الجمهورية الجزائرية الديمقر اطية الشعبية Jbgsgd SESNIV وزارة التعليم العالى والبحث العلمي الما المور التوقو عام الطبقة و المارة PACUTE DES SCIENCES EXACTES SCIENCES DE LA NATURE ET DE INIVERSITE DE TEBESS جامعة العربي التبسى - تبسة -كلية العلوم الدقيقة وعلوم الطبيعة والحياة قسم: علوم المادة مأكرة ماستر أكاديمي الميدان: علوم المادة الفرع: فيزياء التخصص: فيزياء المواد الموضوع: دراسة وتحديد خصائص الأغشية الرقيقة لثانى أكسيد التيتانيوم المطعم بالألمنيوم (Al:TiO₂) المحضرة بطريقة محلول-هلام من تقديم : سعدود زينب سوفي جيهان أمام لجنة المناقشين المكونة من: فرح هشام أستاذ محاضر - أ- جامعة العربي التبسي - تبسة - رئيسا حنينى فوزي أستاذ محاضر - أ- جامعة العربي التبسى – تبسة - مؤطرا فردي عبد الحميد أستاذ محاضر - ب- جامعة العربي التبسي - تبسة - مناقشا تاريخ المناقشة: 2020/06/15

République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université Larbi Tébessa –Tébessa Faculté des Science Exactes et des Sciences de la Nature et de la Vie

Déclaration sur l'honneur de non-Plagiat

(À joindre obligatoirement au mémoire; Remplie et signée)

Nous soussignions

Nom, prénom: Soufi Dzihene & Saadcend Zinel N° de carte d'étudiant: (1) 34020194 (2) 34020480

Régulièrement inscrits (es) en Master au Département Sciences de la Matière

Année universitaire:2019/2020

Domaine: Sciences de la matière

Filière: Physique

Spécialité: physique des matériaux

Intitulé du mémoire:

در است و تحدید خصا شور الحقانية الرغبة ق لثان عمسد النبتانيوم

Attestons que notre mémoire est un travail original et que toutes les sources utilisées ont été indiquées dans leur totalité. Nous certifions également que nous n'avons ni recopié ni utilisé des idées ou des formulations tirées d'un ouvrage, article, ou mémoire, en version imprimée ou électronique, sans mentionner précisément leur origine et que les citations intégrales sont signalées entre guillemets.

Sanctions en cas de plagiat prouvé:

Les étudiants seront convoqués devant le conseil de discipline, les sanctions prévues selon la gravité du plagiat sont:

(2):

- L'annulation du mémoire avec possibilité de le refaire sur un sujet différent.

- L'exclusion d'une année du master.

(1):

- L'exclusions définitive.

2020 أكتوبر 2020 Fait à Tébessa, le:

Signature des étudiants (es):

ملخص:

تم تحضير الشرائح الرقيقة لثاني أكسيد التيتانيوم المطعم بذرات الألمنيوم فوق مساند من الزجاج بإستخدام طريقة محلول-هلام وبإعتماد تقنية *الطرد المركزي*.

بينت أطياف الأشعة السينية أن العينات الغير مطعمة لها بنية بلورية من نوع أناتاز مع نمو تفضيلي وفق الإتجاه (101).

الشرائح الرقيقة للعينات المحضرة تكون شفافة في المجال المرئي في حدود 90 %. كما توحي الإزاحة المسجلة نحو الأزرق لحافة الإمتصاص لـ TiO₂ مع زيادة تركيز Al إلى زيادة في عرض النطاق البصري الممنوع.

يتراوح النطاق البصري الممنوع للأفلام الغير مطعمة والمطعمة بذرات . الألمنيوم منBurstein-Moss إلى 3,67 eV ، بسبب تأثير Burstein-Moss .

قيم قرينة الإنكسار تتناقص مع زيادة التطعيم بالألمنيوم من () إلى 7 % وزني وفي نفس الوقت المسامية تتزايد.

الكلمات المفتاحية :

الشرائح الرقيقة Al:TiO₂ ، محلول - هلام ، التطعيم، الأشعة فوق البنفسجية و والمرئية، الفجوة البصرية. Study and characterization of thin films of titanium dioxide doped with aluminum (Al :TiO₂) obtained by Sol-Gel technique.

Abstract

Undoped and Al-doped TiO₂ ($Al:TiO_2$) thin films were deposited by sol-gel spin coating technique onto the glass substrates.

XRD spectra show that the undoped sample are polycrystalline of anatase structure with $(1\ 0\ 1)$ plan as preferential orientation.

The optical transmittance of simples is about 90% in the visible region.

A blue shift in the absorption edge of TiO_2 with increasing Al concentration in the film is noteworthy as it leads to increase in the width of the optical transmission.

The determined band gap of undoped and Al doped films varies from 3,50 to 3,67 eV, which is in accordance to *Burstein-Moss* shift.

The values of refractive index decreases with increasing Al concentration, in parallel the porosity increases.

<u>Keywords:</u> Thin films Al:TiO₂, Sol- gel, doping, UV-vis, Optical gap.

Etude et caractérisation des couches minces de dioxyde de titane dopé en aluminium (TiO2:Al) obtenues par voie Sol-Gel

Résumé

Des couches minces de **TiO**₂ non dopé et dopé en aluminium (**Al:TiO**₂) ont été préparées par la méthode *Sol-Gel* et déposées selon le procédé *spin-coating* sur des substrats en verre.

La structure de l'échantillon non dopé est celle d'une phase anatase avec une orientation préférentielle suivant l'axe (101).

La transmittance est de l'ordre de 90% dans le visible.

Un décalage vers le bleu dans le bord d'absorption du TiO_2 avec une concentration croissante en Al dans le film est remarquable car elle conduit à augmenter dans la largeur de la transmission optique.

La largeur de bande déterminée de films non dopé et dopé en Al varie de 3,50 à 3,67 eV, du à l'effet *Burstein-Moss*.

Les valeurs de l'indice de réfraction diminuent avec l'augmentation du dopage en aluminium et en même temps la porosité volumique augmente.

<u>Mots clés</u>: couches minces Al: TiO₂, Sol- gel, dopage, UV-vis, gap optique.

إلى من بلغ الرسالة وأدى الأمانة ونصح الأمة..إلى نبي الرحمة و نور العالمي<u>ن. *سيدنا محمد*</u> "صلى الله عليه و سلم".

إهداء

إلى ملاكي و بسمتي في الحياة. إلى معنى الحب و الحنان و التفاني. إلى سر الوجود. إلى سندي وقوتي و ملاذي بعد الله. إلى من كان دعائها سر نجاحي و حنانها بلسم جراحي. إلى أغلى الحبايب "أمي الحنونة".

إلى الذي ودعته مبكرا لكن روحي لازالت ترافقه أينما كان "*أبي*".

إلى من أرى التفاؤل بعينها و السعادة في ضحكتها إلى الوجه المفعم بالبراءة إلى القلب الناصع بالبياض" **جنتي"**

إلى جميع أفراد أسرتي كبيرا و صغيرا. إلى توأما روحي ..إلى صاحبين القلب الطيب المدلل "أحمد وسيم" والصغير "محمد أيوب".

إلى صديقتي العزيزة. إلى من رافقتني طوال مساري الدراسي و أتمت معي هذا العمل خطوة بخطوة *"زينوية"*

إلى أخي الذي لم تلده أمي. إلى من تحلى بالإخاء و تميز بالوفاء و العطاء. إلى من كان معي على طريق النجاح "فارس عليم". المدن حطوم الله اخمة مدالله "طلاب قسم علمم الملام"

سوفي جيھ

إلى من جعلهم الله إخوتي بالله **"طُلاب قسم علوم المادة".** إلى كل هؤلاء أهدي ثمرة هذا الجهد المتواضع

إهداء

الحمد لك اللهم سددت خطاي لخير ديني و دنياي. أهدي تخرجي إلى معلم البشرية أجمعين الهادي الأمين..إلى منارة العلم ..إلى سيد الخلق رسولنا الكري سيدنا محمد صلى الله عليه وسلم. إلى التي فاق عطاؤها كل بروج الأنانية..إلى التي جن تحت قدميها.. إلى التي لن يفي شكري حقها. إلى التي

تستحق جائزة نوبل للعطاء و الحب. إلى نبع ا "أمي الحبيبة".

إلى الذي شقى لأرتاح. إلى مرفأ ترسو عليه إلى مز إذا إشتدت عواصف الأيام ونابيات الزمان" في العام

إلى من كان معي لحظة بلحظة سندي في الحياة ورافقني بالصعود إلى القمة" نصح الطبي" دمت سندا

إلى براعم أز هرت في نفسي. إلى من أبثهن وجعي و نجواي. إلى من تقاسمت معهن كل تقاسيم الحياة "*إخواتى الغاليات*".

علوم المادة

أهدي لكم هذا العمل

سعدود زينب

الحمد لله الذي أنار لنا درب العلم و المعرفة و أعاننا على أداء هذا الواجب ووفقنا على إنجاز هذا العمل.

في مثل هذه اللحظات يتوقف القلم ليفكر قبل أن يخط الحروف ليجمعها في كلمات تمر في الخيال ولا يبقى لنا في نهاية المطاف إلا قليلا من الذكريات تجمعنا بأساتذتنا الكرام وبرفاق كانوا إلى جانبنا. فواجب علينا شكرهم ونحن نخطو خطوتنا الأولى في غمار الحياة ونخص بجزيل الشكر و الإمتنان إلى من أشعل شمعة في دروب عملنا ووقف على المنابر وأعطى من حصيلة فكره و نصائحه القيمة لينير دربنا أستاذنا المشرف " فوري حليتي " أستاذ محاضر - أ- بقسم علوم الشكرة و الإمتنان إلى من أشعل شمعة في دروب عملنا ووقف على المنابر وأعطى من حصيلة فكره و نصائحه القيمة لينير دربنا أستاذنا المشرف " فوري حليتي " أستاذ محاضر - أ- بقسم علوم المادة، كلية العلوم الدقيقة وعلوم الطبيعة والحياة، جامعة العربي التبسي - تبسة. عذرا متاذنا فلم نجد في جميع القواميس والمعاجم الكلمات التي تثني مجهوداتك الجبارة لأتك مدرسة أستاذنا فلم نجد في جميع القواميس والمعاجم الكلمات التي تثني مجهوداتك الجبارة لأتك مدرسة كامتاذنا فلماذ تعلمنا فيها الأخلاق والعلم والمثابرة وإتقان العمل. نسأل الله أن يثيبك خير الثواب.

كما نتقدم بالشكر والتقدير والإحترام للسادة الأفاضل في لجنة المناقشة بقسم علوم المادة، كلية العلوم الدقيقة وعلوم الطبيعة والحياة، جامعة العربي التبسي- تبسة: الأستاذ "فرح هشام " أستاذ محاضرة- أ- و الأستاذ "فردي عبد الحميد " أستاذ محاضر- ب-. لقبولهم مناقشة هذه المذكرة، وإفادتنا بملاحظات قيمة بما يثري هذه المذكرة.

وإنه لمن دواعي الشرف و السرور أن نتقدم بوافر الشكر والعرفان إلى جميع أساتذة قسم علوم المادة. ولا ننسى في هذا المقام أن نتقدم بالشكر الجزيل لإدارة القسم: أساتذة ، إدارين وعمال على حسن توفيرهم و تسهيلهم الخدمات للطلاب، فنسأل الله أن يوفقهم جميعا لما فيه الخير وأن يحفظهم بحفظه.

كما نتوجه بخالص الشكر لطالبة الدكتوراه " درار خولة " لما قدمت لنا من مساعدة، جزاها الله عنا كل خير.

وكذلك نتقدم بالشكر الكبير إلى من قدموا لنا المساعدات و الأفكار ربما دون أن يشعروا بدورهم و نخص منهم " فارس عليم" " رجب شروق " " " بوديار مريم" " طالبي أنور " ولكل أفراد دفعتنا نتمنى لهم التوفيق .

وفي الختام نتقدم بخالص الشكر والتقدير والعرفان لكل من مد لنا يد العون أو أسدى لنا معروفا، أو كان له إسهاما صغيرا أو كبيرا في إخراج هذه الدراسة إلى النور.

جزاكم *الله* عنا خير الجزاء.

ملخص	Ι
Abstract	II
Résumé	III
الإهداء	IV
شکر وتقدیر	VI
قائمة المحتويات	VIII
قائمة الجداول	XII
قائمة الأشكال	XIII
قائمة الرموز	XVII
قائمة المصطلحات	XVIII
المقدمة	1

سيد التيتانيوم TiO2	ات حول ثانی اک	الفصل الأول: عمو ميا
---------------------	----------------	----------------------

3	تعريف الأغشية الرقيقة	1. I
3	مراحل تشكل الأغشية الرقيقة	2. I
3	1.2.I . التنوي	
4	2.2.I. الإلتحام	
4	3.2.I. النمو	
5	I. 3. تصنيف أنماط النمو	
6	ثاني أكسيد التيتانيوم (TiO ₂)	4. I
8	البنية البلورية لـ TiO2	5. I
8	I.5.I. طور الأناتاز (Anatase)	
8	.I. 2.5. طور الروتيل (Rutile)	

	.3.5. طور البروكيت (Brookite)	9
6. I	استقرار الأطوار البلورية لـ TiO ₂	11
7. I	خصائص TiO ₂	13
	I. 7. الخصائص الإلكترونية	13
	I. 2.7. الخصائص الصبغية	13
	I. 3.7. الخصائص الضوئية	14
	I. 4.7. الخصائص الكهربائية	15
8. I	طرق تحضير الأغشية الرقيقة	15
	I. 8. طريقة محلول – هلام	16
	1.1.8.I. مبدأ عمل طريقة محلول-هلام	17
	2.1.8.I. آليات التفاعل لطريقة محلول - هلام	18
	I. 3.1.8. أنواع طريقة محلول-هلام	18
	1.3.1.8.I. تقنية الترسيب بالغمس سحب	18
	2.3.1.8.I. تقنية الطرد المركزي	20
	4.1.8. I. التجفيف والمعالجة الحرارية	21
	5.1.8. I. مزايا و عيوب طريقة محلول – هلام	21
9. I	التطعيم في TiO2	22
	n. التطعيم من نوع n.1.9. I	22
	p. التطعيم من نوع p. التطعيم من نوع p	23
10. I	تطبيقات ثاني أكسيد التيتانيوم	24
	I. 10. مستشعرات الغاز	24
	I. 2.10. التحفيز الضوئي	25
	.I. 10. الخلايا الشمسية	27
	4.10.I. ظواهر ''محبة للماء''	28
	الفصل الثاني: تحضير العينات ومختلف تقنيات التحليل المستعملة	
1.II	تنظيف الركائز	29

قائمة المحتويات

30	تحضير المحلول	2.II
33	الترسيب بواسطة طريقة محلول – هلام	3.II
35	تقنيات تحليل الأغشية الرقيقة	4.II
35	1.4.II. تقنية التحليل البنيوي	
35	1.1.4.II. حيود الأشعة السينية (XRD)	
36	1.4.II . مبدأ إنعراج الأشعة السينية	
36	1.1.4.II. 2. قانون براغ	
37	3.1.1.4.II. مبدأ عمل جهاز إنعراج الأشعة السينية	
<i>38</i>	4.1.1.4.II. الجهاز المستعمل في إنعراج الأشعة السينية	
<i>39</i>	5.1.1.4.II. كيفية تحديد ثوابت الشبكة	
<i>39</i>	6.1.1.4.II. تحديد الحجم الحبيبي	
<i>40</i>	2.4.II. تقنية التحليل البصري	
<i>40</i>	1.2.4.II.التحليل الطيفي للأشعة فوق البنفسجية والمرئية (UV-VIS)	
41	1.2.4.II. مبدأ عمل جهاز التحليل الطيفي للأشعة فوق البنفسجية و	
	المرئية	
42	d طريقة قياس السمك d 1.2.4.II	
44	1.2.4.II. تحديد معامل الإمتصاص	
45	1.2.4.II. 4. تحديد الفجوة البصرية	
<i>46</i>	1.2.4.II. 5. تحديد طاقة أورباخ	
	الفصل الثالث: النتائج التجريبية والمناقشة	
<i>48</i>	دراسة الخصائص البنيوية بإستعمال مطيافية إنعراج الأشعة السينية	.1.III
<i>48</i>	1.1. III. دراسة الخصائص البنيوية للأغشية الرقيقة TiO ₂ الغير	
49	مطعمة بAI . 1.1.1. III. المسافة بين المستويات البلورية d _{hkl} و ثوابت الشبكة	
50	D (nm) الحجم الحبيبي .2.1.1. III	
50	دراسة الخصائص البصرية بإستعمال مطيافية (UV-VIS)	.2.III
50	راسة الخصائص البصرية بإستعمال مطيافية (UV-VIS)	در

51	1.2. III. نفاذية الأغشية الرقيقة لـ TiO ₂ المطعم بـ Al
53	2.2. III. حساب سمك الغشاء الرقيق (d)
55	3.2.III. حساب معامل الإنكسار (n) والمسامية (P)
57	${f E}_{00}$ حساب الفجوة البصرية ${f E}_{ m g}$ والطاقة اورباخ 4.2 .III
62	الاستئتاجات
64	قائمة المراجع

_	قائمة الجداول	
صفحة	العنوان ال	<i>جدول رقم</i> :
	الفصل الأول: عموميات حول ثاني أكسيد التيتانيوم TiO2	1
10	مقارنة بعض الخصائص لمختلف الهياكل البلورية لـ TiO ₂	الجدول (1.1)
12	إستقرار الأطوار البلورية لـ TiO ₂ كدالة لحجم البلورات النانوية	الجدول (2.I)
15	مقارنة معاملات إنكسار TiO ₂ بالألماس و ZnO وCaCo ₃ وCaCo	الجدول (3.1)
	الفصل الثالث: النتائج التجريبية و المناقشة	
50	القيم المحسوبة من خلال تحليل منحنى إنعراج الأشعة السينية	الجدول(1.III)
54	القيم المحسوبة لسمك الأغشية الرقيقة (d) بدلالة نسب التطعيم	الجدول(2.III)
55	قيم كل من قرائن الإنكسار (n) والمسامية (p) بدلالة نسبة التطعيم للأغشية الرقيقة Al:6-TiO ₂	الجدول(3.III)
60	قيم كل من الفجوة البصرية E_g و طاقة أورباخ E_{00} بدلالة نسبة التطعيم	الجدول(4.111)

قائمة الأشكال قائمة الأشكال

الصفحة	المعنوان	شکل رقم:
	صل الأول: عمو ميات حول ثاني أكسيد التيتانيوم TiO ₂	(لغد
4	رسم تخطيطي لمرحلة تنوي الأغشية الرقيقة	الشكل (1.I)
4	رسم تخطيطي لمرحلة التحام النوى	الشكل (2.I)
5	مرحلة نمو الأغشية الرقيقة	الشكل (3.1)
6	الأنماط الثلاثة لنمو الأغشية الرقيقة	الشكل (4.1)
7	الأشكال المعدنية لـ TiO ₂ في الطبيعة :أ)الأناتاز؛ ب)الروتيل؛	الشكل (5.1)
	ح)البروكيت	
7	مسحوق ثاني أكسيد التيتانيوم	الشكل (6.1)
8	البنية البلورية لطور الأثاتاز	الشكل (7.I)
9	البنية البلورية لطور الروتيل	الشكل (8.I)
10	البنية البلورية لطور البروكيت	الشكل (9.I)
11	تطور المحتوى الحراري كدالة لحجم البلورات النانوية	الشكل (10.1)
13	تمثيل تخطيطي لبنية المدارات الإلكترونية لـTiO ₂	الشكل (11.I)
14	تغيرات الإنعكاس لمختلف الأطوار البلورية لـTiO ₂ كدالة لطول	الشكل (12.I)
	الموجي	
16	مخطط يبين الطرق الرئيسية لترسيب الأغشية الرقيقة	الشكل (13.I)
19	مراحل ترسيب الأغشية الرقيقة بتقنية الغمس	الشكل (14.1)
20	مبدأ ترسيب الأغشية الرقيقة بتقنية الطرد المركزي	الشكل (15.1)
21	تأثير التحفيف و المعالجة الحرارية على مسامية الأغشية	الشكل (161)

الرقيقة

قائمة الأشكال

الفصل الثالث: النتائج التجريبية والمناقشة

- الشكل(1.111) أطياف حيود الأشعة السينية للأغشية الرقيقة (TiO₂) غير 49 المطعمة بـ Al
- الشكل(2.111) أطياف النفاذية للأغشية الرقيقة أحادية الطبقة من 1-TiO2 52 المطعمة بنسب كتلية (0 ،3 ،5 و 7) % من Al والمعالجة حراريا عند • 2 500 لمدة ساعة ونصف
- الشكل(3.111) أطياف النفاذية للأغشية الرقيقة سداسية الطبقات من 6-TiO₂ 53 المطعمة بنسب كتلية (0، 3، 6 و 7) % من Al والمعالجة حراريا عند •C 500 لمدة ساعة ونصف

الشكل(4.111) تغيرات السمك(d) للأغشية الرقيقة TiO2 غير المطعمة و 54

قائمة الأشكال

المطعمة بذرات Al (3، 5،5%) والمعالجة حراريا عند •C 500 لمدة ساعة ونصف بدلالة نسبة التطعيم

- الشكل(5.111) تغيرات معامل الإنكسار (n) والمسامية (p) للأغشية الرقيقة 56 TiO2 المطعمة بذرات Al والمعالجة حراريا عند •C 500 لمدة ساعة و نصف بدلالة نسبة التطعيم
- الشكل (III 6) تحديد الفجوة البصرية E_g بيانيا للأغشية الرقيقة TiO₂ المطعمة 58 بيانيا للأغشية الرقيقة (6.11 المطعمة بندرات Al بنسب كتلية مختلفة (0 ، 3 ، 5 ، 7 %) والمعالجة حراريا عند •C عند •C لمدة ساعة ونصف
- الشكل(III.7) تحديد طاقة أورباخ E₀₀ بيانيا للأغشية الرقيقة TiO₂ المطعمة 59 بذرات Al ذات نسب كتلية مختلفة (0 ، 3 ، 5 و 7 %) والمعالجة حراريا عند•C 500 لمدة ساعة ونصف
- الشكل (E₀₀) تغيرات كل من الفجوة البصرية E_g وطاقة أورباخ E₀₀ للأغشية 60 الرقيقة TiO₂ المطعمة بذرات AI والمعالجة حراريا عند •C 500 C لمدة ساعة و نصف بدلالة نسبة التطعيم

قائمة الرموز

المعنى (الوحدة)	الرمز
جذور الهيدروكسيل	OH *
أيونات فائقة الأكسدة	0 ^{-2*}
المسافة البينية بين المستويات البلورية (Å)	d _{hkl}
زاوية إنعراج الأشعة السينية (زاوية براغ)()	$oldsymbol{ heta}$
معاملات ميلر	hkl
الطول الموجي لحزمة الأشعة السينية (Å)	λ
عرض المنحني عند منتصف القمة (rad)	ß
الحجم الحبيبي (nm)	D
النفاذية (%)	T
معامل إمتصاص الأغشية الرقيقة (¹⁻ cm)	A
معامل إمتصاص الركيزة (eV cm ⁻²)	a ₀
معامل الإنكسار	n
قرينة إنكسار الركيزة	ns
ثابت بلانك (J. s)	h
تردد الموجات الضوئية (s ⁻¹)	v
طاقة الفوتون (eV)	hv
أكاسيد موصلة شفافة	TCO
المسامية (%)	Р
حزمة النقل	B_c
حزمة التكافؤ	B_{ν}
طاقة الفجوة البصرية (eV)	E_{g}
طاقة أورباخ (eV)	E 00

الإنجليزية Thin films Semi-conducteurs Crystal structure **Optical characteristics** Structural properties Doping Electrons Donor Acceptor Bonds Cluster X-rays Diffraction Single crystalline Polycrystalline Lattice **Crystalline Levels** interplanar spacing Crystal defects Lattice constants Intensity

العربية

الأغشية الرقيقة أنصاف النواقل البنية البلورية الخصائص البصرية الخواص الهيكلية النطعيم الإلكترونات مانحة مستقبلة ر و ابط مجمو عة الأشعة السينية إنعراج أحادية البلورة متعددة البلورات الشبكة المستويات البلورية المسافة بين المستويات البلورية العيوب البلورية ثوابت الشبكة الشدة

Visible region	المجال المرئي
Ground Condition	الحالة الأرضية
Excited State	الحالة المثارة
Moleules	جزيئات
Thickness	السمك
Source	المصدر
Monochromator	موحد الطول الموجي
Impurities	الشوائب
Blocked gang with	عرض العصابة الممنوعة
Infterference	التداخل
Peaks	قمة
Transmittance	النفاذية
Energy gap	فجوة الطاقة
Urbach energy	طاقة أورباخ
Solvent	المذيبات
Grains	الحبيبات
Granular border	الحدود الحبيبية
Bulk	حجمية
Holes	الفجوات
Amorphous	العشوائية
Ionic radius	نصف القطر الأيوني
Substitutional placements	المواضع الإحلالية
Spectrum	طيف
Conduction band	حزمة النقل

مقدمة عامة

يرتكز هذا العمل على تحضير ثاني أكسيد التيتانيوم (TiO₂) في صيغة شرائح رقيقة بواسطة طريقة مط*ول هلام* وبإعتماد تقنية *الطرد المركزي*. ولقد قمنا بدراسة تأثير التطعيم بالألمنيوم على الخصائص البصرية للشرائح الرقيقة لـ TiO₂.

يعتبر ثاني أكسيد التيتانيوم من الأكاسيد المستقرة كيميائيا، والمتوفر في الطبيعة بكثرة مما يمكن الحصول عليه بأقل كلفة إلى جانب إستخدامه في عدة تطبيقات مختلفة مثل : التحفيز الضوئي [1]، مستشعر الغاز [2]، ظواهر محبة للماء[1]، و كطبقات مضادة للإنعكاس في التحويل الكهروضوئي [2]..... الخ .

تعد دراسة الشرائح الرقيقة من أهم الدراسات التي أثارت إهتماما كبيرا لدى الباحثين في المجال العلمي، و التي يمكن إنتاجها سواء في مواد ناقلة، عازلة أو نصف ناقلة، بحيث يتراوح عادة سمك مختلف الشرائح الرقيقة المرسبة على الركائز المناسبة، من عدة نانومترات وصولا إلى بضع ميكرومترات.

يمكن الحصول على أغشية TiO₂ عن طريق إستخدام العديد من طرق الترسيب المختلفة سواء طرق فيزيائية أو كميائية : الرش بالأمواج فوق صوتية، الإستئصال الليزري، الترذيذ بالتيار المتناوب و محلول-هلام ... إلخ. ومن بين طرق الترسيب المعروفة والبسيطة، تم إعتماد طريقة محلول-هلام في ترسيب أغشيتنا الرقيقة وذلك نظرا لما تمتلكه من مزايا متنوعة، إذ يمكن إعتبار ها من الطرق البسيطة و الغير مكلفة، فهي تجعل من الممكن تطوير مواد مختلفة ذات تجانس جيد في أشكال مختلفة (شرائح رقيقة، مواد هلامية، مساحيق).

تتعلق الدراسة التي أجريت في إطار هذه المذكرة بدراسة تأثير التطعيم بالألمنيوم (AI) على الخصائص البصرية للأغشية الرقيقة من ثاني أكسيد التيتانيوم TiO₂، ولهذا قمنا بتحضير عينات من TiO₂ و المطعمة بـ AI و المرسبة على ركائز من الزجاج العادي تحت الظروف الإعتيادية.

تم الحصول على عينات (wt.0, 3, 5, 7 % Al:TiO₂) بواسطة طريقة محلول- هلام وبإعتماد تقنية الطرد المركزي. العينات المتحصل عليها تكون غير متبلورة، وبالتالي تتطلب

معالجة حرارية عند درجات الحرارية العالية لتحسين خصائصها البلورية [3]، ومن أجل هذا تمت المعالجة الحرارية لمدة ساعة ونصف عند درجة حرارة C°500. ولمعرفة تأثير التطعيم بالألمنيوم على أغشية TiO2 التي تم الحصول عليها، قمنا بإستخدام تقنية " ا*لتحليل الطيفي للأشعة السينية" (XRD)* لتحديد الخصائص البنيوية، أما بالنسبة للخصائص البصرية فقد تم إستعمال تقنية" *(UV-Visible)*.

و على ضوء هذه الأهداف تم تقسيم هذه المذكرة إلى ثلاث فصول بالإضافة الى المقدمة والخاتمة و كذلك قائمة المراجع.

ب الفصل *الأول*

خصص هذا الفصل للدراسة الببليوغرافية لثاني أكسيد التيتانيوم وذلك من خلال عرض مختلف خصائصه البنيوية، الإلكتروضوئية و الكهربائية بالإضافة إلى عرض بعض تطبيقاته التكنولوجية، كما تم عرض مختلف طرق ترسيب الأغشية الرقيقة بإيجاز، في حين تم وصف الطريقة المعتمدة في عملنا هذا (محلول-هلام) بشيء من الإسهاب.

الفصل الثاني

يتمثل في العمل التجريبي من خلال توضيح مختلف مراحل تحضير الأغشية الرقيقة Al:TiO₂، و الأجهزة المستعملة في هذا العمل، بالإضافة إلى عرض مختلف تقنيات التحليل المستخدمة لتمييز الخصائص البنيوية و البصرية للعينات المحضرة التي تم الحصول عليها .

井 الفصل *الثالث*

النتائج التجريبية التي تم الحصول عليها هي موضوع الفصل الثالث، حيث نتعلق بتقديم بيانات التحليل المتحصل عليه للخصائص البنيوية بواسطة إستخدام (XRD) والخصائص البصرية بإستعمال (UV-Visible) للعينات الناتجة Al:TiO₂.

عموميات حول ثاني أكسيد التيتانيوم Tio2

I. I. تعريف الأغشية الرقيقة

الأغشية الرقيقة هي المادة المرسبة على ركيزة ما [4] والتي يكون سمكها 'b' صغير جدا مقارنة بالبعدين الآخرين، هذا الأخير يسبب إضطرابا كبيرا في الخواص الفيزيائية و الكيميائية للمادة المتحصل عليها في هذه الصيغة الجديدة مقارنة بخواصها الثابتة وهي في حالتها الحجمية، ولهذا السبب تلعب الشرائح الرقيقة دورا متزايد الأهمية في تكنولوجيا النانو. ففي الوقت الحاضر، يتم إستخدام مجموعة واسعة من المواد لإنتاج طبقات رقيقة كل حسب تطبيقاتها فمنها الشرائح الرقيقة المستنبطة من: المعادن، السبائك المعدنية والمركبات المقاومة للحرارة (الأكاسيد ، النتريتيدات والكربيدات ...) والمركبات بين المعادن و البوليميرات[5].

2.I. مراحل تشكل الأغشية الرقيقة

يعد ترسيب الأغشية الرقيقة خطوة أساسية في جميع مجالات تصنيع التكنولوجيا الحديثة للمواد التي يمكن أن تكون أنصاف نواقل أو عوازل أو معادن أو أكاسيد [6]، تتم جميع عمليات تشكيل الأغشية الرقيقة عبر ثلاث مراحل أساسية[7]:

- إنتاج الأنواع المناسبة (الأيونية ، الجزيئية ، الذرية) ؛
 - 2. نقل هذه الأنواع إلى الركيزة؛
- 3. يتم تكثيف العناصر المنتجة على الركيزة إما بطريقة مباشرة أو من خلال تفاعل كيميائي أو كهر وكيميائي لتكوين رواسب صلبة، غالبا ما تمر هذه الخطوة بثلاث مراحل: التنوي، الإلتحام و النمو.

I. 2. 1 . التنوي

عندما تصل الأنواع (الذرات أو الجزيئات أو الأيونات) إلى سطح الركيزة، فإنها يمكن أن تتكاثف هناك، و بالتالي يتم ظهور مجموعة من الذرات المكثفة على سطح الركيزة أو مايعرف بالجزر (الشكل(I.I)). حيث أن السمك في هذه الحالة يكون أقل من 5 نانومتر [6،8].

الشكل(1.1): رسم تخطيطي لمرحلة تنوي الأغشية الرقيقة [7].

2.2.I الإلتحام

تتزايد النوى أو بالأحرى الجزر المعزولة في الحجم و أيضا في العدد حتى تصل إلى أقصى كثافة لها [7]. وتتمثل آلية التنوي أو الإلتحام في أن الذرة القادمة إلى سطح الركيزة تنتقل أو تفقد جزءا من طاقتها إلى الشبكة البلورية وما تبقى من طاقتها يسبب هجرة الذرات أو إنتشار ها على سطح الركيزة(الشكل(2.1)). في هذه الحالة يكون السمك بين 10و14 نانومتر [8].

الشكل(2.1): رسم تخطيطي لمرحلة التحام النوى [7].

3.2.I النمو

تعرف هذه المرحلة بالخطوة الأخيرة في عملية إنتاج الشرائح الرقيقة، والتي تبدأ فيها الجزر بالتجميع حتى الوصول إلى سمك معين (من الممكن تحديده مسبقا حسب الطرق المعتمدة). يكون السمك في عملية النمو أكبر من 20 نانومتر [8، 7]. يمكننا إذن تلخيص عملية نمو الطبقة الرقيقة على أنها تسلسل إحصائي للنوي (seed) يتبعها نمو من خلال الإنتشار السطحي و تكوين جزر ذات أبعاد أكبر لتشكيل طبقة مستمرة عن طريق إلتحام هذه الجزر وصولا لمرحلة النمو (الشكل(3.1)) [9].

الشكل (3.1): مرحلة نمو الأغشية الرقيقة [7].

I. 3. تصنيف أنماط النمو

في مقارنة بسيطة، نقوم بتصنيف نمو الأغشية الرقيقة على الركيزة بثلاث أنماط موضحة بشكل تخطيطي (1 ، 2 ، 3) (الشكل (4.1))[6]:

- 1. نمط النمو المتجانس ويكون ثنائي البعد والذي يسمى بـ Frank-VandeMerwe؟
 - 2. نمط النمو الأحادي ويكون في إتجاه واحد فقط المسمى بـ Volmer-Waber؛
 - 3. نمط النمو المختلط والذي يدعى بـ Stranki-Krastanov .

الفصل الأول

الشكل (4.1): الأنماط الثلاثة لنمو الأغشية الرقيقة [6، 7].

4.I. ثانى أكسيد التيتانيوم

يعتبر ثاني أكسيد التيتانيوم (TiO₂) من المواد التي تصنف ضمن أكاسيد المعادن الإنتقالية، حيث تم إكتشافه من طرف البريطانيWilliam Gregor(ويليام جريجور) سنة 1791 بعد فصل المعادن الموجودة في الشواطئ التي تتراكم بها الرمال السوداء (الألمينيت:FeTiO₃) بإستخدام المغناطيس. تبين عند المعالجة بحمض الهيدروكلوريك بقاء أكسيد غير قابل للذوبان وبالتالي كان أول نجس لـ TiO₂ [8 ،10 ،11]. كما أن عام 1795 تم تأكيده من طرف الألماني Martin Heinrich Klaprot (مارتن هاينريش كلابروث) من خلال إكتشافه لنفس الأكسيد في خام الروتيل (الشكل(5.1))[8 ،10].

الشكل(51):الأشكال المعدنية لـTiO2في الطبيعة :أ)الأناتاز؛ ب)الروتيل؛ ج)البروكيت[8].

يعد TiO₂ من أنصاف النواقل ذات النوع n والذي يتميز بفجوة نطاق ممنوع تكون في حدود TiO₂ من أنصاف النواقل ذات الأخير في عدة تطبيقات، كصباغ (الدهانات) بسبب معامل إنكساره العالى الذي يتراوح بين 2,57 و 2,70 حسب نوع التركيب البلوري[11،1].

لقد شهد TiO₂ إهتماما كبيرا لدى الباحثين نظرا لمميزاته العديدة التي يمكن إيجاز ها كما يلى [13،11]:

- ليس سام كيميائيا؛
- شفاف في المجال المرئي (حالة الأغشية الرقيقة)؛
 - مسحوق ذو لون أبيض (الشكل(6.I)).

الشكل(6.1):مسحوق ثاني أكسيد التيتانيوم(المصدر: ويكيبيديا).

I. 5. البنية البلورية لـ TiO2

يتواجد ثاني أكسيد التيتانيوم في ثلاث أشكال بلورية مختلفة هي : *الأناتاز و الروتيل و البروكيل و البروكيت*، ومن أكثرها شيوعا الطورين *الأناتاز و الروتيل و*التي تحظى بإستعمالات عديدة خصوصا في التطبيقات التكنولوجية [8،14].

I.5.I. طور الأناتاز (Anatase)

يمتلك الأناتاز (A-TiO₂) بنية بلورية على شكل رباعي السطوح (Tetragonal) (الشكل(7.1))، تحاط كل ذرة من التيتانيوم بست ذرات من الأكسجين التي ترتبط بثلاث ذرات من التيتانيوم مشكلة مكدس مكعب مشوه (أقصى تشوه) فتكون المسافة بين الرابطة Ti-O في حدود (Å193Å)، يمكن عند درجات الحرارة الأعلى من 700 درجة مئوية أن ينتقل إلى الروتيل [14،8].

الشكل (7.1)؛ البنية البلورية لطور الأناتاز [16].

Rutile) طور الروتيل (Rutile). 1.

يعتبر الروتيل (R-TiO₂) من أكثر الأطوار إستقرارا، إذ يتم الحصول عليه عند درجات الحرارة المرتفعة [15]. يحتوي أيضا على شكل رباعي السطوح (الشكل(8.1))، بحيث تحتل الكاتيونات+⁴Ti نصف مواضع المجموعة TiO₆ (octahedre) التي ترتبط مع بعضها بالحواف و الرؤوس مما يؤدي إلى إنتاج مكدس سداسي مشوه لأيونات²-O (تشوه صغير)، تبلغ طول المسافة المتوسطة لـ O-TiO(Å 1.969Å).

الشكل (1. 8): البنية البلورية لطور الروتيل [16].

(Brookite) طور البروكيت (3.5. I

يحظى البروكيت (B-TiO₂) بإهتمام أقل في المجال العلمي نتيجة عدم توفره بكثرة فهو يعتبر من أصعب الأطوار تحضيرا في المختبرات[1 ،8]، إذ يحتوي على نظام بلوري معيني مستقيم (orthorhombique) ذو بنية أكثر تعقيدا (الشكل(9.1))، يمكن الحصول عليه عادة في المختبرات مع طور الأناتاز عند درجات الحرارة الأقل من درجة حرارة الروتيل، والذي يتحول إليه عند 750درجة مئوية، يتشابه هذا الأخير مع الروتيل في بعض الخصائص أهمها مايلي [1 ،10 ،14]: اللون؛ الصلابة؛ الكثافة و مسافة الرابطة O-T(الجدول(1.1)).

الشكل (9.1)؛ البنية البلورية لطور البروكيت [8، 8].

جدول (1.1): مقارنة بعض الخصائص لمختلف الهياكل البلورية لـ TiO2 [14·2].

نیا)	، أكسيد التيتانيوم (تيتا	ثائي	الإسم
	TiO ₂		الصيغة الكيميائية
البروكيت	الروتيل	الأثاتاز	الطور البلوري
معيني مستقيم	رباعي السطوح	رباعي السطوح	نوع البنية
a =9,182	a =b =4,5933	a =b = 3 ,785	
b = 5,456	c =2,9592	c =9,514	ثوابت الشبكة (Å)
c = 5,143			
4,12	4,24	3,89	الكثافة (g/cm ³)
32,2	34,1	31	حجم الفضاء
-	3,02	3,2	فجوة النطاق (eV)
8	2	4	العدد الذري
0.655	0.705	0.645	كثافة التعبئة
2,58-2,70	2,61-2,89	2,48-2,56	معامل الإنكسار

TiO₂ . استقرار الأطوار البلورية لـ TiO₂

من ناحية الديناميك الحرارية يمكن إعتبار طور الروتيل الأكثر إستقرارا لـ TiO₂ في الحالة الحجمية، ولكن في الصيغ النانوية يعتمد أساسا على حجم البلورات النانوية D(الجدول(2.1)) [14] الذي يعطى بالعلاقة التالية [2]:

حيث:Da هوالحجم البلوري لطور الأناتاز.

الشكل (10.I) :تطور المحتوى الحراري لطور الأناتاز يمثله المنحنى (A) ، أما المنحنى (R) فهو يخص طور الروتيل وبالنسبة لطور البروكيت فهو يوافق المنحنى (B)كدالة لحجم البلورات النانوية[1].

الجدول (2.1): إستقرار الأطوار البلورية لـ TiO₂ كدالة لحجم البلورات النانوية [1،2].

إستقرار الأطوار البلورية لـ TiO ₂					
	الأطوار				
الروتيل	البروكيت	الأناتاز	الأشكال		
			المتعددة		
			لے TiO ₂		
			حجم البل بابت		
D _{nm} ≥35	11≤ D nm≤35	D nm≤11	البنور ال الذانوية		
			D _{nm} (nm)		
	D=D _b				
	يتحول الأناتاز والبروكيت مباشرة إلى الروتيل .				
	$D < D_b$		التحولات		
	يتحول الأناتاز إلى البروكيت الذي يتحول بعد ذلك للروتيل.		الطورية		
	يتحول الأناتاز مباشرة إلى الروتيل.				
	D>D _b		المعادلة		
	يتحول البروكيت إلى الأناتاز الذي يتحول بعد ذلك للروتيل.		(I .1)		
	يتحول البروكيت مباشرة إلى الروتيل.				
	تحول الأناتاز إلى البروكيت عند نقطة تحول 11nm.		الشكل		
	تحول الأناتاز إلى الروتيل عند نقطة تحول 16nm.		(I.10)		
	تحول البروكيت إلى الروتيل عند نقطة تحول 36nm .				

حيث: D_b هو الحجم البلوري لطور البروكيت.

TiO₂ خصائص .I

يحتوي ثاني أكسيد التيتانيوم على العديد من الخصائص الفيزيائية والكيميائية المثيرة للإهتمام، والتي جعلته يكتسب مكانا مميزا في شتى المجالات التطبيقة نذكر من بينها مايلي: 1.7.1 الخصائص الإلكترونية

يعتبر ثاني أكسيد التيتانيوم من أنصاف النواقل التي تتميز بمستويات طاقوية تكون في الجزء العلوي من حزمة التكافؤ و غالبا ما تحتوي على مدارات 2p من ذرات الأكسجين أما بالنسبة للجزء السفلي من حزمة التوصيل فهو يتكون من مدارات ثلاثية الأبعاد 3d لذرات التيتانيوم (الشكل(11.1))[7].

الشكل(111) :تمثيل تخطيطي لبنية المدارات الإلكترونية لـ 16/TiO2].

I. 2.7. الخصائص الصبغية

يعود الإستخدام الواسع لـ TiO₂ تحت الإسم التجاري التيتانيوم الأبيض إلى خصائصه الصبغية ،حيث أن مساحيقه تعكس الضوء المرئي بنسبة تزيد عن 96 % (الشكل(12.1))، وبالتالي تأخذ العين المجردة إنطباع عن اللون الأبيض. فهي تستعمل بشكل كبير كملون مثالي في الصناعات البلاستيكية و الدهانات و الأحبار و المطاط ، كما أن الخمول الكيميائي و درجة
النقاوة العالية تجعلها تستعمل أيضا في تغليف المواد الغذائية والصيدلانية ومستحضرات التجميل[16].

يتم الحصول على إنعكاس أعظمي للضوء و تلوين مناسب عندما يكون متوسط قطر جزيئات TiO₂ تتراوح قيمته بين 0,15 و0,30 ميكرومتر [16].

الشكل(12.1): تغيرات الإنعكاس لمختلف الأطوار البلورية لـTiO₂ كدالة لطول الموجي [16].

I. 3.7. الخصائص الضوئية

يتمتع TiO₂ بالعديد من الخصائص الضوئية بما في ذلك معامل إنكساره العالي و شفافيته الجيدة في المجال المرئي إضافة إلى كثافته المرتفعة و تبلوره المنخفض ، كما أنه يسمح بإمتصاص الأشعة فوق البنفسجية القريبة [2،17].

هذا الأخير مثير للإهتمام للغاية في جميع التطبيقات الضوئية ، حيث يوجد عند درجات الحرارة المنخفضة على شكل أغشية رقيقة سواء كانت مضادة للإنعكاس أو محفز ضوئي [2].

ومن بين الأطوار البلورية الثلاثة لـ TiO₂ نجد أن الروتيل يتمتع بمعامل إنكسار عالي مقارنة بالطورين الأخرين (ا**لجدول(3.I)**) [17].

المادة	معامل الإنكسار
الأناتاز (A-TiO ₂)	2,48-2,56
الروتيل <mark>(R-TiO₂)</mark>	2,61-2,89
البروكيت <mark>(B-TiO₂)</mark>	2,58-2,70
الألماس	2,45
أكسيد الزنك (ZnO)	2,02
كربونات الكالسيوم(CaCO ₃)	1,57

الجدول(3.1):مقارنة معاملات إنكسار TiO₂ بالألماس ، ZnO و ZnO[1 ،1]

I. 4.7. الخصائص الكهربائية

يحتوي ثاني أكسيد التيتانيوم A-TiO₂ و R-TiO على خصائص كهربائية مميزة لأنصاف النواقل جعلته ذات أهمية إلكترونية [18].

إن النقص الكبير في الأكسجين (Ti_n)O_{2n-1} يؤدي إلى الزيادة في الناقلية الكهربائية التي تعمتد أساسا على محتواه من خلال خلق عيوب هيكلية مثل :شواغر الأكسجين و أيونات (Ti⁺³)، والتي تنتج فائض من الإلكترونات في حزمة التوصيل. تنخفض الناقلية الكهربائية عندما يرتفع ضغط الأكسجين(عازل) بينما تحدث الظاهرة المعاكسة في أنصاف النواقل عندما ينخفض ضغطه[18].

تؤثر البنية البلورية أساسا على خصائص الناقلية الكهربائية حيث أن ناقلية طور الأناتاز تقدر بـ (cm⁻²v⁻¹s⁻¹) 100 مقارنة بطور الروتيل التي تبلغ(cm⁻²v⁻¹s⁻¹). I. 8. طرق ترسيب الأغشية الرقيقة

تعد طريقة ترسيب الأغشية الرقيقة أمر بالغ الأهمية في حياتنا اليومية [5]،نظرا لما تمتلكه من تأثيرات على الخواص الفيزيائية للغشاء الناتج ،لذلك فإن خطوة إختيار أفضل الطرق تعتمد على نوع التطبيق المرغوب و إمكانية التحكم في ظروف العمل [19].

هناك عدة طرق للترسيب تصنف بشكل عام إلى فئتين رئيسيتين هما: الطرق الفيزيائية و الطرق الكيميائية [19] (الشكل(13.1)) . عموميات حول ثاني أكسيد التيتانيوم TiO₂

الفصل الأول

الشكل (13.1): مخطط يبين الطرق الرئيسية لترسيب الأغشية الرقيقة [6].

على غرار هذه الطرق المذكور سابقا ، تم إختيار طريقة محلول -هلام لدراستنا و إعتمدنا بشكل خاص على تقنية الطرد المركزي التي تمتاز بإنخفاض تكلفة إعدادها ،فيما يلي سيتم بطريقة مفصلة تقديم هذه التقنية [2،2].

I. 8.I. طريقة محلول-هلام

تعتبر طريقة محلول-هلام واحدة من أكثر الطرق المستخدمة في ترسيب الأغشية الرقيقة من خلال أجهزة بسيطة [4]،فهي تعتبر طريقة مثالية و مناسبة بشكل خاص لإنتاج الشرائح الرقيقة و المواد الخزفية إضافة إلى المساحيق[21]،هذا التنوع الكبير جعلها تشهد تطورا كبيرا في العديد من التطبيقات مثل: البصريات و المواد الحيوية [3] وأجهزة الإستشعار [20]. عموميات حول ثاني أكسيد التيتانيوم2TiO

الفصل الأول

قبل التطرق إلى أهم تفاصيل طريقة محلول-هلام ، يمكن تعريف بعض المصطلحات: 1 المحلول

يمكن تعريفه على أنه محلول مستقر يحتوي على مركبات جزيئية تكون إما أملاح معدنية أو ألكوكسيدات مذابة في محلول مائي يؤدي تفككها إلى إنشاء روابط معدنية مع الأكسجين [3].

2 الهلام

هو عبارة عن شبكة ثلاثية الأبعاد مستقرة ، يتم الحصول عليها نتيجة تجميع المركبات مما يؤدي إلى الزيادة في لزوجة المحلول، وبالتالي تشكل شبكة تسمى الهلام [3، 20]. 1.1.8.1. مبدأ عمل طريقة محلول-هلام

تعتمد طريقة محلول ملام على إستخدام مركبات كيميائية مذابة في محلول مناسب [4] من أجل الحصول على شبكة من الأكاسيد [5]، والتي تظهر كمادة صلبة فضفاضة [3]، نتيجة حدوث مجموعة من التفاعلات الكيميائية، غالبا ما تكون عند درجة حرارة منخفضة [4]،وفق آليات مختلفة، والتي بدورها يمكن تجفيفها عند درجة حرارة تبلغ 100 درجة مئوية ، تليها المعالجة الحرارية لإزالة الشوائب وتشكيل مادة تكون في النهاية غير عضوية [5].

حيث تتم هذه الطريقة في أربعة مراحل هما[5]:

- المرحلة الفيزيائية والكيميائية: يتم في هذه المرحلة تحضير المحلول المراد ترسيبه؛
 - مرحلة الترسيب: ترسيب المحلول على الركيزة؛
 - مرحلة التجفيف: في هذه المرحلة تتشكل طبقة رقيقة غير متبلورة؛
- مرحلة التكثيف: حيث تلعب فيها المعالجة الحرارية دورا أساسيا في تحسين
 الخواص البلورية للغشاء المرسب.

الفصل الأول

2.1.8.I. آليات التفاعل لطريقة محلول - هلام

تنقسم آلية التفاعل لطريقة محلول- هلام إلى مرحلتين هما:

1 الإماهة

تمثل هذه المرحلة الخطوة الأولى في طريقة محلول-هلام التي يتم خلالها تفاعل جزيء الماء و ألكوكسيد ، مما يؤدي إلى ظهور جزيء الكحول، ويمكن كتابة معادلة التفاعل على النحو التالى[20]:

 $M(OR)_{n} + H_{2}O \rightarrow HO - M(OR)_{n-1} + ROH$ (I.2)

يحدث هذا التفاعل عن طريق إضافة الماء المقطر إلى ألكوكسيد معدني M(OR)n[20].

2 التكثيف

تختفي المجمو عاتM-OH الناتجة عن الإماهة أثناء عملية التكثيف نتيجة إرتباطها مع بعضها البعض لتشكيل جسور معدنية M-O-M [20].

يتم هذا الإرتباط وفق المعادلات التالية[20]:

 $(OR)_{n-1}M - OH + HO - M(OR)_{n-1} \rightarrow (OR)_{n-1}M - O - M(OR)_{n-1} + H_2O$(I.3)

 $(OR)_{n-1}M - OR + HO - M(OR)_{n-1} \rightarrow (OR)_{n-1}M - O - M(OR)_{n-1} + OR - H$(I.4)

وفي نهاية هذه التفاعلات، يتم الحصول على هلام عن طريق تحول المحلول إلى مادة صلبة بوليميرية[20].

I. 3.1.8. أنواع طريقة محلول-هلام

تحتوي طريقة محلول-هلام على عمليتين من أجل الترسيب و هما:

1.3.1.8.I. تقنية الترسيب بالغمس-سحب

الفكرة الأساسية لهذه التقنية تكمن في غمس الركيزة في المحلول و سحبها بسرعة ثابتة حيث تتم في درجة حرارة الغرفة[19]، وبالتالي الحصول على متعدد الطبقات نتيجة ترسب المحلول في كلا الجانبين(الشكل(14.1))[4].

يتم تنفيذ هذه التقنية خلال خمسة خطوات[6]:

غمس الركيزة في المحلول؛

2. بداية سحب الركيزة؛

الصفحة 18

ترسب المحلول على الركيزة؛
 الصرف؛
 تبخر المذيبات(التجفيف).

تتميز هذه التقنية بإمكانية الحصول على طبقات، يمكن التحكم في سمكها من خلال سرعة السحب، تركيز المحلول، و أيضا زمن الغمس، إضافة إلى لزوجة المحلول التي بزيادتها يزداد سمك الغشاء المرسب[22].

يمكن حساب سمك الطبقة بالعلاقة التالية[6]:

الشكل (14.1) : مراحل ترسيب الأغشية الرقيقة بتقنية الغمس [6].

أما عندما تكون سرعة السحب بطيئة يمكن حساب سمك هذا الغشاء بالعلاقة التالية[6]:

الصفحة 19

- 🕶 قوة الجاذبية؛
- 🗢 قوى التوتر السطحي؛
- تدرج التوتر السطحي.

2.3.1.8.I. تقنية الطرد المركزي

تتميز هذه التقنية بسهولة الإستخدام، إذ أنها تعطي نتائج مميزة[5]عن طريق أخذ قطرات من المحلول المراد ترسيبه و سكبه على ركيزة دوارة[23]بسرعة تصل إلى3000دورة/الدقيقة خلال 308 (الشكل(I. 15)[24]،مع إمكانية التحكم في سمك هذه الأغشية عن طريق سرعة الدوران[20].

توصف هذه التقنية في أربعة خطوات مهمة [5]:

الخطوة الأولى:

سكب المحلول على الركيزة؛

لخطوة الثانية:

تسمى ببداية الدوران:

يتم من خلالها توزع المحلول على كامل الركيزة؛

الخطوة الثالثة:

الدور ان بسر عة ثابتة نتيجة الوصول إلى سر عة قصوى مما يؤدي إلى تجانس توزع المحلول على كامل الركيزة؛

الخطوة الرابعة:

تبخر المذيبات، مما يسمح بتكوين طبقات ذات سمك صغير.

الشكل (15.1): مبدأ ترسيب الأغشية الرقيقة بتقنية الطرد المركزي [6].

4.1.8. I. التجفيف والمعالجة الحرارية

يحدث بعد مرحلة الترسيب مرحلتين مهمتين للحصول على أغشية رقيقة ذات نوعية جيدة، تتمثلان في التجفيف و المعالجة الحرارية [3، 5]:

يعتبر التجفيف من أهم المراحل التي يتم من خلالها الحصول على مواد ذات جودة نتيجة التخلص من المذيبات المتبقية، حيث تحدث هذه المرحلة عند درجة حرارة منخفضة (100درجة مئوية) لمدة15دقيقة.

بعد ذلك يخضع هذا الأخير إلى ما يعرف بالمعالجة الحرارية لإزالة المجموعات العضوية(OR) وبلورة هذه الأغشية من أجل الحصول على أفضل الخواص الهيكلية(الشكل(16.1)) [3].

تتم هذه المعالجة عند درجات الحرارة بين 300 درجة مئوية و 700 درجة مئوية[3].

الشكل (16.1): تأثير التجفيف و المعالجة الحرارية على مسامية الأغشية الرقيقة [4].

5.1.8. I مزايا و عيوب طريقة محلول - هلام

تعتبر طريقة محلول-هلام من أكثر الطرق إستخداما مقارنة بالطرق التقليدية ، نظرا لما تمتلك من مميزات جذابة تتمثل في [3 ،5 ،20]:

الحصول على طبقات متجانسة ، مع نقاوة عالية عند درجة حرارة منخفضة؛
 سهولة التحكم في المطعمات مهما كانت الكمية؛
 الحصول على طبقة تحتوي على العديد من المركبات خلال عملية واحدة؛
 طريقة غير مكلفة لبساطة الأجهزة.

عموميات حول ثاني أكسيد التيتانيوم2TiO

على الرغم من أنها تحتوي على العديد من المزايا إلا أنها لا تخلو من العيوب و أهمها مايلي[3] :

تكلفة عالية للمركبات الكيميائية المستعملة؛
 إستعمال كميات كبيرة من المذيبات؛
 سمك الطبقة صغير جدا، مما يضاعف إمكانية حدوث تشققات.

9.I. التطعيم في 9.I

تم التطرق إلى العديد من الدراسات لمعرفة تأثير التطعيم على خصائص بنية الأغشية الرقيقة لـ TiO₂ التي تم تحضير ها بطرق مختلفة. حيث تعتمد هذه الخصائص بشكل كبير على نوع التطعيم و تركيزه [1].

يمكن إستخدام TiO₂ في عدة أشكال إما نقيا أو مطعما ومرتبط مع بعض المعادن أو أكاسيدها ، وقد تبين أن التطعيم يؤدي إلى إرتفاع النشاط الضوئي إضافة إلى تحسين بعض الخصائص مثل :الكهربائية والمغناطيسية [1].

يحتوي TiO₂ المطعم على عدة خصائص يمكن التأثير عليها بعدة عوامل نذكر منها [1]:

لويقة الترسيب؛
 نسبة أو كمية التطعيم؛
 طبيعة العنصر أو المادة المستعملة للتطعيم؛
 المعالجة الحر ارية.

كما يرافق هذا التطعيم حدوث تغيرات على مستوى البنية البلورية للأغشية الرقيقة لـTiO₂كتحول بنية الأناتاز إلى بنية الروتيل و بنية البروكيت إلى بنية الروتيل[1]. هناك نوعان من التطعيم:

n التطعيم من نوع 1.9. I

تسمى أنصاف النواقل من النوع n بأنصاف النواقل الخارجية. الغرض من التطعيم بالنوع n هو إنتاج فائض من الإلكترونات في أنصاف النواقل ، ومن أجل فهم كيفية حدوث التطعيم ، دعونا نفكر في حالة السيليكون (Si) . تحتوي ذرات Si على أربعة إلكترونات تكافؤ، يرتبط كل منها بذرة Si مجاورة لمها بواسطة رابطة تساهمية . إذ يتم إدخال ذرات خماسية التكافؤ والتي تدعى بالذرات المانحة، مثل تلك الموجودة في المجموعة (V(VA)) من الجدول الدوري (على سبيل المثال : الفوسفور (P) ، الزرنيخ (As) و الانتيمون (Sb))، في مصفوفة الدوري (على سبيل تقدم أربع روابط تساهمية و الكترون حر واحد. هذا الإلكترون يرتبط إرتباطا ضعيفا فقط بالذرة و يمكن تحريكه بسهولة نحو نطاق التوصيل (الشكل(17.1))[9 ،25].

تختلف ناقلية المادة (الناقلية الخارجية) حسب معدل التطعيم ففي درجات الحرارة العادية فإن هذه الإلكترونات لا تؤدي إلى تكوين ثقوب في هذا النوع من المواد، وبالتالي فإن عدد الإلكترونات يتجاوز بكثير عدد الثقوب ، بحيث تكون الإلكترونات حاملات الأغلبية (سالبة الشحنة) و الثقوب حاملات الأقلية (موجبة الشحنة)،لهذا السبب تم تسمية هذه المواد بأنصاف النواقل ذات النوع n [25، 9].

p. 1. التطعيم من نوع p. 1.

أنصاف النواقل من النوع p هي أيضا أنصاف نواقل خارجية. الغرض من التطعيم بالنوع p هو خلق فائض من الثقوب، ففي هذه الحالة يتم إستبدال ذرة السيليكون بذرة ثلاثية التكافؤ مثل: البورون B، الألمنيوم Al، الجاليوم Ga، الأنديوم In في الشبكة البلورية. و نتيجة لذلك يفقد الإلكترون واحدة من الروابط التساهمية الأربعة لذرات السيليكون المجاورة، ويمكن للذرة قبول إلكترون لإكمال هذه الرابطة الرابعة، وبالتالي تشكيل ثقب. عندما يكون معدل التطعيم كافي، يتجاوز عدد الثقوب عدد الالكترونات بكثير. تكون الثقوب بعد ذلك حاملات الأغلبية و تسمى الإلكترونات ناقلات الأقلية (الشكل(17.1))[9،25].

التطعيم من النوع p يكون فيه عدد الثقوب معتبر و نقص في الإلكترونات، وبذلك تعتبر مشحونة إيجابا [25، 9] .

*الشكل(17.1):*توضح الرسوم البيانية التالية أمثلة عن تطعيم مادة السيليكون بواسطة الفوسفور (تطعيم نوع n) و بالألمنيوم (تطعيم نوع p)[9].

الصفحة 23

10. I. تطبيقات ثاني أكسيد التيتانيوم

لقد كان ثاني أكسيد التيتانيوم موضوع الكثير من الدراسات البحثية تبعا لخصائصه الضوئية والإلكترونية ،حيث يحتوي على تطبيقات متنوعة جدا خصوصا في مجالات البيئة. وبالتالي يمكن إستخدامه على شكل أغشية رقيقة في: أنظمة التحفيز الضوئي، ظواهر "محبة للماء"، مستشعرات الغاز، النظم الكهربائية [2،1].

I. 10.I. مستشعرات الغاز

يعتبر تلوث الهواء من المشكلات التي تستوجب تطوير كاشف الغازات خصوصا في البلدان الصناعية[12].

ففي أول الستينات، تم التوصل إلى أكاسيد أنصاف النواقل التي تستخدم للكشف عن الخازات [12].

يعد ثاني أكسيد التيتانيوم أحد الأكاسيد الحساسة للبيئة الغازية، والذي يمكن إستعماله ككاشف الأكسجين أو كعامل مساعد للقضاء على أكسيد النيتروجين خصوصا عندما يكون مطعم بالشوائب مثل :النيوبيوم (Nb) [1،1].

يمكن تعريف مستشعر الغاز على أنه مركب يحتوي على عنصرين رئيسيين يتمثلان في (الشكل(18.1))[12]:

- العنصر الحساس: الذي يتفاعل مع مساحة الغاز ؛
- و جهاز محول الطاقة: الذي يقوم بتحويل التفاعل بين الغاز والعنصر الحساس على شكل إشارة يتم قياسها بسهولة.

كما تتغير الخصائص الفيزيائية لهذا الأخير عندما تتعرض البيئة الغازية لبعض التغير الخصية للغازية لبعض التغيرات، ويعتمد مبدأ الكشف على إختلاف الناقلية الكهربائية للأكاسيد عند ملامسته لبيئة غازية جديدة [12].

الشكل (18.1): مبدأ تشغيل مستشعر الغاز [19].

2.10.I. التحفيز الضوئي

لقد كان إختيار أنصاف النواقل كمحفز ضوئي موضوع العديد من التطبيقات ، حيث إكتشف هذا الأخير عام 1970 من قبل **هوند** و **فوجيشما** (Handa & Fujishima) الذين إستعملو A-TiO₂ من قبل (Eg=3,2eV) A-TiO₂ المشع بأشعة الشمس لتفكيك الماء، بعد ذلك قام كل من فريمس و الأخرين (.Grimes et al) بتسليط الأشعة فوق البنفسجية على أنابيب نانوية لثاني أكسيد التيتانيوم ذات درجة نقاوة عالية [12].

عملية التحفيز الضوئي هي عبارة عن عملية إلكترونية تحدث على مستوى سطح المحفز (TiO₂) عن طريق تسليط أشعة فوق بنفسجية (UV) ذو طاقة مساوية أو أكبر من الفجوة البصرية لـ TiO₂ والتي توافق طول موجي أقل من 380nm (الشكل(19.1)) [1 12.

الشكل(19.1): آلية عملية التحفيز الضوئي في جزيء [1]TiO].

عندما يمتص TiO₂ هذه الأشعة فإنه يكتسب طاقة تمكنه من إنتقال الإلكترون من حزمة التكافؤ (BV) إلى حزمة التوصيل (BC) تاركا ورائه ثقب موجب (⁺h) في حزمة التكافؤ ، ويتم هذا التفاعل وفق المعادلة التالية[12]:

الصفحة 26

 $O_2 + e^- \rightarrow O_2^- *$,....(I.9)

تلعب هذه المؤكسدات (جذور الهيدروكسيل) دورا مهما في القضاء على الملوثات العضوية الموجودة على سطح TiO₂ وفقا للمعادلة التالية [12]:

من بين أنصاف النواقل الأكثر إستخداما كمحفز ضوئي A-TiO₂ و R-TiO التي تحظى بخصائص إلكترونية مميزة (الفجوة البصرية و موقع حزمة التكافؤ) تسمح بالحصول على أكسدة سهلة للعناصر الممتصة[12].

I. 3.10 الخلايا الشمسية

تعتبر الخلايا الشمسية التقليدية من الأجهزة القريبة لترانزستورات أو الدوائر المتكاملة التي تحول الضوء إلى كهرباء من خلال إستغلال التأثير الكهروضوئي الذي يظهر عند أنصاف النواقل، حيث تعمل هذه الأخيرة على أداء وظيفتين: إمتصاص الضوء وفصل الشحنات الكهربائية الناتجة (الإلكترونات و الثقوب) (الشكل(20.1))[7].

و من أجل فصل الإلكترونات و الثقوب الناتجة ثم تجميعها، يجب أن تكون المادة ذات نقاوة عالية، و خالية من العيوب، وبالتالي فإن تكوين هذا النوع من الخلايا يكون مكلفا، ولذلك فهي لا تستعمل في إنتاج الكهرباء[7].

الشكل (20.1): مبدأ تشغيل الخلية الشمسية [19].

يتم إمتصاص الضوء من خلال طبقة أحادية لجزيئات المادة الصبغية (عادة ما تكون عبارة عن مركب معدني إنتقالي) الموجودة على سطح TiO₂، فتكتسب هذه المادة طاقة كافية لإثارة مجموعة من الإلكترونات التي تنتقل لـ TiO₂].

عند مرور التيار الكهربائي في TiO₂ فإن هذا الإلكترون يتم إستخراجه. فتنتقل الشحنة الموجبة من الصبغية إلى الأكسيد ومن ثم إلى القطب المعاكس [7]. 4.10.1. ظواهر ''محبة للماء''

هي ظاهرة تحدث بواسطة تسليط الضوء على TiO₂ عندما تكون زاوية تلامسه مع الماء معدومة تقريبا، وبالتالي فإن سطح المادة لا يحتفظ بالطابع المحبب للماء لمدة زمنية طويلة. أما عند تسليط أشعة فوق بنفسجية على السطح فإن زاوية التلامس تتخفض تدريجيا، ويصبح السطح "محب للماء" بعد تعرضه لضوء خلال فترة زمنية طويلة، هذه الظاهرة يمكن الحصول عليها في ظرف يوم أو يومين[1].

الفصل الثاني نمير البنات ومذاف تقنيات التطلل المستعملة

سنتطرق في هذا الجزء من العمل التجريبي الخاص بموضوع الدراسة، إلى مختلف المواد المستخدمة و طريقة الترسيب المعتمدة في إنتاج الأغشية الرقيقة محلول ملام بالإضافة إلى وصف مختلف الأجهزة المستعملة في تحليل هذه الأغشية (Ai:TiO2)، والتي تم ترسيبها في درجة حرارة الغرفة بإعتماد طريقة *الطرد المركزي* وفق البروتوكولات التالية: III.

تم في هذا العمل إختيار الشرائح الزجاجية العادية (الشكل(1.11)) ذات قرينة إنكسار 1,531 الموافق لطول الموجي 632,8 نانومتر، حيث تم قصها بمساحة سطح حوالي 2,4×2سم².

الشكل(1.11):صورة فوتوغرافية لنوع الركيزة المستخدمة في هذا العمل.

تعتمد جودة الأغشية المرسبة على السطح على جودة نظافة الركيزة، لذلك يعد تنظيفها خطوة مهمة للغاية، لإزالة جميع آثار مختلف الشوائب، والتحقق من عدم وجود أي خدوش على وجه الركيزة و أيضا خلوها من عيوب التسطيح، هذه الشروط ضرورية للإلتصاق الجيد على الركيزة حيث تمر عملية التنظيف بالخطوات التالية (لاحظ الشكل(2.11)) : غسلها بالماء المقطر ثم يتم تجفيفها، ثم توضع في محلول الأسيتون لمدة 15 دقيقة وذلك لإزالة آثار الشحوم و الشوائب العالقة على سطح الركيزة و أخيرا تجفيفها بالورق الضوئي.

الفصل الثاني

الشكل (2.11): مراحل تنظيف الركائز.

2.II. تحضير المحلول

تم تحضير الشرائح الرقيقة من ثاني أكسيد التيتانيوم المطعم بذرات الألمنيوم بنسب كتلية مختلفة (7،5،3،0)% إنطلاقا من إستخدام مركب إيزوبروبوكسيد التيتانيوم الرباعي كمولد يعمل على إستقرار التيتانيوم ذو الصيغة الكيميائية 4(2(TijOCH(CH3)) (النقاوة 97%) والذي يكون إختصاره TTIP ثم أضيف إليه الإيزوبروبانول كمذيب صيغته الكيميائية والذي يكون إختصاره PTI ثم أضيف إليه الإيزوبروبانول كمذيب صيغته الكيميائية والذي يكون إختصاره PTI ثم أضيف إليه الإيزوبروبانول كمذيب صيغته الكيميائية إستعمال حمض الأسيتيك CH₃CHOHCH3 (النقاوة 5.99%) والذي يكون إختصاره AcOH أما بالنسبة للمحفز فقد تم إستعمال حمض الأسيتيك CH₃COOH(النقاوة 5.99%) والذي يكون إختصاره للذي يكون إختصاره الم المتعمال حمض الأسيتيك الألمنيوم أوكتاديكا هيدرات AcOH (الذي يكون إختصاره الم الم مركب كبريتات الألمنيوم أوكتاديكا هيدرات AlBH20%) وإختصاره هو MeOH في المحلول الميثانول ذو الصيغة الكيميائية الكيميائية الماعة واحدة ويتم الحصول على محلول شفاف ولزج مع التحريك عند درجة حرارة الغرفة لمدة ساعة واحدة ويتم الحصول على محلول شفاف ولزج قليلا (الشكل(الشكل(الشرار))).

الشكل(3.11):محلول محضر بواسطة طريقة محلول – هلام للحصول على أغشية رقيقة من TiO₂ المطعم بنسب كتلية 0،3،0 و7% من ذرات Al.

تم تحضير المحلول المناسب لإعداد شرائح TiO₂ المطعم بـ Al وفق البروتوكول الموضح في (الشكل(4.11))(أنظر الصفحة الموالية).

الفصل الثانى

الشكل(4.11):بروتوكول تحضير شرائح TiO2 المطعم ب-Al

3.II. الترسيب بواسطة طريقة محلول-هلام

تم ترسيب الأغشية الرقيقة لـ TiO₂ المطعم بذرات AI باستخدام طريقة محلول-هلام و بإعتماد جهاز الترسيب بتقنية الطرد المركزي (الشكل(S.II)) لإعداد أغشية رقيقة موحدة من خلال وضع المحلول المعد سابقا وفق طريقة محلول-هلام في قرورات تقطير ومن ثم وضع قطرات متجانسة على سطح الركيزة وذلك بعد تثبيت هذه الأخيرة على حامل متحرك بجهاز الطرد المركزي ومن خلال دوران هذا الأخير بسرعة عالية تصل إلى 2000 دورة في الدقيقة تنتشر القطرة بشكل موحد عبر سطح الركيزة بالكامل بسبب قوة الطرد المركزي كما يمكننا تغيير سمك الغشاء عن طريق تغيير سرعة الدوران (كلما كانت السرعة أعلى كلما كان الغشاء رقيق). أيضا كانت عملية الترسيب بالطرد المركزي معزولة عن الوسط الخارجي بحيث تم تغطية حامل الركيزة تفاديا لأي ترسبات ناجمة عن الوسط الخارجي العشاء

الشكل(5.11):صورة فوتوغرافية لجهاز الترسيب بالطرد المركزي لطريقة محلول- هلام لترسيب الأغشية الرقيقة Al:TiO₂.

يتم تجفيف العينات مباشرة عند 141 درجة مئوية لمدة 10دقائق(الشكل(6.II)).

الفصل الثانى

الشكل(6.11):صورة فوتوغرافية للجهاز المستعمل في تجفيف الأغشية المحضرة.

وأخيرا تمت معالجة جميع العينات المتحصل عليها حراريا في فرن من نوع: D2804 Nabertherm LiLienthal /Bremen ، (الشكل(7.II)) وفق مخطط الدورة الحرارية الموضحة في (الشكل(8.II)).

الشكل(7.11): صورة فوتوغرافية لفرن المعالجة الحرارية.

الفصل الثانى

الشكل(8.11): تغيرات درجة الحرارة كدالة لزمن المعالجة الحرارية.

(الشكل(9.II)) يعرض صورة فوتوغر افية للأغشية الرقيقة المطعمة والغير مطعمة بذرات الألمنيوم والمتحصل عليها بطريقة محلول-هلام وفق تقنية *الطرد المركزي*.

T	Married Married	Name of Street		
		R. J		
رکیزة	0% Al:TiO ₂	3% Al:TiO ₂	5% Al:TiO ₂	7% Al:TiO ₂

الشكل (9.11): صورة فوتو غرافية للأغشية الرقيقة المطعمة والغير مطعمة بذرات الألمنيوم.

4.II. تقنيات تحليل الأغشية الرقيقة لـ TiO2

1.4.II. تقنية التحليل البنيوي

1.1.4.II. حيود الأشعة السينية (XRD)

الأشعة السينية هي عبارة عن أشعة كهرومغناطيسية ذات طبيعة موجية لها طول موجي بين 0,01 نانومتر و 5 نانومتر[30،29]. تنتج هذه الأشعة عن طريق إصطدام الإلكترونات المسرعة بالمصعد المعدني (موجب الشحنة) ، والتي تكون بنسبة 1٪ من الطاقة الكهربائية المستخدمة و الباقي يكون على شكل حرارة [29]. 1.4.II. 1. مبدأ إنعراج الأشعة السينية

تعتبر تقنية حيود الأشعة السينية من أهم التقنيات الغير هدامة للعينات[29]وأكثرها شيوعا في مختبرات تحليل المواد[31]، والتي تنطبق أساسا على المواد المتبلورة (المساحيق ، أحادية البلورة و متعددة البلورات)، فهي تسمح بتحديد بنية المواد[3] و المسافات بين الذرات و ترتيبها في الشبكات البلورية بالإضافة إلى معرفة الإتجاهات المفضلة للأغشية الرقيقة [30 ،16].

تعتمد هذه التقنية على البنية البلورية للأغشية المدروسة و كذلك على طول الموجة للأشعة المستخدمة [2]، فعندما يتم تسليط أشعة سينية أحادية اللون على مادة صلبة [1]، يتم إنتشارها من خلال الذرات المستهدفة لتتداخل هذه الأشعة مع بعضها البعض فإذا كانت الذرات مرتبة بإنتظام كما في البلورات، فإن تداخل هذه الأشعة يكون بناءا في إتجاهات معينة و مدمرة في الإتجاهات الأخرى ليشكل هذا التداخل ظاهرة الإنعراج[32].

يعطى شرط حدوث الحيود لمجموعة من المستويات البلورية المتباعدة بمسافة d بقانون براغ[2].

1.1.4.II. 2. قانون براغ

لقد كان العالمان هنري براغ (Henry Bragg) وإبنه لورنس براغ (Bragg) أول من توصلوا إلى صياغة الشروط الهندسية التي يحدث عندها حيود الأشعة السينية الساقطة على بلورات المادة المدروسة [3،3]،حيث تحدث هذه الظاهرة عندما تنعكس السينية الساقطة على بلورات المادة المدروسة [3،8]،حيث تحدث هذه الظاهرة عندما تنعكس الموجات من بعض بلورات المستويات الذرية[34] التي تفصل بينهما مسافة b[2]. وعندما تتداخل الموجات المنعكسة تداخلا بناءا[34] (الشكل(10.11))، يكون مسار الأشعة المنعكسة يساوي عدد صحيح من الأطوال الموجية، والذي يعطى بموجب قانون براغ [2] الذي يربط بين الطول الموجي للأشعة السينية و المسافة الفاصلة بين المستويات البلورية الذي إلا الشكل(10.11))، يكون مسار الأشعة المنعكسة بين الطول الموجات الموجية، والذي يعطى بموجب قانون براغ [2] الذي يربط بين الطول الموجي للأشعة السينية و المسافة الفاصلة بين المستويات البلورية الدي إلاح]،

الفصل الثانى

الشكل(10.11): المستويات الذرية لقانون براغ[3].

 $2d\sin\theta = n\lambda$(1.II)

حيث :

3.1.1.4.II. مبدأ عمل جهاز إنعراج الأشعة السينية

أثناء التحليل بواسطة هذه التقنية يتم تثبيت العينة الموجودة حول محور مقياس الإنعراج[3]أفقيا على سطح الحامل [8]، ترسل الأشعة السينية المنبعثة من المصدر إلى العينة المراد تحليلها ، ثم تشتت من خلالها لتشكل حزمة من الأشعة المشتتة التي يلتقطها الكاشف [3]و يحولها إلى إشارة قابلة للقياس في تصوير إنعراج الأشعة السينية [30]، ثم يتم تضخيمها بنظام إلكتروني لترسل إلى جهاز الكمبيوتر[19]. تتغير زاوية الورود بين السطح و المصدر براغ يتم الثابت ليتم تسجيل شدة الإنعراج و المصدر الكريم المصدر المراد تحليلها ، ثم تشتت من خلالها التشكل حزمة من الأشعة المشتة التي يلتقطها الكاشف المراد تحليلها ، ثم تشتت من خلالها لله لتشكل حزمة من الأشعة السينية [30]، ثم يتم تضخيمها التي المراد تحليلها ألى إشارة قابلة للقياس في تصوير إنعراج الأشعة السينية إلى إلى إلى إلى المارة القياس في تصوير إنعراج الأشعة السينية المراد والي المحدر المالم الكروني لترسل إلى جهاز الكمبيوتر[19]. تتغير زاوية الورود بين السطح و المصدر الثابت ليتم تسجيل شدة الإشعاع بدلالة زاوية الإنعراج 20، عندما يتم التحقق من شرط براغ يتم الثابت ليتم تسجيل شدة الإنعراج [3](الشكل(11.11)).

يسمح هذا النوع من الجهاز من خلال المقارنة مع المعطيات الموجودة في ملفات (JCPDS) من تحديد العديد من ثوابت الشبكة البلورية [8] وإكتشاف العيوب التي تكون مستوياتها موازية لسطح العينة[3]،إضافة إلى حجم البلورات [33].

الشكل(11.11):رسم تخطيطي يوضح مسار الأشعة في جهاز قياس إنعراج الأشعة الشكل(11.11): السينية[31].

4.1.1.4.II. الجهاز المستعمل في إنعراج الأشعة السينية

في سياق عملنا هذا ومن أجل تحليل عيناتنا إستخدمنا جهاز حيود الأشعة من نوع والذي يتكون أساسا Beuker-Simant من تصنيع شركة من ثلاث عناصر رئيسية :

- مصدر الأشعة السينية؛
- ✓ كاشف لإلتقاط الأشعة السينية؛
 - ✓ حامل للعينة المدروسة.

تم إستخدام أشعة سينية ذات طول موجي Å 1.5418 وجهد إنبعاث قيمته 30KV مع تيار قيمته 40mA (ا**لشكل(12.II)**).

الفصل الثانى

الشكل(12.11): صورة فوتوغرافية لجهاز إنعراج الأشعة السينية. 5.1.1.4.II. كيفية تحديد ثوابت الشبكة

يتم تحديد المسافات الفاصلة بين عائلات المستويات البلورية المحددة بقرائن ميلر (hkl) بواسطة علاقة براغ [8] وبمقارنة تأشير خطوط الإنعراج و ترتيبها حسب تزايد شدتها مع بطاقات (ASTM) لمعرفة هذا العنصر [28]، نجد أنه من الممكن حساب ثوابت الشبكة . ففي حالة TiO₂، تعطى العلاقة التي تربط المسافات الفاصلة بين المستويات (hkl) والثوابت البلورية كما يلى[8]:

$$d_{\rm hkl} = \frac{\lambda}{2\sin\theta} = \frac{ac}{\sqrt{a^2l^2 + c^2(h^2 + k^2)}},.....(2.II)$$

6.1.1.4.II. تحديد الحجم الحبيبي

يمكن حساب الحجم الحبيبي من خلال حساب عرض القمة عند منتصف الإرتفاع [33] في بيان الإنعراج (شدة الإشعاع كدالة لزاوية براغ 02) [28] والذي يعطى بموجب علاقة شيرر (Sherre)[6]:

الفصل الثانبي

$$D_{nm} = \frac{0.9\lambda}{\beta\cos\theta}, \qquad (3.II)$$

حيث: (_{nm}: الحجم الحبيبي بـ nm؛ λ : الطول الموجي لحزمة الأشعة السينية؛ β : عرض منتصف إرتفاع خط الإنعراج للزاوية θ2 والمعبر عنها بالراديان و يتم تحددها وفق الطريقة الموضحة في (الشكل(13.11))؛ θ :زاوية الإنعراج.

الشكل (13.11): كيفية تحديد عرض نصف القمة من منحنى حيود الأشعة السينية [9]. 2.4.II. تقنية التحليل البصرى

1.2.4.II. التحليل الطيفي للأشعة فوق البنفسجية والمرئية (UV-VIS)

بهدف تحديد و دراسة الخصائص البصرية للأغشية الرقيقة مثل : معامل الإمتصاص [8] بهدف تحديد و دراسة الفجوة الطاقية و تقدير سمك الطبقة [8] تم إستخدام تقنية التحليل الطيفي في مجال الأشعة فوق البنفسجية و المرئية [26] حيث تعتبر هذه الأخيرة من الطرق الغير مدمرة للعينات ،إذ يعتمد مبدئها على أنه عند تسليط ضوء أحادي اللون على العينة المراد تحليلها، فإن جزء من الإشعاع الساقط يمتص و الآخر ينفذ عبر ها[4]. عندما تمتص المادة إشعاعات مختلفة ذات أطوال موجية معينة في نطاق الأشعة فوق البنفسجية و المرئية[4]

تحضير العينات ومختلف تقنيات التحليل المستعملة

فإن الطاقة الممتصة تسبب إضطرابات في البنية الإلكترونية للذرات أو الأيونات أو الجزيئات [3]، وذلك من خلال إثارة الإلكترونات بموجة كهرومغناطيسية تحفزها للإنتقال من مستوى طاقي منخفض (الحالة الأرضية) إلى مستوى طاقي أعلى (حالة مثارة)[3 ،34]. 1.2.4.II مبدأ عمل جهاز التحليل الطيفى للأشعة فوق البنفسجية و المرئية

يتكون جهاز التحليل الطيفي للأشعة فوق البنفسجية و المرئية من مصدر للأشعة يحتوي على مصباحين يسمحان بإستمر ارية إنبعاث حزمة من الأشعة ذات أطوال موجية مختلفة ، تمر هذه الحزمة عبر موحد الطول الموجي من أجل تحديد أطوالها لمسح النطاق الطيفي[1]. تنتج حزمة فوتونات تنعكس عند طول موجي محدد بواسطة مرآة[34] ، واحدة تمر عبر العينة والأخرى تمر عبر المرجع ، بعد ذلك توجه الحزمتان نحو المكبر لمقارنة الكثافة المرسلة مع كثافة الإنبعاث من طيف الأشعة فوق البنفسجية و المرئية والذي يؤدي إلى معرفة قيمة عرض العصابة الممنوعة و سمك الطبقة [9،34].

تم إستعمال جهاز قياس الطيف الضوئي مزدوج الحزمة له المواصفات التالية:

النوع Spectrophotometer-Jasco-V750؛ مجال الطول الموجي 200 إلى 900 نانومتر (ا**لشكل(14.II**)).

الشكل(11.11):صورة فوتوغرافية للجهاز المستعمل في التحليل الطيفي للأشعة فوق البنفسجية و المرئية.

والذي يمكننا من الحصول على منحنيات تغير النفاذية وفقا لطول الموجي في المجال فوق البنفسجي و المرئي ، و يبين (ا**لشكل(15.II)**) رسم تخطيطي لمبدأ تشغيله ،إذ يمكن التحكم فيه عن طريق الكمبيوتر ليتم معالجته بإستخدام برنامج UVPC[8 ، 8].

الصفحة 41

الشكل(11.15): رسم تخطيطي لمبد أ تشغيل جهاز التحليل الطيفي للأشعة فوق البنفسجية و المرئية[8].

dلسمك 1.2.4.II د طريقة قياس السمك

الفصل الثانى

تعد طريقة أهداب التداخل أحد الطرق المستخدمة في قياس سمك الأغشية الرقيقة والتي تعتمد على نمو التداخلات في الأطياف المرئية و القريبة من إنتقالات الأشعة تحت الحمراء، تم تعريف الثوابت الفيزيائية المستخدمة في طريقة القياس في (الشكل(16.11)) [8 8].

الفصل الثانىي

الشكل(16.11): رسم تخطيطي يوضح الثوابت الفيزيائية الخاصة بطريقة قياس السمك [8]. حيث:

n : النفاذية؛ Ω: معامل إمتصاص الأغشية الرقيقة؛ λ: الطول الموجي للإشعاع الساقط n: قرينة إنكسار الغشاء الرقيق؛ n_s : قرينة إنكسار الركيزة؛ 0 α: معامل إمتصاص الركيزة؛ n: سمك الغشاء الرقيق.

بإستخدام المعلمات المادية المحددة في (الشكل(17.II)) والتي تم الحصول عليها من خلال نتائج عملنا، يمكننا تحديد سمك الأغشية الرقيقة على النحو التالي.

الشكل(17.11): رسم تخطيطي يوضح أهداب التداخل.

تحضير العينات ومختلف تقنيات التحليل المستعملة

في حالة أغشية رقيقة سميكة و ناعمة، يكون هناك إنعكاسات متعددة للضوء بين السطح السفلي المتصل بالركيزة و السطح الحر للطبقة والذي يؤدي إلى أهداب التداخل في طيف النفاذية [8]،كما أن الحد الأدنى و الحد الأقصى في طيف النفاذية يعتمد على الطول الموجي [9]. فإذا كانت $1 \wedge 2 \propto 1$ الأطوال الموجية الموافقة للقيمتين الحديتين القصوتين و المتتاليتين للنفاذية T_{Max1} و T_{Max1} و المتتاليتين النفاذية التالية [8]. فإن سمك الطبقة للقيمة الموافقة الحد الأقصى الموافقة التوانية [8].

$$\lambda_2 \, o \, \lambda_1 \, e \, n_2 \, o \, n_1 \, e$$
حيث: $n_1 \, e \, n_2 \, o \, \lambda_1 \, e \,$

$$n = \sqrt{N_{1,2} + \sqrt{N_{1,2}^2 - n_s^2}} ,....(5.II)$$

$$N_{1,2} = 2n_s \frac{T_M - T_m}{T_M \cdot T_m} + \frac{n_s^2 + 1}{2},.....(6.II)$$

1.2.4.II. تحديد معامل الإمتصاص

من خلال طيف النفاذية للغشاء، يتم تحديد معامل الإمتصاص α في المواد و ذلك بإستخدام علاقة Bouguer-Lambert-Beer أو التي تسمى بقانون Beer و يعطى بالعلاقة الآتية[6]:

حيث :T : النفاذية ؛α: معامل الإمتصاص ؛d: سمك الغشاء الرقيق.

أما من خلال معرفة سمك الغشاء d، يمكن إعطاء معامل الإمتصاص بالعلاقة [8]:

$$\alpha = \frac{1}{d} \ln \frac{100}{T(\%)},\dots(8.\text{II})$$

حيث: n_s قرينة انكسار الركيزة.

الفصل الثانى

إن العلاقة (**I.I**) توافق العملية الحسابية (**T**-1) والتي تمثل إمتصاص الغشاء الرقيق. فعندما تسقط حزمة ضوئية عليه فإن جزءا منها ينعكس و جزء سينفذ و الجزء المتبقي سيمتص من طرف مادة الغشاء وبالتالي تعد العلاقة (**I.I**) تقريبا صحيحا فقط للأغشية الرقيقة جدا[6]. يمكن تقسيم التغير في معامل الإمتصاص إلى ثلاث مناطق[8]: \checkmark منطقة الإمتصاص العالي 1-20 م و ويكون لها mm 375={، $\checkmark} منطقة التغير في الإمتصاص العالي 1-20 م و التي تتأثر بوجود العيوب و الشوائب في$ الغشاء الرقيق.

1.2.4.II بتحديد الفجوة البصرية

في مجال الإمتصاص العالي ، وبالنسبة لـ TiO_2 يرتبط إختلاف معامل الإمتصاص بالفجوة البصرية غير المباشرة للمادة [8] والتي يمكن تحديدها بإستخدام إحدى النماذج التي إقترحها Tauc التي هي عبارة عن معادلة بسيطة تربط بين معامل الإمتصاص α و الفجوة البصرية $[6]E_g$ وفق العلاقة التالية[8]:

$$(\alpha h v)^{1/2} = B(h v - E_g),....(9.II)$$

حيث: \mathbf{B} : ثابت؛ E_g الفجوة البصرية (eV)؛ hv طاقة الفوتون (eV).

من الناحية الرسومية يمكن الحصول على قيمة الفجوة البصرية عن طريق رسم العلاقة البيانية ^{1/2} (αhv) بدلالة طاقة الفوتون hv [17] وبأخذ الجزء الخطي للمنحنى الناتج و رسم مماس يقطع محور طاقة الفوتون hv وذلك عند النقطة 0=^{1/2} (αhv) والذي يعطي قيمة الفجوة البصرية من نقطة تقاطع المماس مع محور الفواصل (الشكل(18.11))[8].

1.2.4.II. 5. تحديد طاقة أورباخ

تمثل طاقة أورباخ أحد الثوابت المهمة والتي تميز الإضطرابات الحاصلة في المواد،حيث أن العلاقة الموالية تعبر عن إرتباط هذه الطاقة بمعامل الإمتصاص والتي تعرف بقانون Urbach[8]:

أما بيانيا يمكن تحديد قيمة طاقة أورباخ إنطلاقا من رسم منحنى تغيرات lnα بدلالة طاقة الفوتون hv (ا**لشكل(19.II**) وبإعتماد العلاقة التالية [8]:

الشكل(19.11): الطريقة البيانية لتحديد طاقة أورباخ E00

النتائج التجريبية والمناقشة

1. III. دراسة الخصائص البنيوية بإستعمال مطيافية إنعراج الأشعة السينية

AI بنيوية المعمة بـ TiO2 البنيوية الأغشية الرقيقة 1.1. الغير مطعمة بـ AI

يمثل الشكل(IIII) منحنى حيود الأشعة السينية للأغشية الغير مطعمة TiO₂ و المحضرة بطريقة محلول ملام، بتقنية الطرد المركزي والمعالجة حراريا عند 500 درجة مئوية لمدة 90 دقيقة. ومن خلال تحليل هذا المنحنى (الشكل(IIII)) تم تحديد مواضع القمم (Peaks) التي تظهر بشكل حاد عند تسليط حزمة من الأشعة السينية، وبمقارنة قمم طيف الإنعراج الذي تم الحصول عليه مع البطاقة المرجعية JCPDS في بنك المعلومات لثاني أكسيد التيتانيوم للأطوار الثلاثة : *أناتاز، روتيل و بروكيت* ذات الأرقام التسلسلية على التوالي:

. (Brookite: 29-1360) (Rutile: 21-1276) (Anatase: 21-1272)

من الشكل (1.111) تم تسجيل وجود ثلاث قمم عند الزوايا 20: 25.32°، 38.04° و 48.13°، والتي تتوافق مع المستويات البلورية على التوالي: (101) و (112) و (200) مما بينت أن الأغشية المتحصل عليها تعود إلى طور الأناتاز ذات بنية رباعية السطوح (Tetragonal) و ذو تركيب متعدد التبلور (Polycrystalline) والإتجاه السائد للنمو هو (101) وهذه النتيجة مشابهة لنتيجة الباحثين [39،36،35،24].

غير أنه وإستنادا لأعمال سابقة وجد أن تبلور الأغشية الرقيقة لـ Al:TiO₂ يتناقص تدريجيا مع الزيادة في نسبة التطعيم [37،24].

الفصل الثالث

الشكل (1.111): أطياف حيود الأشعة السينية للأغشية الرقيقة TiO2 غير المطعمة بAl. 1.1.1. III. المسافة بين المستويات البلورية dhkl و ثوابت الشبكة

من خلال تحليل طيف الأشعة السينية (الشكل(IIII))، تم حساب المسافة بين المستويات البلورية للأغشية الرقيقة لثاني أكسيد التيتانيوم الغير مطعم بذرات الألمنيوم إنطلاقا من علاقة براغ وذلك بالإعتماد على العلاقة (III) (لاحظ الفصل الثاني). في حين تم حساب ثوابت الشبكة البلورية بإستخدام العلاقة (2.11).

يلخص الجدول (1.III) أهم النتائج المتحصل عليها من أطياف إنعراج الأشعة السينية (الشكل (1.III)) : ثوابت الشبكة ، المسافة البلورية بالإضافة إلى عرض منتصف القمة (م) و كذلك الحجم الحبيبي.

D(nm)	العرض عند منتصف القمة (rad)	ثوابت الشبكة (Å)	d _{hkl} (Å)	(hkl)	2 \theta(•)	<i>التطعيماA</i> (wt.%)
17.612	0.0083	a=3.7779 c=9.3866	<i>d</i> ₁₀₁ =3.5137	A-(101)	25.3266	
			<i>d</i> ₁₁₂ =2.3632	A-(112)	38.0456	0
			<i>d</i> ₂₀₀ =1.8889	A-(200)	48.1300	

الجدول (1.11): القيم المحسوبة من خلال تحليل منحنى إنعراج الأشعة السينية.

من خلال النتائج التي تم الحصول عليها في ا**لجدول (1.III)** وجد أن قيم ثوابت الشبكة والمسافة بين المستويات البلورية تتفق تقريبا مع البطاقة المرجعية (JCPDS: 21-1272) و تتفق أيضا مع نتائج أبحاث سابقة [38،35،24].

D (nm) الحجم الحبيبي .2.1.1. III

تم حساب الحجم الحبيبي (D(nm للأغشية الرقيقة لثاني أكسيد التيتانيوم غير المطعمة بإستخدام العلاقة (3.II) (المذكورة في الفصل السابق) للإتجاه السائد (101) لطور الأناتاز، وقد وُجد أن قيم هذا الأخير تكون في حدود 17.612nm (الجدول (1111)) وهو ما يتفق مع نتائج أبحاث سابقة للأغشية الرقيقة لثاني أكسيد التيتانيوم غير المطعم [39]. 11.2. دراسة الخصائص البصرية بإستعمال مطيافية (UV-VIS)

تعد دراسة الخصائص البصرية للشرائح الرقيقة جزءا هاما في معرفة طبيعة هذه المواد والتي تسمح لنا بإستخدامها في العديد من التطبيقات، ومن أجل ذلك تم ترسيب شرائح رقيقة من ثاني أكسيد التيتانيوم، وكما ذكرنا في الفصل الأول فإن هذه المادة تحتوي على العديد من الخصائص المثيرة للإهتمام والتي جعلتها تكتسب مكانا مميزا في المجال التكنولوجي.

ولفهم تأثير التطعيم بواسطة ذرات الألمنيوم على الخصائص البصرية للأغشية الرقيقة TiO2، تم إجراء هذه الدراسة بإستخدام قياس النفاذية البصرية بدلالة الطول الموجي في المجال المرئي و الأشعة فوق البنفسجية ضمن مدى الأطوال الموجية mm (200-900) و التي

سمحت لنا بالوصول إلى معرفة سمك هذه الأغشية الرقيقة (d)، معامل الإنكسار (n) ، الفجوة البصرية ${
m E_g}$ و طاقة أورباخ ${
m E_{00}}$.

Al بنفاذية الأغشية الرقيقة لـ TiO₂ المطعم بـ 1.2. III

الأشكال (III. و 3) تبين أطياف النفاذية للأغشية الرقيقة لـ AI: TiO2: الم أحادية الطبقة و المشكلة من ست طبقات على التوالي والمحضرة على ركائز زجاجية بطريقة محلول-هلام بالإعتماد على تقنية الطرد المركزي والتي تم معالجتها حراريا لمدة ساعة ونصف عند 500 درجة مئوية، حيث يمكن بصفة عامة ملاحظة تشابه سلوك منحنى أطياف النفاذية لجميع الأغشية المحضرة سواء أحادية الطبقة أو المشكلة من ست طبقات.

من الشكل (III.2) نلاحظ أن نفاذية الأغشية الرقيقة ل TiO₂ 1: IA تكون أقل ما يمكن عند حافة الإمتصاص الأساسية (mn 300) وتزداد مع زيادة الطول الموجي إلى أن تبلغ القيمة 90 % عند الطول الموجي (mn 350) ثم تبدي تناقص صغير إلى أن تثبت تقريباً عند الطول الموجي mn 600. أما عند التطعيم فإن النفاذية تزداد مع زيادة نسب التطعيم وتكون أعلى قيمة لها هي 90 %عند نسبة التطعيم (7%). وبالتالي تندرج الشرائح الرقيقة المتحصل TCOs). وبسبب تكافؤ المتحصل مرترد (AI⁺³) يصبح هذا الأخير قادر على إقتناص الإلكترونات ، وبالتالي فإن التطعيم يؤدي إلى التقليل من المستويات الموضعية ضمن فجوة الطاقة مما ينجر عنها تقليل الإمتصاص وزيادة النفاذية.

الشكل (III 2: أطياف النفاذية للأغشية الرقيقة أحادية الطبقة من TiO₂ المطعمة بنسب كتلية (3، 0، 5، 5 و 7) % من Al والمعالجة حراريا عند •C 500 لمدة ساعة ونصف.

يبين الشكل (III.6) تغير طيف النفاذية كدالة للطول الموجي للأغشية الرقيقة لـ 102-6: 1A إذ أن جُلّ النفاذية للأغشية الرقيقة تكون أعظم ما يمكن بين (70 %- 90%) عند الأطوال الموجية الأكبر من 350mm في المنطقة المرئية من الطيف بحيث تتراوح قيم النفاذية المسجلة حسب الأطوال الموجية المدرجة في (الشكل(III.2)) وبذلك يمكن إستخدام هذه الأغشية كنوافذ في تطبيقات الخلايا الشمسية، ويعزى ذلك إلى أن الفوتونات الساقطة لا تستطيع إثارة الإلكترونات ونقلها من عصابة التكافؤ إلى عصابة النقل لأن طاقة الفوتون الساقط أقل من قيمة فجوة الطاقة لأنصاف النواقل ولهذا فإن الإمتصاصية تقل بزيادة الطول الموجي [40]. في حين تكون أقل ما يمكن عند حافة الإمتصاص الأساسية (الأطوال الموجية القصيرة) والسبب في ذلك يعود إلى مساهمة الفوتونات أثناء الإنتقال الإلكتروني بين النطاقات [42]، أي إثارة إلكترون من حزمة التكافؤ إلى حزمة التوصيل، والذي يتجلى من خلالها الزيادة في الإمتصاصية [38] و إنخفاض في النفاذية [42].

الشكل (III 6: أطياف النفاذية للأغشية الرقيقة سداسية الطبقات من TiO₂ المطعمة بنسب كتلية (0 ، 3 ، 5 و 7) % من Al والمعالجة حراريا عند •C 500 لمدة ساعة ونصف.

بالإضافة إلى ملاحظة وجود أهداب التداخل في منطقة الشفافية العالية [8]، نتيجة حدوث إنعكاسات متعددة للإشعاع الساقط على جانبي الأغشية الرقيقة [38]. كما أنها تشير أيضا إلى أن طبقاتنا المحضرة سميكة من ناحية و ناعمة من ناحية أخرى[8].

d) دساب سمك الغشاء الرقيق (d).

تم حساب السمك (d) للأغشية الرقيقة TiO₂ 6: Al غير المطعمة والمطعمة بذرات الألمنيوم و المعالجة حراريا عند 500 درجة مئوية لمدة ساعة ونصف، إعتمادا على تحليل طيف النفاذية (الشكل(II.4))، حيث تم حساب هذا الأخير بإستخدام العلاقات (II.4)، (II.5) و (II.6) المندرجات في الفصل الثاني. نتائج الحسابات المتحصل عليها لقيم السمك (d) ملخصة في الجدول (II.1).

'd ' سمك الغشاء الرقيق (nm)	wt. %' نسبة التطعيم الكتلي بـ Al
297,99	0
511,64	3
302,32	5
283,30	7

الجدول (III c): القيم المحسوبة لسمك الأغشية الرقيقة (d) بدلالة نسب التطعيم.

الشكل(4.III) يمثل تغيرات قيم السمك (d) للأغشية الرقيقة TiO₂ غير المطعمة و والمطعمة بنسب كتلية مختلفة (7, 5, 3%) بدلالة تغيرات نسبة التطعيم لذرات الألمنيوم.

الشكل (4.III): تغيرات السمك (d) للأغشية الرقيقة TiO₂ غير المطعمة و المطعمة بذرات Al (a) والمعالجة حراريا عند •C 500 لمدة ساعة ونصف بدلالة نسبة التطعيم.

نلاحظ من خلال (الشكل(4.III)) أن سمك الأغشية الرقيقة (d) يزداد بزيادة نسب التطعيم لتصل إلى (wt.3%Al) عند (wt.3%Al)، بينما يقل عند نسبة التطعيم الأعلى لتستقر في حدود(wt.7%Al) عند (wt.7%Al)، وهذا يدل على حدوث إضطرابات على

الفصل الثالث

مستوى ترتيب المادة نتيجة تأثير التطعيم [41]. ومن ناحية أخرى يعزى هذا التغير إلى معدل التكثيف للطبقة الرقيقة المحضرة[8].

(P) والمسامية (n) والمسامية (2).

تم حساب قرينة الإنكسار (n) للأغشية الرقيقة TiO₂ - 6: Al غير المطعمة والمطعمة بنسب كتلية مختلفة من ذرات الألمنيوم، من خلال تحليل النتائج المقاسة من طيف النفاذية وذلك بالإعتماد على المعادلات (II.5) و (II.6)، التي أدرجت مسبقا في الفصل الثاني .

أما مسامية الأغشية الرقيقة TiO₂- 6: Al، فيمكن حسابها إعتمادا على العلاقة التالية [16]:

 $P = \left(1 - \frac{n^2 - 1}{n_d^2 - 1}\right) \times 100\%$ (1.III)

حيث:

P: المسامية؛

n : معامل الإنكسار للأغشية الرقيقة المحضرة ؛

nd: (nd=2,52) اللامسامى (TiO2) .

نتائج الحسابات المتحصل عليها لقيم قرائن الإنكسار (n) و المسامية (p) للأغشية الرقيقة AI -TiO₂ -TiO

الجدول (III 6): قيم كل من قرائن الإنكسار (n) والمسامية (p) بدلالة نسبة التطعيم للأغشية الرقيقة 2TiO- 6: Al.

المسامية (p)	معامل الإنكسار (n)	wt. %'
		التطعيم الكتلي بـ Al
76,01976	1,51097	0
75,90640	1,51297	3
76,23315	1,50718	5
76,22422	1,50734	7

الفصل الثالث

يوضح ا**لشكل(P.)** تغيرات كل من قيم معامل الإنكسار (n) والمسامية (P) للأغشية الرقيقة Al **-TiO₂ 6: Al** المحضرة كدالة لتغيرات نسبة التطعيم.

الشكل(III.5):تغيرات معامل الإنكسار (n) والمسامية (p) للأغشية الرقيقة TiO₂ المطعمة بذرات Al والمعالجة حراريا عند •C 500 لمدة ساعة و نصف بدلالة نسبة التطعيم.

نلاحظ من خلال (الشكل(III.5)) أن معامل الإنكسار (n) يتغير على شكل تناسب عكسي مع مسامية الأغشية الرقيقة (p) [8]، وبزيادة نسبة المطعمات تنخفض قيم هذا الأخير، حيث أنه في حالة الأغشية الرقيقة لـTiO₂ غير المطعمة تكون قيمة معامل الإنكسار في حدود 1,51097، بينما عند نسبة التطعيم (kt.3%Al) فإن معامل الإنكسار يرتفع ليبلغ أعلى قيمة وهي 1,51297. يمكن تفسير هذا الإرتفاع النسبي لمعامل الإنكسار إلى إرتفاع سمك الغشاء المحضر (1,64nm) و بالتالي القضاء على المسامات عن طريق تكثيف و تبلور الأغشية الرقيقة [38]، أما عند نسبة التطعيم الأعلى (wt.7%Al) ينخفض هذا الأخير نسبيا ليستقر في حدود 1,50734. من الواضح أن النتائج التي تم الحصول عليها و المدرجة في الجدول(3.III) توضح التنافس الحقيقي بين عملية التكثيف و التبلور التي تحدث أثناء عملية التطعيم بذرات الألمنيوم [8].

 E_{00} حساب الفجوة البصرية E_{g} والطاقة أورباخ 4. 2. III

 ${f E}_{00}$ من خلال تحليل أطياف النفاذية ، يتم إستنتاج الفجوة البصرية ${f E}_{g}$ وطاقة أورباخ ${f E}_{00}$ للأغشية الرقيقة ${f TiO_2}$ المطعمة بنسب كتلية مختلفة من ذرات الألمنيوم .

البصرية E_g تحديد الفجوة البصرية

يتم تحديد الفجوة البصرية إنطلاقا من حساب معامل الإمتصاص α وذلك بإستخدام العلاقة (1.7) (لاحظ الفصل الثاني)، إذ يمكننا إنطلاقا من قيم α رسم منحنى تغيرات مالعلاقة (1.7) (لاحظ الفصل الثاني)، إذ يمكننا إنطلاقا من قيم α رسم منحنى تغيرات $^{1/2}(\alpha hv)$ بدلالة طاقة الفوتون (hv) وبإتباع الطريقة الموضحة في الفصل السابق والإعتماد على علاقة معلى علاقة Tauc على علاقة رالله (hu). يتم إستنتاج قيم الفجوة البصرية E_g للأغشية Tauc - 6: II بيانيا (hu).

الشكل(III 6): تحديد الفجوة البصرية E_g بيانيا للأغشية الرقيقة TiO₂ المطعمة بذراتAl بنسب كتلية مختلفة (0 ، 3 ، 7 ، 5%) والمعالجة حراريا عند •C 500 لمدة ساعة ونصف .

الحديد طاقة أورباخ E₀₀

hv بدلالة $In\alpha$ يتم تحديد طاقة أورباخ E_{00} بيانيا إنطلاقا من رسم منحنى تغيرات $In\alpha$ بدلالة وبالإعتماد على العلاقة (10. II) الموضحة في الفصل السابق (الشكل(7.III)).

الفصل الثالث

Al الشكل (TiO2 : تحديد طاقة أورباخ E00 بيانيا للأغشية الرقيقة TiO2 المطعمة بذرات Al . ذات نسب كتلية مختلفة (0 ، 3 ، 5 و 7 %) والمعالجة حراريا عند • C 500 لمدةساعة ونصف.

القيم المحسوبة لكل من الفجوة البصرية \mathbf{E}_{g} وطاقة أورباخ \mathbf{E}_{00} ملخصة في الجدول (4.III).

طاقة أورباخ (meV) E	الفجوة البصرية eV)E _g (نسبة التطعيم (%)
296,89	3,60039	0
297,93	3,50532	3
279,35	3,62442	5
273,03	3,67126	7

الجدول (III.4): قيم كل من الفجوة البصرية Eg وطاقة أورباخ E00 بدلالة نسبة التطعيم.

يمثل الشكل(E₀₀) تغيرات كل من الفجوة البصرية E_g وطاقة أورباخ E₀₀ للأغشية الرقيقة TiO₂ التي تم الحصول عليها بتراكيز مختلفة من AI تبعا لنسبة التطعيم.

الشكل(III.8) : تغيرات كل من الفجوة البصرية E_gوطاقة أورباخ E₀₀للأغشية الرقيقة TiO2 المطعمة بذرات Al والمعالجة حراريا عند •C 500 لمدة ساعة و نصف بدلالة نسبة التطعيم. يوضح الشكل(III.8) تأثير التطعيم على الفجوة البصرية و طاقة أورباخ، حيث نلاحظ أن قيم فجوة الطاقة البصرية تزداد بزيادة نسبة التطعيم. ومن خلال النتائج المبينة في الجدول (4.11) و الشكل(III.8) فإن فجوة الطاقة البصرية للأغشية الرقيقة TiO2 غير المطعمة تكون قيمتها تساوي 3,60eV، بينما عند التطعيم بنسبة (A%M) تنخفض نسبيا عند القيمة تكون قيمتها تساوي 3,60eV، بينما عند التطعيم بنسبة (الم%3 الى التفاع سمك الغشاء المحضر مقارنة بالأغشية الأخرى (لاحظ الشكل(III.1))، وعند نسبة التطعيم(A1% المحضر مقارنة بالأغشية الأخرى (لاحظ الشكل(III.1))، وعند نسبة التطعيم(A1% ق قيمتها كه 3,50 eV والالي الشكل قيمتها كه 3,50 وقد يعزى هذا النقصان في قيمة فجوة الطاقة إلى إرتفاع سمك الغشاء المحضر مقارنة بالأغشية الأخرى (لاحظ الشكل (III.2))، وعند نسبة التطعيم(A1% المحضر قيمتها 40 مع مرود الاحة الشكل (III.2))، وعند نسبة التطعيم(المالي المحضر و بالتالي في الأحرى (لاح؟ الشكل (Burstein-Moss(BM))، و تستقر في حدود (القوب (إذ أن المستويات البلورية للمادة تعاني من الحصر الكمي و بالتالي فإن الإلكترونات و الثقوب لا يتم نقلها كما هو متوقع فتبدو هذه الأخيرة محصورة مما يؤدي إلى الزيادة في الفجوة البصرية[43].

كما نلاحظ أيضا من خلال (الشكل(III.8)) أن قيم الفجوة البصرية E_g تتغير على تعاكس مع قيمة طاقة أورباخ E_{00} بدلالة نسبة التطعيم، حيث تم تسجيل تناقص في قيم طاقة أورباخ مع قيمة طاقة أورباخ (Wt.3% (AI) تزداد قيم هذه الأخيرة وذلك نتيجة ظهور فجوات في عرض الإتصال، والتي تؤدي إلى إمكانية إختفاء حدود حزمة التوصيل و التكافؤ التي تولد تشكيل مستويات تقع في ذيل الشريط عند حدود النطاق المحظور (تضيق النطاق المحظور) [9:33] وبالتالي يزداد عرض ذيل شريط أورباخ مما يؤدي إلى نقص فجوة النطور (تضيق النطاق المحظور) [9:33] وبالتالي يزداد عرض ذيل شريط أورباخ مما يؤدي إلى نقص فجوة النطاق المحظور) [9:33] وبالتالي يزداد عرض ذيل شريط أورباخ مما يؤدي إلى نقص فجوة أورباخ هو التكافؤ التي تولد تشكيل مستويات تقع في ذيل الشريط عند حدود النطاق المحظور (تضيق النطاق المحظور) [9:33] وبالتالي يزداد عرض ذيل شريط أورباخ مما يؤدي إلى نقص فجوة أورباخ هو بالتأكيد نتيجة مباشرة للتصرف البصري لقيم ذيل شريط أورباخ ما يؤدي إلى نقص فجوة أورباخ هو بالتأكيد نتيجة مباشرة للتصرف البصري لقيم ذيل شريط أورباخ المعاكس للتصرف الطاقة البصرية و طاقة أورباخ هو بالتأكيد نتيجة مباشرة للتصرف البصري لقيم ذيل شريط أورباخ المعاكس للتصرف أورباخ هو بالتأكيد نتيجة مباشرة للتصرف البصري لقيم ذيل شريط أورباخ المعاكس للتصرف أورباخ المعاكس للتصرف أورباخ هو بالتأكيد نتيجة مباشرة للتصرف البصري لقيم ذيل شريط أورباخ المعاكس للتصرف أورباخ المعاكس للتصرف أورباخ المعاكس للتصرف أورباخ هو بالتأكيد نتيجة مباشرة التصرف البصري القيم ذيل شريط أورباخ المعاكس للتصرف أورباخ المعاكس للتصرف أورباخ أورباخ المعاكس للتصرف أورباخ هو بالتأكيد نتيجة مباشرة التصرف البصرية أورباخ أورباخ المعاكس للتصرف أورباخ أورباخ أمعاكس للتصرف أورباخ أورباخ أورباخ أوربان التصرف أوربان أورباخ أورباخ أوربان الماني أورباخ أورباخ أوربان أوربان أوربان أوربان أوربان أوربان أوربا أوربان أورات أوربي أوربان أوران أوربان أوربان أوربان أوربان أوربان أوربان أوران أوربان أوراوران أ

الإستنتاجات

الغاية من هذه الدراسة هو تحضير الأغشية الرقيقة لثاني أكسيد التيتانيوم TiO₂ بإستخدام طريقة محلول-هلام وبإعتماد تقنية *الطرد المركزي*، على ركائز من الزجاج العادي لإستخدامها في تطبيقات متعددة.

تم في هذا العمل دراسة مدى تأثير نسبة التطعيم بالألمنيوم على الخصائص البصرية للأغشية المحضرة (Al -6-TiO₂). ومن أجل ذلك تم الإستعانة بجهاز مطيافية الأشعة فوق البنفسجية و المرئية، لتحديد مختلف الخصائص البصرية لجميع الأغشية.

تسلط در استنا الضوء على النتائج التالية:

- *i* الأغشية المحضرة من ثاني أكسيد التيتانيوم غير المطعمة بالألمنيوم والمرسبة على ركائز زجاجية بطريقة محلول-هلام وبإستخدام تقنية *الطرد المركزي هي ذات تركيب متعدد* التبلور ومن النوع (Tetragonal) والطور السائد للنمو هو (101)؛
- *ii.* تزداد قيم نفاذية أغشية ثاني أكسيد التيتانيوم غير المطعمة و المطعمة بالألمنيوم مع الزيادة في نسبة التطعيم من 3 إلى wt.7% Al أنها تمتاز بالشفافية العالية في المجال المرئي بمعدل %T_{avg} = 90% مما يسمح بإستخدامها كطبقات في الخلايا الشمسية؛
- iii. يتغير معامل الإنكسار n على شكل تناسب عكسي مع مسامية الأغشية الرقيقة، كما تزداد هذه الأخيرة بزيادة نسبة التطعيم بالألمنيوم من 3 إلى 7 % وزني؛
 - iv. وجد أن قيم الفجوة البصرية للأغشية الرقيقة المحضرة (Al -6-TiO₂) تتراوح بين. eV (3,50 - 3,67)؛

٧. كما سمحت هذه الدراسة بتوضيح التغيرات التي طرأت على الفجوة البصرية E_g، حيث تم تسجيل تزايد في قيم هذه الأخيرة تبعا لزيادة في نسبة التطعيم، أما في ما يخص طاقة أورباخ E₀₀ فكانت العكس.

من خلال النتائج التي تحصلنا عليها للخواص البصرية للأغشية الرقيقة لثاني أكسيد التيتانيوم (Al :6-TiO2) بإستخدام طريقة مطول ملام وتطابقها مع نتائج بحوث ودراسات عديدة، نستنتج أن المنظومة التي تم بناءها لتحضير الأغشية الرقيقة للمواد الصلبة بإستخدام طريقة مطول ملام وبإعتماد تقنية الطرد المركزي مفيدة وناجحة ومعتمدة لتحضير أغشية رقيقة لأغراض البحوث والدراسات الموجهة لإستخدامها في تطبيقات متعددة.

المشاريع المستقبلية:

- التيتانيوم **TiO₂ المحضرة بإستخدام طريقة مط***ول-هلام.* **التيتانيوم TiO₂ المحضرة بإستخدام طريقة مح***لول-هلام***.**
- لله دراسة الخصائص البنيوية، والكهربائية للأغشية الرقيقة لثاني أكسيد التيتانيوم المطعم بالألمنيوم و المحضر بإستخدام طريقة محلول ملام وبالضبط تقنية الطرد المركزي.
- المطعم التي التياني التياسات البصرية الموجهة لأغشية ثاني أكسيد التيتانيوم المطعم المطعم الملعم بالألمنيوم والمحضر بطريقة *محلول هلام* و بإستخدام تقنية *الطرد المركزي*.

قائمة المراجع

الرقم

المرجع

- [1] Y. Bouachiba, «Contribution à l'élaboration de l'oxyde de titane par le procédé sol-gel: Effet du dopage et des conditions expérimentales », Thèse de Doctorat ,Universté Constantine1, (Algérie), 2014.
- [2] O. Boussoum, « Etude de l'effet d'une couche mince de TiO₂ sur les paramètres d'une cellule solaire au Silicium», Mémoire de Magister, Université Mouloud Mammeri de Tizi-Ouzou (Algérie), 2011.
- [3] A. Mahroug, «Etude des couches minces d'Oxyde de Zinc dopé Aluminium et Cobalt élaborées par la technique sol gel-spin coating. Application à la photodétection et au photocourant», Thèse de Doctorat, Université des Frères Mentouri -Constantine, (Algérie), 2015.
- [4] M. Maache, «Elaboration de films minces d'oxydes semiconducteurs par voie Sol-Gel», Thèse de Doctorat, Université Mohamed Khider - Biskra, (Algérie), 2014.
- [5] M. Attallah, «Elaboration et caractérisation des couches minces d'oxyde de silicium, obtenues par voie sol-gel», Mémoire de Magister, Université Mentouri-Constantine, (Algérie), 2010.
- [6] M. Khechba, «Elaboration et étude des couches minces

d'oxyde d'étain», Thèse de Doctorat, Université des Frères Mentouri-Constantine 1, (Algérie), 2018.

- [7] M. Aounallah, « Ètude des propriétés physiques de couches minces de TiO₂ élaborée par voie sol- gel», Mémoire de Master, Université Larbi Tebessi-Tébessa,(Algérie),2016.
- [8] F. Hanini, « Etude des propriétés physiques de couches minces TiO₂ élaborées par différentes techniques », Thèse de Doctorat, Université Mentouri -Constantine, (Algérie), 2014.
- [9] A. Hafdallah, «Étude du Dopage des Couches Minces de ZnO Élaborées par Spray Ultrasonique», Mémoire de Magister, Université Mentouri -Constantine (Algérie), 2007.
- [10] B. Gueridi, « EFFET DU TRAITEMENT THERMIQUE ET L'EPAISSEUR SUR LES PROPRIETES MECANIQUES ET PHYSIQUES DU COMPOSITE POLYSTYRENE PIGMENTE PAR LE DIOXYDE DE TITANE», Mémoire de Magister, Université de Ferhat Abbas-Setif (Algérie),2011.
- [11] T. Goudjil, « Etude de l'oxyde de titane en couches minces en hétérojonction avec le silicium, application photovoltaïque », Mémoire de Magister, Université Mouloude Mammeri de Tizi - Ouzou, (Algérie), 2013.
- [12] H. Fraoucence, « Effet de la température (traitement thermique) sur les propriétés optoélectroniques et structurales de Tio₂ nanotube», Mémoire de Magister, Université Mouloud Mammeri de Tizi-Ouzou ,(Algérie)....
- [13] Ulrike. D, 2003 « The surface science of titanium dioxide», USA, Surface Science Reports, Vol .48,53-229 .

- [14] S. Benkara, «Etude des propriétés électroniques et photonique des couches minces à base d'oxyde nanostructurés», Thèse de Doctorat, Universté du 20 Août 1955 Skikda, (Algérie),2014.
- [15] B. Gilbert, H. Zhang, F. Huang, M. P. Finnegan, G.A. Wagchunas and J.F. Banfield, «Special phase transformation and crystal growth pathways observed in nanoparticles », Geochmical transactions 4(2003)20-27.
- [16] Z. Daas, «Contribution à l'étudedes propriétés de films TiO₂», Mémoire de Magister, Université de frères Mentouri-Constantine (Algérie), 2010.
- [17] S. Bouhadoun, «Synthèse de nanoparticules de dioxyde de titane par pyrolyse laser et leur application en photocatalyse», Thèse de Doctorat, Université de Paris-Sud, (2015).
- [18] N. Sbaï, J. Perrière, B. Gallas, E. Millon, w. Seiler ,and M. C. Bernard, «Structural, optical, and electrical properties of epitaxial titanium oxide thin films on LaAlO3 substrate», Journal of Applied Physics 104,033529 (2008).
- [19] H. Benelmadjat, «Elaboration et caractérisation de matériaux cristallins ou amorphes pures et dopés», Thèse de Doctorat, Université Mentouri-Constantin ,(Algérie), 2011.
- [20] A. Bazine, « Elaboration par sol-gel et caracterisation d'oxyde metallique (TYPE:α-Fe₂O₃)AUX, propries photocatalytique », Mémoire de Magister, Université des Frères Mentouri-Constantine1 (Algérie),2017.
- [21] K. Daoudi, « ÉLABORATION ET CARACTERISATION DE FILMS MINCES D'OXYDE D'INDIUM DOPE A L'ETAIN

المراجع المكتبية

OBTENUS PAR VOIE SOL-GEL Potentialité pour la réalisation d'électrodes sur silicium poreux», Thèse de Doctorat, Université Claude Bernad-Lyon1, (2003).

- [22] C. M. Ghimbeu, «Préparation et caractérisation de couches minces d'oxides métalliques semiconducteurs pour la détection de gaz polluants atmosphériques», Thése de Doctorat, Université Paul Verlaine de Metz, (2007).
- [23] A. Hafdallah, « Dépôt et caractérisation des electrodes en couches minces transparentes et conductrice», Thèse de Doctorat, Université des Frères Mentouri - Constantine, (Algérie),2016.
- رياض سامي عنتر، رافع عبد الله منيف ، فارس صالح عطالله « دراسة التأثير [24] المولاري على الخصائص التركيبية لأوكسيد التيتانيوم TiO₂ المحضر بطريقة Sol-Gel » ، مجلة تكريت للعلوم الصرف، (2)، 21 ،(ISSN) 1662-1813(2016).
- [25] H. Belkhalfa, «Etude de l'effet du recuit à haute temperature sur les proprieties des couches minces de ZnO deposes par spray pyrolyse pour application photovoltaïque», Mémoire de Magister, Université M'Hamed Bougara – Boumerde, (Algérie), 2010.
- [26] S. Mahmoudi, «Etude de nanoparticules de dioxide de titane élaborées par voies chimiques», Thèse de Doctorat, Université Constantine 1, (Algérie),2014.
- [27] B. Loundja Chibane, «Etude et élaboration du bisulfure de molybdène et du trioxyde de molybdène en couches minces en vue d'application photovoltaïque Thèse de Doctorat, Université

Mouloud Mammeri Tizi-Ouzou, (Algérie), 2017.

- **سعاد. قصراني** « در اسة الخصائص الفيزيائية للبور سلان المحضر انطلاقا من [28] مواد أولية محلية » ، أطروحة دكتوراه ، جامعة الإخوة منتوري قسنطينة 1 ، 2017.
- [29] M. Yakoubi, «Effet des petites déformations par compression sur le comportement à la corrosion de l'alliage d'aluminium de fonderie Al 4% cu», Mémoire de Magister, Université Mouloud Mammeri de Tizi - Ouzou ,(Algérie) ,2015.
- [30] Y. Ghalmi, «Etude du comportement électrochimique et optique de couches minces d'oxyde de nickel (NiO); application en photovoltaïque», Thèse de Doctorat, Université Ferhat Abbas –Setif 1,(Algérie), 2019.
- [31] T. Kacel, «Couches minces de SnO₂nanocristallines obtenues par Sol-Gel et étude des conditions de leurs cristallisations», Mémoire de Magister, Université Ferhat Abbas-Setif, (Algérie),2007.
- [32] C. H. Djennas, «synthèse et modification post- synthéstique de TiO₂ mésoporeux : application à la dégradation de polluants organiques», Thèse de Doctorat , Université de Tlemcen, (Algérie), 2015-2016.
- [33] A. Saâd, «Caractérisation optique et structurale des couches minces d'oxyde complexes pour application photoniques», Thèse de Doctorat, Université Ferhat Abbas Sétif 1, (Algérie),2015.
- [34] F. Medjaldi, «Préparation et caractérisation de couches minces d'oxyde de titane (TiO₂) et du couple d'oxydes (TiO₂/SnO₂) », Mémoire de Magister, Université Mentouri

المراجع المكتبية

Constantine, (Algérie),2012.

- د. زكريا ظلام ، د. ناصر سعد الدين ، أميرة العكام « تأثير التلدين على البنية البلورية [35] للأفلام الرقيقة من TiO₂ » ، مجلة جامعة البعث – المجلد 36 – العدد 1 -2014 .
- [36] F. Hanini, A. Bouabellou, Y. Bouachiba, F. Kermiche, A. Taabouche, M. Hemissi, and D. Lakhdari, *«Structural, optical and electrical properties of TiO2 thin films synthesized by sol-gel technique»*, IOSR Journal of Engineering (IOSRJEN),3,(2013) 21-28.
- [37] F. Hanini, Y. Bouachiba, F. Kermiche, A. Taabouche, A. Bouabellou, T. Kerdja, and K. Boukheddaden, «Characteristics of Al-doped TiO2 thin films grown by pulsed laser deposition», Int.J. Nanoparticles, 6, (2013) 132-142.
- [38] A. Kharoubi, A. Bouaza, B. Benrabah, A. Ammari, and A. khiali, «Characterization of Ni-doped Tio₂ thin films deposited by dip-coating technique» ,The European physical Jouranl Applied Physics, (2015) 72:30301.
- [39] A. K. M. Muaz, U. Hashim, Fatimah Ibrahim, K. L. Thong, Mas S. Mohktar and Wei-Wen Liu, « Effect of annealing temperatures on the morphology, optical and electrical properties of TiO₂ thin films synthesized by the sol–gel method and deposited on Al/TiO₂/SiO₂/p-Si», 2015, Microsyst Technol, 1-11.
- ردينة صديق عبد الستار الدليمي، « دراسة الخصائص التركيبية والبصرية [40] المحضرة لأغشية Ni(1-X)Znx O بطريقة التحلل الكيميائي الحراري» رسالة ماجستير ، جامعة ديالي، العراق (2013).
- [41] H. Dehdouh, « Propriétés physic-chimiques des couchess

minces de l'oxyde de titane. Effet de la concentration», Mémoire de Magister, Université Mentouri Constantine, (Algérie),2009.

- [42] O. Daranfad, « Elaboration et caractérisation des couches minces de sulfure de Zinc préparées par spray ultrasonique», Mémoire de Magister, Université Mentouri-Constantine, (Algérie),....
- [43] H. Lin, C. P. Huang, W. Li, C. Ni, S. Ismat Shah, Yao-Husan Tseng, « Siz dependency of nanocrystalline TiO₂ on its optical property and photocatalytic reactivity exemplified by 2chlorophenol», Applied Catalysis B :Environmental 68, (2006) 1-11.