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Abstract

Abstract

This dissertation is devoted to study the well-posedness and the blow-up of solutions of some

nonlinear hyperbolic problems involving non-classical nonlinearities. We proved under suitable

assumptions on the exponents of nonlinearity the local, global existence and establish the results

of blow-up of some wave equations.

It seems that the source term inhibits the global existence (in time) of the solution of the

problem is to say that the energy of the problem (or solution) tends to in�nity for the norm of

space when t tends to a �nite time T. Obviously, the damping term stabilizes the solution of the

problem, and it is clear that in the absence of source terms, if the solution exists locally, we can

always expand it into a global solution. This interaction between source and damping terms has

been a target in many studies and is stills -It is important also to know which term is dominant

to the other-.

We can say that our research is an expansion of some results done by previous researchers.

Mainly, by making appropriate modi�cations, we extended some known results of some nonlinear

wave equations with constant and variable-exponent nonlinearities studied by Messaoudi, and

exploit ideas by Georgiev and Todorova.

Keywords and Phrases: Blow-up, global existence, source term, wave equation, viscosity,

negative initial energy, variable exponents, positive initial energy, existence and uniqueness,

Faedo-Galerkin.
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 ـصــــــــــــالملخــ
 صــــــــــــــــــالملخـ

 

سادطيذذذذة  غيذذذل اذذذ ال سالةذذذذص ل لساحلذذذذو سنفجذذذصلو  وجذذذذو هذذذال سالةذذذصاة لدررذذذذة ا لسةذذذة         
لنصةذذ ة  أث تنذذص  ذذت رذذل  لنذذيص  حيذذ  كلاةذذيكية  ساتذذت تتنذذلو حذذ و  غيذذل دطيذذة غيذذل  سازس  يذذة

 و نتص ج سنفجصل  ال لاص لا  سالوجص . ساكلت على سلأةس سالادطية ساوجو  سالحلت 

وهذذذذو  ( احذذذذل سالةذذذذ اة ي ذذذذ و أو حذذذذ  سالرذذذذ ل يثذذذذ ط ساوجذذذذو  ساكلذذذذت    ذذذذت ساو ذذذذ  سالنصةذذذذ         
إاذذى و ذذ   t انرذذيا سافنذذصد عنذذ لص تذذلول سالانهصيذذةإاذذى  ( تذذلول  أو ساحذذل  ساقذذول  ذذ و طص ذذة سالةذذ اة

 .Tلح و  

نذذلأ أنذذذ   ذذذت حيذذذ   ولذذو ساوسنذذذا أينذذص أو حذذذ  ساتدصلذذذ  يالذذل علذذذى سةذذذتقلسل حذذل سالةذذذ اة        
يلكننذذذص  س لذذذص توةذذذيا  إاذذذى حذذذل سالرذذذ ل  إاس كذذذصو ساحذذذل لوجذذذو  لحليذذذص     حصاذذذة عذذذ ا وجذذذو  حذذذ و 

هذذذ  ص  ذذذت ساا يذذذ  لذذذو سا لسةذذذص  ولايذذذزسل  وساتدصلذذذ سالرذذذ ل  عذذذل  ذذذيو حذذذ و كذذذصو هذذذاس ساتفص .كلذذذت
 .-دلسالها لال ة ساح  سالةيطل على سلآلو  –كااك 

 حثنذذص هذذو توةذذي  اذذ ال سانتذذص ج ساتذذت  ذذصا  هذذص للافذذوو ةذذص قوو. علذذى وجذذ   يلكننذذص ساقذذول أو       
سادرذذو،   لذذذو دذذذلال  ذذلل ساتاذذذ يلا  سالنصةذذذ ة   لنذذص  توةذذذي   اذذذل سانتذذص ج سالالو ذذذة اذذذ ال 

ت  لةذذذهص لةذذذاو   ساتذذذ يذذذة اس  سلأس ساثص ذذذ  أو سالت يذذذللاذذذص لا  سالوجذذذص  سالادطيذذذة لذذذ  سالادط
  ص.جولجييف وتو ولو وسةت لال طليقة
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Résumé

Résumé

Cette thèse consacrée à l�étude d�existence et l�explosion des solutions de quelques problèmes

hyperboliques non linéaires impliquant des non-linéarités non classiques. Nous avons prouvé

sous des hypothèses appropriées sur les exposants de la non-linéarité l�existence locale, globale

et établissons les résultats d�explosion de certaines équations des ondes.

Il semble que le terme source inhibe l�existence globale (en temps) de la solution du problème

c�est-à-dire que l�énergie du problème (ou de la solution) tend vers l�in�ni pour la norme de

l�espace lorsque t tend vers un temps �nis T. Évidemment, le terme d�amortissement stabilise

la solution du problème, et il est clair qu�en l�absence de termes sources, si la solution existe

localement, on peut toujours l�étendre en une solution globale. Cette interaction entre les termes

source et amortissement a été un but dans de nombreuses études et elle l�est toujours -Il est

également important de savoir quel terme est dominant par rapport à l�autre- .

Nous pouvons dire que notre recherche est une expansion de certains résultats réalisés par

des auteurs antérieurs. En particulier, en imposant des modi�cations appropriées, nous avons

développé certains résultats connus de certaines équations d�onde non linéaires avec des non-

linéarités à exposant constant et variable étudiés par Messaoudi, et exploité les idées de Georgiev

et Todorova.

Mots-Clés et Phrases: Explosion, existence globale, terme source, équation d�onde, vis-

cosité, énergie initiale négative, exposants variables, énergie initiale positive, existence et unicité,

Faedo-Galerkin.
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Notations

Notations

Throughout this dissertation, we will use the following conventions:


 : denotes a bounded domain in RN .

We denote by RN the n�dimensional Euclidean space, and n 2 N always stands for the

dimension of the space.


 : The adhesion of 
:

@
 : Smooth boundary.

x = (x1; x2; � � � ; xN): Generic point of RN :

ru : Gradient of u.

�u : Laplacian of u.

u : u(x; t):

vj : vj(x):
@u

@�
: The normal derivative of u over @
:

@u

@t
: j The partial derivative of u with respect to t.

!: Strong convergence.

*: Weak convergence.

* � : Weak star convergence.

a:e : Almost everywhere.

p0: Conjugate of p, i.e
1

p
+
1

p0
= 1.

D(
) : Space of di¤erentiable functions with compact support in 
:

D0(
) : The dual of D(
) : The space of distributions on 
.

For k � 1 integer; Ck(
) is the space of functions u which are k times di¤erentiable and

whose derivative of order k is continuous on 
.

Ckc (
) : Space of functions of C
k(
) whose support is compact and contained in 
:

C0(
) : Space of continuous functions null board in 
:

Lp(
) : Space of functions p-th power integrated on 
 with a measure of dx.

kfkp =
�Z




jf (x)jp
� 1

p

:

W 1;p (
) = fu 2 Lp(
);ru 2 Lp(
)g :

6



Notations

W 1;p
0 (
) : The closure of D(
) in W 1;p (
) :

W
1;p(:)
0 (
) : The closure of C10 (
) in W

1;p(:) (
) :

W�1;p0 (
) : The dual space of W 1;p
0 (
) :

W k;p([0; T ] ; X) : Sobolev space.

H : Hilbert space.

H1
0 = W 1;2

0 (
) :

Hm
0 (
) = Wm;2

0 (
) : The adhesion of D (
) in Hm (
) :

Ck([0; T ]; X) : Space of functions k�times continuously di¤erentiable for [0; T ]! X.

Lp(:) (
) : Lebesgue space with variable exponent p(:).

E(t) : Energie.

T � : Explosion time.

%p(:) (u) =

Z



ju (x)jp(x) dx:

k:kX : The norm of X:

D� : The derivative of order � in the sense of distributions.

D([0; T ] ; X) : The space of functions continuously di¤erentiable of [0; T ]! X with compact

support in [0; T ].

D0([0; T ] ; X) : The distribution space.

C(
) = fu : u continuous in 
g :

supp u = fx 2 
 : u (x) 6= 0g = The support of u.

C0 (
) = fu 2 C (
) : supp u is a compact subset of 
g :

Ck (
) = fu 2 C (
) : u is k times continuously di¤erentiableg :

Ck0 (
) = Ck (
) \ C0 (
) :

C1 (
) =
1
\
k=1

Ck (
) = smooth functions.

C10 (
) = C1 (
) \ C0 (
) = compactly supported smooth functions = test functions

7



General Introduction

Variable Exponent Spaces: Brief History

The topic of variable exponent spaces has undergone extensive evolution in the past few years.

However, the main reference is still the paper [40] by O. Kováµcik and J. Rákosník (1991).

This work covers only basic characteristics, like re�exivity, separability, duality, and �rst results

in connection with embeddings and density of smooth functions. Particularly, L. Diening in

2002 demonstrated the boundedness of the maximal operator, and its consequences are absent.

Of course, progress on more advanced properties is dispersed in a great number of papers.

To familiarize students and colleagues more to the main results led around 2005 to the

publication of some short survey articles. Furthermore, L. Diening gave in 2005 lectures at the

University of Freiburg and M. R°uµziµcka gave in 2006 a course at the Spring School NAFSA 8

in Prague.

In the summer of 2006, L. Diening et al decided to write a book consisting of basic and

advanced properties, with amended assumptions. Two additional lecture sessions were given by

P. Hästö (2008 in Oulu and 2009 at the Spring School in Paseky); another synopsis, is the

habilitation thesis of L. Diening�s in 2007.

In the last few years, the domain of variable exponent function spaces has seen tremendous

growth. For example, a search for �variable exponent�in Mathematical Reviews yields 15 articles

before 2000, 31 articles between 2000 and 2004, and 267 articles between 2005 & 2010. This

measure is crude with some errors in rating, but nonetheless quite expressive.

Lebesgue spaces for variable exponents was presented for the �rst time in 1931 byW. Orlicz

in his article [68]: The question posed in this article is to search for necessary and su¢ cient

conditions on (yi) in which
X

i
xiyi to converge ? for (xi) and (pi) (with pi > 1) be sequences

8



Variable Exponent Spaces: Brief History

of real numbers such that
X

i
xpii converges. Then it became clear that the answer is thatX

i
(�yi)

p0i should converge for some � > 0 and p0i =
pi

pi � 1
: Also he considered the variable

exponent function space Lp(�) on the real line, and proved the Hölder inequality in this setting.

Thereafter, function spaces theory received great interest from Orlicz, which bears his name

now (see [65]). In the theory of Orlicz spaces, the space L' is contained of measurable functions

u : 
! R such that

% (�u) =

Z



' (� ju (x)j) dx <1;

for some � > 0 [ ' is a function of real-value that may depend on x and satis�es certain

conditions].

H. Nakano [66, 67] was the �rst who studied a more general class of so-called modular

function spaces, called modular spaces by putting certain properties of %. After Nakano�s

work, several people investigated the modular spaces, most importantly by groups at Sapporo

(Japan), Voronezh (U.S.S.R.), and Leiden (the Netherlands). Later, Polish mathemati-

cians investigated a more explicit version of modular function spaces, for example, H. Hudzik,

A. Kamínska, and J. Musielak.

The variable-exponent Lebesgue space Lp(:)(
) is de�ned as the Orlicz space L'p(:)(
) where

'p(:) (t) = tp(:) or 'p(:) (t) =
tp(:)

p (:)
;

i.e.,

L'p(:)(
) =

�
u : 
! R measurable such that % (�u) =

Z



'p(x) (� ju (x)j) dx < +1
�
;

for some � > 0 equipped with the Luxemburg norm

kukp(:) = inf
�
� > 0 such that

Z



'p(x)

�����u (x)�
����� dx � 1� :

The Russian researchers have been independently developing the variable exponent Lebesgue

spaces on the real line. These investigations originated in a paper written byTsenov [75] (1961).

I. Sharapudinov presented in [70] the Luxemburg norm for the Lebesgue space and showed

that this space is Banach if the exponent satis�es 1 < ess inf p � ess sup p <1: In the mid-80s,

V. Zhikov [78] started a new line of investigation of variable-exponent spaces, by considering

variational integrals with non-standard growth conditions.

9



Blow up in the Case of Constant and Variable Exponents Nonlinearities

The early �90s was the next main step in the ful�llment of variable-exponent spaces by

Kováµcik and Rákosník�s article [40], in their work they established many essential properties

of Lebesgue and Sobolev spaces in Rn.

At the beginning of the newmillennium, great progress has been made for a more precise study

of variable-exponent spaces. Particularly, the connection was made between variable exponent

spaces and variational integrals with non-standard growth and coercivity conditions.

The motivation for the recent systematic study of PDEs with variable exponents has been

the description of several relevant models in electrorheological �uids or �uids with temperature-

dependent viscosity, thermorheological �uids, nonlinear viscoelasticity, �ltration processes through

a porous media and image processing, or robotics. These models include hyperbolic, parabolic

or elliptic equations that are nonlinear in a gradient of the unknown solution and with variable

exponents of nonlinearity. In this regard, Chen, Levine, Rao [20], gave an example that concerns

application to image restoration.

Generally, partial di¤erential equations are of great importance in the modeling and descrip-

tion of a wide range of phenomena such as �uid dynamics, quantum physics, sound, heat, static

electricity, di¤usion, gravity, chemistry, biology, plane simulation, calculator diagrams, and time

prediction.

Literature Review

During the past years, the linear and nonlinear wave equations with constant and variable-

exponent nonlinearities have undergone considerable and great studies. Here, our goal is to

introduce an overview of the current results and provide others.

Blow up in the Case of Constant and Variable Exponents Nonlinearities

The work of Levine [43] and Ball [5] in the following equation was the �rst study of �nite

time blow up of solutions of hyperbolic partial di¤erential equations

utt ��u = f(u):

Later, Levine [43, 44] was treated the interaction between the damping and the source terms

for the following equation

utt ��u+ aut = f(u);

10



Blow up in the Case of Constant and Variable Exponents Nonlinearities

and used the concavity method for proving blow-up of solutions at a �nite time with negative

initial energy.

To extend Levine�s results, Georgiev and Todorova [31] considered a di¤erent method ( when

m > 2 ( the nonlinear damping case)) to the nonlinear damped equation

utt ��u+ a jutjm ut = b jujp u in (
� (0;1)) ;

and showed that solutions continue to exist globally �in time�with any initial data if m � p,

and blow up in a �nite time when the initial energy is su¢ ciently negative if p > m.

Recently, Levine and Serrin [47], Levine, Park, and Serrin [46], Levine and Park [45], and

Messaoudi [52, 53] generalized this result to an abstract setting and unbounded domains. They

proved that if p > m, no solution with negative energy can be continued to the whole [0;1);

they also demonstrated some non-continuation theorems. This generalization permitted them to

use their result in quasilinear situations, a special case is apparent in the problem in reference

[52].

In [52], Messaoudi extended the blow-up result of [31] to solutions with only negative initial

energy, without imposing the condition that deems the initial energy su¢ ciently negative.

Vitillaro [76] expanded the results which were obtained in [47, 31] where the solution has a

positive initial energy and the damping is non-linear. Messaoudi [51] expanded the result of [52]

to the viscoelastic wave equation:

utt ��u+
tZ
0

g(t� �)�u(�)d� + aut jutjm�2 = bu jujp�2 ; x 2 
; t > 0;

and showed by imposing appropriate conditions on g, that solutions blow up in �nite time if

p > m with negative initial energy and continue to exist globally if m � p for arbitrary initial

data. In [34] Ka�ni and Messaoudi proved the blowup result for the following problem

utt ��u+
tZ
0

g(t� �)�u(�)d� + ut = bu jujp�2 ; in Rn � (0;1)

In [19], Cavalcanti et al. have treated the following related problem in a bounded domain:

jutj� utt ��u��utt +
tZ
0

g(t� �)�u(�)d� � �ut = 0; x 2 
; t > 0;

11



Blow up in the Case of Constant and Variable Exponents Nonlinearities

where � > 0. They achieved an exponential decay result for  > 0, and global existence for

 � 0. Ka�ni and Messaoudi in [33] pushed the same result [34] to a system of the form

utt ��u+
tZ
0

g(t� �)�u(�)d� = f1 (u; v) ; in Rn � (0;1)

vtt ��v +
tZ
0

h(t� �)�v(�)d� = f2 (u; v) ; in Rn � (0;1) :

In [55], Messaoudi and Said-Houari proved the result of the global existence of certain solu-

tions with positive initial energy for the following problem

8>>>>>>>>>>><>>>>>>>>>>>:

utt ��u+
tR
0

g(t� �)�u(�)d� + jutjm�1 ut = f1 (u; v) ; in 
� (0;1) ;

vtt ��v +
tR
0

h(t� �)�u(�)d� + jvtjm�1 vt = f2 (u; v) ; in 
� (0;1) ;

u (x; t) = v (x; t) = 0; on @
� [0;1) ;

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
;

v (x; 0) = v0 (x) ; vt (x; 0) = v1 (x) , in 
;

where 
 is a bounded domain of Rn with a smooth boundary @
. In the paper of Chen et al

[21], they looked into the nonlinear p�Laplacian wave equation:

utt � div
�
jrujp�2ru

�
��ut + q(x; u) = f(x);

when 2 � p < n and f; q are given functions. Under suitable conditions on the initial data and

the functions f; q, they realized global existence, uniqueness and also discussed the long-time

behavior of the solution. Benaissa and Mokeddem in [10] considered:

utt � div
�
jrujp�2ru

�
� � (t) div

�
jrutjm�2rut

�
= 0:

They achieved an energy-decay estimate for the solutions where p;m � 2; � is a positive

function, and expanded Yang [77] and Messaoudi [54] results. Recently, Mokeddem and Mansour

[64] added some modi�cation in the problem of Benaissa and Mokeddem [10] and established the

same decay result.

Messaoudi and Houari [56] studied the nonlinear wave equation:

utt ��ut � div
�
jruj��2ru

�
� div

�
jrutj��2rut

�
+ a jutjm�2 ut = b jujp�2 u;

12
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where 
 is a bounded domain in Rn (n � 1); a; b; c > 0 and �; �;m; p > 2. They investigated

with appropriate conditions imposed on �; �;m; p > 2, a global nonexistence result for solutions

assocciated with negative initial energy.

In the paper of Mohammad Ka�ni and Salim Messaoudi [36] the authors are concerned with a

problem of a logarithmic nonlinear wave equation with delay and established the local existence

result by using the semigroup theory. Also, they proved the result of a blow-up at a �nite time

for negative initial energy. In [35] the same previous authors treated a nonlinear wave equation

with delay term and proved, under appropriate hypotheses on the initial data, that the energy

of solutions explodes in a �nite time. For more results, see the previous studies [9, 26, 30, 69]:

There are several and great studies concerned with the study of nonlinear models of parabolic,

elliptic, and hyperbolic equations in the case of variable exponents of nonlinearity. For exam-

ple, some models from physical phenomena such as �ows of electro-rheological �uids or �uids

with temperature-dependent viscosity, nonlinear viscoelasticity, image processing, and �ltration

processes through porous media, give rise to such problems.

Now, let us mention some problems in this direction. Antontsev [2] looked into the problem:

@ttu� div
�
a (x; t) jrujp(x;t)�2ru

�
� ��ut = b (x; t)u juj�(x;t)�2 ;

when � is a nonnegative constant a; b; p; � are given functions. He discussed the case when �

= 0 and � > 0, and demonstrated a blow-up result under a particular hypothesis on a; b; p; �.

Thereafter, Antontsev in [1] considered the same equation and established a local, global existence

of weak solutions for speci�c conditions on a; b; p; �, and realized blow-up results for solutions

with non-positive initial energy.

In [32] Guo and Gao considered the same problem of Antontsev [1], they picked the constant

�(x; t) = r > 2 and realized a blowup result in �nite time, also they alleged without any proof the

same blow-up result for �(x; t) = r(x): Sun et al in [71] studied the blow-up result for solutions

with positive initial energy for the following equation:

utt � div (a (x; t)ru) + c (x; t)ut jutjq(x;t)�1 = b (x; t)u jujp(x;t)�1 :

They also gave lower and upper bounds for the blow-up time and provided numerical illus-

13
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trations for their result. Lately, Messaoudi and Talahmeh [57] looked into

utt � div
�
jrujm(x)�2ru

�
+ �ut = jujp(x)�2 u;

where � � 0. They proved a blow-up result for certain solutions with arbitrary positive initial

energy. This result was generalized by the same authors in [58] to an equation of the form

utt � div(jrujr(�)�2ru) + ajutjm(�)�2ut = bjujp(�)�2u;

where the exponents of nonlinearity m; p and r are given functions and a; b > 0 are constants.

They demonstrated a �nite-time blowup result for the solutions with negative initial energy and

for certain solutions with positive energy.

At the end of 2017, Messaoudi et al. [60] studied the following class of nonlinear wave

equation:

utt ��u+ autjutjm(�)�2 = bujujp(�)�2;

where the existence of a unique weak solution is established under suitable assumptions on the

variable exponents m and p by using the Faedo�Galerkin method. Also, they proved the �nite-

time blow-up of solutions and gave a two-dimension numerical example to clarify the result of

the blow-up. In [29] Yunzhu Gao and Wenjie Gao treated a nonlinear viscoelastic equation with

variable exponents and achieved the existence of weak solutions under suitable assumptions by

using the Faedo�Galerkin method.

For more information in the study of the phenomenon of explosion in hyperbolic equations,

we guide the reader to Antontsev and Ferreira [3], Galaktionov [28] and the book by Antontsev

and Shmarev [4].

Plan Work

Our purpose in this dissertation is to prove the well-posedness and the blow-up of solutions

of several nonlinear hyperbolic problems involving nonclassical nonlinearities. Otherwise, we

treated some problems and found under some appropriate assumptions the results of blowup.

This study generalizes and expands some results. In detail, we expanded the result of blow-up

of several nonlinear wave equations with variable and constant exponent nonlinearities, studied

by Messaoudi [51, 58, 60], by using di¤erent techniques.

14
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This dissertation is consists of four principal chapters in addition to the general introduction,

conclusion, and suggestions. The general introduction contains, in particular, a brief history

of variable exponent spaces and a literature review on blow up in the case of constant and

variable exponents nonlinearly, and it is ended by a third section devoted to the plan work of

this dissertation.

The �rst chapter is devoted to some background and basic concepts needed. Especially, we

reminded some basic results, notations, prerequisites, preliminaries, elementary properties, and

proof of some principal inequalities used in the proof of lemmas and theorems in this dissertation,

also we recalled the de�nition of Variable-exponent Lebesgue and Sobolev spaces, which will be

useful to us later. We ended this chapter with the concept of blow-up, where we have speci�cally

introduced what the authors mean by this notion.

We start our contributions from the second chapter ( this chapter essentially corresponds to

the paper [72]. Z. Tebba, S. Boulaaras, H. Degaichia and A. Allahem, Existence and blow-up of

a new class of nonlinear damped wave equation, Journal of Intelligent and Fuzzy Systems, 38 (3)

(2020), 2649-2660.), where we demonstrate the existence, uniqueness, and blow-up of solutions

of the following nonlinear wave equation with variable exponents8>>><>>>:
utt ��u��utt + aut jutjm(:)�2 = bu jujp(:)�2 ; in 
� (0; T ) ;

u(x; t) = 0; on @
� (0; T ) ;

u(x; 0) = u0(x); ut(x; 0) = u1(x); in 
;

(1)

where, 
 is a bounded domain in Rn (n � 1), with a smooth boundary @
; a; b � 0 are constants

and the exponents m(:) and p(:) are given log-Hölder1 continuous functions on 
 veri�ed:

2 � m1 � m (x) � m2 �
2n

n� 2 ; n � 3; (2)

and

2 � p1 � p (x) � p2 � 2
n� 1
n� 2 ; n � 3: (3)

1Otto Ludwig Hölder ( 22/12/1859 - 29/08/1937 ) is a German mathematician born in Stuttgart, capital of

the kingdom of Württemberg.

In 1877, he entered the University of Berlin, and he obtained his doctorate in 1882 at the University of Tübingen.

The title of his doctoral dissertation is Beiträge zur Potentialtheorie ( Contributions to the theory of potential ).

He taught at the University of Leipzig from 1899 until his emeritus in 1929.

15



Plan Work

Here, we use the famous Faedo-Galerkin method and �xed point theorem to show the existence

and uniqueness of solutions under some suitable data. Also, we investigate the blow-up phe-

nomena of solutions of problem (1), particularly we try to answer the question: under which

conditions on the parameters p and m, the solution does not exist globally in time ?. And the

obtained results are proved by using a di¤erent method.

The following chapter is number three ( this chapter essentially corresponds to the paper

[74]. Z. Tebba, H. Degaichia and H. Messaoudene, Global existence and �nite time blow-up in

a new class of non-linear viscoelastic wave equation, Journal of Discontinuity, Nonlinearity, and

Complexity, 11 (2) (2022), 275-284.), and it is devoted to studying the global existence and �nite

time blow-up of the following new class of non-linear viscoelastic wave equation8>>>>>><>>>>>>:
utt ��u��utt +

tZ
0

h(t� �)�u(�)d� + cut jutjm�2 = du jujp�2 ; x 2 
; t > 0;

u(x; t) = 0; x 2 @
; t � 0;

u(x; 0) = u0(x); ut(x; 0) = u1(x); x 2 
;

(4)

where 
 be an open bounded Lipschitz domain in Rn (n � 1); with a Lipschitz-countinuous

boundary @
; p > 2;m � 1, and c; d are strictly positive constants. We show that solutions

with arbitrary data continue to exist globally if m � p and blow-up in �nite with negative initial

energy if m < p.

The next chapter is number four ( this chapter present a very recent published work [73]. Z.

Tebba, H. Degaichia, M. Abdalla, B. B. Cherif and I. Mekawy, Blow-Up of Solutions for a Class

Quasilinear Wave Equation with Nonlinearity Variable Exponents, Journal of Function Spaces,

2021 (2021).), it contains four sections, and it is consecrated to study the �nite-time blow-up of

solutions of the following new category of a quasilinear wave equation with variable exponents

nonlinearities8>>><>>>:
utt � div

�
jrujs(:)�2ru

�
��utt + �ut jutjq(:)�2 = �u jujp(:)�2 ; in 
� (0; T ) ;

u(x; t) = 0; on @
� (0; T ) ;

u(x; 0) = u0(x); ut(x; 0) = u1(x) in 
;

(5)

here 
 � Rn (n � 1), be a bounded domain with a smooth boundary @
; �; � > 0 are constants,
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and the exponents p(:); q(:) and s(:) are given log-Hölder continuous functions on 
 such that:

2 � max fq2; s2g < p1 � p(x) � p2 � s�(x); (6)

where

s� (x) =

8><>:
ns(x)

esssup
x2


(n�s(x)) if s2 < n

+1 if s2 � n

;

and

ess inf
x2


(s� (x)� p (x)) > 0:

The �rst and second sections consist of basic assumptions, statements, and well-posedness of

problem, in the third and fourth one, we achieve a �nite time blow-up result for solutions with

negative initial energy and certain solutions with positive energy.

We have �nished this dissertation with a conclusion that contains some perspectives and

proposals for open subjects. At the end of this work, there is an alphabetic list of the references

used to prepare this dissertation under the title References.
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Chapter 1

Background and Basic Concepts

����������������������������������

1- Reminders and Prerequisites (Some Basic Results)

2- Variable Exponents Lebesgue and Sobolev Spaces

3- Notions of Blow-Up

����������������������������������

KeyWords and Phrases: Contraction mapping theorem, variable-exponent spaces, blowup,

modular spaces.

This chapter contains some preliminaries and basic results used throughout this dissertation.

After presenting some essential concepts, notations, and de�nitions which will be useful to us

later. We will introduce some functional spaces, then we mention fundamental concepts used in

this dissertation.
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Background and Basic Concepts

1.1 Reminders and Prerequisites (Some Basic Results)

In this section, we present some material and standard notations that we shall use in order to

present our results.

� Let x = (x1; x2; � � � ; xn) denote the generic point of an open 
 of Rn1. Let u be a de�ned

function of 
 with values in R, on indicated by Diu(x) =
@u(x)

@xi
the partial derivative of

the function u with respect to xi.

� Also de�ne the gradient and the Laplacian of u, respectively as follows

ru =
�
@u

@x1
;
@u

@x2
; � � � ; @u

@xn

�T
and jruj2 =

nX
i=1

���� @u@xi
����2 ;

�u(x) =
nX
i=1

@2u (x)

@x2i
=

�
@2u

@x21
+
@2u

@x22
+ � � �+ @2u

@x2n

�
(x) :

� We denote by C (
) the space of all continuously di¤erentiable functions on 
 with values

in R.

� C0 (
) = fu 2 C (
) : supp u is a compact subset of 
g :

� (C(
))m is the space of continuous functions of 
 with values in Rm.

� Cb
�


�
the space of continuous and bounded functions on 
; we provide it with the standard

k:k1
kuk1 = sup

x2

ju (x)j :

� For k � 1 integer; Ck (
) is the space of functions u which are k times di¤erentiable and

whose derivative of order k is continuous on 
.

� Ckc (
) is the function space of C
k (
), whose support is compact and contained in 
:

1By Rn we denote the n�dimensional Euclidean space, and n 2 N always stands for the dimension of the

space.
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� C10 (
) or D (
) ; is the space of inde�nitely di¤erentiable functions (which is called space

of test functions), with a compact supports contained in 
; having continuous derivatives

of all orders

D (
) = C10 (
) = fu 2 C1 (
) ; 9K � 
; K compact (closed, bounded); u = 0 on Kg :

� The support of a continuous function f de�ned on 
 is the closure of the set of a point

where f(x) is nonzero. That is

supp(f) := fx 2 
=f(x) 6= 0g:

� D0 (
) is the Distribution space.

� We use throughout this dissertation the standard L2(
) and H1(
) spaces.

� The space H1(
)2 is equipped with the norm

kuk2H1(
) = kuk
2
2 + kruk

2
2 ;

where kuk22 = kuk
2
L2(
).

� Also, we take advantage of space

kuk2H1
0 (
)

=
�
u 2 H1(
) : 9 fumg1m=0 � C10 (
) ; such that um ! u in H1(
)

	
;

equipped with the norm:

kuk2H1
0 (
)

= kruk22 ;

if 
 is a bounded domain, where H1
0 (
) is a Hilbert

3 space.

� ut =
@u

@t
; utt =

@2u

@t2
:

2We set H1(
) =W 1;2(
):
3David Hilbert is a German mathematician born January 23, 1862, in KÄonigsberg in Prussia oriental and

died on February 14, 1943, in GÄottingen in Germany. He is often considered one of the greatest mathematicians

of the 20th century, just like Henri Poincaré. He created or developed a wide range of fundamental ideas, be it

the theory of invariants, the axiomatization of geometry, or the foundations of functional analysis (with Hilbert

spaces).
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� Lp(
) =

�
f : 
! R is a measurable function and

Z



jf jp dx <1
�
; where 1 � p <1:

� L1(
) =

8<: f : 
! R is a measurable function and there is a constant C � 0

such that jf (x)j � C a.e. on 


9=; :

� Lploc(
) = ff : 
! R; f is measurable function and f 2 Lp (K) ;8K � 
; K compactg :

� Lp(
) is a Banach space for all 1 � p � 1:

� In particular, when p = 2; L2(
) equipped with the inner product

hu; viL2(
) =
Z



u (x) v (x) dx;

is a Hilbert4 space.

� Lp(
) is a re�exive space for all 1 < p <1:

� Let T > 0 be a real number and X be a real Banach space endowed with norm k:kX : We

consider the following de�nitions:

The space Lp(0; T ;X)5 denotes the space of functions u which are Lp over (0; T ) with values

in X, which are measurable and

kukX 2 Lp(0; T ); Lp(0; T ;X) =
�
u : (0; T )! X is measurable;

Z T

0

ju (t)jpX dt <1
�
:

This space is a Banach space endowed with the norm

kukLp(0;T ;X) :=
�Z T

0

ku (t)kpX dt
� 1

p

< +1;

for 1 � p <1.

� For p =1; L1(0; T ;X) denotes the space of functions

8<: u : ]0; T [! X

t 7! u (t)
which are mea-

surable and kukX 2 L1(0; T );

L1(0; T ;X) =

�
u : (0; T )! X is measurable; ess sup

0<t<T
ju (t)jpX < +1

�
:

4A Hilbert space H is a vectorial space supplied with inner product hu; vi such that kuk =
p
hu; ui is the norm

which let H complete.
5The space Lp(0; T ;X) is complete.
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This space is a Banach space endowed with the norm:

kukL1(0;T ;X) := ess sup
0<t<T

ku (t)kX < +16:

� We recall that ifX and Y are two Banach spaces such thatX ,! Y (continuous embedding),

then

Lp(0; T ;X) ,! Lp(0; T ;Y ); 1 � p � 1:

� The space Lploc(0; T ;X) consists of all measurable functions u : (0; T ) ! X with u 2

Lp([a; b] ;X) for every closed interval [a; b] � (0; T ).

� The space C(0; T ;X) consists of all continuous functions u : [0;T ]! X with

kukC(0;T ;X) := max
0�t�T

kuk < +1:

� The space C1(0; T ;X) consists of all continuously di¤erentiable functions u : [0; T ] ! X

with

kukC1(0;T ;X) := max
0�t�T

kuk+ max
0�t�T

dudt
 < +1:

� Ck(0; T ;X) is the space of functions k�times continuously di¤erentiable for [0; T ]! X:

1.2 Variable Exponents Lebesgue and Sobolev Spaces

In this section, we list brie�y some de�nitions and well-known facts about generalized Lebesgue7

spaces Lp(x) (
), and generalized Sobolev8 spaces Wm;p(x) (
) : These results provide the needful

framework for studying variance problems.

6We use the symbol:= to de�ne the left-hand side by the right-hand side.
7Henri-Léon Lebesgue (1875-1941), better known under the name of Henri Lebesgue, is one of the great French

mathematicians of the �rst half of the 20th century. He is recognized for his theory of integration published initially

in his dissertation Integral, length, area at the University of Nancy in 1902.
8Specialist in di¤erential equations applied to the physical sciences, Sobolev introduces, from 1934, the notion

of generalized function and derivative to better understand the phenomena physical where the concept of function

was insu¢ cient in the search for solutions of equations to partial derivatives. He is thus at the origin of the theory

of distributions developed by his compatriot IsraÄel Guelfand and Frenchman Laurent Schwartz.
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Most of the results are similar to those for Lebesgue spaces Lp (
) and Sobolev spaces

Wm;p (
), but the Sobolev-like embedding theorem and result on density are new; they show

the essential di¤erence between Wm;p(x) (
) and Wm;p (
).

1.2.1 On the Spaces Lp(x) (
) (Variable Exponents Lebesgue Spaces)

Throughout this dissertation, 
 will be a non-empty, open, bounded subset in Rn; n 2 N, and

p will be a measurable function on 
 with values in [1;1). By saying that 
 has a Lipschitz

Boundary we mean that the boundary @
 is locally described by Lipschitz-continuous functions.

We summarize in this subsection the most important basic properties of variable exponent

Lebesgue spaces Lp(�) (see[38; 23�25]). They di¤er from classical Lp spaces in that the exponent

p is not constant but a function from 
 to [1;1), and we will give a brief description of their

main properties.

De�nition 1.1. A function % : X ! [0;1) is said to be left-continuous if the mapping � 7�!

%(�x) is left-continuous on [0;1), for every x 2 X ( in which X be a |-vector space); that is,

lim
�!1�

%(�x) = %(x);8x 2 X:9

De�nition 1.2. A function % : X ! [0;1) in which X be a |-vector space ( where | is either

R or C ), is called a semi-modular on X if the following properties hold

(a) %(0) = 0.

(b) %(�x) = %(x), for all x 2 X and � 2 |; with j�j = 1.

(c) % is convex.

(d) % is left-continuous.

(e) %(�x) = 0, for all � > 0 implies x = 0.

A semi-modular is called modular if

(f) %(x) = 0 implies x = 0:

A semi-modular is named continuous if

(g) the mapping � 7�! %(�x) is continuous on [0;1) for all x 2 X:
9Here a! b� means that a tends to b from below, i.e. a < b and a! b; a! b+ is de�ned analogously.
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Example 1.1. 1) Let L0(
) be the set of all Lebesgue-measurable functions de�ned on 
: If

1 � p < +1, then

%p(f) :=

Z



jf(x)jpdx;

de�nes a continuous modular on L0(
).

2) Let ! 2 L1loc(
) with ! > 0 almost everywhere and 1 � p <1. Then

%(f) :=

Z



jf(x)jp! (x) dx;

de�nes a continuous modular on L0(
).

3) Let '1(t) :=1 � �(1;1)(t) for t � 0, i.e. '1(t) = 0 for t 2 [0; 1] and '1(t) = 1 for t 2

[0;1). Then

%1 (f) :=

Z



'1 (jf (x)j) dx;

de�nes a semi-modular on L0(
) which is not continuous.

Theorem 1.1. [41] Let % be a semi-modular on X. Then, the mapping � 7�! %(�x) is non-

decreasing on [0;1) for every x 2 X, by convexity and non-negativeness of % and %(0) = 0.

Furthermore,

%(�x) = %(j�jx) � j�j%(x) for all j�j � 1; (1.1)

%(�x) = %(j�jx) � j�j%(x) for all j�j � 1:

Proof. - Assume that 0 � � < �; then 0 � �

�
< 1: So for x 2 X we have

%(�x) = %(
�

�
(�x) +

�
1� �

�

�
� 0) � �

�
% (�x) +

�
1� �

�

�
% (0) =

�

�
% (�x) � % (�x) :

Hence for any x 2 X, we have

%(�x) � % (�x) for 0 � � < �:

- For � 6= 0, we have

%(�x) = %(
�

j�j j�jx) = %(j�jx)
�
since

���� �j�j
���� = 1� :
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- For j�j � 1, we have

%(j�jx) = %(j�jx+ (1� j�j) 0) � j�j % (x) + (1� j�j) % (0) = j�j % (x) :

thus,

%(�x) = %(j�jx) � j�j %(x) 8x 2 X and j�j � 1:

- For j�j � 1, we have

%(x) = %(
1

j�j j�jx+
�
1� 1

j�j

�
0) � 1

j�j%(j�jx) +
�
1� 1

j�j

�
%(0) =

1

j�j%(j�jx):

Therefore,

%(�x) = %(j�jx) � j�j %(x) 8x 2 X and j�j � 1:

De�nition 1.3. Let (
; �; �) be a ���nite, complete measure space.

De�nition 1.4. Let P(
; �) be the set of all ��measurable functions p : 
 ! [1;1]. The

functions p 2 P(
; �) are named variable exponents on 
: We introduce

p1 := ess inf
y2


p(y) and p2 := ess sup
y2


p(y):

If p2 < +1, then we call p a bounded variable exponent. If p 2 P(
; �), then p0 2 P(
; �)

de�ned as follows
1

p(y)
+

1

p0(y)
= 1; where

1

1 := 0:

The dual variable exponent of p is the function p0. Particularly when � is the n�dimensional

Lebesgue measure and 
 is an open subset of Rn, we abbreviate P(
) := P(
; �):

De�nition 1.5. Let p : 
! [1;1] be a measurable function, where 
 is a domain of Rn. We

introduce the Lebesgue space with a variable exponent p(�) by

Lp(:) (
) :=
�
u : 
! R; measurable in 
 : %p(:) (�u) <1; for some � > 0

	
;

where

%p(:) (u) =

Z



ju(x)jp(x) dx:
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is a modular, endowed with the following Luxembourg-type norm

kukp(:) := inf

8<:� > 0 :
Z



����u(x)�
����p(x) dx � 1

9=; 10;

Lp(:) (
) is a Banach space.

Remark 1.1. The variable exponent-Lebesgue space is a special case of more general Orlics-

Musielak spaces. For the constant function p(x) = p, the variable exponent-Lebesgue space coin-

cides with classical Lebesgue space.

Example 1.2. Let p (x) = x on 
 = (1; 2): Then, k1kp(:) = 1: Indeed,

%p(:)

�
1

�

�
=

2Z
1

��xdx =
�� 1
�2 ln�

:

Since %p(:) (1) = 1; then, by de�nition of k1kp(:) ; we have k1kp(:) � 1 . Otherwise, it is easy to

verify that %p(:)

�
1

�

�
> 1; for 0 < � < 1: This gives k1kp(:) � 1: Subsequently, we deduce that

k1kp(:) = 1:

Lemma 1.1. If p(x) � p; where p is constant. Then

kukp(�) = �0 =

0@Z



jujp
1A 1

p

: (1.2)

Proof. Since %p(:)

�
u

�0

�
= 1, then

kukp(�) � �0: (1.3)

Next, by employing property of inf, then there exists a sequence f�jg1j=1 = 1 such that �j �

kukp(�), with

%p(:)

�
u

�j

�
� 1 and �j ! kukp(�) :

10

Proof. see Theorem2:1:7: page 24 in reference [41] :
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Since,

%p(:)

�
u

�j

�
=

1

(�j)
p

Z



jujp � 1;

so we get

�0 � kukp(�) : (1.4)

Combining (1:3) and (1:4) gives (1:2).

De�nition 1.6. A function  : 
 ! R is log-Hölder continuous on 
, if there exist A > 0 and

0 < � < 1 such that

j (x)�  (y)j � �A
log jx� yj ; for all x; y 2 
;with jx� yj < �: (1.5)

Lemma 1.2. Let 
 be a domain of Rn. If p : 
! R is a Lipchitz function, then it is log-Hölder

continuous on 
:

Proof. Let x; y 2 
 , with jx� yj < � and 0 < � < 1. Then, since p is Lipchitz, there exists

L > 0 such that

jp(x)� p(y)j � L jx� yj

� � L

log jx� yj (� jx� yj log jx� yj) : (1.6)

Let g(s) = �s log s. Then, g is continuous on [0; 1] and subsequently is bounded. So we get,

0 � �s log s �M . Thus, (1:6) becomes

jp(x)� p(y)j � �A
log jx� yj ;

where A = LM > 0. Therefore, p is log-Hölder continuous.

Example 1.3. Let q(x) = x2 + 2 be de�ned on 
 = B(0; 1). Then q : 
 ! R is log-Hölder

continuous on 
 . Indeed, let (x; y); (x0; y0) 2 
 , with j(x; y)� (x0; y0)j < � and 0 < � < 1.

Then,

jq(x; y)� q(x0; y0)j =
��x2 � x20

��
= jx� x0jjx+ x0j

� 4 log �

log �

� � A

log j(x; y)� (x0; y0)j
;
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where A = 4 log(1=�). Subsequently, q is log-Hölder continuous.

Lemma 1.3. (Unit Ball Property ) [41] Let p 2 P(
; �) and f 2 Lp(
; �) be a measurable

function on 
. Then

(i) kfkp(:) � 1 if and only if %p(:) (f) � 1:

(ii) If kfkp(:) � 1, then %p(:) (f) � kfkp(:) :

(iii) If kfkp(:) � 1, then kfkp(:) � %p(:) (f) :

(iv) kfkp(:) � 1 + %p(:) (f) :

Lemma 1.4. [41] If p is a measurable function on 
 satisfying 1 < p1 � p (x) � p2 < +1, then

for a.e. x 2 
 , we have

min
n
kukp1p(:) ; kuk

p2
p(:)

o
� %p(:) (u) � max

n
kukp1p(:) ; kuk

p2
p(:)

o
;

for any u 2 Lp(:) (
) :

Theorem 1.2. [41] If p 2 P(
; �), then Lp(�)(
; �) is a Banach11 space.

Lemma 1.5. [41] If p : 
! [1;1) is a measurable function with p2 <1; then C10 (
) is dense

in Lp(:) (
) :

Some Useful Inequalities

We want here to recall some algebraic inequalities that we need later in this dissertation

Lemma 1.6. (Cauchy Inequality) Let 
 be an open subset of Rn. For all (a; b) 2 R2

jabj � 1

2
jaj2 + 1

2
jbj2 :

Lemma 1.7. (Cauchy Inequality with " ("�Inequality)) For all " > 0 and (a; b) 2 R2; we

have:

jabj � "

2
a2 +

1

2"
b2:

11Stefan Banach: (30 March 1892 �31 August 1945) was a Polish mathematician who is generally considered

one of the world�s most important and in�uential 20th-century mathematicians. He was the founder of modern

functional analysis and an original member of the Lwów School of Mathematics. His major work was the 1932

book, Théorie des opérations linéaires (Theory of Linear Operations), the �rst monograph on the general theory

of functional analysis.
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Lemma 1.8.
�
H�older

0
s Inequality

�
[41] Let p; q; s 2 P(
; �) such that

1

s (y)
=

1

p (y)
+

1

q (y)
; for a.e. y 2 
:

If f 2 Lp(:)(
; �) and g 2 Lq(:)(
; �); then fg 2 Ls(:)(
; �) and

k fg ks(:)� 2 kfkp(:) kgkq(:) :

By taking p = q = 2; we have the Cauchy12�Schwarz13 inequality: For all u; v 2 L2 (
)������
Z



uvdx

������ �
Z



juvj dx �

0@Z



juj2 dx

1A1=20@Z



jvj2 dx

1A1=2

;

that is to say

kuvkL2(
) � kukL2(
) kvkL2(
) :

Lemma 1.9. (Y oung0s Inequality) [41]

Let p; q; s 2 P(
; �) such that

1

s (y)
=

1

p (y)
+

1

q (y)
; for a.e. y 2 
:

Then for all a; b � 0;
(ab)s(�)

s (:)
� (a)p(�)

p (:)
+
(b)q(�)

q (:)
: (1.7)

By taking s = 1, and 1 < p; q < +1 (p; q; and s are constants), then we have for any " > 0 the

following Young�s14 inequality with " :

ab � "ap + C"b
q;8a; b � 0;

where
1

p
+
1

q
= 1 and C" =

1

q("p)�
q
p

.

12Augustin Louis, Baron Cauchy (August 21, 1789, in Paris - May 23, 1857, in Sceaux (Hauts-de-Seine))

is a French mathematician. He was one of the most proli�c mathematicians, behind Euler, with almost 800

publications.
13Hermann Amandus Schwarz was born on January 25, 1843, in Poland and died on November 30, 1921,

in Berlin. He is a famous mathematician whose work is marked by a strong interaction between analysis and

geometry.
14William Henry Young ( London, October 20, 1863 - Lausanne, July 7, 1942) is an English mathematician

from Cambridge University who worked at the University of Liverpool and that of Lausanne.
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For p = q = 2, we get other writing of Young�s inequality with "

ab � "a2 +
1

4"
b215;

or

jabj � 1

p
" jajp + p� 1

p

����b"
���� p
p�1

;8p > 1;

where " is any positive constant.

Lemma 1.10. (Gronwell0s Inequality) Let T > 0; ' be a function such that ' 2 L1(0; T ); ' � 0,

almost everywhere and � 2 L1(0; T ); � � 0; almost everywhere and '� 2 L1(0; T ); C1; C2 � 0:

Suppose that

� (t) � C1 + C2

tZ
0

' (s)� (s) ds; a.e t 2 ]0; T [ :

So we have

� (t) � C1e

0B@C2 tR
0

'(s)ds

1CA
; a.e t 2 ]0; T [ :

Lemma 1.11. (Minkowski Inequality) For 1 � p � 1, we have :

ku+ vkLp = kukLp + kvkLp :
15

Proof. Taking the well-known result

(2"a� b)2 � 0 for all a; b 2 Rn;

for all " > 0, we have

4"2a2 + b2 � 4"ab � 0:

This implies

4"ab � 4"2a2 + b2;

consequently,

ab � "a2 + b2

4"
:

This ends the proof.
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De�nition 1.7. (Integration by Part) Let (u; v) 2 H1 (
) ; for 1 � i � n so we haveZ



@u

@xi
vdx = �

Z



@v

@xi
udx+

Z
@


uv�id�;

where �i(x) = cos(�; xi) is the directing cosine of the angle between the normal outside @
 at the

point and the xi axis.

Lemma 1.12. (Green0s Formula) 16 For all u 2 H2(
) and v 2 H1(
) we have:

�
Z



�uvdx =

Z



rurvdx�
Z
@


@u

@�
vds;

where
@u

@�
is the normal derivative of u over @
:

Existence Method

Here, we state the �xed point theorem which is called the contraction mapping theorem. We use

this theorem to prove the existence and the uniqueness of the solution of our nonlinear problem.

De�nition 1.8. Let f be a map of a metric space E to it self; i.e. f : E ! E. A point x 2 X

is called a �xed point of f if

f(u) = u:

De�nition 1.9. Let (E; dE) and (F; dF ) be two metric spaces. The map ' : E �! F is called a

contraction if there exists a positive constant C < 1 such that

dF (' (u) ; ' (v)) � CdE (u; v) ;

for all x; y 2 X.

Theorem 1.3. (Contraction Mapping Theorem) Let (E; d) be a complete metric space. If ' :

E �! E is a contraction, then ' admits a unique �xed point.

16George Green (July 1793 - 31 May 1841), physicien britannique.
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1.2.2 On the Spaces Wm;p(x) (
) (Variable Exponents Sobolev Spaces)

In this subsection, we recall some preliminaries and de�nitions about Sobolev spaces with variable

exponents and we study some functional analysis-type properties of these spaces.

De�nition 1.10. (Weak Derivative) Let 
 � Rn be an open set. Suppose that u 2 L1loc(
): Let

� := (�1; � � � ; �n) 2 Nn be a multi-index and let j�j = �1 + � � �+ �n.

If there exists g 2 L1loc(
) such thatZ



u
@j�j 

@�1x1 � � � @�nxn
dx = (�1)j�j

Z



 gdx;

for all  2 C10 (
), then g is called a weak partial derivative of u of order �. The function g is

denoted by @�u or
@j�ju

@�1x1 � � � @�nxn
.

De�nition 1.11. Let m 2 N: The space Wm;p(:) (
) is de�ned as follows

Wm;p(:) (
) :=
�
u 2 Lp(:) (
) such that @j�ju 2 Lp(:) (
) ; 8 j�j � m

	
:

A semi-modular on Wm;p(:) (
) de�ned by

%Wm;p(:)(
) (u) =
P

0�j�j�m
%Lp(:)(
) (@�u) :

This induces a norm [41] given by

kukWm;p(�)(
) := inf
n
� > 0 : %Wm;p(�)(
)

�u
�

�
� 1
o
:=

P
0�j�j�m

k@�ukp(:) :

For m 2 N, the space Wm;p(:) (
) is named Sobolev space and its elements are named Sobolev

functions. Obviously W 0;p(:) (
) = Lp(�)(
) and

W 1;p(:) (
) =
�
u 2 Lp(:) (
) such that ru exists and jruj 2 Lp(:) (
)

	
:

This space is a Banach space with respect to the norm kukW 1;p(:)(
) = kukp(:) + krukp(:) :

We abbreviate kukWm;p(:)(
) to kukm;p(:) and %Wm;p(:)(
) to %m;p(:): The Banach space W
1;p(:)
0 (
)

with p(x) 2 [p1; p2] � [1;1) is de�ned by

W
1;p(:)
0 (
) :=

�
u 2 W 1;1

0 (
) ; (juj ; jruj) 2 Lp(:) (
)
	
:
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An equivalent norm of W 1;p(:)
0 (
) is given by

kuk
W

1;p(:)
0 (
)

= krukp(:) :

If p = 2; then H1
0 (
) =W 1;2

0 (
):

Theorem 1.4. Let p 2 P(
). The space Wm;p(:) (
) is a Banach space, which is re�exive if

1 < p1 � p2 < +1, and separable if p is bounded 17.

De�nition 1.12. Let p 2 P(
) and m 2 N. The Sobolev space Wm;p(:)
0 (
) �with zero boundary

trace�is the closure in Wm;p(:) (
) of the set of Wm;p(:) (
)-functions with compact support, i. e.,

W
m;p(:)
0 (
) = fu 2 Wm;p(�)(
) : u = u�K for a compact K � 
g:

Remark 1.2. [41] Let p 2 P(
) and m 2 N. Then

(i) The space Hm;p(�)
0 (
) is de�ned as the closure of C10 (
) in W

m;p(:) (
). Furthermore, we

set W 1;p(:)
0 (
) to be the closure of C10 (
) in W

1;p(:) (
) : Here we note that the space W 1;p(:) (
)

is usually de�ned in a di¤erent way for the variable exponent case.

(ii) Hm;p(�)
0 (
) � W

m;p(:)
0 (
).

(iii) If p is log-Hölder continuous on 
 , then Wm;p(:)
0 (
) = H

m;p(�)
0 (
).

(iv) The dual of W 1;p(:)
0 (
) is de�ned as W�1;p0(:)

0 (
), in the same way as the usual (classical)

Sobolev spaces, where
1

p(�)+
1

p0(�) = 1.

Theorem 1.5. Let p 2 P(
). The space Wm;p(:)
0 (
) is a Banach space, which is separable if p

is bounded, and re�exive if 1 < p1 � p2 < +1.

Lemma 1.13. (Poincar�e0s Inequality) 18 [41] Let 
 be a bounded domain of Rn and p (:)

satis�es the Log-Hölder continuous property on 
, then

kukp(:) � C krukp(:) ; for all u 2 W 1;p(:)
0 (
) ;

17

Proof. See reference [41] page 249.

18Henri Poincaré (April 29, 1854, in Nancy - July 17, 1912, in Paris) is a mathematician, physicist and, a French

philosopher. Theoretical engineer, his contributions to many �elds of mathematics and physics have radically

changed these two sciences.
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where the positive constant C depends on 
; p1; p2 only.

Remark 1.3. Note that the following inequalityZ



jujp(x) dx � C

Z



jrujp(x) dx;

does not in general hold.

Remark 1.4. The log-Hölder continuity condition on p(:) can be substituted by p (:) 2 C
�
�

�
, if


 is bounded.

Remark 1.5. Inversion of the constant-exponent case, the Poincaré inequality version for modu-

lar does not exist. The following example clari�es that the Poincaré inequality does not generally

hold in a modular form.

Example 1.4. [41] Let p : (�2; 2) ! [2; 3] be a Lipschitz continuous exponent de�ned by

p (x) =

8>>>>>>>>><>>>>>>>>>:

3; if x 2 (�2;�1) [ (1; 2)

2; if x 2
�
�1
2
;
1

2

�
�2x+ 1; if x 2

�
�1;�1

2

�
2x+ 1; if x 2

�
1

2
; 1

�
:

Let u� be a Lipschitz function de�ned by

u� (x) =

8>>><>>>:
�x+ 2�; if x 2 (�2;�1]

�; if x 2 (�1; 1)

��x+ 2�; if x 2 [1; 2) :

Then

% (u�)

%
�
u0�
� =

Z 2

�2
ju�jp(x) dxZ 2

�2

��u0���p(x) dx �
Z 1

2

� 1
2

�2dx

2

Z �1

�2
�3dx

=
1

2�
!1;

as �! 0+:

Now, we recall some basic embedding results which are necessary for the proofs in this dis-

sertation.

34



Background and Basic Concepts

Lemma 1.14. [41] Let 
 be a bounded domain in Rn with a smooth boundary @
. Suppose that

p : 
! [1;1) is a measurable function such that

1 < p1 � p(x) � p2 < +1; for a.e:x 2 
:

If p(x); q(x) 2 C(
) and q(x) < p�(x) in 
 with p�(x) =

8><>:
np(x)

n� p(x)
; if p2 < n

1; if p2 � n:

Then the embedding W 1;p(�)
0 (
) ,! Lq(�)(
) is continuous and compact.

As a special case, we have

Corollary 1.1. [41] Let 
 be a bounded domain in Rn with a smooth boundary @
. Suppose that

p (:) 2 C(
) is a continuous function such that

2 � p1 � p (x) � p2 <
2n

n� 2 ; n � 3: (1.8)

Then the embedding H1
0 (
) ,! Lp(:) (
) is continuous and compact.

1.2.3 Elementary Properties

We list here the most important properties of variable exponent Lebesgue and Sobolev spaces

which hold without advanced conditions on the exponent. In another way, we collect properties

that do not require any regularity of the exponent

For Any Measurable Exponent p

� Lp(�) and W 1;p(�) are Banach spaces.

� The modular %p(�) and the norm k�kp(�) are lower semicontinuous19 with respect to (sequen-

tial) weak convergence and almost everywhere convergence.

� Hölder�s inequality holds.
19Theorem: Let % be a semimodular on X. Then % is lower semicontinuous on X%, i.e.

% (x) � lim inf
k!1

% (xk) ;

for all xk; x 2 X% with xk ! x (in norm) for k !1.
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� Lp(�) is a Banach function space.

� (Lp(�))0 u Lp
0(�) and the norm conjugate formula holds.

For Any Measurable Bounded Exponent p

� Lp(�) and W 1;p(�) are separable spaces.

� The �2�condition holds, i.e. modular convergence and norm convergence are the same.

� Bounded functions are dense in Lp(�) and W 1;p(�):

� C10 is dense in Lp(�):

For Any Measurable Exponent p with 1 < p1 � p2 < 1

� Lp(�) and W 1;p(�) are re�exive.

� Lp(�) and W 1;p(�) are uniformly convex.

1.2.4 Warnings!

In this subsection, we list some results, properties, and techniques from constant exponent spaces

which essentially never hold in the variable exponent setting even when the exponent is very

regular, e.g, p 2 P log20 or p 2 C1
�


�
with 1 < p1 � p2 <1:

- The space Lp(�) is not rearrangement invariant.

- The translation operator

Th : L
p(�) ! Lp(�); Thf(x) := f(x+ h);

is not bounded.

- Young�s convolution inequality

kf � gkp(:) � c kf1k kgkp(:) ;

does not hold.
20P log (
) := fp 2 P (
) : 1=p is globally log-Hölder continuous:g ; such that P (
) : Set of variable exponents.
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- The formula Z



jf (x)jp dx = p

Z 1

0

tp�1 jfx 2 
 : jf (x)j > tgj dt;

has no variable exponent analogue.

- Maximal, Poincaré, Sobolev, etc., inequalities do not hold in a modular form. For instance,

A. Lerner showed that Z
Rn
jMf jp(x) dx � c

Z
Rn
jf jp(x) dx

if and only if p 2 [1;1) is constant.

1.2.5 Similarity

In general, variable-exponent and classical Lebesgue spaces are similar in many aspects. For the

following assertions, see [40]:

- The Hölder inequality holds.

- They are re�exive if and only if 1 < p1 � p2 <1:

- Continuous functions are dense if p2 <1:

- If 
 has a �nite measure and p; q are variable exponents so that p(x) � q(x) almost

everywhere in 
, then the embedding Lq(:)(
) ,! Lp(:)(
) holds.

- The spaces W 1;p(:)
0 (
) and W�1;p0(:)(
) are de�ned by the same way as the usual Sobolev

spaces where p0(:) is the function such that 1
p(x)

+ 1
p0(x) = 1:

1.3 Notions of Blow-Up

We are interested sometimes by the behavior of solutions of a speci�c problem for an evolution

PDE, particularly, if this PDE describe a concrete phenomenon, for example, propagation of

pollutant in the air, if we indicate the concentration of this pollutant in the point x at the time

t by u(t; x), so it is reasonable that one has lim
t!1

u(t; x) = 0 since there will be no pollutant in

the great distance.

From this point of view we begin, and have the following de�nition
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De�nition 1.13. Let 
 � RN and u = u(t; x) be a solution of a given evolution PDE on the

set 
 := [0; T ]� A. We say that u blows up in �nite time T if such that

lim
t!T�

ju (t; x)j = +1:

In this case one has

sup
x2


ju (t; x)j = +1;

and T is called the time of Blow-up.

1.3.1 Referential Examples

Case of ODE

The simplest example to show the blow-up21 phenomena in the case of ordinary di¤erential

equations (ODE) is the following (non-linear) Cauchy problem

x0(t) = x2(t); t > 0; x(0) = x0:

One can show immediately that if x0 > 0 for some T > 0 then, the previous Cauchy problem

admits the unique solution x(t) =
1

T � t
in the interval ]0; T [. This solution is a smooth function

on ]0; T [ and satis�es in particular at lim
t!T�

x(t) = +1. This means that, according to the

previous de�nition, the solution blows up in �nite time. One can think to generalize this remark

as the main phenomenon of ODEs and PDEs.

Case of PDE

The Blow-up�s phenomena appear especially when the unknown function in the considered

problem depends not only on time but also on the spacial variable, especially in the reaction-

di¤usion problems, propagation evolution problems, the famous example is the following Cauchy

problem of Fujita�s equation 8<: ut = �u+ up

u(0; x) = u0(x); x 2 RN :

21If Tmax <1, we say that the solution of our problems blows up and that Tmax is the blow-up time.

If Tmax =1, we say that the solution is global.
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Where the unknown function u = u(t; x) is real-valued, t > 0; p > 1, and � is the classical

Laplace22 operator.

This equation is studied by Fujita in 1966, particularly, he showed that if 1 < p < 1 + 2=N

then all solutions in a given class blow up in �nite time.

22Pierre-Simon Laplace, born March 23, 1749, in Beaumont-en-Auge (Calvados), died March 5

1827 in Paris, was a French mathematician, astronomer, and physicist particularly famous for his work in �ve

volumes Céleste Mechanics.
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Chapter 2

Existence and Blow-Up of a New Class

of Nonlinear Damped Wave Equation

����������������������������������

1- Basic Assumptions

2- The Well-Posedness of the Problem

3- The Main Blow-Up Result

����������������������������������

KeyWords and Phrases: Wave equation, existence and uniqueness, Faedo-Galerkin, blow-

up.

Our purpose in this chapter is to demonstrate the well-posedness and the �nite-time blow-up

of solutions of the following nonlinear wave equation with variable exponents:

8>>><>>>:
utt ��u��utt + autjutjm(�)�2 = bujujp(�)�2; in 
� (0; T )

u (x; t) = 0; on @
� (0; T )

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
;

(2.1)

where 
 is a bounded domain in Rn (n � 1) with a smooth boundary @
; a; b > 0 are constants

and the exponents m(�) and p(�) are given measurable functions de�ned on 
.

This chapter is divided into three sections: Some necessary assumptions needed in this chapter

are presented in Section 2.1. In Section 2.2, we demonstrate the well-posedness of the problem
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by using the famous Faedo Galerkin method. Then, by using the well-known contraction mapping

theorem, we can show the local existence of (2:1). In Section2.3, we list some technical lemmas

and we state with the proof our main result of blow up.
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2.1 Basic Assumptions

We present in this section the most important basic materials that we need in the proof of our

results and achieve the well-posedness of the problem. We utilize the Sobolev space H1
0 (
) and

the standard Lebesgue space L2(
) with their usual scalar products and norms. First, we assume

the following hypotheses:

(H1) The exponents m and p are measurable functions such that either m; p 2 C(�
) or they

satisfy the following log-Hölder continuity condition:

jq (x)� q (y)j � � A

log jx� yj ; for a.e x; y 2 
;with jx� yj < �: (2.2)

A > 0; 0 < � < 11:

(H2) We suppose for the nonlinearity in the damping that

2 � m1 � m(x) � m2 �
2n

n� 2 ; n � 3: (2.3)

2 � m1 � m(x) � m2 < +1; n < 3:

(H3) We suppose for the nonlinearity in the source term that

2 � p1 � p(x) � p2 � 2
n� 1
n� 2 ; n � 3: (2.4)

2 � p1 � p(x) � p2 < +1; n < 3:

(H4) We furthermore suppose that

2 � m1 � m(x) � m2 < p1 � p(x) � p2 �
2n

n� 2 ; (2.5)

this condition is necessary for the result of blow-up.

The energy associated to the problem (2:1) is presented as follows

E(t) :=
1

2

Z



�
u2t + jruj2 + jrutj

2� dx� b

Z



jujp(x)
p(x)

dx; t � 0; (2.6)

direct derivative of (2:6) and using problem (2:1), gives us

E 0 (t) = �a
Z



jut (x; t)jm(x) dx: (2.7)

1almost everywhere, that is to say everywhere except possibly on a set of zero measure.

42



Chapter 2: Existence and Blow-Up of a New Class of Nonlinear Damped Wave
Equation

2.2 The Well-Posedness of the Problem

Our aim in this chapter is to study the local existence and uniqueness (or better local well-

posedness) of the weak solution of the problem (2:1): We consider for this goal the following

initial-boundary value problem:

8>>><>>>:
utt ��u��utt + autjutjm(�)�2 = f (x; t) ; in 
� (0; T )

u (x; t) = 0; on @
� (0; T )

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
;

(2.8)

where a > 0 is a constant, f 2 L2(
� (0; T )); (u0; u1) 2 H1
0 (
)� L2(
), the exponent m(�) is a

given measurable function satisfying (H1)-(H2) and 
 is a bounded domain in Rn with smooth

boundary @
, we will prove the local existence of problem (2:8) by using the Faedo-Galerkin

method. Then, by using the well-known contraction mapping theorem, we can appear the local

existence of (2:1). In our proof, we followed closely the techniques due to Georgiev and Todorova

[31], with appropriate modi�cations imposed by the nature of our problem.

Theorem 2.1. Let m 2 C(�
). Under condition (H2), problem (2; 8) has a unique local solution

u 2 L1((0; T ); H1
0 (
));

ut 2 L1((0; T ); H1
0 (
)) \ Lm(�)(
� (0; T ));

utt 2 L2((0; T ); H�1(
)):

2.2.1 Proof of Theorem 2. 1

Existence

Proof. Here, we prove the local existence by using Faedo-Galerkin�s method, which consists to

construct approximations of the solutions, then we get prior estimates necessary to guarantee

the convergence of approximations. This method has proven to be an e¤ective tool in the study

of nonclassical problems, such problems have been studied by several authors for di¤erent types

of parabolic, hyperbolic, and mixed type equations. We divide our proof into three steps:
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- In the �rst step, we introduce an approach problem in a bounded dimension space Vn which

has a unique solution vn:

- In the second step, we derive the various a priori estimates.

- In the third step, we will pass to the limit of the approximations by using the compactness

of some embedding in the Sobolev spaces.

Let fvjg1j=1 be an orthonormal basis of H1
0 (
), with

��vj = �jvj; in 
;

vj = 0 on @
;

and represent for every n � 1, the �nite-dimensional subspace Vk = spanfv1; :::; vkg. By nor-

malization, we get kvjk2 = 1, denote by �j the related eigenvalues, where vj are solutions of the

previous initial boundary value problem2.

We look for functions

uk(x; t) =
kX
j=1

aj(t)vj;

which satisfy the following approximate problemsZ



uktt (x; t) vj (x) dx+

Z



ruk (x; t)rvj (x) dx (2.9)

+

Z



ruktt (x; t)rvj (x) dx+ a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x) dx
=

Z



f (x; t) vj (x) dx; uk (x; 0) = uk0; ukt (x; 0) = uk1; 8j = 1; 2; � � � ; k;

where uk0 =
kX
i=1

(u0; vi)vi; u
k
1 =

kX
i=1

(u1; vi)vi are two sequences in H1
0 (
) and L

2(
); respectively,

such that

uk0 ! u0 in H1
0 (
) and u

k
1 ! u1 in L2(
):

2Dirichlet�s spectral problem

��ej = �jej ; in 
; j = 1; � � � ;m;

ej = 0 on @
;

admits a sequence of non-zero solutions ej , corresponding to a sequence of eigenvalues �j > 0. The functions ej

will be used as special bases in the Faedo-Galerkin method.
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This generates the system of k ordinary di¤erential equations8<: a00j (t) + �jaj(t) + �ja
00
j (t) = gj(t) +Gj(a

0
1(t); :::; a

0
k(t))

aj(0) = (u0; vj); a0j(0) = (u1; vj); 8j = 1; 2; ::::; k;
(2.10)

where

gj(t) =

Z



f(x; t)vj(x)dx;

and

Gj(a
0
1(t); :::; a

0
k(t)) = �a

Z



�����
kX
i=1

a0i (t) vi (x)

�����
m(x)�2

a0i (t) vi (x) vj (x) dx:

BecauseZ



uktt (x; t)�
Z



�uk (x; t)�
Z



�uktt (x; t) + a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) = Z



f (x; t) ;

then Z



uktt (x; t) vj (x)�
Z



�uk (x; t) vj (x)�
Z



�uktt (x; t) vj (x)

+a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x) = Z



f (x; t) vj (x) ;

hence Z



kX
i=1

a
00

j (t) vj (x) vj (x) dx�
Z
@


ruk (x; t) vj (x) dx

+

Z



ruk (x; t)rvj (x) dx�
Z
@


ruktt (x; t) vj (x) dx

+

Z



ruktt (x; t)rvj (x) dx+ a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x) dx
=

Z



f (x; t) vj (x) dx:

The term
Z
@


ruk (x; t) vj (x) and
Z
@


ruktt (x; t) vj (x) equal zero because vj (x) = 0 on @
; so

we get Z



kX
i=1

a
00

j (t) vj (x) vj (x) +

Z



ruk (x; t)rvj (x)

+

Z



ruktt (x; t)rvj (x) + a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x)
=

Z



f (x; t) vj (x) ;

45



Chapter 2: Existence and Blow-Up of a New Class of Nonlinear Damped Wave
Equation

then Z



kX
i=1

a
00

j (t) vj (x) vj (x)�
Z



�vj (x)u
k (x; t)

+

Z
@


rvj (x)uk (x; t)�
Z



�vj (x)u
k
tt (x; t)

+

Z
@


rvj (x)uktt (x; t) + a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x)
=

Z



f (x; t) vj (x) ;

thus Z



kX
i=1

a
00

j (t) vj (x) vj (x) +

Z



�jvj (x)

kX
i=1

aj (t) vj (x)

+

Z
@


rvj (x)uk (x; t) +
Z



�jvj (x)
kX
i=1

a
00

j (t) vj (x)

+

Z
@


rvj (x)uktt (x; t) + a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x)
=

Z



f (x; t) vj (x) ;

so

a
00

j (t) + �jaj (t) + �ja
00

j (t) +

Z
@


rvj (x)uk (x; t)

+

Z
@


rvj (x)uktt (x; t) + a

Z



��ukt (x; t)��m(x)�2 ukt (x; t) vj (x)
=

Z



f (x; t) vj (x) :

Hence

a
00

j (t) + �jaj (t) + �ja
00

j (t) = gj (t) +Gj(a
0
1(t); � � � ; a0k(t));

where

gj (t) =

Z



f (x; t) vj (x) ;

and

Gj(a
0
1(t); � � � ; a0k(t)) = �a

Z



�����
kX
i=1

a0i (t) vi (x)

�����
m(x)�2 kX

i=1

a0i (t) vi (x) vj (x) dx

�
Z
@


rvj (x)
kX
i=1

ai (t) vi (x)�
Z
@


rvj (x)
kX
i=1

a
00

i (t) vi (x) :
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Now, if we have vj = 0 on @
 so rvj = 0 also on @
, and we obtain that

Gj(a
0
1(t); � � � ; a0k(t)) = �a

Z



�����
kX
i=1

a0i (t) vi (x)

�����
m(x)�2 kX

i=1

a0i (t) vi (x) vj (x) dx:

This system can be solved by standard ODE theory. Thence, we get functions

aj : [0; tk)! R; 0 < tk < T:

Next, we have to appear that tk = T; 8k � 1.

Multiplying (2:9) by a0j(t) and sum over j to obtain

1

2

d

dt

24Z



0@ jukt (x; t)j2dx+ jruk(x; t)j2

+jrukt (x; t)j2

1A dx

35
+a

Z



jukt (x; t)jm(x)dx

=

Z



f(x; t)ukt (x; t)dx:

Integrating over (0; t) to get

1

2

Z



�
jukt (x; t)j2dx+ jruk(x; t)j2 + jrukt (x; t)j2

�
dx+ a

Z t

0

Z



jukt (x; s)jm(x)dxds

=
1

2

Z



�
juk1j2 + jruk0j2 + jruk1j2

�
dx+

Z t

0

Z



f(x; s)ukt (x; s)dxds (2.11)

� 1

2

Z



�
u21 + jru0j2 + jru1j2

�
dx+ "

Z t

0

Z



jukt j2dxds+ c"

Z t

0

Z



f 2dxds

� C" + " sup
(0;tk)

Z



jukt (x; t) j2dx; 8t 2 [0; tk) :

Where

C" =
1

2

Z



�
u21 + jru0j2 + jru1j2

�
dx+ c"

Z t

0

Z



f 2dxds:

Then, we obtain

1

2
sup
(0;tk)

Z



jukt (x; t) j2dx+
1

2
sup
(0;tk)

Z



jruk(x; t)j2dx (2.12)

+
1

2
sup
(0;tk)

Z



jrukt (x; t) j2dx+ a

Z tk

0

Z



jukt (x; s)jm(x)dxds

� C" + " sup
(0;tk)

Z



jukt (x; t) j2dx; 8t 2 [0; tk) :
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Picking " = 1
4
, we arrive at

sup
(0;tk)

Z



jukt (x; t) j2dx+ sup
(0;tk)

Z



jruk(x; t)j2dx

+sup
(0;tk)

Z



jrukt (x; t) j2dx+ a

Z tk

0

Z



jukt (x; s)jm(x)dxds

� C:

Therefore, the solution can be expanded to [0; T ) and, in addition, we get

(uk) is a bounded sequence in L1((0; T ); H1
0 (
))

(ukt ) is a bounded sequence in L
1((0; T ); H1

0 (
)) \ Lm(�) (
� (0; T )) :

Thus, we can extract a subsequence
�
u`
�
such that

u` ! u weakly � in L1((0; T ); H1
0 (
))

u`t ! ut weakly � in L1((0; T ); H1
0 (
)) and weakly in L

m(�)(
� (0; T )):

We can conclude by Lion�s Lemma [48] that u 2 C([0; T ]; H1
0 (
)) so that u(x; 0) has a meaning

3.

Since (u`t) is bounded in L
m(�)(
� (0; T )) then ju`tjm(x)�2u`t is bounded in L

m(�)
m(�)�1 (
� (0; T ));

thence, up to a subsequence,

ju`tjm(x)�2u`t !  weakly in L
m(�)

m(�)�1 (
� (0; T )) :

We have to show that  = jutjm(x)�2ut . We utilize u` instead of uk in (2:9) and integrate

over (0; t) to obtainZ



u`tvj �
Z



u`1vj +

Z t

0

Z



ru`:rvj +
Z t

0

Z



ru`tt:rvj + a

Z t

0

Z



ju`tjm(x)�2u`tvj

=

Z t

0

Z



fvjdx; 8j < `:

As ` goes to +1, we facilely check thatZ



utvj �
Z



u1vj +

Z t

0

Z



ru:rvj +
Z t

0

Z



rutt:rvj + a

Z t

0

Z



jutjm(x)�2utvj

=

Z t

0

Z



fvjdx; 8j � 1:

3In the case p = 1 the symbol * is posed to show that the de�nition of weak convergence in L1(
) is not

entirely the same as in the spaces Lp(
); 1 � p <1. Indeed, the dual of L1(
) is strictly larger than L1(
):
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Therefore, Z



utv �
Z



u1v +

Z t

0

Z



ru:rv +
Z t

0

Z



rutt:rv + a

Z t

0

Z



jutjm(x)�2utv

=

Z t

0

Z



fvdx; 8v 2 H1
0 (
) :

All terms de�ne absolute continuous functions; so we obtain, for a.e t 2 [0; T ],

d

dt

Z



utv +

Z



(ru:rv +rutt:rv + a v) =

Z



fv;8v 2 H1
0 (
) : (2.13)

This implies that

utt ��u��utt +  = f; in D0 (
� (0; T )) : (2.14)

For simplicity, let A(v) = jvjm(x)�2v and de�ne

X` =

Z T

0

Z



(A(u`t)� A(v))(u`t � v)dt � 0; 8v 2 Lm(�)((0; T ); H1
0 (
)):

Employing (2:11) and exchaging uk by u` to obtain

X` =

Z T

0

Z



fu`t +
1

2

Z



���u`1��2 + ��ru`0��2 + ��ru`1��2�
�1
2

Z



��u`t (x; T )��2 � 12
Z



��ru` (x; T )��2 (2.15)

�1
2

Z



��ru`t (x; T )��2 � Z T

0

Z



A(u`t)v

�
Z T

0

Z



A(v)(u`t � v):

Taking `!1; we get

0 � lim supX` �
Z T

0

Z



fut +
1

2

Z



�
u21 + jru0j

2 + jru1j2
�

�1
2

Z



jut (x; T )j2 �
1

2

Z



jru (x; T )j2 (2.16)

�1
2

Z



jrut (x; T )j2 �
Z T

0

Z



 v

�
Z T

0

Z



A(v)(ut � v):
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Remplacing v by ut in (2:13) and integrating over (0; T ) to obtainZ T

0

Z



fut =
1

2

Z



jut (x; T )j2 (2.17)

�1
2

Z



u21 +
1

2

Z



jru (x; T )j2

�1
2

Z



jru0j2 +
1

2

Z



jrut (x; T )j2

�1
2

Z



jru1j2 +
Z T

0

Z



 ut:

Addition of (2:16) and (2:17) yields

0 � lim supX`

`
�
Z T

0

Z



 ut �
Z T

0

Z



 v �
Z T

0

Z



A(v)(ut � v):

That is, Z T

0

Z



( � A(v)) (ut � v)dt � 0; 8v 2 Lm(�)
�
(0; T ); H1

0 (
)
�
:

Thence, Z T

0

Z



( � A(v)) (ut � v)dt � 0; 8v 2 Lm(�) (
� (0; T )) ;

by density of H1
0 (
) in L

m(�)(
) (Lemma1:5) :

Now, let v = �w + ut; w 2 Lm(�) (
� (0; T )). Thus, we obtain

��
Z T

0

Z



( � A(�w + ut))w � 0; 8� 6= 0;8w 2 Lm(�) (
� (0; T )) :

For � > 0, we get Z T

0

Z



( � A(�w + ut))w � 0; 8w 2 Lm(�) (
� (0; T )) :

As �! 0 and using the continuity of A with respect to �, we haveZ T

0

Z



( � A(ut))w � 0; 8w 2 Lm(�) (
� (0; T )) :

Likewise, for � < 0, we getZ T

0

Z



( � A(ut))w � 0; 8w 2 Lm(�) (
� (0; T )) :

This means that  = A(ut). So (2:13) becomesZ



�
uttv +ru:rv +rutt:rv + ajutjm(x)�2utv

�
=

Z



fv; 8v 2 Lm(�)((0; T )� H1
0 (
));
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which gives

utt ��u��utt + ajutjm(x)�2ut = f; in D0(
� (0; T )):

To deal with the initial conditions, we note that

ul ! u weakly � in L1
�
(0; T ) ; H1

0 (
)
�

(2.18)

ult ! ut weakly � in L1
�
(0; T ); H1

0 (
)
�
:

And so, employing Lions�Lemma [48] gives us

ul ! u in C([0; T ]; H1
0 (
)): (2.19)

Therefore, ul(x; 0) makes sense and ul(x; 0) ! u(x; 0) in H1
0 (
).

Also we have that

ul(x; 0) = ul0(x)! u0(x) in H1
0 (
) :

So

u(x; 0) = u0(x): (2.20)

As in [49], let � 2 C10 ([0; T ]) and substituting (u
k) by (ul), we get from (2:9) and for any j � l

that

�
Z T

0

Z



ult(x; t)vj(x)�
0(t)dxdt = �

Z T

0

Z



rul(x; t)rvj(x)�(t)dxdt (2.21)

�
Z T

0

Z



rultt(x; t)rvj(x)�(t)dxdt

�a
Z T

0

Z



��ult(x; t)��m(x)�2 ult(x; t)vj(x)�(t)dxdt
+

Z T

0

Z



f (x; t) vj(x)�(t)dxdt:

As l!1, so, we have

�
Z T

0

Z



ut(x; t)vj(x)�
0(t)dxdt

= �
Z T

0

Z



ru(x; t)rvj(x)�(t)dxdt
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�
Z T

0

Z



rutt(x; t)rvj(x)�(t)dxdt

�a
Z T

0

Z



jut(x; t)jm(x)�2ut(x; t)vj(x)�(t)dxdt

+

Z T

0

Z



f (x; t) vj(x)�(t)dxdt; (2.22)

for all j � 1. This implies

�
Z T

0

Z



ut(x; t)v(x)�
0(t)dxdt =

Z T

0

Z



26664
�u+�utt

�ajut(x; t)jm(x)�2ut(x; t)

+f (x; t)

37775 v(x)�(t)dxdt; (2.23)

for all v 2 H1
0 (
). This means utt 2 L

m(�)
m(�)�1 ([0; T ); H�1(
)) and u solves the equation

utt ��u��utt + ajutjm(�)�2ut = f: (2.24)

Consequently, ut 2 L1([0; T ); H1
0 (
)), utt 2 L

m(�)
m(�)�1 ([0; T ); H�1(
)): Thus,

ut 2 C([0; T ); H�1(
)): (2.25)

So, ult(x; 0) makes sense (see[49; p:116]). And from it we conclude that

ult(x; 0)! ut(x; 0) in H�1(
):

But

ult(x; 0) = ul1(x)! u1(x) in H1
0 (
):

Thence

ut(x; 0) = u1(x): (2.26)
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Uniqueness

Proof. Assume that (2:8) has two solutions u and v. Then, w = u� v satis�es8>>><>>>:
wtt ��w ��wtt + autjutjm(�)�2 � avtjvtjm(�)�2 = 0; in 
� (0; T )

w (x; t) = 0; on @
� (0; T )

w (x; 0) = wt (x; 0) = 0; in 
:

Multiply by wt and integrate over 
, to get

1

2

d

dt

�Z



w2t +

Z



jrwj2 +
Z



jrwtj2
�
+ a

Z



�
utjutjm(x)�2 � vtjvtjm(x)�2

�
(ut � vt) dx = 0:

Integrate over (0; t), to obtainZ



�
w2t + jrwj

2 + jrwtj2
�
+ 2a

Z t

0

Z



�
utjutjm(x)�2 � vtjvtjm(x)�2

�
(ut � vt) dx = 0:

Using the inequality

(jajm(x)�2a� jbjm(x)�2b):(a� b) � 0; for all a; b 2 Rn and a.e:x 2 
;

we �nd Z



�
w2t + jrwj

2 + jrwtj2
�
= 0;

which conduces that w = C = 0, as w = 0 on @
. Therefor, the uniqueness.

This ends the proof of Theorem2:1:

We need now the following lemma to present the result of well-posedness of our problem

Lemma 2.1. For almost everywhere x 2 
 and p(�) satisfying

2 < p1 � p(x) � p2 < +1;

the function g(s) = bjsjp(x)�2s is di¤erentiable and jg0(s)j = jbj jp(x)� 1j jsjp(x)�2.

Theorem 2.2. Suppose that m; p 2 C
�
�

�
and

(u0; u1) 2 H1
0 (
)� L2(
):

Under the assumptions (H2),(H3), then problem (2:1) admits a unique local solution

u 2 L1((0; T ); H1
0 (
));

ut 2 L1((0; T ); H1
0 (
)) \ Lm(�)(
� (0; T )); (2.27)

utt 2 L2((0; T ); H�1(
)):
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2.2.2 Proof of Theorem 2. 2

Existence

Proof. Let v 2 L1((0; T ); H1
0 (
)): Then

kg(v)k22 = jbj2
Z



jvj2(p(x)�1)dx

� jbj2
�Z




jvj2(p2�1)dx+
Z



jvj2(p1�1)dx
�

< +1;

since

2(p1 � 1) � 2(p2 � 1) �
2n

n� 2 :

Therefore, in this case,

g(v) 2 L1((0; T ); L2(
)) � L2(
� (0; T )):

So, for each v 2 L1((0; T ); H1
0 (
)) there exists a unique

u 2 L1((0; T ); H1
0 (
));

ut 2 L1((0; T ); H1
0 (
)) \ Lm(�)(
� (0; T ));

satisfying the nonlinear problem8>>><>>>:
utt ��u��utt + autjutjm(�)�2 = g (v) ; in 
� (0; T )

u (x; t) = 0; on @
� (0; T )

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
:

(2.28)

We de�ne a map G : XT ! XT by G(v) = u, where

XT =
�
w 2 L1((0; T ); H1

0 (
)) = wt 2 L1((0; T ); H1
0 (
))

	
:

XT is Banach space with respect to the norm

kwkXT = kwkL1((0;T );H1
0 (
))

+ kwtkL1((0;T );H1
0 (
))

:
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Multiplying the �rst equation in (2:28) by ut and integrating over 
� (0; t), to obtain

1

2

Z



u2t +
1

2

Z



jruj2 + 1
2

Z



jrutj2 + a

Z t

0

Z



jutjm(x) =
1

2

Z



u21 +
1

2

Z



jru0j2 +
1

2

Z



jru1j2

+b

Z t

0

Z



jvjp(x)�2vut: (2.29)

Young�s inequality gives usZ



jvjp(x)�2vut � "

4

Z



u2tdx+
4

"

Z



jvj2p(x)�2dx

� "

4

Z



u2tdx+
4

"

�Z



jvj2p2�2 +
Z



jvj2p1�2
�

� "

4

Z



u2tdx+
ce
"

�
krvk2p2�22 + krvk2p1�22

�
:

Thence (2:29) becomes

1

2

Z



u2t +
1

2

Z



jruj2 + 1
2

Z



jrutj2 � �0 +
jbj"T
4
sup
(0;T )

Z



u2t +
jbjce
"

�Z T

0

krvk2p2�22 + krvk2p1�22

�
;

hence we have

1

2
sup
(0;T )

Z



u2t+
1

2
sup
(0;T )

Z



jruj2+1
2
sup
(0;T )

Z



jrutj2 � 2�0+
jbj"T
2
sup
(0;T )

Z



u2t+Tc"
�
kvk2p2�2XT

+ kvk2p1�2XT

�
;

with

�0 :=
1

2
ku1k22 +

1

2
kru0k22 +

1

2
kru1k22 ;

and ce is the embedding constant.

Choosing " such that
jbj"T
2

=
1

4
, we get

kuk2XT � �+ T�
�
kvk2p2�2XT

+ kvk2p1�2XT

�
:

Assume that kvkXT �M , for some M large. Then

kuk2XT � �+ T�M2p2�2 �M2;

if

M2 � � and T � T0 <
M2 � �

�M2p2�2
:
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We deduce that G : B ! B, where

B =
n
w 2 L1((0; T ); H1

0 (
)); wt 2 L1((0; T ); H1
0 (
)) such that kwkXT0 �M

o
:

Then, we clarify that, for T0 (even smaller), G is a contraction. For this goal, let u1 = G(v1) and

u2 = G(v2) and set u = u1 � u2 then u satis�es8>>>>>><>>>>>>:

utt ��u+ a
�
u1tju1tjm(�)�2 � u2tju2tjm(�)�2

�
��utt

= b
�
jv1jp(x)�2v1 � v2jp(x)�2v2

�
; in 
� (0; T )

u (x; t) = 0; on @
� (0; T )

u (x; 0) = u0 (x) ; ut (x; 0) = u1 (x) ; in 
:

(2.30)

We multiply by ut and integrate over 
� (0; t) to get
1

2

Z



u2t +
1

2

Z



jruj2 + 1
2

Z



jrutj2 (2.31)

+a

Z t

0

Z



�
ju1tjm(x)�2u1t � ju2tjm(x)�2u2t

�
(u1t � u2t)

= b

Z t

0

Z



(g(v1)� g(v2))utdxds:

And then, we have

1

2

Z



u2t +
1

2

Z



jruj2 + 1
2

Z



jrutj2 � b

Z t

0

Z



(g(v1)� g(v2))utdxds: (2.32)

We calculate now the term

I =

Z



jg(v1)� g(v2)j jutj =
Z



jg0 (�)j jvj jutj ;

where v = v1 � v2 and

� = �v1 + (1� �)v2; 0 � � � 1:

Young�s inequality implies

I � �

2

Z



u2t +
2

�

Z



jg0 (�)j2 jvj2

� �

2

Z



u2t +
2a2 (p2 � 1)2

�

Z



j�v1 + (1� �) v2j2(p(x)�2) jvj2

� �

2

Z



u2t + c�

�Z



jvj
2n
n�2

�n�2
n

24�Z



j�v1 + (1� �) v2jn(p2�2)
� 2
n

+

�Z



j�v1 + (1� �) v2jn(p1�2)
� 2
n

35 :
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Exploit (2:4) to obtain

I � �

2

Z



u2t + c�ce krvk22
h
krv1k2(p2�2)2 + krv1k2(p1�2)2 + krv2k2(p2�2)2 + krv2k2(p1�2)2

i
� �

2

Z



u2t + 4c�ceM
2(p2�2) krvk22 :

Thus, (2:32) takes the form

1

2
kuk2XT �

�

2
T0b kuk2XT + C�M

2(p2�2)T0b kvk2XT :

Choosing � small enough, we arrive at

kuk2XT � 4C�M
2(p2�2)T0b kvk2XT = T0 kvk2XT :

By taking T0 small enough, we get

kuk2XT � d kvk2XT ; for 0 < d < 1:

Therefore G is a contraction. The Banach4 �xed theorem implies the existence of a unique u 2 B

satisfying G(u) = u. So, u is a local solution of (2:1).

Uniqueness

Proof. Assume that we have two solutions u and v. So w = u� v satis�es8>>>>>><>>>>>>:

wtt ��w ��wtt + autjutjm(�)�2 � avtjvtjm(�)�2

= bujujp(�)�2 � bvjvjp(�)�2; in 
� (0; T )

w (x; t) = 0; on @
� (0; T )

w (x; 0) = wt (x; 0) = 0; in 
:

We multiply the previous equation by wt and integrate over 
� (0; t) to obtain

1

2

Z



w2t +
1

2

Z



jrwj2 + 1
2

Z



jrwtj2

+a

Z t

0

�Z



utjutjm(x)�2 � vtjvtjm(x)�2
�
(ut � vt) (2.33)

= b

Z t

0

�Z



ujujp(x)�2 � vjvjp(x)�2
�
wtdx;

4Stefan Banach (1892 - 1945) was a Polish mathematician.
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this implies

1

2

Z



w2t +
1

2

Z



jrwj2 + 1
2

Z



jrwtj2 � b

Z t

0

Z



�
ujujp(x)�2 � vjvjp(x)�2

�
wtdx:

As in above, we repeat the same estimates to arrive atZ



w2t + jrwj
2 + jrwtj2 � C

Z t

0

Z



�
w2t (x; s) + jrw (x; s)j

2 + jrwt (x; s)j2
�
dxds:

Gronwell�s inequality yields Z



�
w2t + jrwj

2 + jrwtj2
�
= 0:

Consequently, w � 0. So the uniqueness is evident.

The proof of Theorem 2:2 is �nished.

2.3 The Main Blow-Up Result

The focus of this chapter is to study the blow-up phenomenon of our problem. We �rst list

several lemmas that we need to prove our result.

2.3.1 Technical Lemmas

Lemma 2.2. Suppose the conditions of Corollary1:1 hold. Then there exists a positive C > 1,

depending on 
 only, such that

%
s
p1 (u) � C(kruk22 + %(u)); (2.34)

for any u 2 H1
0 (
) and 2 � s � p1:

Proof. If %(u) > 1, then %
s
p1 (u) � %(u) � C(kruk22 + %(u)); where C > 1. If %(u) � 1 so, by

Lemma1:3 (i), kukp(�) � 1. Then, Corollary1:1 and Lemma1:4 imply

%
s
p1 (u) � %

2
p1 (u) �

h
max

n
kukp1p(�) ; kuk

p2
p(�)

oi 2
p1

= kuk2p(�) � C kruk22 :

The proof of Lemma2:2 is �nished.
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As a special case, we have

Corollary 2.1. Assume that the assumptions of Lemma2:2 hold. Then we have

kuksp1 � C(kruk22 + kuk
p1
p1
); (2.35)

for any u 2 H1
0 (
) and 2 � s � p1:

We set

H(t) := �E(t);

throughout these steps, we use C to denote a generic positive constant depending on 
 only.

As a result of (2:6) and (2:34), we get:

Corollary 2.2. Assume that the assumptions of Lemma2:2 hold. Then we have

%
s
p1 (u) � C(jH (t)j+ kutk22 + krutk

2
2 + %(u)): (2.36)

for any u 2 H1
0 (
) and 2 � s � p1:

As a special case, we obtain:

Corollary 2.3. Assume that the assumptions of Lemma2:2 hold. Then we have

kuksp1 � C(jH (t)j+ kutk22 + krutk
2
2 + kuk

p1
p1
); (2.37)

for any u 2 H1
0 (
) and 2 � s � p1:

Lemma 2.3. Assume that the assumptions of Lemma2:2 hold and let u be the solution of (2:1).

Then,

%(u) � C kukp1p1 : (2.38)

Proof. We have

%(u) =

Z



jujp(x) dx =
Z

+

jujp(x) dx+
Z

�

jujp(x) dx;

where


+ = fx 2 
 / ju (x; t)j � 1g and 
� = fx 2 
 / ju (x; t)j < 1g ;
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thence, we get

%(u) �
Z

+

jujp1 +
Z

�

jujp2

�
Z

+

jujp1 + c1

�Z

�

jujp1
� p2

p1

:

This implies that

c2 (%(u))
p1
p2 �

Z

�

jujp1 and %(u) �
Z

+

jujp1 ;

and, so,

c2 (%(u))
p1
p2 + %(u) � kukp1p1 : (2.39)

Since

0 < H(0) � H(t) � b

p1
%(u);

then (2:39) leads to

%(u)

�
1 + c2

�p1
b
H(0)

� p1
p2
�1
�
� kukp1p1 :

Thus, (2:38) follows.

Lemma 2.4. Let u be the solution of (2:1) and suppose that (2:5) holds. Then,Z



jujm(x) dx � C

�
(%(u))

m1

p1 + (%(u))
m2

p1

�
: (2.40)

Proof. Z



jujm(x) dx �
Z

�

jujm1 dx+

Z

+

jujm2 dx

� C

"�Z

�

jujp1 dx
�m1

p1
+

�Z

+

jujp1 dx
�m2

p1

#
� C

�
kukm1

p1
+ kukm2

p1

�
� C

�
(%(u))

m1

p1 + (%(u))
m2

p1

�
;

by Lemma2:3:
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2.3.2 The Main Result

In this subsection, we are in the process to state and proving our blow-up result, for this goal,

we give the following theorem

Theorem 2.3. Let the conditions of Theorem2:2 be ful�lled. Assume further that (H4) holds

and

E(0) < 0: (2.41)

Then the solution of problem (2:1) belonging to the class (2:27) blows up in �nite time.

2.3.3 Proof of the Main Result

Proof. Multiplying (2:1) by ut and integrating over 
 to obtain

E 0 (t) = �a
Z



jut (x; t)jm(x) dx; (2.42)

for almost every t in [0; T ) since E(t) is absolutely continuous (see [31]); thence H 0(t) � 0 and

0 < H(0) � H(t) � b

p1
%(u); (2.43)

for every t in [0; T ), by virtue of (2:41). We then de�ne

L(t) := H1��(t) + "

Z



uut(x; t)dx; (2.44)

for " small to be selected later and

0 < � � min
�
p1 � 2
2p1

;
p1 �m2

p1 (m2 � 1)

�
: (2.45)

We derive (2:44) and use Eq. (2:1) to get

L0(t) = (1� �)H��(t)H 0(t) + "

Z



u2t (x; t)dx+ "

Z



uutt(x; t)dx;
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L0(t) = (1� �)H��(t)H 0(t) + "

Z



u2t (x; t)dx

+"

Z



u
�
�u+�utt � aut jutjm(x)�2 + bu jujp(x)�2

�
;

L0(t) = (1� �)H��(t)H 0(t) + "

Z



u2t (x; t)dx

+"

Z



�
u�u+ u�utt � auut jutjm(x)�2 + b jujp(x)

�
;

L0(t) = (1� �)H��(t)H 0(t) + "

Z



�
u2t � jruj

2 + jrutj2
�

�"
Z



d

dt
frutrug � a"

Z



uut jutjm(x)�2 + "b

Z



jujp(x) ;

L0(t) +
d

dt

�
"

Z



frutrug
�

= (1� �)H��(t)H 0(t) + "

Z



�
u2t � jruj

2 + jrutj2
�

�a"
Z



uut jutjm(x)�2 + "b

Z



jujp(x) ;

L0(t) +
d

dt

�
"

Z



frutrug
�

= (1� �)H��(t)H 0(t) (2.46)

+"

Z



�
u2t � jruj

2 + jrutj2
�

+"b

Z



jujp(x) � a"

Z



uut jutjm(x)�2 :

Then exploit Young�s inequality

XY � �r

r
Xr +

��q

q
Y q; X; Y � 0; for all � > 0; 1

r
+
1

q
= 1;

with r = m and q = m=(m� 1) to estimate the last term in (2:46) as followsZ



jutjm(x)�1 juj dx �
1

m1

Z



�m(x) jujm(x) + m2 � 1
m2

Z



��m(x)=m(x)�1 jutjm(x) ;

which yields, by substitution in (2:46)

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)H��(t)� "

�
m2 � 1
m2

�
��m(x)=m(x)�1

�
H 0 (t)

+"

Z



�
u2t � jruj

2 + jrutj2
�
+ "

24 p1H (t) +
p1
2

R


u2t

+p1
2

R


jruj2 + p1

2

R


jrutj2

35
�a" 1

m1

Z



�m(x) jujm(x) : (2.47)
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Of course (2:47) remains valid even if � is time dependant since the integral is taken over the x

variable.

Thus by taking � so that ��m(x)=m(x)�1 = kH�� (t), for large k to be given later, and substi-

tuting in (2:47) we arrive at

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t)

+"

Z



u2t � "

Z



jruj2 + "

Z



jrutj2 + "p1H (t)

+
"p1
2

Z



u2t +
"p1
2

Z



jruj2

+
"p1
2

Z



jrutj2 � a"
1

m1

Z



�m(x) jujm(x) ;

then

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t)

+"
�p1
2
+ 1
�Z




u2t + "
�p1
2
� 1
�Z




jruj2

+"
�p1
2
+ 1
�Z




jrutj2 (2.48)

+"

�
p1H (t)� a

k1�m1

m1

H�(m2�1) (t)

Z



jujm(x) dx
�
:

By exploiting (2:43) and the inequality (2:40 (lemma 2:4)), we obtain

H�(m2�1)(t)

Z



jujm(x) dx �
�
b

p1

��(m2�1)

C
�
jjujjm1+�p1(m2�1)

p1
+ jjujjm2+�p1(m2�1)

p1

�
;

hence (2:48) yields

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) (2.49)

+"
�p1
2
+ 1
�Z




u2t + "
�p1
2
� 1
�Z




jruj2

+"
�p1
2
+ 1
�Z




jrutj2

+"

"
p1H (t)� a

k1�m1

m1

�
b

p1

��(m2�1)

��
jjujjm1+�p1(m2�1)

p1
+ jjujjm2+�p1(m2�1)

p1

��
:
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We use Lemma2:2 and (2:45), for s = m2 + �p1(m2 � 1) � p1 and s = m1 + �p1(m2 � 1) � p1 ,

to deduce from (2:49)

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t)

+"
�p1
2
+ 1
�Z




u2t + "
�p1
2
� 1
�Z




jruj2 (2.50)

+"
�p1
2
+ 1
�Z




jrutj2 + " [p1H (t)

�k1�m1C1

�
H (t) + kutk22 + krutk

2
2 + kuk

p1
p1

�i
;

where C1 = 2a
�
b

p1

��(m2�1)

C=m1: By noting that

H (t) =
b

p1
kukp1p1 �

1

2
kutk22 �

1

2
kruk22 �

1

2
krutk22 ;

and writing p1 = (p1 + 2) =2 + (p1 � 2) =2; (2:50) yields

M 0 (t) �
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) + "

�p1
2
+ 1
�
kutk22

+"
�p1
2
� 1
�
kruk22 + "

�p1
2
+ 1
�
krutk22

+"p1H (t)� "k1�m1C1H (t)� "C1k
1�m1 kutk22

�"C1k1�m1 krutk22 � "C1k
1�m1 kukp1p1 ;

M 0 (t) �
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) + "

��p1
2
+ 1
�
� C1k

1�m1

�
kutk22

+"
�p1
2
� 1
�
kruk22 + "

�p1
2
+ 1� C1k

1�m1

�
krutk22

+
�
"p1 � "k1�m1C1

�
H (t)� "C1k

1�m1 kukp1p1 ;

M 0 (t) �
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) + "

��p1
2
+ 1
�
� C1k

1�m1

�
kutk22

+"
�p1
2
� 1
�
kruk22 + "

�p1
2
+ 1� C1k

1�m1

�
krutk22

+

�
"
p1 + 2

2
� "k1�m1C1

�
H (t)� "C1k

1�m1 kukp1p1 + "
p1 � 2
2

H (t) ;

M 0 (t) �
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) + "

��p1
2
+ 1
�
� C1k

1�m1

�
kutk22
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+"
�p1
2
� 1
�
kruk22 + "

�p1
2
+ 1� C1k

1�m1

�
krutk22

+

�
"
p1 + 2

2
� "k1�m1C1

�
H (t)� "C1k

1�m1 kukp1p1

+"
p1 � 2
2

�
b

p1
kukp1p1 �

1

2
kutk22 �

1

2
kruk22 �

1

2
krutk22

�
;

�
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) + "

��p1
2
+ 1
�
� C1k

1�m1

�
kutk22

+"
�p1
2
� 1
�
kruk22 + "

�p1
2
+ 1� C1k

1�m1

�
krutk22

+

�
"
p1 + 2

2
� "k1�m1C1

�
H (t)� "C1k

1�m1 kukp1p1

+"
p1 � 2
2

b

p1
kukp1p1 � "

p1 � 2
4

kutk22

�"p1 � 2
4

kruk22 � "
p1 � 2
4

krutk22 ;

M 0 (t) �
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) + "

��
p1 + 6

4

�
� C1k

1�m1

�
kutk22

+"

�
p1 � 2
4

�
kruk22 +

�
"
p1 + 2

2
� "k1�m1C1

�
H (t)

+

�
"
p1 � 2
2

b

p1
� "C1k

1�m1

�
kukp1p1 + "

�
p1 + 6

4
� C1k

1�m1

�
krutk22 ; (2.51)

where

L0(t) +
d

dt

�
"

Z



frutrug
�
=M 0 (t) :

At this point, we choose k large enough so that the coe¢ cients of H(t); kutk22 ; krutk
2
2 and kuk

p1
p1

in (2:51) are strictly positive, hence we get

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)� m2 � 1

m2

"k

�
H��(t)H 0 (t) (2.52)

+"
h
H (t) + kutk22 + krutk

2
2 + kuk

p1
p1

i
;

where  > 0 is the minimum of these coe¢ cients. Once k is �xed (hence ), we pick " small

enough so that (1� �)� "k(m2 � 1)=m2 � 0 and

L(0) = H1��(0) + "

Z



u0u1 (x) dx > 0:

Therefore (2:52) takes the form

L0(t) +
d

dt

�
"

Z



frutrug
�
� "

h
H (t) + kutk22 + krutk

2
2 + kuk

p1
p1

i
: (2.53)
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Thus we get

L(t) � L(0) > 0; for all t � 0:

Next we would like to show that

L0(t) +
d

dt

�
"

Z



frutrug
�
� �L1=(1��)(t); for all t � 0; (2.54)

where � is a positive constant depending on " and C (the constant of Corollary2:1).

Once (2:54) is determined, we obtain in a standard way the �nite time blow up of L(t), hence

of u.

To prove (2:54), we �rst estime����Z



uut (x; t) dx

���� � kuk2 kutk2

� C
�
kukp1 kutk2

�
;

which implies ����Z



uut (x; t) dx

����1=(1��) � C kuk1=(1��)p1
kutk1=(1��)2 :

Again Young�s inequality gives����Z



uut (x; t) dx

����1=(1��) � C
h
kuk�=(1��)p1

+ kutk�=(1��)2

i
; (2.55)

for 1=�+ 1=� = 1. Let � = 2=(1� �), to obtain �=(1� �) = 2=(1� 2�) � p1 by (2:45).

Therefore (2:55) becomes����Z



uut (x; t) dx

����1=(1��) � C
h
kuksp1 + kutk

2
2

i
;

where s = 2=(1� 2�) � p1. By using Corollary2:3; we get����Z



uut (x; t) dx

����1=(1��) � C
h
H (t) + kutk22 + krutk

2
2 + kuk

p1
p1

i
; for all t � 0: (2.56)

Finally by noting that

L1=(1��)(t) =

�
H1��(t) + "

Z



uut (x; t) dx

�1=(1��)
� 21=(1��)

 
H (t) +

����Z



uut (x; t) dx

����1=(1��)
!
;
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and combining it with (2:53) and (2:56), the inequality (2:54) is established. A simple integration

of (2:54) over (0:t) then yieldsZ t

0

dL (t)

dt
�

Z t

0

�L1=(1��)(t)�
Z t

0

d

dt

�
"

Z



frutrug
�

(2.57)Z t

0

dL (t)

L1=(1��)(t)
�

Z t

0

�dt+
"

L1=(1��)(t)

Z



�utudxZ t

0

L�1=(1��)(t)dL (t) �
Z t

0

�dt+
"

L1=(1��)(t)

Z



�utudx

L�=(1��)(t) � 1

L��=(1��)(0)� �t�= (1� �)
+

"

L1=(1��)(t)

Z



�utudx

L�=(1��)(t) � 1

L��=(1��)(0)� �t�= (1� �)
:

Thence (2:57) shows that L(t) blows up in �nite time

T � � 1� �

��[L(0)]�=(1��)
; (2.58)

where � and � are positive constant with � < 1 and L is given by (2:44) above. This ends the

proof.

Remark 2.1. The estimate (2:58) shows that the larger L(0) is the quicker the blow-up takes

place.
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Chapter 3

Global Existence and Finite Time

Blow-Up in a Class of Non-Linear

Viscoelastic Wave Equation

����������������������������������

1- Basic Assumptions

2- Global Existence Result

3- Finite-Time Blow-Up

����������������������������������

KeyWords and Phrases: Global existence, blow-up, source term, wave equation, viscosity.

In this chapter, we are in the process of studying the following non-linear viscoelastic wave

equation:

8>>>>>><>>>>>>:
utt ��u��utt +

tZ
0

h(t� s)�u(s)ds+ cut jutjm�2 = du jujp�2 ; x 2 
; t > 0

u(x; t) = 0; x 2 @
; t � 0

u(x; 0) = u0(x); ut(x; 0) = u1(x); x 2 
;

(3.1)

here 
 be an open bounded Lipschitz domain in Rn (n � 1); with a Lipschitz-countinuous

boundary @
; p > 2;m � 1, and c; d are strictly positive constants. Our chapter is divided as
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follows:

- In the �rst section, we present some assumptions needed in our chapter.

- In the second section, we show that solutions with arbitrary data continue to exist globally

if m � p:

- In the third section, we prove a �nite time blow-up for solutions with negative initial energy

if m < p:

We study in this work the interaction between the damping and source terms in the presence

of the viscoelastic and dispersion terms when c = d = 1: Our �rst intent is to itemize an

appropriate domain for the parameters m; p; where the damping term dominates over the source

and the global solution exists for any initial data. Secondly, we de�ne another domain, where

the blowup of the solution occurs for a �nite time because the in�uence of the source is stronger.
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3.1 Basic Assumptions

We provide in this section some information needed to demonstrate our results. During this

work, C is used to indicate generic positive constant depending only on 
. First, we mention

the theory of local existence, for this purpose, we need to:

(G1) Suppose m � 1; p > 2, and

max fm; pg � 2 (n� 1)
n� 2 ; n � 3; (3.2)

this condition is necessary to determine the result of local existence (see[19] ; [31]). The nonlin-

earity is Lipschitz from H1(
) to L2(
) under this condition.

(G2) Assume that h is a C1 function satisfying

1�
1Z
0

h(s)ds = l > 0; (3.3)

we need this condition to assure the well-posedness and hyperbolicity of (3:1).

We de�ne the energy functional associated to the problem (3:1) as follows

E(t) =
1

2
kutk22 +

1

2
krutk22 +

1

2

0@1� tZ
0

h(s)ds

1A kruk22 + 12(h � ru)(t)� d

p
kukpp ; (3.4)

where

(h � v)(t) =
tZ
0

h(t� s) kv (t)� v (s)k22 ds;

and h satisfying the following assumptions

h(s) � 0; h0(s) � 0;
1Z
0

h(s)ds <
(p=2)� 1

(p=2)� 1 + (1=2p) : (3.5)

Remark 3.1. By closely following the Theorem3:3 proof steps, with a small modi�cation in the

proof, we can see easily that the result of blow-up remains valid even for m = 1 (damping caused

only by viscosity)

Remark 3.2. Without condition (3:5), we can determine a similar result provided that

1Z
0

h(s)ds <

1 and E0 is su¢ ciently negative.
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Remark 3.3. There is a strong relation between the damping (caused by the viscosity) and the

nonlinearity in the source (condition (3:5) shows that). More clari�cation the closer the value of
1Z
0

h(s)ds to 1, the larger p should be to ensure the blow-up.

Theorem 3.1. Assume that (u0; u1) 2 H1
0 (
) � L2(
) and suppose that the assumptions (G1)

and (G2) hold. Then for some Tm > 0 the problem (3:1) admits a unique local solution

u 2 C([0; Tm); H1
0 (
)); ut 2 C([0; Tm); H1

0 (
)) \ Lm+1(
� [0; Tm)): (3.6)

Proof. Can be established by combination of the argument in [19] and [31] :

3.2 Global Existence Result

We clarify in this section that the solution (3:6) is global if the exponent m � p

Theorem 3.2. Let E0 < 0; 2 � p � m and let the condition

m � 2 (n� 1)
n� 2 ; n � 3; (3.7)

hold. Then problem (3:1) admits a unique global solution

u 2 C
�
[0;1) ; H1

0 (
)
�
; ut 2 C

�
[0;1) ; H1

0 (
)
�
\ Lm+1 ((
)� (0;1)) ; (3.8)

for any

u0 2 H1
0 (
); u1 2 L2(
):

Proof. As in [31], we de�ned the following functional 1

K(t) = �H(t) + 2d
p
kukpp

=
1

2
kutk22 +

1

2
krutk22 +

1

2

0@1� tZ
0

h (s) ds

1A kruk22
+
1

2
(h � ru) (t) + d

p
kukpp :

1K(t) denote the modi�ed energy.
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After di¤erentiating K(t) and exploiting (3:17), we obtain

K 0(t) = �c
Z



jutjm dx+
1

2
(h0 � ru) (t)� 1

2
h (t) kru (t)k2 + 2d

Z



jujp�2 uutdx:

We apply now the Young inequality in the form

XY � �X� + C�Y
�;

where X; Y; �; �; �; C� are positive constants such that
1

�
+
1

�
= 1: So we get

������
Z



jujp�2 uutdx

������ � � kutkpp + C� kukpp ;

thus

K 0(t) � �c kutkmm +
1

2
(h0 � ru) (t)� 1

2
h (t) kru (t)k2 + � kutkpp + C� kukpp

� �c kutkmm + � kutkpp + C� kukpp ;

where C� is a constant depends on � (� > 0):

Having in mind that m � p, so we �nd

K 0(t) � �c kutkmm + C� kutkpm + C� kukpp ;

for C = C(
; p;m) is the embedding constant. Currently, we identify the following cases:

1) If kutkmm > 1, then we pick � so small that

�c kutkmm + C� kutkpm � 0:

Subsequently

K 0(t) � C� kukpp :

2) Otherwise kutkmm � 1, we get K 0(t) � C� + C� kukpp :

So we have in either case

K 0(t) � c1 + C� kukpp (3.9)

� c1 + C�K(t):
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We integrate (3:9) over (0; t) to get

K(t) �
�
K(0) +

c1
C�

�
eC�t:

From the last estimate and the continuation principle, we terminate our proof.

3.3 Finite-Time Blow-Up

In order to carry the proof of our result, we need the following:

Lemma 3.1. Assume the condition (G1) hold. Then there exists a positive constant C > 1

which depends only on 
, such that

kuksp � C(kruk22 + kuk
p
p); (3.10)

for any u 2 H1
0 (
) and 2 � s � p:

We let

H(t) := �E(t):

Corollary 3.1. Suppose that the conditions (3:4) and (3:10) are satisfying, then

kuksp � C(�H (t)� kutk22 � krutk
2
2 � (h � ru)(t) + kuk

p
p); for all t 2 [0; T ); (3.11)

for any u 2 H1
0 (
) and 2 � s � p:

Theorem 3.3. Let m > 1; p > maxf2;mg satisfying (G1). Let (3:5) be ful�lled and assume

that

E0 =
1

2
ku1k22 +

1

2
kru0k22 +

1

2
kru1k22 �

d

p
ku0kpp < 0: (3.12)

Then there exist a �nite time T � such that

T � � 1� �

��[L(0)]�=(1��)
; (3.13)

where �; � (� < 1) are positive constant and L is given by (3:19) below.
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Remark 3.4. Our proof uses the same basic steps in [52] ; with some modi�cations that relate

to the nature of the problem that is being studied.

Proof. To prove the Theorem3:3, we multiply (3:1) by �ut and integrate over 
 to get

d

dt

�
�1
2

Z



jutj2 dx�
1

2

Z



jruj2 dx� 1
2

Z



jrutj2 dx (3.14)

+
d

p

Z



jujp dx
�
+

tZ
0

h(t� �)

Z



rut (t) :ru (�) dxd�

= c

Z



jutjm dx;

for any regular solution. We can extended this result to weak solutions through density argument.

But

tZ
0

h(t� �)

Z



rut (t) :ru (�) dxd� =

tZ
0

h(t� �)

Z



rut (t) : [ru (�)�ru (t)] dxd�

+

tZ
0

h(t� �)

Z



rut (t) :ru (t) dxd� ;

= �1
2

tZ
0

h(t� �)
d

dt

Z



jru (�)�ru (t)j2 dxd�

+

tZ
0

h(�)

�
d

dt

1

2

Z



jru (t)j2 dx
�
d� ;

= �1
2

d

dt

24 tZ
0

h(t� �)

Z



jru (�)�ru (t)j2 dxd�

35
+
1

2

d

dt

24 tZ
0

h(�)

Z



jru (t)j2 dxd�

35
+
1

2

tZ
0

h0(t� �)

Z



jru (�)�ru (t)j2 dxd�

�1
2
h (t)

Z



jru (t)j2 dxd� : (3.15)
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Substitution of (3:15) in (3:14) gives us

d

dt

�
�1
2

Z



jutj2 dx�
1

2

Z



jruj2 dx� 1
2

Z



jrutj2 dx+
d

p

Z



jujp dx
�

�1
2

d

dt

24 tZ
0

h(t� �)

Z



jru (�)�ru (t)j2 dxd�

35+ 1
2

d

dt

24 tZ
0

h(�) kru (t)k2 d�

35 (3.16)
= c

Z



jutjm dx�
1

2

tZ
0

h0(t� �)

Z



jru (�)�ru (t)j2 dxd� + 1
2
h (t) kru (t)k2 :

After exploiting the de�nition of H(t), the estimate (3:16) takes the form

H 0 (t) = c

Z



jutjm dx�
1

2
(h0 � ru) (t) + 1

2
h (t) kru (t)k2 � 0: (3.17)

Hence

0 < H(0) � H(t) � d

p
kukpp ; (3.18)

for every t in [0; T ), by virtue of (3:4), (3:17). We next de�ne

L(t) := H1��(t) + "

Z



uut(x; t)dx; (3.19)

where " (small) to be selected later and

0 < � � min
�
p� 2
2p

;
p�m

p (m� 1)

�
: (3.20)

By di¤erentiating (3:19) and using Eq. (3:1), we arrive at

L0(t) = (1� �)H��(t)

�
c kutkmm �

1

2
(h0 � ru) (t) + 1

2
h (t) kruk22

�
+"

Z



�
u2t � jruj

2 + jrutj2
�
(x; t) dx

+"

tZ
0

h(t� �)

Z



ru (t) :ru (�) dxd�

+"d

Z



ju (x; t)jp dx� "c

Z



u (x; t)ut jutjm�2 dx

�"
Z



d

dt
frutrug ;
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� c(1� �)H��(t) kutkmm + "

Z



�
u2t � jruj

2 + jrutj2
�
(x; t) dx (3.21)

+"d

Z



ju (x; t)jp dx� "c

Z



u (x; t)ut jutjm�2 dx

+"

tZ
0

h(t� �)

Z



ru (t) : [ru (�)�ru (t)] dxd�

+"

tZ
0

h (t� �) kru (t)k22 d� � "

Z



d

dt
frutrug :

After using Schwarz inequality, (3:21) becomes

L0(t) � c(1� �)H��(t) kutkmm + "

Z



�
u2t � jruj

2 + jrutj2
�
(x; t) dx

+"d

Z



ju (x; t)jp dx� "c

Z



u (x; t)ut jutjm�2 dx (3.22)

+"

tZ
0

h(t� �)

Z



kru (t)k2 kru (�)�ru (t)k2 d�

+"

tZ
0

h (t� �) kru (t)k22 d� � "

Z



d

dt
frutrug :

We next exploit (3:4) to replace the third term and apply Young�s inequality for the �fth

term in the right-hand side of (3:22). Therefore, we get

L0(t) � c(1� �)H��(t) kutkmm + "

Z



u2t (x; t) dx

+"

Z



jrut (x; t)j2 dx�

0@1� tZ
0

h(s)ds

1A kru (t)k22
+"
�
pH(t) +

p

2
(h � ru) (t) + p

2
kutk22 +

p

2
krutk22

+
p

2

0@1� tZ
0

h(s)ds

1A kru (t)k22
1A

�c"
Z



u (x; t)ut jutjm�2 dx� "� (h � ru) (t) (3.23)
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� "

4�

tZ
0

h(s)ds kru (t)k22 � "

Z



d

dt
frutrug ;

� c(1� �)H��(t) kutkmm + "
�p
2
+ 1
�Z




u2t (x; t) dx

+"
�p
2
+ 1
�Z




jrut (x; t)j2 dx+ "pH(t)

+"
�p
2
� �
�
(h � ru) (t)� c"

Z



u (x; t)ut jutjm�2 dx

+"

0@�p
2
� 1
�
�
�
p

2
� 1 + 1

4�

� tZ
0

h(s)ds

1A kru (t)k22
�"
Z



d

dt
frutrug ;

for some 0 < � < p=2.

We recall (3:5), then (3:23) becomes

L0(t) + "

Z



d

dt
frutrug � c(1� �)H��(t) kutkmm + "

�p
2
+ 1
�Z




u2t (x; t) dx (3.24)

+"
�p
2
+ 1
�Z




jrut (x; t)j2 dx+ "pH(t)

+"b1 (h � ru) (t) + "b2 kru (t)k22

�c"
Z



u (x; t)ut jutjm�2 dx;

where

b1 =
p

2
� � > 0; b2 =

�p
2
� 1
�
�
�
p

2
� 1 + 1

4�

� tZ
0

h(s)ds > 0:

Again, we apply Young�s inequality on the last term in (3:24), for all � > 0;
1

r
+
1

s
= 1

Y Z � �r

r
Y r +

��s

s
Zs; Y; Z � 0;

and r = m; s = m=(m� 1), to getZ



jutjm�1 juj dx �
1

m

Z



�m jujm + m� 1
m

Z



��m=m�1 jutjm ;
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so (3:24) becomes

L0(t) +
d

dt

�
"

Z



frutrug
�

� c

�
(1� �)H��(t)� "

�
m� 1
m

�
��m=m�1

�
kutkmm

+"
�p
2
+ 1
�Z




u2t (x; t) dx (3.25)

+"
�p
2
+ 1
�Z




jrut (x; t)j2 dx

+"b1 (h � ru) (t) + "b2 kru (t)k22

+"pH(t)� c"
�m

m
kukmm ;

for all � > 0:

The estimate (3:25) still valid, even if � is time dependant since the integral is taken over the

x variable. Thus by picking � so that ��m=m�1 = kH�� (t), for large k to be given later, and

replacing in (3:25) we reach to

L0(t) +
d

dt

�
"

Z



frutrug
�

� c

�
(1� �)� "

�
m� 1
m

�
k

�
H��(t) kutkmm

+"
�p
2
+ 1
�Z




u2t (x; t) dx (3.26)

+"
�p
2
+ 1
�Z




jrut (x; t)j2 dx

+"b1 (h � ru) (t) + "b2 kru (t)k22

+"

�
pH(t)� k1�m

m
cH�(m�1)(t) kukmm

�
:

By using (3:18) and the inequality kukmm � C kukmp , we have

H�(m�1)(t)

Z



jujm dx �
�
d

p

��(m�1)
Cjjujjm+�p(m�1)p ;

then (3:26) becomes

L0(t) +
d

dt

�
"

Z



frutrug
�

� c

�
(1� �)� "

�
m� 1
m

�
k

�
H��(t) kutkmm

+"
�p
2
+ 1
�Z




u2t (x; t) dx (3.27)

+"
�p
2
+ 1
�Z




jrut (x; t)j2 dx

+"b1 (h � ru) (t) + "b2 kru (t)k22

+"

"
pH(t)� k1�m

m
c

�
d

p

��(m�1)
Cjjujjm+�p(m�1)p

#
:
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We exploit Corollary3:1 and condition (3:20) with s = m+ �p(m� 1) � p, to conclude

L0(t) +
d

dt

�
"

Z



frutrug
�

� c

�
(1� �)� "

�
m� 1
m

�
k

�
H��(t) kutkmm

+"
�p
2
+ 1
�Z




u2t (x; t) dx

+"
�p
2
+ 1
�Z




jrut (x; t)j2 dx

+"b1 (h � ru) (t) + "b2 kru (t)k22

+"
�
pH(t)� C1k

1�m ��H(t)� kutk22
�krutk22 � (h � ru) (t) + kuk

p
p

oi
;

� c

�
(1� �)� "

�
m� 1
m

�
k

�
H��(t) kutkmm

+"
�p
2
+ 1 + C1k

1�m
�
kutk22

+"
�p
2
+ 1 + C1k

1�m
�
krutk22

+"
�
b1 + C1k

1�m� (h � ru) (t)
+"b2 kru (t)k22 + "

�
p+ C1k

1�m�H(t)
�"C1k1�m kukpp ; (3.28)

where C1 = c

�
d

p

��(m�1)
C=m:

Noting that

H (t) � d

p
kukpp �

1

2
kutk22 �

1

2
kruk22 �

1

2
krutk22 �

1

2
(g � ru) (t) ;

and puting p = 2b3 + (p� 2b3); where b3 = minfb1; b2g, (3:28) yields

M 0 (t) � c

�
(1� �)� "

�
m� 1
m

�
k

�
H��(t) kutkmm

+"
�p
2
+ 1 + C1k

1�m � b3

�
kutk22

+"
�p
2
+ 1 + C1k

1�m � b3

�
krutk22

+"
�
b1 + C1k

1�m � b3
�
(h � ru) (t) (3.29)

+" (b2 � b3) kru (t)k22 + " (p� 2b3

+C1k
1�m�H(t) + "

�
2db3
p
� C1k

1�m
�
kukpp ;
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where

M 0 (t) = L0(t) +
d

dt

�
"

Z



frutrug
�
:

For this goal, we pick k large enough so that the coe¢ cients of H(t); kutk22 ; krutk
2
2 ; kuk

p
p and

(h � ru) (t) in (3:29) are strictly positive, therefore we obtain

M 0(t) � c

�
(1� �)� "

�
m� 1
m

�
k

�
H��(t) kutkmm (3.30)

+"
h
H (t) + kutk22 + krutk

2
2 + kuk

p
p + (h � ru) (t)

i
;

where  > 0 is the minimum of these coe¢ cients. Once k is �xed (thus ), we choose " small

enough so that

(1� �)� "k(m� 1)=m � 0;

and

L(0) = H1��(0) + "

Z



u0u1 (x) dx > 0:

Subsequently (3:30) becomes

L0(t) +
d

dt

�
"

Z



frutrug
�
� "

h
H (t) + kutk22 + krutk

2
2 + kuk

p
p + (h � ru) (t)

i
: (3.31)

Therefore

L(t) � L(0) > 0; for all t � 0:

To achieve our result, we �rst estimate����Z



uut (x; t) dx

���� � kuk2 kutk2

� C
�
kukp kutk2

�
;

thence ����Z



uut (x; t) dx

����1=(1��) � C kuk1=(1��)p kutk1=(1��)2 :

Again Young�s inequality leads to����Z



uut (x; t) dx

����1=(1��) � C
h
kuk�=(1��)p + kutk�=(1��)2

i
; (3.32)

where 1=�+ 1=� = 1.
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We put � = 2(1� �), then �=(1� �) = 2=(1� 2�) � p by (3:20). Thus (3:32) turn into����Z



uut (x; t) dx

����1=(1��) � C
h
kuksp + kutk

2
2

i
;

for s = 2=(1� 2�) � p.

We utilize Corollary3:1 to get����Z



uut (x; t) dx

����1=(1��) � C
h
H (t) + kutk22 + krutk

2
2 + kuk

p
p + (h � ru) (t)

i
; for all t � 0:

(3.33)

By noting that

L1=(1��)(t) =

�
H1��(t) + "

Z



uut (x; t) dx

�1=(1��)
(3.34)

� 21=(1��)

 
H (t) +

����Z



uut (x; t) dx

����1=(1��)
!

� C
h
H (t) + kutk22 + krutk

2
2 + kuk

p
p + (h � ru) (t)

i
;

for all t � 0; and collecting with (3:31) and (3:34), we �nd

L0(t) � �L1=(1��)(t) for all t � 0; (3.35)

where C (the constant of Lemma3:1) and � is a positive constant depending on " only.

Finally we integrate (3:35) over (0; t) to arrive at

L�=(1��)(t) � 1

L��=(1��)(0)� �t�= (1� �)
: (3.36)

Thence (3:36) shows that L(t) blows up in �nite time given by (3:13) above.

The proof is completed.
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Chapter 4

Blow-Up Results for a Quasilinear

Wave Equation with Variable

Exponents Non-Linearities
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1- Basic Assumptions

2- Statement and Well-Posedness of Problem

3- Blowing-Up for Negative Initial Energy

4- Blowing-Up for Positive Initial Energy

����������������������������������

Key Words and Phrases: Blowing up, negative initial energy, variable exponents, positive

initial energy.

The following new category of a quasilinear wave equation with variable exponents nonlin-

earities is studied in this chapter8>>><>>>:
utt � div

���rus(:)�2��ru���utt + �ut jutjq(:)�2 = �u jujp(:)�2 ; in 
� (0; T )

u(x; t) = 0; on @
� (0; T )

u(x; 0) = u0(x); ut(x; 0) = u1(x); in 
:

(4.1)

We care to �nd su¢ cient conditions on s (:) ; q (:) ; p (:) and the initial data for which the

blowup happens, here 
 � Rn (n � 1), be a bounded domain with a smooth boundary @
:�; � >
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0 are constants and the exponents q(�); p(�); and s(�) are given measurable functions on 
.

Our chapter is divided into four sections: In the �rst section, we present some advanced

assumptions needed in this chapter. The second section deals with some technical lemmas and

the statement without demonstration of the well-posedness of our problem, the third one deals

with the result of blow-up for solutions with negative initial energy, and in the fourth one, we

present and demonstrate the theorem of blow-up for certain solutions with positive initial energy.

83



Chapter 4: Blow-Up Results for a Quasilinear Wave Equation with Variable
Exponents Non-Linearities

4.1 Basic Assumptions

Some hypotheses required in the proof of our result will be given in this section1. Firstly, we

suppose the following assumptions:

(B1)

2 � max fq2; s2g < p1 � p (x) � p2 � s� (x) ; (4.2)

with

p1 : = ess inf
x2


p (x) ; p2 := esssup
x2


p (x) ;

s1 : = ess inf
x2


s (x) ; s2 := esssup
x2


s (x) ;

q1 : = ess inf
x2


q (x) ; q2 := esspsup
x2


q (x) ;

and

s� (x) =

8><>:
ns(x)

esssup
x2


(n�s(x)) if s2 < n

+1 if s2 � n

;

and

ess inf
x2


(s� (x)� p (x)) > 0:

(B2) Also, we suppose that the exponents q(�); p(�), and s(�) are measurable functions such that

either satisfy the log-Hölder continuity condition:

jm (x)�m (y)j � � A

log jx� yj for a.e: x; y 2 
; with jx� yj < �; (4.3)

A > 0; 0 < � < 1; or q(�); p(�), and s(�) 2 C
�
�

�
:

In (4:3), if x = y the inequality is unde�ned because log 0 is unde�ned. The inequality is

de�ned for x not equal to y. But the condition that � is completely greater than zero always

makes x not equal to y because jx � yj < �. The term �s(�)u = div
���rus(:)�2��ru� is called

s (:)�Laplacian.

The energy function associated to the problem (4:1) is the following

E(t) :=
1

2

Z



u2tdx+

Z



1

s (x)
jrujs(x) dx+ 1

2

Z



jrutj2 dx� �

Z



1

p (x)
jujp(x) dx; t � 0: (4.4)

1We use the Lebesgue space L2 (
) and the variable-exponent Sobolev space W 1;s(:)
0 (
) with their norms.
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We derive the energy relation and use (4:1) to get

E 0 (t) = ��
Z



jut (x; t)jq(x) dx; for a.e. t 2 [0; T ) : (4.5)

4.2 Statement and Well-Posedness of Problem

This section contains some essential lemma which will be useful to us later in the proof of our

blow-up result, before that we introduce the statement without proof of the well-posedness of

the problem (4:1)

Proposition 4.1. Let (u0; u1) 2
�
W

1;s(�)
0 (
)� L2(
)

�
and suppose that the exponents p; q; s

satisfy (B1) and (B2). Then problem (4:1) admits a unique weak solution such that

u 2 L1((0; T );W
1;s(�)
0 (
));

ut 2 L1((0; T ); H1
0 (
));

utt 2 L1((0; T );W
1;s0(�)
0 (
));

where
1

s(�) +
1

s0(�) = 1.

Remark 4.1. As in the second chapter, we can achieve the proof of the previous proposition by

using the Galerkin method. You can see also [2] :

Lemma 4.1. Suppose the conditions of Lemma1:14 hold. Then, we have

%
r
p1
p(:)(u) � C(kruks1s(:) + %p(:)(u)); s1 � r � p1; (4.6)

for any u 2 W 1;s(�)
0 (
), where C > 1 is a positive constant that depends on 
 only.

Proof. If %p(:)(u) > 1; then %
r
p1
p(:)(u) � %p(:)(u) � C

�
kruks1s(:) + %p(:)(u)

�
:

If %p(:)(u) � 1; then, by Lemma1:3; kukp(:) � 1: Then, Lemma1:14 and Lemma1:4 imply

%
r
p1
p(:)(u) � %

s1
p1
p(:)(u) � max

hn
kukp1p(:) ; kuk

p2
p(:)

oi s1
p1

= kuks1p(:) � C kruks1s(:) ;

where C > 1. Therefore (4:6) follows.
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Now, we will take the following special case

Corollary 4.1. Let the assumptions of the previous Lemma hold. Then for any u 2 W 1;s(�)
0 we

get

kukrp1 � C(kruks1s(:) + kuk
p1
p1
); (4.7)

where s1 � r � p1 and C is a positive constant.

Now, we set

H(t) := �E(t);

and use, throughout this chapter, C to denote a generic positive constant depending on 
 only.

As a result of (4:4) and (4:6), we have

Corollary 4.2. Let the assumptions of Lemma4:1 hold. Then we have

%
r
p1
p(:)(u) � C(jH (t)j+ kutk22 + krutk

2
2 + %p(:)(u)); (4.8)

for any u 2 W 1;s(�)
0 and s1 � r � p1:

As a particular case, we have the following

Corollary 4.3. Let the assumptions of Lemma4:1 hold. Then we have

kukrp1 � C(jH (t)j+ kutk22 + krutk
2
2 + kuk

p1
p1
); (4.9)

for any u 2 W 1;s(�)
0 and s1 � r � p1:

Lemma 4.2. Assume that (4:2) and (4:3) hold and E(0) < 0. Then the solution of (4:1) satis�es,

for some c > 0;

%p(:)(u) � c kukp1p1 : (4.10)

Proof. Similar in the proof of Lemma2:3:

Lemma 4.3. Let u be the solution of problem (4:1) and assume that (4:2) holds. Then,Z



jujq(x) dx � C

��
%p(:)(u)

� q1
p1 +

�
%p(:)(u)

� q2
p1

�
: (4.11)
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Proof. Z



jujq(x) dx �
Z

�

jujq1 dx+
Z

+

jujq2 dx

� C

"�Z

�

jujp1 dx
� q1
p1
+

�Z

+

jujp1 dx
� q2
p1

#
� C

�
kukq1p1 + kuk

q2
p1

�
� C

��
%p(:)(u)

� q1
p1 +

�
%p(:)(u)

� q2
p1

�
;

by Lemma4:2:

Lemma 4.4. Let u be the solution of (4:1) with E(0) < 0. Then, there exists a constant c1 > 0

such that

kru (:; tk)ks(:) � c1; 8t � 0: (4.12)

Proof. Assume, by contradiction, there exists a sequence tj such that

kru (:; tj)ks(:) ! 0 as j !1:

Then, Lemmas1:4 and 1:14 gives us

%p(:)(u (:; tj))! 0 as j !1;

this yields

lim
j!1

E (tj) � 0; (4.13)

that contrasts with the fact that E(t) � E(0) < 0;8t � 0:

4.3 Blowing-Up for Negative Initial Energy

The main purpose of this section is to introduce and demonstrate the �rst results of the blow-up.

Theorem 4.1. Assume that the assumptions of Proposition4:1 hold and suppose that

E(0) < 0: (4.14)

Then the solution of problem (4:1) blows up in �nite time.
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Proof. As usual, multiplying by ut and integrating over 
 in (4:1) ; to get

E 0 (t) = ��
Z



jut (x; t)jq(x) dx � 0; (4.15)

for almost every t in [0; T ) since E(t) is absolutely continuous function (see Georgiev and Todor-

ova [31]); hence H 0(t) � 0 and

0 < H(0) � H(t) � �

p1
%p(:)(u); (4.16)

for every t in [0; T ), by remembring the condition that E(0) < 0. We then introduce

L(t) := H1��(t) + "

Z



uut(x; t)dx; (4.17)

for " small to be chosen later and

0 < � � min
�
p1 � 2
2p1

;
p1 � q2

p1 (q2 � 1)

�
: (4.18)

By taking the derivative of (4:17) and using Eq. (4:1), we obtain

L0(t) = (1� �)H��(t)H 0(t) + "

Z



u2t (x; t)dx+ "

Z



uutt(x; t)dx; (4.19)

L0(t) = (1� �)H��(t)H 0(t) + "

Z



h
u2t � jruj

s(x) + jrutj2
i

+"�

Z



jujp(x) � �"

Z



uut jutjq(x)�2 �
d

dt

�
"

Z



frutrug
�
:

Adding and subtracting the term "(1� �)p1H(t); for 0 < � < 1; in the right side of (4:19), to get

L0(t) +
d

dt

�
"

Z



frutrug
�

� (1� �)H��(t)H 0(t) + "(1� �)p1H(t)

+"��

Z



jujp(x) + "

�
(1� �) p1

2
+ 1

�
kutk22 (4.20)

+"

�
(1� �) p1

s2
� 1
�Z




jrujs(x)

+"

�
(1� �) p1

2
+ 1

�Z



jrutj2

��"
Z



uut jutjq(x)�2 dx:

So, for � small enough, we obtain

L0(t) +
d

dt

�
"

Z



frutrug
�

� "�
�
H(t) + kutk22 + krutk

2
2 + %s(:)(ru) + %p(:)(u)

�
(4.21)

+(1� �)H��(t)H 0(t)� �"

Z



uut jutjq(x)�2 dx;
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where

� = min

�
(1� �) p1; ��;

(1� �) p1
2

+ 1;
(1� �) p1

s2
� 1
�
> 0:

By using Young�s inequality, the last term in (4:21) yieldsZ



jutjq(x)�1 juj dx �
1

q1

Z



�q(x) jujq(x) + q2 � 1
q2

Z



��q(x)=q(x)�1 jutjq(x) dx; 8� > 0: (4.22)

Thus, by picking � such that

��q(x)=q(x)�1 = kH��(t);

for a large constant k to be given later, and replacing in (4:22) we reach toZ



jutjq(x)�1 juj dx �
1

q1

Z



k1�q(x) jujq(x)H�(q(x)�1)(t) +
q2 � 1
q2�

kH��(t)H 0(t);8� > 0: (4.23)

Combining (4:21) and (4:23) yields

L0(t) +
d

dt

�
"

Z



frutrug
�

� "�
�
H(t) + kutk22 + krutk

2
2 + %s(:)(ru) + %p(:)(u)

�
+

�
(1� �)� "

q2 � 1
q2

k

�
H��(t)H 0(t) (4.24)

��"k
1�q1

q1
C1H

�(q2�1)(t)

Z



jujq(x) dx:

Exploiting Lemma4:3 and (4:16) to get

H�(q2�1)(t)

Z



jujq(x) dx � C
h
(%(u))

q1
p1
+�(q2�1) + (%(u))

q2
p1
+�(q2�1)

i
: (4.25)

Now, we employ Lemma4:1 and (4:18) for

r = q2 + �p1(q2 � 1) � p1 and r = q1 + �p1(q2 � 1) � p1;

it is easy to see from (4:25) that

H�(q2�1) (t)

Z



jujq(x) dx � C
�
kruks1s(:) + %p(:)(u)

�
; (4.26)

then, using Lemmas4:4 to obtain

kr (u=c1)ks(:) � 1: (4.27)

Lemma1:4 and (4:27) leads to

%s(:)(r (u=c1)) � min
n
kr (u=c1)ks1s(:) ; kr (u=c1)k

s2
s(:)

o
(4.28)

= kr (u=c1)ks1s(:) :
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Thus (4:28) becomes

%s(:)(ru) � c2 kruks1s(:) : (4.29)

Collecting of (4:24); (4:26); and (4:29) reach to

L0(t) +
d

dt

�
"

Z



frutrug
�

�
�
(1� �)� q2 � 1

q2
"k

�
H��(t)H 0 (t) (4.30)

+"

�
� � �

k1�q1

q1
C

��
H(t) + kutk22

+ krutk22 + kruk
s1
s(:) + %p(:)(u)

i
:

In this step, we choose k so large that the coe¢ cient

 = � � �
k1�q1

q1
C > 0:

Once k is �xed (thus ), we put su¢ ciently small " so that

(1� �)� q2 � 1
q2

"k � 0 and L(0) = H1��(0) + "

Z



u0u1 (x) dx > 0:

Subsequently (4:30) becomes

L0(t) +
d

dt

�
"

Z



frutrug
�

� "
h
H (t) + kutk22 + krutk

2
2 + kruk

s1
s(:) + %p(:)(u)

i
(4.31)

� "
h
H (t) + kutk22 + kuk

p1
p1

i
;

by virtue of (4:10). Therefore

L(t) � L(0) > 0; for all t � 0:

Next, we are in the position to obtain an inequality of the form

G0 (t) � �L1=(1��)(t); for all t � 0; (4.32)

here � is a positive constant depends on "; C (the constant of Corollary4:1) and

L0(t) +
d

dt

�
"

Z



frutrug
�
= G0 (t) :

When we prove (4:32); we get in a standard way the �nite-time blow-up of the functional L(t).
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To achieve (4:32), we estime the term����Z



uut (x; t) dx

���� � kuk2 kutk2

� C
�
kukp1 kutk2

�
;

thence ����Z



uut (x; t) dx

����1=(1��) � C kuk1=(1��)p1
kutk1=(1��)2 :

Young�s inequality gives us the following estimate����Z



uut (x; t) dx

����1=(1��) � C
h
kuk!=(1��)p1

+ kutk�=(1��)2

i
; (4.33)

where 1=! + 1=� = 1. Putting � = 2(1� �), we �nd !=(1� �) = 2=(1� 2�) � p1 by (4:18).

Thus (4:33) becomes ����Z



uut (x; t) dx

����1=(1��) � C
h
kukrp1 + kutk

2
2

i
;

with r = 2=(1� 2�) � p1. We obtain after using Corollary4:3����Z



uut (x; t) dx

����1=(1��) � C
h
H (t) + kutk22 + krutk

2
2 + kuk

p1
p1

i
; for all t � 0: (4.34)

In the end, by noting that

L1=(1��)(t) =

�
H1��(t) + "

Z



uut (x; t) dx

�1=(1��)
� 21=(1��)

"
H (t) +

����Z



uut (x; t) dx

����1=(1��)
#
;

and combining it with (4:31) and (4:34), the inequality (4:32) is achieved.

Integrate (4:32) over (0; t) to obtain

L�=(1��)(t) � 1

L��=(1��)(0)� �t�= (1� �)
: (4.35)

So L(t) blows up in �nite time

T � � 1� �

��[L(0)]�=(1��)
; (4.36)

where � and � are positive constant with � < 1 and L is given by (4:17) above.

The proof is completed.

Remark 4.2. The estimate (4:36) shows that the larger L(0) is, the quicker the blow-up takes

place.
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4.4 Blowing-Up for Positive Initial Energy

Now, we are in the position to present and prove one of the main results of this section which is

the blowup for certain solutions with positive energy. For this goal, let A be the best constant

of the Sobolev embedding W 1;s(�)
0 (
) ,! Lp(�)(
) and let

A1 = max

(
1; A;

�
1

�

�1=s2)
;

�1 =

 �
1

�Ap11

�s2=(p1�s2)!
;

�0 = kru0ks2s(:) ;

E1 =

�
1

s2
� 1

p1

�
�1;

H(t) = E1 � E(t); (4.37)

K(t) = H1��(t) + "

Z



uut (x; t) dx; (4.38)

for 0 < � < 1; " > 0 are to be speci�ed later.

We state here the following theorem which will be our main result.

Theorem 4.2. Assume that the conditions of Proposition4:1 hold and suppose that

E(0) < E1; �1 < �0 � A�s21 : (4.39)

Then the solution of (4:1) blows up in a �nite time.

To demonstrate our theorem, we refer to the following two lemmas.

Lemma 4.5. Let the assumptions in Theorem4:2 be ful�lled, then there exists a constant �2

> �1 such that

kru (:; t)ks2s(:) � �2; 8t � 0: (4.40)
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Proof. Exploiting (4:4), we get

E(t) � 1

s2
%s(:)(ru)�

�

p1
%p(:)(u)

� 1

s2
min

n
kruks1s(:) ; kruk

s2
s(:)

o
� �

p1
max

n
kukp1p(:) ; kuk

p2
p(:)

o
� 1

s2
min

n
kruks1s(:) ; kruk

s2
s(:)

o
� �

p1
max

n�
A1 kruks(:)

�p1
;
�
A1 kruks(:)

�p2o
=

1

s2
min

n
�
s1
s2 ; �

o
� �

p1
max

n
(As21 �)

p1
s2 ; (As21 �)

p2
s2

o
: = h(�);8� 2 [0;1);

where � = kruks2s(:) :

Let

g (�) =
1

s2
�� �

p1
(As21 �)

p1
s2 :

By noting that g(�) = h(�), for 0 < � � As21 . We can easily verify that the function g(�) is

increasing for 0 < � < �1 and decreasing for �1 < � � +1. Because E(0) < E1 = g(�1), there

exists a positive constant �2 2 (�1;1) such that g(�2) = E(0). So we get g(�0) = h(�0) �

E(0) = g(�2). This means that �0 � �2.

To demonstrate (4:40), we suppose that kru (t0)ks2s(:) < �2, for some t0 > 0. Then there exists

t1 > 0 such that �1 < kru (t1)ks2s(:) < �2. Exploiting the monotonicity of g(�) to �nd

E(t1) � g
�
kru (t1)ks2s(:)

�
> g(�2) = E(0);

which contradicts E(t) < E(0), for all t 2 (0; T ). Consequently, (4:40) is determined.

Lemma 4.6. Let the assumptions in Theorem4:2 be ful�lled, so we have

0 < H (0) � H (t) � �

p1
%p(:)(u):

Proof. Exploiting (4:4); (4:15); and (4:37) to get

0 < H (0) � H (t)

� E1 �

241
2

Z



u2tdx+

Z



1

s (x)
jrujs(x) dx+ 1

2

Z



jrutj2 dx

35
+�

Z



1

p (x)
jujp(x) dx;
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then from (4:40), we �nd

E1 �

241
2

Z



u2tdx+

Z



1

s (x)
jrujs(x) dx+ 1

2

Z



jrutj2 dx

35 � E1 �
Z



1

s2
jrujs(x) dx

� E1 �
1

s2
min

n
kruks1s(:) ; kruk

s2
s(:)

o

� E1 �
1

s2
min

�
�
s1
s2
2 ; �2

�
� E1 �

1

s2
min

�
�
s1
s2
1 ; �1

�
= E1 �

1

s2
�1 = �

�1
p1

< 0;8t � 0:

Therefore,

0 < H (0) � H (t) � �

p1
%p(:)(u):8t � 0:

Proof of Theorem4.2. It is not hard to determine the proof precisely by repeating the

same steps (4:17) to (4:34) of the proof of Theorem4:1. With the use of Lemma4:6.
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Conclusion and Suggestions

Conclusion

We studied in this dissertation three classes of nonlinear hyperbolic problems with constant

and variable exponents nonlinearities, and we obtained di¤erent results of existence and blow-up

of these problems, of course under suitable assumptions on the exponents of nonlinearity and

the initial data. Specially, we expanded the results of blow-up of some nonlinear wave equations

studied by Messaoudi [51; 58; 60] ; and exploit ideas by Georgiev and Todorova [31] in both cases

of constant and variable exponents nonlinearities.

Perspectives and Some Open Problems

As a perspective, after the completion of this dissertation, our vision is devoted to illustrating

the results of blow-up numerically.

As future work, we collect here some questions and open problems of other nonlinear hyper-

bolic equations with variable exponents that can be studied:

� A researcher can expand the result for the previous problem in unbounded domains, where

the Poincaré�s inequality and some of the results embedding are no longer valid.

� We also imposed another question related to the asymptotic behavior of solution for a

system of a nonlinear damped wave equation with nonstandard nonlinearities.

� Expand the results of blow-up to some Fpde problems.

� Extend the blowup results to some Timoshenko equation with nonstandard nonlinearities.

95



Bibliography

[1] S. Antontsev, Wave equation with p(x; t)�Laplacian and damping term: Existence and

blow-up, Di¤er. Equ. Appl. , 3 (4) (2011), 503-525.

[2] S. Antontsev, Wave equation with �!p (x; t)�Laplacian and damping term: Blow-up of solu-

tions, C. R., Mec. , 339 (12) (2011), 751-755.

[3] S. Antontsev, J. Ferreira, Existence, uniqueness, and blowup for hyperbolic equations with

nonstandard growth conditions, Nonlinear Anal. Theory Methods Appl. , 93 (2013), 62-77.

[4] S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions: existence,

uniqueness, localization, blowup. In: Atlantis Studies in Di¤erential Equations, 4 (2015).

Atlantis Press.

[5] J. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations,

Q. J. Math. , 28 (4) (1977), 473-486.

[6] J. Batle, O. Ciftja, M. Naseri, M. Ghoranneviss, A. Farouk and M. Elhoseny, Equilibrium

and uniform charge distribution of a classical two-dimensional system of point charges with

hard-wall con�nement, Physica Scripta, 92 (5) (2017), 055801.

[7] J. Batle, C. R. Ooi, A. Farouk, M. Abutalib and S. Abdalla, Do multipartite correlations

speed up adiabatic quantum computation or quantum annealing?, Quantum Information

Processing, 15 (8) (2016), 3081-3099.

96



References

[8] J. Batle, C. R. Ooi, A. Farouk, M. S. Alkhambashi and S. Abdalla, Global versus local

quantum correlations in the Grover search algorithm, Quantum Information Processing, 15

(2) (2016), 833-849.

[9] A. Benaissa, S. Mimouni, Energy decay of solutions of a wave equation of p�Laplacian type

with a weakly nonlinear dissipation, J. Inequalities in Pure and Applied Mathematics, 7

(2006).

[10] A. Benaissa, S. Mokeddem, Decay estimates for the wave equation of p�Laplacian type with

dissipation of m�Laplacian type, Math Methods Appl Sci. , 30 (2) (2007), 237-247.

[11] S. Boulaaras, A well-posedness and exponential decay of solutions for a coupled Lamé system

with viscoelastic term and logarithmic source terms, Applicable Analysis, 100 (7) (2021),

1514-1532.

[12] S. Boulaaras, A. Allahem, Existence of Positive Solutions of Nonlocal p(x)�Kirchho¤

Evolutionary Systems via Sub-Super Solutions Concept, Symmetry, 11 (2) (2019), 253.

https://doi.org/10.3390/sym11020253

[13] S. Boulaaras, A. Drai�a and A. Alnegga, Polynomial Decay Rate for Kirchho¤ Type in

Viscoelasticity with Logarithmic Nonlinearity and Not Necessarily Decreasing Kernel, Sym-

metry 11 (2) (2019), 226.

[14] S. Boulaaras, A. Drai�a, and K. Zennir, General decay of nonlinear viscoelastic Kirchho¤

equation with Balakrishnan-Taylor damping and logarithmic nonlinearity, Mathematical

Methods in the Applied Sciences, 42 (14) (2019), 4795-4814.

[15] S. Boulaaras, R. Guefai�a, Existence of positive weak solutions for a class of Kirrcho¤elliptic

systems with multiple parameters, Mathematical Methods in the Applied Sciences, 41 (13),

5203-5210.

[16] S. Boulaaras, R. Guefai�a, and N. Mezouar, Global existence and decay for a system of

two singular one-dimensional nonlinear viscoelastic equations with general source terms,

Applicable Analysis, (2020), 1-25.

97



References

[17] S. Boulaaras, D. Ouchenane, and F. Mesloub, General decay for a viscoelastic problem

with not necessarily decreasing kernel, Applied Mathematics and Computing, 58 (1) (2018),

647-665.

[18] N. Boumaaza, S. Boulaaras, General decay for Kirchho¤ type in viscoelasticity with not

necessarily decreasing kernel, Mathematical Methods in the Applied Sciences, 41 (16) (2018),

6050-6069.

[19] M. M. Cavalcanti, V. N. Domingos Cavalcanti, and J. Ferreira, Existence and uniform decay

for nonlinear viscoelastic equation with strong damping, Math. Meth. Appl. Sci. , 24 (14)

(2001), 1043-1053.

[20] Y. Chen, S. Levine, and M. Rao, Variable exponent, linear growth functionals in image

restoration, SIAM Journal on Applied Mathematics, (66) (4) (2006), 1383-1406.

[21] C. Chen, H. Yao and L. Shao, Global Existence, Uniqueness, and Asymptotic Behavior of

Solution for p�Laplacian Type Wave Equation, Journal of Inequalities and Applications,

2010 (2010), 1-15.

[22] L. Diening, P. Harjulehto, P. Hästö and M. Ruzicka, Lebesgue and Sobolev spaces with

variable exponents, Springer, (2011).

[23] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent, Studia Mathematica,

3 (143), 267-293.

[24] D. Edmunds, J. Rakosnik, Sobolev embeddings with variable exponent. II, Math. Nachr. ,

246 (1) (2002), 53-67.

[25] X. Fan, D. Zhao, On the spaces Lp(x)(
) and Wm;p(x)(
), J. Math. Anal. Appl. 263 (2)

(2001), 424-446.

[26] A. E. Hamidi, J. Vetois, Sharp Sobolev asymptotics for critical anisotropic equations,

Archive for rational mechanics and analysis, 192 (1) (2009), 1-36.

98



References

[27] S. Heidari, M. Naseri, R. Gheibi, M. Baghfalaki, M. R. Pourarian, and A. Farouk, A new

quantum watermarking based on quantum wavelet transforms, Communications in Theo-

retical Physics, 67 (6) (2017), 732.

[28] V. A. Galaktionov, S. I. Pohozaev, Blow-up and critical exponents for nonlinear hyperbolic

equations, Nonlinear Analysis: Theory, Methods, and Applications, 53 (3) (2003), 453-466.

[29] Y. Gao, W. Gao, Existence of weak solutions for viscoelastic hyperbolic equations with

variable exponents. Bound. Value Probl. , 2013 (1) (2013), 1-8.

[30] H. Gao, F. MaT, Global solutions for a nonlinear wave equation with the p�Laplacian

operator, Electronic Journal of Qualitative Theory of Di¤erential Equations, 11 (1999),

1-13.

[31] V. Georgiev, G. Todorova, Existence of solutions of the wave equation with nonlinear damp-

ing and source terms, J. Di¤. Eqns. , 109 (2) (1994), 295-308.

[32] B. Guo, B. Gao, Blow-up of solutions to quasilinear hyperbolic equations with

p(x; t)�Laplacian and positive initial energy, Comptes Rendus Mecanique, 342 (9) (2014),

513-519.

[33] M. Ka�ni, S. Messaoudi, A blow-up result for a viscoelastic system in RN , Elect. J. Di .

Eqs, 2007 (113) (2007), 1-7.

[34] M. Ka�ni, S. Messaoudi, A blow-up result in a Cauchy viscoelastic problem, Applied Math-

ematics Letters, 21 (6) (2008), 549-553.

[35] M. Ka�ni, S. Messaoudi, A Blow-Up Result in a Nonlinear Wave Equation with Delay,

Mediterranean Journal of Mathematics, 13 (1 ) (2016), 237-247.

[36] M. Ka�ni, S. Messaoudi, Local existence and blow-up of solutions to a logarithmic nonlinear

wave equation with delay, Applicable Analysis, 99 (3) (2020), 530-547.

[37] V. K. Kalantarov, O. A. Ladyzhenskaya, The occurrence of collapse for quasilinear equations

of parabolic and hyperbolic type, J. Soviet Math. , 10 (1) (1978), 53-70.

99



References

[38] A. M. Kbiri, S. A. Messaoudi and H. B. Khenous, A blow-up result for nonlinear generalized

heat equation, Comput. Math. Appl. , 68 (12) (2014), 1723-1732.

[39] M. Kopackova, Remarks on bounded solutions of a semi-linear dissipative hyperbolic equa-

tion, Comment Math Univ Carolin, 30 (4) (1989), 713-719.

[40] O. Kováµcik, J. Rákosník., On spaces Lp(x) and W 1;p(x), Czechoslovak Math. J. , 41 (116)

(1991), 592-618.

[41] D. Lars, P. Harjulehto, P. Hasto, and M. Ruzicka, Lebesgue and Sobolev Spaces with Vari-

able Exponents, Springer. , (2011).

[42] H. A. Levine, Instability and nonexistence of global solutions of nonlinear wave equation of

the form Putt = Au+ F (u), Trans. Amer. Math. Soc. , 192 (1974), 1-21.

[43] H. A. Levine, Some additional remarks on the nonexistence of global solutions to nonlinear

wave equation, SIAM J. Math. Anal. , 5 (1) (1974), 138-146.

[44] H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic

equations of the form Put = �Au+F (u), Archive Rat. Mech. Anal. , 51 (5) (1973), 371-386.

[45] H. A. Levine, S. R. Park, Global existence and global nonexistence of solutions of the Cauchy

problem for a nonlinearly damped wave equation, J. Math. Anal. Appl. , 228 (1) (1998),

181-205.

[46] H. A. Levine, P. Pucci, and J. Serrin, Some remarks on global nonexistence for nonau-

tonomous abstract evolution equations, Contemporary Math. , 208 (1997), 253-263.

[47] H. A. Levine, J. Serrin, A global nonexistence theorem for quasilinear evolution equation

with dissipation, Arch. Rational Mech. Anal., 137 (4) (1997), 341-361.

[48] J. L. Lions, Quelques Methodes De Resolution Des Problemes Aux Limites Nonlineaires,

second ed. , Dunod, Paris, 2002.

[49] Marie-Therese, Lacroix-Sonrier, Distrubutions, Espace de Sobolev, Applications, Ellipses/

Edition Marketing S. A, (1998).

100



References

[50] H. Medekhel, S. Boulaaras, K. Zennir, and A. Allahem, Existence of Positive Solutions

and Its Asymptotic Behavior of (p(x); q(x))-Laplacian Parabolic System, Symmetry, 11 (3)

(2019), 332.

[51] S. A. Messaoudi, Blow-up and global existence in a nonlinear viscoelastic wave equation,

Math. Nachr. , 260 (1) (2003), 58-66.

[52] S.A. Messaoudi, Blow up in a nonlinearly damped wave equation, Mathematische

Nachrichten, 231 (1) (2001), 1-7.

[53] S. A. Messaoudi, Blow up in the Cauchy problem for a nonlinearly damped wave equation,

Comm. on Applied. Analysis, 7 (3) (2003), 379-38.

[54] S. A. Messaoudi, On the decay of solutions for a class of quasilinear hyperbolic equations

with non-linear damping and source terms, Math Method Appl Sci. , 28 (15) (2005), 1819-

1828.

[55] S. A. Messaoudi, B. S. Houari, Global nonexistence of positive initial-energy solutions of a

system of nonlinear wave equations with damping and source terms, JMAA, 365 (1) (2010),

277-287.

[56] S. A. Messaoudi, B. S. Houari, Global non-existence of solutions of a class of wave equations

with non-linear damping and source terms, Mathematical methods in the applied sciences,

27 (14) (2004), 1687-1696.

[57] S. A. Messaoudi, A. A. Talahmeh, A blow-up result for a nonlinear wave equation with

variable exponent nonlinearities, Appl Anal. 96 (9) (2017), 1509-1515.

[58] S. A. Messaoudi, A. A. Talahmeh, Blow up in solutions of a quasilinear wave equation with

variable-exponent nonlinearities, Mathematical Methods in the Applied Sciences, 40 (18)

(2017), 6976-6986.

[59] S. A. Messaoudi, A. A. Talahmeh, On wave equation: review and recent results, Arabian

Journal of Mathematics, 7 (2) (2018), 113-145.

101



References

[60] S. A. Messaoudi, A. A. Talahmeh, and J. H. Al-Smail, Nonlinear damped wave equation:

Existence and blow-up. Computers & Mathematics with Applications, 74 (12) (2017), 3024-

3041.

[61] A. F. Metwaly, M. Z. Rashad, F. A. Omara, and A. A. Megahed, Architecture of multicast

centralized key management scheme using quantum key distribution and classical symmetric

encryption, The European Physical Journal Special Topics, 223 (8) (2014), 1711-1728.

[62] N. Mezouar, S. Boulaaras, Global existence and decay of solutions for a class of viscoelastic

Kirchho¤ equation, Bulletin of the Malaysian Mathematical Sciences Society, 43 (1) (2020),

725-755.

[63] N. Mezouar, S. Boulaaras, Global existence of solutions to a viscoelastic non-degenerate

Kirchho¤ equation, Applicable Analysis, 99 (10) (2020), 1724-1748.

[64] S. Mokeddem and KBW. Mansour, The rate at which the energy of solutions for a class

of-Laplacian wave equation decays, Int J Di¤erence Equ. , (2015) (2015).

[65] J. Musielak, W. Orlicz, On modular spaces, Studia Math. , 18 (1) (1959), 49-65.

[66] H. Nakano, Modulared Semi-ordered Linear Spaces, Maruzen Co., Ltd., Tokyo, 1950.

[67] H. Nakano, Topology and Topological Linear Spaces, Maruzen Co., Ltd., Tokyo, 1951.

[68] W. Orlicz, Uberkonjugierte Exponentenfolgen, Studia Math. , 3 (1) (1931), 200-212.

[69] M. A. Rammaha, D. Toundykov, Weak solutions and blow-up for wave equations of

p�Laplacian type with super critical sources, Journal of Mathematical Physics, 56 (8)

(2015), 081503.

[70] I. I. Sharapudinov, On the topology of the space Lp(t)([0; 1]), Math. Notes, 26 (4) (1979),

796-806.

[71] L. Sun, Y. Ren and W. Gao, Lower and upper bounds for the blow-up time for nonlinear

wave equation with variable sources, Computers and Mathematics with Applications, 71 (1)

(2016), 267-277.

102



References

[72] Z. Tebba, S. Boulaaras, H. Degaichia and A. Allahem, Existence and blow-up of a new class

of nonlinear damped wave equation, Journal of Intelligent and Fuzzy Systems, 38 (3) (2020),

2649-2660.

[73] Z. Tebba, H. Degaichia, M. Abdalla, B. B. Cherif and I. Mekawy, Blow-Up of Solutions

for a Class Quasilinear Wave Equation with Nonlinearity Variable Exponents, Journal of

Function Spaces, 2021 (2021).

[74] Z. Tebba, H. Degaichia and H. Messaoudene, Global existence and �nite time blow-up in

a new class of non-linear viscoelastic wave equation, Journal of Discontinuity, Nonlinearity,

and Complexity, 11 (2) (2022), 275-284.

[75] I. V. Tsenov, Generalization of the problem of best approximation of a function in the space

Ls, (Russian) Uch. Zap. Dagestan Gos. Univ., 7 (1961), 25-37.

[76] E. Vitillaro, Global nonexistence theorems for a class of evolution equations with dissipation,

Arch. Ration. Mech. Anal., 149 (2) (1999), 155-182.

[77] Z. Yang, Existence and asymptotic behavior of solutions for a class of quasi-linear evolution

equations with non-linear damping and source terms, Math Methods Appl Sci., 25 (10)

(2002), 795-814.

[78] V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory,

Math. USSR Izv. , 29 (1) (1987), 33-66.

103


