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 إهداء 
 

 :في ِغيررِ اٌذساعْخ بمزوشح أىذّيب إلى ًفمني في رثّين ىزه الخطٌح  ّذ الله اٌزُ الح

ِٓ رشفشف اٌؼين ِٓ ، ْالحشف الاِزنبىِ ِٓ الحت ًالحنب رٌهإلى  ،أًفَ خٍك الله ًأدجيُ إلى لٍبي 

سحمه الله  ،شبء الله أْ ّأرِ ىزا اٌٌَْ دمك ىزا اٌنجبح،أ، اٌتي وبٔذ رزّنَ سؤّتي ًأٔب بيًدشز

 ًأعىنه فغْخ جنبرو ّب أِِ .

  لى ِٓ لم ّجخً ػٍِ ٌِّب،إ  ،بج فخش ٌطبلدب حمٍزو ػٍَ سأعِ ٌهر و دسػِ اٌزُ ثو ادزّْذ

 أثِ دفظو الله . 

إخٌرِ ًأخٌارِ   ثنجبدِ  لي ًوبٌٔ أعؼذ اٌنبط ِٓ وبٌٔ اٌغنذ اٌذائُ  ًِٓ لبسمٌِٔ دٌٍ الحْبح ًِشىب 

 ختي "غبدح"سحميب الله .ألٍبي  في  خصٌصب اٌشادٍخ اٌجبلْخ

 ".أخِ خبٌذ"إلى ِٓ أساه ثغّتي ًجمبي الأّبَ ىٌ 

  " ثشاهمِ  ثٍمْظ"إلى اٌتي دين  إٌزمْزيب أدسوذ أْ اٌصذف   تخزجأ ًساءىب دْبح، أختي ًسفْمخ  دسثِ 

، ح، ثٌصٔبدح صٌسّخ، لٌاسمْخ ىذًّدًاّذُ أِير ، ءشفني بهُ اٌمذس صذّمبرِ ىْبي صفبأدغٓ ِٓ ػ

 .خْفص ُسًذل

 سرمبء ثبٌؼٍُ.ِٓ ّفىش ًّجذث ٌلإلى وً إًّ الدزٌاضغ ٌىً ِٓ ٔغْيُ لٍِّ،ًخير أىذُ ىزا اٌؼًفي الأ

 "بلقاسمي لبنة"...                                                                                                                                                              
 

 



 

 

 

  

 إهداء
إلى  لى أػض اٌنبط ًألشبهُ إ ثذًسُ  اٌزُ أىذّو  ىزا اٌؼًّ الدزٌاضغ   إتدبَ  ًفمني فياٌزُ  الحّذ الله 

ًوبْ  ًلم ّجخلا ػٍْب ثأُ شِء، اٌؼضّض اٌٍزاْ وبٔب ػٌٔب ًعنذا دائّب لي، ًاٌذُ إلى ًاٌذرِ  اٌؼضّضح   لٍبي

 ثش في رغْير عفْنخ اٌجذث دزَ رشعٌ ػٍَ ىزه اٌصٌسح .أػظُ  الأ  ٌذػبئيّب الدجبسن

 .حمبوُ الله خٌح لألذاس إخٌح فؼشفٌ ِؼنَ الأاٌزّٓ ظفشد بهُ ىذّخ ِٓ ا لىإ

 لى سفْك اٌمٍت ًاٌؼّشدْبرِ إ خطٌاد  ًإلى اٌشخص اٌزُ عأخطٌ ِؼو أسمَ 

 لٌي شىشا ،ثً عأػْش اٌشىش ِؼه دائّب.ٌٓ أ

ٌصٔبدح ث لٌاسمْخ ىذًّ ، ِيرح ،دًاّذُ أ غيش صذّمبرِ  ىْبي صفبء ،سفبق اٌضذه ًاٌزؼت ًاٌلى إ

 .، لذًسُ صفْخصٌسّخ 

 . "ثٍمبسمِ ٌجنخ" في ىزا اٌؼًّ  ْ رىٌْ سفْمتي ب أِِ ًصذّمخ اٌؼّش لجً أختي اٌتي لم رٍذىإلى أ

بة الدؼشفخ ًرضًّذ سصْذه الدؼشفي لى وً طبٌت ػٍُ ّغؼَ لإوزغإلى وً ِؼٍُ ػٍّني ًٌٌ دشفب،إ

 ًاٌؼٍِّ.
 

  " براهمي بلقيس"...
 



 

 شكر وعرفان

:لبي سعٌي الله صٍَ الله ػٍْو ًعٍُ   

  )ِٓ لم  ّشىش اٌنبط  لم  ّشىش الله  ًِٓ  أىذٍ  إٌْىُ  ِؼشًفب فىبفئٌه  فإْ  لم  رغزطْؼٌا فبدػٌا ٌو(

نب ًػّلا بهزا الحزّث ًإػترافب ثبلجًّْ  ٔشىش الله ػضَ ًجً أًلا اٌزُ أػبٔنب ًشَذَ ِٓ ػضِنب لإوّبي ىزا اٌؼًّ ،ٔشىش الله اٌزُ ًىج

 اٌصبر ًاٌشجبػخ ٌنجؼً ىزا الدششًع ػٍّب ّنزفغ ثو.

 ًٔشىش أًٌْبءٔب خبصخ ًػبئٍزْنب ػبِخ ػٍَ رضذْبتذُ الدخزٍفخ ،ًدػّيُ الدؼنٌُ ًاٌزشجْغ طٌاي ِشٌاس دساعزنب .

ّذخش جيذا في رمذُّ  ٌمجٌٌو الإششاف ػٍَ ىزا اٌؼًّ ًاٌزُ لم " ػجذ الحك خفظ الله "ًٔزمذَ ثأجمً ػجبساد اٌشىش ًالإِزنبْ ٌلأعزبر

لله اٌنصْذخ ًاٌزٌجْو ٌنب، وّب لا ّفٌرنب أْ ٔشىشه لأٔو وبْ دائّب ِنزجيب جذا ًرزجغ ىزا اٌجذث ثىً إىزّبَ ًوبْ ِزبدب طٌاي اٌٌلذ جؼً ا

 رٌه في ِْضاْ دغنبرو ٌَّ اٌذّٓ  .

ىزا اٌؼًّ .ٌمجٌلذّب ِنبلشخ  "فْصً ِشغبدُ"ً "اٌنٌسُ ثٌِؼضح"وّب ٔشىش الأعزبراْ اٌفبضلاْ  

 ًٔزٌجو ثبٌشىش إلى ىْئخ اٌزذسّظ ًالإداسح في وٍْخ اٌشّبضْبد ًالإػلاَ الألي جبِؼخ اٌؼشثِ اٌزجغِ.

 ًٔشىش جمْغ الأىً ًالأصذلبء ػٍَ دػّيُ ًِغنبدتذُ ًٌٌ ثىٍّخ  طْجخ .

بد اٌتي ًاجيزنب، تحذ شؼبسدًْ أْ ٔنغَ شىش أٔفغنب ػٍَ  إصشاسٔب لإوّبي ىزا اٌؼًّ الدزٌاضغ سغُ وً الدؼْمبد ًاٌصؼٌث  

 

"وٓ ػبلدب ..فإْ لم رغزطغ فىٓ ِزؼٍّب..فإْ لم رغزطغ فأدت اٌؼٍّبء..فإْ لم رغزطغ فلا رجخٍيُ "   
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Abstract

This memory provides an overview of recent developments in ensemble controllability. In parameter-

dependent linear systems, we look at various ensemble control concepts that have been actively

developed over the past decade As an example, we cite the work of Li [9] and Khaneja [10].

The goal of the control function is to steer the ensemble system to a desired parameter inde-

pendent state, by implementing parameter-independent open loop controls, then necessary and

sufficient conditions for ensemble control are established using methods from complex approxi-

mation theory .

We consider the problem of ensemble controllability for finite and infinite linear systems, and we

provide an overview of the observational ensemble due to its strong connection with the memory

theme.

Keywords: Ensemble controllability, parameter dependent systems, ensemble observability, uni-

form null ensemble controllability, averaged control.
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 ملخص

زكشة لمحت ػايت ػن انتغٌساث الأخيرة حٌل يٌضٌع لابهٍت انتحكى في المجًٌػاث في الأنظًت الخغٍت المؼتًذة ػهى ًسائظ، نحن تمذو ىزه الم

 Li [9]نمذو مجًٌػت يتنٌػت ين يفاىٍى انتحكى في المجًٌػت انتي تم تغٌٌشىا بشكم فؼال خلال انؼمذ الماضً ،ًكًثال ػهى رنك نزكش ػًم 

ًKhaneja  [01.] 

ين خلال تغبٍك ػناصش تحكى حهمت يفتٌحت يستمهت ػن  ف ًظٍفت انتحكى في المجًٌػت ىٌ تٌجٍو مجًٌػت الانظًت نهحانت المشغٌبت،ىذ

 انٌسائظ، ثى بؼذ رنك ٌتى ًضغ انششًط انضشًسٌت ًانكافٍت نهتحكى في المجًٌػت باستخذاو عشق ين نظشٌت انتمشٌب المؼمذة .

انمٌي  لاستباعيالمجًٌػت نلأنظًت الخغٍت المحذًدة ًغير المحذًدة ًنؼغً لمحت ػن مجًٌػت لابهٍت الملاحظت نظشًا نؼتبر يشكهت لابهٍت انتحكى في ا

 بمٌضٌع المزكشة.

: مجًٌػت انتحكى، الأنظًت المؼتًذة ػهى المؼهًاث، مجًٌػت الملاحظت، إيكانٍت انتحكى المٌحذ في المجًٌػت انفاسغت،  انكهًاث المفتاحٍت

 حكى.يتٌسظ انت

 

 

 

 

 

 

 

    



Notations & abbreviations

R Set of real numbers.

k :kH A norm in space H:

ODE Ordinary differential equation.

PDE Partial differential equation.

C Compound set.

Lp Space of Lebesgue.

I The identity operator.

j:j A norm in L2 (
)or absolute value.

Lp (
)
�
u : 
 �! R

��R


jujp dx <1

	
; p 2 R; 1 � p <1:

h:; :iE;E0 Duality Product.

� The Jordan canonical form.

RH1 The set of rational, proper and stable matrices with real coefficients.
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Introduction

The challenge of controlling a considerable, perhaps endless, number of objects is referred to as

ensemble control. The heart of solid network theory involves regulation ensembles. Ensembles

are driven by various applications for various physical and non-physical systems. The goal of

this memory is to provide you with an overview of the new topic of ensemble control for linear

systems, which is concerned with the control of families of linear systems.

Regulating ensembles is at the heart of network theory because it uses a single-input control

function or a single-feedback controller to control a set of states or systems.

Controlling parameter-variable systems with parameter-independent open-loop or closed-loop

controllers is another research topic. The so-called blending problem, which arose in the late

1970s, is one such example, we want to discover family-stabilizing parameters- independent feed-

back control principles. In physics, mathematics, and engineering, the goal is to control a family

of systems or state variables. A major difficulty in ensemble control is the controllability of an en-

semble using open-loop input signals independent of the system properties. This corresponds to

the classic challenge of controlling many linear systems in parallel if the parameter set has a finite

number of values. The key results on the ensemble controllability of linear parameter-dependent

systems can be found in Helmke and Schönlein [6]; Li [9].

The underlying notions used to examine the ensembles of linear systems are the same as those

used in quantum physics and other sciences to explore large-scale systems. It can also happen in

regular life, such as when using an oven.

This memory is organized as follows: In the first chapter, we give a general statement about

the ensemble controllability in finite dimensional systems, in which we dealt with two sections,

namely, the ensemble controllability in continuous time and in discrete time. where we discussed

in the first section the concepts of the ensemble controllability in one parameter and a set of pa-

rameters, similar to the concept of uniform null ensemble controllability, the difference between

the ensemble control and the average control.

The second chapter contains a general statement about ensemble controllability in infinite dimen-

sional systems, in which we discuss the problem of L2 ensemble controllability without forgetting

optimal control of a harmonic oscillator ensemble.

The third chapter deals with the concept and theories of ensemble observability. We finish the

memory by the conclusion.

v



Chapter 1

Ensemble controllability for finite

dimensional systems

1.1 Ensemble controllability of continuous time systems

1.1.1 In the case of a single parameter

In the linear instance, we consider the finite dimensional control system as follows:(
@
@t
y(t; �) = A(�)y(t; �) +B(�)u(t) t 2 [0; T ] ;

y(0; �) = y0(�);
(1:1)

Where � is a parameter that generally changes in a compact interval [a; b] � R, A(�) 2
Rn�n; B(�) 2 Rn�m and y0(:) is continuous for all �.

An important problem in ensemble control is that an ensemble can only be controlled using a

common control input rather than applying individual input signals to individual systems, which

is a practical boundary in normal ensemble control concerns.

A common control task is to guide the ensemble to a chosen terminal state at time t = T , which is

frequently requested in order to range with a specific parameter. As a result, terminal states can

be expressed as functions � ! y(T ; �).

The control input, on the other hand, is required to be independent of the parameter �.

1



Chapter 1. Ensemble controllability for �nite dimensional systems

Figure 1 : A surface parameter indexes a continuum ensemble of systems:

A supervisor sends out a signal u(t) as a common steering control input to each and every system

in the ensemble. Meanwhile, receives the result of a measurement y(t) information integration

of the individual states systems

Figure 2 : The concept of ensemble controllability:

Two locations on the function space L1(D;M), y0(�) and y(T; �), correspond to two functions on

the ��y domain. The system is ensemble controllable if there is a u(t) that steers the system (1:1)

from an initial position y0(�) to y(T; �) 2 B" (yF (�)) for some limited time T .

Let’s outline the uniform ensemble controllability:

1.1. Ensemble controllability of continuous time systems 2



Chapter 1. Ensemble controllability for �nite dimensional systems

Definition 1.1 (Adu,D; 2017) (Lp-ensemble controllability) For every y0 and yd in Lp([a; b];Rn),
an ensemble

P
C([a; b];A;B) is Lp-ensemble controllable if and only if there exists a finite time T > 0

and a control signal u 2 Lq([0; T ];Rm) that directs the trajectories of
P

C([a; b];A;B) for all � 2 [a; b]
from y (0; �) to yd (�), where y (T ; �) satisfies the relation

ky(T ; �)� ydkLp ([a;b];Rn) =
�R b

a
j y(T ; �)� yd jp d�

� 1
p
= 0: (1.3)

where 1
p
+ 1

q
= 1:

Definition 1.2 (Adu,D; 2017) (Uniform ensemble controllability)In C([a; b];Rn), an ensemble
P

C([a; b];A;B)

is uniform ensemble controllable if and only if, for any y0 and yd in C([a; b];Rn), and, there exists a

finite time T > 0 and a control signal u 2 L1([0; T ];Rm) that steers the trajectories of
P

C([a; b];A;B)

or all � 2 [a; b] from y (0; �) to yd , where y(T ; �) satisfies the relation

ky(T ; �)� ydk1 = sup
�2[a;b]

k y (T ; �)� yd k= 0: (1:2)

Also, we introduce another notion of ensemble controllability.

To obtain a valid definition of ensemble controllability, we must first solve the y(T ; �) = yd prob-

lem. Because yd is a constant and y(T ; �) is a variable connected to �, this assertion cannot be

equal. To overcome this difficulty.

Remark 1.1 (Adu,D; 2017)We find it easier to consider the system parameters in terms of C. We ana-

lyze the ensemble of control systems
P

C([a; b]; A;B) described in (1:1), where (A;B) 2 L1(M ;Cn�n)�
L2(M ;Cn�m). That is,aij 2 L1(M ; C) and bij 2 L2(M ;C), where aij and bij are the ijth entries of

A and B, respectively, and i; j 2 f1; :::; ng is the number of entries.

We assume in this chapter that u 2 L2([0;T ];Cm), We have the system (1; 1) solution of the form

y (T; �) = eA(�)Ty0 +

Z T

0

eA(T�t)B (�)u (t) dt: (1.4)

It should be noted that if y(T; �) = yd, then we have that

F (�) : � 2 [a; b]! Rn; (1.5)

=
R T
0
eA(�)TB(� ; �)u(�)d� : (1.1)

Let’s start by giving some conditions for ensemble controllability:

Theorem 1.1 (Fuhrmann and Helmke ,2015) (Sufficient Condition for ensemble controllabil-

ity). If these conditions are satisfied, let � 2 [a; b] be a compact interval and (A(�); B(�)) be a

1.1. Ensemble controllability of continuous time systems 3



Chapter 1. Ensemble controllability for �nite dimensional systems

continuum family of uniformly controlled single-input systems (or, in general, Lq - controllable for

1 � q � 1):

(a) (A(�); b(�)) is controllable for all � 2 [a; b]:
(b) The spectra of A(�) and A(�0) are disjoint i.e. For pairs of distinct parameters �; �0 2 [a; b]; � 6= �0:

�(A(�)) \ �(A(�0)) = ;:

(c) For every � 2 [a; b] the eigenvalues of A(�) have an algebraic multiplicity of one. Conditions (a)

and (b) also important for uniform ensemble controllability.

Proof. See (Fuhrmann and Helmke ,2015) page (612)

1.1.2 In the case of a set of parameters

Our analysis of combinations of linear systems begins with linear systems that depend on many

factors inside the model (1:6).(
@
@t
y(t; �) = A(�)y(t; �) +B(�)u(t) t 2 [0; T ] ;

y(0; �) = y0(�);
(1.6)

For simplicity, we assume that the system matrices A(�) 2 Rn�n and B(�) 2 Rn�m range continu-

ously in a compact domain P of parameters � in euclidean space Rd.
The analysis of such linear system families can take different shapes. To begin with, finding

parameter-dependent controllers that guide systems from a set of preliminary states to a set of

preferred terminal states is a difficult task. The degree of consistency or smoothness within

the parameters imposed at the controls is most likely a restriction here. It may be appropriate

for remark controllers and input functions to be similar if the system matrices are polynomially

dependent on a parameter, for example. It may be appropriate for the remark controllers and

input functions to be similar if the system matrices are polynomially dependent on a parameter.

Definition 1.3 [Fuhrmann and Helmke, 2015] Let 1 � p � 1. System (1:6) is uniformly ensemble

controllable if there is a control u 2 Lp([0; T ];Rm) such that the caused nation trajectory satisfies for

any continuous function yd : P! Rn and each " > 0.

sup
�2P

k y (T ; �)� yd k< ": (1.7)

Rather than seeking for controls that meet the uniform ensemble controllability criterion (1:7), one

can look for controls u(t) that lower the Lq-norms for the ensemble.�R
P
j y(T ; �)� yd jp d�

� 1
p < ": (1.8)

1.1. Ensemble controllability of continuous time systems 4
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The system is then said to be Lq-ensemble controllable. The system is referred to as precisely ensemble

controlled if the conditions in (1:7) or (1:8) are met for " = 0. Of course, the ability to select the input

function independently of the parameter � it isn’t in any respect plain, and systems of this type do in

truth exist.

1.1.3 Some characterizations of ensemble controllability

Proposition 1.1 [Schönlein and Helmke, 2016]Suppose that the ensemble in continuous time (or dis-

crete time ) is uniform ensemble controllable. Then

(1) For each � 2 P; the linear system (A(�); B(�)) is controllable.

(2) For every number s � m+ 1 of distinct parameters �1; : : :; �s 2 P, the spectra of A(�) satisfy

�(A(�1)) \ : : : \ �(A(�s)) = ;:

The previous conditions are useful since they exclude non-ensemble controlled families. A(�) cannot

have an � independent eigenvalue, according to condition (2). We then show how to employ a

polynomial approximation condition to characterize significant and necessary situations for uniform

ensemble controllability.

Remark 1.2 [Schönlein and Helmke, 2016] Let P be compact. Assume that:

(i) A(�) has simple spectra for all �.

(ii) For all � 6= �0 the spectra of A(�) and A(�0) are disjoint.

Then, the related additives of

K =
[
�2P

� (A(�)) � C

They are linked. It’s worth mentioning that the communication is phony in general. As a result,

uniform ensemble controllability appears identical for continuous-time and discrete-time systems.

Theorem 1.2 [Schönlein and Helmke, 2016]The union of the compact intervals is P � R. Assume

that 0 2 P . If and only if rank A = n and rank B = n, the family
P

= f(�A;B)j� 2 Pg is

uniformly ensemble controllable.

Proof. We focus on the case of continuous time; the case of discrete time will pass as we consider the

needs of the distinct situation. Assume that
P
= f(�A;B)j� 2 Pg is uniformly ensemble controllable.

Given that 0 2 P, the essential condition (1) implies that rank B = n. We have in particular, Assume

rank A < n to demonstrate the second assertion. Then, 0 is an eigenvalue of A, and we have for

awesome parameter values f�1; :::; �n+1g 2 P:

0 2 � (�1A) \ : : : \ � (�n+1A)

1.1. Ensemble controllability of continuous time systems 5
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Contradicting the necessary condition (2).

On expect rank A = n and rank B = n, on the other hand. We can assume B = In without

lack of generality. The rank condition for B implies the controllability condition (1). The Jordanian

canonical form is denoted by �. It is sufficient to recall the ensemble.

@

@t
y(t; �) = ��y(t; �) + Iu(t): (1.9)

For, we will focus on the two-dimensional Jordan block; however, the higher-dimensional situation is

supported by the induction argument. Let

@

@t
z(t; �) =

 
�� �

0 ��

!
z(t; �) +

 
1 0

0 1

!
u(t): (1.10)

The solution to (1:10) is given by

'(T; �; u) =
R T
0

 
e��(T�s)u1(s) + ��(T � s)e��(T�s)u2(s)

e��(T�s)u2(s)

!
ds

Given z� = col(z�1z
�
2) 2 C([a; b] ;R2) and " > 0.

There may be an enter function u2 : [0; T ]! R so that jz�2(�)� '2(T; �; u2)j < " for all � 2 [a; b]. Let

w�(�) := z�1(�)�
Z T

0

�(T � s)e��(T�s)u2(s)ds 2 C(P;R)

Following the equal reasoning there’s an input u1 : [0; T ]! R so that

jw�(�)�
Z T

0

e��(T�s)u1(s)dsj < "

Consequently, we have

sup
�2P

k z� (�)� '(T; �; u) k< "

And we are done.

1.1.4 Uniform Null Ensemble Controllability

We continue to introduce a definition of the controllability of a uniform empty set using the

parameter theta in [0; 1].

Definition 1.4 [Adu,D; 2017] Let
P

C(P;A;B) be an ensemble of continuous-time single-enter sys-

tems. Then,
P

C(P;A;B) is uniformly null ensemble controllable if and only if there exists an open

1.1. Ensemble controllability of continuous time systems 6



Chapter 1. Ensemble controllability for �nite dimensional systems

set V � Rn containing the origin, a finite time T > 0, and a control signal u 2 L1([0; T ]; [0; 1]) such

that, for all y(0; �) 6= 0 2 V , u steer y(0; �) to y(T; �) 2 V , where

sup
�2P

ky(0; �)k < ":

The equal definition holds for the discrete-time single-input scenario.

Theorem 1.3 [Adu,D; 2017;Theorem 5:1:2] An ensemble
P

C(P;A;B) of continuous-time single-enter

systems

is uniformly null ensemble controllable if the subsequent condition holds:

1: The eigenvalues of A(�) has a nonzero imaginary part, for all � 2 P.

2: The pair (A(�); B(�)) is null controllable, for all � 2 P.

3: �(A(�)) \ �(A(�0)) = ;, for any pair of wonderful parameter �, �0 2 P.

4: The eigenvalues of A(�) have algebraic multiplicity of one, for every �.

Proof. See [Adu,D; 2017; page 44] :

1.2 Ensemble controllability of discrete-time

In discrete-time, we consider a family of control systems of the form

y(t+ 1; �) = A(�)y(t; �) +B(�)u(t): (1.11)

in which A(�) 2 Rn�n; B(�) 2 Rn�m and u(t) 2 Rm with � 2 [a; b] � R .

We will regularly discover an ensemble of control systems given by (1:9) with
P

D([a; b];A; B)

,Given preliminary states y(0; �), for all � 2 [a; b] and a finite time T > 0, the use of the variant of

the constant formula, the overall answer for (1:11) is given by,

y(T ; �) = AT (�)y (0; �) +
T�1P
�=1

A� (�)B (�)u (T � 1� �) : (1.12)

Following that, we present both the necessary and sufficient requirements for the uniform ensem-

ble controllability of linear systems (1:6). These are the same criteria that apply to discrete-time

systems. Let

(zI � A (�))�1B (�) = N� (z)D� (z)
�1

Be a right coprime factorization by a square polynomial matrix N� (z) 2 Rn�m [z] and a non-

singular polynomial matrix D� (z) 2 Rm�m[z]. We first notion the important conditions for uni-

form ensemble controllability.

1.2. Ensemble controllability of discrete-time 7
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Proposition 1.2 [Fuhrmann and Helmke; 2015] (Necessary Conditions). Let P be a subset of

Rd such that the indoors factors of P are dense in P. Assume that the family of linear systems

(A(�); B(�))�2P is uniformly ensemble controllable. Then, these properties are satisfied:

1: For each � 2 P the system (A(�); B(�)) is controllable.

2: For finitely many parameters �1,. . .,�s 2 P, the m�m polynomial matrices D�1(z); :::; D�s(z) are

mutually left coprime.

3: For m+ 1 distinct parameters �1; : : :; �m+1 2 P the spectra of A(�) satisfy

�(A(�1)) \ � � � \ �(A(�m+1)) = ;:

4: Assume m = 1. The dimension of P satisfies dim P � 2. If A(�) has a simple real eigenvalue for

some � 2 P; then dim P � 1:

1.2.1 Characterizations of ensemble controllability for discrete time sys-

tems

The uniform ensemble controllability requirement can be presented in a more comprehensible

format. We will concentrate on the discrete-time situation with a single input for the sake of

simplicity. In the continuous-time situation, corresponding characterizations are more complex

and are not required for the subsequent analysis. Uniform ensemble controllability is defined by

the following result.

Proposition 1.3 [Helmke and Schönlein; 2014] A family f(A(�); b(�)); � 2 [a; b] of discrete-time sys-

tems is uniformly ensemble controllable if and only if for all " > 0 and all continuous functions

yd : [a; b]! Rn there is a real scalar polynomial

[a; b] 2 R [z] such that

sup
�2[a;b]

k p(A(�))b(�)� yd k< ": (1.13)

Proof. Recall that given inputs u(0); :::; u(T � 1) the solution is given by

y(T; �) =
T�1X
k=0

A(�)kb(�)u(T � 1� k)

=

 
T�1X
k=0

u(T � 1� k)A(�)k

!
b(�)

= p(A(�))b(�):

1.2. Ensemble controllability of discrete-time 8
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Where p(z) =
T�1P
k=0

uT�1�kz
k is a parameter independent polynomial.

Suppose that (A(�); b(�)) is controllable for all � 2 [a; b]. Then, by the controller canonical form,

there exists a continuous family of invertible state-space transformations S(�) = R(A(�); b(�))�1such

that

�
~A(�); e1

�
=
�
S(�)A(�)S(�)�1; S(�)b(�)

�
:

Is in (tall) control canonical form, where R(A(�); b(�)) denotes the n�n controllability matrix and
~A(�) denotes the tall companion matrix of the characteristic polynomial q�(z) = det(zI � A(�))

and e1 is the first standard basis vector of Rn. Given any continuous yd : [a; b] ! Rn we consider

the real polynomial u� in z defined by

u�(z) := (1z:::z
n�1)R (A(�); b(�))�1 yd: (1.14)

Proposition 1.4 [Helmke and Schönlein, 2014] Assume that the discrete-time system (A(�); b(�)) is

controllable for any

� 2 [a; b]. Then, the following are equivalent.

(1) (A(�); b(�))� is uniformly ensemble controllable.

(2) For any continuous function yd 2 C([a; b] ;Rn) and any " > 0 there exists a polynomial p 2 R[z],

k (p� u�) (A(�)) b(�) k< ":

For all � 2 [a; b].
(3) For any continuous function yd 2 C([a; b] ;Rn) and any " > 0 there exists a polynomial p 2 R[z]

k p (A(�))� u� (A(�)) k< ":

For all � 2 [a; b].
Assume, that for each � 2 [a; b], the eigenvalues of A(�) are distinct. Let

fC := (z; �) 2 C� [a; b] ; det (zI � A(�)) = 0g :
Each above conditions is equivalent to:

(4) For any continuous function yd 2 C([a; b] ;Rn) and any " > 0 there is a polynomial p 2 R[z]
with

jp(z)� u�(z)j < ";8(z; �) 2 C.

Proof. See [Helmke and Schönlein; 2014; page 72] :

1.2. Ensemble controllability of discrete-time 9
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1.3 Comparison between averaged controllability and ensem-

ble controllability

The control function’s goal is to guide the system to a state that satisfies a set of properties

specified either at T > 0 or during a certain time interval. These dwellings can be split according

to parameter values and may refer to a single system (e.g.) or solutions corresponding to the

entire parameter range (e.g. ensemble control, averaged control). Controls u is designed as

a parameter invariant in the latter instance, suggesting that an equal control is to be applied to

the system (1:1) regardless of the specific attention of the parameter �, whereas controls u� range

with � in the first case.

The goal of the first concept (averaged controllability) is to persuade the system’s expectancy

to the target, whereas the goal of the second concept (ensemble controllability) is to persuade

each system’s attention to an arbitrarily small ball across the target. Of course, for the averaged

controllability concept to work, the parameter attention must adhere to a few potential laws.

Ensemble controllability is a more powerful concept, as evidenced by the fact that ensemble

controllability implies controllability.

The difference between them is mathematically as follows:

Averaged controllability: Z 1

0

y (T; �) d� = yd:

Ensemble controllability: �R b
a
j y(T ; �)� yd jp d�

� 1
p
= 0:

1.3. Comparison between averaged controllability and ensemble controllability 10



Chapter 2

Ensemble controllability for infinite

dimensional systems

2.1 Statement of problem

Let A : Y ! Y and B : U ! Y be bound linear operators on Banach spaces Y and U , respectively.

A linear system

y0(t) = Ay(t) + Bu(t) (2.1)

If the controllable set of 0 is dense in Y , it is said to be approximately controllable.

The mathematical relationship between ensemble controllability and approximation controllabil-

ity is simple to explain. Allow Y to indicate the Banach space of Rn-valued continuous functions at

the compact parameter space P, equipped with a supremum norm, explicitly for uniform ensem-

ble management. Similarly, choose Y = Lq(P;Rn) for Lq-ensemble controllability A continuous

family of linear systems (A(�); B(�)) on a Banach space Y with a finite-dimensional space of

control values U = Rm defines a linear system of the type (2:1) in both cases. Here

A : Y ! Y; (Ax)(�) := A(�)x(�) (2.2)

Is the bounded linear multiplication operator, whereas the input operator is denoted by.

B : Rm ! Y; (Bu)(�) := B(�)u (2.3)

Is described by an m-tuple of Banach-space elements, i.e. by the columns B(:).

11



Chapter 2. Ensemble controllability for in�nite dimensional systems

2.2 L2-Ensemble Controllability

A few mathematical concepts must be remembered. Remember that the space L2
�
[a; b] ;Ck

�
; a; b 2

R: The inner product of , k 2 N is defined by

hf; gi =
bZ

a

f y (t) g (t) dt;

For all f; g 2 L2
�
[a; b] ;Ck

�
;where the conjugate transpose is denoted by y. LetH1 = L2 ([0; T ] ;Cm)

and H2 = L2 (P ;Cm) ,We define an operator L : H1 ! H2 by

(Lu) (�) =

TZ
0

eA(�)TB (� ; �)u (�) d� ; (2.4)

We can deduce from (1:5) and (2:4) that

(Lu) (�) = F (�) ; (2.5)

For all � 2 P ., Ensemble controllability is now equivalent to solving the operator equation with

this new formulation (2:5). To put it another way, we want to find u 2 H1 that solves

Lu = F: (2.6)

It is shown in [Li; J:S:(2010):] that, the operator L described in (2:4) is proved to be bound and

compact .

For completeness, we offer a demonstration of this fact in the appendix see ([Adu,D; 2017]Theorem

7:1:2 and Proposition 7:1:3). As a result, L is a compact bound linear operator. Under these

circumstances, the fact that L has an adjoint operator L� is well-known in [Kreyszig,E; 1991].

Which is a additionally a bound compact linear operator such that, for all f 2 H2 and u 2 H1 , L�

fulfill the relationship

hf; LuiH2 = hL
�f; uiH1 ; (2.7)

Inner products defined in the spaces H1 and H2 are h:; :iH1 and h:; :iH1, respectively. From (2:7)

we can see that L� is provided for every f 2 H2:

(L�f) (t) =

Z
P

By (� ; �)Sy (0; � ; �) f (�) d�: (2.8)

2.2. L2-Ensemble Controllability 12
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The operator equation (2:6) now has no unique solution since compact operators are not invertible

(see Proposition 7:1:5). We give a result and direct the reader to [Luenberger,D.G; 1997] for the

evidence.

Theorem 2.1 [John Wiley and Sons,1997;Theorem 6:10] Let H1 and H2 indicate Hilbert spaces, and

L 2 B(H1; H2) denote the range space of L, which is closed in H2. The vector of least norm u

satisfying Lu = F is then provided by u = L�z for F 2 R(L), where z is any solution of LL�z = F .

Using (2:4) and (2:8), it is possible to demonstrate that the operator LL� : H2 ! H2 has the form

(LL�z) (�) =

Z
P

TZ
0

S (0; � ; �)B (� ; �)By (� ; �0)Sy (0; � ; �0) z (�0) d�d�0: (2.9)

We provide the following definition before starting and proving the main results.

Definition 2.1 [Li,J.S:(2010)] Let H1 and H2 represent Hilbert spaces, and L : H1 ! H2 represent

the compact operator. If (�2j ;  j) is an eigen system of LL� and (�2j ; �j) is an eigen system of LL�,

then, the two systems are connected by the equations LL� j = �2j j ,  j 2 H2 and LL�j�j = �2j�j ,

�j 2 H1, where �j > 0 :

L�j = �j j and L� j = �j�j: (2.10)

The triple (�j; �j;  j) is referred to as a singular L system. Now we’ll declare and prove the chapter’s

key conclusion.

Theorem 2.2 [Li,J.S:(2010)] An ensemble
P

C(P;A;B) is L2-ensemble controllable in L2(P ;Rn),
If and only if, for any given initial and intended state x0 and xd 2 L2(P ;Rn) and for F (�) =

S(0; T ; �)xd(�)� x0(�), the condisions

1:
P1

j=1

phF; jip2
�2j

<1
2: F 2 R (L) hold, where R (L) signifies the range space closure for L.

Additionally, the control law

u =
1X
j=1

1

�j



';  j

�
�j; (2.11)

Satisfy

hu; ui � hu0; u0i ;

For all u0 2 -F and u 6= u0, where ,With conditions 1 and 2 of Theorem 3:1:3met, -F = fu 2 L2[0; T ];Rmg jLu =
F

2.2. L2-Ensemble Controllability 13
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Furthermore, for a given � > 0,

ur =

rX
j=1



F;  j

�
�j

�j
;

In a way that

q F � Lum q< �; (2.12)

For any m � r, where r 2 N and depends on �

um =
mX
j=1



F;  j

�
�j

�j
: (2.13)

Proof. We begin by demonstrating the requirement. Assume that there is u 2 H1 that satisfies

(2:3). Then, 

F;  j

�
=


Lu;  j

�
; (2.14)

It denotes
1

�j



F;  j

�
=


u; �j

�
: (2.15)

The sequences
�
�j
	
j�1 � H1 and

�
 j
	
j�1 � H2 are orthonormal because LL� is a self-adjoint

compact operator (see [5;page:248]). We have it using Bessel’s inequality. we have that,

1X
j=1

p


F;  j

�
p2

�2j
�q u q22<1:

The proof of the first statement is now complete. We also have that � 2 H2 for every � 2 N(L�)
such that

L�� = 0:

Following this logic,

hF; �i = hLu; �i = hu; L��i = 0:

Hence,

F 2 N (L�)? = R (L�):

The second statement’s proof is now complete. Assume, on the other hand, that the first and

second requirements are met. Thus, let

�j =



F;  j

�
�j

: (2.16)

We can see from the first condition that
1X
j=1

p �j p2<1: (2.17)

2.2. L2-Ensemble Controllability 14
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According to (Proposition [1] 7:1:6), u 2 H1 exists.

u =

1X
j=1

�j�j: (2.18)

�
�j
	
j�1 and

�
 j
	
j�1 have been proved to be orthonormal bases for R (L�) and R (L), respectively,

in [8], and since u 2 R (L�) � H1, we have that

u =

1X
j=1



u; �j

�
�j: (2.19)

Because
�
�j
	
j�1 is an orthonormal basis, its coefficients are one-of-a-kind. Becauset of (2:18) and

(2:19), we may deduce that 

u; �j

�
=



F;  j

�
�j

:

We assert that u 2 H1 in (2:19), for example, is not in N(L). A contradiction argument is used to

demonstrate this. If u 2 N(L) is true, then Lu = 0. Now, using L’s linearity and continuity, we get

Lu =

1X
j=1

�j
�
L�j

�
=

1X
j=1



F;  j

�
 j = 0: (2.20)

Given that
�
 j
	
j�1 is an orthonormal basis,



F;  j

�
= 0 for j 2 f1; 2; :::g . Concludes that F = 0,

which is a contradiction. As a result, the assumption u 2 N(L) is incorrect.

We can show that the right-hand side of equation (2:20) is true since F 2 R (L) and
�
 j
	
j�1 are

orthonormal basis in R (L).
1X
j=1



F;  j

�
 j = F:

As a result, the operator equation is solved by u in (2:19):(2:6). Let us also consider

u
N
=

NX
j=1



F;  j

�
�j

�j
: (2.21)

Where N 2 N. We get the following result by using the knowledge that
�
�j
	
j�1 is an orthonormal

sequence.

q u� u
N
q22=

1X
j=N+1

1

�2j
p


';  j

�
p2! 0 as N !1: (2.22)

This suggests that

q F � Lu
N
q22=

1X
j=N+1

�2j p


u; �j

�
p2! 0 as N !1: (2.23)

The proof is now complete.

2.2. L2-Ensemble Controllability 15
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2.3 Optimal control of an Ensemble of Harmonic Oscillators

To demonstrate the ensemble controller’s construction, we use an example from [Li,J.S; 2010].

An ensemble of harmonic oscillators is subjected to a xed endpoint optimum control problem.

Consider :
@

@t
y(t; �) = A(�)y(t; �) +B(�)u(t); (2.24)

Where � 2 P � R;y(t; �) = (y1(t; �); y2(t; �))T 2 R2; u(t) = (u1(t); u2(t))T 2 R2 and ui 2 L2 ([0; T ] ;R)
for i 2 f1; 2g ;

A (�) =

 
0 ��
� 0

!
and B (�) =

 
1 0

0 1

!
:

We want to find u 2 L2([0;T ];R2) that steers the trajectories of (2:24) from y(0; �) to y(T; �) 2 R2

in the sense of L2-ensemble controllability, so that u minimizes the cost functional

min
u2L2([0;T ];R2)

J (u) =

Z T

0

q u (t) q2 dt:

Let’s take advantage of the fact that R2 is isomorphic to C.

y(t; �) = y1(t; �) + iy2(t; �);

u (t) = u1 (t) + iu2 (t) :

As a result, (2:24) can be written as.

@y

@t
(t; �) = i�y (t; �) + u (t) :

We get the following from the fluctuation of constants formula:

y(t; �) = ei�y(0; �) +

Z T

0

ei�(t�s)u (s) ds:

Consequently,

F (�) =

Z T

0

e�i�Tu (s) ds; (2.25)

Where,

F (�) = e�i�Ty (T; �)� y (0; �) :

2.3. Optimal control of an Ensemble of Harmonic Oscillators 16
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H1 = L2([0; T ];C) and H2 = L2(P;C). We create the L : H1 ! H2 an operator by

(Lu) (�) =

Z T

0

e�i�Tu (s) ds: (2.26)

From (2:25) and (2:26) We get.

(Lu) (�) = F (�) ; (3.27)

For both � 2 P Because u 2 H1 and the kernel k(t; �) = e�i�T are both bounded, the operator L

defined in (2:26) must be a bounded compact linear operator with an adjoint. It’s worth noting

that we have f 2 H2 for all of them.

hf; LuiH2 =
Z T

0

Z �+

��
e�i�sf (�)y d�u (s) ds: (2.28)

As a result, the adjoint operator is satisfied.

(L�f) (s) =

Z �+

��
ei�sf (�) d�: (2.29)

We know from Theorem 2:1 that

L�z = u;

When z is true

LL�z = F:

The operator LL� : H2 ! H2 is obtained by substituting (2:29) into (2:26). is of the form

(LL�z) (�1) =

Z T

0

Z �+

��
ei(�

0��1)sz (�0) d�0ds: (2.30)

We obtain using Fubini’s Theorem.

(LL�z) (�1) =

Z �+

��

�Z T

0

ei(�
0��1)sds

�
z (�0) d�0: (2.31)

We have through straight calculation

(LL�z) (�1) =

Z �+

��

�Z T

0

ei(�
0��1)T � 1

i (�0 � �1)
ds

�
z (�0) d�0: (2.32)

We have the following:

2.3. Optimal control of an Ensemble of Harmonic Oscillators 17
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ei(�
0��1)T � 1

i (�0 � �1)
=

cos ((�0 � �1)T )� 1 + i sin ((�0 � �1)T )

i (�0 � �1)
;

=

�
cos2

�
(�0 � �1)

T
2

�
� 1
�
� sin2

�
(�0 � �1)

T
2

�
+ i
�
2 sin

�
(�0 � �1)

T
2

�
� 1
�
cos
�
(�0 � �1)

T
2

�
i (�0 � �1)

;

=
�2 sin2

�
(�0 � �1)

T
2

�
+ i
�
2 sin (�0 � �1)

T
2
cos
�
(�0 � �1)

T
2

��
i (�0 � �1)

;

=
2� sin

�
(�0 � �1)

T
2

�
� (�0 � �1)

�
cos

�
(�0 � �1)

T

2

�
+ i sin

�
sin (�0 � �1)

T

2

��
;

= 2�ei(�
0��1)T2

 
sin
�
(�0 � �1)

T
2

�
� (�0 � �1)

!
:

Let !0 = �0

�
,! = �1

�
and � = T�

2
be true, then !0; ! 2 [�1; 1]. Equation (2:32) can be rewritten using

this observation as

(LL�z) (!) =

Z 1

�1
2�ei(!

0�!)�
�
sin ((!0 � !)�)

� (!0 � !)

�
z (!0) d!0: (2.33)

We look at the equation.Z 1

�1

�
sin ((!0 � !)�)

� (!0 � !)

�
�j (!

0; �) d!0 = vj (�) �j (!; �) ; (2,34)

where �j (!; �) is the appropriate eigenvalue of a well-known prolate spheroidal wave function

[Percival,D.B and Walden,A.T,1993],[Flammer,C,2014],[Slepian,D and Pollak,H.O,1961],[Landau,H.J.and Pollak,H.O, 1961],

and [Landau,H.J.and Pollak,H.O, 1962], and vj is the jth eigenfunction. Similarly, nconsider

�
LL� j

�
(!; �) =

Z 1

�1
2�ei(!

0�!)�
�
sin ((!0 � !)�)

� (!0 � !)

�
 j (!

0; �) d!0 = �j (�) j (!; �) : (2.35)

We have that rearranging (2:35)Z 1

�1
2�ei!

0�

�
sin ((!0 � !)�)

� (!0 � !)

�
 j (!

0; �) d!0 =
1

2�
ei!��j (�) j (!; �) : (2.36)

Let

ei!
0� j (!

0; �) = �j (!
0; �) : (2.37)

Then,

vj (�) �j (!; �) =
1

2�
ei!��j (�) j (!; �) : (2.38)
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We get (2:38) when we evaluate it at !0.

vj (�) �j (!
0; �) =

1

2�
ei!

0��j (�) j (!
0; �) : (2.39)

We can find the answer by comparing equations (2:37) and (2:39).

�j = 2�vj: (2.40)

The eigenvectors and eigenvalues of the operator LL� can thus be expressed in terms of vj and

�jfrom (2:37) and (2:40), respectively. The fact that �j ’s are orthogonal and complete on L2[�1; 1]
is well known (see, for example, [Percival,D.B and Walden,A.T.(1993)]). Now, let

z =

1X
j=1

1

�j

D
F; ~ j

E
~ j; (2.41)

Where
~ j = e�i!�

�j
q �j q

: (2.42)

Then there’s that.

LL�z =
1X
j=1

D
F; ~ j

E
~ j = F;

Theorem 2:1 is applied to LL� with respect to the orthonormal basis
n
~ j

o
j�1

in R(L). We may

clearly notice this.

u =
1X
j=1

1

�j

D
F; ~ j

E
~�j; (2.43)

Where

�j =
p
�j: (2.44)

The control signal can also be expressed solely in terms of ~ j, with ~�j being produced using the

same reasoning and the operator LL�. It’s also possible to write the control signal as

u (t) =

Z �

��
ei
~�t

1X
j=1

1

�j

D
F
�
~�
�
; ~ j

�
~�
�E
~ j

�
~�
�
d~�: (2.45)

Let

zN =

NX
j=1

1

�j

D
F; ~ j

E
~ j;
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As a result, where N 2 N

LL�zN =
NX
j=1

�j

D
z; ~ j

E
~ j;

We have it.

q F � LL�zN q22=
1X

j=N+1

p
D
F; ~ j

E
p2 : (2.46)

As N ! 1, it goes to zero. As a result, for any � > 0, there exists n 2 N such that for all N 2 N,

we have N > n.

q F � LL�zN q2< �: (2.47)

Now, since LL�zN approximates F in this way, we can deduce that

q LL�z � LL�zN q2=q L (L�z � LL�zN) q2;

� q L q2q L�z � LL�zN q2;

� q L q22q z � zN q2< �;

Since zN ! z equals N !1, it follows that for any � > 0, there exists n 2 N such that N > n.

q L�z � L�zN q< �:

As a result, for any � > 0, there exists n 2 N such that for all N 2 N, we have N > n.

q u� uN q2< �;

Where uN = L�z As a result, the sequence of control inputs provides the best approximation of

the control signal u that achieves a minimum norm.

uN = L�zN :

Proposition 2.1 Controllability can be described as (2:2) and (2:3) for bounded linear operators A
and B. If and only if system (2:1) on the Banach space X is roughly controllable, the parameter-

dependent system (1:1) is uniformly (or or (Lq � ensemble controllable).
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Chapter 2. Ensemble controllability for in�nite dimensional systems

Proof. We focus on uniform ensemble controllability and the Banach space Y = C(P;Rn); the

proof for Lq-ensemble controllability is the same as that for uniform ensemble controllability.

With y(0) = 0, let t 7! y(t) 2 Y signify a unique solution to (2:1). The specific solution to (1:1)

is t 7! y(t; �), with y(0; �) = 0 for � 2 P. The approximation controllability of (2:1) states that

there exists T > 0 such that k y (T )� yd k= sup�2P k y (T ; �)� yd (�) k for the continuous function

yd : P! Rn and " > 0. However, this is just a requirement for uniform ensemble controllability.

Thus, if and only if the infinite-dimensional system (2:1) is roughly controllable, the parameter-

dependent system (1:1) is uniformly ensemble controllable. Similarly, replacing the Banach space

Y with the Hilbert space H = L2(P;Rn) concludes that the L2-ensemble controllability of (1:1)

equals the approximation controllability of the infinite-dimensional system (2:1)..
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Chapter 3

Ensemble observability

If y0 is an unknown vector, which could be a multivariate random variable, and P0 is the proba-

bility distribution.

Before we begin addressing this setup mathematically, we’d like to take a closer look at it in terms

of population models, and so introduce some vocabulary. You’ll think of the setup as an outline

of a continuum of individual systems with the same dynamics and dimension outputs as (3:2),

but exclusive preliminary states, whether you’re using population models or ensembles. We name

(3:2) the ensemble’s structural system, and P0 the preliminary distribution, which accounts for

the population is distinctive heterogeneity of preliminary states.

The fact that the preliminary nation is a random vector implies that the output y(t) at any given

time is a random vector as well. Py(t) denotes its distribution, which we’ll refer to as output

distribution.

3.1 Ensemble Observability for finite dimensional systems

Definition 3.1 (Lp definition) [Fuhrmann,P.A and Helmke,U; 2015] Assume that the matrix A(�) 2
Rn�n; C(�) 2 Rp�n range continuously in the compact parameter domain P � Rd.
consider the following parameter dependent system :

@y (t; �)

@t
= A(�)y(t; �); (3.1)

z(t) =

Z
P

C(�)y(t; �)d�;

y (0) = y(0; �) is unknown in L2(P;Rn):

If T > 0, z(t) = 0 on [0; T ] implies y(0; �) = 0 for all � 2 P, this is known as an L2-ensemble

observable.
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Chapter 3. Ensemble observability

This means that the L2-initial state y(0;�) of (3:1) can be reconstructed from the average values,

according to definition. Z
P

C(�)y(t; �)d�; 0 � t � T;

One of the outcomes is C(�)y(t; �). As a result, ensemble observability is a very durable quality

that is particularly valuable in biological parameter identification tasks, where the most effective and

averaged form of output data is delivered on a regular basis.

3.2 Ensemble Observability for Infinite dimensional systems

The linear system is equivalent to the system (3:1).

y0(t) = Ay(t); y(0) 2 L2(P;Rn); (3.2)

z(t) = Cy(t)

X = L2(P;Rn) in the Hilbert space Bounded linear operators A : X ! X; C : X ! Rp is defined

by

(Ay) (�) = A(�)y(�); (Cy)(�) =
Z
P

C(�)y(�)d�;

Respectively. As a result, A stands for a multiplication factor, while C stands for an integration

factor. The idea is similar to the preceding concept of a group note. Approximately observed

(3:2), only observable if the dual system is present.

@

@t
y (t; �) = A(�)>y(t; �) + C (�)> u(t); y(0; �) = 0; (3.3)

As a result, when p = 1, Theorem (1:1) holds for (3:1). This establishes that every continuous one-

parameter family (A(�); C(�)); � 2 [a; b], of single-output linear systems is L2-ensemble observable

if the following three conditions are met: 1:(A(�); C(�)) can be observed for all [a; b]:

2: A(�) spectra are pairwise disjoint, that is,

�(A(�)) \ �(A(�0)) = ;;8�; �0 2 [a; b] ; � = �0:

3. The eigenvalues of A(�) have an algebraic multiplicity of one for each � 2 [a; b].
The ensemble observability problem is similar to the classical observability problem in that

it seeks to reconstruct the beginning distribution P0 from the evolution of the output distribution.

Py(t). A linear system to which there is a unique solution. Using the time-evolution of the data,

create an initial distribution. Ensemble observable refers to the output distribution.
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Chapter 3. Ensemble observability

Figure3 : the connection between P0 and Py(t):

The push for ward measure of P0 under the mapping CeAt is the distribution Py(t).

Definition 3.2 [Zeng,S et al. 2015] (Ensemble Observability of Linear Systems): It is considered

an ensemble observable if a linear system is ensemble observable for a specified class of continuous

probability distributions.

(8t � 0Py(t)jP 00 = Py(t)jP 000 )) P 00 = P 000 : (3.4)

for all initial distributions P 00 and P 000 in that class We limit ourselves to certain kinds of continuous

probability distributions since achieving a general solution is unachievable. As the story progresses,

this will become evident.

3.3 Observability of Structural System is Necessary

In this paragraph, we present a first theoretical discovery about the structural system’s observ-

ability being required for the ensemble observability problem to accept a unique solution.

Theorem 3.1 [Zeng,S et al. 2015] (Necessary Condition ): The observability of (A;C) is a needed

condition for ensemble observability for the class of continuous starting distributions.

Proof. Under the premise that (A;C) is unobservable, we prove that there are starting densities

P 00 6= P 000 for which Z
(CeAt)�1(By)

P 00dx =

Z
(CeAt)�1(By)

P 000 dx: (3.5)

By 2 B(Rn) for all t � 0 In other words, we create two initial densities, P 00 and P 000 , that are

identical to the output distributions. We fixed an arbitrary probability density function P 00 to
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Chapter 3. Ensemble observability

accomplish this. The intersection isn’t visible because (A;C) isn’t visible.

\
t�0
kerCeAt =

�
x0 2 Rn : CeAtx0 � 0

	
: (3.6)

It’s not easy to figure out which subspace is unobservable. As a result, we can select a non-zero

vector v from this unobservable subspace and define a second probability density function by

P 000 (x) := P 00(x+ v):

These two densities are clearly distinct. additionally, we have

Z
(CeAt)�1(By)

P 000 (x)dx =

Z
(CeAt)�1(By)

P 00(x+ v)dx:

=

Z
v+(CeAt)�1(By)

P 00(x)dx:

By 2 B(Rn) for every t � 0 . Finally, we notice that

v + (CeAt)�1(By) = (Ce
At)�1(By):

since v 2 kerCeAt for all t � 0 As a result, the claim is made.

3.4 Sufficient Conditions for Ensemble Observability

Theorem 3.2 [Zeng,S et al. 2015] If � ! 'X0(�v) is real analytic for every non-zero v 2 Rn, a linear

system (A;C) is ensemble observable for the class of starting distributions .

[
t�0

�
kerCeAt

�?
= [

t�0
Im
�
CeAt

�?
: (3.7)

There isn’t a suitable algebraic subvariety of Rn that contains it. As a result, a sufficient requirement

is that the directions given by t ! CeAt are rich in the sense that no appropriate algebraic variety

contains the union (3:7). Remember that the zero set of a polynomial is an algebraic variety of Rn,

and that it is proper if it is not Rn.

Proof. We show that knowing the characteristic function on (3:7) is sufficient to know the char-

acteristic function everywhere under the analyticity requirement in 'X0 and the assumption that

the union (3:7) is not contained in a valid algebraic variety.

To begins, we assume two 'X0
0

and 'X00
0

such that their difference h := 'X0
0
= 'X00

0
vanishes in the

union (3:7), that is,

h(�) = 0 for all � 2 [
t�0
Im
�
CeAt

�|
:
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We can write for any non-zero � 2 Rn and any sufficiently small by analyticity �.

h(��) =
1X
p=0

�pap(�):

ap(�) = (i
p=p!)(E(h�;X 0

0i
p) � E(h�;X 00

0 i
p)) is found there is a homogeneous polynomial of degree

p, as shown in Section IV-A. By analyticity

, the condition h(��) = 0, for all � in the neighborhood around the origin, is equal to the vanishing

of the polynomials ap on the union for any arbitrary � 2 [
t�0
Im(CeAt) (3:7). As a result, the

algebraic varieties described by ap contain the union (3:7). All polynomials must be trivial, i.e., a

ap � 0, under the premise that the union (3:7) is not contained in a suitable algebraic variety.

Because the mapping � ! h(��) is real analytic in the vicinity of any point on the real axis for

any non-zero � 2 Rn, �! h(��) is totally determined by its power series about the origin, which

is zero. As a result, we conclude that h � 0, i.e., _'X0
0
= 'X00

0
, and hence X 0

0 = X 00
0 .

Theorem 3.3 [Zeng,S et al. 2015] The union (3:7) is not contained in a valid algebraic variety if

(A;C) is observable and rank C = n� 1.

Proof. The dimension of (kerCeAt)? is also n � 1 with rank C = n � 1. The intersection (3:6) is

trivial due to the observability of (A;C), and consequently (kerCeAt)? with t0, forms an infinite

family of pairwise unique hyperplanes.

More exactly, it is impossible for an observable system (A;C) to occur.

8t � 09i = 1; 2; ::: kerCeAt = spanfvig:

for arbitrary nonzero countable vectors vi 2 Rn Since kerCeAt = spanfvig is identical to CeAtvi =

0 with rank C = n� 1, using the definition

Ti := ft � 0 : CeAtvi = 0g:

[i=1;2;:::Ti = [0;1) would be required. However, due to the observability of Ti, this is impossible

because the sets Ti consist of isolated points (A;C). Finally, a valid algebraic variety cannot

include an infinite family of unique hyperplanes. Additionally, we’d like to call attention to the

exceptional case of n = 2, in which the richness feature is met just by the observability of (A;C).

Corollary 3.1 [Zeng,S et al. 2015] The union (3:7) is not contained in a valid algebraic variety for an

observable two-dimensional system (A;C). One immediate concern is whether an observable system

(A;C) currently generates "directions" rich enough that the union (3:7) is excluded from an algebraic

subvariety. This question is answered in the negative in the following example.
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Example 3.1 [Zeng,S et al. 2015] Remember from Theorem (3:3) and Corollary (3:1) that we should

to explore systems with at least three degrees to identify an observable system yet for which the union

(3:7) is contained in a valid algebraic variety. Take into account the system.

x0(t) =

0BB@
0 0 0

0 �1 0

0 0 �2

1CCAx(t):

y (t) =
�
1 1 1

�
x(t):

Because the diagonal entries are pairwise distinct and every entry in the output matrix is non-

zero, this is easily seen to be observable in the traditional sense. Now, if we calculate CeAt =�
1 e�t e�2t

�
The algebraic variety provided by the homogeneous polynomial equation can be seen.

x1x3 = x22:

contains the union (3:7), therefore, breaking Theorem (3:2) is a richness criterion.
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Conclusion

Finally, following this scientific station, which required us to stand at many stations on ensemble

controllability of parameter-dependent systems, we may say that it is a novel topic about which

we attempted to familiarize ourselves despite the lack of knowledge by touching on its most

essential aspects and emerging with a set of results, the most important of which are as follows:

We develop a single parameter-independent control that allows all parameter-dependent system

realizations to approach the aim. This is the ideal situation, often known as the ensemble control.

The idea arises from studying the complex Rotation dynamics in nuclear magnetic resonance

spectroscopy. We show that the controllability of the group is related to the individual values of

the operator that system dynamics.

In conclusion, we say that the topic (Ensemble controllabillity of parameters-dependent sys-

tems) still needs a lot of studies to discover its secrets, and this study was only an easy attempt,

and we hope that we have succeeded, even in a small part.
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Appendices
Definition 1 (Right coprime factorization)Two transfer matrices M(�) 2 RHm�m and N (�) 2
RHm�p

1 constitute a right coprime factorization of a rational transfer matrix H(�) of dimensions

p�m if and only if the following:

1�M(�) is square, and det (M(�)) 6= 0;
2� 8� 2 P,H(�) = N (�)M(�)�1;

3� 9 U (�) 2 RHm�p
1 ;9 V (�) 2 RHm�m such that:

8� 2 P;V (�)M(�) + U (�)N (�) = Im:

Definition 2 (Left coprime factorization) Two transfer matrices M(�) 2 RHp�p
1 and N(s) 2

RHp�m
1 constitute left coprime factorization of a rational transfer matrix H(�) of dimensions

p� m if and only if the following:

1�M(�) is square, and det
�
M(�)

�
6= 0;

2� 8� 2 P,H(�) = N (�)M(�)�1;

3� 9 U (�) 2 RHm�p
1 ;9 V (�) 2 RHp�p

1 such that:

8� 2 P;M (�)V (�) +N (�)U (�) = IP :

Definition 3 Let H0 = L2(M ;Rn�m) be a vector space of all matrix-valued functions f whose ijth

entries fij(t; �),

i = f1; :::; ng,j = f1; :::;mg, are complex- valued measurable function defined on M . We define

an inner product

hf; gi : H0 �H0 ! R to be hf; gi = tr

Z
�

Z T

0

f (t; �) gy (t; �) dtd�;

for all f; g 2 H0 and its corresponding norm

kfk2 =
Z
�

Z T

0

kf (t; �) k2dtd�:

Then, H0 is a Hilbert space.

Theorem 1 Let
P

C(M;A;B) be an ensemble of continuous-time varying linear systems and sup-

pose

(A;B) 2 L1(M ;Rn�n)�L2(M ;Rn�m). Let�(t; 0; �) be the transition matrix induced by
P

C(M;A;B)

such that, for all � 2 �, �(t; 0; �) satisfies

@�

@t
(t; 0; �) = A (t; �) � (t; 0; �) ; � (0; 0; �) = I:

29



Then, the operator L : H1 ! H2 defined by

(Lu)(�) =

Z T

0

�(0; � ; �)B(� ; �)u(�)d� :

is compact.

Theorem 2 (Fubini’s theorem) Let X � Y be an interval in Rm+n; which is the direct product of

intervals X � Rm and Y � Rn. If the function f : X � Y ! R is integrable over X � Y; then all

three of the integralsZ
X�Y

f (x; y) dxdy;

Z
X

dx

Z
Y

f (x; y) dy;

Z
Y

dy

Z
X

f (x; y) dx:

Exist and are equal.

30



Bibliography

[1] Adu, D. (2017). Ensemble Controllability of linear control systems.

[2] Brockett, R. W. (2010). On the control of a flock by a leader. Proceedings of the Steklov

Institute of Mathematics, 268(1), 49-57.

[3] Fuhrmann, P. A., & Helmke, U. (2015). The mathematics of networks of linear systems (Vol.

150). New York: Springer.

[4] Flammer, C. (2014). Spheroidal wave functions. Courier Corporation.

[5] Gohberg, I., Goldberg, S., & Kaashoek, M. (2012). Basic classes of linear operators.

Birkhäuser.

[6] Helmke, U., & Schönlein, M. (2014). Uniform ensemble controllability for one-parameter

families of time-invariant linear systems. Systems & Control Letters, 71, 69� 77:

[7] Kreyszig, E. (1991). Introductory functional analysis with applications (Vol. 17). John Wiley

& Sons.

[8] Lazar, M., & Lohéac, J. (2021). Control of parameter dependent systems.

[9] Li, J. S. (2010). Ensemble control of finite-dimensional time-varying linear systems. IEEE

Transactions on Automatic Control, 56(2); 345� 357.

[10] Li, J. S., & Khaneja, N. (2009). Ensemble control of Bloch equations. IEEE Transactions on

Automatic Control, 54(3), 528-536.

[11] Luenberger, D. G. (1997). Optimization by vector space methods. John Wiley & Sons.

[12] Landau, H. J., & Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis

and uncertainty—II. Bell System Technical Journal, 40(1), 65� 84.

31



Bibliography

[13] Landau, H. J., & Pollak, H. O. (1962). Prolate spheroidal wave functions, fourier analysis and

uncertainty—III: the dimension of the space of essentially time-and band-limited signals.

Bell System Technical Journal, 41(4), 1295� 1336.

[14] Percival, D. B., & Walden, A. T. (1993). Spectral analysis for physical applications. cambridge

university press.

[15] Schönlein, M., & Helmke, U. (2016). Controllability of ensembles of linear dynamical sys-

tems. Mathematics and Computers in Simulation, 125; 3� 14.

[16] Slepian, D., & Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and

uncertainty—I. Bell System Technical Journal, 40(1); 43� 63.

[17] Zeng, S., Waldherr, S., Ebenbauer, C., & Allgöwer, F. (2015). Ensemble observability of linear

systems. IEEE Transactions on Automatic Control, 61(6); 1452� 1465:

[18] Zuazua, E. (2014). Averaged control. Automatica, 50(12), 3077� 3087.

Bibliography 32


