p

3/2 

1f

5/2 

2p

1/2 

0.0100

6394 

2 4 2 0 2 0 0 0 0 2 4 5 1 0 0 0 0 0 

0.0122

2118 

2 4 2 0 2 0 0 0 0 2 4 6 0 0 0 0 0 0 

0.0110

7218 

2 4 2 1 1 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0119

1692 

2 4 2 1 1 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0112

9481 

2 4 2 1 1 0 0 0 0 2 4 5 0 1 0 0 0 0 

0.0137

6571 

2 4 2 1 1 0 0 0 0 2 4 5 1 0 0 0 0 0 

0.0200

0966 

2 4 2 1 1 0 0 0 0 2 4 6 0 0 0 0 0 0 

0.0131

8006 

2 4 2 2 0 0 0 0 0 2 4 5 1 0 0 0 0 0 

0.0110

3425 

2 4 3 0 1 0 0 0 0 2 4 4 0 2 0 0 0 0 

0.0171

5336 

2 4 3 0 1 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0107

5249 

2 4 3 0 1 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0289

4563 

2 4 3 0 1 0 0 0 0 2 4 5 0 1 0 0 0 0 

0.0200

7730 

2 4 3 0 1 0 0 0 0 2 4 5 1 0 0 0 0 0 

0.0201

2629 

2 4 3 0 1 0 0 0 0 2 4 6 0 0 0 0 0 0 

0.0180

7002 

2 4 3 1 0 0 0 0 0 2 4 4 0 2 0 0 0 0 

0.0212

4819 

2 4 3 1 0 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0329

9206 

2 4 3 1 0 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0149

0352 

2 4 3 1 0 0 0 0 0 2 4 5 0 1 0 0 0 0 

0.0263

1051 

2 4 3 1 0 0 0 0 0 2 4 5 1 0 0 0 0 0 
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0.0614

3499 

2 4 3 1 0 0 0 0 0 2 4 6 0 0 0 0 0 0 

0.0100

6922 

2 4 4 0 0 0 0 0 0 2 4 2 2 2 0 0 0 0 

0.0139

0381 

2 4 4 0 0 0 0 0 0 2 4 3 1 2 0 0 0 0 

0.0134

6783 

2 4 4 0 0 0 0 0 0 2 4 3 2 1 0 0 0 0 

0.0426

5504 

2 4 4 0 0 0 0 0 0 2 4 4 0 2 0 0 0 0 

0.0322

9502 

2 4 4 0 0 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0508

4477 

2 4 4 0 0 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0279

9412 

2 4 4 0 0 0 0 0 0 2 4 5 0 1 0 0 0 0 

0.0673

0012 

2 4 4 0 0 0 0 0 0 2 4 5 1 0 0 0 0 0 

0.1857

5723 

2 4 4 0 0 0 0 0 0 2 4 6 0 0 0 0 0 0 

 

Table Ⅱ-1: Calculations of the probability for the different configurations (shell occupation 

probabilities) giving rise the first excited state 2
+
. 

For the state 3
-
 

         The distribution for neutrons            The distribution for protons 

Proba

bility 

1p

1/2 

1p

3/2 

1d

5/2 

2s

1/2 

1d

3/2 

1f

7/2 

2p

3/2 

1f

5/2 

2p

1/2 

1p

1/2 

1p

3/2 

1d

5/2 

2s

1/2 

1d

3/2 

1f

7/2 

2p

3/2 

1f

5/2 

2p

1/2 

0.0115

8688 

2 4 4 0 0 0 0 0 0 2 3 6 0 1 0 0 0 0 

0.0110

0057 

2 4 4 0 0 0 0 0 0 2 4 5 0 0 1 0 0 0 

0.0133

3954 

1 4 3 1 1 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0150

4239 

1 4 3 2 0 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0148

5489 

1 4 4 0 1 0 0 0 0 2 4 5 0 1 0 0 0 0 

0.0117

5618 

1 4 4 1 0 0 0 0 0 2 4 3 2 1 0 0 0 0 
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0.0165

4240 

1 4 4 1 0 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0112

1993 

1 4 4 1 0 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0318

3491 

1 4 4 1 0 0 0 0 0 2 4 5 1 0 0 0 0 0 

0.0100

9188 

1 4 5 0 0 0 0 0 0 2 4 2 2 2 0 0 0 0 

0.0104

5243 

1 4 5 0 0 0 0 0 0 2 4 3 2 1 0 0 0 0 

0.0209

9455 

1 4 5 0 0 0 0 0 0 2 4 4 0 2 0 0 0 0 

0.0137

9332 

1 4 5 0 0 0 0 0 0 2 4 4 1 1 0 0 0 0 

0.0381

5501 

1 4 5 0 0 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0802

3798 

1 4 5 0 0 0 0 0 0 2 4 6 0 0 0 0 0 0 

0.0114

1575 

2 3 4 0 1 0 0 0 0 2 4 4 2 0 0 0 0 0 

0.0232

3191 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Table Ⅱ-2: Calculations of the probability for the different configurations (shell occupation 

probabilities) giving rise the first excited state 3
-
. 

 

In this chapter, after defining the sd shell area of nuclei; we presented some of the sd 

shell nuclei properties and we introduced the interaction that developed to describe both the 

normal positive parity and intruder negative parity states. 
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                                                Chapter Ⅲ 

Systematic study of the even-A 

Silicon isotopic chain 

One of the main aims of researches in nuclear physics is to describe the ground and 

exited states of all nuclei in the periodic table. In the present work, we used the PSDPF 

interaction to calculate the energy spectra of positive and negative parity states of the sd-shell 

even‒A silicon isotopes. A systematic study of the four + and ‒ states will be presented in this 

chapter. 

 As a preface to our work in this chapter and before our systematic study for the even-A 

silicon isotopic chain, we give some information about the silicon element. 

1. Properties of the Silicon element 

1.1 Interesting facts 

 Discoverer: Jöns Jacob Berzelius. 
 Discovery date 1823. 
 Discovered in: Sweden. 

 Appearance: dark grey with a bluish ting. 

 Classification: Semi-metallic. 

 Origin of name: from the Latin word "silicis" meaning "flint". 

 Uses: computer, chips, lubricant, nuclear radiation detectors, semi-conductor 

integrated circuits, solar energy. 

 Obtained from: clay, granite, quartz, and sands. 

 The second most abundant element in our planet is Silicon. 

 Silicon is made in stars with a mass of eight or more earth sun. 

 The lowest acceptable purity for electronic grade silicon is 99.9999999%. 

 

1.2 The physical properties 

 Name: Silicon. 

 Symbol: Si. 

 Atomic number: 14. 

 Standard solid state: at 298K. 

 Classification: semi-metallic. 

 Group in periodic table: 14. 

 Period in periodic table: 3. 

 Block in periodic table: p. 
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 Shell structure: 2.4.8 

 Electron Configuration: [  ]        

 

 

 

 

 

 

  

                       Figure Ⅲ-1: The atomic model of the silicon atom. 

 

The observation of 23 silicon isotopes has been reported so far, including 3 stable, 6 

proton-rich, and 14 neutron-rich isotopes. The sd shell region of our interest contains only 13 

silicon isotopes from A=22 to A=35. 

2.  Properties of Silicon isotopes 

         There are four natural isotopes of silicon (Si) existing in the environment: 
28

Si, 
29

Si, 
30

Si 

and 
32

Si. The first three isotopes are stable and the last one is radiogenic. The relative 

abundance of 
28

Si, 
29

Si and 
30

Si is 92.23%, 4.67% and 3.10%, respectively [36]. In the 1920s, 

all three stable silicon isotopes had been discovered. Mass spectrometric studies on Silicon 

isotope variation in the natural environment started in the 1950s. In the 1970s, extensive 

studies on silicon isotope compositions of meteorites and rocks were made [36]. 

         In addition to the previously mentioned natural isotopes, there are 9 other artificial 

isotopes belonging to the sd shell region, 
22

Si,
23

Si,
24

Si,
25

Si,
26

Si,
27

Si,
31

Si,
33

Si,
34

Si. 

We focus, particularly in our study, just on the even-A silicon isotopes. 

2.1  The even-A silicon isotopes 

We present here the properties of the even-A silicon isotopes taken from international nuclear 

bank [10]. 

 

 

 

 

: Electron 

: Nucleus 
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 22
Si: Saint-Laurent et al. discovered 

22
Si in 1987 in the paper "Observation 

of a bound       nucleus: 
22

Si" [37]. 

 Z=14; N=8;      . 

 Half-life 29 ms 2. Mass = (22.03579 5.40) AMU. 

 Binding energy/A = (6058 2.3) keV. 

 

 24
Si: In the 1979 paper “Decay of a new isotope, 

24
Si: A test of the isobaric 

multiplet mass equation”  ̈yst ̈ et al. Described the first observation of 
24

Si 

[38]. 

 Z=14; N=10;        

 Half-life 140 ms 2. Mass = (24.011353 2.1) AMU. 

 Binding energy/A = (7167.2 0.8) keV. 

 

 26
Si: was identified in 1960 by Robinson and Johnson in “Decay of 

26
Si” 

[39]. 

 Z= 14; N=12;        

 Half-life          s, this half-life agrees with the presently 

accepted value of (2.234 1.3) s. Mass= (25.9923338  1.1) AMU. 

 Binding energy/A= (7924.708 0.4) keV. 

 

 28
Si: Aston discovered 

28
Si in 1920 as reported in “The constitution of the 

elements” [40]. 

 Z=14; N=14;      . 

 Half-life: Stable. Mass= (27.976926535 0.5) AMU. 

 Binding energy/A = 8447.744 keV. Abundance= 92.223%. 

 

 30
Si: In the 1924 paper “Isotope effects in the band spectra of boron 

monoxide and Silicon nitride “Mulliken reported the observation of 
30

Si 

[41]. 

 Z=14; N=16;      . 

 Half-life: Stable. Mass= (29.973770136 2.3) AMU. 

 Binding energy/A = (8520.654  0.1) keV. Abundance =3.092%. 

 

 32
Si: Lindner identified 

32
Si in the 1953 paper “New nuclides produced in 

chlorine spallation” [42]. 

 Z=14; N=18;      . 

 Half-life: it was found to have a maximum probable half-life of 

710 years. Mass= (31.9741515 0.3) AMU. 

 Binding energy/A = (8481.468 0.9) keV. Abundance= None. 

 

 34
Si: Artukh et al., discovered 

34
Si, in the 1971 paper “New isotopes 

29,30
Mg, 

31,32,33
Al, 

33,34,35,36
Si,

35,36,37,38
P, 

39,40
S, and 

41,42
Cl produced in 

bombardment of a 
232

Th target with 290 MeV 
40

Ar ions” [43]. 
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 Z=14; N=20;      . 

 Half-life: 2.77 s 20. Mass= (33.978575 1.5) AMU. 

 Binding energy/A= (8336.1 0.4) keV. 

 

2.2  Experimental review of excitation energies in even-A Silicone 

Isotopes 

Investigation of nuclear properties and the laws governing the structure of nuclei is an 

active and productive area of physical research. Here, we collected the experimental 

excitation energies; spins and parities J
π
 of the even-A silicon isotopes’ states up to the fourth 

‒ state from 
22

Si to 
34

Si. Since nuclei with N < Z are less studied due to Coulomb repulsion 

between protons, we compare them to their mirrors. We present and discuss these properties 

case by case. We remind that nuclei having an even-A number of nucleons have a J
π
 = 0

+
 

ground state.  

The 
22

Si case    

   

   

 

 

 

 

 

 

 

 

 

 

 

 

 

Table Ⅲ-1: Comparison of the first excited states in the mirror nuclei 
22

Si and 
22

O [10],         

* States taken from Ref [44].  

22
Si 

22
O 

E level 
THEO 

(MeV) 

   E level (MeV)    

0.0 0
+
 0.0 0

+
 

1.75 2
+
* 3.199 2

+
 

2.5 0
+
* 4.584 (3

+
) 

4.75 4
+
* 4.909 (0

+
) 

  5.800   

  6.512 (2
+
) 

  6.938 (4
+
) 

  7.649 (0
-
, 1

- 
,2

-
)    

  8.783 (0
-
, 1 

-
,2

-
) 

  20.554 (0
-
, 1

- 
,2

-
) 

  13.298 (0
-
, 1

-
, 2

-
) 
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REMARK:          to make it clear here are the reasons of comparing just the isotopes 
22

Si,  

 
24

Si, 
26

Si with theirs mirror nuclei 
22

O, 
24

Ne, and 
26

Mg. 

 Mirror nuclei have same structure and same excitation energy, the energy differences 

is due to Coulomb interaction. 

 To answer the question, when is the difference in Coulomb energy occur in these 

mirrors, the number of neutrons is less than the number of protons    , and 

therefore the repulsion force between p-p has a significant value. The     nucleus 

here is unstable (easy to disintegrate). 

 Since we have undetermined states, we use the mirror nuclei’s states to confirm them. 

In addition, the shell model calculations are primordial in the comparison. 

 

 Note that the PSDPF interaction is an isospin independent and Coulomb free, 

so it gives the same results for mirror nuclei. 

We present on Table Ⅲ-1, the energy spectra, of the mirror nuclei 
22

Si and 
22

O [10]. 

Since the 
22

Si is deficient of neutrons, it was difficult to study it experimentally, we show on 

the table the theoretical results obtained in Ref. [44] using the Gamow shell model (GSM). 

Concerning the mirror 
22

O, only the first excited state with J
π
 = 2

+ 
was well identified and all 

the other states have uncertain J
π
 and needs to be confirmed using shell model calculation.  

The 
24

Si case 

 

Table Ⅲ-2: Comparison of the first excited states in the mirror nuclei 
24

Si and 
24

Ne [10],         

* States taken from Ref. [45]. 

24
Si 

24
Ne 

E level (MeV)    E level (MeV)    

0.0 0
+
 0.0 0

+
 

1.879 2
+
 1.981 2

+
 

3.449 (2
+
)* 3.868 2

+
 

3.471 (4
+
,0

+
)* 3.972 4

+
 

  4.766 0
+
 

  4.880  

  5.575 2
+
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On Table Ⅲ-2, are presented the excitation energy spectra of the mirrors 
24

Si and 
24

Ne [10, 45]. We remark that the 
24

Si has 3 observed excited states [45], 2 of them have 

uncertain J
π
 assignments. Like the usual mirror nuclei, the 

24
Ne has more excited states with 

well-known J
π
 except for the 4880 keV state. No negative parity states were identified in both 

mirrors. 

The 
26

Si case 

26
Si 

26
Mg 

E level (MeV)    E level (MeV)    

  0.0 0
+
 0.0 0

+
 

1.797 2
+
 1.808 2

+
 

2.787 2
+
 2.938 2

+
 

3.336 0
+
 3.082  

3.757 (3
+
) 3.420  

3.842 (4
+
) 3.564  

4.139 2
+
 3.588 0

+
 

4.187 (3
+
) 3.941 3

+
 

4.446 (4
+
) 4.318 4

+
 

4.796 (4
+
) 4.332 2

+
 

4.811 (2
+
) 4.350 3

+
 

4.831 0
+
 4.644  

5.147 2
+
 4.835 2

+
 

5.229 (2
+
) 4.901 4

+
 

5.289 4
+
 4.972 0

+
 

5.517 (4
+
) 5.180  

5.676 1
+
 5.291 2

+
 

5.890 0
+
 5.476 4

+
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Table Ⅲ-3: Comparison of the first excited states in the mirror nuclei 
26

Si and 
26

Mg [10]. 

The energy spectra of the A = 26 are represented on Table Ⅲ-3, there are more 

available states in 
26

Si and the mirror 
26

Mg with some unknown J
π
. In 

26
Si there, are three 

proposed negative parity states contrary to its mirror that has three confirmed ones. 

 

5.929 3
+
 5.691 (1

+
) 

5.945 (0
+
) 5.711 (1

+
,2

+
) 

6.101  5.715 4
+
 

6.295 2
+
 6.125 3

+
 

6.382 (2
+
) 6.256 0

+
 

6.461 0
+
 6.483  

6.765  6.622 (4
+
) 

6.787 3
-
 6.634  

6.810  6.745 2
+
 

6.880 (0
+
) 6.876 3

-
 

7.018 (3
+
) 6.951  

7.154   2
+
 6.971 (4

+
) 

7.198 (5
+
) 6.978 (5

+
) 

7.418 (4
+
) 7.061 1

-
 

7.496 2
+
 7.099 2

+
 

7.522 (5
-
) 7.002 (0,1) 

+
 

7.606  7.264 3
+
 

7.674 (2
+
) 7.261  

7.701 (3
-
) 7.282 (4

-
) 

7.886 (1
-
) 7.348 3

-
 

7.921  7.371 2
+
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The 
28

Si case 

28
Si 

E level (MeV)    

0.0 0
+
 

1.779 2
+
 

4.617 4
+
 

4.979 0
+
 

6.276 3
+
 

6.690 0
+
 

6.878 3
-
 

6.887 4
+
 

7.380 2
+
 

7.416 2
+
 

7.799 3
+
 

7.933 2
+
 

8.258 2(
+
) 

8.328 1
+
 

8.413 4
-
 

8.543 6
+
 

8.588 3
+
 

8.819  

8.904 1
-
 

8.945 5
+
 

8.953 (0
+
, 1,2) 

9.164 (4
+
) 

9.315 3
+
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                      Table Ⅲ-4: Experimental review of the first excited states in 
28

Si [10]. 

On Table Ⅲ-4, is shown the energy spectrum of 
28

Si, which has well studied states 

but some of them have uncertain J
π
 that need to assigned. Three possible negative parity states 

were identified. 

The 
30

Si case    

9.381 2
+
 

9.417 4
+
 

9.479 (2
+
) 

9.496 (1
+
) 

9.702 (5
-
) 

9.764 (3
-
) 

30
Si 

  E level (MeV)    

0.0 0
+
 

2.235 2
+
 

3.498 2
+
 

3.769 1
+
 

3.787 0
+
 

4.810 2
+
 

4.830 3
+
 

5.231 3
+
 

5.279 4
+
 

5.372 0
+
 

5.487 3
-
 

5.614 2
+
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                  Table Ⅲ-5 : Experimental review of the first excited states in 
30

Si
 
[10]. 

The energy spectrum of 
30

Si up to 7 MeV is shown on Table Ⅲ-5. We note here, that 

almost all the excited states are certain with well-defined J
π
; five of them have negative parity. 

 

The 
32

Si case           

5.950 4
+
 

6.503 4
-
 

6.537 2
+
 

6.641 2
-
 

6.642 0
+
 

6.744 1
-
 

6.865 3
+
 

6.914 (2
+
) 

6.998 5
+
 

7.043 5
-
 

32
Si 

  E level (MeV)    

0.0 0
+
 

1.941 2
+
 

4.230 2
+
 

4.983 0
+
 

5.220 (1
+
) 

5.288 3
-
 

5.412 1
+
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                   Table Ⅲ-6: Experimental review of the first excited states in 
32

Si [10]. 

          On Table Ⅲ-6, is presented the energy spectrum of 
32

Si up to 6 MeV. One can see that 

most states here have unconfirmed J
π
. This spectrum contains nine positive parity states; two 

of them are uncertain, and eight negative parity states, four of them are uncertain. 

The 
34

Si case
 

 

5.427 2
+
 

5.502 (4
+
 ,5

-
) 

5.581 (5
-
) 

5.773 (1,2,3) 

5.785 (0,1,2)
+
 

5.893 (3
+
) 

5.954 (2
+
) 

5.967 3
-
 

6.170 (2
+
) 

6.195 1
-
 

34
Si 

  E level (MeV)    

0.0 0
+
 

3.327 2
+
 

3.590  

4.265 (3
-
) 

4.380 (3
-
) 

4.520  

4.971 (3
-
,4

-
,5

-
) 

5.042  
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                  Table Ⅲ-7: Experimental review of the first excited states in 
34

Si [10]. 

           The energy spectrum of 
34

Si up to 6 MeV is shown on Table Ⅲ-7. The 
34

Si states have 

uncertain or unknown assignments.  

3. Systematics of the even-A silicon isotopic chain study 

Using the PSDPF interaction and the code NATHAN we calculated the excitation 

energies of the first 3 positive +and 4 negative- parity common excited states: 2
+
, 3

+
, 4

+
, 1

-
, 3

-
, 

4
-
, 5

-
, called test states. The obtained results are shown case by case on Table Ⅲ-8.  

 

 

Table Ⅲ-8: Calculated excitation energies (in MeV) of the test states even‒A silicon 

isotopes. 

 

3.1 Comparison Calculated versus Experimental excitation energies 

of the test states 

 

All the results obtained using PSDPF of the comparison between experimental [10] 

and calculated excitation energies for the test states 2
+
, 3

+
, 4

+
, 1

-
, 3

-
, 4

-
, 5

-
 in the even‒A 

silicon isotopes up to N = 19, are discussed in the following subsections.  

5.330 2
+
 

6.023  

   
    22

Si 
    24

Si 
   26

Si 
   28

Si 
  30

Si 
   32

Si 
    34

Si 

   2
+
  3.219  2.116  1.878  1.892  2.235  2.044  4.380 

   3
+
  4.947  4.927  3.990  6.470  4.787  5.602  5.715 

   4
+
  6.903  4.069  4.397  4.645  5.274  5.589  7.565 

   1
-
  6.820  6.511  6.663  7.227  6.665  5.241  4.876 

   3
-
  6.454  6.490  6.716  7.176  5.773  5.495  4.790 

   4
-
  8.844  8.110  7.899  8.604  6.249  6.502  4.254 

   5
-
  9.999  8.602  8.318  8.767  7.360  5.725  4.839 
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The 2
+
 state 

Figure Ⅲ-2: Comparison between experimental and calculated excitation energies of the 2
+ 

state in even-A silicon isotopes. 

The 2
+
 state is known in all the even-A Si isotopes (see Fig III-2), from A=22 to 

A=34, as a first excited state, an exception is found for 
22

Si with N << Z, thus we plotted its 

mirror state of 
22

O. This state is located at excitation energies between 1.779 MeV for 
28

Si and 

4.380 MeV for 
34

Si. The agreement between calculation and experiment is perfect except the 

case of 
34

Si. PSDPF predicts the first 2
+
 state higher than experiment of 1 MeV in 

34
Si (N = 

20), this is expected for a magic nucleus since all the neuron subshells are completely filled. 

The 3+ state 

Figure Ⅲ-3: Comparison between the experimental and calculated excitation energies of the 

3
+
 in even-A silicon isotopes. 
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The 3
+
 state is known experimentally just in 

26
Si, 

28
Si, 

30
Si, 

32
Si, we used the 3

+
 

excitation energy of 
22

O as shown in Fig III-3. The excitation energies of this state are 

comprise between 3,757 MeV for 
26

Si and 6.470 MeV for 
28

Si. There is an excellent 

agreement between calculations, using PSDPF, and experiment. 

The 4
+ 

state  

Figure Ⅲ-4: Comparison between the experimental and calculated excitation energies of the 

4
+
 in even-A silicon isotopes. 

We can see in Fig III-4, that the 4
+
 state is known in all the isotopes except in 

34
Si and 

22
Si, we used the value of 

22
O. Its excitation energies vary between 3.471 MeV for 

24
Si and 

7.565 MeV for 
34

Si. The calculation is in good agreement with experiment. 

The 1
- 
state  

Figure Ⅲ-5: Comparison between the experimental and calculated excitation energies of the 

1
-
 in even-A silicon isotopes. 
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We present in Fig III-5 the comparison experimental versus theory of the excitation energies 

of the 1
-
 state in even-A silicon isotopes. This observed excitation energies are comprised 

between 4.876 MeV for 
34

Si and 8.904 MeV for 
28

Si. This state is well reproduced by PSDPF 

only in 
30

Si. We remind that all these isotopes could not be included in the fit of the PSDPF 

interaction and we expect such discrepancies. 

In order to improve the result of this state, we decided to recalculate; by adding the rmsd (root 

mean square deviation), which is given by: rmsd=√
 

 
∑              

   .  

The rmsd for the 1
- 
state equals 1.215 MeV. The new excitation energies are listed on Table 

Ⅲ-9. 

Si 
Eexp 
(MeV) 

Ecal  
(MeV) 

ΔE    
(MeV) 

(ΔE)² 
(MeV) 

Ecal + 
rmsd 

ΔE'  
(MeV) 

Si22 7.649 6.82 -0.829 0.687241 8.035 0.386 

Si26 7.886 6.663 -1.223 1.495729 7.878 -0.008 

Si28 8.904 7.227 -1.677 2.812329 8.442 -0.462 

Si32 6.195 5.241 -0.954 0.910116 6.456 0.261 

rmsd    1,2150523   
                  Table Ⅲ-9:  New calculated excitation energies of the 1

-
 state by adding the rmsd. 

The comparison between the experimental and new calculated excitation energies of the 1- 

state is shown on Fig Ⅲ-6. We remark that there is now a quite good agreement experiment 

versus theory. 

Figure Ⅲ-6: Comparison between the experimental and the new calculated excitation 

energies of the 1
-
 in even-A silicon isotopes. 
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  The 3
- 
state  

Figure Ⅲ-7: Comparison between the experimental and calculated excitation energies of the 

3
-
 in even-A silicon isotopes. 

Figure III-7 that the 3
-
 state is not observed in 

22
Si and 

24
Si. It is located at excitation 

energies between 4.790 MeV for 
34

Si and 7.176 MeV for 
28

Si. The agreement between the 

observed and calculated excitation energies is quite good. 

The 4
- 
state  

Figure Ⅲ-8: Comparison between the experimental and calculated excitation energies of the 

4
-
 in even-A Silicon isotopes. 

The 4
- 
state is less known in the studied isotopes, we used the energy of 

26
Mg, the 

mirror of 
26

Si (see Fig III-8). The observed excitation energies are well reproduced by 

PSDPF. 
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The 5
- 
state  

 

Figure Ⅲ-9: Comparison between the experimental and calculated excitation energies of the 

5
-
 in even-A Silicon isotopes. 

The 5
- 
is not observed in 

22
Si and 

24
Si (see Fig III-9), and is comprises between the 

excitation energies 4.839 MeV for 
34

Si and 9,999 MeV for 
22

Si. The difference between 

calculated and experimental excitation energies is low for the isotopes at the end of sd shell. 

While in 
26

Si and 
28

Si these differences equal to        
    

  0.796 MeV, 

       
     

 0.935MeV, respectively. We think that this state has collective configuration 

(3p-3h) in the case of 
28

Si, which makes its energy higher than experiment. Such collective 

states cannot be reproduced using our PSDPF interaction because their configuration is out of 

the p-sd-pf valence space.  

 

If the excitation energy is higher than its experimental counterpart; this 

is explained by the fact that these nuclei are far from closure shells, and that the 

excitation of a nucleon from the shell p to sd or sd to pf requires a superior 

energy than for the nuclei at the beginning or the end of the shell. 

3.2 Systematics of the excitation energies of the test states in 

even-A silicon isotopes  

 
In this section we will discuss the evolution of the excitation energies of the test states 

throughout the even-A Si isotopes. We compared the experimental and calculated, using 

PSDPF, the excitation energies of the + test states 2
+
, 3

+
, 4

+
 in the previous Figures Ⅲ-2, Ⅲ-

3, Ⅲ-4; and listed their values in the Appendix. Further, Figures Ⅲ-5,6, Ⅲ-7, Ⅲ-8, Ⅲ-9 

represent the comparison of excitations energies in the ‒ test states 1
-
, 3

-
, 4

-
, 5

-
. In order to 
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make our systematic study based on the most probable wave function (Slater determinant) we 

calculated also, using PSDPF, the shell occupation probabilities, discussed in Chapter II, for 

all the test states in question. The results are shown, for each state in all the studied isotopes, 

in Figures Ⅲ-10 to Ⅲ-16. The systematic evolution will be discussed state by state. 

 The 2
+
 state 

As shown in the Figure III-2, the variation shape of the 2
+
 states excitation energies is 

quite well reproduced by the PSDPF interaction. Remind that the first excited state in all the 

silicon isotopes is the 2
+
, where the ground state in all of theme is 0

+
, this is a particular 

properties of any even-A (even N and Z) nucleus. 

As shown in Figures III-10, we get the following remarks: 

 The 0
+
 ground states correspond to protons full filling the shell   

 ⁄
in all the isotopes. 

 The 2
+ 

states are obtained from the excitations of nucleons within the same sd-shell, 

and follow the same distribution as the ground state. On the other hand, the closure of 

the neutron subshells   
 ⁄
 and    

 ⁄
, when approaching the magic N = 20 number, 

can give rise to reduce the possibility of nucleon arrangement within the sd shell. That 

can explain the need to more nucleon excitations across the sd-pf shells for 
34

Si, 

which is out of our p-sd-pf valence space using the PSDPF interaction for which just 

one nucleon jump is permitted. 

 

                 

- In 
28

Si the probability of nucleon distribution is always equal between 

the neutrons and the protons towards    
 ⁄
    

 ⁄
, that is expected 

since this isotope has N = Z = 14. 

- In 
34

Si, the collective contribution can be found in all the + states, 

because the p and sd shells are completely full. 

-  

 The 3
+
 state  

The shape of the variation of the 3
+ 

states excitation energies predicted by the PSDPF 

interaction agrees well with the experimental one, as illustrated Figure III-3.  

As shown in Figures III-11, we get the following remarks: 

 These states result mainly from the rearrangement, within the sd shell, of the proton 

side, in the isotopes with N < Z, 
22

Si, 
24

Si, 
26

Si. Concerning the N > Z isotopes, 
30

Si and 
32

Si; the neutron distributions contribute also to the configuration of these states. 

 For the N = Z, 
28

Si the excitation    
 ⁄
    

 ⁄
 has the same probability for protons 

and neutrons. 

 

 The 4
+
 state 

The variation of the 4
+ 

states excitation energies, calculated by PSDPF, follows the same 

shape as the experimental one; see Figure III-4. Figures III-12, illustrate that the 4
+ 

states 

have the same configurations as the 3
+ 

states or the ground states. 

 

P.S : 
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 The 1
-
 state 

Despite the disagreement, as shown in the Figure III-5, between experimental and 

calculated excitation energies of the 1
- 
states; the variation shape of the 1

- 
states is quite well 

reproduced by the PSDPF interaction. The excitation energies of this state were readjusted 

and presented on Figure III-6. The negative parity states have a special interest since they 

result from one nucleon jump across p-sd or sd-pf shells, unlike the positive parity ones which 

are obtained from the nucleon arrangements within the sd shell. We take a great interest to 

their shell occupation probabilities to comprehend the evolution of the excitation with the 

increasing neutron number in the Si even-A isotopes.  

Figures Ⅲ-13 show that: 

 In 
22

Si, the 1
- 

state results from one proton (34%) or neutron (15%) jumps from 

   
 ⁄
to sd, a pure p-sd configuration (hole in    

 ⁄
). No nucleon jump to the pf shell.  

 In the N < Z isotopes, 
24

Si, 
26

Si, the main       excitation comes from the neutron 

side (neutron hole in   ). There is no nucleon excitation to the pf shell; this state has a 

pure p-sd configuration. 

 For 
28

Si with N = Z, these states result from a proton or a neutron promotion with 

equal probabilities, 50% for each type, from    
 ⁄
 to    

 ⁄
. 

For all the rest isotopes with N > Z, these states correspond to a promotion of one neutron 

from sd to the    
 ⁄
 (neutron in pf). No p-sd excitation was found; a pure sd-pf configuration. 

 The 3
-
 state 

The pace of the variation of the 3
- 

state excitation energies predicted by the PSDPF 

interaction agrees well with the experimental one, as illustrated Figure III-7.  

From Figures III-14, we get the following observations: 

 In the N < Z isotopes, 
22

Si, 
24

Si, 
26

Si, these states result from the main    
 ⁄
 

   excitation, which comes from the neutron side (neutron hole in    
 ⁄
). There is no 

nucleon excitation to the pf shell; it has a pure p-sd configuration. 

 For 
28

Si with N = Z, the 3
- 
state has almost a pure       

 ⁄
 excitation corresponding 

to a nucleon in pf shell. This excitation comes from a proton or a neutron promotion 

with same probability, 50% for each type. 

 For the isotopes with N > Z, 
30

Si, 
32

Si, 
34

Si, these states correspond to one neutron 

jump from sd to the    
 ⁄
 (neutron in pf). No p-sd excitation was found; a pure sd-pf 

configuration. 

 

 The 4
-
 and 5

- 
states  

The variation shapes of the 4
-
 and 5

- 
states are quite well reproduced by the PSDPF 

interaction; see Figures III-8, III-9.  

From the shell occupation probabilities of the 4
-
 and 5

- 
states, shown in Figure Ⅲ-15, Ⅲ-

16, one can catch the following comments: 
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 Only in the N < Z isotope, 
22

Si, these 4
-
 and 5

- 
states have a main excitation resulting 

from the neutron    
 ⁄
    jump (neutron hole in    

 ⁄
). There is no nucleon 

excitation to the pf shell; these states have a pure p-sd configuration. 

 In the N < Z other isotopes, 
24

Si, 
26

Si, these states result from promotion of proton 

across the sd-pf shells, mainly to the    
 ⁄
. That means these states have a pure sd-pf 

configuration corresponding to a proton in fp. 

 As for the 3
-
 state in 

28
Si with N = Z, the 4

-
 and 5

- 
states have almost a pure       

excitation corresponding to a nucleon in pf shell mainly in    
 ⁄
. This excitation 

comes from a proton or a neutron promotion with same probability, 50% for each 

type. 

 For the isotopes with N > Z, 
30

Si, 
32

Si, 
34

Si, these states have similar configuration that 

corresponds to a one neutron jump from sd to the    
 ⁄
 (neutron in pf). No p-sd 

excitation was found, i.e. a pure sd-pf configuration. 
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The 2
+
 state 

                           

                                   Figure Ⅲ-10: Shell occupation probabilities of the 2
+ 

state.  
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The 3
+
 state 

                        Figure Ⅲ-11: Shell occupation probabilities of the 3
+ 

state. 
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The 4
+
 state

 

 

                          Figure Ⅲ-12: Shell occupation probabilities of the 4
+
 state. 
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The 1
-
 state 

 

                           Figure Ⅲ-13: Shell occupation probabilities of the 1
-
 state. 
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The 3
-
 state 

                      Figure Ⅲ-14: Shell occupation probabilities of the 3
-
 state. 
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The 4
-
 state 

 

                          Figure Ⅲ-15: Shell occupation probabilities of the 4
-
state. 
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The 5
-
 state 

 

                          Figure Ⅲ-16: Shell occupation probabilities of the 5
-
 state. 
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Conclusion  

 

We used the PSDPF interaction to calculate the excitation energies of the first + states 

2
+
, 3

+
, 4

+
, and ‒ states 2

‒
, 3

‒
, 4

‒
, 5

‒ 
in the even-A silicon isotopic chain. Their shell occupation 

probabilities were also calculated. From this study, we can conclude the following points: 

 The comparison of our results to the observed excitation energies shows a good 

agreement between experience and theory.  

 This study allowed us to make important predictions of the J
π
 for isotopes that not only 

do not have these states but also to have an idea of their energies (see the Appendix). 

 We can note that in the case of the even-A isotopes, the ground state has a J
π
 = 0

+
. 

 As it is expected, for the isotopes near N = 8 closure, the negative parity states result 

from a hole in p shell. While near N = 20 closure, these states result from the 

promotion of one nucleon to pf shell. 

In conclusion, the results of our calculations, discussed in this chapter, have enabled us to 

demonstrate that the PSDPF interaction very satisfactorily reproduces normal and intruder 

states in sd-region. 
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    General Conclusion 

Our work was devoted to carrying out a systematic study, using PSDPF 

interaction, of the first + and ‒ excited states in even-A silicon isotopic chain. We focused on 

even-A silicon (with A = 22 to 34), since they are located between in the middle of the sd 

shell, which could not be included in the fit of the PSDPF interaction. 

We used the PSDPF interaction to describe the spectroscopic properties, excitation 

energy spectra, and wave functions, of the first 0 and 1ħω (+ and ‒) states of the even-A 

isotopic chain of silicon. Concerning nuclei with N < Z, that are experimentally less studied, 

we have used the mirror nuclei to determine the    of the uncertain or undefined states. 

Important predictions have been proposed for each isotope studied. This study allowed 

us to confirm ambiguous states and to predict spins and/or parities for the indeterminate states 

in these isotopes, concerning the test states. The obtained results show a good agreement 

theory versus experiment for the excitation energies of the test states. 

This study allowed us to understand the systematic variation of the different + and ‒ 

test states excitation energies throughout the studied isotopes following their wave function. 

This gives us an idea of the evolution of the nuclear structure within an isotopic chain. The 

systematic evolution was well reproduced using the PSDPF interaction. 

In conclusion, we can say that the PSPDF interaction successfully described the 

spectroscopic properties of the studied isotopes; and gives more credit to it.  
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      Appendix ‒A 
Table contains the experimental and the theoretical values of the 

excitation energies of the test states in even‒A Si isotopes. 

 

      2
+
    3

+
    4

+
    1

- 
   3

- 
   4

- 
   5

- 

                                     The excitation energies
 

22
Si Cal  3.219  4,947  6,903  6,820  6,454  8,844  9,999 

Exp  3.199  4.584  4.75  7.649    

24
Si Cal  2.116  4,927  4,069  6,511  6,490  8,110  8,602 

Exp  1.879   3.471     

26
Si Cal  1,878  3,990  4,397  6,663  6,716  7,899  8,318 

Exp  1.797  3.757  3.842  7.886  6.787  7.282  7.522 

28
Si Cal  1,892  6,470  4,645  7,227  7,176  8,604  8,767 

Exp  1.779  6.276  4.617  8.904  6.878  8.413  9.702 

30
Si Cal  2,235  4,787  5,274  6,665  5,773  6,249  7,360 

Exp  2.235  4.830  5.279  6.744  5.487  6.503  7.043 

32
Si Cal  2,044  5,602  5,589  5,241  5,495  6,502  5,725 

Exp  1.941  5.893  5.502  6.195  5.288    6.195 

34
Si Cal  4,380  5,715  7,565   4,876  4,790  4,254  4,839 

Exp  3.327       4.265  4.971  4.971 

 

Table A-1: Experimental versus the theoretical excitation energies values of the test states. 
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       Appendix ‒B 
Tables containing the shell occupation probabilities in even-A silicon 

isotopes. 

  22
Si: 

           For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2 2p1/2 

   0
+
 4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 0.0  0.0  0.0 0.0 0.0  0.0 0.0 

   3
+
 4.0 2.0  0.0 0.0  0.0 0.0  0.0 0.0 0.0 

   4
+
 4.0 2.0 0.0 0.0 0.0 0.0 0.0  0.0 0.0 

   1
-
 3.864 1.693  0.268 0.110   0.068 0.0  0.0  0.0 0.0 

   3
-
 3.873 1.269 0.748  0.016  0.094  0.0 0.0 0.0 0.0 

   4
-
 3.884 1.262 0.749  0.007  0.098  0.0  0.0  0.0 0.0 

   5
-
 3.864 1.289 0.706 0.036  0.105  0.0  0.0  0.0 0.0 

                          Table B-1: Shell occupation probabilities for neutrons in 
22

Si. 

          For protons : 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2 2p1/2 

   0
+
 4.0 2.0 5.411 0.368 0.222 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 4.655  1.114 0.231 0.0  0.0  0.0 0.0 

   3
+
 4.0 2.0  4.819  0.983  0.197  0.0  0.0  0.0 0.0 

   4
+
 4.0 2.0  3.931 1.877  0.192 0.0  0.0  0.0 0.0 

   1
-
 3.913 1.602 5.025  1.049  0.341  0.0445  0.004  0.020 0.002 

   3
-
 3.968 1.995 4.754  0.756  0.422 0.085  0.003  0.145 0.003 
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   4
-
 3.977 1.999  4.288 1.178  0.436  0.106  0.003  0.012 0.002 

   5
-
 3.965 1.998 4.376 1.159 0.387  0.100  0.003  0.010 0.001 

                           Table B-2: Shell occupation probabilities for protons in 
22

Si. 

 
24

Si: 

          For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 1.733 0.154 0.113 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 1.709  0.202  0.089 0.0 0.0  0.0 0.0 

   3
+
 4.0    2.0 1.528  0.357 0.115  0.0 0.0  0.0 0.0 

   4
+
 4.0 2.0 1.763  0.089   0.149 0.0  0.0  0.0 0.0 

   1
-
 3.695       1.535 2.222  0.371  0.163  0.008  0.003  0.003 0.0 

   3
-
 3.801    1.402 2.280 0.233 0.278 0.003  0.001  0.003 0.0 

   4
-
 3.962     1.914  1.487 0.427  0.198  0.006  0.002  0.004 0.002 

   5
-
 3.926    1.769 1.747  0.316  0.225  0.006  0.001  0.010 0.001 

                        Table B-3: Shell occupation probabilities for neutrons in 
24

Si. 

For protons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0  2.0 5.040 0.536 0.424 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 4.842    0.715 0.443  0.0  0.0  0.0 0.0 

   3
+
 4.0    2.0 4.580 0.938  0.482  0.0  0.0  0.0 0.0 

   4
+
 4.0 2.0 5.075 0.498 0.427 0.0  0.0  0.0 0.0 

   1
-
 3.934  1.917 4.367  1.062  0.655  0.028  0.020  0.014 0.004 

   3
-
 3.948    1.984  4.500 0.824  0.616  0.090  0.015 0.019 0.004 

   4
-
 3.991    1.995 4.214 0.512  0.438  0.449  0.321  0.034 0.046 
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   5
-
 3.976    1.994 4.288  0.585  0.510  0.433  0.156  0.035 0.024 

                         Table B-4: Shell occupation probabilities for protons in 
24

Si. 

26Si: 

For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0    2.0 3.251 0.365 0.384 0.0 0.0 0.0 0.0 

   2
+
 4.0    2.0 3.207 0.418  0.374 0.0 0.0  0.0 0.0 

   3
+
 4.0 2.0 3.247  0.396 0.357  0.0 0.0  0.0 0.0 

   4
+
 4.0 2.0 3.473  0.286 0.241  0.0  0.0  0.0 0.0 

   1
-
 3.628 1.531 3.638  0.543  0.646   0.005 0.004 0.005 0.001 

   3
-
 3.762     1.458 3.632  0.585  0.536  0.010  0.002  0.014 0.001 

   4
-
 3.986    1.982 2.948 0.467 0.580 0.022 0.005 0.007 0.002 

   5
-
 3.991    1.992 2.889 0.511 0.572 0.029 0.004 0.012 0.002 

                          Table B-5: Shell occupation probabilities for neutrons in 
26

Si. 

For protons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

  0
+
 4.0 2.0 4.804 0.601 0.595 0.0 0.0 0.0 0.0 

  2
+
 4.0 2.0 4.696  0.691 0.6134  0.0  0.0  0.0 0.0 

  3
+
 4.0 2.0 4.483 0.687 0.830  0.0  0.0  0.0 0.0 

  4
+
 4.0 2.0  4.851  0.551 0.598   0.0 0.0  0.0 0.0 

   1
-
 3.945 1.962 4.177 1.089  0.778  0.027  0.011  0.011 0.003 

   3
-
 3.934  1.974 4.287 0.933 0.769 0.073 0.008 0.018 0.004 

   4
-
 3.992    1.995 3.966 0.559 0.568 0.622 0.253 0.034 0.010 

   5
-
 3.992   1.998 3.860 0.646 0.576 0.745 0.134 0.043 0.006 

                          Table B-6: Shell occupation probabilities for protons in 
26

Si. 
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28Si: 

For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 4.598 0.760 0.642 0.0 0.0 0.0 0.00 

   2
+
 4.0 2.0 4.236    1.020 0.744 0.0 0.0  0.0 0.0 

   3
+
 4.0 2.0 4.544 0.737 0.720 0.0 0.0  0.0 0.0 

   4
+
 4.0 2.0 4.182  0.940 0.878 0.0 0.0 0.0 0.0 

   1
-
 3.788    1.807 4.177 1.113 1.019 0.037 0.015 0.036 0.007 

   3
-
 3.986    1.996 3.906 0.822 0.809 0.305 0.032 0.131 0.014 

   4
-
 3.990   1.998 3.862 0.834 0.829 0.306 0.027 0.143 0.012 

   5
-
 3.994   1.999 3.660 1.084 0.771 0.415 0.004 0.071 0.002 

                         Table B-7: Shell occupation probabilities for neutrons in 
28

Si 

For protons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 4.598 0.760 0.642 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 4.236 1.020 0.744 0.0 0.0 0.0 0.0 

   3
+
 4.0 2.0 4.544 0.736 0.720 0.0 0.0 0.0 0.0 

   4
+
 4.0 2.0 4.182  0.940 0.878 0.0 0.0 0.0 0.0 

   1
-
 3.788   1.807 4.178 1.113 1.020 0.037 0.015 0.037 0.007 

   3
-
 3.986    1.996 3.906 0.822 0.809 0.305 0.032 0.131 0.014 

   4
-
 3.990    1.998 3.862 0.834 0.829 0.306 0.027 0.143 0.012 

   5
-
 3.994       1.999 3.658 1.084 0.770 0.418 0.004 0.071 0.002 

                           Table B-8: Shell occupation probabilities for protons in 
28

Si. 
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30Si: 

For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 5.437  1.367 1.196 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 5.345    1.251 1.404 0.0 0.0  0.0 0.0 

   3
+
 4.0 2.0  5.052    1.341 1.607  0.0 0.0  0.0 0.0 

   4
+
 4.0 2.0 5.023  1.456 1.520 0.0 0.0 0.0 0.0 

   1
-
 3.989    1.985 5.231 1.184 0.781 0.133 0.636 0.030 0.030 

   3
-
 3.988    1.999 5.081 1.052 1.040 0.703 0.024 0.106 0.007 

   4
-
 3.995    1.200 4.816 1.346 0.913 0.875 0.011 0.0043 0.002 

   5
-
 3.999    1.200 4.752 1.015 1.308 0.860 0.007 0.058 0.002 

                          Table B-9: Shell occupation probabilities for neutrons in 
30

Si. 

For protons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 4.990 0.608 0.402 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0  4.800 0.780 0.421 0.0 0.0 0.0 0.0 

   3
+
 4.0 2.0 4.518 1.006 0.477 0.0 0.0 0.0 0.0 

   4
+
 4.0 2.0 4.543    0.956 0.501 0.0 0.0 0.0 0.0 

   1
-
 3.979    1.934 4.682 0.767 0.580 0.022 0.016 0.010 0.010 

   3
-
 3.988    1.995 4.441 0.810 0.635 0.088 0.008 0.030 0.005 

   4
-
 3.993    1.998 4.286 0.943 0.726 0.042 0.002 0.010 0.001 

   5
-
 3.996    1.999 4.289 0.921 0.728 0.049 0.003 0.014 0.001 

                            Table B-10: Shell occupation probabilities for protons in 
30

Si. 
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32Si: 

For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 5.831   1.622 2.547 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0  5.820    1.557 2.623 0.0 0.0  0.0 0.0 

   3
+
 4.0 2.0  5.800  1.855 2.345 0.0 0.0  0.0 0.0 

   4
+
 4.0 2.0 5.578  1.643 2.779 0.0 0.0 0.0 0.0 

   1
-
 3.999  1.998 5.684 1.717 1.624 0.077 0.871 0.013 0.018 

   3
-
 3.992    2.0 5.712 1.354 2.114 0.571 0.116 0.133 0.010 

   4
-
 4.0    2.0 5.88 1.422 2.020 0.842 0.049 0.078 0.001 

   5
-
 4.0    2.0 5.696 1.704 1.645 0.908 0.008 0.038 0.001 

                             Table B-11: Shell occupation probabilities in neutrons in 
32

Si. 

For protons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 5.20  0.535 0.260 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 4.996 0.741 0.263 0.0 0.0 0.0 0.0 

   3
+
 4.0 2.0 4.720  0.876 0.404 0.0 0.0 0.0 0.0 

   4
+
 4.0 2.0 4.606 1.056 0.338 0.0 0.0 0.0 0.0 

   1
-
 3.998   1.994 4.865 0.732 0.402 0.001 0.006 0.001 0.003 

   3
-
 3.985    1.993 4.805 0.673 0.405 0.094 0.009 0.029 0.007 

   4
-
 3.998    2.0 4.800 0.692 0.483 0.023 0.001 0.005 0.0 

   5
-
 3.999    2.0 4.721 0.754 0.483 0.034 0.0 0.009 0.0 

                          Table B-12: Shell occupation probabilities for protons in 
32

Si. 
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34Si: 

For neutrons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 6.0 2.0 4.0 0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 6.0 2.0  4.0 0.0 0.0  0.0 0.0 

   3
+
 4.0 2.0 6.0 2.0 4.0  0.0 0.0  0.0 0.0 

   4
+
 4.0 2.0 6.0 2.0 4.0 0.0 0.0 0.0 0.0 

   1
-
 4.0 2.0 5.946    1.964 3.132 0.065 0.916 0.006 0.002 

   3
-
 4.0 2.0 5.957 1.865 3.245 0.852 0.020 0.059 0.003 

   4
-
 4.0 2.0 5.979    1.874 3.149 0.983 0.004 0.011 0.0 

   5
-
 4.0 2.0 5.965 1.954 3.096 0.954 0.011 0.019 0.001 

                            Table B-13: Shell occupation probabilities for neutrons in 
34

Si. 

For protons: 

   1p3/2  1p1/2   1p5/2   2s1/2  1d3/2   1f7/2 2p3/2 1f5/2
 

2p1/2
 

   0
+
 4.0 2.0 5.732   

 
 0.124

 
1.443

 
0.0 0.0 0.0 0.0 

   2
+
 4.0 2.0 4.793 1.028 0.179 0.0 0.0 0.0 0.0 

   3
+
 4.0 2.0 4.859  0.959 0.182 0.0 0.0 0.0 0.0 

   4
+
 4.0 2.0 4.835 0.093 1.073 0.0 0.0 0.0 0.0 

   1
-
 3.998    1.996 5.361 0.380 0.259 0.0 0.004 0.0 0.0 

   3
-
 3.994    1.999 5.321 0.337 0.291 0.050 0.001 0.007 0.002 

   4
-
 4.0    2.0 5.182 0.473 0.344 0.001 0.0 0.0 0.0 

   5
-
 4.0 2.0 5.312 0.357 0.316 0.011 0.0 0.004 0.0 

                             Table B-14: Shell occupation probabilities for protons in 
34

Si. 

 


