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Abstract

The aim of this thesis is to study the dynamics of a Turing-type reaction-diffusion
model, i.e. study a reaction-diffusion model that exhibits Turing properties, whereas
the reaction-diffusion defines the mechanism in which several interacting chemicals or
agents react together while diffusing or spreading across a liquid or gaseous medium
simultaneously, usually, these processes are studied for their ability to produce nontrivial
patterns that evolve over time. Such patterns are driven by diffusion, also referred to as
Turing structures or Turing patterns. The Turing patterns are measured in the presence of
diffusion, but are not present in the absence of diffusion, this mechanisme called ” diffusion-
driven instability” or " Turing instability”. In this work, the study was related ”the well-
known Degn-Harrison reaction diffusion model and its generalization”. Our thechnique to
prove the asymptotic stability of the steady state solution is based on the eigen-analysis,
the Poincaré—Bendixson theorem and the direct Lyapunov method.

keywords:

Reaction-Diffusion Systems, Turing Instability, Global Existence, Lyapunov Func-
tional, Stability Analysis.
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Résumé

Le but de cette these est d’étudier la dynamique d’un modele de réaction-diffusion de
type Turing, i.e. d’étudier un modele de réaction-diffusion qui présente les propriétés de
Turing, telle que le réaction-diffusion définit le mécanisme par lequel plusieurs produits
chimiques ou agents interagissants réagissent ensemble tout en diffusant ou en diffusant
simultanément sur un milieu liquide ou gazeux, habituellement, ces processus sont étudiés
pour leur capacité a produire des modeles non triviaux qui évoluent au fil du temps. Ces
modeles sont entrainés par la diffusion, également appelée structures de Turing ou modeles
de Turing. Les modeles de Turing sont mesurés en la présence de diffusion, mais ne sont
pas présents en ’absence de diffusion, ce mécanisme appelé ”instabilité de diffusion” ou
"instabilité de Turing”. Dans ce travail, I’étude a été liée "le modele bien connu de
réaction-diffusion Degn-Harrison et sa généralisation”. Notre technique pour prouver la
stabilité asymptotique de la solution a I’état d’équilibre est basée sur ’analyse du valeurs
propres, le théoreme de Poincaré-Bendixson et la méthode directe de Lyapunov.

Mots clés:.

Systeme de Réaction-Diffusion, Instabilité de Turing, Existence Globale, Fonction de

Lyapunov, Analyse de Stabilité.
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General Introduction

General Introduction

Nature refers to everything found in the universe from various remove commas, pattern
formation which is a complex process. These patterns occur in different contexts and can
sometimes be modelled mathematically. Natural patterns include symmetries (animal
coats, snowflakes, flowers, echinoderms, crystals), trees, spirals, meanders (sinuous bends
in rivers), waves (dunes, wind waves, sea waves), foams, tessellations(honeycomb, bony
fish, reptiles), cracks, stripes (angelfish, zebras) and spots (leopards, ladybirds). There
even exist microscopic patterns in nature such as the patterns in the connectivity of
neurons in the brain’s visual cortex. Despite their complexity and wide variety, the
abundance of patterns in nature suggests that there may be a set of simple principles

governing pattern formation in general.

Tiger's skin

Human's brain symmetry

Figure 1: Pattern formation examples

Scientists have become more and more interested in understanding the processes of
biological pattern formation over the past fifty years, and this area has become a fertile
ground for collaborations between experimental groups and applied mathematicians.

In 1952, the British mathematician, logician, cryptanalyst and theoretical biologist,
Alan Turing, proposed that pattern formation could be understood using a simple system
of reaction-diffusion equations representing interacting chemicals. More importantly, he

suggested that patterns could originate due to the interactions of otherwise stabilizing
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General Introduction

processes. In his seminal paper entitled “The Chemical Basis of Morphogenesis” [50)],
he predicted the striking idea of “diffusion-driven instability”, which states that instead of
acting to equalize concentration differences in space, diffusion can be coupled to suitable
reaction—diffusion systems to destabilize a stable homogeneous steady state and generate
stable and time-independent concentration patterns.

Over years, the concept of Turing instability attracted the interest of a large number
of researchers and its theoretical aspects were successfully analyzed. Not only has it
been studied in the biological and chemical fields, some investigations extend as far as
economics, the physics of semiconductors and star formation [3§].

In 1990, nearly 40 years after Turing’s paper was written, De Kepper et al. ([19, [15])
introduced the first experimental evidence of Turing pattern through the chlorite-iodide-
malonic acid and starch (CIMA) reaction in an open unstirred gel reactor. This CIMA
model showed that under certain conditions the Laplacian (diffusion) driven instability
of the model gives rise to oscillatory solutions and, therefore, pattern formation. The
fact that there are five reactants involved in the CIMA reaction makes the mathematical
description very complicated. However, observing that three of the five reactants remain
nearly constants in the CIMA reaction, Lengyel and Epstein (|35, 37]) were able to reduce
it to a 2 X 2 system.

In our work, we focus on the Degn-Harrison model, which is another Turing-type
system. This model was first proposed as early as 1969 by Degn and Harrison [I§] to
describes the respiratory behavior of the Klebsiella Aerogenes bacterial culture, which
is shown in Figure 2] The following is a brief description of the main contents and

contribution made in this thesis.

Figure 2: Klebsiella Aerogenes bacterial culture
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Outline of the thesis

The thesis is organized as follows:

The first Chapter is devided into three sections which are:

e Nomenclature.

e General notions: presents the basic definitions, theorems, formulas, and inequalities

that are used as analytical tools throughout the thesis.

e Numerical methods: gives a description of the numerical finite difference method,
a Matlab implementation of which will be used to validate the theoretical results

presented throughout this thesis.

The second chapter presents the theoretical background based on which the present
work stands. It is divided into two sections: reaction diffusion systems and Turing in-
stability. In the first section, we give a general introduction to reaction diffusion systems,
in which we define the general form of a two-dimensional reaction-diffusion system and
simplify it by means of the nondimensionalization of variables. Next, we establish the
equilibruim solution and the linearization of the system. Finally, we discus the stability
analysis and the local stability in the ODE and the PDE senses. In the second section, we
introduce the Turing instability and its conditions. Then, we describe for the activator—
inhibitor of a system. Also, we complete the stability analysis from the previous section.
We mention some methods to obtain the global asymptotic stability. In the end, we in-
troduce the Degn Harrison model, give a brief history, and mention the most important
works and research related it. Also, we talk about its generalization.

The third Chapter presents the first main contribution of this thesis. First, we study
the well-known Degn-Harrison reaction diffusion model. In Section 2, we prove the asymp-
totic stability of the system, both in the local and global senses. Also, weaker conditions
than those of previous studies are derived. In Section 3, our results are validated using
Matlab computer simulations.

The fourth Chapter constitutes the second main part of this thesis, in which we study
the Degn-Harrison system with a generalized reaction term. In Section 2, once an invariant
rectangle is identified for the system, we prove the existence of a unique solution for all
t > 0 and establish its boundedness. In Section 3, the eigenfunction expansion method is
used to settle the local asymptotic stability of the steady state solution. Then, the direct
Lyapunov method is employed to obtain the conditions, assuring the global convergence
to the homogeneous equilibrium solution. In Section 4, we discuss the elliptic boundary

value problem obtaining a priori estimates for the nonconstant steady state solutions.
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Moreover, the nonexistence of non-constant positive solutions is be proved. Finally, in

Section 5, numerical simulations are performed in order to corroborate the analytical

findings of Section 3.

Doctoral THESIS 6 ABIR ABBAD



CHAPTER 1

Preliminaries



Preliminaries

In this chapter, we present some of the necessary nomenclature and notions used
throughout the thesis. Then, we give a brief description of the finite difference-based

numerical analysis method used to validate the theoretical results.

1.1 Nomenclature

e R : Set of real numbers.

e RT : Set of all nonnegative real numbers.

o RY : Set of all N-tuples z = (1, Za, ..., T ).

e C(Q) : Space of continuous functions on .

o CE(Q),k=1,2: Set of k-times continuously differentiable functions in (2.
e L2(Q) : Set of square-integrable functions on .

e ILI(€2) : Space of measurable functions on € for which the ¢** power of the absolute

value is Lebesgue integrable .

e IL°° () : Space of all measurable functions u : RY — R, for which there is a constant
M > 0 such that |u(z)] < M a.e x € RV,

o H', W;“(Q) : Sobolev space.

e H? : Hilbert space.

e O : Bounded domain of R,

e 0f) : Boundary of domain 2.

e O : Closer of domain .

e || : Volume of domain (2.

e det(J) : Determinant of the matrix J.

e ir(J) : Trace of the matrix J.

e Re(\) : Real part of the complex number .

e V(u): The derivative of V i.e. V(u) = LV (u).
ou

e — O,u : Partial derivative with respect to t.

ot
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0
° 8_u : Normal derivative of u outside of 0f2.
v

e v : Outward unit normal vector of the boundary 0f2

e U, (xo) : Derivative of U with respect to x evaluated at = = .

e O (h™) : Unkown error term.

i=N 72
e Au, V?u : Laplacian operator of u defined by Au = Vu = %
i=1 0%;
e Vu : Gradient of u defined by Vu = Ou , Ou St Ou .
0xy’ 0xs o0x N

e maxu (z), minu (z) : Maximum of u (x), minimum of u ().
e supu (x),infu (x) : Superior u (x), inferior u (x).

e (.,.) : Inner product.

||u|| : Norm.

1.2 General Notions

In this section, we present the basic notions used in this thesis. Let @ C RN, N > 1, be a
bounded domain with reasonably smooth boundary 9. For (z,t) € Q x R*, we consider

the following system of reaction-diffusion equations
U — DAU =H (U), (1.1)

where U = (uy, us,...,uy), N > 1, and D is a constant positive definite matrix. Together
with (|1.1]), we assume that U satisfies the initial condition

U(z,0)=Uy(z),z € (1.2)

and the Neumann boundary condition

oU

= 0 on 02, (1.3)

where v is the outward unit normal vector of the boundary 0f2.
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1.2.1 Basic Theorems and Definitions

If U = (u,v), system (2.1)) can be reduced to

{ u — diAu=F (u7v) ) (14)

vy — doAv = G (u,v)
where u, v are the chemical species and d;, dy are the specific diffusion coeffecients.

Definition 1.1 (Invariant set) [32]

Let R be a domain enclosed by a simple curve OR (in the phase plane). R is said to
be an invariant set for the ODE of system if any solution with initial conditions in
R remains inside RN for all t > 0.

Definition 1.2 [5])]
A rectangle R = (0,71) x (0,72) is called an invariant rectangle if the vector field (F, G)
on the boundary OR points inside. That is

F(0,v) >0 and F (r;,v) <0 for0 <v <o,
G (u,0) >0 and G (u,r3) <0 for 0 < u < ry.

Definition 1.3 [/1]
The rectangle R = [d1,02] X [V1,72) s an invariant rectangle if the vector field (F,G)
defined on boundary OR points inside. That is

F(01,v) >0 and F (d2,v) <0 for v, <v <7y,
G (u,v,) >0 and G (u,v,) <0 for 61 <u < 0.

Theorem 1.4 (Global existence) [32]
If there exists an invariant rectangle for system , then system with initial

conditions and boundary conditions in R has a unique global solution.

Definition 1.5 (Limit cycles)
A limit cycle is an isolated closed trajectory (“isolated” means that neighbouring tra-

jectories are not closed), which only occur in nonlinear systems.

Proposition 1.6 [/2]
Given the functions g € C (2 x R) and U € C*(Q) N C* (), it follows that
(i) if
AU(z) + g(z,U(x)) >0 in Q,
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with g—g <0 on 92 and U(xg) = max(U(x)), then
0

g(xo,U(x0)) > 0.

(ii) Alternatively, if
AU(z) + g(x,U(z)) <0 in Q,

with g—U >0 on 09 and U(zg) = min(U(z)), then
v 0
g(xo,U(x0)) <0.

Theorem 1.7 (Weak mazximum principle) [32]
Let U € C?(Q x (0, 7)) NC(2 x (0,T)), c(x,t) > Cmin and

DAU —cU - U, >0, in Q2 x (0,T).

Furthermore, let U < 0 in Q x {0} (i.e. for the initial condition) and in 022 x (0,T) (i.e.

on the boundaries). Then,

Ul(x,t) <0,V(z,t) € Qx(0,T).

1.2.2 Basic Formulas

Green’s Formula [7]

Theorem 1.8 Let u,v are functions of Sobolev space H'(Q) and 02 be smooth, we have

6uvalaz::—/ avudm—l—/ uvn,do, 1<i<n.
Q axz Q al’, a0

We design by m; the it" consinus director of normal n in 9Q directed towards the outside

of Q and we write n; = (7. ¢; )do the superficial measure on OS).

Corollary 1.9 For all functions (u,v) of Sobolev space H(2), we have the Green formula

/(Au) vdr = @vda—/VuVde.
Q a0 On Q

Taylor’s Formula [22]
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For f: R — R, the Taylor series is defined as

0 1 9 Lo n *
f(u):f(u*)—l—a—z(u—u*)+5a—l£(u—u*)2+~~+mauij(u—u*) + O (u,u”).
And for f:R? — R, we have
0 0 1 02 1 92
Fuw) = F o)+ )+ ) b O g g O
52
+0u8fv (u—u*)(v—0)+0 ((u-— w)? + (v — v*)z) :

1.2.3 Basic Inequalities

The following inequalities are avaible at [22].
Cauchy-Shwarz’s Inequality
For all (u,v) € L?(Q),

§/9|u(x)v(:z:)|dx§ (/Q|u(x)]2dm)l/2 </Q |U(1:)|2d:6>1/2.

Cauchy’s Inequality with ¢ (e-Inequality)
For all € > 0 and (u,v) € R?

/Qu(m)v(a:) dz

Young’s Inequality
For all (u,v) € R?,

1 1
Juv] < = ful” + = [ol*,
p q

1 1
where p, ¢ strictly positive real numbers linked by the relation (- + — = 1).
p q
e—Young’s Inequality

For all € > 0 and (u,v) € R?
uv| < € ul” + c(e) v|*,

1 1
where p, g strictly positive real numbers linked by the relation (- + — = 1).
p q

Poincaré’s Inequality

Let © be a bounded, connected, open subset of RY with a C! boundary 9. Assume
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1 < ¢ < o00. Then there exists a constant C', depending only on N, g and {2, such that

[ulloqy < ClIVullLogy , for all u e Wy (Q).

1.3 Numerical Analysis

To go from an exact continuous problem governed by PDE to the discrete approximate
problem, there are three main of methods: finite differences, finite volumes, finite
elements.

In our work, we focus on the finite differences method.

1.3.1 The Finite Differences Method

In numerical analysis, finite-difference methods (FDM) are discretizations used for solving
differential equations by approximating them with difference equations that approximate
the derivatives.

FDMs convert linear ordinary differential equations (ODE) or non-linear partial dif-
ferential equations (PDE) into a system of equations that can be solved by matrix algebra
techniques. The reduction of the differential equation to a system of algebraic equations
makes the problem of finding the solution to a given ODE/PDE ideally suited to modern
computers, hence the widespread use of FDMs in modern numerical analysis. Today,
FDMs are the dominant approach to numerical solutions of PDEs.

The following information is available at [16].

Taylor’s Theorem

First, assuming the function whose derivatives are to be approximated is properly-behaved,

Taylor’s theorem states the following.

Theorem 1.10 Let U () have n continuous derivatives over the interval (a,b). Then,

fora < xg,xo+ h <D,

U(zo+h) = U (x0) + (@0) ), 4 Uae(@0) o Ystn-) (20) s +0(h"), (1.5)
1! 21 (n—1)!
where
o/, = [ U d"—u
T T dg? TT T g2t den—1-

o U, (z9) is the derivative of U with respect to x evaluated at x = xo.

e O (h™) is an unkown error term.
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The usual interpretation of Taylor’s theorem says that if we know the value of U and
the value of its derivatives at a point xy, then we can write down equation for its
value at the (nearby) point g + h.

This expression contains an unkown quantity which is written as O (k") and pro-
nounced ‘order h to the n’. If we discared the term O (k") in (1.5) (i.e truncate the right
hand side of (L.5)) we get an approximation to U (zo + k) . The error in this approxima-
tion is O (h™) .

Taylor’s Theorem Applied to the Finite Difference Method (FDM)

In the FDM we know the U values at the grid points and we want to replace the partial
derivatives of the PDE we are solving by their approximates at these grid points. We
do this by interpreting in another way. In the FDM both xy and ¢ 4+ h are grid
points and U (x¢) and U (zo + h) are known. This allows us to rearrange equation to
get the so called Finite Difference (FD) approximations to derivatives which have O (h")

eIrrors.

Simple Finite Difference Approximation of a Derivative

Truncating (1.5]) after the first derivative term gives

U (zo+h) =U (o) + Uy (xo) h+ O (h?) . (1.6)
Rearranging gives
Uy~ Ul +h}i— U(xo) O(hh2)7
_ U(x0+h}1—U(x0) _om

Neglecting the O (h) term gives

U(zo+h) — U (o)
Y .

Formula is called a first order FD approximation since the approximation error=
O (h) which depends on the first power of h. This approximation is called a forward FD
approximation since we start at xy and step forward to the point x¢+ h, which A is why
called the step size (h > 0).
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Constructing a Finite Difference Toolkit

Now, we construct common FD approximations to common partial derivatives. For sim-
plicity we suppose that U is a function of only two variables ¢ and x. We will approximate
the partial derivatives of U with respect to x. As t is held constant U is effectively a func-
tion of the single variable x so we can use Taylor’s formula where the ordinary
derivative terms are now partial derivative and the arguments are (¢,z) instead of x.
Finally, we will replace the step size h by Az (to indicate a change in ) so that

becomes

A Az?U,, (x0, ¢ Az
U (zo + Az, t) = U (o, t)+1—‘fo (2o, t)+xT($o)+. . -+ﬁ%—l> (20, 1)+0 (Az™).
(1.8)

Truncating (1.8) to O(Axz?) gives
U (zo + Az, t) = U (z0,t) + AzU, (20, t) + O (Az?) . (1.9)

Now we derive some FD approximations to partial derivatives. Rearranging (|1.9)) gives

U(zo+ Az, t) — U (zg,t) O (Ax?)

Uz (20,1) = Az Az
_ U<x0+Axvt) _U($07t)
- o O (Az). (1.10)

Equation (|1.10)) holds at any point (¢, z). In numerical schemes for solving PDEs we are
restriced to a grid of discrete x values x1, xs,..., 2y and discrete t levels 0 = tq,tq,.. ..

We will assume a constant grid spacing, Az, in z, so that x;,.; = x; + Az. Evaluating
equation (1.10) for a point (¢;,z;) on the grid gives

U, (zt)) = © (xi“’tj)A; Uat) _ 6 (am). (1.11)

We will use the common subscript/superscript notation

Ul =U (25,t)), (1.12)

(2

so that droping the O (Az) error term, ([1.11]) becomes

Ul — Ul

Us (w5, 1;) = == (1.13)
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Formula (|1.13) is the first order forward difference approximation to U, (z;,t;) that
we derived previously in approximation (|1.7). Now, we derive another FD approximation
to U, (z,1;). Replacing Ax by —Ax in (1.9) gives

U (zo — Az, t) = U (20, t) — AzU, (z0,t) + O (Az?). (1.14)

Evaluating (1.14) at (¢;,x;) and rearranging as previously gives

U - U,

Us (wist) ~ —— (1.15)

Formula (|1.15) is the first order backward difference approximmation to U, (z;,t;).

Our first two FD approximmations are first order in  but we can increase the order
(and so make approximmation more accurate) by taking more terms in the Taylor series
as follows. Truncating ([1.8) to O (Az?), then replacing Az by —Ax and subtracting this

new expression from (|1.8) and evaluating at (t,,z;) gives after some algebra

Ui = Uiy

20z
Formula (1.16]) is called the second order central difference approximmation to
Ux (.I'i, tj)

Uy (2i,t;) ~ (1.16)

We could construct even higher order FD approximmations to U, by taking even more
terms in Taylor series but we will stop at second order approximmation to first order

derivatives.

Many PDEs of interest contain second order (and higher) partial derivatives so we
need to derive approximation to them. We will restrict our attention to second order

unmixed partial derivatives i.e. U,,.

Truncating (1.8)) to O (Az*) gives

A 2 Ax?
U(wg+ Ax,t) = U (0,t) + 1—'%Ux (zo,t) + Q—TUM (xo,t) + 3—:|UU$M (x0,t) + O (A:z:4) )
' ' ' (1.17)
Replacing Ax by —Axz in (|1.17)) gives
A Ax? AV
U (o — Az, t) = U (w,1) — 1—fo (20, 1) + Q—‘TUM (20, 1) — 3—9'”U (20, ) + O (At
' ' ' (1.18)
Adding ([1.17)) and ((1.18) gives
U (zo+ Az, t) + U (z0 — Az, t) = 2U (20, t) + Az’Uyy (20, t) + O (Az?) . (1.19)
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Evaluating (1.19) at (;,t;) and using our discrete notation gives
Ul + UL, =2U] + A2?U,, (z;,t;) + O (Az?) | (1.20)
Rearranging ([1.20) and dropping the error term O (Az?) gives

Ul —2U! + U7
A2 '

Upe (w3, ;) = (1.21)
Formula (|1.21)) is the second order symmetric difference approximation to U, (x;,t;).
The above FD toolkit can be used to create a finite difference scheme (FDS) to obtain
the approximate solution of a large number of PDEs simply by replacing each partial
derivative by an appropriate FD approximation.
The following information is available at [47].
The parabolic partial differential equation we consider is the heat, or diffusion, equa-
tion oU U
— (2, t) === (2,1),0 <z < [,t >0 1.22
at ( ? ) axg ( Y ) Y I Y ( )

subject to the conditions
U,t)=U(l,t) =0,t >0 and U(z,0) = f(x),0 <z <.

The approach we use to approximate the solution to this problem involves finite differ-
ences. First select an integer m > 0 and define the z-axis step size h = [/m. Then select
a timestep size k. The grid points for this situation are (x;,t;), where z; = ih = iAz, for
i=0,1,...,m,and t; = jk = jAt, for j = 0,1, ....

1.3.2 Forward Difference Method (Explicit Method)

We obtain the difference method using the Taylor series in ¢ to form the difference quotient

(9_U<x t) . U(ZL’Z,tJ—Fk) —U(ZL’i,tj) _E(‘?QU
ot U k 2 Ot2

($i, /‘ij), for some Rj S (tj,tj+1), (123)

and the Taylor series in x to form the difference quotient

82U U (fL‘Z + h,tj) —2U (I‘i, t]) + U (l’l - h,tj) h2 (94U

W (ZEz‘, tj) = P — Ew (Vi7tj) s (124)

where v; € (x;_1,Ti11).
The parabolic partial differential equation (|1.22)) implies that at interior gridpoints

(xi,t), foreach i =1,2,...,m —1and j = 1,2, ..., we have
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ou 0*U
815 (.Z'Z,t ) — Oé2w (l‘i,tj) = O,

so the difference method using the difference quotients (1.23]) and ( - is

”Hk Yo bt h;j W=l — 0, where w;; approximates U (z;,t;). (1.25)
The local truncation error for this difference equation is

k 02U o, h? *U
« ——(Vi,tj). (126)

=g gm R T g

Solving ([1.25)) for w; j+1 gives

202k o k
Wi j+1 = 1_7 wzg+a 12 (wl+lj+wz 1])

foreach:=1,2,...m—1land j=1,2, ...

So, we have

Wo,0 = f(%),wm = f($1)7 vy W0 = f(xm)

Then, we generate the next t-row by

wo,1 = U(0,t,) =0,

_ 202k 2 k
wiy = (1= %55 ) wio + a? 55 (wa0 + woy),
h h
_ 2a%k 2 k
weyn = (1= 57w+ —2(w370 + w1 ),
2a k
wm—1,1:( )wm 10+Oé (wm0+wm 2.0),

wm,l = U(m tl) 0.

Now we can use the w;; values to generate all the w; » values and so on.

The explicit nature of the difference method implies that the (m —1) x (m — 1) matrix

associated with this system can be written in the tridiagonal form

[ (1—2)\) A 0 - 0
A (1—-2\) A :
W= 0 A 0 ;
: : A
0 0 A (1-2\
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where \ = 042%. If we let

W = (f(21), f(2), o [ (@),

and

w) = (wlj,ng, ...,wm,l,j)t,for each j = 1,2, ...,

then the approximate solution is given by
w) = WwY=Y for each j = 1,2, ....

So, wY) is obtained from wY~Y by a simple matrix multiplication. This is known as the
Forward Difference method and the approximation at the cyan point shown in Figure
1.1} uses information from the other points marked on that figure. If the solution to the
partial differential equation has four continuous partial derivatives in x and two in ¢, then
equation implies that the method is of order O(k + h?).

Figure 1.1: Forward Difference method

1.3.3 Backward Difference Method (Implicit Method)

To obtain a method that is unconditionally stable, we consider an implicit-difference
method that results from using the backward-difference quotient for (0U/0t)(x;,t;) in the
form

oUu B U(fL‘i,tj) — U(ZL‘i,tj_l) k382U
o (h) = k T |

X, Iij), where Rj € (tj,tj+1).
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Substituting this equation, together with equation (1.24) for ?U/0x?, into the partial

differential equation gives

U (l’i,tj> -U (l’i,tjfl) _ O_/QU (xl-H,tj) —2U (in,tj) + U (l'ifl,tj)
k h?
k 02U L h2 U
502 (@i, kj) — @ 12 90t (vistj),

for some v; € (z;_1,x;11). The Backward-Difference method that results is

Wij = Wij—1 _ 2Wij1 = 2Wi5 + Wiy

k h?

— 0, (1.27)

foreach:=1,2,...m—1land j=1,2,....
The Backward Difference method involves the mesh points (x;,t;_1), (z;-1,%;), and
(wit1,t;) to approximate the value at (z;,t;), as illustrated in Figure

t

Figure 1.2: Backward Difference method

Since the boundary and initial conditions associated with the problem give informa-
tion at the circled mesh points, the figure shows that no explicit procedures can be used
to solve equation (L.27). Recall that in the Forward-Difference method (see Figure [L.2)),
approximations at (x;_1,%;_1), (z;,t;—1), and (2;4+1,t;_1) were used to find the approxim-
ation at (x;,t;). So an explicit method could be used to find the approximations, based
on the information from the initial and boundary conditions.

If we again let A denote the quantity 042%, the Backward-Difference method becomes

(142N w;; — Awiy1j — AMw;—yj = w; j—1 foreach i =1,2,...,m—1land j =1,2,....

Doctoral THESIS 20 ABIR ABBAD



Preliminaries

Using the knowledge that w; o = f(z;), for each i = 1,2,...,m — 1 and wy, ; = wo; = 0,

for each j = 1,2, ...

(1+2))
—A
0

or

, this difference method has the matrix representation

A0
(1+2)) —A
-\ '

0

0
—-A

XA (1+2))

Wy,j W1,5-1
Wm—1,j Wm—1,j-1

Wuw" = wl=Y foreachi=1,2,...

Hence, we must now solve a linear system to obtain w) from w1, Note that A > 0,

so the matrix W is positive definite and strictly diagonally dominant, as well as being

tridiagonal.
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Reaction Diffusion Systems and Turing Instability

In this chapter, we are concerned with the reaction diffusion systems and the Turing
instability. We make a general introduction to reaction diffusion systems, define it in the
case of two dimensions and we simplify it by nondimensionalizing the variables. Then, we
establish the equilibruim solution and the linearization of the system. Finally, we discuss
the stability analysis, local stability in the ODE and the PDE senses. Also, we introduce
the Turing instability and its conditions. We also give a description for activator-inhibitor
type systems and complete the stability analysis from the previous section. We mention
some methods to obtain the global asymptotic stability. At the end, we introduce the
Degn Harrison model, present a brief history of it, and mention the most important works

and research related to it. Also, we talk about the generalization of this model.

2.1 Reaction Diffusion Systems

Reaction—diffusion systems are mathematical models which correspond to several physical
phenomena, the most common of which is the change in space and time of the concentra-
tion of one or more chemical substances, local chemical reactions in which the substances
are transformed into each other, and diffusion which causes the substances to spread out
over a surface in space. Reaction—diffusion systems are naturally applied in chemistry.
However, the system can also describe dynamical processes of non-chemical nature. Many
examples are found in biology, geology, physics (neutron diffusion theory) and ecology.
Mathematically, reaction—diffusion systems take the form of semilinear parabolic partial

differential equations. They can be represented by the general form

0,U — DAU = H (U), (2.1)

where U(z,t) denotes the unknown vector function, D is a diagonal matrix of diffusion
coefficients, and H describes the reaction-diffusion mechanics of the system. The solutions
of reaction—diffusion equations display a wide range of behaviours, including the formation
of travelling waves and wave like phenomena as well as other self organized patterns like
stripes, hexagons or more intricate structure like dissipative solitons. Each function, for
which a reaction diffusion differential equation holds, represents in fact a concentration
variable.
If U = (u,v), the system (2.1)) can be reduced to

{ uy — diAu = F (u,v), (2.2)

vy — doAv = G (u,v)

where u, v are the chemical species and dy, dy are the specific diffusion coeffecients.
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2.1.1 Non-Dimensionalization

In , the nonlinear reaction functions, and the two species u, v which are dependent
on space (z) and time (¢) have different diffusion coefficients. Depending on the reaction
and diffusion of the system, the reaction kinetics can vary. To consider the kinetics of
the system, we must first nondimensionalize the variables. Suppose x = Ly where the
domain is x € [0, L] which implies y € [0, 1]. Then can be rewritten as

{ U — %dlAu (y (I) ’t) = I (U,, 'U) )
vy — 2daAv (y (2) 1) = G (u,v) .

If we divide both sides by d; and multiply by L?, we obtain

s—:ut —Au(y(z),t) = %F(u v),
= PAv(y(2),t) =

Finally, let 7 = %t, d= j—f and v = 5—12. The dimensionless system of coupled nonlinear

partial differential equations becomes

{ ur — Au(y (), 7) = 7F (u,v), (2.3)

v, —dAv (y (x),7) =G (u, ).

We will use (2.3) in the analysis, but since normally we use variables (z,t) instead of

(y,7), we will use the old variables, i.e. the system becomes

{ w - Bu(z,8) = 7F (u,v). 2.0

v — dAv (x,t) = G (u,v) .

2.1.2 Equilibrium Solution

One type of solution of particular interest is the equilibrium solution of a partial differential
equation. Specifically of interest are attracting equilibrium solutions. These are time-
independent solutions which are stable to small perturbations. Stability comes in many

forms. We wish to classify equilibria which are linearly stable.

Equilibrium solutions to (2.4)) are solutions (u*,v*)” such that u; = v; = 0. Thus, (2.4)

turns into

(2.5)

—Au =~F (u,v),
—dAv = vG (u,v).
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A system without diffusion would have Au = Av = 0. Thus, (2.5 becomes
0= F(u,v),
0=G(u,v).

So, for our model, equilibrium solutions in the absence of diffusion are those solutions
(u*,v*)T which solve
Fu*,v*) = Gu*,v*) =0.

Since ([2.5)) is a non-linear system, we must employ numerical methods.
Now, the question of stability of the equilibrium solutions is addressed. For this, we

present the linearization of the system

u = vF (u,v),
{ vy =G (u,v) . (2:6)

2.1.3 Linearization

Definition 2.1 An equilibrium solutions is linearly stable if its linearization attracts

small perturbations.

We define a perturbation of the equilibrium solution as

u—u*
z = .
v —v*

The functions F' and G can be linearized using Taylor expansion about (u*,v*)

F(u,v) ~ Fu*,v")+ F,(u",v").(u—u")+ F,(u",v").(v —v")
= F,(u",v").(u—u")+ F,(u*,v").(v —0v"),

and

G(u,v) =~ Gu*,v")+ G, (u*,v*).(u—u*) + Gy(u*,v*).(v —v")
= Gu(u,v").(u—u")+ G,(u*,v").(v —v").

So, linearizing (2.6 about (u*,v*), we obtain

{ up =y [Fu(u”,0%).(u — ") 4+ Fy(u”, v").(v = 07)]
Ve =7 [Gu(U*av*)‘(u - u*) =+ Gv<U*7 U*)'(U - U*)] )
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which can be written in matrix form as

z, = yJz, (2.7)

T uw(ut,0t) Fy(utvt) | w By . (2.8)
Gu(u*7 U*) Gv(u*7 U*) Gu Gv (w* )

Note that by linearizing , we have reduced the partial differential equation into a

where

linear ordinary differential equation.

2.1.4 Stability Analysis

Definition 2.2 The solution z is said to be linearly stable if |z| — 0 as t — oc.

We turn our attention to determine the conditions on the eigenvalues of v.J which

make the solution z linearly stable.

Theorem 2.3 The solution z of equation 1s linearly stable if and only if all eigen-

values of vJ have negative real parts.

Local Stability in the ODE Sense

Let us recall some of the fundamental ODE stability theory, see for more details [10] and
[46]. The first important property is the asymptotic behavior of the solutions as t — +o0.
It is well known that the asymptotic behavior is heavily dependent on the eigenvalues of

J denoted by &; and &,. To calculate these eigenvalues, we simply solve the characteristic

|7J_§]|:|<7Fu—€ 7y )

equation

Y

/yGu /}/GU - g

= (VFu - é) ('YGU - 5) - VQFUGU =0,
(F11,+G7)):|: (F7L+G’U)_4(ELG?)_F1)G7L)
=19 =7 v 3 .

The linear stability is guaranteed if the trace of J is negative and its determinant is

positive, 1.e.

trJ =F,+ G, <0,
{ " y (2.9)

det J = F,G, — F,G, > 0.
We conclude that the linearized system (2.7 is only stable subject to the real parts of

the eigenvalues of J being negative. If at least one eigenvalue is positive or has a positive

real part, then (u*,v*) is unstable.
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Local Stability in the PDE Sense

Properties of the Eigenvalues of the Laplace Operator In order to study the
local asymptotic stability in the PDE sense, one of the most commonly used methods
is that of eigenfunction expansion [14]. It is important to recall some of the theory
related to the eigenvalues of the Laplace operator. Let us denote these eigenvalues by
0=MX <A <X <o < A\ < --- and the corresponding normalized eigenfunctions
in Q by ®qg,---,P,---, with Neumann boundary conditions. These eigenvalues and

eigenfunctions satisfy the eigenvalue problem

with % =0, on 0f2, and

/ B2 () dz = 1. (2.11)

In general, a two component reaction diffusion system is defined by the form

0,U — DAU = ~vH (U) (2.12)

U:(“<x’t)),D:<1 0) andH(U)z(F(U)>.
v (z,t) 0 d G (U)

We will now consider the full reaction-diffusion equation. Linearizing equation ([2.12))

where

about the steady-state (u*,v*) in the same manner as done to derive equation (2.6) we
get
o,U — DAU = ~JU, (2.13)

where D is the matrix of diffusion coefficients defined above and J is the Jacobian matrix
defined in (2.8). The eigenvalues of the Laplace operator A over the interval [0, [] are the

roots of the characteristic polynomial

2
‘ny — Dr* — §I| =0, where k = Tw (2.14)

According to [14], if the zero solution of the linearized form ([2.13)) is locally asymp-

totically stable, then so is the equilibrium of the original system (2.12)). This leads us to
the conditions for the stability of (2.12)) as stated in the following theorem:

Theorem 2.4 [T/
(i) The equilibrium of s globally asymptotically stable if for each nonnegative

integer n the eigenvalues of J — N\, D have negative real parts. Further, there exist positive
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constants K and w such that for any t > 0,
lu(t, )| < Ke™" [la ()] -

(ii) The equilibrium of 1s stable if for each nonnegative integer n the eigenvalues
of J—A, D have nonpositive real parts and those with zero real parts have simple elementary
divisors.

(iii) The equilibrium of is unstable if for some n there exists an eigenvalue
of J — M\, D with either positive real part or zero real part with a nonsimple elementary

divisor.

For convenience, we have

— Fu 2 Fv
£ —vJ + Dr?| = SRR —0,
_’YGu 5 - 'YGU + K2d
= (5 - T/Fu + Ii?) (é - /YGU + d’%Z) - /YQF@GU = 07
= 4R +d) —y(Fu+ G + 7 (FuGy — F,Gy) — v (dF, + Gy) k* + di* = 0.

So, the characteristic polynomial can be rewritten in the form
E+P(K)E+Q (k) =0, (2.15)

where
P (k*) = r* (1 +d) — ~tr,

and

Q (k*) =dr* — v (dF, + G,) K* + ~* det J. (2.16)

If P> 0and @ > 0 then Re& < 0 for all eigenvalues €. Consequently guarantee that the
steady-state (u*,v*) is locally asymptotically stable. If P < 0 or @ < 0, this implies the
instability of (u*,v*).

2.2 Turing Instability

One of the early uses of reaction-diffusion systems in science is pattern formation in natural
creatures, for example, the spots on a leapard’s skin. Understanding the development
and arrangement of these patterns (called morphogenesis) is of generous significance for
scientists and physicists the same. The British mathematician Alan Turing (1912-1954)

is considered as one of the major pioneers of pattern formation hypothesis. In 1952, he
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studied the idea of morphogenesis and connected it to reaction-diffusion systems. The
general idea that he put forward can be summarized in the following points:

e Active qualities in the natural cell are answerable for animating the generation and
initiation of synthetic operators called morphogenesis.

e Chemical responses (reactions) are not sufficient for pattern formation as they are
excessively symmetric.

e Instabilities authorized by the dissemination (diffusion) of chemical agents are the
main thrust for primer pattern formation. The underlying patterns, at that point, exper-
ience certain advancements because of the response procedure.

Alan Turing posed two main inquiries. The simple inquiry is: can diffusion stabilize an
otherwise unstable reactive (ODE) system? The appropriate response ends up being yes
and that is somewhat simple to see. The second increasingly significant inquiry is: would
diffusion be able to destabilize a stable system? Once more, the appropriate response ends
up being truly, and this is the thing that Turing proposed just like the main thrust behind
pattern formation. Turing’s suggestion was thought to be comparatively radical and for
quite a long time it stayed an untested hypothesis until the Chlorite-Iodide Malonic-Acid
(CIMA) reaction was acknowledged by DeKepper in 1990, [19].

An interesting general definition of the diffusion—driven instability ” Turing Instabil-

ity” is given next.

Definition 2.5 A diffusion-driven instability, or Turing instability, occurs when a steady

state, stable in the absence of diffusion, becomes unstable when diffusion is present.

A good description of the conditions of Turing’s instability can be found in Chapter.
4 of [21]. Going back to the characteristic polynomial of the general reaction—diffusion
system given in , we are interested in solutions that make the system unstable
although it was stable in the ODE case, i.e. is satisfied. However, by , trJ <0,
and since d > 0, x*(1 +d) > 0. So,

P (k*) =r*(1+d) —~trJ > 0.

Hence, the system becomes unstable only if @ (k%) is negative. This leads to the only
possibility
detJ <0 or dF,+ G, >0,

but by (2.9), det J > 0, which implies that the only condition is if dF, + G, > 0. We can
see clearly that d # 1, since if it did, then F, + G, > 0, which contradicts (2.9). Thus, a
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third condition for Turing instability
dr, + G, > 0. (2.17)

Condition (2.17) is sufficient but not necessary for Re& > 0. For @ (k?) to be negative
for some x? > 0, the minimum must be negative. With some simple calculus, we can

calculate the minimum of @ (x?) as follows

Q (k) = dr* — v (dF, + Gy) K* + ¥* det J,
dQ(x?) — 2dKk2 — v (dF, + Gy).

dr?

It is easy to see that the polynomial has an extremum at

k:=k? = aF 4 Gy
Y R

*

Thus Q (x?) will attain it’s minimum at x2, leading to

Qmin = Q("{z)
dF, + G, \? dF, + G, 2
dF, + G,)?
= 2 |det g = 4B TG
~y [eJ 1d

The condition that @ (k?) < 0, for some k? € N is

Qmin < 07

72 [det 7 — RG] <,

(dFutGy)?

Consequently, the necessary and sufficient conditions for the existence of Turing instability

in a linear 2—-component reaction—diffusion system are

trJ =F,+ G, <0,

det J = F,G, — F,G, >0

dF, + G, >0

dF, + G, > 21/d(F,G, — F,G,) > 0.
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Activator—Inhibitor Nature

This part is avaible at [48].

As a rule, a reaction-diffusion system that is dependent upon diffusion-driven instabil-
ity can have a place within one of two classes of systems exhibiting different behaviors,
specifically activator-inhibitor and positive input. A helpful and concise description of
these two classes and their attributes can be found in section 7.8 of [33]. Basically, when
looking at the signs of the elements of the Jacobian evaluated at a certain steady state,

we end up with two types of matrices of the form

(a)

These two types of matrices correspond directly to the activator—inhibitor and positive
feedback classes as shown in Figure 2.1} In the first class, one substance is an activator
in the sense that it enforces the formation of itself as well as the second substance, while
the second is an inhibitor because it prevents the formation of both substances.

The significance of this activitaor-inhibitor property originates from the subject of the
scientific drive behind pattern formation. Pattern formation is particularly examined in
science and all the more decisively in morphogenesis, which we talked about before as the
reason for Turing’s progressive work. Patterns arise in science from spatially homogeneous
states. For example, little zebras start from a homogeneous skin pigmentation and some
way or another create various examples. This has pulled in the consideration of researcher
and by expansion applied mathematicians. Things being what they are, the main thrust
behind pattern formation is this activator-inhibitor property. Turing’s instability alludes

to the case that the inhibitor diffuses quicker than the activator by a given sum, ordinarily
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more than 10. This enormous distinction in diffusivities is the thing that frustrated the
lab execution of Turing type chemical reactions and is definitely why the starch marker
installed in the gel lattice was utilized in the CIMA response. It is important to note that
Turing’s instability is not sufficient for pattern formation. Certain nonlinearities in the
reaction terms are required to ruin the solid positive input. More insights about pattern

formation can be found in [48].

Global Asymptotic Stability

The Direct Lyapunov Method:

One of the most important and powerful tools for studying the global asymptotic
stability was coined by Russian mathematician Aleksandr Lyapunov in the early 1900s,
referred to as the Lyapunov direct method, which is summarized in the following definition.

For more on the method see, for instance, [10].

Definition 2.6 If u* € RY is an equilibrium point of reaction diffusion system
and Q@ C RY is an open set containing u*, then the real valued function V € CY(Q,R) is

called a Lyapunov function if
u€ Qu#u,V(u)>V(u)

and

dV (u(t))

o <0, for all u € Q.

Theorem 2.7 (Lyapunov stability theorem) [1(}]
(i) If reaction diffusion system has a Lyapunov function, then u* is stable.
v (u(t))

(i) If for all u # 0, =3~ < 0, then u* is asymptotically stable.

For all v # 0 simply means that the Lyapunov function is nonincreasing when we
travel along the trajectory u(t).

The direct Lyapunov method is a powerful tool for establishing the global asymptotic
stability. However, to the best of the author’s knowledge, no systematic approach exists for
finding Lyapunov functions and it is extremely difficult to select an appropriate function
heuristically, i.e. through a trial and error process. In addition, this method is not
sufficient to establish the global asymptotic stability, it is merely a tool that will be
needed later on.

The Negative Criteria:

Among the methods used to establish the global asymptotic stability of solutions are

Bendixson’s and Dulac’s criteria. Below is a summary of these criteria as described in [33].
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It is important to note that Bendixson’s criterion (Proposition [2.8]) is merely a special
case of Dulac’s (Proposition [2.9)).

Proposition 2.8 Bendixson’s criterion

Given the simply connected region Y3, if the expression

_OF  0G

C—%-i-a—y

is not zero for all (z,y) in 3 and does not change sign in X, then there are no limit cycles
m .

Proposition 2.9 Dulac’s criterion
Given the simply connected region X3, if there exists a function
B(x,y) € C! such that
0 (BF) n 0 (BG)
ox dy
is not zero for all (z,y) in 3 and does not change sign in X, then there are no limit cycles
m .

C:

The Poincare—Bendixson Theory:

This theorem is based on the observation that two dimensional planes have some spe-
cific characteristics that may not exist in higher dimensions. Particularly, any trajectory
may only have one of four limiting values: a critical point, a limit cycle, cycle graph, or
infinite 2y values. Furthermore, if the trajectory is bounded, then it may only approach
a critical point or a cycle graph. This is basis of the Poincare-Bendixson theory, which
states that if a certain trajectory is bounded for t > ¢y, and does not tend to a singular
point, then it either is a limit cycle or tends to a limit cycle. For more on the theory, see
133].

The following theorem summarizes the Poincare-Benidixson theory:

Theorem 2.10 [15]
If an ODFE system of the form

du

- _F

where F' is locally Lipschitz in u, has a solution ¢ that is bounded for t > 0, then either
(i) ¢ is periodic,
(ii) ¢ approaches a periodic solution, or

(iii) ¢ gets close to an equilibrium point infinitely often.
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Theorem 2.11 (La Salle invariance theorem) [37]
Let V : Q — RT be a function of C' and suppose that V(u) <0 for all u € Q). Define

E={uecQ:V(u) =0}

Let L be the largest invariant set contained in E. Then, any bounded solution tends to
L as the time goes to infinity. If, furthermore, L reduce to u*, then u* is asymptotically
stable.

Definition 2.12 (Global Stability) [9]

Function u is globally asymptotically stable on € if for all ug € €2, the solution u
satisfies
tlim |lu(t) —u*|| = 0.
In addition to the above, let us present theorem and two lemmas from [I7], which will
come in handy at later chapters.
We consider the system of reaction-diffusion equations
al ou
—DV*u =Y A;(z,u)=— + H (u), for (z,t) € Q x RT, 2.18
Uy u ; (x u)amijL (u), for (z,t) (2.18)
where Q C RV, N > 1, is a bounded domain with reasonably smooth boundary, 09, u =

(u1,us,...,uy), N > 1, D is a constant positive definite matrix and the A;’s are continuous
matrix-valued functions. U satisfies the initial condition (|1.2)) and the Neumann condition

3.

Theorem 2.13 [17]
Let 33 be bounded invariant region of system of the form

N
Y= {UGRN:akﬁugbk}, where — 00 < aj < b, < 00,
k=1
and let o be positive and let u be any solution such that all values of ug lie in X. Then

there exist constants ¢; > 0, i = 1,2, 3,4, such that

[V ('7t)||L2(Q) < e,

_ ) (2.19)
||U ('7 t) —Uu (t)||L2(Q) S Col Ut,
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where w the average of u over ), satisfies the system of ordinary differential equations
du 1
—=f(u t),u(0) = — d
= 1@ +00).70) = [ (@)
with
g (t)] < cse™".

If matrices Aq,--- , A, are zero or Ay,--- , A, and D are diagonal, then can be
strengthened

Ju () =T ()| < et o' < o/m.
The constants cy1,co and c3 are proportional to ||Vu0||[L2(Q) while ¢4 is proportional to

||VUUHIL°°(Q) :

Lemma 2.14 [77/
Let u be H? (Q) function on Q where Ou/Ov on OQ. Then,

Hv2u||12L2(Q) > A ||VU||1?42(Q) ’

where X is the smallest positive eigenvalue of (—VQ) with homogeneous Neumann boundary

conditions on Q.

Lemma 2.15 [17/
Let w € H* (Q),0u/dv =0 on Q. Then

2 —112
IVullie) 2 AMlu = llpzq)

1

where w =
1]

Jou(z)dz,and X is as in the previous Lemma.

2.2.1 Degn Harrison Model

In our work, we are interested in the Degn-Harrison model, which is a Turing-type system.
Our model was first proposed as early as 1969 by Degn and Harrison [I§] to describe the
respiratory behavior of the Klebsiella Aerogenes bacterial culture. The reaction being

studied here is of the form

X+Y — P
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where X and Y represent the concentrations of oxygen and nutrient being transmitted in
the respiratory circle, A and B are “sources” or external parameters whose concentrations
are to be kept at a constant level all over the reactor vessel, and P is the final product
in the reaction whose concentration is also assumed to be constant. In the reaction
process, the last step is considered to be inhibited by excess of oxygen in the reactor. The
first and last steps are assumed to be irreversible whereas the second step is reversible.
For more background on this reaction scheme, one can refer to [I8], 23], 24], 25] [TT1], 29,
31]. Degn and Harrison [I§] first proposed that the last step followed a nonlinear rate
equation of the type XY/(1+ ¢X?), where ¢ measures the strength of the inhibitory law.
With the homogeneous Neumann boundary condition, the above Degn—Harrison reaction
scheme is governed by the following coupled nonlinear space-time differential equations

in a dimensionless form

Xy — DiAX = kyB — ks X — {55 in R* x Q,
Y, — DoAX = kA — 1’3;3}; in RT x ©, (2.20)
9xX _ oY _ on R* x 09,

where A, B, X and Y denote dimensionless concentrations of the reactants; the constants
k; (i =1,2,3,4) are reaction rates, D; and Dy, respectively, denote the Fickian molecular
diffusion coefficients of X and Y, and they are assumed to be positive constants all over
the reactor vessel. The rate and diffusion constants are parameters characteristic for a
given system, and the concentrations A and B are variable parameters which can be
controlled in the reaction process.For the detailed background of , one can refer
to [18, 23], 25] M1l 29, BI].The Degn-Harrison reaction system (2.20]) or (2.22) has been

studied adequately by several authors, but most of the researches focus either on the

corresponding ordinary differential equation system or on the reaction—diffusion system
in one-dimensional domain case. In [23], Farein and Velarde constructed the time-
periodic limit cycle of the ODE system by using of the analytical, stochastic and computer-
aided methods. Furthermore, in [31] Ibdnez, Farein and Velarde considered the linear

stability of limit cycle and the dissipative Turing structure.

Later on, they discussed the steady state bifurcation and conducted the rigorous math-
ematical analysis for stability of spatially nonhomogeneous steady states of arising
from the steady state bifurcation in [24]. While in [29] Hemmer and Velarde explicitly
constructed the existence of spatially nonhomogeneous steady states of when the
mass diffusions Dy — oo and D; < oo. One can find more research studies on the

Degn—Harrison model reported, for instance, in [I1), 25] [51].

To simplify the reaction—diffusion system (2.20), Peng et al. [45] introduce the follow-
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ing dimensionless quantities

_ _k _k _ ok
T—kgt,U—k—gX,U—ﬁY,a—iT;B, (2.21)
k1k _ K _ 1 _ 1 :
b= k§4A’ k= éq, d1 = EDI’ d2 == k_3D2
With the rescaling (2.21)), we can rewrite (2.20]) as
uT—dlAu:a—u—Lz,
UUl + ku (222)
vy — doAv =b — T

Peng et al. [45] recently considered the reaction—diffusion system in RY. They
studied the global stability of the constant steady state and gave the sufficient condition
of the existence and nonexistence of the nonconstant steady states. Moreover, the Hopf
and steady state bifurcations were also investigated. In [39], the authors investigated some
fundamental analytic properties of nonconstant positive solutions, also they drived the
stability of constant steady-state solution to both ordinary differential equation (ODE)
and partial differential equation (PDE) systems and they established the global structure
of steady-state bifurcations from simple eigenvalues by bifurcation theory and the local
structure of the steady-state bifurcations from double eigenvalues by the techniques of
space decomposition and implicit function theorem. On the other hand, in [20], Donga et
all. derived The existence of Hopf bifurcation to ODE and PDE models by using the center
manifold theory and the normal form method, we establish the bifurcation direction and
stability of periodic solutions. Since, some numerical simulations are shown to support
the analytical results. Lisena in [41] used the presence of contracting rectangles and the
method of Lyapunov, to establish sufficient conditions for the global asymptotic stability
of the unique constant steady state. In the work of [53], local asymptotic stability, Turing
instability and existence of Hopf bifurcation for the only constant positive equilibrium
solution are established by analyzing the relevant eigenvalue problem with numerical
approximations.

In [56], Jun Zhou generalized Degn-Harrison model by using ¢ (u) v to replace
(uv/ (1 + ku?)). Therefore, he studied the Turing instability and showed the existence
of periodic solutions of the PDE model and the ODE model by using Hopf bifurcation
theory. Also numerical simulations are presented to verify and illustrate the theoretical

results.
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On the Local and Global Asymptotic Stability of the Degn-Harrison
Reaction-Diffusion Model

This chapter |I| contain the study of the well-known Degn-Harrison reaction diffusion
model. It is concerned with the local and global asymptotic stability of the system, also,
weaker conditions than those of previous studies are derived and validated by Matlab

computer simulations.

3.1 Problem Formulation

We consider the following reaction—diffusion system based on the Degn—Harrison model

w— dAu=a—u— — = F (u,v) in R x Q,
I (3.1)
Ut—dzAv:b—l_HwQ = G (u,v) in RT x €,

where u(t) and v(t) represent the dimensionless concentrations of oxygen and nutrient,
respectivel, a,b,d;,d, and k are positive constants defined above, @ ¢ RN, N > 1is a
bounded domain with smooth boundary 02, A is the Laplacian operator on 2. With the
initial condition

u(0,2) =up (z), v(0,2) =v9(x) in 2,

where ug (), v () € C?(Q) N C (Q) , and the Neumann boundary condition

ou  Ou
a—v—%—o onﬁﬁ,

where v is the outward unit normal vector of the boundary 0f2.

Now, before we present our analysis, let us recall the most relevant results reported in
the literature in relation to the proposed system (3.1]).

Lemma 3.1 [/5]
System has the unique steady state solution

b
(u*,v*) = <a, a(l + kon)) , where a = a — b. (3.2)

If and only if a > 0.
Proof 3.2 An equilibrium point (u*,v*) of the ODE of satisfes the system

0 uv
=a—u-—
2
0= ul T U (3.3)
L4k

! Article published in Mathematical Methods in the Applied Sciences 42, pp. 567-577, (2019). View
iy
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by the second equation of , we obtain

v = b(L+ku?) (3.4)

u

we compensate i the first equation of , we find

u=a-—>. (3.5)

We substitue n , we find .
Lemma 3.3 The Jacobian of the Degn-Harrison model s given by

)
J = ( 0 Go ) , where (3.6)

1+ F() —Go
a+a?(a—2b)k o
= — d Gy = —— 3.7
0 a(l+ ka?) e 0= e (3:7)
with
a=a-—b. (3.8)
Proof 3.4 The Jacobian matriz is
1 U(1+ku2>—2ku2v u
_ [ B (u,v) Gy (u,v) | T T ke 1+ kw2
F, <u7 U) G, (U, v v(1+ku2)—2ku2v B U )
(1+ku?) 1+ ku?
so, the Jacobian matrixz associated to the ODE of evaluated at (u*,v*) is
L b04ka?)(1-ka?) o« p (1-ha?) N
J— 1 (14+ka2)? 1+ ka2 _ —1=3 (I+ka?) ~— 1+ka?
- b(1-ka?) o} - p (1-ka?) o
a(l+ka?) B 14+ ka? o (1+ka?) T 1+ka?
This completes the proof.
Lemma 3.5 [/1]
System has an invariant rectangle which is the form
R = [u,a] x [2bVE, 7], (3.9)
where ) ( (14 )
u* a—u)(l+Fkuw
" a(l + ka?) ana v u (3.10)
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Proof 3.6 First, since b < a we are allowed to write b =ta,0 <t < 1, so that

2
bu* = t(1 —t)a* < az,t €10, 1.

Consequently
— a < 1 - 1
u Bl
“4(1+ka®) T 8VE  VE
b o < L Observe that = = 2 g = o ctl
ecause T < un serve that o = - and for(u) = Sy are strictly
decreasing in 0,u] (for each k).
As second step let us verify that
< @) (3.11)
a,k(UW). .
o (a)

Indeed
Jan(u) = (% - 1) (1+ku?) > (4 (1 +ka®) — 1) (1 + ku®) > 4ka® + 3,

and

or (a)
Hence easily follows. Previous estimates prove, in particular, that (u*,v*) lies in

the interior of . At this point, we can state that, on the boundary of R, the vector field
(F(u,v),G(u,v)), defined in (3.1), does not point outwards. Indeed

b= D (1 ka?) <14 ha

F(u,v) > 0 and F(a,v) <0 for 20Vk <v <7,
G(u,20VE) > 0 and G(u,7) <0 for T <u < a.

Therefore rectangle R is an invariant region.

Lemma 3.7 [39]

The steady-state solution (u*,v*) is locally asymptotically stable in the PDE sense

subject to
b<a<2b (3.12)
and
Mdy > F
Aidy < Fy and 0 < dy < ds.

Doctoral THESIS 41 ABIR ABBAD



On the Local and Global Asymptotic Stability of the Degn-Harrison
Reaction-Diffusion Model

Alternatively, if b < a < 2b and
Ady < FO and dy > CZQ, (314)

then (u*,v*) is locally asymptotically unstable.

Proof 3.8 Because the proof is long and for simplicity, we have omitted it. Interested

readers may look it up in [3Y].

3.2 Asymptotic Stability

In this section, we examine the asymptotic stability of the steady state solution (u*,v*),
which is the main concern of this section.

Before that, we start by defining some of the necessary notation and definitions. Con-
sidering the Laplacian operator (—A) with Neumann boundaries on 2, its infinite sequence
of eigenvalues is denoted by 0 = \g < A; < Ay < --- Each eigenvalue ); is assumed to
have an algebraic multiplicity m; > 1. The normalized eigenfunctions corresponding to
Ai are denoted by ®;;,1 < j < m,. It is important to note that as ¢ — 0o, \; tends to oo

and that &y = const. From standard eigenfunction theory, we know that

in €2, with
il
ov
in 012, and

Q

Consequently, the set {®;; : 4 > 0,1 < \; < m;} forms a complete orthonormal basis in
L2(92).
If the inequality
i\ < Fo (3.15)

is satisfied, then let us define i, = i,(a, §2) as the largest positive integer guaranteeing

for all + < i,. Also, observe that when (3.15)) is satisfied, it is inherent that 1 < i, < oco.
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We, then, define

dy = min d;, where
1<i<ig

;o Go(dihi+ 1)

O N(Fo —dihy)
With this notation in mind, let us now examine the local and global asymptotic stability
of the Degn-Harrison system (3.1)) separately.

3.2.1 Local Asymptotic Stability

Proposition 3.9 If Fy < 0, then (u*,v*) is asymptotically stable as a steady state of

(5.1). Alternatively, if
0< Fy < G07 (317)

then (u*,v*) is asymptotically stable if

ANdy > Fy  or
d - Go
Mdi < Fy and erg N (3.18)
B<E<p
where @ is the solution of
(Fox + Go)? = 4(1 + Fy)Gox. (3.19)

Proof 3.10 We start by reformulating in its vectorial form given by

% — DAz =F (z), where (3.20)

d O _ _ uv
2= " ,D = ' and F (z) = T e ) (3.21)
v 0 dg b - 1f1§u2

It is well known that the solution (u*,v*) is asymptotically stable for ifz =0 is

asymptotically stable as a steady-state solution of the linearized system

% — DAz = Jz, (3.22)
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where J represents the Jacobian matriz evaluated at the steady state, ie,

a+(a—2b)(a—b)2k ___a-b
* % )(1+k(a—b)2 1+k(a—b)2
J(Uav):<1_(a+a+2b)(a b)gk _+a(—b) )
(a—b) (11 k(a—b)2) Tk(a—b)2

In the revolutionary work of Casten et al [14)], T heorem states that if all the eigenvalues
of J — A\, D for all non-negative integers, n have negative real parts, then the zero steady
state is asymptotically stable for . In fact, it suffices to ensure that the trace is

negative and the determinant is positive. First, consider the case Fy < 0. We have

__a+(a—2b)(a—b)k a—b dl 0
. _ " (a—b)(1+k(a—b) 1+k(a—b)2 -
J—D = ( | _ atlo—2)(a D acb ) An ( ) )

@ O Th(@?)  TTk(a-b? 0 d
C(Fhd Gy
1+Fy —Go—Mdy |

The trace and determinant are given by

tT’(J — )\nD) = FO — GO — )\ndl — )\ndQ S 07
and

det(J — /\nD) = (FO — )\ndl) (_GO — )\ndg) — (1 -+ F()) (—Go)
= Go+ Ndidy + Mo (—Fy)dy + M\,Gody > 0,

respectively. Clearly, regardless of n, the eigenvalues of J — A\, D have negative real parts.

This proves the first part of our proposition.

In the second part, is satisfied. For Ao = 0, the matrix J — \,D reduces to A
and we know that
tTJ:FO—G0<0,

and

det J = Gg > 0.

Now, let \ydy > Fy yielding \,d; > Fy, and thus
t’f’(J — )\nD) = (Fo — )\ndl) — Go — )\dg S 0,

and
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Hence, the steady state is locally asymptotically stable.

Finally, if \idy < Fy, then for those eigenvalues \,,n > 1, that satisfy \,dy > Fy,
we end up with the same result as before and J — A\, D has eigenvalues with negative real
parts. For the remaining eigenvalues, we denote one of these eigenvalues by 0, ie, g—f.

The trace is straight forward as

tT(J-QD) = FO—G0—€d1—0d27
= (Fy—Go)—0(dy+dy) <O.

As for the determinant, we have

det(J — HD) = Go + (92d1d2 — 0F0d2 + HGodl,
= 0%*dydy — O(Fody — Gody) + Go.

If we set
&Gy
dl - FQ
we end up with det(J — D) > 0. The last case is where

dy Gy
_— > .
d,  Fp

Notice that the trinomial
0dydy — 0(Fydy — Gody) + G
18 positive if its discriminant is negative, that is,
(Fody — Gody)? — 4d1dy Gy < 0.
which is,
Fpds — 2FyGodidy + Gods — —4dydaGy < 0

do\ 2 do ) do
Fo—=) +2FRGo—+G2—4(1+ F))Go— < 0.

This can be rearranged to the form

d d
(Fo=2 + Go)? < 4 (1 + Fy) Go—.
dl dl
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In the interval [0, +00), between the parabola y = (Foxr + Go)? and the line y = 4(1 +

Go

Fy)Goz, it is easy to see that, at point T = T, we have

(FoZ + Go)? < 4 (14 Fy) GoT

and the line intersects the parabolic curve at two points x1;xy such that 0 < r1 < x < x».
Setting D = x5, we obtain that D is the solution of Equation satisfying D > %8
In addition, the inequality

(Fox + Go)? < 4 (1 + Fy) Gox

holds for %g <z < D. We conclude that det(A — D) is positive if

d

< D.
dy — Fpy TFU

The poof is complete.

3.2.2 Global Asymptotic Stability

In this subsection, we present the findings of this study. First, we show that, subject
to a specific condition, the proposed system has a rectangular invariant region. For

convenience, let us define the function

u
S — 3.23
o) = 1 (323)
Using (3.23)), system (3.1]) may now be rewritten in the form
0
S didu= (25— v) g (W) = F (u,0)
(3.24)

a —dgAU =

gg ( wkb(u)
®

m—v) o (u) == G (u,v).

We start with a proposition of sufficient conditions for the existence of an invariant rect-

angle for (3.1)).

Proposition 3.11 If
a>— (3.25)

and

a 575 )
-1 2
b < 15 ha? (a ak , (3.26)
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system has the invariant region
R = [\3/% a] X [2b\/E, aV/ak? — 1] . (3.27)

Proof 3.12 First of all, on the left boundary of u, we obtain
a a a a— \3/@ a
Fl &= — _ 3/ 32y | ___VkE 3/~
(i) = o e (§) - () (65)
— k2 —1) — 3 ¢
((a ak 1) v) O ( k) >0,

for all 20v/k < v < av/ak? — 1. Similarly, on the right boundary, we have for all

2WVk < v < avak? —1

e = (25
= —vp;(a) <0.

As for the boundaries of v, the left boundary yields
G (u Qb\/E) = b 20Vke, (1)

= ¢, (u)b <¢k1(u) - NE) >0,

for S/% < u < a, and for the right boundary, we have

G(u,agakQ—l) = b—(agakQ—l)gok(u)

— o (1) (@kb(u) ~ (aV/ak? - 1)) <0,

for {’/% < u < a. Finally, since

then

and the proof is complete.
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That we have determined the invariant region for system (3.1f), we move to derive
sufficient conditions for its global asymptotic stability. Now, with the aim of simplifying

the proofs, we rewrite the proposed system in the form

g = [(at— 27) ~ (v k)] i) mBT

4 v (3.28)
- = (b __b ) _ __b ; +
5~ b= (gt~ atm) ~ (v~ atw)] (@) mRTxQ
The following theorem constitutes the main finding of study of this subsection:
Theorem 3.13 If
a
> ku (b — 3.29
gy > o). (329)
and
3Vak? —ak +1<0 (3.30)
are satisfied. Then for any solution (u,v) € R to , we get
i () = 30y = Jm [0 @.8) = 0" 130) = 0. (331

Before stating the proof of our main theorem, the following lemmas and proposition

are necessary to complete the proof.

Lemma 3.14 Consider the function H defined as

H (u) = /au (@kb(r) - @kb(a» dr > 0. (3.32)

L=t
du o (W) o (@)
Proposition 3.15 Let (u(t,.),v(t,.)) be a solution of and let

It follows that

V(t)= /QE (u(z,t),v(z,t))d, (3.33)

where

E (u,v) = H (u) + % (v —v*). (3.34)

Then, subject to V(t) is a Lyapunov functional.

Proof 3.16 First of all, substituting (3.34}) in (3.35) yields

V(t):/Q[H(u)—I—%(v—v*)Q da.
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Differentiating the functional V (t) wrt t leads to

0 = [ |Gwaw) (beeao (G5 -5m) o)) »
+/Q (v— ") (dQAU T o (1) K@kb(u) - ?u)> . v*)D dr.
_ [/ﬂdl (@kb(u) - ?u)) Audz + +/Qd2 (v — ) Am}
oo (G ) G~ ) 0= 2]

To simplify things, we split the derivative into two parts

d
V) =1 .
SV =1+, (3.35)

1
I = —bdl/ (k - —2> \Vul® dr — dz/ \Vol|® de,
Q u Q

1 a—u a—u* 5
J:/gp U {b(k——) u—u ( — )—v—v* }dx.
L) I G ) T
It follows directly from that I < 0. If condition 18 satisfied, then

v s e (GG f) <

e Cr T

where

and

It is easy to see that J < 0, and therefore

d
— < 0.
ZV (1) <0

This concludes the proof of the proposition.

Now that we have established that V(¢) is a valid Lyapunov functional and condi-

tions ([3.25)), (3.26)), and (3.29), we move to state the sufficient conditions for the global
asymptotic stability of (3.1).

Proof 3.17 Going back to , the positive-definite functional V (t) has a nonpositive
d
derivative and if (u,v) € R is a solution of , for which %V(t) = 0, then u and v

must necessarily be spatially homogeneous as [Vul* = |Vv|> = 0. Hence, (u,v) satisfies
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the ODE system corresponding to . Since, for the differential system , (u*,v*)

18 the largest invariant subset

{(u,v)E?R|%V(t>-O},

one gets (see Lisena [40] and Yi et al[5])]) via La Salle invariance theorem

lim |u (z, t)—u|—11m v (z,t) —v*| =0,

t—o00

uniformly in x. Hence,

lim [ (u—u*)(z,t)de=lim [ (v—v*)’dz=0.

t—o00 Q t—o0 Q

The equalities in yield .

3.3 NUMERICAL EXAMPLES

(3.36)

(3.37)

Practically speaking, the previous results gathered from Peng et al [45] and Lisena [41]

mean that if we want to choose parameters guaranteeing the global asymptotic stability

of solutions, the following four conditions must be satisfied

(C1) §<(a=a—-b)<a<=0<b<]
(Co) a®> 2,
. . 2 (3.38)
(03) b< — 1+ka2 (k ) ) (lei(ﬂlli) )
(Cy) 3vVak?—ak+1<0.
Obviously, condition (C4) implies (C2) as
3Vak? —ak+1 < 0= 3Vak?<ak—1 (3.39)
= 3vVak? < ak
= 27ak® < a®k3
= 27 < a’k.
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Hence, (C2) may be ignored. The main finding of this study is that we can replace the
conditions in (3.39)) by our new weaker conditions

(Cy) 3Vak? —ak+1<0,
(Cs) b< iy (a Vak? — 1) , (3.40)
(Cs) %5 > ku(b—u).

Note that the region of (u,v), we operate within is $&. For instance, let us consider the

parameters

a=1.2371,k =19.974, and b = 0.34. (3.41)

Clearly (C1) is satisfied. As for (C4), we see that

3vVak? —ak+1 = 3v/1.2371 x 19.9742 — 1.2371 x 19.974 + 1
= —223718 x 107* < 0.

However, condition (C3) is not satisfied as

a a? 1.237 1.23742
1) = 19.974 1
1+ ka2 ( it ) [ 19.974 x 1.23722 " XtV
— 0.33864 < b.

Therefore, the sufficient conditions stated Peng et al[45] and Lisena[41] cannot guarantee
the global asymptotic stability. As for the new derived conditions, it is easy to see that
(C5) is fulfilled as

a 3 1237 3
_* k2—1) _ 1.2 1937 x 19.9742 — 1
1+ ka2 (“ a T 10074 x 12378 237 X V1.237 x 19.97 )
— 0.34392 > b,

The last condition (C6) requires closer attention. Keeping in mind that u € [¢/%,d],
Figure (top) shows the quantity ﬁ — ku(b — u), which has to be strictly positive
for (C6) to be satisfied. It is easy to see that this is in fact the case. Figure|3.1| (bottom)

shows the functions

f(u) = “‘;“) (ku® +1).
and b
g(u) = " (ku* +1).

What condition (C6) guarantees for us is that the two functions intersect at the unique

point © = « and that before the intersection f(u) > g(u), while after it f(u) < g(u).
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The Degn-Harrison system has been solved numerically by means of the implicit finite
difference method using Matlab. Figures [3.2] and [3.3) show the solutions of the system
using the parameters in in the ODE and one-dimensional cases, respectively. In
the 1D case, the diffusion constants were set to d; = 3 and dy = 2. Clearly, the solutions

are globally asymptotically stable as suggested by our new conditions.

(1
=

_I, VT : e
;f-"__ 20 | ___/"".
= | -
= | e
| 10 |
= I | e
g I . . . . .
02 0.4 0.6 0.8 1 1.2 1.4 1.8
u
10 T
| e — 7
) | e glu)
oy -
-7 gl | -
? | \\\
= ' h
| k=a—"h
0 ) L L L L 1
0.2 0.4 0.5 0.8 1 1.2 1.4 1.6

Figure 3.1: (Top) Condition (C9) states that —*; — ku(b—u) > 0.(Bottom) The functions
f (u) and g (u) in the range u € [ /%, a] .The parameters chosen here are stated in (3.41)).

Doctoral THESIS 52 ABIR ABBAD



On the Local and Global Asymptotic Stability of the Degn-Harrison
Reaction-Diffusion Model

[—um
—v(t) ]

ult)fv(t)
2=

]
T

vt}
B

0.8 0.85 09 085 1 1.05 14 1.15 12 125
ult)

Figure 3.2: Solutions of the Degn-Harrison model (4.1)) in the diffusion-free case. The
parameters chosen here are stated in (4.87). The initial states are set at uy = 0.8 and
Vo = 0.4.

vlx, i)

o - M W s m m o~

a0 1 dimension t [} = dimension

Figure 3.3: Solutions of the Degn-Harrison model (4.1)) in the diffusion-free case. The
parameters chosen here are stated in ( 4.87). The initial states are set at u(z,0) =
0.8[1 + 0.3sin(0.2z)] and v(z,0) = 0.4[1 4+ 0.3 cos(0.2z)].
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A Generalized Degn-Harrison Reaction-Diffusion System: Asymptotic
Stability and Non-FExistence Results

In this chapter El, we study the Degn—Harrison system with a generalized reaction term.
Once proved the global existence and boundedness of a unique solution, we address the
asymptotic behavior of the system. The conditions for the global asymptotic stability of
the steady state solution are derived using the appropriate techniques based on the eigen-
analysis, the Poincaré—Bendixson theorem and the direct Lyapunov method. Numerical
simulations are also shown to corroborate the asymptotic stability predictions. Moreover,
we determine the constraints on the size of the reactor and the diffusion coefficient such

that the system does not admit non-constant positive steady state solutions.

4.1 Problem Formulation

Before we start to introduce our works, we consider the general Degn-Harrison reaction

diffusion system

u — diAu=a—u— \p (u) v, r e t>0,
(4.1)
vy — deAv = b — A (u) v, r e Qt>0.

To simplify the reaction—diffusion system (4.1)), we create the new dimensionless para-
meters 9

A
u:RU,U:TV,t:d—s,x:)\y, (4.2)
1

next, we use the Chain rule to derive a new differential system

du du dU ds dy dU

— = === - 4,
dt dU " ds dt RAQ ds’ (4.3)
dv _ dvdVds_ didV
dt — dV'ds dt "~ A\rds’

System (4.1]) in one-dimensional becomes

dy dU R d*U
L = =a—RU-Xp(U)TV
2 2

dy dV T d*V
: =b—Ap (U)TV,

T—— —do—5—+
A\ ds 7 )\2 dy?

we devide both sides of equation one in (4.4)) by (Rd;) and we multiply by A? (similair to
equation one we devide equation two by (7'd;) and multiply by A\?)

! Article published in Nonlinear Analysis: Real World Applications 57 (103191), pp. 1-28, (2021).
View [2]
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dU  d*U N Ta T
= 2 U=\ -
ds  dy? 4y [R v “O(U)RV} (45)
V. VNI v '
ds  didz _ dy |T 7 ’
b d A2
WeputR:T,A:}%,B:E,d:d—jandvzd—l,weobtain
AU &2
= A-U - X ()V]:= F(UV)
v Py (4.6)
_ (] — = B— = .
P ddy2 V[B=Ap(U)V]:=G (U, V)

In our study, we will use (4.6|) in the analysis, but since normally we use variables (u, v, x, t)
instead of (U, V,y,t) and (a, b) instead of (A, B) . Thus we rewrite (4.6)) in the old variables

{1H—Au:7M—U—A¢WWL:F@“07 z€Rt>0, (4.7)

v —dAv =75 — Ao (u)v] =G (u,v), x€Qt>0,

where u and v represents the dimensionless concentrations of the reactants. The para-
meters a, b, A,y and d are positive constants and the inhibitory function ¢ € C'(0,00) N

C|0, 00) satisfies the following conditions

p(0) =0, (4.8)
and for u € [0, d
olu) >0, (49)
with
0<d<a-—b. (4.10)

The system (4.7)), defined in the bounded domain Q C RY, N > 1 with smooth boundary
011, is supplemented with the initial data

u(z,0) =wuy(z) >0, v (z,0) =1y (x) >0, x € (4.11)
and the following Neumann boundary conditions

ou Ov
%— %—0, x € 01, t >0, (412)

where v is the outward unit normal vector of the boundary 0f2.
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Lemma 4.1 The system has a unique constant steady state

th):(a—axﬂgj5>, (4.13)

if and only if a > .

Proof 4.2 An equilibrium point (u*,v*) of satisfies

F(u,0) = v]a—u=p ()] =0, )
G (u,v) =7 [b—Ap (u)v] =0, '
by the second equation of , we obtain
b
vt = , 4.15
Ap (u) (1)

we compensate in the first equation of , we find
u* =a—Db,

then, we conclude

mﬂﬂ):(a—@xﬂgj6>.

4.2 Global Existence of a Unique Bounded Solution

In this section, we shall show that the system ([£.7)) has a unique solution (u(z, ), v(z,t)),
defined for all ¢ > 0, which is bounded by some positive constants depending on the system
parameters, the arbitrary function ¢(u) and the initial conditions ug and vy. The existence
of a unique bounded global solution will be proved applying the theory of invariant regions

as was developed in [52].

Lemma 4.3 For anyd > 0, the system admits a unique solution (u,v) = (u(z,t),v(x,t))
forallz € Q andt > 0. Moreover, there exist two positive constants Cy and Cy, depending
on the initial conditions (ug,vg), the system parameters a,b, A\ and the arbitrary function
o such that
Cy < u(z,t),v(x,t) < Cy. (4.16)

Proof 4.4 The local existence and uniqueness of the solution for the system are

classical. In order to prove the global existence and the boundedness, we consider the
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following rectangular region

= (Ul,UQ) X (Ul,UQ)

and evaluate the functions F(u,v) and G(u,v) at their boundaries in such a way it is
a contracting rectangle [{9]. By condition (4.8), there exists a function ¢,(u) such that
o(u) = up,(u). Let u =y and vy < v < vy then

Flu,v) =7 (a — w1 — Ap () v) > ya — yuy

1+ XA sup gpl(u)v2] :

u€uy,uz)

Hence, F(u,v) >0 if

a
< ) 4.17
=TT sup ¢ (u)vg (4.17)
u€lu1,uz)
Let us evaluate F(u,v) at the second boundary, i.e. u = uy and vy < v < vy
Fu,v) =v(a —uy — Ap (ug) v) <y (a—us).
Therefore F(u,v) <0 if
Uz > a. (4.18)

From and , it follows that F(u,v) points inside the rectangle R with

a
1+ A sup ¢(u)ve

u€[ug,uz)

,minug (x) p,

Y1 = min

and

ug = max {a, maxug (z)}.
Evaluating the function G(u,v) at the boundary v = v and u; < u < ug, we obtain
G(u,v) = 7v[b—Ap(u)vi]
= 7[b— Aup, (u) vi]

> vlb—Auvl sup ¢, (U)],

w€[u1,u2)

and, since u < usq, it follows

G(u,v) >~ [b — Augvy sup ¢y (“)] :

u€[ur,uz)
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A sufficient condition for G(u,v) > 0 can then be formulated as

b
< . 4.1
U= Aug  sup ¢ (u) (4.19)

u€luy,uz)

At the last boundary v = vy and u; < u < us we have

Gu,v) =7[b—=Ap(u)va] <7 [b—A min ¢ (u)vz],

u€[u1,u2)
thus G(u,v) < 0 is satisfied when
b

> .
~ A min @ (u)

w€[u1,u2]

(4.20)

%

From and (4.20), it follows that G(u,v) points inside the rectangle R with

. b .
u€[ug,uz)
and
a b ax vg ()
V9 = INaX maxvg \ T
2 A min ¢ (u)’ 0
u€[ug,uz)

Therefore, the rectangle R is an invariant rectangle for the system . Finally, the
constants C7 and Cy in can be defined as follows

Cy =min{u,v1} >0 and Cy=max{us,va} > 0. (4.21)
Let us now prove the boundedness of the solutions.
Lemma 4.5 Let (u,v) = (u(z,t),v(z,t)) be the unique solution of ([{.7). Then, for all

reQ
a—0

tlir& supu < a, tlirglo supv < o 0) (4.22)
Proof 4.6 Let € be a constant such that
e < Ap(u)w, (4.23)
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and @ = (t) be the unique solution of the following Cauchy problem

(4.24)
i (0) = 2max ug (7).
e
with
i=a—<
= 5

Let us also define the variable 4 = u — u. From , we obtain
it — At + [t — 7 (a— @)] = v]a—a— @ — Ao (u) ],

and from ,

~ ~

U — At =~[a—a—1u— Ao (u)v].

So,
—Uy + At —ya =~ [ o (u)v —a+al,

by , we obtain

—dy + AQ—yi =y [Ap (u)v — £] >0,
@ (z,0) < 0.

Using the maximum principle for parabolic equations and the Neumann boundary condi-

tions , we get

iy < 0 and u < 0,

s0,
u(x,t) <0 = wu(z,t)<a(t) for allt >0 and x € Q. (4.25)

The maximum principle for parabolic equations cannot be directly used for the solution

v =v(x,t), therefore we define v (t) as the solution of the following Cauchy problem

do
— =79(@,9),
(4.26)
0(x,0) = 2max vy (z),
N
where
g (ﬂ7 f)) = Sup E —A (6 - 50) ¥ (5) ’ (427)
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with ey > 0, b > b and .
a—0

Ao (@) Ao (8)
Let v = v — 0. It follows straightforwardly that 0(x,0) < 0. Hence, we may prove by
contradiction that for all x € Q and t > 0

+ée9 <

i(z,t) < 0. (4.28)

If we let d(x,t) < 0, then there exists T > 0 such that H(x,t) < 0 for (z,t) € Q x (0,T)
and 9(x,t) = 0 for some x € Q, which leads to

max 0(z,t) = 0.
zeQ

If there exists x1 € Q such that v(x1,T) = 0, then vy(z1,T) > 0 and Ad(z1,T) < 0 and
thus we have

However, we combine and for point (x1,T), we end up with

O —dAV+ 0 = y[b— Ap(u)v]

@t _dA@—i_ [@t —7?({176)] = V[b_ A@(“)U] —”)/g(ﬂ,@)?
b —dAD = y[b— A (u)v] =G (a,7).
So,
— 0y + dAD =y [§(0,0) — [b— A (u)v]]. (4.30)

Setting v = v and u > u yields

G0 = sw b= A(T- )]0 (€,

Ci1<€é<u

= sup [E—A(v—a))} (&),
Ci1<g<u

> sup [b—]p(§),
Ci<g<a

> sup [b—Mv]g(§),
Cl<é<u

> [b— ]y (u).

Therefore
9(a,0) = [b = M ¢ (u) =0,
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and consequently
—04(x1,T) + dAD(z1,T) > 0,

which contradicts the result in . Hence, holds and we conclude that there
exists some x1 € 0§ such that v(x1,T) = 0 leading to a positive right-hand side of
at (x1,T). By continuity, we know that it remains positive in ' x {T'} for any Q' being

a sub—domain of Q and x1 € Q. Hence, we get

—@t(.%l, T) + dA'ﬁ(.?Il, T) > 0,
on Q' x {T}. Up to this point, we cannot state whether or not this inequality holds for
Qx(0,T]. Using Hopf’s boundary lemma on in QU x{T}, we get 96 = 9b(x1, T) > 0,
which contradicts the Neumann boundary conditions and thus

0(z,t) <0 = w(x,t) <o(t) for all x € Q and t > 0. (4.31)

Finally, we consider the ODEs system

.
.
= =79 (@),

mn R. From , we find that

§(@,0) <0 ford> b1z,
§(@,7) >0 for v < 5z + €o-

Hence, v = )\—(~> + g9 constitutes the nullcline of g and the system admits the unique
o (u

equilibrium

"o (@)
Since limy_o @ (t) = a, it follows that (4, 0) is globally asymptotically stable in R, which

(@, 0) = (a,

+ 50)

implies that

o) = Ap (@)

By (4.25) and (4.31), being a < a and Asa(a) +eo <

+ €o.

the Lemma is proved.

)\30(6
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4.3 Asymptotic Stability

In this Section we shall study the asymptotic behaviour of the generalized Degn—Harrison
system (4.7). In particular, we will find the conditions on the system parameters and
the arbitrary function ¢(u) which guarantee the attractivity of the unique homogeneous
steady state solution and therefore prevent pattern formation. The asymptotic
analysis shall be performed at first for the local dynamics using the eigenfunction expan-
sion method, then we will drive a suitable conditions for the global asymptotic stability.
Also, we will discus the global asymptotic stability by other method "the direct Lyapunov
method".

4.3.1 Local Asymptotic Stability
At first let us perform the linear stability analysis of the equilibrium (u*,v*) in (4.13]).

Proposition 4.7 Given the following ODFEs system associated to the generalized Degn—
Harrison system

d
d—?zv[a—u—/\go(u)v], t>0
(4.32)
d
= =7l e, t>0,
the solution (u*,v*) is locally asymptotically stable as an equilibrium of if
—[p(a—0b)+ by (a—0b)] < Ap?*(a—b). (4.33)

Proof 4.8 The Jacobian matrixz associated to the system and evaluated in the

equilibrium (u*,v*) is computed as

J (u*,v*) =~ Fo - —Go , (4.34)
1+ Fy —Gy

with

Fy=—1-— b% and Gy = Ip(a—b). (4.35)

The equilibrium (u*,v*) is locally asymptotically stable if the eigenvalues of the jacobian
matriz J (u*,v*) are both with negative real parts. The following characteristic polynomial
associated to J (u*,v*)

o —trJ (u*,v*) o + det J (u*,v*)
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admits roots with negative real parts if det J (u*,v*) > 0 and trJ (u*,v*) < 0 . The

determinant

det J (u*,v*) = v*Go = v* X (a — b) (4.36)
15 positive by . The trace

- ¢’ (a—b)
trJ (u*,v*) = v (Fy — Gy) Y +bg0(a—b)

Therefore, (u*,v*) is locally asymptotically stable when the condition 15 satisfied.

+Ap(a—0)|. (4.37)

Using the eigenvalue/eigenfunction notation defined at the end of the Introduction, if

¢ (a—0)
A hy=—y—9b—= 4.
1<70 Y ’Y(,D(a/_b)J ( 38)

then i, = (a, Q) is defined as the largest positive integer such that
Ai < vFy for i < i, (4.39)
Clearly, if (4.38) holds, then 1 <4, < co. In this case, we define the constant

~ 2 .
d = min di, dz: —7 GO(Al—i_l)

. 4.40
1<i<ia i (’VFO — )\i) ( )

The following Theorem can now be formulated for the local stability of (u*,v*) as a steady

state of (4.7)).

Theorem 4.9 Let us assume that condition holds. The constant steady state
(u*,v*) is locally asymptotically stable for the system if

A > v F
=70 o P (4.41)
i <vFy and 0<d:ﬁ<d.

If
N <~Fy and d>d,

then (u*,v*) is locally asymptotically unstable.

Proof 4.10 Let L be the linearized operator associated to the system in (u*,v*)
I — A + ’}/FO —’}/GQ
1+~F, dA—~Gy |
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The constant steady state (u*,v*) is said to be locally asymptotically stable for the sys-
tem if and only if all the eigenvalues of L have negative real parts. Denoting
(¢1(x), py(x)) the eigenfunction associated with the eigenvalue & (¢4(x), do(x)), we get

L = &1)(¢1(x), ¢5(2))" = (0,0)",

which explicitly reads

A+yFy—¢§ —Go ¢y _ [0
Y(1+Fy)  dA=9Go—¢ ) \ 6, 0)
Defining (¢,(x), ¢o(x)) in sequence form as follows

¢ = Z aij®;;  and ¢, = Z bij Pij,

0<1<00,1<5<m; 0<i<00,1<5<m;

I Bl QS v

we obtain

Z YFo — A — & -Gy Gj \ g _ 0
0<i<o0,1<j<m; T+ ) —yGo—dhi—¢€ bij ? 0

P >

Then, £ is an eigenvalue of L if for some i > 0 the following equation is satisfied
&+ P&+ Qi =0,

where
Pi=Xi(d+1)+v(Go— Fp),

and

Since the condition holds, then P; > 0. Moreover, being Gy = ,Y% det J (u*,v*), it
is clear that Qg > 0 for \g = 0. Let us now check the sign of Q; if the conditions
of the Theorem[{.9 are satisfied

If \; > vFy, then Q; > 0 fori > 1.
If \; < vFy and 0 < d < d, then

/\i < ’YFO and 0 < d < di, fOT’i € [17ia].

Hence, Q; > 0 fori € [1,i,). Furthermore, if i > i,, then \; > vFy and Q; > 0.
Therefore, when (4.33) and (4.41) hold, we get P; > 0 and Q; > 0 for all i > 0, which
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implies that all the eigenvalues & have negative real part, and the steady—state (u*,v*) is

locally asymptotically stable.
Finally, if \; < vFy and d > d, we assume that the minimum in is obtained for

some k € [1,1i,]
d > dy, (4.42)

therefore Qr < 0 and (u*,v*) is locally asymptotic unstable.

Theorem 4.11 The homogeneous steady state (u*,v*) is locally asymptotically stable for

the system if Fo <0 or

0< Fy < GU, (443)
and
A > vFy or
d< G 4.44
A < vFp and { Go B 0" ( )
< d < g,

where @ is the solution of the following equation
(Foz + Go)* = 4 (1 + Fy) Gox. (4.45)

Proof 4.12 First of all, let us rewrite in vector form as follows

% — DAz =F (z), where (4.46)

[ wu (10 B a—u—Ap(u)v
z-(v), D_<O d) and F(z)—'y< b— Ao (u) v )

In order to establish the local asymptotic stability of (u*,v*) as the steady-state solution
of it suffices to show that (0,0) is asymptotically stable as a steady state solution

of the linearized system

0z
= — DAz =, (4.47)

where J the Jacobian matriz associated at (u*,v*).

The local asymptotic stability of (0,0) for requires the eigenvalues of J — \,d to
have negative real parts for all n > 0. Since the system is 2 x 2, it suffices that the trace
of J — \,d is negative and the determinant is positive. In what follows we check the signs
of trace and determinant in the various cases when the hypotheses of the Theorem [[.11]

are satisfied
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let Fy <0, then

J—AD — YFy — A —Go .
Y1+ Fo) —Go—dA,

Via a straightforward computation, being Gy > 0, we get

det (J — A\d) = (vFo — \p) (—Go — dX,) — (—Go) (v (1 + Fo))
= )\id + ’7)\nd (—Fo) + ’7)\nG0 + ’72G0 > 0,

and

tr(J—XAd) = vyFy— N\, —vGo — d\,
= XN (d+1)+~(Fy—Gp) <0.

Hence, all the eigenvalues of J— \,d have negative real parts and the steady—state is locally

asymptotic stable. Let and the first condition in be satisfied. For the first

eigenvalue \g = 0, we have J — \gd = J and therefore
det J =~2Gy > 0,

and
trJ =~ (Fy — Gp) < 0.

Being Ay > vFy, we have A\, > vFy, which leads to
det (J — A\pd) = Mpd (N — VED) + YA Go + 723Gy > 0,

and
tr(J — A\ud) = (vFo — M) — vGo — A\pd < 0.

Therefore, the steady state is locally asymptotically stable. Let \y < vFy and d < %g For
the eigenvalues \,, n > 1 such that \,, > vFy, with the same arguments as above we can
conclude that J— X\, D has eigenvalues with negative real parts. Let 8 one of the remaining
eigenvalues such that 6 < vFy. Since holds, the trace s still negative

tr (J — QD) =7 (Fo — GO) —0 (d + 1) <0, (448)
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and, being d < %, the determinant is positive
0

det (J —0D) = ~*Go+ 0*d — v0dFy + v0G,
= 0*d —~0(dFy — Go) + Gy > 0. (4.49)
Therefore, the steady state is locally asymptotically stable. Let Ay < ~vFy and %gd < 0,
with @ given in the statement of the Theorem. The trace of an eigenvalue 6 is computed

as in and it 1s always negative under the condition . Therefore, we must

check the sign of the determinant

0*d — ~0 (dFy — Go) +v*Go. (4.50)
If

(v (dFy — Gy))? — 4dy*Gy < 0, (4.51)

then the determinant in is positive for all 0. Let us rewrite condition in the

following form

’}/2 ((dF0)2 + Gg — 2dFUGO) < 4d"}/2G0
(Fod + Go)? < 4(1+ Fy) God.

In the interval [0, +00), between the parabolay = (Fyz+Go)?* and the liney = 4 (1 + Fy) Gox,

it 18 easy to see that, at the point * = %37 we have

(FoZ + Go)® < 4(1 + Fy) GoZ.

The line intersects the parabola at two points x1 and x5 such that 0 < x1 < T < xo.
Setting o = xo, we obtain that o is the solution of satisfying

In addition, the inequality:
(F()ZL‘ + G0)2 <4 (1 + F()) G()ZL',

holds for

Go <z<
p— X .
Fy &

We can again conclude that the steady state is locally asymptotically stable.
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4.3.2 Global Asymptotic Stability

In this Section, we shall obtain sufficient conditions to achieve global asymptotic stability
of the steady state solution . At first, we will apply the Poincaré-Bendixson theorem
[13] at the ODEs system associated with in order to obtain global stability for the
local dynamics. Then, in Theorem 3, we shall find suitable conditions to guarantee the
global stability of the steady state for the PDEs system .

The global stability of the equilibrium solution (4.13]) will be also discussed perform-
ing the well-known direct Lyapunov method. Further conditions ensuring that the steady
state solution is globally asymptotically stable for the system (4.7)) are obtained in The-

orem 6.

Let us first find the invariant rectangle R; defined as in (4.52)).

Proposition 4.13 The following rectangle

b a—90
Rs = [0,a] x N s o @) A (0) | (4.52)
u€[d,al
with 5 b
a —
4.

0~ Tif o) (4.53)

u€ld,al

s an tnvariant rectangle for the system .

Proof 4.14 According to the Deﬁm’tz’on we just evaluate the vector field (F,G) given
mn at the boundaries of Rs. Let

A sup ¢ (u) Ap (0)
u€[d,al

then it straight for wardly results
F((S,’U) :’}/(CL—(S—)\QO((S)’U) > 07

and

F(a,v)=7v(a—a—Xp(a)v) ==y p(a)v < 0.
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Similarly, assuming § < u < a leads to

b b
-z — bh— \ -z
Ao | = "0 oW

u€ld,a) u€(d,al

b b

= vo(u — > 0,
(@) @ (u) s%p}go(u)
ue|0,a

and

(i) = (e )

a—9
< b— inf <0,
”( ué%,a]“’(“)so(a))

where the last inequality follows by condition .

Now, we state the following Theorem which gives the conditions for the global asymp-
totic stability of (u*,v*) as a solution of the reduced ODEs system associated to (4.7)).

Theorem 4.15 Given the ODEs system , let us define f(u) = ;(_qu and u;, 1=

1,..., N be the inflection points of f(u). If the following condition holds

max{ max_f'(w), [ (9), f' (a)} <\ (4.54)

then the equilibrium (u*,v*) given in 18 globally asymptotically stable for the system

2]}

Proof 4.16 Let us rewrite the system in terms of the function f(u)

ur = F(u,0) = 7 (u) (455 = M) = ye(u)(£(u) = M),

o(
v = Glu,v) = 3¢ (1) (545

(4.55)
O Av) .

We would like to apply the Dulac criterion to the plane system in the tnvariant
region Ry defined in .
Let ¢ = #(u) be the Dulac function candidate. We shall check the sign of the following

divergence
WE NG _ —p(u)— (=) (u)

Ju o (90 (u))2 — A= f, (u) - A (4.56)
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If f(u) is decreasing, then f'(u) < 0 and the sign of the divergence in is negative.
If f(u) is not decreasing, then

=1,

) < max {1 ) S 0) @)} in 5.0

which implies

=1,...,

fru) =A< max{'_maXNf’ (wi), [ (0), f (a)} - A <0,

where the last inequality holds under the hypothesis of the Theorem. Therefore,
the divergence in has the same negative sign in Rs and, according to the Dulac
criterion, there are no closed orbits lying entirely in R;.

To complete the proof it suffices to show that (u*,v*) is locally asymptotic stable. Since

i=1,...,

f(u*) < max{ max frw), ), f (a)}, using the assumption (4.34), it follows that

fru®) <A (4.57)

The condition in 18 equivalent to the assumption which guarantees the local
asymptotic stability of the equilibrium (u*,v*). Therefore, using the absence of periodic

solutions and the Poincaré- Bendizson theorem, we complete the proof.

Let o denote the following quantity

a= max ¢ (u,v), 4.58
mmma( ) (4.58)

where ¢ (u,v) is the greatest real eigenvalue of the symmetric matrix J#

JT=-(J+J"),

DO | —

with J (u,v) the Jacobian matrix associated to the system (4.32)) and J7 its transpose

matrix.

Theorem 4.17 Assume that

F@)>0 and > %, (4.59)
where f(u) = 2a s in the previous theorem, o is defined by and = min{1,d}.

Let z (x,t) be a solution of the Neumann boundary value problem associated with the
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linearized system . Then
}E}}O 1Vz (., t)HL?(Q) =0. (4.60)

Proof 4.18 In order to prove , we show that there exist two constants T' and C
such that
IVZ (., 1)) < Ce Pt fort > T, (4.61)

In fact, the inequality (4.61|) together with the assumption \; > % m will directly
imply :

At first, we observe that the assumption f'(u*) > 0 is equivalent to Fy > 0.

Let us evaluate the matriz J% at the steady state (u*,v*)

1
Fy — (14 Fy — Gy)
JH (U*,U*) =7 1 2
5(1+F0—G0) -Gy

Being Fy > 0, it follows that
H * ok 1 2
det J (U’U)Z_FOGO_ZO—FFO_GO) < 0,
therefore the constant o in 1S positive
a>¢(u",v") > 0.
For the linearized system , there exist T > 0 such that
z(z,t) = (u(x,t),v(z,t) € Ry, t>T.
Let us define the following function

1
(1) = 19200l

= %/Q (Vz (z,t),Vz(x,t))dx, fort>T, (4.62)

where (.,.) denotes the inner product in R%. The derivative of ® (t) is, thus, given by

do(t)
T = /Q(VZ,VZt>d1’

= - / (Az, DAz) dx + / (Vz,J" (2) Vz) dx. (4.63)
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Using Lemma A.1 of [17], we deduce the following inequality
/ (Az, DAz) dx > B\ / \Vz|* d. (4.64)
Q Q

Using the definition and the properties of the symmetric matriz J*, the inequality
in can be rearranged as follows

(Vz,J" (2) Vz) < < (z) Vz|* < a|Vz|. (4.65)

Using into , we obtain

4o (¢)
dt

g—(ﬁ)\l—a)/ﬂ|Vz]2dx, t>T.
Hence, the function ® satisfies the following differential inequality
O () < —2(BM — ) D (1), for t>T. (4.66)
From we can state that there exists a constant ¢; > 0 such that
O (1) < e Pt

and by the definition in ({.69), the trivially follows with C' = 2¢;.

The final result of the paper concerns the global asymptotic stability of the steady—
state solution (u*,v*) for the system (4.7]).

Theorem 4.19 Under the same assumptions of the Theorems|2.4 and[{.17, we have
B 1 (,8) = ) = Jn 2. 6) =y = 0. (167

Proof 4.20 Letz = (u(z,t),v (x,1)) be a solution of the system [4.7). As demonstrated

in Lemma A.2 of [17], we may use the Poincaré inequality to obtain

_ 1
Iz (-, 1) = 2 (-, 1)[IF2(q) < N V2 (-, ) I20 - (4.68)

where
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Using the inequality (4.68) and (4.60) we obtain

Jim [ o) =7 (0) ) = Jim [ () =T 1)) =0, (4.69)

where u (t) and v (t) denote, respectively, the averages on Q of u(x,t) and v (x,t). Now,
using Theorem 3.1 in [17]] again, we deduce that the pair (@ (t),v (t)) satisfies the following
ODEs system

= F(u,v) + q (t)

G (u,v) + g2 (1) (4.70)

(0) = ﬁ Jouo (z)dz, v (0) = Iﬁll Jo vo (z) d,

where for some k > 0,t > T, and i = 1,2, we have

u
v
u

|g; (t)] < ke (Bla=a)t, (4.71)
From it follows that as t — oo,

t+1
/ ¢i (s)ds — 0, fori=1,2.
t

Moreover, Theorem guarantees that the constant steady state solution is globally
asymptotically stable for the ODE system. At this stage, we apply Theorem 5.5.7 of [9] to
show that every solution of converges to (u*,v*), thus

lim |@(t) —u*| = 1tlirn [v(t) —v*| =0. (4.72)

t—o0

Since the following inequalities hold
_ i _ *
[ (s 8) = o) < Nlu ) = U ()2 + 1912 [u () —u'],
and
1 *
[ (1) = 0" llLa(q) < v (1) =0 (@) llL2 ) + 122 o (8) — 0],
using and we end up the proof of the Theorem.

In order to state the final Theorem [£.25] for the global asymptotic stability of the
equilibrium (4.13]), we need to formulate the following lemmas and propositions.

Lemma 4.21 Ifu € [§,a|, then there exists a constant p between u and u* such that

b b N
o) oy ) (w(u)) ' (4.73)
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Lemma 4.22 The derivative of the function

H (u(2,1)) = / <<pl()r) - @(Z*)) dr > 0, (4.74)
18 given by p ) )
=W T ey o)
Proposition 4.23 Let
V() = /Q B (u(@t),v (b)) dr, (4.76)
where N
E(u,v) = H (u) + 3 (v—20%) (4.77)

and (u(z,t),v(x,t)) is a solution of the system . If ¢ (u) is a decreasing function and

(u* —u) <?0Eu1; - C:Ozqu;) >0 for weldu)U(u*al, (4.78)

then V' (t) is a Lyapunov functional.
Proof 4.24 Let us rewrite the system in the following convenient form
ur — Au = v (u) [(“_" - a:ff) - A (v - #)} ,
o( o( Ap(u*) (479)

_ b b
v —dBo =y () | (55— 5t5) =2 (v = 5tm) |

- £
2

withu* =a—0b and x € Q,t > 0.
Differentiating the functional V (t) with respect to t yields

V() = A/Q[(u—v*) <dAv+7<p(U)(<¢?u) —w(l;*)> —Mv—v*)))}daf
Gt i) (e (G - San) 2e-0))] #

which we rewrite as follow

V(t)=1+J, (4.80)

where

1= [ (2= Y st [ (o)

1= [ (5t~ 5tm) (g~ Faey) 0]
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We now check the sign of I and J

I = /Q<(p?u)—@(Z*>)Audw+d)\/ﬂ(v—v*)Avdx

b

v
< ) \Vul® dz — d)\/ |Vo|* dz < 0.
v (u) Q

For J we get

7= /gﬂ““)[(w?uf,so@*)) (5~ Gan) V-]
- few [(@?u)) ) (G~ )~ ‘”*)2] -

The condition leads to

u < out = (u—u) (ZU; _ ‘;zj)) <0, (4.81)
u > ut = (u—u) (fbpzul)‘ _ C;zf)) <0. (4.82)

Using , it is straightforward to show that J < 0. Therefore
Vi(t)<0

and V' is a Lyapunov functional.

Theorem 4.25 Let ¢ (u) be a decreasing function and assume that holds. Then,
for any solution (u,v) of in N5 we have

Tim [l (1, 1) = " 20y = Jimn [[o (2, 1) = 07|20y = 0. (4.83)

Proof 4.26 If (u,v) € Rs is a solution of for which LV (t) = 0, where V(t) is
the Lyapunov functional defined in , then u and v must be spatially homogeneous.
Therefore, (u,v) satisfies the ODE system ({.54). Noting that (u*,v*) is the largest in-
variant subset for the system

{(u,v) € Rs %V(t) - 0},
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we can employ the La Salle’s invariance theorem [40, 54| to obtain
lim |u(z,t) —u*| = tlim v (z,t) —v*| =0,

t—o00

uniformly in x. Hence

lim [ (u(z,t) —u*)’de= lim [ (v(z,t) —v*)de =0, (4.84)

t—o00 Q t—o00 Q

which implies .

4.4 Nonconstant Positive Solutions

Let us now analyze the following elliptic boundary value problem

Au+vyla—u—Ap(u)v] =0, xe€Q, (4.85)
dAv + 7 [b— Ap (u)v] =0, :
supplemented with the following Neumann boundary conditions
ou Ov
— = — =0 for all Q 4.
50 = 90 0 for all z € 012, (4.86)

in such a way to determine a priori estimates for the nonconstant steady state solution
and discuss its properties. Also to find conditions for the nonexistence of nonconstant

positive solutions.

4.4.1 A Priori Estimates of the Nonconstant Steady State Solu-

tion

Proposition 4.27 (A priori estimates) Let (u,v) = (u(x),v(x)) be a positive solution
to the elliptic boundary value problem . Assumimg

min @ (u) > b, (4.87)

u€[d,al
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the following estimates hold for all x € )

(
a b
TR (1 ~ o so(U)> <u(z) <a,

u€[d,a) uw€[d,a)
(4.88)

b b
S D S
A ulél[%ﬁ] ) A (ughisna] (p(u)fb)

\

Proof 4.28 If the function u has a maximum over Q0 at some point in space, then by
applying Proposz'tion to the boundary value problem , we obtain

a—u—Ap(u)v >0,

then
a—u>a—u—Ap(u)v>0,

which implies the following upper bound for the solution u
u < a. (4.89)
Similarly, if v has a mazimum over § at some point, then by Proposition 1t follows
b— g (u)v > 0.

Being
b—Aminp (u)v+ Abv >b— A (u)v >0,

by condition we get

b—)\v(min go(u)—b) > 0,

u€[d,al
leading to the following upper bound for the function v

b
A( mi —b
(Jél[éﬁ] ¢ (u) )

In order to find the lower bounds in , we consider the case in which u has a minimum

v < (4.90)

Doctoral THESIS 78 ABIR ABBAD



A Generalized Degn-Harrison Reaction-Diffusion System: Asymptotic
Stability and Non-FExistence Results

over Q at some point, then by Proposition it follows

a < u+Ap(u)v
= u+ dup; (u)v

< w sup ¢ (u) (1+ ).
u€(d,al

Then, taking into account the bound , we get

a<u sup ¢ (u) [ 1T+ b

ueld.al A ( min ¢ (u) — b>

u€[d,al

which 1mplies

¢ (Jen[(ls%] @) = b) <u sup ¢y (u) (min SO(U)) ,

u€ld,al u€[d,a]
and thus the following lower bound for u is obtained
b
us>—2a (12 . (4.91)

sup ¢y (u) min ¢ (u)
u€(d,al u€ld,al

Assuming that v admits a minimun at some point over Q) leads to
b—Ap(u)v <0,

which implies

b—)\m[%x]gp(u)vgb—)\go(u)vgo,
ue|(0,a

then the lower bound for v is given by

b
— <. 4.92
)\maxcp(u)_v (4.92)

u€(d,al

Notice that the estimates in (4.88)) guarantee that there exist two positive constants
c1 depending on b and ~, and ¢, depending on a and ~ such that

|G (u,0)] = [y [b— e (u) v]] < e, (4.93)
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and
[F (u,0)] = |y ]a —u—Ap (u) v]] < co. (4.94)

Let us now define the averages of a given pair of solutions (u,v) = (u(x),v(z)) to the

elliptic problem (|4.85)) over () as follows

_ 1/ _ 1/
Uu=— [ u(x)dr and v=— [ v(z)dx,
al Jo " o J

where |(2| is the volume of €.

Lemma 4.29 The average of u(x) over Q) is given by
u=a-—b. (4.95)
Proof 4.30 Let us define the following change of variable
w(x) = dv(z) — u(z). (4.96)
From , we get

Aw(z) = dAv— Au

= b= Ap (@] +vla—u—2Ap(u)]
Aw(z) = vyla—b—u]. (4.97)

Integrating over € yields

7/[a—b—u]dx:/Aw(x)dx: 8—wds:0,
Q Q o Ov
then,
1
— [ u(z)dr =a—0b,
a Jo "
therefore
u=a—>b
Let us denote
p=u—u and Y=v-7, (4.98)
then
o= [ ¢¥=0. (4.99)
Q Q
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If (u,v) is not a constant solution, then ¢ and ¥ must not be trivial and their signs should
alternate in (2. The following Lemma shows that the product ¢t has a positive average

over §).

Lemma 4.31 Let (u,v) be a noncostant solution of and (¢, 1) defined as in ([4.98).
Then

/ o >0 and / VoV > 0. (4.100)
Q Q

Proof 4.32 Equation can be rewritten as

Aw(z) = ~vla—b—1u]
Aw(z) = 7lu—u]
—Aw = ~¢. (4.101)

Multiplying (4.101) by w = dv — u and integrating by parts lead to
/ Vul> = ~ / dw
Q Q

= 7 [ oldv=u)

- vd/ﬂsbv—v/ﬂsbu,

vd/ﬂ(bv—vd/gchJrvd/ch@—v/chquv/chﬂ—v/ﬂcbﬂ
= vd/§2¢(v—@)+7d/§2¢5—7/§2¢(u—ﬂ)—V/beﬂ
vd/ﬂ¢>¢+vd/ﬂ¢v—v/g¢2—v/g¢a,

/Q¢E:() and /Q¢@:(),
[ 1w =nd [ ov = [ o

1 2 1 2
qﬁwz—/ Vw —|——/¢ >0 4.102
Jov== [vur+g [ (1.102)
and the first inequality in (4.100) is proved. Multiplying (4.101]) by ¢ and integrating by

S

07
/ Vol
Q

by , we obtain

which implies

Therefore
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parts yields
vy / P = / VoVw
Q Q
= / VoV (dv — u)
Q
— i vovu- [ ve
Q Q
which implies the second inequality in
7 9 1 2
VoV == | ¢+ [ Vo~ > 0. (4.103)
) d Jo d Jo

Lemma 4.33 There exists a constant Cg depending on b, v and 2 such that

A¢%géwwfsaﬂ4.

Proof 4.34 From ,

—dAv = G(u,v)
—dAv +dAU —dAT = G (u,v)
—dAY —dAT = G (u,v).

Miltiplying by ¢ and integrating by parts

a [ vl = [ G,

using the Cauchy—Schwarz inequality and condition , we obtain

dLWszsz%w¢§qﬂﬁ(LWWyﬂ-

The Poincaré inequality yields

LWS%LWW,

(4.104)

(4.105)

(4.106)

(4.107)

where Ay > 0 is the first positive eigenvalue of (—A). Therefore, under the Neumann
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boundary conditions, from it follows

) ﬂ ( 2) 1/2
dﬂ]vw|Scl N K}vw| |
2 1/2 2
) Jg( 2)
(a [190r) < e/ 52 ([roor) )

Q¢
2 e 4.1
S (1.108)

Adding up and and using once again the inequality in leads to

/W+/WWsaﬂ%
Q Q

14
CG:c§|Q|< i 1).

M

and consequently

where

Lemma 4.35 There exists a constant Cp depending on a,vy and €2 such that
/¢2+/ IVo|* < Cp. (4.109)
Q Q

Proof 4.36 The proof follows the same lines of the previous Lemma. By

—Au = F(u,v)
—Au+Au—Au = F(u,v)
—A¢p—Au = F(u,v). (4.110)

Miltiplying (4.110) by ¢ and integrating by parts

[wer= [ Poe

Applying the Cauchy—Schwarz inequality to and using yields

Lﬁwlefwww¢s@ﬂﬁ(éwﬁfm. (4.111)
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The Poincaré inequality assures that

/Q & < Ai /Q VoL, (4.112)

where A1 > 0 is the first positive eigenvalue of (—A). Hence from (4.111)) it follows

, [ 0\ V2
[ivor < e/ ( [ 7o)
2 1/2 2
: 81 [ o)
([roor) < (/52 ([1ver) ) -

2
/ o < 2 (4.113)
Q A1

Adding up and and using once again leads to

[ &+ [ wer <cw.

1+ A
Ccmgm‘( \2 1)'
1

implying that

where

Lemma 4.37 Let (u,v) be a nonconstant solution of the problem . Then, the fol-

lowing inequalities hold

A Jo VoI
E () S Vel s (4.114)
3 2 2
a < Jo (Vo +2907) (4.115)

A1) @M (M +7)+92) @ f, (VY] +¢%)
where ¢ and v are defined in and X\ is the first positive eigenvalue of —A.

Proof 4.38 Let w = dv — u. Using the definitions in , we get

Vul* = [ [V (dv—u)f
Q Q
= d2/§21v¢|2+/ﬂyv¢12—2d/gv¢w.
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Using leads to
[rwul = [vu - [ [wor -2 [ & (4.116)
Q Q Q Q
which implies
& [1vol = [(vol 2y [ = [ Vol (4.117)
Q Q Q Q
Therefore, the second inequality in s obtained, 1i.e.
Vol
fa’—¢|2 < (4.118)
& [ IV

Next, we use and , we obtain

Jov = 3 [o e [1vop- [ wof -2 [ ]
= H/(ﬁ”%{d2/9|w’2_/g’v¢|2_27/9¢2ﬂ’

d/ngw—d;/ﬂ|vw|2—%/9\w»r?—/Qezﬂ,

therefore, we compute

d;/gww—%/ﬂw%/ﬂﬁm/gw

1
Using the e—Young inequality ab < 4—a2 + eb? leads to
€

d;Z/Q\WIQS%/Q!V¢|2+/Q¢2+i/g¢2+ed2/gw2.

Then, the Poincaré inequality gives

d2 2 1/ 2 1/ 2 < 1 )/ 2 €d2/ 2
v <z [ Vol +— [ Vol + [ ——) [ Vel + <= [ v,
= [iver < [1vop+ £ [ of+ () [19oF+ S [ 190l

and the last conditions can be simplified to the following form

1 € 1 1 1
_—— dQ/V 2<<—+—+ )/V2.
(7 A1) [wor < (24 5+ 0z ) [1v6

SO
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1
Setting e = — A1 leads to
2y

1 1 1 5 )
—dz/v ? < <—+—+—>/V :
2y Q| vl = 7oA 2)\% Q| i
222 + 2\ 2
& [ vof 27( Lt ””)/WW,
Q Q

23y
which gives the first inequality in (4.11/

IN

A _ _JalVel
20 (M +9) +92 T @ [, |V

Let us now prove the inequalities in . The Poincaré inequality leads to

Lawer ey < (P55 [our.

Therefore, we compute

Jo (IV4I" +29¢°) >( Al )fﬂ(|w|2+2w2)>( A ) Jo Vol
& [, (IVe? +¢%) ~— \ i +1 & [ (|Vy]?) M+1) @ [Vl

and the left hand side of inequality follows from (4.114). Moreover, we have

JolVOI' +27[o 0 _ [ol Vel + 27 [y ¢’
& [, (IVy]® +4?) & [o, VY[

and using we obtain the right hand side of the inequality in .

Y

4.4.2 Nonexistence of Nonconstant Positive Solutions

Now, we shall concern the nonexistence of nonconstant positive solutions of ([4.85)).

Our results show that the size of the reactor (reflected by its first eigenvalue ), and

the diffusion coefficient d play a critical role in obtaining the nonexistence of noncon-

stant positive solutions. In particular, in Theorem [£.39] the nonexistence of non-constant

positive solutions will be proved when the diffusion coefficient is below a threshold pro-

portional to the size of the reactor; in Theorem the nonexistence of nonconstant

positive solutions will be achieved when the size of the reactor is large enough.
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Theorem 4.39 If the diffusion coefficient d satisfies the following condition subject to

4)\1C’2 (CL, b7 7, )‘)
C? (a,b,v,\)

0<d<dy, where dy=

Then the problem — does not admit a nonconstant solution

Proof 4.40 Multiplying 1 in the second equation of and integrating by parts yields

d [ 1wl = [ o= [ e

by using and as ¢ (u) = wpy (u),

d 1w = = [ e

SN / [y () v — Ty () v) + (Tipy () v — Tipy () T)]
/Q @y (u) T — upy (1)) + uipy () 7]
/le (u) <v—w+w/ (@ — ) 1 (u) T

Q

= ’M/Qsol (u) U¢w_7)‘/gﬂ901 (u) .

—A
< —9A

From the a priori estimates in Proposition [{.27 it follows that
d [ 190l < peia) [ov-ncaan) [ v
Q
< (a,b,v, A /(ﬁw Cy (a, b, v, A /w (4.119)

By the Cauchy-Schwarz inequality and Using the e—Young inequality

e [ < @ (/QW)W (f W)m
< S Lok e [1or,

substiting in and puting Cy = €, we get

[ 9ok < g [ 1of
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By the Poincaré inequality, we have

02
d|[ |V 2<—1/V2. 4.120
Lot < 5 [ v (4.120)
It follows from (4.114) and that
d
/IW}I2 < —/ V|2, (4.121)
Q do Ja
where dy = do (a, b, vy, A\, A1) = % Therefore, if d < dy, by (4.121]), then

/Q|W|2 =0,
/Q|V¢>|2 =0,

by (4.114). Hence, |Vo| = V)| =0 over Q, which verifies the assertion.

and so

Theorem 4.41 There is a positive constant A = A (a, b, ~y, \) such that the problem
does not admit nonconstant positive solutions when A\ (€2) > A.

Proof 4.42 Multiplying equation by @ and integrating by parts we have

Jwer=na [o=q [ &= [ pwyes

Using and as p (u) = up, (u),

Vo = —v/ﬂof—wfggo(quﬁ
. / &~ A / [y () v — oy () v) + (Wpy () v — gy () T)] &
A / (@, () T — upy (1) D) + ey ()] 6

< — / 6 (14 Mgy () v) — 9\ [ Ty (u) e+ 7 / o1 (u) 767,
Q Q

Q
it follows that

/Q Vol <A /Q o1 (1) T — A /Q Ty (u) 9.
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Applying the a priori estimates in Proposition [{.27, we obtain the estimate

/Q|V¢\2 < 03/Q<z>2+03/9|¢w|, (4.122)

where C3 stands for a generic constant depending on (a,b,~,\) in this proof. By the

Caushy-Schwarz inequality and the Poincaré inequality, we have

[ov<([1or) " </Q|w|2)12 L([ oo )1/2 (/Q\W|2)1/2

Thus, by , we have
/QCZW < O4A‘3/2d‘1/2/9|v¢|2, where Cy = %

Combining this with , we see that

fiwar< (v o) fwer (1129

where C (a,b,v,\) = max{Cs5 (a,b,v,\),Cs(a,b,v,\) x Cy(a,b,v,\)}. Now, if d is not
small (d > 1), then we can choose so large that for Ay > A,

¢ 1+ 1 <O 1+ 1 <1
A1 Mnd) )~ M (A2

By , we obtain [ |Vo|* = 0, which means that u and v have to be constants. On
the other hand, if d < 1, by the expression of dy, then we can also choose A\ so large that

do > 1, which gives the nonexistence again by previous theorem.

4.5 NUMERICAL EXAMPLES

In this Section, we aim to validate the analytical findings regarding the asymptotic sta-
bility of the equilibrium (4.13). We choose the following form of the arbitrary function

p(u) o

plu) = =0 = v, (4.124)
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with p,q > 0 and £ > 0. We also assume that A\ =~y =1, p = %, and ¢ = 1. Substituting
these parameters into (4.7)), we get

_ —q -y — Y
{ut Au=a—u— 37,

4.125
Ut_dA"U:b—%’U, ( )

which admits the following unique equilibrium

(") = (a —b, M’“Z_ﬁ) | (4.126)

The invariant region for the system (4.125)) is

%5:[5,a]x{ \/g , \/g

Letting b = ¢ = 4, since condition (4.10) must hold, then it should be

b(k+9) m—éﬂk+®]‘

5 < % (4.127)

We choose the value § = %, which clearly satisfies the condition 1D With the above
choices for the system parameters, the steady state is given by (u*, v*) = (%, 2v/2 (%kz + 6%1)).
Since the chosen function p(u) is decreasing over [0, a], then (4.52)) is satisfied .

The equilibrium solution (4.126]) is asymptotically stable for the ODEs system ({4.32))
if the condition (4.33)) holds. Substituting the chosen parameters into (4.33), we have

—(24k +1) < 4V/2,

which is always satisfied regardless of k. Therefore, for the chosen parameter set, we should
achieve asymptotic stability of the ODEs system for any £ > 0. We perform two different
numerical tests. At the top of Figure [.1, for k¥ = 0.05 and initial conditions (ug,vo) =
(0.2,0.06), it is shown that the solutions converge towards the equilibrium (u*,v*) =
(%, %0\/5) . Analogously, at the bottom of Figure , for £ = 0.1 and initial conditions
(ug,v0) = (0.2,0.09), we can see that the solution of the ODes system asymptotically
converges towards the steady state (u*,v*) = (%, %\/5). The same solutions are plotted
in Figure in the © — v phase plane to better show the asymptotic evolution towards
the steady state.Let us, now, consider the one-dimensional reaction-diffusion system (4.7))

using the same parameters as above. The initial conditions are chosen as the following
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k=005

—i(t]
——=u(t)

ult)wlt)

ult)/vlt)
I‘/
I
|
|
|
==

Figure 4.1: Time evolution of the solutions of (4.125) in the ODE case with (a,b,d, k) =
(3,%,5,0.05)and (ug,vo) = (0.2,0.06) (top) and (a,b,d, k) = (5, 5,5,0.1) and (ug,ve) =

47 8
(0.2,0.09) (bottom).

k=10.05 k=101
0066 009
0.065 “"' E . 0088 +
0.064 ' ) 0086 b
= 0.063 ' % osaf

= =
0.062 / ; 0.082 b
-'-"
0.061 . 0.08 | /

(X1 - 0078 -
0.12 0.14 0.16 0.18 0.2 0.12 0.14 016 0.18 0.2

ult) u(t)

Figure 4.2: The solutions of (4.125]) in the ODE case plotted in the u — v phase plane with
(a,b,d, k) = (3,%,5,0.05) and (ug,v9) = (0.2,0.06) (left) and (a,b,d, k) = (1,1,5,0.1)

478
and (ug, vo) = (0.2,0.09) (right).
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sinusoidal disturbance
u(x,0) =ug X (1+ sin (50x)),
(4.128)
v (x,0) = vy + (1 + cos (50z)).

Being ¢(u) a decreasing function, in order to achieve the global asymptotic stability of
the solutions the condition (4.78]) must hold. If the following function
a—u a—1u

N ) R

is also decreasing, then (4.78) holds. It is easy to check that if
1
kgmin{(s_mj—\/ﬁa_?—\@}, (4.129)

then the function f(u) is descreasing. We again perform two numerical tests choosing
respectively £ = 0.05 and £ = 0.1, as both these values satisfies . The numerical
simulations of the one dimensional reaction-diffusion system are respectively given in
Figures[d.3|and [f.4 showing that the solutions converge towards the spatially homogeneous
steady state.

viz,t)

(] &
e}
~
. i
B
.,
[ H'\

E 1 e
T, [f ' x dimension Time, [t] ! dimension

Figure 4.3: The solutions of (4.125]) in a one-dimensional spatial domain. Here k£ = 0.05.
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ula, 1)

i
Titme, [{] oa x dimension Time, [t] non a dimension

Figure 4.4: The solutions of (4.125]) in a one-dimensional spatial domain Here k = 0.1.
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General Conclusion

In this thesis, we have studied the dynamics of the Turing-type Degn-Harrison reaction-
diffusion model. The study is concerned with the derivation of local and global asymptotic
stability conditions for the proposed dimensionless system. The derived conditions have
been shown to be weaker than those reported in previous publications. The theoretical
results derived herein have been validated by means of Matlab simulations carried out
using the finite difference numerical scheme.

A reaction-diffusion system with a generalized reaction term based on that of the
Degn-Harrison model has also been considered. Once the global existence and bounded-
ness of the unique solution was established for the generalized model, the study addressed
the system’s asymptotic behavior. We derived conditions for the global asymptotic sta-
bility of the steady state solution by means of theoretical tools related to eign-analysis,
the Poincare-Bendixon theorem and the direct Lyapunov method. Numerical simulation
results were presented to corroborate the theoretical asymptotic stability predictions. In
terms of the chemical reaction behind the model, the study has established theoretical
constraints on the size of the reactor and the diffusion coefficient required to ensure that

the system does not admit non-constant positive steady state solutions.
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