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Abstract

The aim of this thesis is to study the dynamics of a Turing-type reaction-diffusion

model, i.e. study a reaction-diffusion model that exhibits Turing properties, whereas

the reaction-diffusion defines the mechanism in which several interacting chemicals or

agents react together while diffusing or spreading across a liquid or gaseous medium

simultaneously, usually, these processes are studied for their ability to produce nontrivial

patterns that evolve over time. Such patterns are driven by diffusion, also referred to as

Turing structures or Turing patterns. The Turing patterns are measured in the presence of

diffusion, but are not present in the absence of diffusion, this mechanisme called ”diffusion-

driven instability” or ”Turing instability”. In this work, the study was related ”the well-

known Degn-Harrison reaction diffusion model and its generalization”. Our thechnique to

prove the asymptotic stability of the steady state solution is based on the eigen-analysis,

the Poincaré–Bendixson theorem and the direct Lyapunov method.

keywords:

Reaction-Diffusion Systems, Turing Instability, Global Existence, Lyapunov Func-

tional, Stability Analysis.
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Résumé

Le but de cette thèse est d’étudier la dynamique d’un modèle de réaction-diffusion de

type Turing, i.e. d’étudier un modèle de réaction-diffusion qui présente les propriétés de

Turing, telle que le réaction-diffusion définit le mécanisme par lequel plusieurs produits

chimiques ou agents interagissants réagissent ensemble tout en diffusant ou en diffusant

simultanément sur un milieu liquide ou gazeux, habituellement, ces processus sont étudiés

pour leur capacité à produire des modèles non triviaux qui évoluent au fil du temps. Ces

modèles sont entrâınés par la diffusion, également appelée structures de Turing ou modèles

de Turing. Les modèles de Turing sont mesurés en la présence de diffusion, mais ne sont

pas présents en l’absence de diffusion, ce mécanisme appelé ”instabilité de diffusion” ou

”instabilité de Turing”. Dans ce travail, l’étude a été liée ”le modèle bien connu de

réaction-diffusion Degn-Harrison et sa généralisation”. Notre technique pour prouver la

stabilité asymptotique de la solution à l’état d’équilibre est basée sur l’analyse du valeurs

propres, le théorème de Poincaré–Bendixson et la méthode directe de Lyapunov.

Mots clés:

Système de Réaction-Diffusion, Instabilité de Turing, Existence Globale, Fonction de

Lyapunov, Analyse de Stabilité.
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 ملخص

، أي دراسة نموذج  تورينج من النوع نموذج نتشار ال -التفاعل أنظمةهو دراسة ديناميكيات  الأطروحةالهدف من هذه 

ي يتفاعل فيها العديد من المواد ال -الذي يعرض خصائص تورينج، حيث يعرف التفاعلنتشار ال -التفاعل
نتشار الآلية الت 

درس هذه النتشار عبر وسيط سائل أو غازي ر أو اشتنال الكيميائية أو تتفاعل العوامل معا أثناء 
ُ
ي نفس الوقت، ت

 
ف

غبر بديهية تتطور مع مرور الوقت وهذه الأنماط يحركها النتشار، ويشار إليها  أنماط العمليات عادة لقدرتها على إنتاج

قاس أنماط تورينج بوجود النت
ُ
 باسم"هياكل تورينج " أو "أنماط تورينج" وت

ً
ي غياشار أيضا

 
هذه الآلية   ،هب، ولكن ليس ف

ي هذا العمل ارتبطت الدراسة ب نتشار" أو "عدم استقرار تورينج". تسمى "عدم الستقرار المدفوع بال 
 
-نموذج التفاعلف

لحل الحالة  الستقرار المقارب حيث اعتمدنا لإثبات  ،الخاص بهوالتعميم هاريسون -ديجنالمعروف نتشار ال 

ة-، نظرية بوانكاريالذاتية على تحليل القيم المستقرة . بنديكسو وطريقة ليابونوف المباشر  

  

 الكلمات المفتاحية: 

، تحليل الستقرار. يابونوفل دالة، ورينج، الوجود الكلىي ، عدم استقرار تنتشار ال -التفاعلأنظمة   
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General Introduction

General Introduction
Nature refers to everything found in the universe from various remove commas, pattern

formation which is a complex process. These patterns occur in di¤erent contexts and can

sometimes be modelled mathematically. Natural patterns include symmetries (animal

coats, snow�akes, �owers, echinoderms, crystals), trees, spirals, meanders (sinuous bends

in rivers), waves (dunes, wind waves, sea waves), foams, tessellations(honeycomb, bony

�sh, reptiles), cracks, stripes (angel�sh, zebras) and spots (leopards, ladybirds). There

even exist microscopic patterns in nature such as the patterns in the connectivity of

neurons in the brain�s visual cortex. Despite their complexity and wide variety, the

abundance of patterns in nature suggests that there may be a set of simple principles

governing pattern formation in general.

Figure 1: Pattern formation examples

Scientists have become more and more interested in understanding the processes of

biological pattern formation over the past �fty years, and this area has become a fertile

ground for collaborations between experimental groups and applied mathematicians.

In 1952, the British mathematician, logician, cryptanalyst and theoretical biologist,

Alan Turing, proposed that pattern formation could be understood using a simple system

of reaction-di¤usion equations representing interacting chemicals. More importantly, he

suggested that patterns could originate due to the interactions of otherwise stabilizing
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General Introduction

processes. In his seminal paper entitled �The Chemical Basis of Morphogenesis�[50],
he predicted the striking idea of �di¤usion-driven instability�, which states that instead of

acting to equalize concentration di¤erences in space, di¤usion can be coupled to suitable

reaction�di¤usion systems to destabilize a stable homogeneous steady state and generate

stable and time-independent concentration patterns.

Over years, the concept of Turing instability attracted the interest of a large number

of researchers and its theoretical aspects were successfully analyzed. Not only has it

been studied in the biological and chemical �elds, some investigations extend as far as

economics, the physics of semiconductors and star formation [38].

In 1990, nearly 40 years after Turing�s paper was written, De Kepper et al. ([19, 15])

introduced the �rst experimental evidence of Turing pattern through the chlorite-iodide-

malonic acid and starch (CIMA) reaction in an open unstirred gel reactor. This CIMA

model showed that under certain conditions the Laplacian (di¤usion) driven instability

of the model gives rise to oscillatory solutions and, therefore, pattern formation. The

fact that there are �ve reactants involved in the CIMA reaction makes the mathematical

description very complicated. However, observing that three of the �ve reactants remain

nearly constants in the CIMA reaction, Lengyel and Epstein ([35, 37]) were able to reduce

it to a 2� 2 system.
In our work, we focus on the Degn-Harrison model, which is another Turing-type

system. This model was �rst proposed as early as 1969 by Degn and Harrison [18] to

describes the respiratory behavior of the Klebsiella Aerogenes bacterial culture, which

is shown in Figure 2. The following is a brief description of the main contents and

contribution made in this thesis.

Figure 2: Klebsiella Aerogenes bacterial culture
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Outline of the thesis
The thesis is organized as follows:

The �rst Chapter is devided into three sections which are:

� Nomenclature.

� General notions: presents the basic de�nitions, theorems, formulas, and inequalities
that are used as analytical tools throughout the thesis.

� Numerical methods: gives a description of the numerical �nite di¤erence method,
a Matlab implementation of which will be used to validate the theoretical results

presented throughout this thesis.

The second chapter presents the theoretical background based on which the present

work stands. It is divided into two sections: reaction di¤usion systems and Turing in-

stability. In the �rst section, we give a general introduction to reaction di¤usion systems,

in which we de�ne the general form of a two-dimensional reaction-di¤usion system and

simplify it by means of the nondimensionalization of variables. Next, we establish the

equilibruim solution and the linearization of the system. Finally, we discus the stability

analysis and the local stability in the ODE and the PDE senses. In the second section, we

introduce the Turing instability and its conditions. Then, we describe for the activator�

inhibitor of a system. Also, we complete the stability analysis from the previous section.

We mention some methods to obtain the global asymptotic stability. In the end, we in-

troduce the Degn Harrison model, give a brief history, and mention the most important

works and research related it. Also, we talk about its generalization.

The third Chapter presents the �rst main contribution of this thesis. First, we study

the well-known Degn-Harrison reaction di¤usion model. In Section 2, we prove the asymp-

totic stability of the system, both in the local and global senses. Also, weaker conditions

than those of previous studies are derived. In Section 3, our results are validated using

Matlab computer simulations.

The fourth Chapter constitutes the second main part of this thesis, in which we study

the Degn-Harrison system with a generalized reaction term. In Section 2, once an invariant

rectangle is identi�ed for the system, we prove the existence of a unique solution for all

t > 0 and establish its boundedness. In Section 3, the eigenfunction expansion method is

used to settle the local asymptotic stability of the steady state solution. Then, the direct

Lyapunov method is employed to obtain the conditions, assuring the global convergence

to the homogeneous equilibrium solution. In Section 4, we discuss the elliptic boundary

value problem obtaining a priori estimates for the nonconstant steady state solutions.
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Moreover, the nonexistence of non-constant positive solutions is be proved. Finally, in

Section 5, numerical simulations are performed in order to corroborate the analytical

�ndings of Section 3.
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Preliminaries

In this chapter, we present some of the necessary nomenclature and notions used

throughout the thesis. Then, we give a brief description of the �nite di¤erence-based

numerical analysis method used to validate the theoretical results.

1.1 Nomenclature

� R : Set of real numbers.

� R+ : Set of all nonnegative real numbers.

� RN : Set of all N -tuples x = (x1; x2; :::; xN):

� C (
) : Space of continuous functions on 
:

� CK (
) ; k = 1; 2 : Set of k-times continuously di¤erentiable functions in 
:

� L2 (
) : Set of square-integrable functions on 
:

� Lq(
) : Space of measurable functions on 
 for which the qth power of the absolute
value is Lebesgue integrable .

� L1 (
) : Space of all measurable functions u : RN ! R; for which there is a constant
M � 0 such that ju (x)j �M a.e x 2 RN :

� H1;W1;q
0 (
) : Sobolev space.

� H2 : Hilbert space.

� 
 : Bounded domain of RN :

� @
 : Boundary of domain 
.

� 
 : Closer of domain 
:

� j
j : Volume of domain 
:

� det(J) : Determinant of the matrix J:

� tr(J) : Trace of the matrix J .

� Re(�) : Real part of the complex number �:

� _V (u) : The derivative of V i.e. _V (u) = d
dt
V (u) :

� @u

@t
; @tu : Partial derivative with respect to t:

Doctoral THESIS 8 ABIR ABBAD
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� @u

@�
: Normal derivative of u outside of @
:

� � : Outward unit normal vector of the boundary @


� Ux (x0) : Derivative of U with respect to x evaluated at x = x0:

� O (hn) : Unkown error term.

� �u;r2u : Laplacian operator of u de�ned by �u = r2u =
i=NP
i=1

@2u

@x2i
:

� ru : Gradient of u de�ned by ru =
�
@u

@x1
;
@u

@x2
; � � � ; @u

@xN

�
:

� maxu (x) ;minu (x) : Maximum of u (x), minimum of u (x).

� supu (x) ; inf u (x) : Superior u (x), inferior u (x).

� h:; :i : Inner product.

� kuk : Norm:

1.2 General Notions

In this section, we present the basic notions used in this thesis. Let 
 � RN ; N � 1, be a
bounded domain with reasonably smooth boundary @
. For (x; t) 2 
�R+, we consider
the following system of reaction-di¤usion equations

Ut �D�U = H (U) ; (1.1)

where U = (u1; u2; : : : ; uN); N � 1; and D is a constant positive de�nite matrix. Together

with (1.1), we assume that U satis�es the initial condition

U (x; 0) = U0 (x) ; x 2 
 (1.2)

and the Neumann boundary condition

@U

@�
= 0 on @
; (1.3)

where � is the outward unit normal vector of the boundary @
:
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1.2.1 Basic Theorems and De�nitions

If U = (u; v) ; system (2.1) can be reduced to(
ut � d1�u = F (u; v) ;

vt � d2�v = G (u; v) ;
(1.4)

where u; v are the chemical species and d1; d2 are the speci�c di¤usion coe¤ecients.

De�nition 1.1 (Invariant set) [32]

Let < be a domain enclosed by a simple curve @< (in the phase plane). < is said to
be an invariant set for the ODE of system (1.4) if any solution with initial conditions in

< remains inside < for all t > 0:

De�nition 1.2 [54]

A rectangle < = (0; r1)�(0; r2) is called an invariant rectangle if the vector �eld (F;G)
on the boundary @< points inside. That is(

F (0; v) � 0 and F (r1; v) � 0 for 0 < v < r2;

G (u; 0) � 0 and G (u; r2) � 0 for 0 < u < r1:

De�nition 1.3 [41]

The rectangle < = [�1; �2]� [
1; 
2] is an invariant rectangle if the vector �eld (F;G)
de�ned on boundary @< points inside. That is(

F (�1; v) > 0 and F (�2; v) < 0 for 
1 < v < 
2;

G (u; 
1) > 0 and G (u; 
2) < 0 for �1 < u < �2:

Theorem 1.4 (Global existence) [32]

If there exists an invariant rectangle for system (1.1), then system (1.1) with initial

conditions and boundary conditions in < has a unique global solution.

De�nition 1.5 (Limit cycles)

A limit cycle is an isolated closed trajectory (�isolated�means that neighbouring tra-

jectories are not closed), which only occur in nonlinear systems.

Proposition 1.6 [42]

Given the functions g 2 C
�

� R

�
and U 2 C2 (
) \ C1

�


�
, it follows that

(i) if

�U(x) + g(x; U(x)) � 0 in 
;
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with
@U

@�
� 0 on @
 and U(x0) = max



(U(x)), then

g(x0; U(x0)) � 0:

(ii) Alternatively, if

�U(x) + g(x; U(x)) � 0 in 
;

with
@U

@�
� 0 on @
 and U(x0) = min



(U(x)), then

g(x0; U(x0)) � 0:

Theorem 1.7 (Weak maximum principle) [32]

Let U 2 C2(
� (0; T )) \ C(
� (0; T )); c(x; t) � cmin and

D�U � cU � Ut � 0; in 
� (0; T ) :

Furthermore, let U � 0 in 
�f0g (i.e. for the initial condition) and in @
� (0; T ) (i.e.
on the boundaries). Then,

U (x; t) � 0;8 (x; t) 2 
� (0; T ) :

1.2.2 Basic Formulas

Green�s Formula [7]

Theorem 1.8 Let u; v are functions of Sobolev space H1(
) and @
 be smooth, we haveZ



@u

@xi
vdx = �

Z



@v

@xi
udx+

Z
@


uv�id�; 1 � i � n:

We design by �i the i
th consinus director of normal � in @
 directed towards the outside

of 
 and we write �i = (
�!� :�!ei )d� the super�cial measure on @
.

Corollary 1.9 For all functions (u; v) of Sobolev space H1(
), we have the Green formulaZ



(�u) vdx =

Z
@


@u

@�
vd� �

Z



rurvdx:

Taylor�s Formula [22]
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For f : R! R, the Taylor series is de�ned as

f (u) = f (u�) +
@f

@u
(u� u�) +

1

2!

@2f

@u2
(u� u�)2 + � � �+ 1

n!

@nf

@un
(u� u�)n +O (u; u�) :

And for f : R2 ! R; we have

f (u; v) = f (u�; v�) +
@f

@u
(u� u�) +

@f

@v
(v � v�) +

1

2!

@2f

@u2
(u� u�)2 +

1

2!

@2f

@v2
(v � v�)2

+
@2f

@u@v
(u� u�) (v � v�) +O

�
(u� u�)2 + (v � v�)2

�
:

1.2.3 Basic Inequalities

The following inequalities are avaible at [22].

Cauchy-Shwarz�s Inequality

For all (u; v) 2 L2 (
) ;����Z



u (x) v (x) dx

���� � Z



ju (x) v (x)j dx �
�Z




ju (x)j2 dx
�1=2�Z




jv (x)j2 dx
�1=2

:

Cauchy�s Inequality with � (�-Inequality)

For all � > 0 and (u; v) 2 R2;

juvj � �

2
juj2 + 1

2�
jvj2 :

Young�s Inequality

For all (u; v) 2 R2;
juvj � 1

p
jujp + 1

q
jvjq ;

where p; q strictly positive real numbers linked by the relation (
1

p
+
1

q
= 1):

��Young�s Inequality
For all � > 0 and (u; v) 2 R2;

juvj � � jujp + c(�) jvjq ;

where p; q strictly positive real numbers linked by the relation (
1

p
+
1

q
= 1):

Poincaré�s Inequality

Let 
 be a bounded, connected, open subset of RN ;with a C1 boundary @
: Assume
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1 � q <1. Then there exists a constant C, depending only on N; q and 
, such that

kukLq(
) � C krukLq(
) ; for all u 2 W
1;q
0 (
):

1.3 Numerical Analysis

To go from an exact continuous problem governed by PDE to the discrete approximate

problem, there are three main of methods: �nite di¤erences, �nite volumes, �nite
elements.
In our work, we focus on the �nite di¤erences method.

1.3.1 The Finite Di¤erences Method

In numerical analysis, �nite-di¤erence methods (FDM) are discretizations used for solving

di¤erential equations by approximating them with di¤erence equations that approximate

the derivatives.

FDMs convert linear ordinary di¤erential equations (ODE) or non-linear partial dif-
ferential equations (PDE) into a system of equations that can be solved by matrix algebra
techniques. The reduction of the di¤erential equation to a system of algebraic equations

makes the problem of �nding the solution to a given ODE/PDE ideally suited to modern

computers, hence the widespread use of FDMs in modern numerical analysis. Today,

FDMs are the dominant approach to numerical solutions of PDEs.

The following information is available at [16].

Taylor�s Theorem

First, assuming the function whose derivatives are to be approximated is properly-behaved,

Taylor�s theorem states the following.

Theorem 1.10 Let U (x) have n continuous derivatives over the interval (a; b). Then,
for a < x0; x0 + h < b;

U (x0 + h) = U (x0) +
Ux (x0)

1!
h+

Uxx (x0)

2!
h2 + : : :+

Ux(n�1) (x0)

(n� 1)! hn�1 +O (hn) ; (1.5)

where

� Ux = dU
dx
; Uxx =

d2U
dx2

; : : : ; d
n�1U
dxn�1 :

� Ux (x0) is the derivative of U with respect to x evaluated at x = x0:

� O (hn) is an unkown error term.
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The usual interpretation of Taylor�s theorem says that if we know the value of U and

the value of its derivatives at a point x0; then we can write down equation (1.5) for its

value at the (nearby) point x0 + h:

This expression contains an unkown quantity which is written as O (hn) and pro-

nounced �order h to the n�. If we discared the term O (hn) in (1.5) (i.e truncate the right

hand side of (1.5)) we get an approximation to U (x0 + h) . The error in this approxima-

tion is O (hn) :

Taylor�s Theorem Applied to the Finite Di¤erence Method (FDM)

In the FDM we know the U values at the grid points and we want to replace the partial

derivatives of the PDE we are solving by their approximates at these grid points. We

do this by interpreting (1.5) in another way. In the FDM both x0 and x0 + h are grid

points and U (x0) and U (x0 + h) are known. This allows us to rearrange equation (1.5) to

get the so called Finite Di¤erence (FD) approximations to derivatives which have O (hn)

errors.

Simple Finite Di¤erence Approximation of a Derivative

Truncating (1.5) after the �rst derivative term gives

U (x0 + h) = U (x0) + Ux (x0)h+O
�
h2
�
: (1.6)

Rearranging (1.6) gives

Ux (x0) =
U (x0 + h)� U (x0)

h
� O (h2)

h
;

=
U (x0 + h)� U (x0)

h
�O (h) :

Neglecting the O (h) term gives

Ux (x0) =
U (x0 + h)� U (x0)

h
: (1.7)

Formula (1.7) is called a �rst order FD approximation since the approximation error=

O (h) which depends on the �rst power of h. This approximation is called a forward FD
approximation since we start at x0 and step forward to the point x0+h, which h is why
called the step size (h > 0).
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Constructing a Finite Di¤erence Toolkit

Now, we construct common FD approximations to common partial derivatives. For sim-

plicity we suppose that U is a function of only two variables t and x. We will approximate

the partial derivatives of U with respect to x. As t is held constant U is e¤ectively a func-

tion of the single variable x so we can use Taylor�s formula (1.5) where the ordinary

derivative terms are now partial derivative and the arguments are (t; x) instead of x.

Finally, we will replace the step size h by �x (to indicate a change in x) so that (1.5)

becomes

U (x0 +�x; t) = U (x0; t)+
�x

1!
Ux (x0; t)+

�x2Uxx (x0; t)

2!
+: : :+

�xn�1

(n� 1)!U(n�1) (x0; t)+O (�x
n) :

(1.8)

Truncating (1.8) to O(�x2) gives

U (x0 +�x; t) = U (x0; t) + �xUx (x0; t) +O
�
�x2

�
: (1.9)

Now we derive some FD approximations to partial derivatives. Rearranging (1.9) gives

Ux (x0; t) =
U (x0 +�x; t)� U (x0; t)

�x
� O (�x2)

�x

=
U (x0 +�x; t)� U (x0; t)

�x
�O (�x) : (1.10)

Equation (1.10) holds at any point (t; x0). In numerical schemes for solving PDEs we are

restriced to a grid of discrete x values x1; x2; : : : ; xN and discrete t levels 0 = t0; t1; : : :.

We will assume a constant grid spacing, �x; in x, so that xi+1 = xi + �x. Evaluating

equation (1.10) for a point (tj; xi) on the grid gives

Ux (xi; tj) =
U (xi+1; tj)� U (xi; tj)

�x
�O (�x) : (1.11)

We will use the common subscript/superscript notation

U ji = U (xi; tj) ; (1.12)

so that droping the O (�x) error term, (1.11) becomes

Ux (xi; tj) �
U ji+1 � U ji
�x

: (1.13)
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Formula (1.13) is the �rst order forward di¤erence approximation to Ux (xi; tj) that
we derived previously in approximation (1.7). Now, we derive another FD approximation

to Ux (xi; tj). Replacing �x by ��x in (1.9) gives

U (x0 ��x; t) = U (x0; t)��xUx (x0; t) +O
�
�x2

�
: (1.14)

Evaluating (1.14) at (tj; xi) and rearranging as previously gives

Ux (xi; tj) �
U ji � U ji�1
�x

: (1.15)

Formula (1.15) is the �rst order backward di¤erence approximmation to Ux (xi; tj) :

Our �rst two FD approximmations are �rst order in x but we can increase the order

(and so make approximmation more accurate) by taking more terms in the Taylor series

as follows. Truncating (1.8) to O (�x3), then replacing �x by ��x and subtracting this
new expression from (1.8) and evaluating at (tn; xi) gives after some algebra

Ux (xi; tj) �
U ji+1 � U ji�1

2�x
: (1.16)

Formula (1.16) is called the second order central di¤erence approximmation to

Ux (xi; tj).

We could construct even higher order FD approximmations to Ux by taking even more

terms in Taylor series but we will stop at second order approximmation to �rst order

derivatives.

Many PDEs of interest contain second order (and higher) partial derivatives so we

need to derive approximation to them. We will restrict our attention to second order

unmixed partial derivatives i.e. Uxx:

Truncating (1.8) to O (�x4) gives

U (x0 +�x; t) = U (x0; t) +
�x

1!
Ux (x0; t) +

�x2

2!
Uxx (x0; t) +

�x3

3!
Uxxx (x0; t) +O

�
�x4

�
:

(1.17)

Replacing �x by ��x in (1.17) gives

U (x0 ��x; t) = U (x0; t)�
�x

1!
Ux (x0; t) +

�x2

2!
Uxx (x0; t)�

�x3

3!
Uxxx (x0; t) +O

�
�x4

�
:

(1.18)

Adding (1.17) and (1.18) gives

U (x0 +�x; t) + U (x0 ��x; t) = 2U (x0; t) + �x2Uxx (x0; t) +O
�
�x4

�
: (1.19)
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Evaluating (1.19) at (xi; tj) and using our discrete notation gives

U ji+1 + U ji�1 = 2U
j
i +�x

2Uxx (xi; tj) +O
�
�x4

�
: (1.20)

Rearranging (1.20) and dropping the error term O (�x2) gives

Uxx (xi; tj) �
U ji+1 � 2U

j
i + U ji�1

�x2
: (1.21)

Formula (1.21) is the second order symmetric di¤erence approximation to Uxx (xi; tj).

The above FD toolkit can be used to create a �nite di¤erence scheme (FDS) to obtain

the approximate solution of a large number of PDEs simply by replacing each partial

derivative by an appropriate FD approximation.

The following information is available at [47].

The parabolic partial di¤erential equation we consider is the heat, or di¤usion, equa-

tion
@U

@t
(x; t) = �2

@2U

@x2
(x; t) ; 0 < x < l; t > 0; (1.22)

subject to the conditions

U(0; t) = U(l; t) = 0; t > 0 and U(x; 0) = f(x); 0 � x � l:

The approach we use to approximate the solution to this problem involves �nite di¤er-

ences. First select an integer m > 0 and de�ne the x-axis step size h = l=m. Then select

a timestep size k. The grid points for this situation are (xi; tj), where xi = ih = i�x, for

i = 0; 1; : : : ;m; and tj = jk = j�t; for j = 0; 1; ::::

1.3.2 Forward Di¤erence Method (Explicit Method)

We obtain the di¤erence method using the Taylor series in t to form the di¤erence quotient

@U

@t
(xi; tj) =

U (xi; tj + k)� U (xi; tj)

k
� k

2

@2U

@t2
(xi; �j) ; for some �j 2 (tj; tj+1); (1.23)

and the Taylor series in x to form the di¤erence quotient

@2U

@x2
(xi; tj) =

U (xi + h; tj)� 2U (xi; tj) + U (xi � h; tj)

h2
� h2

12

@4U

@x4
(�i; tj) ; (1.24)

where �i 2 (xi�1; xi+1):
The parabolic partial di¤erential equation (1.22) implies that at interior gridpoints

(xi; tj), for each i = 1; 2; : : : ;m� 1 and j = 1; 2; :::; we have
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@U

@t
(xi; tj)� �2

@2U

@x2
(xi; tj) = 0;

so the di¤erence method using the di¤erence quotients (1.23) and (1.24) is

wi;j+1 � wij
k

� �2
wi;j+1 � 2wij + wi;j�1

h2
= 0; where wij approximates U (xi; tj) : (1.25)

The local truncation error for this di¤erence equation is

eij =
k

2

@2U

@t2
(xi; �j)� �2

h2

12

@4U

@x4
(�i; tj) : (1.26)

Solving (1.25) for wi;j+1 gives

wi;j+1 =

�
1� 2�

2k

h2

�
wij + �2

k

h2
(wi+1;j + wi�1;j);

for each i = 1; 2; :::;m� 1 and j = 1; 2; ::::

So, we have

w0;0 = f(x0); w1;0 = f(x1); :::; wm;0 = f(xm):

Then, we generate the next t-row by

w0;1 = U(0; t1) = 0;

w1;1 =
�
1� 2�2k

h2

�
w1;0 + �2 k

h2
(w2;0 + w0;0);

w2;1 =
�
1� 2�2k

h2

�
w2;0 + �2 k

h2
(w3;0 + w1;0);

� � �
wm�1;1 =

�
1� 2�2k

h2

�
wm�1;0 + �2 k

h2
(wm;0 + wm�2;0);

wm;1 = U(m; t1) = 0:

Now we can use the wi;1 values to generate all the wi;2 values and so on.

The explicit nature of the di¤erence method implies that the (m�1)� (m�1) matrix
associated with this system can be written in the tridiagonal form

W =

266666664

(1� 2�) � 0 � � � 0

� (1� 2�) �
. . .

...

0 �
. . . . . . 0

...
. . . . . . . . . �

0 � � � 0 � (1� 2�)

377777775
;
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where � = �2 k
h2
. If we let

w(0) = (f(x1); f(x2); :::; f(xm�1))
t;

and

w(j) = (w1j; w2j; :::; wm�1;j)
t; for each j = 1; 2; :::;

then the approximate solution is given by

w(j) = Ww(j�1); for each j = 1; 2; ::::

So, w(j) is obtained from w(j�1) by a simple matrix multiplication. This is known as the

Forward Di¤erence method and the approximation at the cyan point shown in Figure

1.1 uses information from the other points marked on that �gure. If the solution to the

partial di¤erential equation has four continuous partial derivatives in x and two in t, then

equation (1.26) implies that the method is of order O(k + h2).

Figure 1.1: Forward Di¤erence method

1.3.3 Backward Di¤erence Method (Implicit Method)

To obtain a method that is unconditionally stable, we consider an implicit-di¤erence
method that results from using the backward-di¤erence quotient for (@U=@t)(xi; tj) in the

form

@U

@t
(xi; tj) =

U (xi; tj)� U (xi; tj�1)

k
+
k

2

@2U

@t2
(xi; �j) ; where �j 2 (tj; tj+1):
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Substituting this equation, together with equation (1.24) for @2U=@x2, into the partial

di¤erential equation gives

U (xi; tj)� U (xi; tj�1)

k
� �2

U (xi+1; tj)� 2U (xi; tj) + U (xi�1; tj)

h2

= �k
2

@2U

@t2
(xi; �j)� �2

h2

12

@4U

@x4
(�i; tj) ;

for some �i 2 (xi�1; xi+1). The Backward-Di¤erence method that results is

wij � wi;j�1
k

� �2
wi;j+1 � 2wij + wi;j�1

h2
= 0; (1.27)

for each i = 1; 2; :::;m� 1 and j = 1; 2; ::::
The Backward Di¤erence method involves the mesh points (xi; tj�1); (xi�1; tj), and

(xi+1; tj) to approximate the value at (xi; tj), as illustrated in Figure 1.2.

Figure 1.2: Backward Di¤erence method

Since the boundary and initial conditions associated with the problem give informa-

tion at the circled mesh points, the �gure shows that no explicit procedures can be used

to solve equation (1.27). Recall that in the Forward-Di¤erence method (see Figure 1.2),

approximations at (xi�1; tj�1); (xi; tj�1), and (xi+1; tj�1) were used to �nd the approxim-

ation at (xi; tj). So an explicit method could be used to �nd the approximations, based

on the information from the initial and boundary conditions.

If we again let � denote the quantity �2 k
h2
, the Backward-Di¤erence method becomes

(1 + 2�)wij � �wi+1;j � �wi�1;j = wi;j�1 for each i = 1; 2; :::;m� 1 and j = 1; 2; ::::
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Using the knowledge that wi;0 = f(xi), for each i = 1; 2; :::;m � 1 and wm;j = w0;j = 0;

for each j = 1; 2; ::: , this di¤erence method has the matrix representation266666664

(1 + 2�) �� 0 � � � 0

�� (1 + 2�) �� . . .
...

0 �� . . . . . . 0
...

. . . . . . . . . ��
0 � � � 0 �� (1 + 2�)

377777775

266664
w1;j

w2;j
...

wm�1;j

377775 =
266664

w1;j�1

w2;j�1
...

wm�1;j�1

377775
or

Ww(j) = w(j�1); for each i = 1; 2; ::::

Hence, we must now solve a linear system to obtain w(j) from w(j�1). Note that � > 0,

so the matrix W is positive de�nite and strictly diagonally dominant, as well as being

tridiagonal.
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Reaction Di¤usion Systems and Turing Instability

In this chapter, we are concerned with the reaction di¤usion systems and the Turing

instability. We make a general introduction to reaction di¤usion systems, de�ne it in the

case of two dimensions and we simplify it by nondimensionalizing the variables. Then, we

establish the equilibruim solution and the linearization of the system. Finally, we discuss

the stability analysis, local stability in the ODE and the PDE senses. Also, we introduce

the Turing instability and its conditions. We also give a description for activator�inhibitor

type systems and complete the stability analysis from the previous section. We mention

some methods to obtain the global asymptotic stability. At the end, we introduce the

Degn Harrison model, present a brief history of it, and mention the most important works

and research related to it. Also, we talk about the generalization of this model.

2.1 Reaction Di¤usion Systems

Reaction�di¤usion systems are mathematical models which correspond to several physical

phenomena, the most common of which is the change in space and time of the concentra-

tion of one or more chemical substances, local chemical reactions in which the substances

are transformed into each other, and di¤usion which causes the substances to spread out

over a surface in space. Reaction�di¤usion systems are naturally applied in chemistry.

However, the system can also describe dynamical processes of non-chemical nature. Many

examples are found in biology, geology, physics (neutron di¤usion theory) and ecology.

Mathematically, reaction�di¤usion systems take the form of semilinear parabolic partial

di¤erential equations. They can be represented by the general form

@tU �D�U = H (U) ; (2.1)

where U(x; t) denotes the unknown vector function, D is a diagonal matrix of di¤usion

coe¢ cients, andH describes the reaction-di¤usion mechanics of the system. The solutions

of reaction�di¤usion equations display a wide range of behaviours, including the formation

of travelling waves and wave like phenomena as well as other self organized patterns like

stripes, hexagons or more intricate structure like dissipative solitons. Each function, for

which a reaction di¤usion di¤erential equation holds, represents in fact a concentration

variable.

If U = (u; v) ; the system (2.1) can be reduced to(
ut � d1�u = F (u; v) ;

vt � d2�v = G (u; v) ;
(2.2)

where u; v are the chemical species and d1; d2 are the speci�c di¤usion coe¤ecients.
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2.1.1 Non-Dimensionalization

In (2.2), the nonlinear reaction functions, and the two species u; v which are dependent

on space (x) and time (t) have di¤erent di¤usion coe¢ cients. Depending on the reaction

and di¤usion of the system, the reaction kinetics can vary. To consider the kinetics of

the system, we must �rst nondimensionalize the variables. Suppose x = Ly where the

domain is x 2 [0; L] which implies y 2 [0; 1]. Then (2.2) can be rewritten as(
ut � 1

L2
d1�u (y (x) ; t) = F (u; v) ;

vt � 1
L2
d2�v (y (x) ; t) = G (u; v) :

If we divide both sides by d1 and multiply by L2; we obtain(
L2

d1
ut ��u (y (x) ; t) = L2

d1
F (u; v) ;

L2

d1
vt � d2

d1
�v (y (x) ; t) = L2

d1
G (u; v) :

Finally, let � = d1
L2
t; d = d2

d1
and 
 = L2

d1
. The dimensionless system of coupled nonlinear

partial di¤erential equations becomes(
u� ��u (y (x) ; �) = 
F (u; v) ;

v� � d�v (y (x) ; �) = 
G (u; v) :
(2.3)

We will use (2.3) in the analysis, but since normally we use variables (x; t) instead of

(y; �), we will use the old variables, i.e. the system becomes(
ut ��u (x; t) = 
F (u; v) ;

vt � d�v (x; t) = 
G (u; v) :
(2.4)

2.1.2 Equilibrium Solution

One type of solution of particular interest is the equilibrium solution of a partial di¤erential

equation. Speci�cally of interest are attracting equilibrium solutions. These are time-

independent solutions which are stable to small perturbations. Stability comes in many

forms. We wish to classify equilibria which are linearly stable.

Equilibrium solutions to (2.4) are solutions (u�; v�)T such that ut = vt = 0: Thus, (2.4)

turns into (
��u = 
F (u; v) ;

�d�v = 
G (u; v) :
(2.5)
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A system without di¤usion would have �u = �v = 0: Thus, (2.5) becomes(
0 = F (u; v) ;

0 = G (u; v) :

So, for our model, equilibrium solutions in the absence of di¤usion are those solutions

(u�; v�)T which solve

F (u�; v�) = G(u�; v�) = 0:

Since (2.5) is a non-linear system, we must employ numerical methods.

Now, the question of stability of the equilibrium solutions is addressed. For this, we

present the linearization of the system(
ut = 
F (u; v) ;

vt = 
G (u; v) :
(2.6)

2.1.3 Linearization

De�nition 2.1 An equilibrium solutions is linearly stable if its linearization attracts

small perturbations.

We de�ne a perturbation of the equilibrium solution as

z =

 
u� u�

v � v�

!
:

The functions F and G can be linearized using Taylor expansion about (u�; v�)

F (u; v) � F (u�; v�) + Fu(u
�; v�):( u� u�) + Fv(u

�; v�):(v � v�)

= Fu(u
�; v�):( u� u�) + Fv(u

�; v�):(v � v�);

and

G(u; v) � G(u�; v�) +Gu(u
�; v�):( u� u�) +Gv(u

�; v�):(v � v�)

= Gu(u
�; v�):( u� u�) +Gv(u

�; v�):(v � v�):

So, linearizing (2.6) about (u�; v�), we obtain(
ut = 
 [Fu(u

�; v�):( u� u�) + Fv(u
�; v�):(v � v�)] ;

vt = 
 [Gu(u
�; v�):( u� u�) +Gv(u

�; v�):(v � v�)] ;
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which can be written in matrix form as

zt = 
Jz; (2.7)

where

J =

 
Fu(u

�; v�) Fv(u
�; v�)

Gu(u
�; v�) Gv(u

�; v�)

!
=

 
Fu Fv

Gu Gv

!
(u�;v�)

: (2.8)

Note that by linearizing (2.7), we have reduced the partial di¤erential equation into a

linear ordinary di¤erential equation.

2.1.4 Stability Analysis

De�nition 2.2 The solution z is said to be linearly stable if jzj ! 0 as t!1.

We turn our attention to determine the conditions on the eigenvalues of 
J which

make the solution z linearly stable.

Theorem 2.3 The solution z of equation (2.7) is linearly stable if and only if all eigen-
values of 
J have negative real parts.

Local Stability in the ODE Sense

Let us recall some of the fundamental ODE stability theory, see for more details [10] and

[46]. The �rst important property is the asymptotic behavior of the solutions as t! +1.
It is well known that the asymptotic behavior is heavily dependent on the eigenvalues of

J denoted by �1 and �2. To calculate these eigenvalues, we simply solve the characteristic

equation

j
J � �Ij =
�����
 

Fu � � 
Fv


Gu 
Gv � �

!����� = 0;
) (
Fu � �) (
Gv � �)� 
2FvGu = 0;

) �1;2 = 

(Fu+Gv)�

p
(Fu+Gv)�4(FuGv�FvGu)

2
:

The linear stability is guaranteed if the trace of J is negative and its determinant is

positive, i.e. (
trJ = Fu +Gv < 0;

det J = FuGv � FvGu > 0:
(2.9)

We conclude that the linearized system (2.7) is only stable subject to the real parts of

the eigenvalues of J being negative. If at least one eigenvalue is positive or has a positive

real part, then (u�; v�) is unstable.
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Local Stability in the PDE Sense

Properties of the Eigenvalues of the Laplace Operator In order to study the

local asymptotic stability in the PDE sense, one of the most commonly used methods

is that of eigenfunction expansion [14]. It is important to recall some of the theory

related to the eigenvalues of the Laplace operator. Let us denote these eigenvalues by

0 = �0 < �1 � �2 � � � � � �k � � � � and the corresponding normalized eigenfunctions
in 
 by �0; � � � ;�k; � � � , with Neumann boundary conditions. These eigenvalues and

eigenfunctions satisfy the eigenvalue problem

���k = �i�k; in 
; (2.10)

with @�k
@�
= 0; on @
; and Z




�2k (x) dx = 1: (2.11)

In general, a two component reaction di¤usion system is de�ned by the form

@tU �D�U = 
H (U) ; (2.12)

where

U =

 
u (x; t)

v (x; t)

!
; D =

 
1 0

0 d

!
and H (U) =

 
F (U)

G (U)

!
:

We will now consider the full reaction-di¤usion equation. Linearizing equation (2.12)

about the steady-state (u�; v�) in the same manner as done to derive equation (2.6) we

get

@tU �D�U = 
JU; (2.13)

where D is the matrix of di¤usion coe¢ cients de�ned above and J is the Jacobian matrix

de�ned in (2.8). The eigenvalues of the Laplace operator � over the interval [0; l] are the

roots of the characteristic polynomial

��
J �D�2 � �I
�� = 0; where � = 2�

l
: (2.14)

According to [14], if the zero solution of the linearized form (2.13) is locally asymp-

totically stable, then so is the equilibrium of the original system (2.12). This leads us to

the conditions for the stability of (2.12) as stated in the following theorem:

Theorem 2.4 [14]
(i) The equilibrium of (2.12) is globally asymptotically stable if for each nonnegative

integer n the eigenvalues of J��nD have negative real parts. Further, there exist positive
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constants K and ! such that for any t > 0;

ku (t; x)k � Ke�!t k� (x)k :

(ii) The equilibrium of (2.12) is stable if for each nonnegative integer n the eigenvalues

of J��nD have nonpositive real parts and those with zero real parts have simple elementary
divisors.

(iii) The equilibrium of (2.12) is unstable if for some n there exists an eigenvalue

of J � �nD with either positive real part or zero real part with a nonsimple elementary

divisor.

For convenience, we have

j�I � 
J +D�2j =
�����
 
� � 
Fu + �2 �
Fv
�
Gu � � 
Gv + �2d

!����� = 0;
) (� � 
Fu + �2) (� � 
Gv + d�2)� 
2FvGu = 0;

) �2 + � [�2 (1 + d)� 
(Fu +Gv)] + 
2 (FuGv � FvGu)� 
 (dFu +Gv)�
2 + d�4 = 0:

So, the characteristic polynomial can be rewritten in the form

�2 + P
�
�2
�
� +Q

�
�2
�
= 0; (2.15)

where

P
�
�2
�
= �2 (1 + d)� 
trJ;

and

Q
�
�2
�
= d�4 � 
 (dFu +Gv)�

2 + 
2 det J: (2.16)

If P > 0 and Q > 0 then Re � < 0 for all eigenvalues �. Consequently guarantee that the

steady-state (u�; v�) is locally asymptotically stable. If P < 0 or Q < 0; this implies the

instability of (u�; v�):

2.2 Turing Instability

One of the early uses of reaction-di¤usion systems in science is pattern formation in natural

creatures, for example, the spots on a leapard�s skin. Understanding the development

and arrangement of these patterns (called morphogenesis) is of generous signi�cance for

scientists and physicists the same. The British mathematician Alan Turing (1912-1954)

is considered as one of the major pioneers of pattern formation hypothesis. In 1952, he
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studied the idea of morphogenesis and connected it to reaction-di¤usion systems. The

general idea that he put forward can be summarized in the following points:

� Active qualities in the natural cell are answerable for animating the generation and
initiation of synthetic operators called morphogenesis.

� Chemical responses (reactions) are not su¢ cient for pattern formation as they are
excessively symmetric.

� Instabilities authorized by the dissemination (di¤usion) of chemical agents are the
main thrust for primer pattern formation. The underlying patterns, at that point, exper-

ience certain advancements because of the response procedure.

Alan Turing posed two main inquiries. The simple inquiry is: can di¤usion stabilize an

otherwise unstable reactive (ODE) system? The appropriate response ends up being yes

and that is somewhat simple to see. The second increasingly signi�cant inquiry is: would

di¤usion be able to destabilize a stable system? Once more, the appropriate response ends

up being truly, and this is the thing that Turing proposed just like the main thrust behind

pattern formation. Turing�s suggestion was thought to be comparatively radical and for

quite a long time it stayed an untested hypothesis until the Chlorite-Iodide Malonic-Acid

(CIMA) reaction was acknowledged by DeKepper in 1990, [19].

An interesting general de�nition of the di¤usion�driven instability �Turing Instabil-
ity� is given next.

De�nition 2.5 A di¤usion-driven instability, or Turing instability, occurs when a steady
state, stable in the absence of di¤usion, becomes unstable when di¤usion is present.

A good description of the conditions of Turing�s instability can be found in Chapter.

4 of [21]. Going back to the characteristic polynomial of the general reaction�di¤usion

system (2.13) given in (2.14), we are interested in solutions that make the system unstable

although it was stable in the ODE case, i.e. (2.9) is satis�ed. However, by (2.9), trJ < 0,

and since d > 0, �2(1 + d) > 0. So,

P
�
�2
�
= �2 (1 + d)� 
trJ > 0:

Hence, the system becomes unstable only if Q (�2) is negative. This leads to the only

possibility

det J < 0 or dFu +Gv > 0;

but by (2.9), det J > 0; which implies that the only condition is if dFu +Gv > 0: We can

see clearly that d 6= 1; since if it did, then Fu +Gv > 0; which contradicts (2.9). Thus, a
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third condition for Turing instability

dFu +Gv > 0: (2.17)

Condition (2.17) is su¢ cient but not necessary for Re � > 0: For Q (�2) to be negative

for some �2 > 0, the minimum must be negative. With some simple calculus, we can

calculate the minimum of Q (�2) as follows

Q (�2) = d�4 � 
 (dFu +Gv)�
2 + 
2 det J;

dQ(�2)
d�2

= 2d�2 � 
 (dFu +Gv) :

It is easy to see that the polynomial has an extremum at

�2� = �2 = 

dFu +Gv
2d

:

Thus Q (�2) will attain it�s minimum at �2�; leading to

Qmin = Q
�
�2�
�

= d

�


dFu +Gv
2d

�2
� 
 (dFu +Gv)

�


dFu +Gv
2d

�
+ 
2 det J

= 
2

"
det J � (dFu +Gv)

4d

2
#
:

The condition that Q (�2) < 0; for some �2 2 N is

Qmin < 0;


2
h
det J � (dFu+Gv)

4d

2
i
< 0;

det J < (dFu+Gv)
4d

2
:

Consequently, the necessary and su¢ cient conditions for the existence of Turing instability

in a linear 2�component reaction�di¤usion system are8>>>><>>>>:
trJ = Fu +Gv < 0;

det J = FuGv � FvGu > 0

dFu +Gv > 0

dFu +Gv > 2
p
d (FuGv � FvGu) > 0:
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Activator�Inhibitor Nature

This part is avaible at [48].

As a rule, a reaction-di¤usion system that is dependent upon di¤usion-driven instabil-

ity can have a place within one of two classes of systems exhibiting di¤erent behaviors,

speci�cally activator-inhibitor and positive input. A helpful and concise description of

these two classes and their attributes can be found in section 7.8 of [33]. Basically, when

looking at the signs of the elements of the Jacobian evaluated at a certain steady state,

we end up with two types of matrices of the form

Figure 2.1: reaction�di¤usion systems: a activator�inhibitor, and b positive feedback

 
+ �
+ �

!
or

 
+ +

� �

!
:

These two types of matrices correspond directly to the activator�inhibitor and positive

feedback classes as shown in Figure 2.1. In the �rst class, one substance is an activator

in the sense that it enforces the formation of itself as well as the second substance, while

the second is an inhibitor because it prevents the formation of both substances.

The signi�cance of this activitaor-inhibitor property originates from the subject of the

scienti�c drive behind pattern formation. Pattern formation is particularly examined in

science and all the more decisively in morphogenesis, which we talked about before as the

reason for Turing�s progressive work. Patterns arise in science from spatially homogeneous

states. For example, little zebras start from a homogeneous skin pigmentation and some

way or another create various examples. This has pulled in the consideration of researcher

and by expansion applied mathematicians. Things being what they are, the main thrust

behind pattern formation is this activator-inhibitor property. Turing�s instability alludes

to the case that the inhibitor di¤uses quicker than the activator by a given sum, ordinarily
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more than 10. This enormous distinction in di¤usivities is the thing that frustrated the

lab execution of Turing type chemical reactions and is de�nitely why the starch marker

installed in the gel lattice was utilized in the CIMA response. It is important to note that

Turing�s instability is not su¢ cient for pattern formation. Certain nonlinearities in the

reaction terms are required to ruin the solid positive input. More insights about pattern

formation can be found in [48].

Global Asymptotic Stability

The Direct Lyapunov Method:
One of the most important and powerful tools for studying the global asymptotic

stability was coined by Russian mathematician Aleksandr Lyapunov in the early 1900s,

referred to as the Lyapunov direct method, which is summarized in the following de�nition.

For more on the method see, for instance, [10].

De�nition 2.6 If u� 2 RN is an equilibrium point of reaction di¤usion system (2.12)

and 
 � RN is an open set containing u�, then the real valued function V 2 C1(
;R) is
called a Lyapunov function if

u 2 
; u 6= u�; V (u) > V (u�)

and
dV (u (t))

dt
� 0; for all u 2 
:

Theorem 2.7 (Lyapunov stability theorem) [10]
(i) If reaction di¤usion system (2.12) has a Lyapunov function, then u� is stable.

(ii) If for all u 6= 0; dV (u(t))
dt

< 0, then u� is asymptotically stable.

For all u 6= 0 simply means that the Lyapunov function is nonincreasing when we

travel along the trajectory u(t).

The direct Lyapunov method is a powerful tool for establishing the global asymptotic

stability. However, to the best of the author�s knowledge, no systematic approach exists for

�nding Lyapunov functions and it is extremely di¢ cult to select an appropriate function

heuristically, i.e. through a trial and error process. In addition, this method is not

su¢ cient to establish the global asymptotic stability, it is merely a tool that will be

needed later on.

The Negative Criteria:
Among the methods used to establish the global asymptotic stability of solutions are

Bendixson�s and Dulac�s criteria. Below is a summary of these criteria as described in [33].
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It is important to note that Bendixson�s criterion (Proposition 2.8) is merely a special

case of Dulac�s (Proposition 2.9).

Proposition 2.8 Bendixson�s criterion
Given the simply connected region �, if the expression

C =
@F

@x
+
@G

@y

is not zero for all (x; y) in � and does not change sign in �, then there are no limit cycles

in �.

Proposition 2.9 Dulac�s criterion
Given the simply connected region �, if there exists a function

B(x; y) 2 C1 such that
C =

@ (BF )

@x
+
@ (BG)

@y

is not zero for all (x; y) in � and does not change sign in �, then there are no limit cycles

in �.

The Poincare�Bendixson Theory:
This theorem is based on the observation that two dimensional planes have some spe-

ci�c characteristics that may not exist in higher dimensions. Particularly, any trajectory

may only have one of four limiting values: a critical point, a limit cycle, cycle graph, or

in�nite xy values. Furthermore, if the trajectory is bounded, then it may only approach

a critical point or a cycle graph. This is basis of the Poincare�Bendixson theory, which

states that if a certain trajectory is bounded for t � t0 and does not tend to a singular

point, then it either is a limit cycle or tends to a limit cycle. For more on the theory, see

[33].

The following theorem summarizes the Poincare�Benidixson theory:

Theorem 2.10 [13]
If an ODE system of the form

du

dt
= F (u) ;

where F is locally Lipschitz in u, has a solution � that is bounded for t � 0, then either
(i) � is periodic,

(ii) � approaches a periodic solution, or

(iii) � gets close to an equilibrium point in�nitely often.
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Theorem 2.11 (La Salle invariance theorem) [34]

Let V : 
! R+ be a function of C1 and suppose that _V (u) � 0 for all u 2 
. De�ne

E = fu 2 
 : _V (u) = 0g:

Let L be the largest invariant set contained in E. Then, any bounded solution tends to

L as the time goes to in�nity. If, furthermore, L reduce to u�; then u� is asymptotically

stable.

De�nition 2.12 (Global Stability) [9]

Function u is globally asymptotically stable on 
 if for all u0 2 
; the solution u
satis�es

lim
t!1

ku (t)� u�k = 0:

In addition to the above, let us present theorem and two lemmas from [17], which will

come in handy at later chapters.

We consider the system of reaction-di¤usion equations

ut �Dr2u =
NX
i=1

Ai (x; u)
@u

@xi
+H (u) ; for (x; t) 2 
� R+; (2.18)

where 
 � RN ; N � 1, is a bounded domain with reasonably smooth boundary, @
, u =
(u1; u2; : : : ; uN); N � 1; D is a constant positive de�nite matrix and theAi�s are continuous
matrix-valued functions. U satis�es the initial condition (1.2) and the Neumann condition

(1.3).

Theorem 2.13 [17]

Let � be bounded invariant region of system (2.18) of the form

� =
NT
k=1

�
u 2 RN : ak � u � bk

	
; where �1 < ak < bk <1;

and let � be positive and let u be any solution such that all values of u0 lie in �. Then

there exist constants ci > 0, i = 1; 2; 3; 4; such that

krxu (:; t)kL2(
) � c1e
��t;

ku (:; t)� u (t)kL2(
) � c2e
��t;

(2.19)
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where u the average of u over 
, satis�es the system of ordinary di¤erential equations

du

dt
= f (u) + g (t) ; u (0) =

1

j
j

Z



u0 (x) dx;

with

jg (t)j � c3e
��t:

If matrices A1; � � � ; An are zero or A1; � � � ; An and D are diagonal, then (2.19) can be

strengthened

ku (:; t)� u (t)kL1(
) � c4e
��0t; �0 < �=m:

The constants c1; c2 and c3 are proportional to kru0kL2(
) while c4 is proportional to
kru0kL1(
) :

Lemma 2.14 [17]

Let u be H2 (
) function on 
 where @u=@� on @
. Then,



r2u


2
L2(
) � � kruk2L2(
) ;

where � is the smallest positive eigenvalue of
�
�r2

�
with homogeneous Neumann boundary

conditions on 
:

Lemma 2.15 [17]

Let u 2 H2 (
) ; @u=@� = 0 on @
. Then

kruk2L2(
) � � ku� uk2L2(
) ;

where u = 1
j
j
R


u (x) dx;and � is as in the previous Lemma.

2.2.1 Degn Harrison Model

In our work, we are interested in the Degn-Harrison model, which is a Turing-type system.

Our model was �rst proposed as early as 1969 by Degn and Harrison [18] to describe the

respiratory behavior of the Klebsiella Aerogenes bacterial culture. The reaction being

studied here is of the form

A * Y

B 
 X

X + Y * P;
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where X and Y represent the concentrations of oxygen and nutrient being transmitted in

the respiratory circle, A and B are �sources�or external parameters whose concentrations

are to be kept at a constant level all over the reactor vessel, and P is the �nal product

in the reaction whose concentration is also assumed to be constant. In the reaction

process, the last step is considered to be inhibited by excess of oxygen in the reactor. The

�rst and last steps are assumed to be irreversible whereas the second step is reversible.

For more background on this reaction scheme, one can refer to [18, 23, 24, 25, 11, 29,

31]. Degn and Harrison [18] �rst proposed that the last step followed a nonlinear rate

equation of the type XY=(1+ qX2), where q measures the strength of the inhibitory law.

With the homogeneous Neumann boundary condition, the above Degn�Harrison reaction

scheme is governed by the following coupled nonlinear space-time di¤erential equations

in a dimensionless form8><>:
Xt �D1�X = k2B � k3X � k4XY

1+qX2 in R+ � 
;
Yt �D2�X = k1A� k4XY

1+qX2 in R+ � 
;
@X
@�
= @Y

@�
= 0 on R+ � @
;

(2.20)

where A;B;X and Y denote dimensionless concentrations of the reactants; the constants

ki (i = 1; 2; 3; 4) are reaction rates, D1 and D2, respectively, denote the Fickian molecular

di¤usion coe¢ cients of X and Y , and they are assumed to be positive constants all over

the reactor vessel. The rate and di¤usion constants are parameters characteristic for a

given system, and the concentrations A and B are variable parameters which can be

controlled in the reaction process.For the detailed background of (2.20), one can refer

to [18, 23, 25, 11, 29, 31].The Degn�Harrison reaction system (2.20) or (2.22) has been

studied adequately by several authors, but most of the researches focus either on the

corresponding ordinary di¤erential equation system or on the reaction�di¤usion system

(2.20) in one-dimensional domain case. In [23], Farein and Velarde constructed the time-

periodic limit cycle of the ODE system by using of the analytical, stochastic and computer-

aided methods. Furthermore, in [31] Ibáñez, Farein and Velarde considered the linear

stability of limit cycle and the dissipative Turing structure.

Later on, they discussed the steady state bifurcation and conducted the rigorous math-

ematical analysis for stability of spatially nonhomogeneous steady states of (2.20) arising

from the steady state bifurcation in [24]. While in [29] Hemmer and Velarde explicitly

constructed the existence of spatially nonhomogeneous steady states of (2.20) when the

mass di¤usions D2 ! 1 and D1 < 1. One can �nd more research studies on the

Degn�Harrison model reported, for instance, in [11, 25, 51].

To simplify the reaction�di¤usion system (2.20), Peng et al. [45] introduce the follow-
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ing dimensionless quantities

� = k3t; u =
k4
k3
X; v = k4

k3
Y; a = k2k4

k23
B;

b = k1k4
k23
A; k =

k23
k24
q; d1 =

1
k3
D1; d2 =

1
k3
D2:

(2.21)

With the rescaling (2.21), we can rewrite (2.20) as8<: u� � d1�u = a� u� uv

1 + ku2
;

v� � d2�v = b� uv

1 + ku2
:

(2.22)

Peng et al. [45] recently considered the reaction�di¤usion system (2.22) in RN . They
studied the global stability of the constant steady state and gave the su¢ cient condition

of the existence and nonexistence of the nonconstant steady states. Moreover, the Hopf

and steady state bifurcations were also investigated. In [39], the authors investigated some

fundamental analytic properties of nonconstant positive solutions, also they drived the

stability of constant steady-state solution to both ordinary di¤erential equation (ODE)

and partial di¤erential equation (PDE) systems and they established the global structure

of steady-state bifurcations from simple eigenvalues by bifurcation theory and the local

structure of the steady-state bifurcations from double eigenvalues by the techniques of

space decomposition and implicit function theorem. On the other hand, in [20], Donga et

all. derived The existence of Hopf bifurcation to ODE and PDEmodels by using the center

manifold theory and the normal form method, we establish the bifurcation direction and

stability of periodic solutions. Since, some numerical simulations are shown to support

the analytical results. Lisena in [41] used the presence of contracting rectangles and the

method of Lyapunov, to establish su¢ cient conditions for the global asymptotic stability

of the unique constant steady state. In the work of [53], local asymptotic stability, Turing

instability and existence of Hopf bifurcation for the only constant positive equilibrium

solution are established by analyzing the relevant eigenvalue problem with numerical

approximations.

In [56], Jun Zhou generalized Degn-Harrison model (3.1) by using ' (u) v to replace

(uv= (1 + ku2)) : Therefore, he studied the Turing instability and showed the existence

of periodic solutions of the PDE model and the ODE model by using Hopf bifurcation

theory. Also numerical simulations are presented to verify and illustrate the theoretical

results.
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On the Local and Global Asymptotic Stability of the Degn-Harrison
Reaction-Di¤usion Model

This chapter 1 contain the study of the well-known Degn-Harrison reaction di¤usion

model. It is concerned with the local and global asymptotic stability of the system, also,

weaker conditions than those of previous studies are derived and validated by Matlab

computer simulations.

3.1 Problem Formulation

We consider the following reaction�di¤usion system based on theDegn�Harrison model8<: ut � d1�u = a� u� uv

1 + ku2
:= F (u; v) in R+ � 
;

vt � d2�v = b� uv

1 + ku2
:= G (u; v) in R+ � 
;

(3.1)

where u(t) and v(t) represent the dimensionless concentrations of oxygen and nutrient,

respectivel, a; b; d1; d2 and k are positive constants de�ned above, 
 � RN ; N � 1 is a

bounded domain with smooth boundary @
, � is the Laplacian operator on 
. With the

initial condition

u (0; x) = u0 (x) ; v (0; x) = v0 (x) in 
;

where u0 (x) ; v0 (x) 2 C2 (
) \ C
�


�
; and the Neumann boundary condition

@u

@�
=
@u

@�
= 0 on @
;

where � is the outward unit normal vector of the boundary @
:

Now, before we present our analysis, let us recall the most relevant results reported in

the literature in relation to the proposed system (3.1).

Lemma 3.1 [45]
System (3.1) has the unique steady state solution

(u�; v�) =

�
�;

b

�
(1 + k�2)

�
; where � = a� b: (3.2)

If and only if a > b:

Proof 3.2 An equilibrium point (u�; v�) of the ODE of (3.1) satisfes the system8<: 0 = a� u� uv

1 + ku2

0 = b� uv

1 + ku2
;

(3.3)

1Article published in Mathematical Methods in the Applied Sciences 42, pp. 567�577, (2019). View
[1]
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by the second equation of (3.3), we obtain

v =
b (1 + ku2)

u
; (3.4)

we compensate (3.4) in the �rst equation of (3.3), we �nd

u = a� b: (3.5)

We substitue (3.5) in (3.4), we �nd (3.2).

Lemma 3.3 The Jacobian of the Degn-Harrison model (3.1) is given by

J =

 
F0 �G0

1 + F0 �G0

!
; where (3.6)

F0 = �
a+ �2 (a� 2b) k
� (1 + k�2)

and G0 =
�

1 + k�2
; (3.7)

with

� = a� b: (3.8)

Proof 3.4 The Jacobian matrix is

J =

 
Fu (u; v) Gu (u; v)

Fv (u; v) Gv (u; v)

!
=

0B@ �1� v(1+ku2)�2ku2v
(1+ku2)2

� u

1 + ku2
v(1+ku2)�2ku2v

(1+ku2)2
� u

1 + ku2

1CA ;

so, the Jacobian matrix associated to the ODE of (3.1) evaluated at (u�; v�) is

J =

0B@ �1�
b
�
(1+k�2)(1�k�2)
(1+k�2)2

� �

1 + k�2
b(1�k�2)
�(1+k�2)

� �

1 + k�2

1CA =

0@ �1� b
�

(1�k�2)
(1+k�2)

� �
1+k�2

b
�

(1�k�2)
(1+k�2)

� �
1+k�2

1A :

This completes the proof.

Lemma 3.5 [41]
System (3.1) has an invariant rectangle which is the form

< = [u; a]� [2b
p
k; v]; (3.9)

where

u =
bu�

a(1 + ka2)
and v =

(a� u) (1 + ku2)

u
: (3.10)
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Proof 3.6 First, since b < a we are allowed to write b = ta; 0 < t < 1, so that

bu� = t(1� t)a2 � a2

4
; t 2 ]0; 1[ :

Consequently

u � a

4 (1 + ka2)
� 1

8
p
k
<

1p
k
;

because a
(1+ka2)

� 1
2
p
k
: Observe that b

'k(u)
=

b(1+ku2)
u

and fa;k(u) =
a�u
'k(u)

are strictly

decreasing in ]0; u] (for each k).

As second step let us verify that

b

'k (a)
< fa;k(u): (3.11)

Indeed

fa;k(u) =
�a
u
� 1
� �
1 + ku2

�
>
�
4
�
1 + ka2

�
� 1
� �
1 + ku2

�
> 4ka2 + 3;

and
b

'k (a)
=
b

a

�
1 + ka2

�
< 1 + ka2:

Hence (3.11) easily follows. Previous estimates prove, in particular, that (u�; v�) lies in

the interior of <. At this point, we can state that, on the boundary of <, the vector �eld
(F (u; v); G(u; v)), de�ned in (3.1), does not point outwards. Indeed

F (u; v) > 0 and F (a; v) < 0 for 2b
p
k < v < v;

G(u; 2b
p
k) > 0 and G(u; v) < 0 for u < u < a:

Therefore rectangle < is an invariant region.

Lemma 3.7 [39]

The steady-state solution (u�; v�) is locally asymptotically stable in the PDE sense

subject to

b < a < 2b (3.12)

and (
�1d1 � F0;

�1d1 < F0 and 0 < d2 < ~d2:
(3.13)
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Alternatively, if b < a < 2b and

�1d1 < F0 and d2 > ~d2; (3.14)

then (u�; v�) is locally asymptotically unstable.

Proof 3.8 Because the proof is long and for simplicity, we have omitted it. Interested
readers may look it up in [39].

3.2 Asymptotic Stability

In this section, we examine the asymptotic stability of the steady state solution (u�; v�),

which is the main concern of this section.

Before that, we start by de�ning some of the necessary notation and de�nitions. Con-

sidering the Laplacian operator (��) with Neumann boundaries on
, its in�nite sequence
of eigenvalues is denoted by 0 = �0 < �1 � �2 � � � � Each eigenvalue �i is assumed to
have an algebraic multiplicity mi � 1. The normalized eigenfunctions corresponding to

�i are denoted by �ij; 1 � j � mi. It is important to note that as i!1; �i tends to 1
and that �0 = const. From standard eigenfunction theory, we know that

���ij = �i�ij

in 
; with
@�ij
@�

= 0

in @
; and Z



�2ijdx = 1:

Consequently, the set f�ij : i � 0; 1 � �i � mig forms a complete orthonormal basis in
L2(
):

If the inequality

d1�1 < F0 (3.15)

is satis�ed, then let us de�ne i� = i�(�;
) as the largest positive integer guaranteeing

d1�i < F0 (3.16)

for all i � i�. Also, observe that when (3.15) is satis�ed, it is inherent that 1 � i� <1:
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We, then, de�ne
~d2 = min

1�i�i�
~di; where

~di =
G0(d1�i+ 1)

�i(F0 � d1�i)
:

With this notation in mind, let us now examine the local and global asymptotic stability

of the Degn-Harrison system (3.1) separately.

3.2.1 Local Asymptotic Stability

Proposition 3.9 If F0 � 0; then (u�; v�) is asymptotically stable as a steady state of

(3.1). Alternatively, if

0 < F0 < G0; (3.17)

then (u�; v�) is asymptotically stable if8>>>><>>>>:
�1d1 � F0 or

�1d1 < F0 and

8><>:
d2
d1
� G0

F0
;

or
G0
F0
< d2

d1
< };

(3.18)

where } is the solution of

(F0x+G0)
2 = 4(1 + F0)G0x: (3.19)

Proof 3.10 We start by reformulating (3.1) in its vectorial form given by

@z

@t
�D�z = F (z) ; where (3.20)

z =

 
u

v

!
; D =

 
d1 0

0 d2

!
and F (z) =

 
a� u� uv

1+ku2

b� uv
1+ku2

!
: (3.21)

It is well known that the solution (u�; v�) is asymptotically stable for (3.20) if z = 0 is

asymptotically stable as a steady-state solution of the linearized system

@z

@t
�D�z = Jz; (3.22)
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where J represents the Jacobian matrix evaluated at the steady state, ie,

J (u�; v�) =

 
� a+(a�2b)(a�b)2k
(a�b)(1+k(a�b)2) � a�b

1+k(a�b)2

1� a+(a�2b)(a�b)2k
(a�b)(1+k(a�b)2) � a�b

1+k(a�b)2

!
:

In the revolutionary work of Casten et al [14], Theorem 2.4 states that if all the eigenvalues

of J � �nD for all non-negative integers, n have negative real parts, then the zero steady

state is asymptotically stable for (3.22). In fact, it su¢ ces to ensure that the trace is

negative and the determinant is positive. First, consider the case F0 � 0: We have

J � �nD =

 
� a+(a�2b)(a�b)2k
(a�b)(1+k(a�b)2)

a�b
1+k(a�b)2

1� a+(a�2b)(a�b)2k
(a�b)(1+k(a�b)2) � a�b

1+k(a�b)2

!
� �n

 
d1 0

0 d2

!
;

=

 
F0 � �nd1 �G0
1 + F0 �G0 � �nd2

!
:

The trace and determinant are given by

tr(J � �nD) = F0 �G0 � �nd1 � �nd2 � 0;

and

det(J � �nD) = (F0 � �nd1) (�G0 � �nd2)� (1 + F0) (�G0)
= G0 + �2nd1d2 + �n(�F0)d2 + �nG0d1 � 0;

respectively. Clearly, regardless of n, the eigenvalues of J � �nD have negative real parts.

This proves the �rst part of our proposition.

In the second part, (3.17) is satis�ed. For �0 = 0; the matrix J � �nD reduces to A

and we know that

trJ = F0 �G0 < 0;

and

det J = G0 > 0:

Now, let �1d1 � F0 yielding �nd1 � F0; and thus

tr(J � �nD) = (F0 � �nd1)�G0 � �d2 � 0;

and

det(J � �nD) = G0 + (�nd1 � F0)�nd2 + �nG0d1 � 0:
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Hence, the steady state is locally asymptotically stable.

Finally, if �1d1 < F0; then for those eigenvalues �n; n > 1, that satisfy �nd1 � F0;

we end up with the same result as before and J � �nD has eigenvalues with negative real

parts. For the remaining eigenvalues, we denote one of these eigenvalues by �, ie, F0
d1
.

The trace is straight forward as

tr(J � �D) = F0 �G0 � �d1 � �d2;

= (F0 �G0)� � (d1 + d2) < 0:

As for the determinant, we have

det(J � �D) = G0 + �2d1d2 � �F0d2 + �G0d1;

= �2d1d2 � �(F0d2 �G0d1) +G0:

If we set
d2
d1
� G0
F0
;

we end up with det(J � �D) > 0. The last case is where

d2
d1

>
G0
F0
:

Notice that the trinomial

�2d1d2 � �(F0d2 �G0d1) +G0

is positive if its discriminant is negative, that is,

(F0d2 �G0d1)
2 � 4d1d2G0 < 0:

which is,

F 20 d
2
2 � 2F0G0d1d2 +G20d

2
1 ��4d1d2G0 < 0�

F0
d2
d1

�2
+ 2F0G0

d2
d1
+G20 � 4 (1 + F0)G0

d2
d1

< 0:

This can be rearranged to the form

(F0
d2
d1
+G0)

2 < 4 (1 + F0)G0
d2
d1
:
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In the interval [0;+1); between the parabola y = (F0x + G0)
2 and the line y = 4(1 +

F0)G0x; it is easy to see that, at point �x = G0
F0
; we have

(F0�x+G0)
2 < 4 (1 + F0)G0�x

and the line intersects the parabolic curve at two points x1;x2 such that 0 < x1 < x < x2:

Setting D = x2; we obtain that D is the solution of Equation (3.19) satisfying D > G0
F0
.

In addition, the inequality

(F0x+G0)
2 < 4 (1 + F0)G0x

holds for G0
F0
< x < D. We conclude that det(A� �D) is positive if

d2
d1
� G0
F0

or
G0
F0

<
d2
d1

< D:

The poof is complete.

3.2.2 Global Asymptotic Stability

In this subsection, we present the �ndings of this study. First, we show that, subject

to a speci�c condition, the proposed system has a rectangular invariant region. For

convenience, let us de�ne the function

'k (u) =
u

1 + ku2
: (3.23)

Using (3.23), system (3.1) may now be rewritten in the form8><>:
@u

@t
� d1�u =

�
a�u
'k(u)

� v
�
'k (u) := F (u; v)

@v

@t
� d2�v =

�
b

'k(u)
� v
�
'k (u) := G (u; v) :

(3.24)

We start with a proposition of su¢ cient conditions for the existence of an invariant rect-

angle for (3.1).

Proposition 3.11 If

a >
1

k
(3.25)

and

b <
a

1 + ka2

�
a

3
p
ak2 � 1

�
; (3.26)
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system (3.1) has the invariant region

< =
�

3

r
a

k
; a

�
�
h
2b
p
k; a

3
p
ak2 � 1

i
: (3.27)

Proof 3.12 First of all, on the left boundary of u, we obtain

F

�
3

r
a

k
; v

�
= a� 3

r
a

k
� v'k

�
3

r
a

k

�
=

 
a� 3

p
a
k

'k
�
3
p

a
k

� � v

!
'k

�
3

r
a

k

�
=

��
a

3
p
ak2 � 1

�
� v
�
'k

�
3

r
a

k

�
> 0;

for all 2b
p
k < v < a

3
p
ak2 � 1: Similarly, on the right boundary, we have for all

2b
p
k < v < a

3
p
ak2 � 1

F (a; v) =

�
a� a

'k (a)
� v

�
'k (a)

= �v'k (a) < 0:

As for the boundaries of v, the left boundary yields

G
�
u; 2b

p
k
�
= b� 2b

p
k'k (u)

= 'k (u) b

�
1

'k (u)
� 2
p
k

�
> 0;

for 3
p

a
k
< u < a; and for the right boundary, we have

G
�
u; a

3
p
ak2 � 1

�
= b�

�
a

3
p
ak2 � 1

�
'k (u)

= 'k (u)

�
b

'k (u)
�
�
a

3
p
ak2 � 1

��
< 0;

for 3
p

a
k
< u < a: Finally, since

�
a

3
p
ak2 � 1

�
>

b
a

1+ka2

;

then �
a

3
p
ak2 � 1

�
>

b

'k (u)
;

and the proof is complete.
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That we have determined the invariant region for system (3.1), we move to derive

su¢ cient conditions for its global asymptotic stability. Now, with the aim of simplifying

the proofs, we rewrite the proposed system in the form8><>:
@u

@t
� d1�u =

h�
a�u
'k(u)

� a��
'k(�)

�
�
�
v � b

'k(�)

�i
'k (u) in R+ � 
;

@v

@t
� d2�v =

h�
b

'k(u)
� b

'k(�)

�
�
�
v � b

'k(�)

�i
'k (u) in R+ � 
:

(3.28)

The following theorem constitutes the main �nding of study of this subsection:

Theorem 3.13 If
a

(a� b)
> ku (b� u) ; (3.29)

and

3
3
p
ak2 � ak + 1 � 0 (3.30)

are satis�ed. Then for any solution (u; v) 2 < to (3.1), we get

lim
t!1

ku (x; t)� u�kL2(
) = lim
t!1

kv (x; t)� v�kL2(
) = 0: (3.31)

Before stating the proof of our main theorem, the following lemmas and proposition

are necessary to complete the proof.

Lemma 3.14 Consider the function H de�ned as

H (u) =

Z u

�

�
b

'k (r)
� b

'k (�)

�
dr � 0: (3.32)

It follows that
d

du
H (u) =

b

'k (u)
� b

'k (�)
:

Proposition 3.15 Let (u(t; :); v(t; :)) be a solution of (3.1) and let

V (t) =

Z



E (u (x; t) ; v (x; t)) dx; (3.33)

where

E (u; v) = H (u) +
1

2
(v � v�)2 : (3.34)

Then, subject to (3.29) V (t) is a Lyapunov functional.

Proof 3.16 First of all, substituting (3.34) in (3.33) yields

V (t) =

Z



�
H (u) +

1

2
(v � v�)2

�
dx:
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Di¤erentiating the functional V (t) wrt t leads to

d

dt
V (t) =

Z



��
b

'k (u)
� b

'k (u
�)

��
d1�u+ 'k (u)

��
a� u

'k (u)
� a� u�

'k (u
�)

�
� (v � v�)

���
dx

+

Z



(v � v�)

�
d2�v + 'k (u)

��
b

'k (u)
� b

'k (u
�)

�
� (v � v�)

��
dx:

=

�Z



d1

�
b

'k (u)
� b

'k (u
�)

�
�udx++

Z



d2 (v � v�)�vdx

�
+

�Z



'k (u)

��
b

'k (u)
� b

'k (u
�)

��
a� u

'k (u)
� a� u�

'k (u
�)

�
� (v � v�)2

�
dx

�
:

To simplify things, we split the derivative into two parts

d

dt
V (t) = I + J; (3.35)

where

I = �bd1
Z



�
k � 1

u2

�
jruj2 dx� d2

Z



jrvj2 dx;

and

J =

Z



'k (u)

�
b

�
k � 1


2

�
(u� u�)

�
a� u

'k (u)
� a� u�

'k (u
�)

�
� (v � v�)2

�
dx:

It follows directly from (3.25) that I � 0: If condition (3.29) is satis�ed, then

u � u� ) (u� u�)

�
a� u

'k (u)
� a� u�

'k (u
�)

�
� 0;

u � u� ) (u� u�)

�
a� u

'k (u)
� a� u�

'k (u
�)

�
� 0:

It is easy to see that J � 0; and therefore

d

dt
V (t) � 0:

This concludes the proof of the proposition.

Now that we have established that V (t) is a valid Lyapunov functional and condi-

tions (3.25), (3.26), and (3.29), we move to state the su¢ cient conditions for the global

asymptotic stability of (3.1).

Proof 3.17 Going back to (3.35), the positive-de�nite functional V (t) has a nonpositive

derivative and if (u; v) 2 < is a solution of (3.1), for which
d

dt
V (t) = 0; then u and v

must necessarily be spatially homogeneous as jruj2 = jrvj2 = 0: Hence, (u; v) satis�es
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the ODE system corresponding to (3.1). Since, for the di¤erential system (3.24), (u�; v�)

is the largest invariant subset �
(u; v) 2 _< j d

dt
V (t) = 0

�
;

one gets (see Lisena [40] and Yi et al[54]) via La Salle invariance theorem

lim
t!1

ju (x; t)� u�j = lim
t!1

jv (x; t)� v�j = 0; (3.36)

uniformly in x: Hence,

lim
t!1

Z



(u� u�)2 (x; t) dx = lim
t!1

Z



(v � v�)2 dx = 0: (3.37)

The equalities in (3.37) yield (3.36).

3.3 NUMERICAL EXAMPLES

Practically speaking, the previous results gathered from Peng et al [45] and Lisena [41]

mean that if we want to choose parameters guaranteeing the global asymptotic stability

of solutions, the following four conditions must be satis�ed8>>>><>>>>:
(C1)

a
2
< (� = a� b) < a() 0 < b < a

2

(C2) a2 > 27
4
;

(C3) b � a
1+ka2

�
k a

2

4
+ 1
�
= a

4

�
4+a2k
1+a2k

�
;

(C4) 3
3
p
ak2 � ak + 1 � 0:

(3.38)

Obviously, condition (C4) implies (C2) as

3
3
p
ak2 � ak + 1 � 0 =) 3

3
p
ak2 � ak � 1 (3.39)

) 3
3
p
ak2 < ak

) 27ak2 < a3k3

) 27 < a2k:
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Hence, (C2) may be ignored. The main �nding of this study is that we can replace the

conditions in (3.39) by our new weaker conditions8>><>>:
(C4) 3

3
p
ak2 � ak + 1 � 0;

(C5) b � a
1+ka2

�
a

3
p
ak2 � 1

�
;

(C6)
a
a�b > ku (b� u) :

(3.40)

Note that the region of (u; v), we operate within is <. For instance, let us consider the
parameters

a = 1:2371; k = 19:974; and b = 0:34: (3.41)

Clearly (C1) is satis�ed. As for (C4), we see that

3
3
p
ak2 � ak + 1 = 3

3
p
1:2371� 19:9742 � 1:2371� 19:974 + 1

= �2:2378� 10�4 � 0:

However, condition (C3) is not satis�ed as

a

1 + ka2

�
k
a2

4
+ 1

�
=

1:237

1 + 19:974� 1:23742 (19:974�
1:23742

4
+ 1)

= 0:33864 � b:

Therefore, the su¢ cient conditions stated Peng et al[45] and Lisena[41] cannot guarantee

the global asymptotic stability. As for the new derived conditions, it is easy to see that

(C5) is ful�lled as

a

1 + ka2

�
a

3
p
ak2 � 1

�
=

1:237

1 + 19:974� 1:23742 (1:237�
3
p
1:237� 19:9742 � 1)

= 0:34392 � b:

The last condition (C6) requires closer attention. Keeping in mind that u 2 [ 3
p

a
k
; a];

Figure 3.1 (top) shows the quantity a
(a�b) � ku(b � u); which has to be strictly positive

for (C6) to be satis�ed. It is easy to see that this is in fact the case. Figure 3.1 (bottom)

shows the functions

f (u) =
(a� u)

u

�
ku2 + 1

�
;

and

g (u) =
b

u

�
ku2 + 1

�
:

What condition (C6) guarantees for us is that the two functions intersect at the unique

point u = � and that before the intersection f(u) > g(u); while after it f(u) < g(u):
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The Degn-Harrison system has been solved numerically by means of the implicit �nite

di¤erence method using Matlab. Figures 3.2 and 3.3 show the solutions of the system

using the parameters in (3.41) in the ODE and one-dimensional cases, respectively. In

the 1D case, the di¤usion constants were set to d1 = 3 and d2 = 2: Clearly, the solutions

are globally asymptotically stable as suggested by our new conditions.

Figure 3.1: (Top) Condition (C9) states that a
a�b �ku(b�u) > 0:(Bottom) The functions

f (u) and g (u) in the range u 2
�
3
p

a
k
; a
�
:The parameters chosen here are stated in (3.41).
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Figure 3.2: Solutions of the Degn-Harrison model (4.1) in the di¤usion-free case. The
parameters chosen here are stated in (4.87). The initial states are set at u0 = 0:8 and
v0 = 0:4:

Figure 3.3: Solutions of the Degn-Harrison model (4.1) in the di¤usion-free case. The
parameters chosen here are stated in ( 4.87). The initial states are set at u(x; 0) =
0:8[1 + 0:3 sin(0:2x)] and v(x; 0) = 0:4[1 + 0:3 cos(0:2x)]:
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A Generalized Degn-Harrison Reaction-Di¤usion System: Asymptotic
Stability and Non-Existence Results

In this chapter 1, we study the Degn�Harrison system with a generalized reaction term.

Once proved the global existence and boundedness of a unique solution, we address the

asymptotic behavior of the system. The conditions for the global asymptotic stability of

the steady state solution are derived using the appropriate techniques based on the eigen-

analysis, the Poincaré�Bendixson theorem and the direct Lyapunov method. Numerical

simulations are also shown to corroborate the asymptotic stability predictions. Moreover,

we determine the constraints on the size of the reactor and the di¤usion coe¢ cient such

that the system does not admit non-constant positive steady state solutions.

4.1 Problem Formulation

Before we start to introduce our works, we consider the general Degn-Harrison reaction

di¤usion system 8><>:
ut � d1�u = a� u� �' (u) v; x 2 
; t > 0;

vt � d2�v = b� �' (u) v; x 2 
; t > 0:
(4.1)

To simplify the reaction�di¤usion system (4.1), we create the new dimensionless para-

meters

u = RU; v = TV; t =
�2

d1
s; x = �y; (4.2)

next, we use the Chain rule to derive a new di¤erential system

du

dt
=

du

dU
:
dU

ds
:
ds

dt
= R

d1

�2
dU

ds
; (4.3)

dv

dt
=

dv

dV
:
dV

ds
:
ds

dt
= T

d1

�2
dV

ds
:

System (4.1) in one-dimensional becomes8>><>>:
R
d1

�2
dU

ds
� d1

R

�2
d2U

dy2
= a�RU � �' (U)TV

T
d1

�2
dV

ds
� d2

T

�2
d2V

dy2
= b� �' (U)TV;

(4.4)

we devide both sides of equation one in (4.4) by (Rd1) and we multiply by �
2 (similair to

equation one we devide equation two by (Td1) and multiply by �
2)

1Article published in Nonlinear Analysis: Real World Applications 57 (103191), pp. 1-28, (2021).
View [2]
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8>><>>:
dU

ds
� d2U

dy2
=
�2

d1

�
a

R
� U � �' (U)

T

R
V

�
dV

ds
� d2
d1

d2V

dy2
=
�2

d1

�
b

T
� �' (U)V

�
;

(4.5)

we put R = T;A =
a

R
;B =

b

R
; d =

d2
d1
and 
 =

�2

d1
; we obtain

8>><>>:
dU

ds
� d2U

dy2
= 
 [A� U � �' (U)V ] := F (U; V )

dV

ds
� d

d2V

dy2
= 
 [B � �' (U)V ] := G (U; V ) :

(4.6)

In our study, we will use (4.6) in the analysis, but since normally we use variables (u; v; x; t)

instead of (U; V; y; t) and (a; b) instead of (A;B) : Thus we rewrite (4.6) in the old variables(
ut ��u = 
 [a� u� �' (u) v] := F (u; v) ; x 2 
; t > 0;
vt � d�v = 
 [b� �' (u) v] := G (u; v) ; x 2 
; t > 0;

(4.7)

where u and v represents the dimensionless concentrations of the reactants. The para-

meters a; b; �; 
 and d are positive constants and the inhibitory function ' 2 C1(0;1) \
C[0;1) satis�es the following conditions

'(0) = 0; (4.8)

and for u 2 [�; a]
'(u) > 0; (4.9)

with

0 < � < a� b: (4.10)

The system (4.7), de�ned in the bounded domain 
 � RN ; N � 1 with smooth boundary
@
, is supplemented with the initial data

u (x; 0) = u0 (x) � 0; v (x; 0) = v0 (x) � 0; x 2 
 (4.11)

and the following Neumann boundary conditions

@u

@�
=
@v

@�
= 0; x 2 @
; t > 0; (4.12)

where � is the outward unit normal vector of the boundary @
.
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Lemma 4.1 The system (4.7) has a unique constant steady state

(u�; v�) =

�
a� b;

b

�' (a� b)

�
; (4.13)

if and only if a > b:

Proof 4.2 An equilibrium point (u�; v�) of (4.7) satis�es(
F (u; v) = 
 [a� u� �' (u) v] = 0;

G (u; v) = 
 [b� �' (u) v] = 0;
(4.14)

by the second equation of (4.14), we obtain

v� =
b

�' (u)
; (4.15)

we compensate (4.15) in the �rst equation of (4.14), we �nd

u� = a� b;

then, we conclude

(u�; v�) =

�
a� b;

b

�' (a� b)

�
:

4.2 Global Existence of a Unique Bounded Solution

In this section, we shall show that the system (4.7) has a unique solution (u(x; t); v(x; t)),

de�ned for all t > 0, which is bounded by some positive constants depending on the system

parameters, the arbitrary function '(u) and the initial conditions u0 and v0. The existence

of a unique bounded global solution will be proved applying the theory of invariant regions

as was developed in [52].

Lemma 4.3 For any d > 0; the system (4.7) admits a unique solution (u; v) = (u(x; t); v(x; t))
for all x 2 
 and t > 0. Moreover, there exist two positive constants C1 and C2, depending
on the initial conditions (u0; v0); the system parameters a; b; � and the arbitrary function

�' such that

C1 < u(x; t); v(x; t) < C2: (4.16)

Proof 4.4 The local existence and uniqueness of the solution for the system (4.7) are

classical. In order to prove the global existence and the boundedness, we consider the
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following rectangular region

< = (u1; u2)� (v1; v2)

and evaluate the functions F (u; v) and G(u; v) at their boundaries in such a way it is

a contracting rectangle [49]. By condition (4.8), there exists a function '1(u) such that

'(u) = u'1(u). Let u = u1 and v1 � v � v2 then

F (u; v) = 
 (a� u1 � �' (u1) v) � 
a� 
u1

"
1 + � sup

u2[u1;u2]
'1(u)v2

#
:

Hence, F (u; v) � 0 if
u1 �

a

1 + � sup
u2[u1;u2]

'1(u)v2
: (4.17)

Let us evaluate F (u; v) at the second boundary, i.e. u = u2 and v1 � v � v2

F (u; v) = 
 (a� u2 � �' (u2) v) � 
 (a� u2) :

Therefore F (u; v) < 0 if

u2 � a: (4.18)

From (4.17) and (4.18), it follows that F (u; v) points inside the rectangle < with

u1 = min

8><>: a

1 + � sup
u2[u1;u2]

'1(u)v2
;minu0 (x)

9>=>; ;

and

u2 = max fa;maxu0 (x)g :

Evaluating the function G(u; v) at the boundary v = v1 and u1 � u � u2, we obtain

G(u; v) = 
 [b� �' (u) v1]

= 
 [b� �u'1 (u) v1]

� 


"
b� �uv1 sup

u2[u1;u2]
'1 (u)

#
;

and, since u � u2, it follows

G(u; v) � 


"
b� �u2v1 sup

u2[u1;u2]
'1 (u)

#
:
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A su¢ cient condition for G(u; v) � 0 can then be formulated as

v1 �
b

�u2 sup
u2[u1;u2]

'1 (u)
: (4.19)

At the last boundary v = v2 and u1 � u � u2 we have

G(u; v) = 
 [b� �' (u) v2] � 


�
b� � min

u2[u1;u2]
' (u) v2

�
;

thus G(u; v) � 0 is satis�ed when

v2 �
b

� min
u2[u1;u2]

' (u)
: (4.20)

From (4.19) and (4.20), it follows that G(u; v) points inside the rectangle < with

v1 = min

8><>: b

�u2 sup
u2[u1;u2]

'1 (u)
;min v0 (x)

9>=>; ;

and

v2 = max

8<: b

� min
u2[u1;u2]

' (u)
;max v0 (x)

9=; :

Therefore, the rectangle < is an invariant rectangle for the system (4.7). Finally, the

constants C1 and C2 in (4.16) can be de�ned as follows

C1 = minfu1; v1g > 0 and C2 = maxfu2; v2g > 0: (4.21)

Let us now prove the boundedness of the solutions.

Lemma 4.5 Let (u; v) = (u(x; t); v(x; t)) be the unique solution of (4.7). Then, for all

x 2 

lim
t!1

supu < a; lim
t!1

sup v <
a� �

�' (�)
: (4.22)

Proof 4.6 Let " be a constant such that

" < �' (u) v; (4.23)
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and ~u = ~u (t) be the unique solution of the following Cauchy problem8>>><>>>:
d~u

dt
= 
 (~a� ~u) ;

~u (0) = 2max
x2


u0 (x) ;

(4.24)

with

~a = a� "

2
:

Let us also de�ne the variable û = u� ~u. From (4.7), we obtain

ût ��û+ [~ut � 
 (~a� ~u)] = 
 [a� ~a� û� �' (u) v] ;

and from (4.24),

ût ��û = 
 [a� ~a� û� �' (u) v] :

So,

�ût +�û� 
û = 
 [�' (u) v � a+ ~a] ;

by (4.23), we obtain (
�ût +�û� 
û = 


�
�' (u) v � "

2

�
> 0;

û (x; 0) < 0:

Using the maximum principle for parabolic equations and the Neumann boundary condi-

tions (4.12), we get

ût < 0 and û < 0;

so,

û (x; t) < 0 ) u(x; t) < ~u (t) for all t > 0 and x 2 
: (4.25)

The maximum principle for parabolic equations cannot be directly used for the solution

v = v(x; t), therefore we de�ne ~v (t) as the solution of the following Cauchy problem8>>><>>>:
d~v

dt
= 
~g (~u; ~v) ;

~v(x; 0) = 2max
x2


v0 (x) ;

(4.26)

where

~g (~u; ~v) = sup
C1<�<~u

h
~b� � (~v � "0)

i
' (�) ; (4.27)
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with "0 > 0; ~b > b and
~b

�' (~a)
+ "0 <

a� �

�' (�)
:

Let v̂ = v � ~v. It follows straightforwardly that v̂(x; 0) < 0. Hence, we may prove by

contradiction that for all x 2 
 and t > 0

v̂(x; t) < 0: (4.28)

If we let v̂(x; t) < 0, then there exists T > 0 such that v̂(x; t) < 0 for (x; t) 2 
 � (0; T )
and v̂(x; t) = 0 for some x 2 
, which leads to

max
x2


v̂(x; t) = 0:

If there exists x1 2 
 such that v̂(x1; T ) = 0, then v̂t(x1; T ) � 0 and �v̂(x1; T ) � 0 and
thus we have

� v̂t(x1; T ) + d�v̂(x1; T ) � 0: (4.29)

However, we combine (4.7) and (4.26) for point (x1; T ), we end up with

v̂t � d�v̂ + ~vt = 
 [b� �' (u) v]

v̂t � d�v̂ + [~vt � 
~g (~u; ~v)] = 
 [b� �' (u) v]� 
~g (~u; ~v) ;

v̂t � d�v̂ = 
 [b� �' (u) v]� 
~g (~u; ~v) :

So,

� v̂t + d�v̂ = 
 [~g (~u; ~v)� [b� �' (u) v]] : (4.30)

Setting ~v = v and ~u > u yields

~g (~u; ~v) = sup
C1<�<~u

h
~b� � (~v � "0)

i
' (�) ;

= sup
C1<�<~u

h
~b� � (v � "0)

i
' (�) ;

> sup
C1<�<~u

[b� �v]' (�) ;

� sup
C1<�<u

[b� �v]' (�) ;

� [b� �v]' (u) :

Therefore

~g (~u; ~v)� [b� �v]' (u) � 0;
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and consequently

�v̂t(x1; T ) + d�v̂(x1; T ) > 0;

which contradicts the result in (4.29). Hence, (4.28) holds and we conclude that there

exists some x1 2 @
 such that v̂(x1; T ) = 0 leading to a positive right�hand side of (4.30)
at (x1; T ). By continuity, we know that it remains positive in 
0 � fTg for any 
0 being
a sub�domain of 
 and x1 2 
0. Hence, we get

�v̂t(x1; T ) + d�v̂(x1; T ) > 0;

on 
0 � fTg. Up to this point, we cannot state whether or not this inequality holds for

�(0; T ]. Using Hopf�s boundary lemma on (4.30) in 
0�fTg, we get @v̂ = @v̂(x1; T ) > 0,

which contradicts the Neumann boundary conditions and thus

v̂ (x; t) < 0 ) v(x; t) < ~v (t) for all x 2 
 and t > 0: (4.31)

Finally, we consider the ODEs system8>>><>>>:
d~u

dt
= 
 (~a� ~u) ;

d~v

dt
= 
~g (~u; ~v) ;

in <. From (4.27), we �nd that(
~g (~u; ~v) < 0 for ~v > ~b

�'(~u)
+ "0;

~g (~u; ~v) > 0 for ~v < ~b
�'(~u)

+ "0:

Hence, ~v =
~b

�' (~u)
+ "0 constitutes the nullcline of ~g and the system admits the unique

equilibrium

(~u; ~v) = (~a;
~b

�' (~a)
+ "0):

Since limt!1 ~u (t) = ~a, it follows that (~u; ~v) is globally asymptotically stable in <, which
implies that

lim
t!1

~v (t) =
~b

�' (~a)
+ "0:

By (4.25) and (4.31), being ~a < a and ~b
�'(~a)

+ "0 <
a��
�'(�)

, the Lemma is proved.
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4.3 Asymptotic Stability

In this Section we shall study the asymptotic behaviour of the generalized Degn�Harrison

system (4.7). In particular, we will �nd the conditions on the system parameters and

the arbitrary function '(u) which guarantee the attractivity of the unique homogeneous

steady state solution (4.13) and therefore prevent pattern formation. The asymptotic

analysis shall be performed at �rst for the local dynamics using the eigenfunction expan-

sion method, then we will drive a suitable conditions for the global asymptotic stability.

Also, we will discus the global asymptotic stability by other method "the direct Lyapunov

method".

4.3.1 Local Asymptotic Stability

At �rst let us perform the linear stability analysis of the equilibrium (u�; v�) in (4.13).

Proposition 4.7 Given the following ODEs system associated to the generalized Degn�

Harrison system (4.7) 8>>><>>>:
du

dt
= 
 [a� u� �' (u) v] ; t > 0

dv

dt
= 
 [b� �' (u) v] ; t > 0;

(4.32)

the solution (u�; v�) is locally asymptotically stable as an equilibrium of (4.32) if

� [' (a� b) + b'0 (a� b)] < �'2 (a� b) : (4.33)

Proof 4.8 The Jacobian matrix associated to the system (4.32) and evaluated in the

equilibrium (u�; v�) is computed as

J (u�; v�) = 


 
F0 �G0

1 + F0 �G0

!
; (4.34)

with

F0 = �1� b
'0 (a� b)

' (a� b)
and G0 = �' (a� b) : (4.35)

The equilibrium (u�; v�) is locally asymptotically stable if the eigenvalues of the jacobian

matrix J (u�; v�) are both with negative real parts. The following characteristic polynomial

associated to J (u�; v�)

�2 � trJ (u�; v�)� + det J (u�; v�)

Doctoral THESIS 63 ABIR ABBAD



A Generalized Degn-Harrison Reaction-Di¤usion System: Asymptotic
Stability and Non-Existence Results

admits roots with negative real parts if det J (u�; v�) > 0 and trJ (u�; v�) < 0 . The

determinant

det J (u�; v�) = 
2G0 = 
2�' (a� b) (4.36)

is positive by (4.9). The trace

trJ (u�; v�) = 
 (F0 �G0) = �

�
1 + b

'0 (a� b)

' (a� b)
+ �' (a� b)

�
: (4.37)

Therefore, (u�; v�) is locally asymptotically stable when the condition (4.33) is satis�ed.

Using the eigenvalue/eigenfunction notation de�ned at the end of the Introduction, if

�1 < 
F0 = �
 � 
b
'0 (a� b)

' (a� b)
; (4.38)

then i� = (�;
) is de�ned as the largest positive integer such that

�i < 
F0 for i � i�: (4.39)

Clearly, if (4.38) holds, then 1 � i� <1. In this case, we de�ne the constant

~d = min
1�i�i�

di; di =

2G0 (�i + 1)

�i (
F0 � �i)
: (4.40)

The following Theorem can now be formulated for the local stability of (u�; v�) as a steady

state of (4.7).

Theorem 4.9 Let us assume that condition (4.33) holds. The constant steady state

(u�; v�) is locally asymptotically stable for the system (4.7) if(
�i � 
F0 or

�i < 
F0 and 0 < d = d2
d1
< ~d:

(4.41)

If

�i < 
F0 and d > ~d;

then (u�; v�) is locally asymptotically unstable.

Proof 4.10 Let L be the linearized operator associated to the system (4.7) in (u�; v�)

L =

 
�+ 
F0 �
G0
1 + 
F0 d�� 
G0

!
:
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The constant steady state (u�; v�) is said to be locally asymptotically stable for the sys-

tem (4.7) if and only if all the eigenvalues of L have negative real parts. Denoting

(�1(x); �2(x)) the eigenfunction associated with the eigenvalue � (�1(x); �2(x)), we get

[L� �I](�1(x); �2(x))
t = (0; 0)t;

which explicitly reads 
�+ 
F0 � � �
G0

 (1 + F0) d�� 
G0 � �

! 
�1

�2

!
=

 
0

0

!
:

De�ning (�1(x); �2(x)) in sequence form as follows

�1 =
X

0�i�1;1�j�mi

aij�ij and �2 =
X

0�i�1;1�j�mi

bij�ij;

we obtain

X
0�i�1;1�j�mi

 

F0 � �i � � �
G0

 (1 + F0) �
G0 � d�i � �

! 
aij

bij

!
�ij =

 
0

0

!
:

Then, � is an eigenvalue of L if for some i � 0 the following equation is satis�ed

�2 + Pi� +Qi = 0;

where

Pi = �i (d+ 1) + 
 (G0 � F0) ;

and

Qi = �id (�i � 
F0) + 
2G0 (�i + 1) :

Since the condition (4.33) holds, then Pi > 0. Moreover, being G0 = 1

2
det J (u�; v�), it

is clear that Q0 > 0 for �0 = 0. Let us now check the sign of Qi if the conditions (4.41)

of the Theorem 4.9 are satis�ed

If �i � 
F0, then Qi > 0 for i � 1.
If �i < 
F0 and 0 < d < ~d, then

�i < 
F0 and 0 < d < di; for i 2 [1; i�]:

Hence, Qi > 0 for i 2 [1; i�]. Furthermore, if i � i�, then �i � 
F0 and Qi > 0.

Therefore, when (4.33) and (4.41) hold, we get Pi > 0 and Qi > 0 for all i � 0, which
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implies that all the eigenvalues � have negative real part, and the steady�state (u�; v�) is

locally asymptotically stable.

Finally, if �i < 
F0 and d > ~d, we assume that the minimum in (4.40) is obtained for

some k 2 [1; i�]
d > dk; (4.42)

therefore Qk < 0 and (u�; v�) is locally asymptotic unstable.

Theorem 4.11 The homogeneous steady state (u�; v�) is locally asymptotically stable for
the system (4.7) if F0 � 0 or

0 < F0 < G0; (4.43)

and 8><>:
�1 � 
F0 or

�1 < 
F0 and

(
d � G0

F0
or

G0
F0
< d < };

(4.44)

where } is the solution of the following equation

(F0x+G0)
2 = 4 (1 + F0)G0x: (4.45)

Proof 4.12 First of all, let us rewrite (4.7) in vector form as follows

@z

@t
�D�z = F (z) ; where (4.46)

z =

 
u

v

!
; D =

 
1 0

0 d

!
and F (z) = 


 
a� u� �' (u) v

b� �' (u) v

!
:

In order to establish the local asymptotic stability of (u�; v�) as the steady�state solution

of (4.46) it su¢ ces to show that (0; 0) is asymptotically stable as a steady state solution

of the linearized system
@z

@t
�D�z = J; (4.47)

where J the Jacobian matrix associated at (u�; v�).

The local asymptotic stability of (0; 0) for (4.47) requires the eigenvalues of J ��nd to
have negative real parts for all n � 0. Since the system is 2� 2, it su¢ ces that the trace
of J � �nd is negative and the determinant is positive. In what follows we check the signs
of trace and determinant in the various cases when the hypotheses of the Theorem 4.11

are satis�ed
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let F0 � 0, then

J � �nD =

 

F0 � �n �
G0

 (1 + F0) �
G0 � d�n

!
:

Via a straightforward computation, being G0 > 0, we get

det (J � �nd) = (
F0 � �n) (�
G0 � d�n)� (�
G0) (
 (1 + F0))
= �2nd+ 
�nd (�F0) + 
�nG0 + 
2G0 � 0;

and

tr (J � �nd) = 
F0 � �n � 
G0 � d�n

= ��n (d+ 1) + 
 (F0 �G0) � 0:

Hence, all the eigenvalues of J��nd have negative real parts and the steady�state is locally
asymptotic stable. Let (4.43) and the �rst condition in (4.44) be satis�ed. For the �rst

eigenvalue �0 = 0, we have J � �0d = J and therefore

det J = 
2G0 > 0;

and

trJ = 
 (F0 �G0) < 0:

Being �1 � 
F0, we have �n � 
F0, which leads to

det (J � �nd) = �nd (�n � 
F0) + 
�nG0 + 
2G0 � 0;

and

tr (J � �nd) = (
F0 � �n)� 
G0 � �nd � 0:

Therefore, the steady state is locally asymptotically stable. Let �1 < 
F0 and d � G0
F0
. For

the eigenvalues �n; n > 1 such that �n � 
F0, with the same arguments as above we can

conclude that J��nD has eigenvalues with negative real parts. Let � one of the remaining

eigenvalues such that � < 
F0. Since (4.43) holds, the trace is still negative

tr (J � �D) = 
 (F0 �G0)� � (d+ 1) < 0; (4.48)
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and, being d � G0
F0
, the determinant is positive

det (J � �D) = 
2G0 + �2d� 
�dF0 + 
�G0

= �2d� 
� (dF0 �G0) + 
2G0 > 0: (4.49)

Therefore, the steady state is locally asymptotically stable. Let �1 < 
F0 and G0
F0
d < },

with } given in the statement of the Theorem. The trace of an eigenvalue � is computed

as in (4.48) and it is always negative under the condition (4.43). Therefore, we must

check the sign of the determinant

�2d� 
� (dF0 �G0) + 
2G0: (4.50)

If

(
 (dF0 �G0))
2 � 4d
2G0 < 0; (4.51)

then the determinant in (4.50) is positive for all �. Let us rewrite condition (4.51) in the

following form


2
�
(dF0)

2 +G20 � 2dF0G0
�

< 4d
2G0

(F0d+G0)
2 < 4 (1 + F0)G0d:

In the interval [0;+1), between the parabola y = (F0x+G0)2 and the line y = 4 (1 + F0)G0x,

it is easy to see that, at the point �x = G0
F0
, we have

(F0�x+G0)
2 < 4 (1 + F0)G0�x:

The line intersects the parabola at two points x1 and x2 such that 0 < x1 < x < x2.

Setting } = x2, we obtain that } is the solution of (4.45) satisfying

} >
G0
F0
:

In addition, the inequality:

(F0x+G0)
2 < 4 (1 + F0)G0x;

holds for
G0
F0

< x < }:

We can again conclude that the steady state is locally asymptotically stable.
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4.3.2 Global Asymptotic Stability

In this Section, we shall obtain su¢ cient conditions to achieve global asymptotic stability

of the steady state solution (4.13). At �rst, we will apply the Poincaré�Bendixson theorem

[13] at the ODEs system associated with (4.7) in order to obtain global stability for the

local dynamics. Then, in Theorem 3, we shall �nd suitable conditions to guarantee the

global stability of the steady state for the PDEs system (4.7).

The global stability of the equilibrium solution (4.13) will be also discussed perform-

ing the well-known direct Lyapunov method. Further conditions ensuring that the steady

state solution is globally asymptotically stable for the system (4.7) are obtained in The-

orem 6.

Let us �rst �nd the invariant rectangle <� de�ned as in (4.52).

Proposition 4.13 The following rectangle

<� = [�; a]�

264 b

� sup
u2[�;a]

' (u)
;
a� �

�' (�)

375 ; (4.52)

with
a� �

' (�)
>

b

inf
u2[�;a]

' (u)
; (4.53)

is an invariant rectangle for the system (4.7).

Proof 4.14 According to the De�nition 1.3, we just evaluate the vector �eld (F;G) given
in (4.7) at the boundaries of <�. Let

b

� sup
u2[�;a]

' (u)
< v <

a� �

�' (�)
;

then it straight for wardly results

F (�; v) = 
 (a� � � �' (�) v) > 0;

and

F (a; v) = 
 (a� a� �' (a) v) = �
�' (a) v < 0:

Doctoral THESIS 69 ABIR ABBAD



A Generalized Degn-Harrison Reaction-Di¤usion System: Asymptotic
Stability and Non-Existence Results

Similarly, assuming � < u < a leads to

G

0B@u; b

� sup
u2[�;a]

' (u)

1CA = 


264b� �' (u)
b

� sup
u2[�;a]

' (u)

375
= 
' (u)

0B@ b

' (u)
� b

sup
u2[�;a]

' (u)

1CA > 0;

and

G

�
u;

a� �

�' (�)

�
= 


�
b� ' (u)

a� �

' (�)

�
< 


�
b� inf

u2[�;a]
' (u)

a� �

' (�)

�
< 0;

where the last inequality follows by condition (4.53).

Now, we state the following Theorem which gives the conditions for the global asymp-

totic stability of (u�; v�) as a solution of the reduced ODEs system associated to (4.7).

Theorem 4.15 Given the ODEs system (4.32), let us de�ne f(u) = a�u
'(u)

and ui; i =

1; : : : ; N be the in�ection points of f(u). If the following condition holds

max

�
max
i=1;:::;N

f 0 (ui) ; f
0 (�) ; f 0 (a)

�
< �; (4.54)

then the equilibrium (u�; v�) given in (4.13) is globally asymptotically stable for the system

(4.32).

Proof 4.16 Let us rewrite the system (4.32) in terms of the function f(u)8<: ut = F (u; v) = 
' (u)
�
a�u
'(u)

� �v
�
= 
'(u)(f(u)� �v);

vt = G(u; v) = 
' (u)
�

b
'(u)

� �v
�
:

(4.55)

We would like to apply the Dulac criterion to the plane system (4.55) in the invariant

region <� de�ned in (4.52).
Let  = 1


'(u)
be the Dulac function candidate. We shall check the sign of the following

divergence
@ F

@u
+
@ G

@v
=
�' (u)� (a� u)'0 (u)

(' (u))2
� � = f 0 (u)� �: (4.56)
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If f(u) is decreasing, then f 0 (u) < 0 and the sign of the divergence in (4.56) is negative.

If f(u) is not decreasing, then

f 0 (u) < max

�
max
i=1;N

f 0 (ui) ; f
0 (�) ; f 0 (a)

�
in [�; a];

which implies

f 0 (u)� � < max

�
max
i=1;:::;N

f 0 (ui) ; f
0 (�) ; f 0 (a)

�
� � < 0;

where the last inequality holds under the hypothesis (4.54) of the Theorem. Therefore,

the divergence in (4.56) has the same negative sign in <� and, according to the Dulac
criterion, there are no closed orbits lying entirely in <�.
To complete the proof it su¢ ces to show that (u�; v�) is locally asymptotic stable. Since

f 0 (u�) < max

�
max
i=1;:::;N

f 0 (ui) ; f
0 (�) ; f 0 (a)

�
, using the assumption (4.33), it follows that

f 0 (u�) < �: (4.57)

The condition in (4.57) is equivalent to the assumption (4.33) which guarantees the local

asymptotic stability of the equilibrium (u�; v�). Therefore, using the absence of periodic

solutions and the Poincaré- Bendixson theorem, we complete the proof.

Let � denote the following quantity

� = max
(u;v)2<�

& (u; v) ; (4.58)

where & (u; v) is the greatest real eigenvalue of the symmetric matrix JH

JH =
1

2

�
J + JT

�
;

with J (u; v) the Jacobian matrix associated to the system (4.32) and JT its transpose

matrix.

Theorem 4.17 Assume that

f 0 (u�) > 0 and �1 >
�

�
; (4.59)

where f(u) = a�u
'(u)

as in the previous theorem, � is de�ned by (4.58) and � = min f1; dg.
Let z (x; t) be a solution of the Neumann boundary value problem associated with the
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linearized system (4.47). Then

lim
t!1

krz (:; t)kL2(
) = 0: (4.60)

Proof 4.18 In order to prove (4.60), we show that there exist two constants T and C

such that

krz (:; t)kL2(
) � Ce�(��1��)t; for t > T: (4.61)

In fact, the inequality (4.61) together with the assumption �1 > �
�
in (4.59) will directly

imply (4.60).

At �rst, we observe that the assumption f 0 (u�) > 0 is equivalent to F0 > 0.

Let us evaluate the matrix JH at the steady state (u�; v�)

JH (u�; v�) = 


0B@ F0
1

2
(1 + F0 �G0)

1

2
(1 + F0 �G0) �G0

1CA :

Being F0 > 0; it follows that

det JH (u�; v�) = �F0G0 �
1

4
(1 + F0 �G0)

2 < 0;

therefore the constant � in (4.58) is positive

� � & (u�; v�) > 0:

For the linearized system (4.47), there exist T > 0 such that

z (x; t) = (u (x; t) ; v (x; t)) 2 <�; t > T:

Let us de�ne the following function

� (t) =
1

2
krz (:; t)k2L2(
)

=
1

2

Z



hrz (x; t) ;rz (x; t)i dx; for t > T; (4.62)

where h:; :i denotes the inner product in R2. The derivative of � (t) is, thus, given by

d� (t)

dt
=

Z



hrz;rzti dx

= �
Z



h�z; D�zi dx+
Z





rz; JH (z)rz

�
dx: (4.63)
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Using Lemma A.1 of [17], we deduce the following inequalityZ



h�z; D�zi dx � ��1

Z



jrzj2 dx: (4.64)

Using the de�nition (4.58) and the properties of the symmetric matrix JH , the inequality

in (4.64) can be rearranged as follows



rz; JH (z)rz

�
� & (z) jrzj2 � � jrzj2 : (4.65)

Using (4.65) into (4.63), we obtain

d� (t)

dt
� � (��1 � �)

Z



jrzj2 dx; t > T:

Hence, the function � satis�es the following di¤erential inequality

�0 (t) � �2 (��1 � �) � (t) ; for t > T: (4.66)

From (4.66) we can state that there exists a constant c1 > 0 such that

� (t) � c1e
�2(��1��)t;

and by the de�nition in (4.62), the (4.61) trivially follows with C = 2c1.

The �nal result of the paper concerns the global asymptotic stability of the steady�

state solution (u�; v�) for the system (4.7).

Theorem 4.19 Under the same assumptions of the Theorems 2.4 and 4.17, we have

lim
t!1

ku (x; t)� u�kL2(
) = lim
t!1

kv (x; t)� v�kL2(
) = 0: (4.67)

Proof 4.20 Let z = (u (x; t) ; v (x; t)) be a solution of the system (4.7). As demonstrated

in Lemma A.2 of [17], we may use the Poincaré inequality to obtain

kz (:; t)� z (:; t)k2L2(
) �
1

�1
krz (:; t)k2L2(
) ; (4.68)

where

z (t) =
1

j
j

Z



z (x; t) dx:
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Using the inequality (4.68) and (4.60) we obtain

lim
t!1

ku (x; t)� u (t)kL2(
) = lim
t!1

kv (x; t)� v (t)kL2(
) = 0; (4.69)

where u (t) and v (t) denote, respectively, the averages on 
 of u (x; t) and v (x; t). Now,

using Theorem 3.1 in [17] again, we deduce that the pair (u (t) ; v (t)) satis�es the following

ODEs system 8><>:
u0 = F (u; v) + q1 (t)

v0 = G (u; v) + q2 (t)

u (0) = 1
j
j
R


u0 (x) dx; v (0) = 1

j
j
R


v0 (x) dx;

(4.70)

where for some k > 0; t > T; and i = 1; 2; we have

jqi (t)j � ke�(��1��)t: (4.71)

From (4.71) it follows that as t!1;Z t+1

t

qi (s) ds! 0; for i = 1; 2:

Moreover, Theorem 4.15 guarantees that the constant steady state solution is globally

asymptotically stable for the ODE system. At this stage, we apply Theorem 5.5.7 of [9] to

show that every solution of (4.70) converges to (u�; v�), thus

lim
t!1

ju (t)� u�j = lim
t!1

jv (t)� v�j = 0: (4.72)

Since the following inequalities hold

ku (:; t)� u�kL2(
) � ku (:; t)� u (t)kL2(
) + j
j
1
2 ju (t)� u�j ;

and

kv (:; t)� v�kL2(
) � kv (:; t)� v (t)kL2(
) + j
j
1
2 jv (t)� v�j ;

using (4.69) and (4.72) we end up the proof of the Theorem.

In order to state the �nal Theorem 4.25 for the global asymptotic stability of the

equilibrium (4.13), we need to formulate the following lemmas and propositions.

Lemma 4.21 If u 2 [�; a], then there exists a constant � between u and u� such that

b

' (u)
� b

' (u�)
= (u� u�)

�
b

' (�)

�0
: (4.73)
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Lemma 4.22 The derivative of the function

H (u (x; t)) =

uZ
�

�
b

' (r)
� b

' (u�)

�
dr � 0; (4.74)

is given by
d

du
H (u) =

b

' (u)
� b

' (u�)
: (4.75)

Proposition 4.23 Let

V (t) =

Z



E (u (x; t) ; v (x; t)) dx; (4.76)

where

E (u; v) = H (u) +
�

2
(v � v�) (4.77)

and (u(x; t); v(x; t)) is a solution of the system (4.7). If ' (u) is a decreasing function and

(u� � u)

�
a� u

' (u)
� a� u�

' (u�)

�
> 0 for u 2 [�; u�) [ (u�; a] ; (4.78)

then V (t) is a Lyapunov functional.

Proof 4.24 Let us rewrite the system (4.7) in the following convenient form8<: ut ��u = 
' (u)
h�

a�u
'(u)

� a�u�
'(u�)

�
� �

�
v � b

�'(u�)

�i
;

vt � d�v = 
' (u)
h�

b
'(u)

� b
'(u�)

�
� �

�
v � b

�'(u�)

�i
;

(4.79)

with u� = a� b and x 2 
; t > 0.
Di¤erentiating the functional V (t) with respect to t yields

_V (t) = �

Z



�
(v � v�)

�
d�v + 
' (u)

��
b

' (u)
� b

' (u�)

�
� � (v � v�)

���
dx

+

Z



��
b

' (u)
� b

' (u�)

��
�u+ 
' (u)

��
a� u

' (u)
� a� u�

' (u�)

�
� � (v � v�)

���
dx;

which we rewrite as follow
_V (t) = I + J; (4.80)

where

I =

Z



�
b

' (u)
� b

' (u�)

�
�udx+ d�

Z



(v � v�)�vdx;

and

J =

Z




' (u)

��
b

' (u)
� b

' (u�)

��
a� u

' (u)
� a� u�

' (u�)

�
� �2 (v � v�)2

�
dx:
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We now check the sign of I and J

I =

Z



�
b

' (u)
� b

' (u�)

�
�udx+ d�

Z



(v � v�)�vdx

= �
Z



r
�

b

' (u)
� b

' (u�)

�
rudx� d�

Z



r (v � v�)rvdx

= �
Z



�
b

' (u)

�0
jruj2 dx� d�

Z



jrvj2 dx � 0:

For J we get

J =

Z




' (u)

��
b

' (u)
� b

' (u�)

��
a� u

' (u)
� a� u�

' (u�)

�
� �2 (v � v�)2

�
dx

=

Z




' (u)

"�
b

' (u)

�0
u=�

(u� u�)

�
a� u

' (u)
� a� u�

' (u�)

�
� �2 (v � v�)2

#
dx :

The condition (4.78) leads to

u � u� =) (u� u�)

�
a� u

' (u)
� a� u�

' (u�)

�
� 0; (4.81)

u � u� =) (u� u�)

�
a� u

' (u)
� a� u�

' (u�)

�
� 0: (4.82)

Using (4.81), it is straightforward to show that J � 0: Therefore

_V (t) � 0

and V is a Lyapunov functional.

Theorem 4.25 Let ' (u) be a decreasing function and assume that (4.78) holds. Then,
for any solution (u; v) of (4.4) in <� we have

lim
t!1

ku (x; t)� u�kL2(
) = lim
t!1

kv (x; t)� v�kL2(
) = 0: (4.83)

Proof 4.26 If (u; v) 2 <� is a solution of (4.7) for which d
dt
V (t) = 0, where V (t) is

the Lyapunov functional de�ned in (4.76), then u and v must be spatially homogeneous.

Therefore, (u; v) satis�es the ODE system (4.54). Noting that (u�; v�) is the largest in-

variant subset for the system (4.32)�
(u; v) 2 <� j

d

dt
V (t) = 0

�
;
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we can employ the La Salle�s invariance theorem [40, 54] to obtain

lim
t!1

ju (x; t)� u�j = lim
t!1

jv (x; t)� v�j = 0;

uniformly in x. Hence

lim
t!1

Z



(u (x; t)� u�)2 dx = lim
t!1

Z



(v (x; t)� v�)2 dx = 0; (4.84)

which implies (4.83).

4.4 Nonconstant Positive Solutions

Let us now analyze the following elliptic boundary value problem(
�u+ 
 [a� u� �' (u) v] = 0; x 2 
;
d�v + 
 [b� �' (u) v] = 0; ;

(4.85)

supplemented with the following Neumann boundary conditions

@u

@�
=
@v

@�
= 0 for all x 2 @
; (4.86)

in such a way to determine a priori estimates for the nonconstant steady state solution

and discuss its properties. Also to �nd conditions for the nonexistence of nonconstant

positive solutions.

4.4.1 A Priori Estimates of the Nonconstant Steady State Solu-

tion

Proposition 4.27 (A priori estimates) Let (u; v) = (u (x) ; v (x)) be a positive solution
to the elliptic boundary value problem (4.85). Assumimg

min
u2[�;a]

' (u) > b; (4.87)
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the following estimates hold for all x 2 
8>>>>><>>>>>:

a
sup

u2[�;a]
'1(u)

�
1� b

min
u2[�;a]

'(u)

�
< u (x) < a;

b
� max
u2[�;a]

'(u)
< v (x) < b

�

�
min

u2[�;a]
'(u)�b

� :
(4.88)

Proof 4.28 If the function u has a maximum over 
 at some point in space, then by

applying Proposition 1.6 to the boundary value problem (4.85), we obtain

a� u� �' (u) v � 0;

then

a� u > a� u� �' (u) v � 0;

which implies the following upper bound for the solution u

u < a: (4.89)

Similarly, if v has a maximum over 
 at some point, then by Proposition 1.6 it follows

b� �' (u) v � 0:

Being

b� �min' (u) v + �bv > b� �' (u) v � 0;

by condition (4.87) we get

b� �v

�
min
u2[�;a]

' (u)� b

�
> 0;

leading to the following upper bound for the function v

v <
b

�

�
min
u2[�;a]

' (u)� b

� : (4.90)

In order to �nd the lower bounds in (4.88), we consider the case in which u has a minimum
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over 
 at some point, then by Proposition 1.6 it follows

a � u+ �' (u) v

= u+ �u'1 (u) v

< u sup
u2[�;a]

'1 (u) (1 + �v) :

Then, taking into account the bound (4.90), we get

a < u sup
u2[�;a]

'1 (u)

0BB@1 + � b

�

�
min
u2[�;a]

' (u)� b

�
1CCA ;

which implies

a

�
min
u2[�;a]

' (u)� b

�
< u sup

u2[�;a]
'1 (u)

�
min
u2[�;a]

' (u)

�
;

and thus the following lower bound for u is obtained

u >
a

sup
u2[�;a]

'1 (u)

0@1� b

min
u2[�;a]

' (u)

1A : (4.91)

Assuming that v admits a minimun at some point over 
 leads to

b� �' (u) v � 0;

which implies

b� � max
u2[�;a]

' (u) v � b� �' (u) v � 0;

then the lower bound for v is given by

b

� max
u2[�;a]

' (u)
� v: (4.92)

Notice that the estimates in (4.88) guarantee that there exist two positive constants

c1 depending on b and 
, and c2 depending on a and 
 such that

jG (u; v)j = j
 [b� �' (u) v]j � c1; (4.93)
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and

jF (u; v)j = j
 [a� u� �' (u) v]j � c2: (4.94)

Let us now de�ne the averages of a given pair of solutions (u; v) = (u(x); v(x)) to the

elliptic problem (4.85) over 
 as follows

u =
1

j
j

Z



u (x) dx and v =
1

j
j

Z



v (x) dx;

where j
j is the volume of 
.

Lemma 4.29 The average of u(x) over 
 is given by

u = a� b: (4.95)

Proof 4.30 Let us de�ne the following change of variable

w (x) = dv(x)� u(x): (4.96)

From (4.85), we get

�w (x) = d�v ��u
= �
 [b� �' (u) v] + 
 [a� u� �' (u) v]

�w (x) = 
 [a� b� u] : (4.97)

Integrating (4.97) over 
 yields




Z



[a� b� u] dx =

Z



�w (x) dx =

Z



@w

@�
ds = 0;

then,
1

j
j

Z



u (x) dx = a� b;

therefore

u = a� b:

Let us denote

� = u� u and  = v � v; (4.98)

then Z



� =

Z



 = 0: (4.99)
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If (u; v) is not a constant solution, then � and  must not be trivial and their signs should

alternate in 
. The following Lemma shows that the product � has a positive average

over 
.

Lemma 4.31 Let (u; v) be a noncostant solution of (4.85) and (�;  ) de�ned as in (4.98).
Then Z




� > 0 and
Z



r�r > 0: (4.100)

Proof 4.32 Equation (4.97) can be rewritten as

�w (x) = 
 [a� b� u]

�w (x) = 
 [u� u]

��w = 
�: (4.101)

Multiplying (4.101) by w = dv � u and integrating by parts lead toZ



jrwj2 = 


Z



�w

= 


Z



� (dv � u)

= 
d

Z



�v � 


Z



�u;

so, Z



jrwj2 = 
d

Z



�v � 
d

Z



�v + 
d

Z



�v � 


Z



�u+ 


Z



�u� 


Z



�u

= 
d

Z



� (v � v) + 
d

Z



�v � 


Z



� (u� u)� 


Z



�u

= 
d

Z



� + 
d

Z



�v � 


Z



�2 � 


Z



�u;

by (4.99), we obtain Z



�u = 0 and
Z



�v = 0;

which implies Z



jrwj2 = 
d

Z



� � 


Z



�2:

Therefore Z



� =
1


d

Z



jrwj2 + 1
d

Z



�2 > 0 (4.102)

and the �rst inequality in (4.100) is proved. Multiplying (4.101) by � and integrating by
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parts yields




Z



�2 =

Z



r�rw

=

Z



r�r (dv � u)

= d

Z



r�r �
Z



r�2;

which implies the second inequality in (4.100)Z



r�r = 


d

Z



�2 +
1

d

Z



r�2 > 0: (4.103)

Lemma 4.33 There exists a constant CG depending on b, 
 and 
 such thatZ



 2 +

Z



jr j2 � CGd
�2: (4.104)

Proof 4.34 From (4.85),

� d�v = G (u; v)

�d�v + d�v � d�v = G (u; v)

�d� � d�v = G (u; v) : (4.105)

Miltiplying (4.105) by  and integrating by parts

d

Z



jr j2 =
Z



G (u; v) ;

using the Cauchy�Schwarz inequality and condition (4.93), we obtain

d

Z



jr j2 =
Z



G (u; v) � c1
p
j
j
�Z




j j2
�1=2

: (4.106)

The Poincaré inequality yields Z



 2 � 1

�1

Z



jr j2 ; (4.107)

where �1 > 0 is the �rst positive eigenvalue of (��). Therefore, under the Neumann
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boundary conditions, from (4.106) it follows

d

Z



jr j2 � c1

s
j
j
�1

�Z



jr j2
�1=2

;

�
d

Z



jr j2
�2
�

0@c1
s
j
j
�1

�Z



jr j2
�1=21A2

;

and consequently Z



jr j2 � j
j c21
�1d2

: (4.108)

Adding up (4.107) and (4.108) and using once again the inequality in (4.108) leads toZ



 2 +

Z



jr j2 � CGd
�2;

where

CG = c21 j
j
�
1 + �1

�21

�
:

Lemma 4.35 There exists a constant CF depending on a; 
 and 
 such thatZ



�2 +

Z



jr�j2 � CF : (4.109)

Proof 4.36 The proof follows the same lines of the previous Lemma. By (4.85)

��u = F (u; v)

��u+�u��u = F (u; v)

�����u = F (u; v) : (4.110)

Miltiplying (4.110) by � and integrating by partsZ



jr�j2 =
Z



F (u; v)�:

Applying the Cauchy�Schwarz inequality to (4.85) and using (4.94) yields

Z



jr�j2 =
Z



F (u; v)� � c2
p
j
j
�Z




j�j2
�1=2

: (4.111)
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The Poincaré inequality assures thatZ



�2 � 1

�1

Z



jr�j2 ; (4.112)

where �1 > 0 is the �rst positive eigenvalue of (��). Hence from (4.111) it follows

Z



jr�j2 � c2

s
j
j
�1

�Z



jr�j2
�1=2

�Z



jr�j2
�2
�

0@c2
s
j
j
�1

�Z



jr�j2
�1=21A2

;

implying that Z



jr�j2 � j
j c22
�1

: (4.113)

Adding up (4.112) and (4.113) and using once again (4.113) leads toZ



�2 +

Z



jr�j2 � CF ;

where

CF = c22 j
j
�
1 + �1

�21

�
:

Lemma 4.37 Let (u; v) be a nonconstant solution of the problem (4.85). Then, the fol-

lowing inequalities hold

�21

2 + 2�1 (�1 + 
)

�
R


jr�j2

d2
R


jr j2

� 1; (4.114)

�31
(�1 + 1) (2�1 (�1 + 
) + 
2)

<

R



�
jr�j2 + 2
�2

�
d2
R



�
jr j2 +  2

� < 1; (4.115)

where � and  are de�ned in (4.98) and �1 is the �rst positive eigenvalue of ��.

Proof 4.38 Let w = dv � u. Using the de�nitions in (4.98), we getZ



jrwj2 =

Z



jr (dv � u)j2

= d2
Z



jr j2 +
Z



jr�j2 � 2d
Z



r�r :
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Using (4.103) leads toZ



jrwj2 = d2
Z



jr j2 �
Z



jr�j2 � 2

Z



�2; (4.116)

which implies

d2
Z



jr j2 �
Z



jr�j2 + 2

Z



�2 �
Z



jr�j2 : (4.117)

Therefore, the second inequality in (4.114) is obtained, i.e.R


jr�j2

d2
R


jr j2

� 1: (4.118)

Next, we use (4.102) and (4.115), we obtainZ



� =
1

d

Z



�2 +
1


d

�
d2
Z



jr j2 �
Z



jr�j2 � 2

Z



�2
�

=
1

d

�Z



�2 +
1




�
d2
Z



jr j2 �
Z



jr�j2 � 2

Z



�2
��
;

so

d

Z



� =
d2




Z



jr j2 � 1




Z



jr�j2 �
Z



�2;

therefore, we compute

d2




Z



jr j2 = 1




Z



jr�j2 +
Z



�2 + d

Z



� :

Using the ��Young inequality ab � 1

4�
a2 + �b2 leads to

d2




Z



jr j2 � 1




Z



jr�j2 +
Z



�2 +
1

4�

Z



�2 + �d2
Z



 2:

Then, the Poincaré inequality gives

d2




Z



jr j2 � 1




Z



jr�j2 + 1

�1

Z



jr�j2 +
�

1

4�1�

�Z



jr�j2 + �d2

�1

Z



jr j2 ;

and the last conditions can be simpli�ed to the following form�
1



� �

�1

�
d2
Z



jr j2 �
�
1



+
1

�1
+

1

4�1�

�Z



jr�j2 :
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Setting � =
1

2

�1 leads to

1

2

d2
Z



jr j2 �
�
1



+
1

�1
+




2�21

�Z



jr�j2 ;

d2
Z



jr j2 � 2


�
2�21 + 2�1
 + 
2

2�21


�Z



jr�j2 ;

which gives the �rst inequality in (4.114)

�21
2�1 (�1 + 
) + 
2

�
R


jr�j2

d2
R


jr j2

:

Let us now prove the inequalities in (4.115). The Poincaré inequality leads toZ



�
jr j2 +  2

�
�
�
(�1 + 1)

�1

�Z



jr j2 :

Therefore, we computeR



�
jr�j2 + 2
�2

�
d2
R



�
jr j2 +  2

� � � �1
�1 + 1

� R



�
jr�j2 + 2
�2

�
d2
R



�
jr j2

� >

�
�1

�1 + 1

� R


jr�j2

d2
R


jr j2

;

and the left hand side of inequality (4.115) follows from (4.114). Moreover, we haveR


jr�j2 + 2


R


�2

d2
R



�
jr j2 +  2

� < R
 jr�j2 + 2
 R
 �2
d2
R


jr j2

;

and using (4.117) we obtain the right hand side of the inequality in (4.115).

4.4.2 Nonexistence of Nonconstant Positive Solutions

Now, we shall concern the nonexistence of nonconstant positive solutions of (4.85).

Our results show that the size of the reactor (re�ected by its �rst eigenvalue �1), and

the di¤usion coe¢ cient d play a critical role in obtaining the nonexistence of noncon-

stant positive solutions. In particular, in Theorem 4.39 the nonexistence of non-constant

positive solutions will be proved when the di¤usion coe¢ cient is below a threshold pro-

portional to the size of the reactor; in Theorem 4.41 the nonexistence of nonconstant

positive solutions will be achieved when the size of the reactor is large enough.
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Theorem 4.39 If the di¤usion coe¢ cient d satis�es the following condition subject to

0 < d < d0; where d0 =
4�1C2 (a; b; 
; �)

C21 (a; b; 
; �)
:

Then the problem (4.85)-(4.86) does not admit a nonconstant solution

Proof 4.40 Multiplying  in the second equation of (4.85) and integrating by parts yields

d

Z



jr j2 = 
b

Z



 � 
�

Z



' (u) v 

by using (4.99) and as ' (u) = u'1 (u) ;

d

Z



jr j2 = �
�
Z



' (u) v 

= �
�
Z



[(u'1 (u) v � u'1 (u) v) + (u'1 (u) v � u'1 (u) v)] 

�
�
Z



[(u'1 (u) v � u'1 (u) v) + u'1 (u) v] 

� �
�
Z



u'1 (u) (v � v) + 
�

Z



(u� u)'1 (u) v 

= 
�

Z



'1 (u) v� � 
�

Z



u'1 (u) 
2:

From the a priori estimates in Proposition 4.27 it follows that

d

Z



jr j2 � 
�C1 (a; b)

Z



� � 
�C2 (a; b)

Z



 2

� C1 (a; b; 
; �)

Z



� � C2 (a; b; 
; �)

Z



 2: (4.119)

By the Cauchy-Schwarz inequality and Using the ��Young inequality

C1

Z



� � C1

�Z



j�j2
�1=2�Z




j j2
�1=2

� C21
4�

Z



j�j2 + �

Z



j j2 ;

substiting in (4.119) and puting C2 = �, we get

d

Z



jr j2 � C21
4C2

Z



j�j2 :
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By the Poincaré inequality, we have

d

Z



jr j2 � C21
4�1C2

Z



jr�j2 : (4.120)

It follows from (4.114) and (4.120) thatZ



jr j2 � d

d0

Z



jr j2 ; (4.121)

where d0 = d0 (a; b; 
; �; �1) =
4�1C2(a;b;
;�)

C21 (a;b;
;�)
: Therefore, if d < d0; by (4.121), thenZ




jr j2 = 0;

and so Z



jr�j2 = 0;

by (4.114). Hence, jr�j = jr j � 0 over 
, which veri�es the assertion.

Theorem 4.41 There is a positive constant � � � (a; b; 
; �) such that the problem (4.85)
does not admit nonconstant positive solutions when �1(
) > �:

Proof 4.42 Multiplying equation (4.85) by � and integrating by parts we haveZ



jr�j2 = 
a

Z



�� 


Z



�2 � 
�

Z



' (u) v�:

Using (4.99) and as ' (u) = u'1 (u) ;Z



jr�j2 = �

Z



�2 � 
�

Z



' (u) v�

= �

Z



�2 � 
�

Z



[(u'1 (u) v � u'1 (u) v) + (u'1 (u) v � u'1 (u) v)]�

�
�
Z



[(u'1 (u) v � u'1 (u) v) + u'1 (u) v]�

� �

Z



�2 (1 + �'1 (u) v)� 
�

Z



u'1 (u) �+ 
�

Z



'1 (u) v�
2;

it follows that Z



jr�j2 � 
�

Z



'1 (u) v�
2 � 
�

Z



u'1 (u)� :

Doctoral THESIS 88 ABIR ABBAD



A Generalized Degn-Harrison Reaction-Di¤usion System: Asymptotic
Stability and Non-Existence Results

Applying the a priori estimates in Proposition 4.27, we obtain the estimateZ



jr�j2 � C3

Z



�2 + C3

Z



j� j ; (4.122)

where C3 stands for a generic constant depending on (a; b; 
; �) in this proof. By the

Caushy-Schwarz inequality and the Poincaré inequality, we haveZ



� �
�Z




j�j2
�1=2�Z




j j2
�1=2

� 1

�1

�Z



jr�j2
�1=2�Z




jr j2
�1=2

:

Thus, by (4.120), we haveZ



� � C4�
�3=2d�1=2

Z



jr�j2 ; where C4 =
C1
2
p
C2
:

Combining this with (4.122), we see that

Z



jr�j2 � C

�1

 
1 +

1

(�1d)
1=2

!Z



jr�j2 ; (4.123)

where C (a; b; 
; �) = maxfC3 (a; b; 
; �) ; C3 (a; b; 
; �) � C4 (a; b; 
; �)g. Now, if d is not
small (d � 1), then we can choose so large that for �1 > �;

C

�1

 
1 +

1

(�1d)
1=2

!
� C

�1

 
1 +

1

(�1)
1=2

!
< 1:

By (4.123), we obtain
R


jr�j2 = 0, which means that u and v have to be constants. On

the other hand, if d < 1, by the expression of d0, then we can also choose �1 so large that

d0 > 1, which gives the nonexistence again by previous theorem.

4.5 NUMERICAL EXAMPLES

In this Section, we aim to validate the analytical �ndings regarding the asymptotic sta-

bility of the equilibrium (4.13). We choose the following form of the arbitrary function

'(u)

'(u) =
up

k + uq
=: 'k(u); (4.124)
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with p; q � 0 and k � 0. We also assume that � = 
 = 1, p = 1
2
, and q = 1. Substituting

these parameters into (4.7), we get(
ut ��u = a� u�

p
u

k+u
v;

vt � d�v = b�
p
u

k+u
v;

(4.125)

which admits the following unique equilibrium

(u�; v�) =

�
a� b;

b (k + a� b)p
a� b

�
: (4.126)

The invariant region for the system (4.125) is

<� = [�; a]�
�
b (k + �)p

�
;
(a� �) (k + �)p

�

�
:

Letting b = a
2
= 1

8
, since condition (4.10) must hold, then it should be

� <
a

2
: (4.127)

We choose the value � = 1
10
, which clearly satis�es the condition (4.127). With the above

choices for the system parameters, the steady state is given by (u�; v�) =
�
1
8
; 2
p
2
�
1
8
k + 1

64

��
.

Since the chosen function '(u) is decreasing over [�; a], then (4.52) is satis�ed .

The equilibrium solution (4.126) is asymptotically stable for the ODEs system (4.32)

if the condition (4.33) holds. Substituting the chosen parameters into (4.33), we have

� (24k + 1) < 4
p
2;

which is always satis�ed regardless of k. Therefore, for the chosen parameter set, we should

achieve asymptotic stability of the ODEs system for any k > 0. We perform two di¤erent

numerical tests. At the top of Figure 4.1, for k = 0:05 and initial conditions (u0; v0) =

(0:2; 0:06), it is shown that the solutions converge towards the equilibrium (u�; v�) =�
1
8
; 7
160

p
2
�
: Analogously, at the bottom of Figure 4.1, for k = 0:1 and initial conditions

(u0; v0) = (0:2; 0:09), we can see that the solution of the ODes system asymptotically

converges towards the steady state (u�; v�) =
�
1
8
; 9
160

p
2
�
. The same solutions are plotted

in Figure 4.2 in the u � v phase plane to better show the asymptotic evolution towards

the steady state.Let us, now, consider the one�dimensional reaction-di¤usion system (4.7)

using the same parameters as above. The initial conditions are chosen as the following
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Figure 4.1: Time evolution of the solutions of (4.125) in the ODE case with (a; b; d; k) =
(1
4
; 1
8
; 5; 0:05)and (u0; v0) = (0:2; 0:06) (top) and (a; b; d; k) = (1

4
; 1
8
; 5; 0:1) and (u0; v0) =

(0:2; 0:09) (bottom).

Figure 4.2: The solutions of (4.125) in the ODE case plotted in the u�v phase plane with
(a; b; d; k) =

�
1
4
; 1
8
; 5; 0:05

�
and (u0; v0) = (0:2; 0:06) (left) and (a; b; d; k) =

�
1
4
; 1
8
; 5; 0:1

�
and (u0; v0) = (0:2; 0:09) (right).
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sinusoidal disturbance 8<: u (x; 0) = u0 � (1 + sin (50x)) ;

v (x; 0) = v0 + (1 + cos (50x)) :
(4.128)

Being '(u) a decreasing function, in order to achieve the global asymptotic stability of

the solutions the condition (4.78) must hold. If the following function

f (u) =
a� u

'k (u)
=
a� u
p
u

k+u

is also decreasing, then (4.78) holds. It is easy to check that if

k � min
�
� =

1

10
; 7�

p
48a = 7�

p
3

�
; (4.129)

then the function f(u) is descreasing. We again perform two numerical tests choosing

respectively k = 0:05 and k = 0:1, as both these values satis�es (4.129). The numerical

simulations of the one dimensional reaction-di¤usion system are respectively given in

Figures 4.3 and 4.4 showing that the solutions converge towards the spatially homogeneous

steady state.

Figure 4.3: The solutions of (4.125) in a one-dimensional spatial domain. Here k = 0:05:
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Figure 4.4: The solutions of (4.125) in a one-dimensional spatial domain Here k = 0:1.
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General Conclusion
In this thesis, we have studied the dynamics of the Turing-type Degn-Harrison reaction-

di¤usion model. The study is concerned with the derivation of local and global asymptotic

stability conditions for the proposed dimensionless system. The derived conditions have

been shown to be weaker than those reported in previous publications. The theoretical

results derived herein have been validated by means of Matlab simulations carried out

using the �nite di¤erence numerical scheme.

A reaction-di¤usion system with a generalized reaction term based on that of the

Degn-Harrison model has also been considered. Once the global existence and bounded-

ness of the unique solution was established for the generalized model, the study addressed

the system�s asymptotic behavior. We derived conditions for the global asymptotic sta-

bility of the steady state solution by means of theoretical tools related to eign-analysis,

the Poincare-Bendixon theorem and the direct Lyapunov method. Numerical simulation

results were presented to corroborate the theoretical asymptotic stability predictions. In

terms of the chemical reaction behind the model, the study has established theoretical

constraints on the size of the reactor and the di¤usion coe¢ cient required to ensure that

the system does not admit non-constant positive steady state solutions.
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