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Abstract

This memory provides an overview of recent developments in ensemble controllability. In parameter-
dependent linear systems, we look at various ensemble control concepts that have been actively
developed over the past decade As an example, we cite the work of Li [9] and Khaneja [10].

The goal of the control function is to steer the ensemble system to a desired parameter inde-
pendent state, by implementing parameter-independent open loop controls, then necessary and
sufficient conditions for ensemble control are established using methods from complex approxi-
mation theory .

We consider the problem of ensemble controllability for finite and infinite linear systems, and we
provide an overview of the observational ensemble due to its strong connection with the memory
theme.

Keywords: Ensemble controllability, parameter dependent systems, ensemble observability, uni-

form null ensemble controllability, averaged control.
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Notations & abbreviations

R Set of real numbers.
Il -l a A norm in space H.
ODE Ordinary differential equation.

PDE Partial differential equation.
C Compound set.

Lr Space of Lebesgue.

I The identity operator.

|.| A norm in L? ()or absolute value.

Lr(Q)  {u:Q—R|[ylufdr <oo},peR,1<p< o0,
(»-)pp Duality Product.

A The Jordan canonical form.

RHoo  The set of rational, proper and stable matrices with real coefficients.
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Introduction

The challenge of controlling a considerable, perhaps endless, number of objects is referred to as
ensemble control. The heart of solid network theory involves regulation ensembles. Ensembles
are driven by various applications for various physical and non-physical systems. The goal of
this memory is to provide you with an overview of the new topic of ensemble control for linear
systems, which is concerned with the control of families of linear systems.

Regulating ensembles is at the heart of network theory because it uses a single-input control
function or a single-feedback controller to control a set of states or systems.

Controlling parameter-variable systems with parameter-independent open-loop or closed-loop
controllers is another research topic. The so-called blending problem, which arose in the late
1970s, is one such example, we want to discover family-stabilizing parameters- independent feed-
back control principles. In physics, mathematics, and engineering, the goal is to control a family
of systems or state variables. A major difficulty in ensemble control is the controllability of an en-
semble using open-loop input signals independent of the system properties. This corresponds to
the classic challenge of controlling many linear systems in parallel if the parameter set has a finite
number of values. The key results on the ensemble controllability of linear parameter-dependent
systems can be found in Helmke and Schoénlein [6]; Li [9].

The underlying notions used to examine the ensembles of linear systems are the same as those
used in quantum physics and other sciences to explore large-scale systems. It can also happen in
regular life, such as when using an oven.

This memory is organized as follows: In the first chapter, we give a general statement about
the ensemble controllability in finite dimensional systems, in which we dealt with two sections,
namely, the ensemble controllability in continuous time and in discrete time. where we discussed
in the first section the concepts of the ensemble controllability in one parameter and a set of pa-
rameters, similar to the concept of uniform null ensemble controllability, the difference between
the ensemble control and the average control.

The second chapter contains a general statement about ensemble controllability in infinite dimen-
sional systems, in which we discuss the problem of L? ensemble controllability without forgetting
optimal control of a harmonic oscillator ensemble.

The third chapter deals with the concept and theories of ensemble observability. We finish the

memory by the conclusion.



Chapter 1

Ensemble controllability for finite

dimensional systems

1.1 Ensemble controllability of continuous time systems

1.1.1 In the case of a single parameter

In the linear instance, we consider the finite dimensional control system as follows:

{ 2y(t:0) = A(0)y(t; 0) + B(O)u(t) te0,7], 0

y(0;0) = yo(0),

Where 6 is a parameter that generally changes in a compact interval [a,b] C R, A(f) €
R™m B(#) € R™™ and y,(.) is continuous for all 6.
An important problem in ensemble control is that an ensemble can only be controlled using a
common control input rather than applying individual input signals to individual systems, which
is a practical boundary in normal ensemble control concerns.
A common control task is to guide the ensemble to a chosen terminal state at time ¢ = 7', which is
frequently requested in order to range with a specific parameter. As a result, terminal states can
be expressed as functions 0 — y(7T;0).
The control input, on the other hand, is required to be independent of the parameter 6.
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Figure 1 : A surface parameter indexes a continuum ensemble of systems.

A supervisor sends out a signal u(¢) as a common steering control input to each and every system
in the ensemble. Meanwhile, receives the result of a measurement y(¢) information integration

of the individual states systems

S

By (0)) 6

0(9] .,‘~

L_(D.M)

Figure 2 : The concept of ensemble controllability.

Two locations on the function space L>(D, M), yo(#) and y(7', #), correspond to two functions on
the § —y domain. The system is ensemble controllable if there is a u(¢) that steers the system (1.1)
from an initial position yo(6) to y(T,0) € B. (y,(0)) for some limited time 7.

Let’s outline the uniform ensemble controllability:

1.1. Ensemble controllability of continuous time systems
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Definition 1.1 (Adu,D,2017) (LP-ensemble controllability) For every y, and y, in LP([a,b]; R"),
an ensemble )" ([a,b],A, B) is LP-ensemble controllable if and only if there exists a finite time T > 0
and a control signal u € L([0,T]; R™) that directs the trajectories of »_([a,b],A, B) for all § € [a, D]
from y (0;0) to y, (0), where y (T'; 0) satisfies the relation

y(T50) = yallr (ja)mm) = (ff | y(T50) —ya | dQ)p =0. (1.3)
1 1 _
where ; + .= 1.

Definition 1.2 (Adu,D, 2017) (Uniform ensemble controllability)In C([a,b], R™), an ensemble > . ([a, b],/
is uniform ensemble controllable if and only if, for any y, and y, in C([a,b], R™), and, there exists a

finite time T' > 0 and a control signal u € L*([0, T]; R™) that steers the trajectories of Y ([a, b],A, B)

orall § € [a,b] from y (0;0) to y, , where y(T'; ) satisfies the relation

1y(T50) — yall 2981[112] |y (T50) —ya ||=0. (1.2)
€la,

Also, we introduce another notion of ensemble controllability.
To obtain a valid definition of ensemble controllability, we must first solve the y(7';0) = y, prob-

lem. Because y, is a constant and y(7';0) is a variable connected to 6, this assertion cannot be

equal. To overcome this difficulty.

Remark 1.1 (Adu,D,2017) We find it easier to consider the system parameters in terms of C. We ana-

lyze the ensemble of control systems ) (|a, b], A, B) described in (1.1), where (A; B) € L>(M;C"*™)x
L*(M;C™™). That is,a;; € L°(M; C) and b;; € L*(M; C), where a;; and b;; are the ijth entries of
A and B, respectively, and i, j € {1,...,n} is the number of entries.

We assume in this chapter that u € L*([0; T]; C™), We have the system (1,1) solution of the form

T
y (T,0) = ATy, + / ATDB(0)u (t)dt. (1.4)
0

It should be noted that if y(T,0) = y4, then we have that

F@) : 6¢€la,b —R", (1.5)
= [TAOTB(r,0)u(r)dr. (1.1

Let’s start by giving some conditions for ensemble controllability:

Theorem 1.1 (Fuhrmann and Helmke ,2015) (Sufficient Condition for ensemble controllabil-

ity). If these conditions are satisfied, let 0 € [a,b] be a compact interval and (A(6), B(9)) be a

1.1. Ensemble controllability of continuous time systems
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continuum family of uniformly controlled single-input systems (or, in general, L? - controllable for
1<g< o)

(a) (A(0),b(9)) is controllable for all 6 € |a, b].

(b) The spectra of A(f) and A(6") are disjoint i.e. For pairs of distinct parameters 6,6 € [a,b],0 # ¢':

a(A0)) N a(A@)) = 0.

(c) For every 6 € [a, b] the eigenvalues of A(f) have an algebraic multiplicity of one. Conditions (a)

and (b) also important for uniform ensemble controllability.

Proof. See (Fuhrmann and Helmke ,2015) page (612) m

1.1.2 In the case of a set of parameters

Our analysis of combinations of linear systems begins with linear systems that depend on many

factors inside the model (1.6).

{ Dy(t:0) = A(B)y(t;0) + B(O)u(t) te[0,T], w6

y(0;0) = yo(6),

For simplicity, we assume that the system matrices A(¢) € R"*" and B(¢) € R"*™ range continu-
ously in a compact domain P of parameters 6 in euclidean space R?.

The analysis of such linear system families can take different shapes. To begin with, finding
parameter-dependent controllers that guide systems from a set of preliminary states to a set of
preferred terminal states is a difficult task. The degree of consistency or smoothness within
the parameters imposed at the controls is most likely a restriction here. It may be appropriate
for remark controllers and input functions to be similar if the system matrices are polynomially
dependent on a parameter, for example. It may be appropriate for the remark controllers and

input functions to be similar if the system matrices are polynomially dependent on a parameter.

Definition 1.3 [Fuhrmann and Helmke, 2015] Let 1 < p < oo. System (1.6) is uniformly ensemble
controllable if there is a control u € LP([0, T], R™) such that the caused nation trajectory satisfies for

any continuous function y, : P — R™ and each ¢ > 0.
sup || y (750) — ya [[< e (1.7)
0P

Rather than seeking for controls that meet the uniform ensemble controllability criterion (1.7), one

can look for controls u(t) that lower the L4-norms for the ensemble.

RS

(Jo | 9(T30) —ya |P dO) 7 < e. (1.8)

1.1. Ensemble controllability of continuous time systems
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The system is then said to be L%-ensemble controllable. The system is referred to as precisely ensemble
controlled if the conditions in (1.7) or (1.8) are met for € = 0. Of course, the ability to select the input
function independently of the parameter 0 it isn’t in any respect plain, and systems of this type do in

truth exist.

1.1.3 Some characterizations of ensemble controllability

Proposition 1.1 [Schonlein and Helmke, 2016]Suppose that the ensemble in continuous time (or dis-
crete time ) is uniform ensemble controllable. Then

(1) Foreach 6 € P, the linear system (A(9), B(0)) is controllable.

(2) For every number s > m + 1 of distinct parameters 01, . . ., 0, € P, the spectra of A(0) satisfy

a(A(61) M. ..No(AB,)) = 0.

The previous conditions are useful since they exclude non-ensemble controlled families. A(f) cannot
have an 0 independent eigenvalue, according to condition (2). We then show how to employ a
polynomial approximation condition to characterize significant and necessary situations for uniform

ensemble controllability.

Remark 1.2 [Schonlein and Helmke, 2016] Let P be compact. Assume that:
(1) A(0) has simple spectra for all 6.
(i) For all 6 # 0’ the spectra of A(6) and A(0') are disjoint.
Then, the related additives of
K=|Jo(AW) cC

P
They are linked. It’s worth mentioning that the communication is phony in general. As a result,

uniform ensemble controllability appears identical for continuous-time and discrete-time systems.

Theorem 1.2 [Schénlein and Helmke, 2016|The union of the compact intervals is P C R. Assume
that 0 € P . If and only if rank A = n and rank B = n, the family > = {(0A,B)|0 € P} is
uniformly ensemble controllable.

Proof. We focus on the case of continuous time; the case of discrete time will pass as we consider the
needs of the distinct situation. Assume that > = {(0 A, B)|0 € P} is uniformly ensemble controllable.
Given that 0 € P, the essential condition (1) implies that rank B = n. We have in particular, Assume
rank A < n to demonstrate the second assertion. Then, 0 is an eigenvalue of A, and we have for

awesome parameter values {01, ...,0,.1} € P:

0€a (B A)N... N0 (0 A)

1.1. Ensemble controllability of continuous time systems
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Contradicting the necessary condition (2).
On expect rank A = n and rank B = n, on the other hand. We can assume B = I, without
lack of generality. The rank condition for B implies the controllability condition (1). The Jordanian

canonical form is denoted by A. It is sufficient to recall the ensemble.

2 y(4,60) = OAy(1,0) + Tu(t). (1.9

For, we will focus on the two-dimensional Jordan block; however, the higher-dimensional situation is

supported by the induction argument. Let

0 oN 0 10
&Z@’ ) = ( 0 o ) 2(t,0) + < 01 )u(t) (1.10)

The solution to (1.10) is given by

INT=3)q (5) + ONT — 8)eP Ty (s) ) p
s

eeA(T—s)uz(S)

90(T7 Qau) = fOT (

Given z* = col(z;23) € C([a,b] ,R?) and € > 0.
There may be an enter function us : [0,7] — R so that |25(0) — ¢5(T,0,us)| < e for all § € [a, b]. Let

T
w*(0) = 27(0) — / 0T — 5)e*T=*)yy(s)ds € C(P,R)
0
Following the equal reasoning there’s an input u, : [0,7] — R so that
T
|w*(0) —/ INT=9)qy (s)ds| < e
0
Consequently, we have

sup || 2 (0) — (T, 0,u) ||[< e
0cP

And we are done. m

1.1.4 Uniform Null Ensemble Controllability

We continue to introduce a definition of the controllability of a uniform empty set using the

parameter theta in [0, 1].

Definition 1.4 [Adu,D,2017] Let ) .(P,A, B) be an ensemble of continuous-time single-enter sys-

tems. Then, ) .(P,A, B) is uniformly null ensemble controllable if and only if there exists an open

1.1. Ensemble controllability of continuous time systems E
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set V C R" containing the origin, a finite time T > 0, and a control signal u € L*([0, T}; [0, 1]) such
that, for all y(0,0) # 0 € V, u steer y(0,60) to y(T,0) € V, where

sup [|ly(0, )| <e.
0P
The equal definition holds for the discrete-time single-input scenario.

Theorem 1.3 [Adu,D, 2017, Theorem 5.1.2| An ensemble ) . (P,A, B) of continuous-time single-enter
systems

is uniformly null ensemble controllable if the subsequent condition holds:

1. The eigenvalues of A(0) has a nongero imaginary part, for all 6 € P.

2. The pair (A(#), B(0)) is null controllable, for all § € P.

3. 0(A(0)) No(A(8")) = 0, for any pair of wonderful parameter 6, §' € P.

4. The eigenvalues of A(f) have algebraic multiplicity of one, for every 6.

Proof. See [Adu,D, 2017, page 44]. m

1.2 Ensemble controllability of discrete-time

In discrete-time, we consider a family of control systems of the form

y(t+1;0) = A(0)y(t; 0) + B(O)u(t). (1.11)

in which A(0) € R"*", B(#) € R™™ and u(t) € R™ with 6 € [a,b] C R.
We will regularly discover an ensemble of control systems given by (1.9) with)_([a,b]; A; B)
,Given preliminary states y(0; 6), for all € [a,b] and a finite time 7" > 0, the use of the variant of

the constant formula, the overall answer for (1.11) is given by,

T-1
y(T;0) = AT(0)y (0;0) + S A(0) B(O)u(T —1—k) . (1.12)
k=1
Following that, we present both the necessary and sufficient requirements for the uniform ensem-
ble controllability of linear systems (1.6). These are the same criteria that apply to discrete-time
systems. Let

(21 = A(0))"" B(6) = No(2) Dy (2)"

Be a right coprime factorization by a square polynomial matrix Ny (z) € R"*™[z] and a non-
singular polynomial matrix Dy (z) € R™*™[z]. We first notion the important conditions for uni-

form ensemble controllability.

1.2. Ensemble controllability of discrete-time
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Proposition 1.2 [Fuhrmann and Helmke, 2015] (Necessary Conditions). Let P be a subset of
R? such that the indoors factors of P are dense in P. Assume that the family of linear systems
(A(0), B(0))gep is uniformly ensemble controllable. Then, these properties are satisfied:

1. For each 6 € P the system (A(6), B(6)) is controllable.

2. For finitely many parameters 04,. . .,0s € P, the m x m polynomial matrices Dy;(z), ..., Dys(z) are
mutually left coprime.

3. For m + 1 distinct parameters 01, . . .,0,,+1 € P the spectra of A(0) satisfy

o(A(B:)) N -+ (0 (A(Bns)) = 0.

4. Assume m = 1. The dimension of P satisfies dim P < 2. If A(9) has a simple real eigenvalue for
some § € P, thendim P < 1.

1.2.1 Characterizations of ensemble controllability for discrete time sys-

tems

The uniform ensemble controllability requirement can be presented in a more comprehensible
format. We will concentrate on the discrete-time situation with a single input for the sake of
simplicity. In the continuous-time situation, corresponding characterizations are more complex
and are not required for the subsequent analysis. Uniform ensemble controllability is defined by

the following result.

Proposition 1.3 [Helmke and Schonlein, 2014] A family {(A(#),b(0)), 6 € [a,b] of discrete-time sys-
tems is uniformly ensemble controllable if and only if for all € > 0 and all continuous functions
Ya : [a,b] — R™ there is a real scalar polynomial

la,b] € R[z] such that

sup || p(A(0))b(0) — ya ||< e. (1.13)
0€(a,b]

Proof. Recall that given inputs u(0), ..., u(7" — 1) the solution is given by

y(T,0) = T_lA(H)’“b(H)u(T —1—k)
— T_lu(T —1- k:)A(é’)’“) b(0)
= p(AD)DO).

1.2. Ensemble controllability of discrete-time B}
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T-1
Where p(z) = > ur_1_2" is a parameter independent polynomial.

Suppose that (A(6),b(0)) is controllable for all # € [a, b]. Then, by the controller canonical form,
there exists a continuous family of invertible state-space transformations S(6) = R(A(f),b(6)) *such
that

(A©),e1) = (SOAOSO) ", S)0(6))

Isin (tall) control canonical form, where R(A(f), b(f)) denotes the n x n controllability matrix and
A(6) denotes the tall companion matrix of the characteristic polynomial gy(z) = det(zI — A(f))
and e, is the first standard basis vector of R". Given any continuous y, : [a,b] — R" we consider

the real polynomial w, in z defined by
ug(z) == (1z..2" VYR (A(6),b(0)) " ya. (1.14)
u

Proposition 1.4 [Helmke and Schonlein, 2014] Assume that the discrete-time system (A(6),b(6)) is
controllable for any

0 € [a,b]. Then, the following are equivalent.

(1) (A(8),b(8)), is uniformly ensemble controllable.

(2) For any continuous function y, € C([a,b],R™) and any ¢ > 0 there exists a polynomial p € R[],

I (p — o) (A(6)) b(0) || < e

For all § € [a,b].
(3) For any continuous function y,; € C([a,b] ,R™) and any € > 0 there exists a polynomial p € R[]

| p(A(0)) —uo (A(0)) | <&

For all 0 € [a, ).

Assume, that for each 6 € [a, b], the eigenvalues of A(f) are distinct. Let

{C:=(z,0) € C x [a,b],det (21 — A(0)) = 0}.

Each above conditions is equivalent to:

(4) For any continuous function y; € C([a,b],R™) and any € > 0 there is a polynomial p € R[]
with

Ip(2) —ue(z)| < e,¥(z,0) € C.

Proof. See [Helmke and Schonlein, 2014, page 72| . =

1.2. Ensemble controllability of discrete-time [}
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1.3 Comparison between averaged controllability and ensem-
ble controllability

The control function’s goal is to guide the system to a state that satisfies a set of properties
specified either at 7" > 0 or during a certain time interval. These dwellings can be split according
to parameter values and may refer to a single system (e.g.) or solutions corresponding to the
entire parameter range (e.g. ensemble control, averaged control). Controls v is designed as
a parameter invariant in the latter instance, suggesting that an equal control is to be applied to
the system (1.1) regardless of the specific attention of the parameter ¢, whereas controls u4 range

with 0 in the first case.

The goal of the first concept (averaged controllability) is to persuade the system’s expectancy
to the target, whereas the goal of the second concept (ensemble controllability) is to persuade
each system’s attention to an arbitrarily small ball across the target. Of course, for the averaged
controllability concept to work, the parameter attention must adhere to a few potential laws.
Ensemble controllability is a more powerful concept, as evidenced by the fact that ensemble
controllability implies controllability.

The difference between them is mathematically as follows:

Averaged controllability:
1
/ y(T,0)d0 = ya.
0

Ensemble controllability:

=

(ff | y(T50) = ya |” de) " =0.

1.3. Comparison between averaged controllability and ensemble controllability
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Ensemble controllability for infinite

dimensional systems

2.1 Statement of problem

Let A:Y — Y and B: U — Y be bound linear operators on Banach spaces Y and U, respectively.
A linear system
y'(t) = Ay(t) + Bu(t) 2.1)

If the controllable set of 0 is dense in Y, it is said to be approximately controllable.

The mathematical relationship between ensemble controllability and approximation controllabil-
ity is simple to explain. Allow Y to indicate the Banach space of R"-valued continuous functions at
the compact parameter space P, equipped with a supremum norm, explicitly for uniform ensem-
ble management. Similarly, choose Y = L?(P,R") for L?-ensemble controllability A continuous
family of linear systems (A(f), B(f)) on a Banach space Y with a finite-dimensional space of

control values U = R™ defines a linear system of the type (2.1) in both cases. Here

A:Y =Y, (Az)(0) := A(0)x(0) (2.2)

Is the bounded linear multiplication operator, whereas the input operator is denoted by.

B:R™ =Y, (Bu)(f) = B(0)u (2.3)

Is described by an m-tuple of Banach-space elements, i.e. by the columns B(.).

11



Chapter 2. Ensemble controllability for infinite dimensional systems

2.2 [L’-Ensemble Controllability

A few mathematical concepts must be remembered. Remember that the space L? ([a, b]; C* ) ,a,b €
R. The inner product of , k € N is defined by

b
(f.g) = / g () d,

Forall f,g € L? ([a,b] ; C¥) , where the conjugate transpose is denoted by 1. Let H; = L ([0, T];C™)
and H, = L? (P;C™) ,We define an operator L : H, — H, by

T
(Lu) (6) = / AOTB (7 0)u () dr, (2.4)
0
We can deduce from (1.5) and (2.4) that

(Lu) (0) = F'(9), (2.5)

For all # € P., Ensemble controllability is now equivalent to solving the operator equation with

this new formulation (2.5). To put it another way, we want to find v € H; that solves

Lu=F. (2.6)

It is shown in [Li, J.S.(2010).] that, the operator L described in (2.4) is proved to be bound and
compact .

For completeness, we offer a demonstration of this fact in the appendix see ([Adu,D, 2017]Theorem
7.1.2 and Proposition 7.1.3). As a result, L is a compact bound linear operator. Under these
circumstances, the fact that L has an adjoint operator L* is well-known in [Kreyszig,E, 1991].
Which is a additionally a bound compact linear operator such that, for all f € H, and u € H;, L*
fulfill the relationship

(f, LU>H2 = (L"f, U>H1 5 (2.7)

Inner products defined in the spaces H, and H, are (.,.), and (.,.), , respectively. From (2.7)

we can see that L* is provided for every f € H,:

(L*F) (1) = / B (7,0) S' (0,7,0) f (0) db. 2.8)

P

2.2. L*-Ensemble Controllability
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The operator equation (2.6) now has no unique solution since compact operators are not invertible
(see Proposition 7.1.5). We give a result and direct the reader to [Luenberger,D.G, 1997] for the

evidence.

Theorem 2.1 [John Wiley and Sons, 1997, Theorem 6.10] Let H, and H, indicate Hilbert spaces, and
L € B(H,, H,) denote the range space of L, which is closed in H,. The vector of least norm u
satisfying Lu = F'is then provided by u = L*z for F' € R(L), where z is any solution of LL*z = F.

Using (2.4) and (2.8), it is possible to demonstrate that the operator LL* : H, — H, has the form

(LL*2) / / (0,7,0) B(r.0) B (.0) S (0,7,0') = () drd. 2.9)

We provide the following definition before starting and proving the main results.

Definition 2.1 [Li,J.S.(2010)] Let H, and H, represent Hilbert spaces, and L : H; — H, represent
the compact operator. If ()\?, Y;) is an eigen system of LL* and ()\?, ¢;) is an eigen system of LL*,
then, the two systems are connected by the equations LL*; = A?@bj ,%; € Hyand LL¢; = /\igbj s
¢; € Hy, where \; >0 :

Lo; = M\jp; and L™, = \j¢;. (2.10)

The triple (\;, ¢;,%;) is referred to as a singular L system. Now we’ll declare and prove the chapter’s

key conclusion.

Theorem 2.2 [Li,J.S.(2010)] An ensemble Y. (P, A, B) is L*-ensemble controllable in L*(P;R"),
If and only if, for any given initial and intended state xy and =4 € L*(P;R") and for F(0) =
S(0,T;0)x4(0) — xo(0), the condisions

1LY, '<Fv/\¢2j>‘2 < 00

2. FeR(L) ) hold, where R (L) signifies the range space closure for L.

Additionally, the control law
1
Zr 0.05) 51 (2.11)
Satisfy
(u,u) < (uo,uo),

For all uy € F and u # wug, where ,With conditions 1 and 2 of Theorem 3.1.3met, F = {u € Ly[0, T];R™} | Lu -
F

2.2. L*-Ensemble Controllability
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Furthermore, for a given ¢ > 0,
—~ (F, ;) ¢
u?" - Z )\] I
j=1
In a way that

nF — Luy, 1< €, (2.12)

For any m > r, where r € N and depends on ¢
" (P 0,
m = sy 2.13

Proof. We begin by demonstrating the requirement. Assume that there is u € H; that satisfies
(2.3). Then,

(F,9;) = (Lu,1,), (2.14)

It denotes

5 (Fasy) = (). 215
J

The sequences {¢j}j>1 C H; and {wj}j>1
compact operator (see [5,page.248]). We have it using Bessel’s inequality. we have that,

C H, are orthonormal because LL* is a self-adjoint

<iu ||§< 0.

The proof of the first statement is now complete. We also have that « € H, for every a € N(L*)
such that
L'a=0.

Following this logic,
(F,a) = (Lu, ) = (u, L*a) = 0.
Hence,
F e N (L) =R(L).

The second statement’s proof is now complete. Assume, on the other hand, that the first and

second requirements are met. Thus, let

(F.;)
= ) 2.1
BJ )\j ( 6)
We can see from the first condition that
Z | B 2 < 00. (2.17)
j=1

2.2. L*-Ensemble Controllability
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According to (Proposition [1] 7.1.6), u € H; exists.

o0

u=>Y B¢, (2.18)

j=1

{¢; }]21 and {¢; }]21 have been proved to be orthonormal bases for R (L*) and R (L), respectively,

in [8], and since v € R (L*) C H;, we have that
u=> (u,¢;)e; (2.19)
j=1

Because {¢; }j> | is an orthonormal basis, its coefficients are one-of-a-kind. Becauset of (2.18) and
(2.19), we may deduce that

(£ 4;)
<uv ¢]> - )\j =
We assert that w € H; in (2.19), for example, is not in N(L). A contradiction argument is used to

demonstrate this. If u € N(L) is true, then Lu = 0. Now, using Is linearity and continuity, we get

[e.9]

Lu = Zﬁ L) = Z (F,;); = 0. (2.20)

J=1 J=1

Given that {%}J.Zl is an orthonormal basis, (F,v;) = 0 for j € {1,2,...} . Concludes that ' = 0,
which is a contradiction. As a result, the assumption « € N(L) is incorrect.
We can show that the right-hand side of equation (2.20) is true since F' € R (L) and {v; } 1 @
orthonormal basis in R (L).

Z(E%}% =F

j=1
As a result, the operator equation is solved by w in (2.19).(2.6). Let us also consider

N
Fa.)o.
N:Z< ’f]>¢j’ (2.21)
= j
Where N € N. We get the following result by using the knowledge that {¢; }j> | is an orthonormal
sequence.
||u—uN||§— Z 2|<g0¢>|—>0 as N — oo. (2.22)
S
j=N+1 J
This suggests that
2__ = 2 2
WFE — Luy 15= Z )\j | <u,¢j> “—0 as N — 0. (2.23)
j=N+1

The proof is now complete. m

2.2. L*-Ensemble Controllability
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2.3 Optimal control of an Ensemble of Harmonic Oscillators

To demonstrate the ensemble controller’s construction, we use an example from [Li,J.S, 2010].
An ensemble of harmonic oscillators is subjected to a xed endpoint optimum control problem.

Consider :

9 9(1:6) = AW@w(1:0) + BO)u (), (2.24)

Where § € P C Ry(t;0) = (y1(;:0), y2(t;0))" € R% u(t) = (uy(t),uz(t))" € R and u; € L ([0, 7] ; R)

fori e {1,2},
A(@):(Z _09> and B(@):(é 2)

We want to find v € L2([0; T]; R?) that steers the trajectories of (2.24) from y(0, 0) to y(T,0) € R?

in the sense of L2-ensemble controllability, so that v minimizes the cost functional

min J(u):/OT||u(t)||2 dt.

ue L2 ([0;T];R?)

Let’s take advantage of the fact that R? is isomorphic to C.

y(t.0) = wi(t,0) +iya(t,0),
u(t) = wuy(t)+iug(t).

As a result, (2.24) can be written as.

% (t,0) = i0y (t,0) + u(t).

We get the following from the fluctuation of constants formula:

T
y(t,0) = ey(0,0) + / 0=y, (5) ds.
0

Consequently,

T
F () :/ ey (s) ds, (2.25)
0

Where,

F(0) = e 0Ty (T,0) —y(0,0).

2.3. Optimal control of an Ensemble of Harmonic Oscillators
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H, = L*([0,T];C) and H, = L*(P;C). We create the L : H;, — H, an operator by

(Lu) (6) — /0 " 0Ty (5) ds. (2.26)

From (2.25) and (2.26) We get.

(Lu) (0) = F'(0), (3.27)

For both § € P Because u € H,; and the kernel k(¢,6) = =T are both bounded, the operator L
defined in (2.26) must be a bounded compact linear operator with an adjoint. It's worth noting
that we have f € H, for all of them.

(f, Lu), / / e~ (0)" dOu (s) ds. (2.28)
As a result, the adjoint operator is satisfied.
ot
(L*F) (s) = / ¢ £ (0) df). (2.29)
We know from Theorem 2.1 that
Lz = u,
When z is true
LL*z=F.

The operator LL* : H, — H, is obtained by substituting (2.29) into (2.26). is of the form

(LL*2) (6y) / / W'=00)s 2 (0') df'ds. (2.30)
We obtain using Fubini’s Theorem.
ot T
(LL*2) (0) = / ) < /O eiw’—@l)Sds) 2 (0)dd. 2.31)
We have through straight calculation
6+ T oi(0'=00)T _ q
(LL*2) (6) = / ] < /0 mds) () dd. (2.32)

We have the following:

2.3. Optimal control of an Ensemble of Harmonic Oscillators
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=0T _ cos ((0'—01)T)—1+isin((0'—60,)T)
i(0—0,) i(0' —01) ’
(cos2 ((9' —06y) %) — 1) — sin? ((6’ — 91?

—2sin® ((0' — 61) ) —|—z(2sm(6 —01)%
( Y

_ 27rsi71;1<(6(/9—9 3) ( ( )+zs1n<sin(9l—91)§))a

¥ —61)
_ ori0—00)% sin (0" — 01 .
o (100

w =% and a = L’ be true, then w’,w € [—1,1]. Equation (2.32) can be rewritten using

MH

o
)

this observation as

Letw =

(LL*2) () = /_ it -o (Sm (W :w) O‘)) 2 (W) du. (2.33)

We look at the equation.

/1 (sin (W —w) Oé)) B; (W, a)dw' = v; (@) B; (w, ) (2.34)

1 (W —w)

where 3; (w, «) is the appropriate eigenvalue of a well-known prolate spheroidal wave function
[Percival,D.B and Walden,A.T,1993],[Flammer,C,2014],[Slepian,D and Pollak,H.0,1961],[Landau,H.J.and Po
and [Landau,H.J.and Pollak,H.O, 1962], and v; is the jth eigenfunction. Similarly, \consider

1

(LL,) (w.o) = [

We have that rearranging (2.35)

27Tez'(w’—w)o¢ (Sin ((wl _ w) Oé)) 77Z)j (w’7 Oé) dw' = 1z (a) Q)b]. (w7 Oé) . (235)

1 (W —w)

1
. 1
/1 ome’® (smﬁ (((:, _c:}))oz)) Y; (W, ) dw' = %ewapj ()Y (w,a) (2.36)
Let
e (W a) = B (W a). (2.37)
Then,
v; (@) B, (w,a) = %eiwapj (@)Y (w, ). (2.38)

2.3. Optimal control of an Ensemble of Harmonic Oscillators
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We get (2.38) when we evaluate it at w'.

vj (a) B (W', ) = %e"wlo‘pj (), (W, ). (2.39)

We can find the answer by comparing equations (2.37) and (2.39).

p; = 2mv; (2.40)

The eigenvectors and eigenvalues of the operator LL* can thus be expressed in terms of v; and
$3,from (2.37) and (2.40), respectively. The fact that 3,’s are orthogonal and complete on L*[—1,1]
is well known (see, for example, [Percival,D.B and Walden,A.T.(1993)]). Now, let

00 1 ~ ~
= —{(F . Y., 2.41
= o (P) 0, (2.41)
Where 3
T —iwa J
vp=e I ﬂj I (2.42)

Then there’s that.

LL*z = ; <F z/;j> 0, =F

Theorem 2.1 is applied to LL* with respect to the orthonormal basis {@ZJ} in R(L). We may
-
clearly notice this. ’

i% < > (2.43)

Jj=1

.

Where

A = /B (2.44)

The control signal can also be expressed solely in terms of {pj, with (}j being produced using the

same reasoning and the operator LL*. It’s also possible to write the control signal as

0= [ S L{r (@), (3)) 0, (0) @ 245
Let

=St (ri)s,

2.3. Optimal control of an Ensemble of Harmonic Oscillators
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As a result, where N € N

N
LL 2y = ij <ZﬂZ’j> {ﬁp
j=1
We have it.
W F — LL 2y 12= i |<F,1Lj> 2 (2.46)
j=N+1

As N — oo, it goes to zero. As a result, for any ¢ > 0, there exists n € N such that for all NV € N,
we have N > n.

N — LL 2y 1< €. (2.47)

Now, since L L*zy approximates F’ in this way, we can deduce that

| LL*z— LL*zy ng=1 L (L*z — LL*zN) 113,

< nwLngn L*z— LL*zy 11,
< nlL ||§|| z— zZn l19< €,

Since zy — z equals N — oo, it follows that for any ¢ > 0, there exists n € N such that N > n.
WLz — L*zy n< e.
As a result, for any € > 0, there exists n € N such that for all V € N, we have N > n.

HU — Uy < €,

Where uy = L*z As a result, the sequence of control inputs provides the best approximation of

the control signal « that achieves a minimum norm.

unN = L*ZN.

Proposition 2.1 Controllability can be described as (2.2) and (2.3) for bounded linear operators A
and B. If and only if system (2.1) on the Banach space X is roughly controllable, the parameter-

dependent system (1.1) is uniformly (or or (L? — ensemble controllable).

2.3. Optimal control of an Ensemble of Harmonic Oscillators
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Proof. We focus on uniform ensemble controllability and the Banach space Y = C(P,R"); the

proof for L?-ensemble controllability is the same as that for uniform ensemble controllability.
With y(0) = 0, let ¢t — y(t) € Y signify a unique solution to (2.1). The specific solution to (1.1)
is t — y(t;0), with y(0;0) = 0 for § € P. The approximation controllability of (2.1) states that
there exists 7' > 0 such that || y (T') — ya ||= supgep || ¥ (T';6) —ya (0) || for the continuous function
yq : P — R" and ¢ > 0. However, this is just a requirement for uniform ensemble controllability.

Thus, if and only if the infinite-dimensional system (2.1) is roughly controllable, the parameter-
dependent system (1.1) is uniformly ensemble controllable. Similarly, replacing the Banach space
Y with the Hilbert space H = L?(P,R"™) concludes that the L?-ensemble controllability of (1.1)

equals the approximation controllability of the infinite-dimensional system (2.1).. =

2.3. Optimal control of an Ensemble of Harmonic Oscillators
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Ensemble observability

If yo is an unknown vector, which could be a multivariate random variable, and P, is the proba-
bility distribution.

Before we begin addressing this setup mathematically, we’d like to take a closer look at it in terms
of population models, and so introduce some vocabulary. Youll think of the setup as an outline
of a continuum of individual systems with the same dynamics and dimension outputs as (3.2),
but exclusive preliminary states, whether you’re using population models or ensembles. We name
(3.2) the ensemble’s structural system, and P, the preliminary distribution, which accounts for
the population is distinctive heterogeneity of preliminary states.

The fact that the preliminary nation is a random vector implies that the output y(¢) at any given
time is a random vector as well. P, denotes its distribution, which we’ll refer to as output

distribution.

3.1 Ensemble Observability for finite dimensional systems

Definition 3.1 (L? definition) [Fuhrmann,PA and Helmke,U, 2015] Assume that the matrix A(0) €
R™" () € RP*" range continuously in the compact parameter domain P C R

consider the following parameter dependent system :

dy (t,0)
2L = Aw)y(6), (3.1)
) = / ClO)y(t, 0)d
y(0) = %(0,-)is unknown in L*(P,R").

IfT > 0, 2(t) = 0 on [0,T] implies y(0,0) = 0 for all § € P, this is known as an L*-ensemble

observable.
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This means that the L*-initial state y(0,-) of (3.1) can be reconstructed from the average values,

according to definition.
/ C(Q)y(t,0)dd, 0<t<T,
P

One of the outcomes is C(0)y(t,0). As a result, ensemble observability is a very durable quality
that is particularly valuable in biological parameter identification tasks, where the most effective and

averaged form of output data is delivered on a regular basis.

3.2 Ensemble Observability for Infinite dimensional systems
The linear system is equivalent to the system (3.1).

y(t) = Ay(t), y(0)€ L*(P,R"), (3.2)
2(t) = Cy(t)

X = L*(P,R") in the Hilbert space Bounded linear operators A : X — X,C : X — R is defined
by
(A) (6) = AO)(O). (€0)(®) = [ COloN®.
P

Respectively. As a result, A stands for a multiplication factor, while C' stands for an integration
factor. The idea is similar to the preceding concept of a group note. Approximately observed
(3.2), only observable if the dual system is present.

o (10) = AO)Ty(t,0) + C (0) " u(t), y(0,6) = 0, (3.3)
As a result, when p = 1, Theorem (1.1) holds for (3.1). This establishes that every continuous one-
parameter family (A(9), C(6)), 0 € [a, b], of single-output linear systems is L?-ensemble observable
if the following three conditions are met: 1.(A(#),C(0)) can be observed for all [a, b].

2. A(-) spectra are pairwise disjoint, that is,
a(A0)Na(A0)) =0,V0,0" € [a,b],0 =6

3. The eigenvalues of A(¢) have an algebraic multiplicity of one for each 6 € [a, b].

The ensemble observability problem is similar to the classical observability problem in that
it seeks to reconstruct the beginning distribution P, from the evolution of the output distribution.
P,. A linear system to which there is a unique solution. Using the time-evolution of the data,

create an initial distribution. Ensemble observable refers to the output distribution.

3.2. Ensemble Observability for Infinite dimensional systems
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Ce

(R”, B(R"), Py) R™, B(R™), Pyr))

Figure3 : the connection between Py and P .
The push for ward measure of P, under the mapping Ce?’ is the distribution P,.
Definition 3.2 [Zeng,S et al. 2015] (Ensemble Observability of Linear Systems): It is considered
an ensemble observable if a linear system is ensemble observable for a specified class of continuous

probability distributions.
(Vt > 0Py | Py = Py |Py) = Py = Fy. 3.4)

for all initial distributions P} and P} in that class We limit ourselves to certain kinds of continuous
probability distributions since achieving a general solution is unachievable. As the story progresses,

this will become evident.

3.3 Observability of Structural System is Necessary

In this paragraph, we present a first theoretical discovery about the structural system’s observ-

ability being required for the ensemble observability problem to accept a unique solution.

Theorem 3.1 [Zeng,S et al. 2015] (Necessary Condition ): The observability of (A, C) is a needed

condition for ensemble observability for the class of continuous starting distributions.

Proof. Under the premise that (A, C') is unobservable, we prove that there are starting densities

Py # PY for which
/ Pydx :/ Pydz. (3.5)
(CeAt)=1(By) (CeAt)=1(By)

B, € B(R") for all ¢ > 0 In other words, we create two initial densities, P} and PJ, that are
identical to the output distributions. We fixed an arbitrary probability density function P} to

3.3. Observability of Structural System is Necessary
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accomplish this. The intersection isn’t visible because (A, C') isn’t visible.

N ker Ce?t = {xo e R"™: C’eAt:UO = 0} ) (3.6)

>0

It’s not easy to figure out which subspace is unobservable. As a result, we can select a non-zero

vector v from this unobservable subspace and define a second probability density function by
Py (x) :== Pi(z 4+ v).

These two densities are clearly distinct. additionally, we have

/ P(z)dz = / Py(z 4 v)dx.
(Cett)=1(By) (Cett)=1(By)

= / Py(z)dz.
v+(CeA)~1(By)

B, € B(R") for every t > 0 . Finally, we notice that
vt (Ce™)TH(By) = (Ce™)TH(B,).

since v € ker Ceet for all ¢t > 0 As a result, the claim is made. m

3.4 Sufficient Conditions for Ensemble Observability

Theorem 3.2 [Zeng,S et al. 2015] If 6 — yy (0v) is real analytic for every non-zero v € R", a linear
system (A, C) is ensemble observable for the class of starting distributions .

U (ker C’e‘”)l = tL>JO Im (C’eAt)L ) 3.7

t>0

There isn’t a suitable algebraic subvariety of R" that contains it. As a result, a sufficient requirement
is that the directions given by t — Ce“! are rich in the sense that no appropriate algebraic variety
contains the union (3.7). Remember that the zero set of a polynomial is an algebraic variety of R",

and that it is proper if it is not R™.

Proof. We show that knowing the characteristic function on (3.7) is sufficient to know the char-
acteristic function everywhere under the analyticity requirement in ¢ and the assumption that
the union (3.7) is not contained in a valid algebraic variety.
To begins, we assume two ¢, and ¢, such that their difference / := ¢y, = ¢, vanishes in the
union (3.7), that is,

h(§) =0 forall ¢ € UTm (Ce)T.

3.4. Sufficient Conditions for Ensemble Observability
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We can write for any non-zero £ € R” and any sufficiently small by analyticity .
h(X§) = D Nay(€).
p=0

ap(§) = (@ /P (E((E, X§)") — E((&, X{)")) is found there is a homogeneous polynomial of degree
p, as shown in Section IV-A. By analyticity

, the condition h(A\{) = 0, for all A in the neighborhood around the origin, is equal to the vanishing
of the polynomials a, on the union for any arbitrary £ € oA Im(Cet) (3.7). As a result, the
algebraic varieties described by a, contain the union (3.7). All polynomials must be trivial, i.e., a
a, = 0, under the premise that the union (3.7) is not contained in a suitable algebraic variety.
Because the mapping A — h(A¢) is real analytic in the vicinity of any point on the real axis for
any non-zero { € R", A\ — h(\¢) is totally determined by its power series about the origin, which

is zero. As a result, we conclude that h = 0, i.e., _Px; = Px1s and hence X = X{. =

Theorem 3.3 [Zeng,S et al. 2015] The union (3.7) is not contained in a valid algebraic variety if
(A, C) is observable and rank C =n — 1.

Proof. The dimension of (ker C'e*)* is also n — 1 with rank C = n — 1. The intersection (3.6) is

trivial due to the observability of (A, C), and consequently (ker Ce?)* with t0, forms an infinite
family of pairwise unique hyperplanes.
More exactly, it is impossible for an observable system (A, C') to occur.

vt > 03i = 1,2,...ker Ce = span{v;}.

for arbitrary nonzero countable vectors v; € R" Since ker Ce4* = span{v;} is identical to Ce?tv; =

0 with rank C = n — 1, using the definition
T,:={t>0: Cetty; = 0}.

Ui=12,.T; = [0, 00) would be required. However, due to the observability of 7}, this is impossible
because the sets T; consist of isolated points (A, (). Finally, a valid algebraic variety cannot
include an infinite family of unique hyperplanes. Additionally, we’d like to call attention to the
exceptional case of n = 2, in which the richness feature is met just by the observability of (A, C').

Corollary 3.1 [Zeng,S et al. 2015] The union (3.7) is not contained in a valid algebraic variety for an
observable two-dimensional system (A, C'). One immediate concern is whether an observable system
(A, C) currently generates "directions" rich enough that the union (3.7) is excluded from an algebraic

subvariety. This question is answered in the negative in the following example.

3.4. Sufficient Conditions for Ensemble Observability



Chapter 3. Ensemble observability

Example 3.1 [Zeng,S et al. 2015] Remember from Theorem (3.3) and Corollary (3.1) that we should
to explore systems with at least three degrees to identify an observable system yet for which the union
(3.7) is contained in a valid algebraic variety. Take into account the system.

0 O 0
PYt)=10 -1 0 |a@)
0O 0 -2

y(t) = ( 111 )a:(t).
Because the diagonal entries are pairwise distinct and every entry in the output matrix is non-

zero, this is easily seen to be observable in the traditional sense. Now, if we calculate Ce?t =

(1 eft 67225)

The algebraic variety provided by the homogeneous polynomial equation can be seen.
T1T3 = 3.

contains the union (3.7), therefore, breaking Theorem (3.2) is a richness criterion.

3.4. Sufficient Conditions for Ensemble Observability



Conclusion

Finally, following this scientific station, which required us to stand at many stations on ensemble
controllability of parameter-dependent systems, we may say that it is a novel topic about which
we attempted to familiarize ourselves despite the lack of knowledge by touching on its most
essential aspects and emerging with a set of results, the most important of which are as follows:
We develop a single parameter-independent control that allows all parameter-dependent system
realizations to approach the aim. This is the ideal situation, often known as the ensemble control.
The idea arises from studying the complex Rotation dynamics in nuclear magnetic resonance
spectroscopy. We show that the controllability of the group is related to the individual values of
the operator that system dynamics.

In conclusion, we say that the topic (Ensemble controllabillity of parameters-dependent sys-
tems) still needs a lot of studies to discover its secrets, and this study was only an easy attempt,

and we hope that we have succeeded, even in a small part.




Appendices

Definition 1 (Right coprime factorization) Two transfer matrices M (#) € RH™ ™ and N (0) €
RHZ*? constitute a right coprime factorization of a rational transfer matrix H () of dimensions
p x m if and only if the following:

1 — M(9) is square, and det (M (6)) # 0;

2-v0 e P,H(O)=N(0) MO

3—3U(0) € RH??, 3V () € RH™™ such that:

VO e PV (0) M)+ U () N (0) = I,.

Definition 2 (Left coprime factorization) Two transfer matrices M (f) € RHZ*? and N(s) €
RHEX™ constitute left coprime factorization of a rational transfer matrix H(#) of dimensions
p x m if and only if the following:

1 — M(0) is square, and det (M(6)) # 0;

2-V9 e P,H) =N () MO

3—3U () e RHZ*?, 3V (0) € RHZP such that:

Vo e P,M (0)V(0) + N (0)U (0) = Ip.

Definition 3 Let Hy = Lo(M;R" ™) be a vector space of all matrix-valued functions f whose ijth
entries f;;(t,0),
i ={1,..,n},j ={1,...,m}, are complex- valued measurable function defined on M. We define

an inner product

T
(f.q) : Ho x Hy — R to be <f,g>:t'r//0 F(4,6) gt (1, 0) dtdo,

for all f,¢g € Hy and its corresponding norm

T
||f||2=//0 £ (,0) ||>dtdo.

Theorem 1 Let ) (M, A, B) be an ensemble of continuous-time varying linear systems and sup-

Then, H, is a Hilbert space.

pose
(A, B) € Loo(M;R™ ™) x Ly(M;R™™). Let ®(t, 0, ) be the transition matrix induced by ) (M, A, B)
such that, for all € «, ®(t,0, 0) satisfies

0P

= (£0.6) = A(£.6)®(£,0,6),  (0,0,0) = 1.




Then, the operator L : H; — H, defined by

(Lu)(0) /0 (0,7, 0)B(r, 0)u(r)dr.

is compact.
Theorem 2 (Fubini’s theorem) Let X x Y be an interval in R™"" which is the direct product of
intervals X € R™ and Y C R™. If the function f : X x Y — R is integrable over X x Y, then all

three of the integrals

Xxyf(w,y)da:dy, /de/yf(x,y)dy, /ydy/xf(x’y)dm'

Exist and are equal.
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