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Abstract

By employing three critical points theorem, we investigate the existence of
solutions to a boundary value problem for p-Laplacian partial difference
equation with real parameter and give it accurate estimates to ensure that the
studied problem has at least three solutions. Moreover, two positive solutions
are obtained under some suitable assumptions for nonlinearity f depending on
the strong maximum principle.

Keywords: Boundary value problem, Partial difference equation, Critical point

Theory, p-Laplacian




Résumeéeé

En employant le théoreme de trois points critiques, nous étudions
'existence de solutions a un probléme de valeur limite pour
I’équation de différence partielle p-laplacienne basée sur un
parameétre réel et lui donnons des estimations exactes pour
s’'assurer que le probléme étudié a au moins trois solutions.

De plus, deus solutions positives sont obtenues sous certaines
hypothéses adaptées pour la non-linéarité f selon le principe fort
maximum.

Mots clés : probleme de valeur aux limites, équation aux

différences partielles, théorie des points critiques, p-laplacien.
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Introduction

Due to the demands of many fields and great interests in the study of partial differential
equations involving two or more variables, which have also been continuously developed due
to their theoretical background and realistic importance, for example they have been widely
used as separate mathematical models describing real-life scenarios in Electrical circuit, analy-
sis, economics, dynamical systems, physics and biology.

The importance of differential equations cannot be defined, but we also do not forget the
important and main role that critical point theory plays in the study of various such equations
and finding solutions to them. What should be mentioned is what many scientists have done
on a large scale, most notably Guo and Yu [6] the first applicators of the critical point theory,
in addition to the efforts of some other scientists in the process of solving this theory, such as
the scientist Ji did use theorem (2) in [15] and got some new results with three solutions to

the following problem:

— div (|vu[P®=2vu) + P72y = Af(z,u) + pg(z,u) in €,
Bu=0 on oS

(1)

Since then the critical point theorem has become a powerful tool for dealing with discrete

nonlinear problems and excellent results have been obtained for periodic solutions [12, 18],

homoclinic solutions [13, 17], heteroclinic solutions [2, 11], and boundary value problems.
In 2010, Galewski and Orpel in [5] used critical point theory, following some of the ideas

from [9] to rewrite the problem <E{ ) defined as follows:

—Afu(i —1,5) = Aju(i, j — 1) = Af ((4,5), uli, ), (i,5) € Z(1,m) x Z(1,n),

u(i,0) =u(i,n+1), € Z(1,m),

w(0,7) =u(m+1,7), Jj€Z(l,n).
As a non-linear algebraic system, they get at least a non-trivial solution. Similarly, Haidarkhani
and Imbesi in [7] set sufficient conditions to ensure that the problem (E{ ) has at least three
distinct solutions. By making use of the same techniques as [5, 7], imbesi and bisci in [8]
further studied the nonlinear algebraic system of the problem(E{ ) and getting two kinds of

results:



Either there is an infinite sequence of solutions or a sequence of non-zero paired solutions
that converge to zero and this was in 2010.
As it was recently shown by Du and Zhou in [4] how to treat a class of partial discrete

Dirichlet boundary value problem involving the p-Laplacian, namely problem (S{’q> :

=41 [, (Arz(i = 1,5))] = D2 [, (Dox(i, j — 1))] = Af ((4, ), 2(i, 1)) ,

x(i,0) =x(i,n+1), € Z(0,m+1),

z(0,j) =x(m+1,j), j€Z0,n+1).
when ¢(7, j) = 0 for any (i, j) € Z(1, m) x Z(1,n) this by exploiting the critical point a series of
results are obtained.

Based on the results of the previous research, we noticed that the previously mentioned
problem (Ef ) is a special case of (S{’q) when ¢(7, j) = 0, as it differs in the main tools used to
prove them [7]. Given the importance of this topic, we have done a scientific research on the
multiple solutions for partial discrete Dirichlet boundary value problem with p-Laplacian and
divided it into three chapters:

In the first chapter we used start with some basic concepts, starting with Lebesgue spaces
and ending with critical point theory, which will help us understand the following chapters.

In the second chapter, we contructed the problem structure variable <P{ ’q> defined by the

equation:

=N [0y (Aaz(i = 1,5))] = Ag [, (Dox(i,j = 1))] +q (i, 5) &, (x(i, 7)) = M ((i,5) 2 (i, 7)),
(i,7) € Z(1,m) x Z(1,n),
2(i,0) = x(i,n+1) =0, ieZ(0,m+1),

| 2(0.)) = a(m +1,j)=0, jeZO,n+1).

and we will also discuss the existence of three solutions to the problem posed using the varia-
tional method and the theorem of the three critical points of Bonanno and Marano.

In the last chapter, our main findings were generated. Moreover, under the appropriate
assumptions about the nonlinearity f, two corollaries are obtained by employing the three
critical points theorem and the strong maximum principle. And at last, a concrete example is

provided to illustrate our results.
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Chapter 1. Preliminary

1.1 Banach Space

Definition 1.1 [16]Let X be a vector space over A real-valued function ||.| defined on X and
satisfying the following conditions is called a norm:

i)||ul| >0, |lu|| = 0 if and only if u = 0.

ii) || Au|| = || ||lu||, for all u € X and X € R.

iii) ||u + o] < ||ul| + ||v], Vu,v € X.

(X, ]|.]|), is called a normed space equipped with the norm]||.||.

Definition 1.2 [16]A normed space X is called a Banach space, if its every Cauchy sequence is
convergent, that is ||u, — u,| — 0 as n,m — oo Vu,,u, € X implies that Ju € X such that

|tun — ul] — 0 as n — oo

1.2 [P Space

Definition 1.3 [3]For 0 < p < oo, IPis the subspace of k" consisting of all sequences x = (x,,)nen

satisfying;
Z |z, | < o00.
n

If p > 1, then the real-valued operation |||, defined by;

e, = (; fvn”>;

defines a norm on [P. In fact, [P is a complete metric space with respect to this norm, and therefore
is a Banach space.

If 0 < p < 1, then [P does not carry a norm, but rather a metric defined by;

d(l’, y) = Z |xn - yn|p'

n

If p = oo, then [* is defined to be the space of all bounded sequences endowed with the norm

1.1. Banach Space



Chapter 1. Preliminary

[l = sup |n],
n

[*° is also a Banach space.

1.3 Monotone operators

Definition 1.4 [18]Let X be real Banach space, and let A : X — X* be an operator.

i) A is called monotone iff
(Au — Av,u —v) > 0 for all u,v € X.
ii) A is called strictly monotone iff
(Au — Av,u —v) > 0 for all u,v € X with u # v.
iii) A is called strongly monotone iff there is a ¢ > 0 such that
(Au— Av,u —v) > ¢|lu—v||* forall u,v € X.
iv) A is called uniformly monotone iff
(Au — Av,u —v) > a(||lu —vl|) [|u — || for all u,v € X,

where the continuous function a : Rt — R is strictly monotone increasing with a(0) = 0 and

a(t) — +oo as t — +oo.

Definition 1.5 [18]Let X be real Banach space, and let A : X — X* be an operator. A is called

hemicontinuous if for all u, v € X, Uappliction t — (A (u + tv) ,v) is continuous from R in R.

Definition 1.6 [18]Let X be real Banach space, and let A : X — X* be an operator. A is called

coercive iff
(Au,u)

1m
lul|—oo |||

1.3. Monotone operators E
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Preliminary

1.4 Holder’s Inequality

Lemma 1.1 If p > 1 and ¢ > 1 are such that

then

A

Z |aib;| < (Z |Gi|p>
i=1 i=1

1
()
i=1
Proof We prove this relationship. Denote

A:iaf, B:ib?.
i=1 i=1

Then Hélder’s inequality is written as follows:

zn: aibi S A%B%
i=1

Next, we use Young’s inequality in the form:

11 _a b
arbs < — + —.

P q
Let
aP ba
A
“=y B

Applying Young’s inequality to each pair of numbers a; and b; we obtain:

n

a,-bi ~ (If b(ZI
S < 2(atam)

T 1
i=1 Ar Ba i=1
n n n
Yoaiby Yo ap Y b
— 1=1 < =1 + =1

ArB: DA gB’

" aib

2a A B 1 1
= 1 1§_+_:_+_:17
AvBa —pA 4B p g

=1

i=1 =1

= iazbz S (i af) ' (i |bz|q> ! (p > ].)

1.4. Holder's Inequality
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1.5 Gateaux derivative

Definition 1.7 [10]Let w be a part of a Banach space X and J : w — R. Ifu € wand v € X
are such that for t > 0 quite small we have u + tv € w we say that J admits (at the point u) a

derivative in the direction v if
J tv) —J
Jig L0 = T (W)
t—0+ t

exist. We will denote this limit by J, (u).

Definition 1.8 [10]Let w be a part of a Banach space X and J : w — R. If u € w, we say that J is
Gdateaux differentiable (or G-differentiable ) at u, if there exists | € X' such that in each direction
v € X where J (u + tv) exists for t > 0 small enough, the directional derivative J, (u) exists and

we have
lim F(u+tv)—F(u)

t—0t+ t

= (l,v).

We write J' (u) = I.

Definition 1.9 [10]Let X be a Banach space, w € X an open space and J € C* (w,R). We say
that u € w is a critical point of J if J' (u) = 0 with J' (u) is the G-differentiable of J at point. If u
are not a critical point then we say that u is a regular point of J. If ¢ € R, we say that c is a value
critical of J, if there exists u € w such that J(u) = c and J'(u) = 0. If c is not a critical value then

we say that c is a regular value of J.

1.6 Three critical points theorem

We present a critical point theorem due to Bonanno and Marano critical points theorems to

prove the existence of at least three weak solutions.

Theorem 1.1 [4]Let X be a separable and reflexive real Banach space. ® : X — R is a nonnega-
tive continuously Gdteaux differentiable and sequentially weakly lower semicontinuous functional
whose Gdteaux derivative admits a continuous inverse on X*. J : X — R is a continuously
Gateaux differentiable functional whose Gdteaux derivative is compact. Assume that there exists

xo € X such that ®(zy) = J(xo) = 0 and that

1.5. Gateaux derivative ||
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(i) imyjp) =400 [P(x) — AJ(2)] = 400 for all A € [0, +00);
Further, assume that there are r > 0, 1 € X such that
(ii) r < ®(xy);

(111) supmemw J(ZL’) < 7"++($1)J<x1)

Then, for each

D(xq) r
AeN = , ,
' (J($1) ~ SUD T (—oo,n)” J(z) SUD 3T (—o0,m)" J@))

the equation
O () — A (z) =0 (1.1)

has at least three solutions in X and, moreover, for each h > 1, there exist an open interval

Ay

N

and a positive real number o such that, for each A\ € A,, the equation 1.1 has at least three

solutions in X whose norms are less than o.

1.6. Three critical points theorem |
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Chapter 2. Three solutions for partial discrete Dirichlet boundary value problem with p-Laplacian

2.1 Introduction

In this chapter, we will study and discuss a three solutions for partial discrete Dirichlet bound-

ary value problem with p-Laplacian, denoted by (PAf ‘) by the equation:

¢

—A1 [, (Arz(i = 1,5))] = Az [, (Dox(i,j — 1)] +a (i, 4) 6, (x(i, ) = Af ((7,) , 2 (i..7))
(i,7) € Z(1,m) x Z(1,n),

x(i,0) = z(i,n+1) =0, ieZ(0,m+1),

2(0,j)=xz(m+1,5)=0, j€Z(0,n+1).

This is done by using the variational method and the theory of the three critical points of
Bonanno and Marano.

Where that A; and A, denote the forward difference operators defined by A;x(i,j) =
z(i+1,5)—z(i,j) and Agz(4,j) = x(i, j + 1) — (4, §), A2x(i, j) = A1 (Ar2(4, 7)) and A3x(i, j) =
Ay(Ax(7, 7)), A is nonnegative parameter, ¢, denotes the p-Laplacian operator, that is, ¢, =
|s|P~2s, p > 1, q(i,5) > 0 for all (i,5) € Z(1,m) x Z(1,n), and f ((i,7),-) € C(R,R) for each
(i,5) € Z(1,m) x Z(1,n).

2.2 The energy function of the problem (P{ )

We consider the mn-dimensional Banach space:

" x:7Z(0,m+1) x Z(0,n + 1) — R such that 2(:,0) = z(i,n+ 1) = 0,
i € 2(0,m+1) and 2(0, j) = 2(m +1,5) = 0,j € Z(0,n + 1) ’

Endowed with the norm:

1

n m+l m n+l n o m
TR P9 S TRINIED 3) SETRERITS ) SR

7j=1 =1 =1 j=1 7j=1 =1

For all » € X.

Moreover, define:

Iz Hp ~\

d () = and J (z) = ZZF((i,j),x(i,j)), Voe X, 2.1)

2.1. Introduction



Chapter 2. Three solutions for partial discrete Dirichlet boundary value problem with p-Laplacian

Where;
F((i,9),& /f i,7),m)dr, Y((i,7),&) € Z(1,m) x Z(1,n) x R.
Clearly, ® and J are two functionals of class C'(X,R) and, for all x, 2z € X,

P ()(z) = lim D (x+1tz) — D (2)

t—0 t

n m+1 m n+1

= Z Z Gp (Drw(i = 1,5)) Arz(i = 1,5) + Y > ¢y, (Dow(i, j — 1)) Ao2(i, j — 1)

+22¢pq i, )z (i, )2 (0, §)
_ i 5, (Brali — 1.7)) Ausli— 1,7) - Z 6y (Asz(m, ) 2(m, )
n il ji; &, (Do (i, j — 1)) Ao2(iyj — 1) — 2 ¢p (Azz(i,n)) 2(i,n)
+ Zl 21 bpq(i, §)x (i, )23, j)
- _ zn; Xm; Ao, (Az(i —1,7)) 2(i, §) — i Anl Dogp, (Do(i, j — 1)) 2(i, j)

+D > ali ), (@(i, 1)) 2(, )

= DD A8, (Aur(i = 1,5)] = Do [@, (Aga(i,j — 1))] +a (i) &, (2(i, 1)}= (i, ).

j=1 i=1

and

7 @) () = tim T 2T P )t ) 9),

t—0

j=1 i=1
Forall z,z € X.

Taken together, we have,

[ () = AT (2)] (2) = ZZ{ Ay [, (Mrz(i = 1,j))] — Az [, (Aga(i,j — 1))]

7=1 =1

+q (i, 4) ¢, (2(i,9)) = Af((5,5) 2 (0, 5)) = (i, 5) -

2.2. The energy function of the problem (P{*7)
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Remark 2.1 Consequently, the critical points of the functional ®—\.J in X are exactly the solution
of problem (P/9). Then we transform the problem of seeking the solutions of (P;{*?) into looking

for the critical points of ® — \J in X.

Put

¢ = min {q(i,j)}, ¢ = max {q(i,j)}
JEZ(1,n) JEZ(1,n)

Lemma 2.1 [4]For any x € X, we have

3=

p—1
o (man+2)y [ ooma N N
max {z(i,j)} < ( 1 ) (Z > A =1L+ 30 30 [Aaw(i, j — 1)\p> - (2.2)
1€Z(1,m) 7=1 =1 =1 j=1

JEZ(1,n)

Proof [4]For any given = € X, there exist s € Z (1, m) and 7 € Z (1, n) such that;

z(s,7) = max {x(i,])}
1€Z(1,m)
JEL(Ln)
Since x(4,0) = z(i,n+1) =0,i € Z(0,m+1) and 2(0,j) = xz(m+1,j) =0, 7 € Z(0,n+ 1),

we can obtain:

1 s T
lz(s,7)| = 5 S Ax(i—1,7)+ > Agx(s,j— 1)
= j=1
1 . T .
< 5 2 Al =17+ ) [Asa(s, g — 1)
i=1 =1
]_ 1 s T P
< 5 (s + 7')‘11 (Z [A1z(i — 1, 7) P 4+ > |Agz(s, j — 1)|p>
i=1 =1
and
1 m+1 n+1
lz(s,7)| = =] > Aw(i—1,7)+ > Agx(s,j—1)
2 [issh j=r+1
1 m+1 ) n+1 )
= 3 Yo Ai(i =17+ X [Asx(s,j— 1)
i—st+1 j=r+1

RS

IA

1 1 m+1 n+l
—(m4+n—s—7+42)a > |A1$(i—177)|p+ > |A2$(3»j_1)|p )

2.2. The energy function of the problem (P{*7)
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where ¢ is the conjugative number of p, that is, S+ = 1 If

S

Z [Ava(i = 1, 7)" + Z [ Asz(s,j — D

=1 Jj=
m+4n+2)  (mid , m+n+2) [nil ,
< - (Eawti-np) +4 L (5 1aaats. i =P ).
20 (s+7) i=1 20 (s+1) j=1
then we can get;
p—1 1
- m+n+2) " il ’
mae {x(i.j)} < 002 (z \Aw(z—lr>r”+zm2x<sy—1>|)
i€Z(1,m
jEEZ((l,n))

So, we obtain the required relation 2.2. If, on the contrary,

s T 2 p-1 m+1
> [Asali = 1) + 3 |Aar(sj D > (m+n+2) (zl |A1x(¢—1,7)|P)
i= j= i=

20 (s + T)p_l
-1
m+n+2) ntl ,
+! L (S 1wt - ).
2P (s +7) j=1
Then we have:
m+1
> A —1,7)[" + Z |Agx(s, j — 1)
i=s+1 j=7+1

m—+1 n+1 S
= 2 A= 1,7+ X [Asa(s, i — 1) — <Z [Arz(i —1,7)" + Z [Asz(s,j — 1) )
i=1 i=1

Jj=1 Jj=

_(m+n+2) mAl oli 17 _(m+n+2) e s i
- <1 2. (s+71) )(Z|Al( b )|)+<1 2. (s+71) ><Z|A2< ) 1)|>

J

Moreover, we have;

|z (s, 7)]

Q|
3 =

< z—(m+n—s—17+2)

5 (

(1— mtnt2) ) &1'%(@—1 i 2 Barls, ] =) )
20 (s+7)

Jj=

We claim that inequality

Q=
Q=

(m+n—s—717+2)

N —

(1_(m+n+2)l>p§w (23)

2. (s+7)" 4

2.2. The energy function of the problem (P{*7)
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holds. In fact, we define a function g : (0, m +n + 2) — R by;

) 1 i 1
git) = - —

(m+n—t+2)
The function g can attain its minimum —2—— at t = ™2 _Since s € Z(1,m), t € Z(1,n),

» (m+n+2) 2

e can get 2 that is

\i g g(S+T)_(m+ +2)1)13 11
1 1 2"
>

+ > -
(mtn—s—7+2"" (s+7)"" T (m+n+2)

This implies assertion 2.3 and we can obtain the required inequality 2.2. =

Lemma 2.2 For all x € X, the inequality

p—1
(m+n+2)7
Jmax {Joli, )} < el 24
]EZ(ln) [ +q*(m+n+ ) ]p
holds.
Proof Owing to 2.2, we infer
n m+1 m n+l1 n m
" = D> 1Al =LA+ Y > [ Asw(i, i = DI + )Y qli, ) (i, )"
j=1 i=1 i=1 j=1 j=1 i=1
> max {2} | 0SS el )P
 (m+n+2)P1 \iezm) t Lz ’
JELZ(1,n) j=1 =1
p p
477
> *
Z minr zegi(fiwfn){lfﬂ(% Y| +a Jnax {lz(@, )1}

jez(1,m) JEL(1, n)
p
47 + q.(m +n + 2)P~1
- ( P e (st

(m+mn+2)p-1 i€Z(1,m
jGZ(l n)
Therefore,
(m+n+2)5
m+n v
max {Iw(z D} < T =l -
i€Z(1,m) [4p + q*(m +n+ Q)pfl]p

JEZ(1,n)

For later convenience, we define another norm:

2.2. The energy function of the problem (P{*7)
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Jall, = (szg ) Vo€ X.

7j=1 =1

Since X is an mn-dimensional space, the norms ||.|| and ||.|| ,are equivalent. To be specific, we

have the following numerical estimation. m

Lemma 2.3 For all x € X, one has

Sl

[4P + qumn(m + n + 2)P71]

1
T lll, < llzll < 2 +q%)3 (||, -
(mn)? (m+n+2)
mn)r \m n P

Proof On the one hand, from 2.2 we have

n m+l m n+1 n m

2P = D> Y Al = LHP+ DD 1wl i = DI+ D> q(i,4) (i, )

j=1 =1 i=1 j=1 7j=1 i=1
p
4r »
> s
- On+n+@“lz£%ﬁ#u@jm> + el
JEZ(1,m)
4r N2 p
e e e L i1

for any (i,j) € Z(1,m) x Z(1,n). This implies that

. (m+n +2)P~1 .
2 )P < = |l = g o] WG ) € 21,m) x 21, m).
Hence,
lally = > > =)
7j=1 =1
" - (M4 n 4 2)Pt » »
< 3SR P - g o)
j=1 i=1
mn(m +n+ 2)P~
- 2D ol ~ g. ]
 omn(m+n+2P7 0 gmn(m4n+2)P70
- 4p qu - 4p ||'r||p7
that is,
gmn(m +n + 2)P~1 » _mn(m+n+2)p7t
1+ I ]I, < T ]

(2.5)

2.2. The energy function of the problem (P{*7)
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Therefore,

47 + gomn(m +n + 2)7~1]7
p—1

(mn)% (m+n+2)7

2, < -

On the other hand, for every (i, j) € Z(1,m + 1) x Z(1,n), we infer

[Avz(i = 1) < (|2, )| + a@ = 1, 7)) < 227 (Ja @i, )" + | = L)),

where the last inequality is due to the convexity property of the function ¢(t) = t* (¢t > 0).

Thus,

n m+l

Az — L) < 227 N (e )P + |2 - 1,5)P)

In the same way we get

Besides,

Summarizing,

that is,

j:1ni:n11+1 n m-+1
= 7 (ZZ i)+ 3D i - 1,.7')\”)
j=1 i=1 j=1 =1
. (z PSS |x<z',j>|p>
j=1 i=1 J=1i=1
j=1 i=1
= 2F Hx||§
n+l m
D> |Aa(i g = DI < 27|}
j=1 i=1
>SS 4l ) 2@ ) < g ZZ!x(z‘,m:q*HwHﬁ-
j=1 i=1 j=1 i=1

lzl” < 27 [lzlly + 27 |=ll} + q" l=lly = (27 + ¢") ||z},

L
)| < 277+ ") 7 [|2]],

which yields our conclusion. =

2.2. The energy function of the problem (P{*7)
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2.3 Main results

Denote

n m

Q=>> a(ij)

=1 i=1
Our main result is the following.
Theorem 2.1 Assume that there exist four positive constants c, d, i, o satisfying a < p and

4P + qo(m +n + 2)P~ 1 P
(2m +2n+ Q)(m +n +2)P~

/4

such that

. [47+qu(mAn42)P~1]eP S0 ST F((i24),d) ,
(Al) max(;,;),6)ez(1,m)x Z(1,n) x [—c,c] F((%])ag) < mn{[4p+q*(m+n+2)p7l]cp+(2mj+;n+Q)l(m+n+2)p7ldp}7

(A2)  F((2,),€) < p(L+[£]%), V((5,7),€) € Z(1,m) x Z(1,n) x R.

Furthermore, put

pmn(m +n+ 2)P~! MaX((i j),¢)ez(1,m)xZ(1n) x[cd L (1, 7),§)
[4P + g (m +n + 2)P~1] P

p [2?21 Yo F((4,7), d) — mnmax (i j).¢)ez1,m)xz(,n)x [—e.d (7, 7), f)]
(2m + 2n + Q)dp ‘

)\1:

Y

Ay =

Then, for each A € A, = (%2, A—i),problem (P{%) possesses at least three solutions in X.

Moreover, put

a = (2m+2n+ Q)[4+ q.(m+n+2)""] (cd)?,

b = p&+q(m+n+2)P"] cpiiF((i,j),d)

j=1 i=1
—pmn(2m +2n 4+ Q)(m +n + 2P 1d¥ max F((z,7),8).
( )( ) ((4,9),6)€Z(1,m) X Z(1,n) X [—c,c] (( J) 5)
Then, for any h > 1, there exist an open interval A, C [0, $h] and a real number o > 0 such that,

for each A € A,, problem (P{*) possesses at least three solutions in X and their norms are all less

than o.

2.3. Main results
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Proof Since X is a finite-dimensional real Banach space, X is separable and reflexive.

From the definitions in 2.1 of ® and J, we know that & : X — R is a nonnegative continu-
ously Gateaux differentiable and sequentially weakly lower semicontinuous functional whose
Gateaux derivative admits a continuous inverse on X*, and J : X — R is a continuously
Géteaux differentiable functional whose Gateaux derivative is compact. Choose z(, j) = 0 for
each (i,j) € Z(0,m + 1) x Z(0,n + 1), it is clear that 2y € X and (z¢) = 0 = J(zo).

According to the assumption (A;) and Lemma 2.3, we deduce

O(r) = AJ(z) = —Hxll” AZZF i, 3),%(i,J))

7=1 =1

4P + qomn(m +n + 2)P~1
2], — A (1 + |2 (4, j)|%)
pmn(m +n + 2)P~1 ]2“21

4 + gemn(m +n 4 2)P7! n_m o
= pmn<m+n+2p1 ZDMJ eSS ()

7j=1 i=1 7j=1 i=1

4 4 q, 2! i

e pmnm—l—n—l—2)P1

v

for any x € X and A > 0. Bearing in mind « < p, one has

| ﬁim (@ (z) — A\J (x)] = 400, VA € [0, +00),
x||—+00
namely, the condition (i) of Theorem 1.1 is fulfilled.
For the condition (ii), we put
[P+ g m+n+ 27
B p(m +n + 2)p~1 ’

0,ifi=0,7€Z0,n+1)ori=m+1,5 € Z(0,n+1),
z1(i,J) = d, if (i,j) € Z(1,m) x Z(1,n),
0,ifj=0,i€Z0,m-+1)orj=n+1,i€Z0,m+1).
It follows that z; € X and

|z || _ 2m+2n+de
p p

J(x1) = ZZF ((4,7) 21 (4,7)) =

7j=1 =1 j=1 1

(1) =

F((i,5),d).

n m
=1

2.3. Main results
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[4P+gs (mAn+2)P~ 1P

(2m~+2n+Q)(m+n+2)P—1 > we have

In view of d” >

[4p+q*(m+n+2)f” He?
D p(m +n + 2)pP-

:7",

which means that the condition (i7) of Theorem 1.1 is satisfied.
Next, we verify the condition (7i7) of Theorem 1.1. By direct computation, we get

T ) - 4P+ qu(m+ 0+ 27 e 0 S0 F (i), d)
P @) [k g (mt 2 e+ 2mot 20+ Q) (m ot ot 2T

On the other hand, for any x € ®~!(—o0, ], i.e.,®(x) < r, we infer

[2(6, )| < max {|z(i, )|}
1€Z(1,m)
JEZ(1,n)
(m+n+2)’%1 (m+n+2)p;1(pr)%

T [lz]] < =c
[4P + g (m + n + 2)P—1]»

T4+ q(m 21
for every (i,j) € Z(1,m) x Z(1,n). This leads to

O (—o0,r] C{z € X : |2(i,5)] < ¢,V(i,j) € Z(1,m) x Z(1,n)}.

Hence, this along with assumption (4;) yields

sup  J(z) < sup F((i,7), 2(1, 7))
7€ 1 (—oo,r)” ze{zeX:|x(i,j)|<c,V(4,j)€Z(1,m)xXZ(1,n) ] 1 i1
< mn max F((i,7),6)

((4,4),8€)€Z(1,m) X Z(1,n) X [—c,c]
[47 + qu(m +n+2)P7 P 370 T F((3, ), d)

[4P 4+ q.(m +n + 2)P7 P + (2m + 2n 4+ Q)(m + n + 2)P~1dp
T
= oy’

for any = € X. The condition (iii) of Theorem 1.1 is verified.

Note that
O(z1)
J(21) = supcg=r—y J (7)
< (2m + 2n + Q)dP 1
= PR 2 F((4, ), d) — mn max ) gezm)xz@myx(—ed F((3,7),6)] A2’
r S [4P + q.(m +n + 2)P~ 1P _ 1
sup J(m) B pmn(m +n+ 2)”_1 Max((; 5),6)€Z(1,m)x Z(1,n) x [—c,c] F(<i’j)7 f) At

zE@fl(foo,r)w

2.3. Main results
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According to Theorem 1.1 and Remark 2.1, forany A € A; = ( ), problem (PAf /) possesses

1 1
PURIDN]
at least three solutions in X.

Moreover, for any i > 1, it follows from the expressions of a and b that

hr
<

a
rJ(x 7
@((acll)) B Supx@b*l(—oo,r)w J(iL’) b

h.

By Theorem 1.1 and Remark 2.1, for any h > 1, there exist an open interval A, C [0, $h] and a
real number o > 0 such that, for each A\ € A,, (P{ /) possesses at least three solutions in X and

their norms all are less than 0. =
Remark 2.2 From (A,) it follows that

mn(2m—|—2n+Q)(m+n+2)p_1dp F(<Z7.])’€)

max
((4,5),8)eZ(1,m) x Z(1,n) X [=c,c]
< [4"+ q(m+n+2)P7"]

X F((i,5),d) —mn max F((z,7), .
[gzl zzl (( ']) ) ((4,7),£)eZ(1,m) X Z(1,n) X [—c,] (< j> 5)]
Then
pmn(m 4+ n + 2)P7T max (5.6 ez,m)x z(1m)x[—e.d F((1,7),€)
[4P + g (m +n + 2)P~1] P

P [Z?:l Yot F((4, ), d) — mnmax . ).e)ez,m)xz(t,n) x[-e.d F (2, 7). §)
(2m + 2n + Q)dr '

<

That is, \; < )y, which indicates that the interval (5, 5-) is well-defined.

Remark 2.3 In view of assumption (A;), we infer

4+ g.m o+ o+ 2 1 @YD PG ), d)

j=1 i=1
> mn(2m + 2n + Q)(m +n + 2)P~tdP max F((i,5),&),
( Q)( ) ((4,9),6)EZ(1,m) X Z(1,n) X [—c,c] (( j> é)

so b > 0 and [0, $h] is a well-defined interval.

Remark 2.4 Ifit was q(i,j) = 0 and p = 2 the problem P/{ is seen as discrete nonlinear Laplace

equation in dimension 2. As pointed out by Galewski and Orpel in [5], problem P serves as the

2.3. Main results
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discrete counterpart of the following problem;

E SN ((2,y) u(x,y) =0,
uw(z,0) =u(x,n+1), z€Z(0,m+1),
u(0,y) =u(m+1,y), y€Z0n+1).
Remark 2.5 We can write the problem PAf @ for q (i,7) = 0 and p = 2 as the nonlinear algebraic
system of from;
Aw = Ag(w),
Let it be wy = u(h™'(k)) and gi (wi) = f(h~(k),wy) for all k € [1, mn)].

As you know A as follows
L -1, 0 0
-I, L -1, O
o —-L, L -1,

o o o O
o o o O
o o o O
o o o O

A= (aij) = € anxmn(R)y

0 0 0 0 L -I, 0 0
0 0 0 0 -I, L -1, O
0 0 0 0 o -I, L -I,
0 0 0 0 0 0o -1, L
L is defined by
4 -1 0 0 o 0 0 O
-1 4 -1 0 o 0 0 O
o -1 4 -1 0o 0 0 O
0 0 -1 4 o 0 0 O
L= € Mpnscmn(R),
o 0 0 O 4 -1 0 0
0O 0 0 O -1 4 -1 0
o 0 0 0 0 -1 4 -1
o 0 0 O 0O 0 -1 4

2.3. Main results
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L € Mpnymn(R) is the identity matrix and g(w) = (g1 (1), ..., G (Wmn))", for every w €
X.Moreover, a direct computation shows that

Zaij =2(m+1)n—2n—1)m=2(m+n).

ij=1
Based in the above and based on that q(i, j) # 0, p > 1 it appears to us that

ij=1

2.3. Main results
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Chapter 3. Two positive solutions for partial discrete Dirichlet boundary value problem with
p-Laplacian

3.1 Introduction

In the third chapter, we are concerned a two positive solutions for partial discrete Dirichlet
boundary value problem with p-Laplacian, denoted by (PAf 1), based on the previously men-

tioned which is the three critical points theorem and the strong maximum principle.

3.2 The strong maximum principle

In order to obtain positive solutions of problem (PAf 1), we establish the following strong maxi-

mum principle:
Lemma 3.1 Fix z € X such that, for any (i,j) € Z(1,m) x Z(1,n), either

2(i,j) >0 or — Ay [¢, (Awa(i — 1,7))] = Do [¢), (Do (i, j — 1))] +q(i, )¢, (x (4, 5)) > 0. (3.1)
Then either x(i,j) > 0 for all (i,j) € Z(1,m) x Z(1,n) or x = 0.

Proof Fix = € X satisfying 3.1.
Let 6 € Z(1,m),w € Z(1,n) such that

(0, w) =min{z(i,j) i € Z(1,m),j € Z(1,n)}.

If (0,w) > 0,then x(4,j) > 0 for all i € Z(1,m),j € Z(1,n), and the proof is finished.
If 2(0,w) < 0,then x(f,w) = min {x(4, ) : ¢ € Z(0,m +1),5 € Z(0,n + 1)}. At this point, it is
easy to see that Ajz(0—1,w) = z(0,w)—x(0—1,w) < 0and Ayz(0,w) = z(0+1,w)—z(0,w) > 0.

Since ¢,(s) is increasing in s, and ¢,(0) = 0, one has
¢p (Alx(e - 1>w)) <0< ¢p (Alm(eaw)) )

which implies that
Al |:¢p (AICL’(Q — 1,&)))} 2 0.

Similarly,

Ay (¢, (Asz(f,w —1))] > 0.

3.1. Introduction
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p-Laplacian
Thus,
Ay (¢, (A1z(0 — 1,w))] + As [¢, (Asz(0,w —1))] > 0. (3.2)
On the other hand, in view of 3.1 , we infer
A [¢p (Aqz(0 — 1,w))} + Ay [gzﬁp (Agz(0,w — 1))] < q(@,w)gzﬁp (x(0,w)) <0. (3.3)

Combining 3.2 and 3.3, we have

Ay ¢, (A1z(0 — 1,w))] + As [, (Asz(f,w — 1))] =0,

which yields
Aq g, (Az(0 — 1,w))] = As [¢, (Asz(0,w —1))] =0,
namely;,
{ By (B (0,0)) = 6, (M (6 — 1,w)) =0,
¢y (B22(0,w)) = ¢, (Agz(0,w — 1)) = 0.
Therefore,

0+ 1lw) =2(0,w) =2(0 — 1,w),
z(0,w+1)=2z0,w) =z(@,w-—1).

If0+1=m-+1, we get z(0,w) = 0. Otherwise, § + 1 € Z(1,m). Replacing 0 by 6 + 1, we

have z(0 + 2,w) = z(f + 1,w). Continuing this process m + 1 — 6§ times, we obtain z(f,w) =

(04 1w) =20+ 2,w) = = z(m,w) = x(m + 1,w) = 0. Analogously, we have z(f,w) =
z(0 —lw)=2(0—-2,w)=---=2(1,w) = 2(0,w) = 0. Hence, x(i,w) = 0 for each i € Z(1, m).

In the same way we can prove that 2 = 0 and the conclusion of Lemma 3.1 holds.

Remark 3.1 When f : Z(1,m) x Z(1,n) x R — R is a nonnegative function, Lemma 2.3 guaran-

tees that every solution mentioned in Theorem 2.1 is either positive or zero.

3.2. The strong maximum principle
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3.3 Main results

Corollary 3.1 If f((4,5),0) > 0 for all (i,j) € Z(1,m) x Z(1,n), and there exist four positive
constants ¢, d, u, o with a < p and

[4P + g (m + n + 2)P~HeP

/4
d (2m+2n+ Q)(m +n+2)p~1
such that
(A})
,7)d
()€ (Lm) X 2L m)x [0, /0 F(G,5),m)dr
[47 + qu(m +n+ 27 P Y00 ST f((6, ), T)dT

mn{[4” + q.(m +n + 2)P1c? + (2m + 2n + Q)(m + n + 2)P~ ldp}

(A3)

¢
/0 F((@g), m)dr < p(1+1€%),V((2,4), €) € Z(1,m) x Z(1,n) x (0,+00).

Furthermore, denote

I pmn(m +n + 2)”_1 mMax((;,),6)ez(1,m)xZ(1,n)x[0,d] fos f((@,4),7)dr
' [4p - q*<m +n+2p e ’

¢ .
[23 L Sy (), 7T — e max () e ez m)xzamxiod Jy F((5,),T)dT
(2m + 2n + Q)dP '

)\2:

Then, for any A € Ay = (/\1—2, Ail), problem (P]) has at least two positive solutions in X.

Moreover, denote

a = (2m+2n+ Q)[4 + q.(m +n+2)""] (cd)?,

b = p[4+q(m+n+2)P" cpZZ/ f((@, ),

7j=1 i=1

—pmn(2m + 2n + m—+n+ 2P 1P ma / )
b ( Q)( ) ((4,9),€ )EZ(lmi(Zln x[0,c] f j

Then, for any h > 1, there exist an open interval A, C [0, $h] and a positive real number o such
that, for each A € A,, problem (PAf ") has at least two positive solutions in X and their norms are

all less than o .

3.3. Main results
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Proof For any (i,j) € Z(1,m) x Z(1,n) and t € R, we put

f((@,4),1), t>0,
f((0,4),0), <0,

F* (i, ),1) = / f*(i,§),7)dr.

f (@@, 0),t) =

Therefore,

3
max F*((i,4), = max i,7),7)dT,
((4,9),£)€Z(1,m) xZ(1,n) X [0,c] (( j> g) ((i,j),é)GZ(l,m)XZ(l,n)X[U,c]/0 f(( j> )

n m

SOS () = N / £((G, ). 7)dr.

j=1 i= j=1 i=1

In view of hypotheses (A*) and (Aj), the conclusion of Theorem 2.1 holds for problem (P} *?).
Further, by applying Lemma 3.1, we find that problem (PAf ") admits at least two positive solu-
tions when ) belongs to intervals A; and A,, respectively, which are exactly positive solutions
of problem (P{*?). m

Next, we study a special case in which f has separated variables. Specifically, we consider

the following problem, namely (Py??):

_Al |:¢p (Alx (Z - 17]))} - AZ |:¢p (A2x (laj - 1))} + Q(iaj)qbp (‘T(Zaj)) = /\W(Z,])g (CL’(Z,])) )
(1,7) € Z(1,m) x Z(1,n),

with Dirichlet boundary conditions

z(4,0) = z(i,n+1), i€ Z(0,m+1)

z(0,7) = x(m+1,5), j€Z0,n+1)

where w : Z(1,m) x Z(1,n) — R is nonnegative and non-zero, and ¢ : [0,+o0) — R is a
nonnegative continuous function.

Define

n m

3
W= 303 wlind). GO = [ gis

j=1 i=1

Then we have the following result.

3.3. Main results
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Corollary 3.2 Assume that there exist four positive constants c, d, 1, « satisfying o < p and

4P + q.(m +n + 2)P~ 1P
(2m +2n+ Q)(m +n +2)7~*

/4

such that

.. [4P g« (mAn+2)P~ 1] cPIWG(d) .
(A1) max(jez(,m)xz(in) w(i,J) < mn{[4v+q*(m+n+2)gfl]cp+(2m+2n+cg)(m+n+2)pfldp}c(c)’

(AY) G(&) < n(1+1]¢"),VE > 0.

Furthermore, denote

N pmn(m +n + 2)P71G(c) max jyez,m)xz1.0) W (i, j)
! [47 + q.(m +n + 2)P~1]cP 7

(WG (d) — mnG(c) max; jyez,m)xz(1n) W (i, 7))
(2m + 2n + Q)dp

), problem (Py*?) has at least two positive solutions in X.

Ay = 2

Then, forany A € Ay = (

1 1
PURIDN]
Moreover, denote
a = (2m+2n+Q) 4 +q(m+n+2)""] (cd),
b = p[4+q(m+n+2P WG (d)

—pmn(2m + 2n + Q)(m 4+ n + 2P 1dPG (c max w(i, 7).
prn Q) PG max (i)

Then, for any h > 1, there exist an open interval A, C [0, $h]| and a positive real number o such

that, for each A € Ay, problem (Py??) has at least two positive solutions in X and their norms are

all less than o.

Proof Set

R G4
w(i, 7)g(0), s <0,

for any (i,j) € Z(1,m) x Z(1,n) and s € R. It is easy to verify that

f((2,7),0) = w(i,j)g(0) = 0,V(z, ) € Z(1,m) X Z(1, n),

13
Af%ﬁﬂw:G@ max  wii,j),

max
((4,5),6)€Z(1,m) X Z(1,n) X [0,c] (4,§)EZ(1,m)xZ(1,n)

3.3. Main results
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n m

ZZ/O f(G,4),7)dr = WG(d).

j=1 i=1
Besides, we take p = 1 max(; j)ez(1,m)xz1,n) W(%, j). The conclusion follows from Corollary 3.1

and taking into account 3.4. m

3.4 An example
To illustrate our results, we present a concrete example.

Example 3.1 Consider the problem (Py*?) and takep =4, m=2,n=2,¢=1,d =10, n = €'}

a=1and

q(i,5) = ij, V(i,j) € Z(1,2) x Z(1,2),
w(i,j) = i+J, V(i,j) € Z(1,2) x Z(1,2),
se’, 0<s<9,

g(s) =
9¢?, 5> 9.

Then we get ) =9, W =12, ¢, = 1, max(; jieza,2)xz0,2) w(i,j) = 4, and

_ 3
G(e) - (E—=1e*+1, 009, (3.5)
9¢% —73¢% +1, £>0.

So G(c) =1, G(d) = 17¢° + 1. Furthermore,

[47 +q.(m+n+2)P P 472

= <104 =
(2m +2n+ Q)(m +n +2)P~1 3672

and

[47 + q.(m + n + 2)PHPWGE(d) L 177(17e° + 1)

mn{[4? + q.(m +n +2)p=e? + (2m + 2n + Q)(m +n + 2)P-1dP}G(c) 4,590,059
Then the condition (A}) of Corollary 3.2 holds.

Due to 3.5, we have

G(E) = (€—1)ef+1 <8 +1 < el2L+ ¢ = n(L+[€]*), V0 < € <

G() = 9" — T3’ +1 < e e =e?(L+[¢)) =n(1+["), Ve >0,

3.4. An example
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which indicate

G(&) <n(L+[]%), ¥€ >0,

that is, the condition (A}) of Corollary 3.2 is fulfilled.

Moreover,
N pmn(m + n + 2)P~1G(¢) max jyezm)xz(1,0) w (i, J) _ 1728
! [47 4+ ¢, (m 4+ n + 2)p- e 59
Y P[WG(d) - mnG(c) max; j)ez(1,m)xZ(1,n) W(iaj)] _ 5le? — 1
? (2m + 2n + Q)d? 10,625

10,625 59
5le9—17 1728

By Corollary 3.2, for any A € Ay = (

), the considered problem possesses at least two
positive solutions in X.

Besides, a and b in Corollary 3.2 are
a = 80,240,000, b = 385,152¢” — 2,350,057, 344,

respectively. Therefore, for any h > 1, there exist anopeninterval Ay C [0, s55500o>——h] and a

positive real number o such that, for each A € A, the considered problem has at least two positive

solutions in X and their norms are all less than o .

3.4. An example
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Conclusion

Through this study, it was confirmed and proven that there are multiple solutions for partial
discrete Dirichlet boundary value problem with p-Laplacian that we discussed to achieve them
gradually and in detail with the statement of the critical points theory relationship to solve such
a problem. Moreover, based on the strong maximum principle, we come up with two positive
solutions under some suitable non-linear assumptions, and then solve such complex equations
that require deep and proven studies to reach the confirmed results mentioned above.

At last, further researches are recommended to enlarge this study and prove the existence
of one solution for partial discrete Dirichlet boundary value problem with p-Laplacian for the

investigated problem.

3.4. An example
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