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Abstract

This thesis contain a results of the existence of positive solutions of certain nonlinear elliptic
and parabolic systems, involving the (p, ¢)-Laplace and the p(x)-Laplace operators. The method
used to obtain the results is that of sub and supersolution, which is based on the maximum
principle and the comparison theorem.

Keywords: Sub and supersolutions; semipositon elliptic systems; p(x)-Kirchoff parabolic sys-

tems.



Résumé

Cette theése comporte des résultats d’existence de solutions positives de certains systémes
elliptiques et paraboliques non linéaires, intervenant les opérateurs (p,q)-Laplace et le p(x)-
Laplace. La méthode utilisé pour obtenir les résultats est celle de sous et sur-solution, qui est
basé sur le principe de maximum et le théoréeme de comparaison.

Mots clés: Sous et sursolutions; systéms elliptiques semipositones; Systémes paraboliques

p (x)-Kirchoff.
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Notations

Q a bounded smooth domain in RY.

0f) boundary of €.

Vu gradient u, Vu = <ﬂ du - 3—“>t.

Ox1’ Oxe’ """ dxpn

N
By = div([ul " vu) = 3 (|vu? ).
1/:

By = 3 (joup 2 22).
C>*(Q) the space of indefinitely derivable functions on 2.
D () the space of functions of class C* (2), with compact support included in €.
LP () p-Lebesgue integrable functions on 2, p € [1,400].
L> (£2) essentially bounded functions on €.
WHP () sobolev space; LP-integrable functions, with weak derivatives up to order k in L? () .
Wy () the closure of D () in W (Q).
LP(®) (Q) generalized Lebesgue space.
WP (Q) generalized Sobolev space.
u, — u the weak convergence of sequence {u,}, to wu.

u, — u and strong convergence of sequence {u,}, to u.



Introduction

The theory of partial differential equations has developed considerably in recent years. Not-
ably the nonlinear elliptic problems with quasilinear homogeneous operators type such as the
p-Laplace, these nonlinear elliptical problems are in general not integrable, which means that
one cannot practically find explicit solutions, this gives a great importance to search for a weak
solutions basing on the theory of Sobolev spaces, these solutions can be as critical points or fixed
points of a functional or an appropriate operator, or via sub and supersolution concept,. .. etc.

Hence, in the case of nonhomogeneous p(x)-Laplace operators, it is necessary to introduce
the appropriate spaces, in which we can study the problem with a variable exponent, such as the
space LP(*) called a variable exponent Lebesgue spaces, which were appeared in the literature,
for the first time in 1931 by W. Orlicz, then in 1950 — 1951 Nakonov developed the theory of
modular spaces by generalizing Orlicz spaces by giving an example, the generalized Lebesgue
space with a variable exponent LP()(().

Afterwards, in the 70s and 80s, with more explicit version, the LP®) spaces took over again
from the Polish school (Hudzick and Museielak). The results and studies were followed dur-
ing the 80s and 90s, when a major stage of these investigations was in 1991 by Kovécik and
Rékosnik [25], which had provided the standard base reference of LP(*) (]RN ) spaces which are
also called generalized Lebesgue spaces, their work had covered only basic properties such as
reflexivity, separability, duality and the first results concerning inclusions and density of regular
functions. These spaces are a generalization of the corresponding standard spaces, for which the
p(.) is a constant. And which are the functional framework in the resolution of the nonlinear
partial differential equations involving the operator p(x)-Laplacian, who paved the way to more
applications of these theories in partial differential equations.

This type of operators appeared after the development of numerous physical phenomena
concerned with the characteristics of materials which are not homogeneous, like nonlinear elasti-
city, the fluids electrorheological (the interaction between fluids and electromagnetic fields) and
termorheological, image processing, propagation through porous media and calculation of vari-
ations.

The objective of this thesis is the study of certain elliptic and parabolic problems, involving
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the p-Laplace and the p(x)-Laplace operators.

Our approach is based on the method of sub and super-solutions. The concepts of the latter
were introduced by Nagumo [29] in 1937 who proved using also the shooting method, the existence
of at least one solution for a class of nonlinear Sturm-Liouville problems. In fact, the premises
of the sub and supersolution method can be traced back to Picard. He applied, in the early
1880s, the method of successive approximations to argue the existence of solutions for nonlinear
elliptic equations that are suitable perturbations of uniquely solvable linear problems. This is
the starting point of the use of sub and supersolutions in connection with monotone methods.
Picards techniques were applied later by Poincaré [30] in connection with problems arising in
astrophysics.

We draw the reader’s attention to the references ( [18,26, 31, 35]) which are applied the
method of sub and supersolution for nonlinear infinite semipositone elliptic problems. The elliptic
problems considered in this study are an infinite semipositon problems, the positone problem
expression means that the nonlinearity F'(u) is positive and monotone function. The semipositone
problem expression means that the nonlinearity F'(u) is monotone and F'(0) = k < 0,k € R, and
the infinity semipositone expression means that F'(u) tends to —oo as u tends to 0.

In the first chapter, we start by giving some basic notions, which are concerning the functional
framework necessary to support the existence of solutions for the studied problems.

The second chapter, is concerns the study of the existence of a weak solution of the following

(p, q)-Laplace system

;

—Ayu =N (z)uP~! — fi (u,v) — au™*wP2 in Q.

— A = pk (x) vt — fy (u,v) — bu®2v=P2 in Q.

u=v =0 on 09,

\

where p,g > 1, 0< 8, <1 < 1,0 < ay < fy <1, \,p,a,b >0, f; : [0,+00) x [0, +00) —

10
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R,i = 1,2 are continuous functions, [ (z), k(z) € C (), and

l—oy 51 d—+ —52

P* q p* q*

In the third chapter, we study the following infinite semipositone elliptic system

m
. pi—1 QG - T .
—Apu; = pyug' " —a; [Ju;”,i=1,m, in Q.
=1

u; = 0,7 =1, m on 0f),
where
I+ ay i —
i + Z L < 1,Vi=T1,m.
pi 1#j= lpj

We prove the existence of a weak solution and we give an example of application.

The fourth chapter, we are interested in the p(x)-Kirchhoff parabolic systems of the form

G — M (I (u) Apyu = N N f (0) + pyh ()], in Qr = Q< (0,7,

G = M (Lo (v) Dpyv = X [hag (u) + o7 (v)], in Qr = 2 x [0, T,

u=v=0, on dQr,

| u(2,0) =¢(2).
With a suitable assumption, we prove the existence of a positive weak solutions of certain

classes of parabolic systems intervening the p(x)—Kirchhoff operator.

During these studies € is a bounded domain in R with smooth boundary 9. The boundary

conditions are the homogeneous Dirichlet conditions, by using the method of sub and supersolu-

tion.

11
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Chapter 1. Preliminaries

We assume that the reader is familiar with the concept of a vector space over the real (or
complex) scalar field and with the related notions of dimension, subspace and linear forms. We
also assume familiarity with the basic concepts of general topology, Hausdorff topological spaces,
continuous functions, topological product spaces, subspaces, and relative topology, Banach spaces

and weaker, stronger convergent sequences and distributions and weak derivatives.

1.1 The space L? (1)

Let Q be an open set of RY, equipped with the Lebesgue measure dz, and let p be a positive
real number. We denote by L' (Q) the space of integrable functions on 2 with values on R, it is

provided with the norm

Hmwm:/u@mx
Q

Definition 1.1 We define LP (R2) the space of the class of all measurable functions f, defined on
Q, for which

1@ e <o

Q

equipped with the norm

||f||LP(Q) = (/ |f($)|p dx)%

Q

Definition 1.2 We also define the space L™ () by
L (Q)={f:Q— R, f measurable, 3¢ > 0, so that |f (z)| < c a.e. on Q},

it will be equipped with the essential-sup norm

[fll ooy = esssup | f (z)| = inf {c, [f (z)| <c ae. onQ}.

zeN

We say that a function f : Q — R belongs to L} () if f1; € L? (Q2) for any compact k C €.

loc

14



Chapter 1. Preliminaries

1.1.1 Holder inequality and L” completeness

If f € LP(Q) and g € L” (Q) where the real numbers p and p’ satisfy 1 < p < co and %+I% =1,

we have Holder inequality:

/|f Dlde < ([ 17 @P ) ( [ g @)l do)>.

Q Q

Theorem 1.1 [10] The space L? () is Banach spaces if 1 < p < oo (complete normed space),

separable space if 1 < p < oo, and LP () is reflexive if and only if 1 < p < oo.

1.1.2 Some convergence criteria

Theorem 1.2 (Monotony convergence) [2/] Let (f,),>, be an increasing sequence of a pos-

itive measurable functions. By noting f (x) = lim f, () = sup f, (x) we have
n— o0 n>1

/f (x)dx = nl_l)al_loo/fn (x) dx
Q Q

Theorem 1.3 (Lebesgue’s dominated convergence) [24] Let (f,), be a sequence of func-
tions of L' () converging almost everywhere to a measurable function f. We suppose that there

exists g € L' () such that for all n > 1, we have |f,| < g a.e. on Q. Then f € L' (Q) and

1= Al =0, [f@de= 1[5 (@)do
Q Q

Lemma 1.1 (Brezis-Lieb) [10] Let 1 < p < oo and (f,), be a bounded sequence of functions
from L? () converging a.e. to f. Then f € LP () and

1 Wy = 1 (I faloey = 1 = fullingey) -

Lemma 1.2 Let 1 < p < oo and (fy,), be a bounded sequence of LP (2) converging a.e. to f.
Then f, — f in LP (Q).

15



Chapter 1. Preliminaries

1.2 Sobolev space

In this section, we present a brief reminder on Sobolev spaces. We denote by D (2) the space
of functions of class C* (€2), with compact support included in 2, and by D’ (2) the topological
dual of D ().

1.2.1 Weak derivative

Definition 1.3 Let be an open set of RY; and 1 < i < N. A function f € L} () has an i™
weak derivative in L}, (Q) if there exists f; € L}, () such that for all ¢ € C§° (Q) we have

[f@op@ds =~ [ @@

this leads to say that the i*" derivative within the meaning of distributions of f belongs to

Ll

e (), we write

of

- fz

1.2.2 The space W'? ()

Definition 1.4 [10] The space W? (Q) is defined by
WP (Q) = {u € LP(Q), such that Ou € LP (Q),1 <i < N},

where 0; is the i'" weak derivative of u belongs L}, ().

The space WP (Q) is provided with the norm

||u||W1’P(Q) = (HUH + ||Vu||Lp(Q))p u < Wlp (Q)

16



Chapter 1. Preliminaries

1.2.3 The space W™" (Q)

When a € N, we denote by |a| = a3 + as + ..., the length of o and we denote

(6% QU ,
0% = 9™1852...0%,

in all that follows 0“u (or D®u) denotes the weak derivative of a function v € L}, (Q) .

Definition 1.5 [10] We define the space W™P (Q),m > 2 as following

WP (Q) = {u € LP (Q), such that Va € N", |a| <m, 0% € LP (Q), |a| < m},

equipped by the norm
1
ullyme@y = (D 10%ullF, )7

la|<m

Remark 1.1 For p =2, it is customary to replace the notation W™2 (Q) by H™ (Q).

Proposition 1.1 [24] The space W™P (2) provided with the norm defined by

1
(22 [10%ullLpi) 7, 1 < p < +oa
al<m
||u||wm,p(g) = o= »
gfgﬁ ||aau||LP(Q) D= 100,

is a Banach space, and for p € ]1,00][, this space is convez, so it is a reflexive space.

space H™ (),

endowed with the scalar product

(u,v) = Z (8O‘u,8a‘v)L2(Q),

laf<m

18 a Hilbert space.

The

17



Chapter 1. Preliminaries

1.2.4 The space W,” (Q)

Definition 1.6 For 1 < p < 400 we define the space Wy™” (Q) as being the closure of D () in
W7 (Q), and we write
—_Whlpr
Wo? (@) =D(@) .
Proposition 1.2 (Continuous embeddings) [10] Let © be an open set of RN . We suppose
that € is a bounded with Lipschitzian border or that @ = RY.

1- If 1 < p < N, then

WP (Q) C LP" (Q), with p* =

N —p’

and the embedding is continuous, i.e there is C € Ry such that Yu € WP (Q),

[ull o < Cllullyrng -
we note this
W (Q) — L (Q),

2- [fp: N7
WP (Q) — L7(Q),Yq € [p, +oo].

3- If p > N, then
WP (Q) C L™ ().

Proposition 1.3 (Compact embeddings) I- If 1 < p < N, then

N
WP (Q) € L1(Q), Vg € [1,p*] with p* = .
N —p
2-Ifp=N, WhP (Q) — L1(Q),Vq € [1, +o0].
3- If p > N, then
W (Q) cC(9).

18



Chapter 1. Preliminaries

Corollaire 1.1 (Poincaré inequality) Let Q be an open and bounded set of RY, then there
exists a constant C' (C (£, p)) such that

HUHLP(Q) <C ||VUHLP(Q) Yue WH(Q),1 < p < +o0.

We need to recall some basic properties on spaces L@ () and WF@® (Q) .

1.3 Lebesgue and Sobolev spaces with variable exponents

Let p : Q — [1,+00[ a measurable and bounded function, we denote by p~ and p™ respectively

the essential inf <igf p(a:)) and the essential sup (Supp (x)) of the function p, we assume
Q

p~ < pt < 4o0.

We also introduce the space
LY (@) = {pe L™ (@), p > 1}.

Definition 1.7 [17], [25] Let u : Q — R a measurable function,we define the modulus of u by

the quantity

prie (0 = [ @)
Q

Such that p verifies the following properties

a) pyy (u) =0 = u=0.

b) Pp() (—u) = Pp(.) (u).

¢) The map A — py,(y (Au) is convez, continuous and even. In addition, she is strictly increasing
over [0, 4o0].

d)

Py (u + Bv) < ap,y (u) + Bpyy (v),a+ 8 =1.

Definition 1.8 Let p be a measurable function of [1, +oc[ in R%.. We define and denote LP@) (Q)

19



Chapter 1. Preliminaries

the Lebesgue space of variable exponent p
LM (Q) = {u:Q — R, measurable; Py (1) < +o0}.

We define on LPY) (Q) the so-called Luzembourg norm by

lull, = inf { A > o,/

Q

Proposition 1.4 The space LP®) (Q) is a separable Banach space. If p~ > 1, LP@) (Q) is uni-

formly convex and reflexive.

The following two results show the relationship between the Luxembourg norm and module

Pp(x)

Proposition 1.5 Let p € L (Q)

(i) If u € LP™)(Q), then [ull ooy oy = @ = p (%) =1.

(it) [ull poor o) < L(=1,> 1) <= pyy <1(=1,>1).

(i1) If ||u||Lp(w)(Q) > 1 then ||u||i;(z)(g) < Pp@) = ||u||];(r)(g)'

(i) If lul yor y < 1 then [0y < Poey < ltlior -
Proposition 1.6 Ifp € LY (Q), (u,) C LP@ (Q) and u € LP@ (Q).

The following statements are equivalent

(i) Jim [t = un| o) = O-

(i1) nl_i)riloopp(x) (u—wu,)=0.

Remark 1.2 Let p € L? (), (u,) C LP@ (Q) and u € L@ (Q). If

nETOO lu — unHLp(r)(Q) =0,

then there ezists a subsequence (u,,) C (u,), and a function g € LP® (Q) such that
(i) un, — u a.e in €2

(i) |un,;| < g(2) a.e in Q.

20



Chapter 1. Preliminaries

Theorem 1.4 (Interpolation in the spaces L*(*) (Q)) Let p,q,r € LY (Q),u € LF® (Q)
and v € L1 (Q) such that
1 :
+ = a.e in €,

then
1

leollrrey < (= + 777 ) M0l Tl

Remark 1.3 Letp € L2 () and p' : Q@ — [1,+00[ the conjugate of p such that

’;(f -, if p(x) >
oo, if p(x) = 1.

P (z) =

For all v € L™ (Q) and v € L ®) (Q), there exists a constant C, such that

/yu ) dz < C, [l

Lp(x)(Q) HUHLp/(m)(Q) .

For the results of injections we draw the reader to Kovacik and Rékosnik [25] and Fan and
Zhao [17].

Proposition 1.7 Let Q be a bounded open of RN and p,q € L2 (). if p(x) < q(z) a,e in €,
then
Li@) (Q) — 1P (Q),

(i.e LY@ (Q) continuously injects into LP®) (Q) ).

Definition 1.9 For all p € L (), and m € N* we define the generalized Sobolev space (or

Sobolev space with variable exponent) by
W@ (Q) = {u e LPW (Q), D € LPW) (), for all |a| < m},

providing him with the norm

||U||me<z> Z | D* U||Lp(z)

|a|<m

21



Chapter 1. Preliminaries

The space W™P(®) (Q) provided with the norm [l yympterqy » 18 @ separable and reflexive
Banach space for p~ > 1.
We define the subspace W™ () as the closure of C° (€) in W@ (Q)

m,p(x 00 Wm’p(w(ﬂ)
Wy (Q) = C5° (Q) .

Now let us generalize the well known Sobolev imbedding.
Proposition 1.8 Let m € N* and p,q € L (). If p(x) < q(z) a.e in Q, then

W@ (Q) — WM (Q) |

18 continuous.

The continuity of the injection of the space W) (Q) into LP"(*) (Q) was obtained by Ed-

munds and Rékosnik [21], where

p*(z) = Wy P
00, ()Z

Theorem 1.5 [11] Let p,q € C (ﬁ) and p,q € LY (). Assume that

mp(z) < N,1 < q(z) <p*(z),z €.
Then there is a continuous and compact imbedding
W) Q) — ,4(@) Q).

For more information concerning this section we refer the reader to [17] and [25]

22



Chapter 1. Preliminaries

1.4 Maximum principle

Let © be an open connected set in RY with boundary 092 = Qn (RN \Q) . Let £ be the second

order differential operator

L= Zau DU+ZbD +e(x),

4,7=1 =1

with a;; € LY (), and b;,c(x) € L (). Here we have used D; = 8%1- and D;; = %a%j.

Without loss of generality one assumes a;; = a;;.

Definition 1.10 We will fix the following notions
e The operator L is called elliptic on S if for every x € Q there is X (x) > 0, such that

Zam €, > M) |¢7, Ve e RV,
2,7=1
e The operator L is called strictly elliptic on 0 if there is X\ > 0, such that
Za” )& > MEPP VEe RN e Q.
2,7=1
e The operator L is called uniformly elliptic on Q) if there are A, A > 0 such that

A€ <Zaw & > Mg vEeRY z € Q.

7,7=1

1.4.1 Strong maximum principle

Theorem 1.6 Suppose that L is strictly elliptic with ¢ <0, if u € C*(Q)NC (ﬁ) and L (u) >0

in 2, then either u = supgu or u does not attain a nonnegative mazximum in §.

23



Chapter 1. Preliminaries

1.4.2 Weak maximum principle

Theorem 1.7 Suppose that €2 is bounded and that L 1is strictly elliptic with ¢ < 0, if u €

C2(Q)NC(Q) and L (u) > 0 in Q, then a nonnegative mazimum is attained at the boundary.

1.4.3 Comparison principle

( in (W(}M (Q))*> v (x) = min {u(z) — v (2),0}, if o (z) € W (Q), (e ) (Q)) then
u > v in .

Lemma 1.3 Let u,v € W," (Q) (E WP (Q)) such that A(u) — A(v) > 0 in (W, (Q))",

1.5 Properties of the p-Laplacian operator

For 1 < p < oo, the p—laplacian of a function f on an open bounded domain €2 is defined by
Ay f = div(|V P2V ).

Lemma 1.4 Let V be a closed subspace of WP (Q) and Wy (Q) CV C WP (Q).

Then it holds

(i) —A, : V. — V* is continuous, bounded and has the (S+)-property, ie, if every sequence
{un}, in'V such that u, — v and

nl—Z>Too sup (—Aptn, u, —u) < 0 has a convergent subsequence {un, }, such that u,, — u.

(it) =D, : WHP (Q) — W1 () is

a) strictly monotone if 1 < p < 0o

b) strongly monotone if p = 2 (which is the well-known Laplace operator)

¢) uniformly monotone if 2 < p < oc.

24



Chapter 1. Preliminaries

1.5.1 Eigenvalue problem

We consider the following eigenvalue problem :
Apu (z) + Mu ()P u(z) = 0,in Q. (1.1)

Where we impose the Dirichlet boundary conditions. We say that A is an eigenvalue of —A,

if (1.1) has a nontrivial weak solution uy € Wy (Q). That is, for any v € C3° (),
/ \Vauy ()P~ Vuy () Vo (z) do — )\/ ux ()P uy (z) v (z) dz = 0.
0 Q

The function uy is then called an eigenfunction of —A, associated to the eigenvalue A\. Note
that if p = 2, the p—Ilaplacian corresponds to the usual laplacian.
The first eigenvalue of the Dirichlet eigenvalue problem of the p—Laplace operator, denoted

by A1, is characterized as,

é]VUA (2)|P dx

Ay = min )
b 0£ureWaP(Q) [ ux ()| da
Q

The infimum is attained for a function ¢, , € W,?(Q). In addition, ), is simple and
isolated. Moreover, the eigenfunction ¢, , associated to A;, does not change sign, and it is only

such eigenfunction, with H(plprl,p( = 1, and there are m,,,v > 0, such that
’ 0

Q)

’V(ﬂl’p} > mpy, Oon Qs - {x €0: d(l‘,aﬂ) < 5}7

1, > v >0, on Q\Q..
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1.6 Properties of the p (r)-Laplacian operator

We consider the separable and reflexive Banach space V' = Wolp (=) ()
—Ap(x)u V- V*,

defined by
(—Dp@yu,v) = / \Vu\p(x) Vu.Vudz,u,v € V.
Q

Lemma 1.5 (i) —Ap) : V — V* is a homeomorphism from V into V*.

(i) —Ap@y : V. — V* is a strictly monotone operator, that means
<_Ap(90)u - (_Ap(x)) v, U — U> >0,u#veV.

(ii3) —Apz) : V — V* is a mapping of type (S+).

Remark 1.4 Since the structure of the p(x)-Laplace is more complicated than that of the p-
Laplace operator,such as it is nonhomogeneous, the extension from p-Laplace operator to p(z)-
Laplace operator will not be well-worn. Furthermore, many concepts for p-Laplacian are not true

for the p(x)-Laplacian, for instance ,if Q is bounded, then the Rayleigh quotient

(x)
| ‘£ o | Vu (@) de
ALata) = i) 1 P() gy
0£ueWy P () fp(z) |u ()P da
Q

is a zero in general, so the first eigenvalue and the first eigenfunction of the p(x)— Laplacian

may not be existing.
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Chapter 2. Infinite semipositone elliptic systems

The results of this chapter have been accepted to publish in " Discontinuity, Nonlinearity,

and Complexity" journal, 2020.

2.1 Introduction

In recent years, there has been a considerable progress on the study of semipositione problems,
(see [21,34]). It is well documented in the literature that studying positive solutions to such semi-
positone problems is mathematically challenging. Even more challenging infinite semipositone

problem has been studied by [3,26,32], for example in [26] E.K. Lee, R. Shivaji and J. Ye, have

studied the singular problem when

F(u)=au— f(u)— —,

ua
under the following assumptions

JA>0,p>1: f(u) < AuP,

AM > 0: f (u) > alu — M,

and the result has been extended to the system

(

—Au  =au— fi(u) — % in Q,

e

—Av  =a — fo(v) — 2 in Q,

u

| u=v =0 on 012,

where Q is a bounded domain in R with C? boundary 0.
There are many results concerning the p-Laplace problems see [22] or (p, q)-Laplace as like
as [21]. But the fact of that the problem is an infinite semipositone make things more difficult,

in [4] K. Akrout, has studied the infinite semipositone problems involving the p-Laplace system.
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Chapter 2. Infinite semipositone elliptic systems

In this work, motivated by the ideas introduced in [4], we used Sub-supersolution method
with comparison principle to prove the existence of positive solution of our p, g-system, depending
on the parameters A and p.

We study the following infinite semipositone system

)
—Ayu =M (z)uP~t — fi (u,v) — au=*0%1 in Q,

— A= gk () 0 = fy (u,0) — butto P2, in 9, (2.1)

\ u=v =0, on 0f),

where p,g > 1,0 < 3, <oy < 1,0 < as < B, < 1, \,p,a,b > 0 are real constants,
Ag is a s-Laplace operator. The weight functions [ and k satisfy [ (z), k(x) € C(Q) and
I(x) > 1o >0, k(x) > ko >0 forall z € Qalso ||l|| , =1 < +oo, ||k]|, = k1 < 400 and
fi :[0,400) x [0,400) — R, i = 1,2 are continuous functions.

We used first eigenfunction of p and ¢-Laplace operator for constructing the subsolution, the
supersolution is a solution of a well defined problem, while respecting the comparison principle
between them (sub supersolution) by controlling the constants.

Now, to go on with the problem (21, we add the following assumptions

1 - 1-
My B ang 22 10

- - — <1, (2.2)
p q p q

fi (u,v) < AjuSr—Dyme-1)
JA1, Ay > 0,Cq, Cau 11,12 > 1
fa (u,v) < Agub2laDyna(a=1),
(2.3)

with

Gl—D+1 | npi(p—1) Calg—1) | malg—1)+1
1p* —i—lq* < 1 and 2p* —i—zq* <1,
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Chapter 2. Infinite semipositone elliptic systems

fl (U,’U) 2 )\llup_1 - M17
3 My, My >0 (2.4)
fo (u,v) > pkv?t — M.

Let
F (z,u,v) = M () uP~t — f1 (u,v) — au10P,
G (2,u,v) = pk (x) vt — fo (u,v) — bu2v="P2.
Then
lim F(z,u,v)= lim G (z,u,v)=—o0.
(u,v)—(0,0) (u,v)—(0,0)

Hence, we refer to (2Z.I) as an infinite semipositone system, such as F' and G are increasing
functions.

We introduced here some definitions and important Lemmas for proof

Definition 2.1 We called a weak positive subsolution (¢y,15) and supersolution (zi,z2) in
WP (Q) xWh4(Q) of (1) such that they satisfy 1, < z;,i = 1,2, (¢1,7%,) = (0,0) = (21, 22)
on 0 and
(

/ Ve, P2 Vb, .V da < )\/l (2) P wydo — /fl (1q, ¥y) wydx — a/¢fa1w§1w1dx,

Q Q ?

Q

/ ]V¢2|q72 Vo . Vwsdr < u/k (x) wg_lwgdw — /fz (1y, 1y) wadx — b/wﬁ‘zw;ﬂzwzdaﬁ.
Q Q Q

Q

And

/ |V21|p_2 Vz.Vudz > )\/l (x) zf_lwldx — /f1 (21, 22) widx — a/zfalzéﬂwldx,
Q Q ) )

/ |V22|q_2 V2o . Vwydz > u/k: (x) zg_lwgdx — /f2 (21, 22) wodx — b/zf‘222_62w2dx,
Q Q Q Q

\

for all test functions wy € Wy (Q),wy € Wa? (Q) and wy, wy > 0,in Q.
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Lemma 2.1 [10] The following problem

—Ayu = f(x),in Q,
u = 0,o0n 08,

has a unique positive solution u € Wy (Q) if ,f € L¥ ().

Lemma 2.2 [2] Let u,v € W, (Q) satisfy

/|Vu]p_2Vu.dea:§/|Vvlp_2Vv.dex,
Q Q

for allw € Wy (Q),w >0 then u < v a.e in Q.

Lemma 2.3 If there exist sub-supersolution (1,14) and (21, 23), respectively, such that 1, <
zi,i=1,21in Q, then (Z1) has at least a positive solution satisfying ¥, < u < z; and P, < v <

z9 in €.

Let A, (resp. A,) be the first eigenvalue of —A,, (resp. — A,) with Dirichlet boundary condi-
tions and ¢, (resp. <pq) the corresponding positive eigenfunction with H%H =1,j=p,q, and

there are m,, mq,e,v > 0, such that

Veo;| =my, j=p,qon Q. ={zeQ:d(x,d0) <e},

(2.5)
w; >v >0, j=p,qon Q\Q..
There exists positive constants h; and hy such that
hip, < ¢, < hap, for all x € Q. (2.6)
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Chapter 2. Infinite semipositone elliptic systems

We denote by

0, — p(Ba+g—1)+gB;
1 — K3 )

_ q(aat+p—1)+pas
0y = I E—

withd = (g +p—1)(By+qg—1)—azf, #0.

=

myp 1 —0581 pp— —(Bzta—1) m 10 —B1
C, = ((7”/12 0,0 0" 1 0, —1)(p— 1)) (TQh‘l’ 02(02 — 1)(q — 1)) ) ,

=

Co= (2" 000~ = 1) (070 - (g - Dades) o)

and
A= % <911’_1)\p + Alh727192(p—l)C{Cl—l)(P—l)ng(P—l)>

pr= (gg—l A+ As hl—czel(q—l)Olcl(q—ncénz—l)(q—l)) ‘

Remark 2.1 It’s easy to verify that 61,605 > 1.

2.2 Main results

In this section we proved the main result of this paper, and we will be deeply based on the
sub-supersolution method to prove it.

The following main result hold.

Theorem 2.1 Assume that we have all hypotheses (2.2) — (2.7). Then for

lovP

A2 X0 - D - 1) ()
(2.8)

>t 4057 (0 — 1) (g — 1) (k?&) ’
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Chapter 2. Infinite semipositone elliptic systems

the system (21) has a positive solution (u,v) .

Proof First, we construct a positive subsolution of (2.1])
Let
¥y = Crh and ¢, = Copl?.

A calculation shows that

p
)

=Bty = CF N T = CEO (0 - 1) (p — Dy TV |V,

—Aghy = CET Al = CET08T (0, — D(g = DT |V |
In Q., by using ([2.3)), we have

01(p—1)—p

1 01 (p— 1
—Appy; <O 19]17 1)‘p90p1(p ) — mpCY 19113 1(01 —1)(p—Dep
_ (9117—1)\p+A1h727192(p—1)C{Q—l)(ﬁ—l)ng(P—l)) Cf_190gl(p_1)

_Alhg192(l'—1)0141(17—1)0;11(17—1)9019)1(19—1) . mpof—lgzlz—ll(el . 1)(]7 o 1)90;‘;1(13—1)—137
and
_Aq¢2 < <93_1/\q + Ath—Q@l(q—l)C}Q—l)(q—l)céﬂz—l)(q—l)) 03_19022((1_1)
_Ath—Czel(‘1—1)Cf2(q—1)cgz(q—1)¢gz(q—1) _ chg—lgg—l(02 _ 1)(q _ 1)9022(‘1—1)_‘1'

A calculation show that
bi(p—1) —p=—aq0; + 3,02,

92(61 - 1) —q =t — 52927

33



Chapter 2. Infinite semipositone elliptic systems

aCr O = myhy P CP O (0 = 1)(p— 1),
(2.9)
bO72Cy % = myh§ 2005 (0 — 1)(a — 1),

It follow that

—1p—1 01(p—1)— ah®2%1  _4,0148,0
—mpCf 67 (0, —1)(p— 1)%)1(1) P = _0?1202—61 ‘Ppal 102

ahg251 (Cflgo,‘fleQ)

- (Cf1¢§161> )

(2.10)

g 02(q—1)— bhy"1%2  0p0,—B,0
—mCy 057 (02 — 1)(q — 1)V = —W%Q 1t

bh1—91a2 (Cla2 %03261

By Bo0
(Cé2<pé2 2)

Moreover, we have

—mp PN (0, — 1) (p — D) PV < —agT gl
(2.11)
—m O (03 — 1)(q — 1)V < —byp§2ep, 2.
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In the other hand

_A1h727192(17—1)0f1(:0—1)c;71(P—l)(pgl(l’—l) < _A1h727192(17—1)Cf1(p—1)C;h(P—l)@ép—l)@ﬁl-i-m%)

— _Al (Cfﬂl’*l)(pglgl(p*l)) (C;h h;7192(10*1)(p2192(?*1))

IN

— AP < (g aby)

_A2h1—01C2(q—1)0142(q—l)ng(fI—l)(pzz(Q—l) S _A2h1—91C2(Q—1)CfQ(q—l)C;@(q—l)(p((lq—l)(g“291+77292)

_ _A2<C]§2(Q*1)h1*91<2(Q*1)805291 (g—1) ) (0;72((171)802292((1,1))

< — AP T IYRO < fy (9, 0,),
(2.12)
and
<0117—1)\p + A1h3192(p—1)cr£§1—1)(13—1)C«;h(ﬁ—l)> Cf_lgof,l(p_l) < Ml (019021>p71
< N (z)yP
(2.13)

(9%*1)\(1 _|_AthCﬁl(qfl)ClCz(Q*l)Cfé%*l)(q*l)) Cgflgogz(qfl) < 1*ko (Cgipgz)q_l

< puk (z) 95
Formulas (2.11) — (Z.I3]) imply that

Ay < N(@) PP = fr (14, 1y) — a7y,
—Agiby < ik (2) 87— fo (1, 1y) — b, 2,

Now, in Q\€. we have ¢, > v >0, j =p,q,
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and
—1 p— 01(p—1 —1p— 01(p—1)—
—Apy =P N Y = OO (00— 1) (p - Dy TV |V, |
—1 01(p—1
< Cf 1911) lApSOpl(p )
028
< <Cif—1911)—1)\p_|_Alh;h%(l?—l)051(17—1)0;71(17—1) + vpgf?fc;ﬁl) S019)1(17—1)
02 (p—1 -1 1) 61(p—1 ah®2P1o0 9 (p—1)—
_A1h7271 2(p )Cfl(p )C«;M(P )SOPI(p )_Upc?lc;fﬁl pl(P )—p
058
< (O + A epehep Tl ) 0
02(p—1 1 —1) (p=1)(C; 01470 o
_A1h7271 2(p )ClCl(P )C;h(l’ )(P;(op )((1014n,02) 0?102731901(;&19176192)'
So we have

“Apy < (N B0 -1 -1) (35) ) T e
_Alwgl(l’*l)w;h(p*l) o aw1—a1¢§1_
By using (2.8) and (2.9]), we obtain
—Apy S N(@) T = fi (1) — atby 5,

By the same manner, we get

—Agpy < (M* + 9%71(‘92 -1)(¢—1) (lez())) kocgflgogﬂq*l)
_A2w§2(q_1)w7272(q_1) _ bw?zqﬂ;/gz

< pk () 5 = fo (11, 15) — bUbT2ehy 2.
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Hence

/|V¢1|p2V¢1.Vw1dx < [ (z) )~ wldx—/fl (11, 1s) wrdx — /1,01“17,0 Lwyde,

Q
/\V¢2lq2 Vip; . Vwsdr < u/k Y™ 1w2dx—/f2 Wy, 1) wgdx—b/wﬁmw ﬁszdx
Q

Q

then (¢,1,) is a subsolution of (2.1]) .

Now as a second step of the proof, we will construct a supersolution of (2]), for this, we let

—Aye; =11n —Ages =1in Q,
and
e1 = 0 on 019, ey = 0 on 0.
Let
1 1
z1 = (M")p=T ey and 2o = (M") a1 ey,
1= (M) ey and 2 = (M) e (2.14)
where M’ = max (Ml, f—j) and M" = max (MQ, 6—22) )
Then
—Apzy = M'Aje; =M > N (x) z]ffl — fi(z1,22) — az] 0‘12261,
—ANgzg = M"Ajea = M" > pk (2) 28" — fo (21, 22) — 222, P2
Hence

/ |Vz1]p_2 Vz.NVwidz > /\/l (x) szlwldq: — /f1 (21, 22) widz — a/zl O‘lzglwldx,
Q Q Q

/|Vz2]q_2 V 29.Vwydz > ,u/k(x L wgdr — /fg 21, 22) Wedx — b/z1 2y P2 podir.
Q Q

Therefore (z1, 22) is a supersolution of (Z1]). The formula (2.I4) implies that ¢; < z; and

To preside the proof of the theorem, as a third step, and in order to obtain a weak solution
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of the problem (2.1]) we define the sequence
{(un,vn)} C E = Wol’p (€2) x WOLQ (),
as follows: (ug,v9) = (21, 22) € E and (uy, v,,) is the unique solution of the system

,
— Aty = N (2) U7} = f1 (1, 0n1) — au, vy, in ©,

—Agv = pk () V13 = fo (1, v01) = bupt 0,73, in Q (2.15)

\ Uy, = v, =0, on €.

From the [2.1] the system (Z.I3]) for n = 1 has a unique positive solution (u;,v;) € E.
Observing that

§
—Ayuy = N () ul ™ = f1 (uo, vo) — aug® v, in €,

—Agr = pk (2) i = fa (o, v0) — bu81vo’52, in €,

\ up = vy, =0, on 09,
and recall that (ug,vg) is a weak supersolution to (21), the following hold

—Ayug > N (z)ul ™ — fi (ug, vo) — aug“vpt = —Ayuy,

—Agvg > pk (2) 08" = fo (ug, vo) — bullvy 72 = —Aguy.

Moreover, the fact that ug > ¥, vo > 1, and F' and G are monotonous functions, we can
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get that

—Apuy = N ()b = fi (ug, vo) — aug® vyt > N () W8 — fi (¥, 5) — athy ™1y,

—Agor = pk () o~ — fo (uo, vo) = bugtvy ™ = pk (x) W — fu (g, 1) — b, 2,
Combining the above inequalities with 2.2, one obtain that
uy > 1y and vy > s.
Similarly, for uq, v; we get that
Uy > Uz, v1 > vz and up > Py, v > 1hsy.

Repeating this argument we get a bounded strictly decreasing sequence {(u,,v,)} C E such

that

z1 = Up > up > up... > Py >0,

29 = Vg =V = V... > 1Py >0,

consequently, we deduce that the sequence {(u,,v,)} converge punctually, for all = in Q.

By going to the limit in the first equation of (2.I5), we will obtain

/|Vun|pdx — / |Vul? dx,
e Q

which implies the strong convergence in W2 (Q), (see [14], for a closely idea).

Indeed, by extraction of subsequence we have

Vu, — Vu a.e.

39



Chapter 2. Infinite semipositone elliptic systems

with using the dominated convergence theorem we deduce

/F (2, Up—1,Vp—1) UpdT — /)\l () uPdx — /f1 (u,v) udr — a/ul_"‘lvﬁldx,
Q Q

Q Q

SO
/ |Vu,|” de — /)\l () uPdx — /f1 (u,v) udz — a/ul_alvﬁld:c,
0 Q 0 Q
and
/ |Vul? de = / A (x) uPdx — /f1 (u,v) udz — a/ul_alvﬁlda’.
Q Q Q Q

Now, one can easily deduce that, by using Holder inequality
/|Vu|p dx :m/ |Vu,|” dx
Q Q

< Tim [Vl [V, -

We divide by lim / |Vu,|” dz, we have immediately
0

Tm /]Vun|pda: < |V,
(9]

which leads to the result, since by semi lower continuity for the weak topology of L () we
already have

[V, < lim ||V, |,

To achieve the proof of this theorem we applied the same approaches to the second equation

of (2I5), then we get the convergence of the sequence {(u,,v,)} to the solution (u,v) of the
problem (21). =
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3.1 Introduction

In this chapter, we study the existence of positive solution to infinite semipositone systems of

the form

m
1 i - — .
—Apiui = pauy —a;[Ju;V i =1,m, in Q
j=1

(3.1)
u; = 0,Ve = 1, m on 0f),

where (2 is a bounded domain in RY with smooth boundary 99, A, is the p;-Laplace operator,
and p; > 1,a;,1u; > 0,4 = 1,m,

—1<0;4<0,0<a; <1,Vi,j = 1,m,i # j are a positive constants.

Recently, there has appeared many important results on the study of semipositone problems
(see [5,11,18,19,23]), and there are several result concerning an infinite semi positone problems
have been reported, in [31] the authors have study the existence of positive solution of the

equation

—Au= M\ [f (u) —u_o‘] ,

with Dirichlet boundary conditions where

a€(0,1),f(0)>0,f >0, lim@:O,g(u):f(u)—u_CY and limg (u) = —oc.

$ u—0

The case g (u) = au — f (u) has been treated in [26] with a conditions on f, in [33] S.H.

Rasouli,Z. Firouzjahi have discussed the problem

—Apu = Ag (@) [f (u) —u™"],z €&,
u=0,r € .

This equation have a positive solution where f, g verify certain conditions, we refer to [4] for
corresponding result of a system intervening the p-Laplace operator, for F (u) = A\ (z) uP~! —
f(u,v) — 2=, G (u) = pk (x) "' — g (u,v) — ﬁ, where 0 < «,7v, 3,0 < 1 and a,b, \, i are a

positive constants. With a suitables conditions on f and g he proves the existence of a positive
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solution, we refer [35] for a result concerns the p, g-Laplace system.
Our approach is based on the method of sub and supersolution were the first eingenfunction

is used to construct the sub solution of the problem [3.1]

3.2 Preliminaries

Let \;,i = 1, m be the first eigenvalue of —A,;,7 = 1, m with Dirichlet boundary conditions and

,; its corresponding positive eigenfunction.

Lemma 3.1 There exists positive constants h;; i,j = 1, m such that
hj_ilgoj < ; < hijp;, 4,5 =1,m for all x € (2, (3.2)
with ||g;|| = 1, i = 1,m, and M;,e,v; > 0, such that

Vo, | > M, i=T,minQ={recQ:d(z,00) <e},
(3.3)

w; >v; >0, i=1,m in Q\Q..

We denote by

1, i=j
0, i # J.

L P = (pi)ilen :

Knowing that © is the solution of the algebraic system

A = P, with det (A) # 0.

Let
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M @1&%)‘
C' = max (—l ( H hﬂaijej> 0" (0, — 1) (pi — 1)) , (3.4)

a.
b \ig=1

and

(2

m

Definition 3.1 We called a weak positive solution (u;),_7 in E = ([[W"? (Q)) of (1) satisfy

i=
=1
’
Q

| wi = 0, on 012,

m

._9 1 ;i .

T2 u,; Vvdr = ui/u’?l vidr — ai/Huj”vid:B, m Q
=1

(3
J]=
Q Q

for all functions v; € Wy (Q), and v; > 0, in Q.

Definition 3.2 We called a weak positive subsolution (1;), and supersolution (z;)

i=1m

in(HWl’pi (Q)) of (31) such that they satisfy v; < z;i =1, m and

i=1

i=1,m

/ |V, [P 2 Vo, Vwde < p; / WP wdr — a / le?”wida:, in Q
j:
Q

Q Q

v, =0,1=1,m on 0S,

Q

2z =0,2=1,m, on 0.

and
[z " widz,in Q
=1

Pim2 7 o NVwde > ,ui/zfi_lwida: — ai/
Q

Q

\

for all functions w; € Wy (), and w; > 0, in €.

44



Chapter 3. Infinite semipositone elliptic systems with m-equations

3.3 Main results

We consider the system (3.1) under the following assumptions

ZCYZ']‘ <0,Vi=1,m. (36)
j=1

det (A) 0. (3.7)

0, >1,Vi =T, m. (3.8)

Remark 3.1 The assumption (3.0) guarantees that

l—I—Oé" mo oy ]
*M—F Z—Zj<1,Vz:1,m,
D; i#j=1D;

in order that the system (3.1) to be well defined.

Let

m
_ Pt Qi . _ _
F(z,U)= pu]" —a;[Tu;”,i=1,m,where U = (uy, ug, ..., un) ,
Jj=1
SO

lim F' (z,U) = —oo0,
U—0

which referred the system as a infinite semiposition problem.

Theorem 3.1 Let (3.3) — (Z8) hold. Then for a positive constant K such that

ﬂ;k < H < oK = | ) i = , T, (39)
the system (31) has a positive solution.

Proof First we construct a positive subsolution of (B.1)
Let
b = Cli i =T,m.
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Chapter 3. Infinite semipositone elliptic systems with m-equations

A calculation shows that

_Apzwz — Cpi—lezpifl)\igpfi(pifl) _ Cpi—lefifl(ei - 1)(]91 . 1)@?1'(;02‘71)71%

Vgpz|pZ 7i = 17 m,
in Q.. By using (3.3) , we have
“Apt; < OO N Y = MOP R (0, D(p— DTV i =T, (3.10)
and a calculation show that
Oi(pi — 1) —ps = Zaijej,i =1m.
j=1
It follow that

_Micpi—lefi_l<9i —1)(p; — 1)80?1'(:01*1)7111-

7

AN

|

RN

Q
it

2
/—\
\':3

>

e
>
\_/
S THM
2

A
|
S
Q
ANGE!
< N
—
>
NS
S
\_/
=
S
-8
>

IA

—a; 0% ( 1 C“”) ( [1 h?}ijgj) [T o

i#j=1 i£j=1 i£j=1

m
< —aicaiigpf‘“ei [T Co (hﬁ%)aiﬂj
i#j=1

m
< —q;,C% gpf‘“‘ei [] Co 90;%'91'
iAj=1
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Chapter 3. Infinite semipositone elliptic systems with m-equations

Then, we have

—MCP TN, — 1) (py — 1)l PP —mHC%W”J=Tﬁa (3.11)

and , imply that
ply

I
,s\

_Apﬂ/}i < Mﬂﬁfi — G H1/)au J

Next, in Q\Q. we have ¢, > v; > 0,7 =1,m,

and
_Ap/%‘ _ sz—19pz l)\ prl)
_Cpi—lefﬁ (‘9i . 1)(1%‘ . 1)(p?i(Pi—1)—Pz‘ Vgoi|pi i= W
< Cpi—le?i—l)\iwfi(pﬁl)
< (crtpn + 5 (T1oo | | 1 h% ) ) iy
Y \j=1 i#j=1
al‘pz Hca” H haljej 9 (pi—1)—p:
i#j=1
GWAW*A+IOWMW%0_D( -1) Y
m Zau
—a; | [JC™ H ha” 3 ] !
i=1 i#j=1
< ()\i + w> gfrlcm—lgpfi(ﬁ*l) _ aﬁ—[ Caijgp?ijej’i —T.m
% =1
S ,U;(Cpi_1§0?i(p71) a; H Ca” gpau — 1_
j=
So we have
—Ap; < Mﬂﬁi —GZHZ/)% 1=1,m,
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Chapter 3. Infinite semipositone elliptic systems with m-equations

Hence

/ IV, [P 2 Ve, Vde < ,ui/ﬂ)f_lvidx - ai/H@b?ijvidx, for all v; € Wy (Q),i = 1,m,

Q Q Q=1

then (¢;),_; ,,, is a subsolution of (B.1]) .

Now we will construct a supersolution of (B.I]). Let

z=K,i=1m.

. 3.12
with K > max {C’ ’i} a=1m. ( )

1<i<m T a;

We have

and we have

Q

Therefore (z;),_r— is a supersolution of (B.1]), while the condition guarantees that 1, <

1=1m

P2 2 Vwide < ui/zf_lwidx — ai/Hz?”wid:v, for all w; € Wy (Q),i =1, m.

Q Q=1

Zi, Vi = 1, m.
As done in the third step of the section 3 on the previous chapter. We adapt the same

procedure to complete the proof by using the convergence criteria of subsequences.
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Chapter 3. Infinite semipositone elliptic systems with m-equations

This finalizes the proof of the theorem. m

3.4 Application

We consider the following system

( 1 1 1
_ 2, 4,5 ;
—Auy = pyug — ajuy *usus,in

11 1
—AUs = lolls — AUl Uy 2us in
2 1 %2 3

(3.13)

111
—Auz = piqus — aguusug >, in €2

u; = 0,7=1,3,0n 0.

\

According to the previous notations we have

1 1 1
~2,4,%
HqUy — 1ty “Up Uz

1 1 1
— i,72,5§
F(2,U) = | pyuy — aguiu, ud |,

1 1 1
8y 8, 2
H3t3 — a3y Ug Ug

3/2 —1/4 —1/8

A=1 -1/4 3/2 -1/8 [,
-1/8 —-1/8 3/2
det A = 413

128"
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A calculation show that )

__ 104
01 =5
104

02 = 55
Oy = %.
L 73 7 B9

1 8

1 [3481\™ EO S

— - - 9 9 10
¢= (M (3552) 19155 {at.at.af }> ’

=g (st

and

= B 52,

=55 (M +3570)

Theorem 3.2 For a positive constant K such that

the system (313) has a positive solution.

Proof Indeed, the assumptions ([B.6)) , (3.7) , (B.8) and (3.:9) are all satisfied

3
Qi < 0.2=1,3,
j=1

J

limF (z,U) = —o0,

z—0

413
det A = =2
¢ 87 "
and

01,92 and 93 > 1.
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Chapter 3. Infinite semipositone elliptic systems with m-equations

Then, for a some constant K such that

K > max <C,&> i =1,3,

a;

and according to the [3.1], (BI3) has a positive solution. m
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Chapter 4. Nonlocal p(z)-Kirchhoff parabolic systems

The results of this chapter have been published, " Zediri, S., Guefaifia, R., and Bou-
laaras, S. Existence of positive solutions of a new class of nonlocal p(x)-kirchhoff parabolic

systems via sub-super-solutions concept. Journal of Applied Analysis 26, 1 (2020), 49-58." [36]

4.1 Introduction

The study of differential equations and variational problems with nonstandard p(x)-growth con-
ditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological
fluids and other applications (see [1,7,8,39]). Many existence results have been obtained on this
kind of problems, see for example, ( [6,15,37,38]. In [13,16,17]), the regularity of solutions for
differential equations with nonstandard p(z)-growth conditions were studied.

In this chapter, we are interested in the p(x)-Kirchhoff parabolic systems of the form

(

2 M (Iy (1) Apayu = M@ P\ f (0) + b ()] in Qp = 2 x [0,T),

Bu— M (Iy (v) Apyv = N [Aag (u) + o7 (v)], in Qr = Q x [0, T,

(4.1)
u=wv=0, on 0Qr,

(0,0 = o (0).
Here Q C R" is a bounded smooth domain with C? boundary 09, 1 < p(z) € C* (Q) is a

function with

L <p” =infp(r) <p"=p~ =supp(z) < oo,
Q

the operator

Apyu = div (\Vu|p($)_2 Vu) :

is called p(z)-Laplacian, A, A1, A9, p; and p, are positive parameters,
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Chapter 4. Nonlocal p(z)-Kirchhoff parabolic systems

1
(@) = [ val s
a

A p(x)

and M (t) is a continuous function.
Problem (4.1) is a generalization of a model introduced by Kirchhoff [11]. More precisely,
Kirchhoff proposed a model given by the equation

L
82u_ @—i- E/ @ 0*u
p h ox

or?’

0

where p, Py, h, E and L are constants,which extends the classical D’Alembert’s wave equation
by considering the effects of the changes in the length of the strings during the vibrations. In
recent years, problems involving Kirchhoff-type operators have been studied in many papers
(see [2,9,12,20]) in which the authors have used variational and topological methods to get the
existence of solutions.

In this chapter, motivated by the ideas introduced in [27] and the properties of Kirchhoff-type
operators in [27], we study the existence of positive solutions for system by using the sub
and super-solutions technique.

This is a new research topic for nonlocal problems. The following is organized as follows.
In Section 4.2, we present some preliminary results on the variable exponent Sobolev space
Wolp (@) (Q), properties of the p(z)—Kirchhoff-Laplacian operator and the method of sub and

super-solutions. Section 4. 3 is devoted to state and prove the main result.

4.2 Preliminary results

In order to discuss problem , we need some theories on VVO1 P() (€2), which we will call variable
exponent Sobolev spaces. Firstly we state some basic properties of the spaces I/VO1 P(@) (Q) which
will be used later (for details, see [28]).

Let us define
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Chapter 4. Nonlocal p(z)-Kirchhoff parabolic systems

LP@ (Q) = { u,u is a measurable real-valued function such that / lulP) dz < oo

Q

We introduce the norm on L@ (Q) by

u ()
A

dr <15,

u ()], =inf ¢ A> 0,/
0

and we introduce

Wo" (Q) = {u € L' (Q) | vu| € ' ()},

with the norm

lull = Julpe) + |Vl for all u € We™ ().
We denote by Wo') () the closure of C5° (Q2) in W) ().

Proposition 4.1 The spaces LP@ (Q), WP (Q) and Wolp(x) (Q) are separable and reflexive

Banach spaces.

Now we mention some properties of the p(x)—Kirchhoff—Laplace operator. For each u € X =

Wr@)(Q), define
([ oy )
o(u) M(/Q p(x)|Vu| x|,

M (s)ds and M is a continuous and increasing function on R, and its values are

where ]\/4\(15) = f;

completely positive.denote by u, — u and u,, — u the weak convergence and strong convergence

of sequence {u,} in X, respectively. the Gateaux derivative at the point u € X of ¢ is the

functional ¢'(u) € X*, given by

(¢ (w),v) = M ( /Q $|Vu|p(r)dx> | /Q V@ 2TV o () de,
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Chapter 4. Nonlocal p(z)-Kirchhoff parabolic systems

(.,.) is the duality pairing between X and X*.

Lemma 4.1 (i) gbl : X — X* is a continuous, bounded and strictly monotone operator.
(ii) ¢ is a mapping of type (S4), i.e. if u, — u in X and
lirf (¢ (tn)— ¢ (1), up —u) <0, then u, — u in X.
(iii) ¢ (u) : X — X* is a homeomorphism.
We using the Euler time scheme of problem (41I), we obtain the following problems:
(

up — 7'M (Io (ug)) Dpyur = 7N [\ f (0) + ph (ug)] + ug—q, in Q,

wp — 7'M (Ip () Dpyv = TXND [Nag (ug) + pior (V)] + up_1, in Q,
(4.3)

ur = v =0, on 0f,

up =, (z) in Q,

(
for 1 <k < N and where N7/ =T,0< 7 < 1.

Throughout the paper, we will assume the following conditions:

(H1) M :[0,400) — [mg, My is a continuous and increasing function with mg > 0.
(H2)peC'(Q),1<p <ph

(H3) f,g,h and 7 are monotone C' functions such that

lim f (ug) = +o0,

U—00

lim g () = +oc.

U—00

lim h (uy) = +o0,

uU—00

lim 7 (uy) = 400,

U—0o0

(H4) One has
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f (Lg (uk)l/(P 1))
lim e =0forall L > 0.
U—-+00 uk
(H5) One has
lim (ftk) =0

(H6) One has

Definition 4.1 If u,v € W "™ (Q), we say that

-M (IO (uk)) Ap(m)uk S -M ([0 (U)) Ap(x)’l).

If for all o € WP (Q) with ¢ > 0 one has

M (Io (ug)) / |V ue[P % vy, vodz < M (Iy (v)) / V[P vu.vede,

Q Q

where

1
Io (ug,) _/_|ka|p(a:) dr.
T

| p(2)

Definition 4.2 (i) If up,v € W™ (Q), then (uy,v) is called a weak solution of (Fd) if it
satisfies

M (Io (ug)) [ |ka|p(m)—2 Vu.Vdr = [ [)\p(x) A f (v) + pyh (ug)] — %] od,
) )

M (I () [ |70 90.9pda = [ |V ag (ue) + o7 (v)] — "=t |
Q Q

for all o € WP (Q) with ¢ > 0.
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(i) We say that (uy,v) is called a sub-solution ( resp. a super-solution) of (4.1) if

M (I (ug)) [ 19w Vg Veoda < [ [)‘p(m) [Af () + pyh (ug)] — M] pdz, (resp. > ),
0 0

) 1901797 T0.90de < [ [N ag (ug) + par (0)] — 222 o, (resp. > ).
Q Q

Lemma 4.2 (Comparison principle [28]). Let uy , v € Wolp(w) (Q) and let (H1) hold. If
—M (Lo (ur)) Apyur < =M (Io(v)) Apayv,

and (u, —v)t € WP (Q) | then uy, < v in Q.

Lemma 4.3 (see [28]) Let ( H1) hold let ;n > 0 and let uy, be the unique solution of the problem

—M (Iy (ug)) div [V [P 72 Yy = o in Q,
up = 0, on 0.
Set

mop

h — -1 -
210~ C,

When 1 > h,we have

1
k| < CTpr= -1,

and when p < h, we have

furl < Cup7™ 1,
where C* and C, are positive constants depending on p—,p*, N,|Q|,Cy and my.
Here and hereafter, we use the notation d(x,02) to denote the distance of z € . Set
d(z) = d(z,09Q) and
0. ={z € Q:d(z,00) <e}.

Since 99 is C? regularly, there exists a constant 6 € (0,1) such that d(z) € C*(9Qs5) and
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|Vd(x)| = 1.
Set

U1 =

d(z) 2 -
vy =4 0+ { V() T et pg)” dt, < d(z) <26,

2

25 2 2
Yo+ [y ()T A+ py)”  dt, 20 <d(z).
)

\

Obviously, 0 < vy (z), v, (z) € C* (ﬁ) . Considering

=My 196 ) Ay (a) =, i

w =0, on 0f),
we have the following result

Lemma 4.4 (see [27]) If the positive parameter 1 is large enough and w is the unique solution
of (4.4), then we have the following assertions

(i) For any 0 € (0,1) there exists a positive constant Cy such that

1
CinrF-1+0 < maxw () .
€N

(13) There exists a positive constant Cy such that

1
maxw () < Conr=-1.
zeQ
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4.3 Main result

In the following, when there is no misunderstanding, we always use C; to denote positive con-

stants.

Theorem 4.1 Assume that conditions (Hy )-(Hg) are satisfied. Then problem (4.9) has a positive

solution when X\ is large enough.

Proof We shall establish Theorem 4.1 by constructing a positive sub-solution (¢, ¢;) and a
super-solution (z, z1) of (41]) such that ¢, < z; and ¢, < 21, that is (¢, ¢,) and (2, 21) satisfy

M (Io (6)) [ 196, 9o, 9ade < [ [N S (90) + puh (9] = 2552 g

M (Io (¢0) [ 76, 9. Vqda < | VO Dag (00) + por (1)) — 252 | gda,

and

M (I (24)) [ [V2" ™ 920 9qde > [ [N [\ f (1) + uuh (20)] — 2222 g,
Q Q

M (I (20)) [ 721" V21 o = [ [N Pag (1) + o7 (21)] = 2552 g,
Q Q

7—/

for all ¢ € W' (Q) with ¢ > 0. According to the sub-super-solution method for p(z)—
Kirchhoff-type equations (see [28]), we obtain that (4.1]) has a positive solution.
Stepl: We will construct a sub-solution of ([d.1]). Let o € (0,0) be small enough.
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Set
( !
ekd@) 1, d(z) <o,
d(z) )
b (z) = -1+ f k'ek'o (2=L) == = (A1 4 pq)r 1 = dt, o<d(x) <24,
/ 2 e
e — 14 [kl (Z2=L)o =1 (A + pp)r 1 *1dt 20 < d(x),
\ o
and
( !
ekd@) 1, d(z) <o,
, d(z) ' 2
6 = e — 14 [ KeFT (2=L)rm =1 (A + py) v 1 = dt, o <d(z)< 20,
! 26 /
e — 1+ [Kelo (2=L)m = (Mg + pg)p 1 *1dt 26 <d(x).

It is easy to see that ¢, ¢, € C* (ﬁ) . Set

infp(z)—1
A(sup |Vp (z)] + 1)’

a = min

¢ =min{A; f (0) + 17 (0), A2g (0) + pp7 (0) , —1}.

By some a computations, we can obtain
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—k (KX D) () — 1) + (d (2) + 2E)VpVd + 24 | d(z) <o,

1 2(p(2)-1) (2=4) [(m KeFo) (M)ﬁ VpVd + Ad}

26—0 p -1 20—0 20—0
_Ap(z)¢k -
2(p(z)—=1)
X (keko @1 (B=2) 50 (O 4 py) o < d(w) < 20,
(0 265 < d(z),
and
(. (k;/ek'd(:fc))p(x)—l [(p(z) = 1) + (d(2) + BEYVpVd + 24] | d(z) <o,
s 2 (224 (1 ek) (224) 7T VpVd + Ad]
_Ap(x)¢1 -
2(p(z)—=1)
X (ke @t (33=0) 5 (g ), o < d(x) < 20,
0, 25 < d(x).

\

By (H4), there exists a positive constant L > 1 such that

fL=1)=>1,
g(L—-1) =1,
h(L—1)>1,
T(L—1)>1.

Let 0 = % In L. Then
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ok =InL. (4.5)

If £’ is sufficiently large, form (4.5) we have

- Ap($)¢1 < —k’a, d (33) < 0. (46)

Let n;\_C = k'a.Then

From (4.6)) we have

~M(Io(64) Apyd < M(Io(6)X)
< )\p(:v)C
< )\p(x)()qf(o) + 1111(0))

NE (N () + () — 2202 d(2) < o

Since d (z) € C? (8935) , there exists a positive constant C'5 such that

2p()=1)

—M(Io(¢)) Apy @ < Moo(ke™ PO (S=2) v =1 (A + puy)

« ) L_20@)-1) _ (20-d) [(ln Kk (M)p—% VpVd + Ad”

26—1 p——1 26—0 26—0
< O3 (keF?)P@ =1 (N\jay + pye) Ink', o < d(z) < 20.

If &’ is sufficiently large, letting % = k'« then we have
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CaMeo (keF PO~ (\jay + pyey) Ink! = C’gmoo(k;L)p(w)_l()\l + ) In &/

<N (A ) - BT,

Then

—M(Io(61)) Ay b < N (Mg + p1y) — 8521 5 < d(2) < 2. (4.7)

’Tl

Since ¢, (x), ¢, (z), f and h are monotone, when \ is large enough, we have

M (fﬂ 9,7 dx) s () < @ (0 f (60) + b (84)) — 821 o < d () < 26,

and

~M(Io(6)Apy 8 = 0 < X (O f (61) + b (d) — 74,26 < d (). (4.8)
Combining (4.7) and (4.8]),we can conclude that

—M(Io(¢1)) Ay b < A (M (61) + b (8y)) — 2542 ae in Q. (4.9)

Similarly,

T

—M(To(90) Ay 61 < N (WD Phag (6,) + 7 (9)]) = 2= e in O (4.10)

From (4.9) and (4.10) we can see that (¢, ¢,) is a sub-solution of problem (|4.3)).
Step 2: We will construct a super-solution of problem (4.3)). We consider
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P+ 21 —21._ .
—M (Io (21)) Dpwyze = 2 (Ma + py)pp — 22421 in Q

7-/

PJr Zl—Zk—1 .
M (I (1) Apwyzt = 20+ pia)g (B (W + p)n) ) = 2222, in @,

2k = 21 =0, on 012,

where

5= 5 (¥ Ou+ ) = maxz ().

e
We shall prove that (2, 2z1) is a super-solution of problem (4.3)).

For ¢ € Wol’p(z) (Q)with ¢ > 0, it easy to see that

M (I (z) | V2 P2 92, Vgda — LM (Iy (1)) éxﬂ*(b + )9 (8 (V" O+ i) ) ada

> ék’ﬁ(kzb (z) g (zk) qda + gk”+u2d (z) g (ﬁ (W(Al - m)u)) qdzx

By (H6), for p large enough and using Lemma 4.4, we have

1

g (B(V it mm)) = r(Co WGt mg(8 (¥ O+ m)w) ] 27 ().

Hence,

M (Iy(z)) [ ’le‘p(;p)—2 V21.Vqdx
Q

(4.11)

> [N (g (21) gz + [N oyt (21) gl — [ g,
Q Q Q
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Also,

M (I (z1)) [ V272 V2. 9qde = LM (I (21,)) [N (As + gy g
Q Q

> [N (M + ) pgda.
Q
By (H4), (H5) and Lemma 4.4, when p is sufficiently large, we have

p~—1
e > 2 [AB0F (O + )|

1

> (3O O+ p)p)) + X F(Co [ ¥ Qo+ g8 (X Ot pu)))] ™).

Then

M (Io () [ |V2r[" 72 V2. Vgda > [N A f(z1)qde + [N pyh(z)gde — [222=2qda.
0 0 0 0
(4.12)

According to (4.11) and (4.12)), we can conclude that (zy, 21) is a super-solution of problem
(4.3]). It only remains to prove that

op < 2z and ¢y < 2.
In the definition of vy (), let
2
7 = 5(maxg, (z) + max|Ve,[ ().
Q Q

We claim that
op(x) < vy (x) for all x € Q. (4.13)

From the definition of v; it is easy to see that for d(x) = 4, we have

o (x) < 2m§ax¢k (z) < v (),
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for d(x) > § we have

¢ () < ngX(/bk (z) <w (),

and for d(x) < ¢ we have

¢(x) <o (z).

Since v; — ¢, € C! (895) , there exists a point xq € 0€)s such that

vi (20) = ¢ (o) = min (vy (z) — oy (2)).

€N

If vy (o) — @ (x0) < 0, it easy to see that 0 < d(xy) < 9, and then
Vvl (I‘O) — VQbk (fL’O) =0.
From the definition of v; we have

Vo (w0)] = 7 = 3 (mady (2) + max V6, (2)) > V6, (30).

This is contradiction to

V’Ul (l’o) — V¢k (l‘o) =0.

Thus (4.13)) is valid.

Obviously, there exists a positive constant C'3 such that

Since d(z) € C* (8_95) . According to the proof of Lemma 4.4, there exists a positive constant
C4 such that
M (1o (v1)) Apyvr () < CyP@) =1 < ONP@ 140 g 6 in Q,

where 6 € (0,1). When n > A is large enough, we have

—Apyvr () <.
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According to the comparison principle, we have

vy () <w (z) for all z € Q. (4.14)

From (|4.13b and (I4.14I), when n > A" and A > 1 is sufficiently large, we have

op(x) < (x) <w (x), forall z € Q. (4.15)
According to the comparison principle, when 7 is large enough, we have

vy (z) Sw (x) < 2z, (x), for all z € Q.

Combining the definition of v; (z) and (4.15]) it easy to see that
Op() < vy (x) Sw(z) <z (x) for all z € Q.

When 1 > 1 and A is large enough, from Lemma 4.4 we can see that /3 (/\p+()\1 + pﬁy)) is

large enough. Then
p+
(o + p12)g (B (W + i) ).

mo

is large enough. Similarly, we have ¢; < z;. This completes the proof. m
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Conclusion

The method of sub and supersolution deals with the question of existence of positive solutions
of nonvariational problems with different types of nonlinearity.

The results obtained in this work can be generalized in fractional elliptic problems, and we
have aspirations to apply the fibering map approch for some elliptic problems invilving the p and

p(z)—Laplace operators.
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