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 شكر و عرفان

 

 نحمد الله عز وجل الذي وفقنا في إتمام هذا البحث العلمي و الذي ألهمنا الصحة 

العزيمة، فالحمد لله حمدا كثيرا و الشكر له سبحانه أولا وأخيرا و والعافية  

م {لئن شكرتم لأزيدنك فهو القائل: } على امتنانه  

.وسلم: }من لا يشكر الناس لا يشكر الله {وقال الرسول صلى الله عليه   

 نتقدم بجزيل الشكر و التقدير إلى الأستاذ المشرف"سالم عبد المالك" على

 ما قدمه لنا من توجيهات و معلومات قيمة ساهمت في إثراء موضوع دراستنا 

إلى أعضاء اللجنة المناقشة الموقرةمن جوانب مختلفة. كما نتقدم بجزيل الشكر   

كلمة الشكر إلى كل معلم أفادنا بعلمه من أولى المراحل الدراسية حتىونرفع   

 هذه اللحظة. كما نشكر كل من مد لنا يد العون من بعيد أو قريب ونشكر

 كل أساتذة وعمال القسم. 

  

 

 

 



 

 

 

 

 إهداء

 مذكرتنا هذه ثمرة الجهد و النجاح بفضله تعالى، مهداة

الوالدين الكريمين حفظهماإلى أعز الناس وأقربهم ألا وهما   

 الله وأدامهما نورا لدربنا، اللذان كانا عونا وسندا لنا طيلة مشوارنا

 الدراسي، و كان لدعائهما المبارك أعظم أثر

 وإلى إخواننا وأخواتنا الأعزاء.

 نسأل الله العلي القدير أن ينفعنا بهذا العمل المتواضع ويمدنا

 بتوفيقه.

 

 

 

 

 

 

 

 



 

 

 

 

Abstract 
    The purpose of this thesis is to study the local and global asymptotic stability of the 

nonnegative constant steady states of an epidemic reaction-diffusion system (susceptible-

infectious) with a nonlinear incidence in the case of ordinary and partial differential 

equations depending on the basic reproduction number, with determining the linearity of 

the studied system in both cases . Where the local asymptotic stability is determined by the 

nature of the eigenvalues, but for the global asymptotic stability we use the Lyapunov 

method, in addition to illustrate the analytical results through numerical examples. 

 

 Key words: The reaction-diffusion system, nonlinear incidence, global and local 

asymptotic stability, equilibrium, basic reproduction number, Lyapunov function, 

linearization. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 ملخص

الثبات غير  الكلي لحالاتراسة الاستقرار المقارب المحلي والهدف من هذه المذكرة هو د    

مصاب ( مع الحدوث غير الخطي -وبائي ) معرض للإصابةالعل رد الفر السالبة لنظام انتشا

في حالة المعادلات التفاضلية العادية و الجزئية اعتمادا على رقم التكاثر الأساسي مع تحديد 

خطية النظام المدروس في كلتا الحالتين حيث يتم تعيين الاستقرار المقارب المحلي من خلال 

تقرار المقارب الكلي نستعمل طريقة ليابونوف، لكن بالنسبة للاسطبيعة القيم الذاتية، 

.بالإضافة إلى توضيح النتائج التحليلية عن طريق الأمثلة العددية  

الكلمات المفتاحية: نموذج التفاعل والانتشار، حدوث غير خطي، الاستقرار المقارب الكلي 

 والمحلي، التوازن، رقم الاستنساخ، دالة ليابونوف، التوسيع الخطي.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

Résumé 

    Le but de cette thèse est d'étudier la stabilité asymptotique locale et globale de la non 

négative états stationnaires constants d'un système de réaction-diffusion épidémique 

(susceptible-infectieux) avec incidence non linéaire dans le cas d'équations aux dérivées 

ordinaires ou partielles dépendant du nombre de reproduction de base, avec détermination 

de la linéarité du système étudié dans les deux cas où la stabilité asymptotique locale est 

déterminé par la nature des valeurs propres, mais pour la stabilité asymptotique globale 

nous utilisons la méthode de Lyapunov, en plus d'illustrer les résultats analytiques par des 

exemples numériques. 

 Mots clés: Système de réaction-diffusion, incidence non linéaire, stabilité asymptotique 

globale et locale, équilibre, nombre de reproduction de base, fonction de Lyapunov, 

linéarisation. 
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Notations

R The set of real numbers.

R�0 Set of positive real numbers.

Rn Vectorial space of dimension of dimension n � 1:
R2�0 Set of positive real numbers of dimension n = 2:


 Open bounded subset of Rn:

 The closing of 
:

@
 Smooth boundary.

C
�


�

Continuous set of functions on 
:

C1 (
;R) Space of the functions continuously differentiable to ordre 1 on 
 in R:
H1 (
) ; H2 (
) Sobolev spaces.

L2 (
) The space of square integrable functions on 
:
@u(x;t)
@t

Partial derivative of u with respect to time t:

� The laplacian operator.

r Gradient operator.

L The linearizing operator.

k�k2 The norm in L2:

k�kp The norm in Lp:

h ; i The euclidean scalar product.

R0 The basic reproduction number.

J (u; v) The jacobian matrix.

tr Trace of matrix.

det Determinant of matrix.

ODEs Ordinary differential equations.

PDEs Partial differential equations.
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General Introduction

Throughout history, many epidemics have had major implications for human society, from killing

large proportions of the world’s population to making humans think of a solution to reduce them,

mathematical modelling has been the way to do so, by modeling problems and analyzing them

mathematically using non-linear differential equation systems.

The models have multiplied and become very widely used, but one of the most important of

them is epidemiological modelling or so-called infectious disease modelling and is an important

tool to improve our understanding of how a disease spreads and make an approximate guess

by predicting its future course for the purpose of mitigating its effects, where scientists use a

combination of mathematics and data to apply this modeling.

Daniel Bernoulli was the first to create a model to defend the practice of radical vaccination in

1760. In the 20th century, William Hammer and Ronald Ross introduced the Mass Action Act to

explain epidemiological behavior. The 1920s saw the emergence of fragmented models, the most

important of which was the Kermack-Mckendrick model (1927), which succeeded in predicting

the behaviour of outbreaks in a very similar way to the behavior observed in many recorded

epidemics, where it was considered a fixed set of only three sections: susceptible S(t), infected

I(t) and recovery R(t), this model is known as SIR, as well as other models including: SIS, SERS,

SI and so on.

This thesis aims to highlight the study of the local and global asymptotic stability of an epidemic

reaction-diffusion SI (susceptible-infectious) model with a nonlinear incidence.

The subject of this study was divided into two sections, an analytical (theoretical) and an appli-

cation section (numerical).

The theoretical has two chapters which are as follows:

Chapter one: Giving the most general form of the system of reaction-diffusion with initial con-

cepts, theories and definitions related to local and total stability.

Chapter two: Customizing the study of the reaction-diffusion SI epidemic model with a non-

6



linear incidence for the global and local approach stability of both ODEs and PDEs.

The practical aspect includes:

chapter three: it confirms the analytical results by examples of data that are accompanied by

numerical analysis and calculations.
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Chapter 1

Stability theory

1.1 Introduction

Reaction-diffusion systems of partial differential equations play an important role in modeling

real-life applications, which attracted the interest of scientists, including the scientist Alan Turing

in 1952.

Reaction-diffusion systems basically represent the change in space and time of certain physical

quantities as a result of two phenomena. The first phenomenon is reaction, which denotes the

transformation of one quantity to another, while the second is diffusion and corresponds to the

spatial spreading of the quantities.

The most general form of a reaction-diffusion system may be given by

@

@t
U (t; x) = D�U (t; x) + F (U (t; x)) x 2 
; t � 0; (1.1)

where

U(t; x) = (u1(t; x); u2(t; x); :::; un(t; x))
T (1.2)

is the unknown vector function, D is an n� n matrix of diffusion coefficients, and

F (u) = (f1(u); f2(u); :::; fn(u))
T (1.3)

is a functional representing the interaction.

In this chapter, we will present some preliminary concepts, with a mention of theories and defin-

itions related to the local and global asymptotic stability of this system.

8



Chapter 1. Stability theory

1.2 Preliminary Concepts

1.2.1 The space Lp

Definition 1.1 Let 
 be a domain in Rn and let p be a positive real number. We denote by Lp (
)

the class of all measurable function U defined on 
 for wichZ



jU (t; x)jp dx <1:

If U 2 Lp (
) ; we define its norm

kU (t; x)kp =
�Z




jU (t; x)jp dx
� 1

p

:

Corollary 1.1 L2 (
) is a Hilbert space with respect to the inner product

hU;UiL2 = kUk
2
L2 =

Z



U2dx:

1.2.2 Sobolev space

Definition 1.2 The Sobolev space W k;p (
) consists of functions u 2 Lp (
) such that for every multi-

index � with j�j � k; the weak derivatives D�u exists D�u 2 Lp (
) :Thus

W k;p (
) = fu 2 Lp (
) ; D�u 2 Lp (
) ; j�j � kg :

Definition 1.3 We call Sobolev space of order 1 on 
 the space

W 1;2 (
) = H1 (
) =
�
v 2 L2 (
) ; @xiv 2 L2 (
) ; 1 � i � d

	
:

1.2.3 Equilibrium point

Definition 1.4 ([13]) A point U� 2 Rn is called an equilibrium point of (1:1) if

F (U�) = 0:

1.2.4 Stability and asymptotic stability

Definition 1.5 ([16]) U� is said to be stable if for any " > 0 there exists � > 0 such that if

kU (0; x)� U�k < �; then kU (t; x)� U�k < " for all t � 0:

� U� is unstable if it is not stable.

1.2. Preliminary Concepts 9



Chapter 1. Stability theory

Figure 1.1: Stability of an equilibrium point.

Definition 1.6 ([16]) U� is said to be asymptotic stable if it is stable and there esists � > 0 such

that whenever kU (0; x)� U�k < � then kU (t; x)� U�k �! 0 as t �!1:

In our thesis we will study two type of stability: local asymptotic stability and global asymptotic

stability.

Local asymptotic stability [16]

The local asymptotic stability of a model at U� is that the solution of the system must approach

an equilibrium point under initial condition close to the equilibrium point; i.e. at U� if there is a

� > 0 such that kU (t; x)� U�k < � that implies U (t; x) �! U� as t �!1:

global asymptotic stability [16]

The global asymptotic stability of a model at U� is that the solution of the system must approach

to the equilibrium point under all initial condition; i.e. for every U (t; x) , we have U (t; x) �! U�

as t �!1:

1.2. Preliminary Concepts 10



Chapter 1. Stability theory

Figure 1.2: Asymptotic stability of an equilibrium point.

1.2.5 Non-negativity of solutions

Definition 1.7 ([8]) Let F : I � Rn+ �! Rn:
Then F is essentially nonnegative if fi (U) > 0; for all i = 1:::n and U 2 Rn+ such that ui = 0;

where ui denotes the ith component of U:

Proposition 1.1 ([11]) Suppose I � Rn+. Then Rn+ is an invariant set with respect to ODEs system

if and only if F is essentially nonnegative.

1.2.6 Intermediate value theorem

Theorem 1.1 ([14]) Let h (x) be a real-valued function which is continuous on the closed interval

[a; b] : If k is any number between h (a) and h (b) ; then there exists at least one number c 2 [a; b] such

that h(c) = k:

The Intermediate value theorem can be used to determine whether there exists a solution to the

equation h (x) = k when h (x) is a continuous function on a closed interval [a; b] :

Corollary 1.2 ([14]) Let h be a real-valued function which is continuous on the closed interval

[a; b] : If h(a)� h(b) < 0; then there exists at least one number c 2 [a; b] such that h(c) = 0:

Remark 1.1 ([12]) if the function h is strictly monotonic and continuous on [a; b] (i.e. strictly

increasing or strictly decreasing) then the equation h (x) = k, has a unique solution.

1.2. Preliminary Concepts 11



Chapter 1. Stability theory

1.2.7 Eigenfunction

In mathematics, an eigenfunction of a linear operator P defined on some function space is any

non-zero function � in that space that, when acted upon by P , is only multiplied by some scaling

factor called an eigenvalue. As an equation, this condition can be written as

P� = ��:

for some scalar eigenvalue �: The solutions to this equation may also be subject to boundary

conditions that limit the allowable eigenvalues and eigenfunctions.

1.2.8 Gronwall’s Inequality

Theorem 1.2 ([10]) Let N (t) be a continuous nonnegative function such that

N(t) � �+

Z t

t0

(�N(s) + 
) ds; on t � t0;

where � � 0; � � 0 and 
 � 0: Then for t � t0; N (t) satisfies

N(t) � � exp(� (t� t0)) +



�
(exp(� (t� t0))� 1):

1.2.9 Green Formula

[9] Let u; v are two function such that u 2H2 (
) and v 2H1 (
) then we haveZ



�uv =

Z
@


@u

@�
vds�

Z



rurvdx:

1.3 Theories of local stability in case ODEs

In order to know the basic theories for the stability of the system ODEs, first we omitting the

Laplacian operator � and setting the time derivative.

In general, system (1:1) can made up of two-component expressed in the following form

dU

dt
= F (U); (1.4)

where F (U) = (f (u; v) ; g (u; v))T (here, we changing notation).

We assume that the system (1:4) has as its equilibrium the point (u�; v�) = (0; 0) ; we get the

linearity of this system at (u�; v�)
dU

dt
= AU; (1.5)

1.3. Theories of local stability in case ODEs 12



Chapter 1. Stability theory

where

A =

 
fu(u; v) fv(u; v)

gu(u; v) gv(u; v)

!
ju=u�;v=v�=

 
a11 a12

a21 a22

!
and U =

 
u

v

!
; (1.6)

and that If A is nonsingular. We are going to study the qualitative properties of the solutions

to system (1:5), in particular their asymptotic behavior as t �! +1: To know the asymptotic

behavior we denote by �1 and �2 the eigenvalues of A; where this dependency is summarized in

the following table [1]

Eigenvalues Equilibrium

�1;2 2 R; �1; �2 < 0 Asymptotically stable node

�1;2 2 R; �1; �2 > 0 Unstable node

�1;2 2 R; �1 � �2 < 0 Unstable saddle

�1;2 = �� i�; � < 0 Asymptotically stable node

�1;2 = �� i�; � > 0 Unstable focus

�1;2 = �i�; Stable center

Table 1.1: The asymptotic behavior of solutions to the linear 2-component system (1.5) based on

the nature of the eigenvalues of A

The first stability case, from the table 1.1, a linear system (1:5) is asymptotically stable if the real

parts of the eigenvalues of A are negative. If at least one eigenvalue is positive or has a positive

real part, then system (1:5) is unstable at (u�; v�) = (0; 0).

The second stability case, the asymptotically stable node, can be guaranteed in the following

theory

Theorem 1.3 ([4]) The system (1:5) is locally asymptotically stable at the equilibrium (u�; v�) if

and only if the trace of A is negative and its determinant is positive, i.e.(
tr (J) = a11 + a22 < 0;

det (J) = a11a22 � a12a21 > 0:

Definition 1.8 ([7]) A subset D � 
 is an invariant set relative to (1:4) if D contains the orbits of

all its points.

Definition 1.9 ([7]) (A Positively Invariant Set)

1.3. Theories of local stability in case ODEs 13



Chapter 1. Stability theory

A positively invariant set is a set with the following properties: Given a dynamical system (1:4) and

trajectory U (t; U0) where U0 is the initial point. Let D = fU 2 Rn;N (U) = 0g where N is a real

valued function. The set D is said to be positively invariant if U0 2 D implies that U (t; U0) 2 D for

all times t � 0: In other words, a solution that starts in D remains in D for all times t � 0:

Definition 1.10 ([7]) (The Region of Attraction of the Equilibrium)

Assume that U = U� is an equilibrium point of (1:4) and let N be the solution of the system. The set

D =
n
� 2 
� lim

t�!1
supN (t; �) = U�

o
is called the region of attraction of the equilibrium U�:

1.4 Theories of local stability in case PDEs

One of the common methods for studying the local asymptotic stability of the PDEs system is the

eigenfunction expansion method [5]. It is important to recall some of the theory related to the

eigenvalues of the Laplace operator.

1.4.1 Properties of the Eigenvalues of the Laplace Operator

Let us denote these eigenvalues by 0 = �0 < �1 � �2 � �3 � � � � %+1 and the corresponding

normalized eigenfunctions in 
 by �0; � � � ;�k; � � � : We assume Neumann boundary conditions.

These eigenvalues and eigenfunctions satisfy the eigenvalue problem

���k = �k�k (1.7)

in 
; with @�k
@�
= 0 on @
; and

k�kk2 =
Z



�2k (x) dx = 1: (1.8)

1.4.2 Local Stability

In general, system (1:1) can made up of two-component with a linearized reaction expressed in

the following form
@

@t
U �D�U = J0U; (1.9)

in the simplest case, D is assumed to be diagonal and cross–diffusion is neglected, i.e.

D =

 
du 0

0 dv

!
; (1.10)

1.4. Theories of local stability in case PDEs 14
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where du and dv denote the diffusivity constants for substances u and v; respectively,

and J0 is the Jacobian matrix of the corresponding ODEs system evaluated at the equilibrium

point.

Let denote the linearizing operator by L = J0U +D�U: Suppose (� (x) ;  (x)) is an eigenfunction

of L corresponding to an eigenvalue �: We have

L (� (x) ;  (x))t = � (� (x) ;  (x))t ;

leading to

(L � �I)

 
�

 

!
=

 
0

0

!
:

For simplification purposes, let us set(
� =

P
0�i�1;1�j�mi

aij�ij;

 =
P

0�i�1;1�j�mi
bij�ij:

We can now write (� (x) ;  (x))T =
P

0�i�1;1�j�mi
(aij; bij)

T �ij:

This can be rearranged to the form

X
0�i�1;1�j�mi

(J0 � �iD � �I)

 
aij

bij

!
�ij =

 
0

0

!
:

The equilibrium point is locally asymptotically stable if all the eigenvalues of L have negative real

parts.

Theorem 1.4 ([5]) The equilibrium point of (1:1) is (locally) asymptotically stable if the equilib-

rium point of the linearized problem (1:9) is asymptotically stable.

1.5 Theories of Global Asymptotic Stability

One of the important methods for studying global asymptotic stability is the direct Lyapunov

method, which was developed by the Russian mathematician Aleksandr Lyapunov at the begin-

ning of 1900’s. We will describe this method and illustrate its applications.

1.5.1 The direct Lyapunov method

Definition 1.11 ([4]) If U� 2 Rn is an equilibrium point of (1:1) and 
 � Rn be an open set

containing U�: A real valued function V 2 C1 (
;R) is called a Lyapunov function for (1:1) if

V (U) > V (U�) ; for all U 2 
; U 6= U�; (1.11)

1.5. Theories of Global Asymptotic Stability 15
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and
dV (U (t))

dt
:= hrV (U) ; F (U)i � 0; for all U 2 
: (1.12)

Theorem 1.5 ([4]) (Liapunov stabilty theorem).

(i) If (1:1) has a Lyapunov function, then U� is stable.

(ii) If one has that dV (U(t))
dt

< 0; for all U 6= U�; then U� is asymptotically stable.

Theorem 1.6 ([7]) (LaSalle’s theorem)

Let U = U� be an equilibrium points and 
 � Rn be a domain containing U�: Let V : 
 �! R be

a continuously differentiable function such that dV (U(t))
dt

� 0 in 
: Let M =
n
u 2 
; dV (U(t))

dt
= 0
o
=

fu�g : Then, U� is asymptotially stable.

Remark 1.2 If 
 = Rn; in the last theorem, U� is globally asymptotially stable.

1.5. Theories of Global Asymptotic Stability 16



Chapter 2

Global and local asymptotic stability of an

epidemic reaction-diffusion model with a

nonlinear incidence

To study disease dynamics, compartmental models have played an important role in eliminating

the disease at the local and global levels, giving us simple equations to determine the number

of people affected by an outbreak or to determine the size of the susceptible population. The

original compartmental models have produced many different forms, for example: SI, is a classic

model in mathematical epidemiology and the simplest form of all disease models, showing the

spread of infectious disease in a population. Individuals are in simulation without immunity

once infected and without treatment, so individuals remain infected throughout their lives, they

remain in contact with susceptible populations.

In this chapter, we consider the following reaction-diffusion epidemic phenomena proposed in

[6], with the nonlinear incidence u'(v), which is an extended version of the SI epidemic model.

2.1 System model

Systems of the form (1:1) appear naturally in many phenomena but we are interested in the

following mathematical model(
@u
@t
� d1�u = �� �u� �u'(v) =: F (u; v) in (0;1)� 
;

@v
@t
� d2�v = ��v + �u'(v) =: G(u; v) in (0;1)� 
:

(2.1)

We assume the initial conditions

u(0; x) = u0(x); v(0; x) = v0(x) in 
; (2.2)

17
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where u0, v0 2 C(
), and impose homogeneous Neumann boundary conditions

@u

@�
=
@v

@�
= 0 on (0;1)� @
; (2.3)

with � being the unit outer normal to @
:We will also assume that the initial conditions u0(x); v0(x) 2
R�0.
The constants d1, d2 > 0 are the diffusion coefficients and the constants parameters �; �; �; � > 0:

The incidence function ' (v) introduces a nonlinear relation between the two classes of individu-

als. We assume ' to be a continuously differentiable function on R+ satisfying

'(0) = 0; (2.4)

and

0 < v'0(v) � '(v) for all v > 0: (2.5)

This system may describe the transmission of a communicable disease between individuals such

as HIV/AIDS.

2.2 Interpretation of model

Initially, the N population is confined to the study region 
 where there is no migration, which

is expressed as @u
@�
= @v

@�
= 0. To interpret the mathematical model, we rely on the scheme in the

figure 2.1.

N is divided into two different categories known as compartments, with the first compartment

comprising the susceptible population u and the second reflecting the infection population v, (i.e.

N = u+ v). Both u and v change with regard to time t and location x.

The susceptible people become an infected at a rate of �, (the more v in moment t, the greater

the �), where the number of susceptibles is reduced by leaving a sensitive community and joining

the category of infected individuals, so we have ��u' (v) and �u' (v). The number of births � in

addition to the natural mortality rate should be included �, both of which fall into the u category,

so we have ���u. The infection is supposed to leave an infectious layer at the rate � of infection,

quarantine and then die, so we have ��v.

Susceptible Peoples actually become infected by mixing with infected people in some way, for

example through exposure to coughing or sneezing and so on, the latter are called diffusion

coefficients d1 and d2 to spread the disease spatially.

The main objective of modeling is to predict the number of infections in order to eliminate the

disease by reducing transmission, i.e. we need to reduce the average number of secondary infec-

2.2. Interpretation of model 18
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Figure 2.1: Epidemiological scheme of the proposed system model.

tions caused by a single infection to less than 1, which is known as the basic reproduction number

R0, which is an essential measure of disease biology and societal structure.

2.3 Preliminaries Properties of the Model

2.3.1 Positivity of the solution

Let us assume that the initial conditions (u0; v0) 2 R2�0 .Note that for (u; v) 2 R2�0: We have(
F (0; v) = � > 0;

G(u; 0) = 0 for all v > 0;
(2.6)

which makes the function (F;G)T essentially nonnegative. Hence, the nonnegative quadrant R2�0,
is an invariant set.

2.3.2 Absence of diffusion

By dropping the spatial variable, the proposed system reduces to the following system of ODEs:(
du
dt
= F (u; v) in (0;1);

dv
dt
= G(u; v) in (0;1);

(2.7)

with initial conditions

u (0) = u0 � 0; v (0) = v0 � 0: (2.8)

2.3. Preliminaries Properties of the Model 19
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Firstly, we study this system.

2.3.3 Invariant Regions

We define the invariant Regions , where we let N = u+ v and �0 = min(�; �)

D =

�
(u; v) : u; v � 0 and u+ v � �

�0

�
:

The following proposition shows that D is an invariant region of system (2:7)-(2:8).

Proposition 2.1 ([6]) The region D is non–empty, attracting and positively invariant.

Proof. We start by summing the equations of system (2:7)-(2:8), which yield
d

dt
(u+ v) =

d

dt
N(t)

= F (u; v) +G (u; v)

= �� �u� �v

� �� �0(u+ v);

so
d

dt
N(t) � �� �0N:

Integration of both sides Z t

0

d

ds
N(s)ds �

Z t

0

(�� �0N(s))ds

N(t)�N(0) � �t� �0

Z t

0

N(s)ds

N(t) � N(0) + �t� �0

Z t

0

N(s)ds;

application of the Gronwall’s inequality

N(t) � N0e
��0t � �

�0
(e��0t � 1);

Substituting the value of N yields

(u+ v)(t) � (u+ v)(0)e��0t +
�

�0
(1� e��0t); for t � 0:

If the initial states satisfy (u+ v) (0) � �
�0
; then (u+ v) (t) � �

�0
and

lim
t�!1

supN (t) � �

�0
:

As a result, region D is positively invariant and attracting within R2�0 . Therefore, it is sufficient

to consider the dynamics of the model within D as D is the biologically feasible region of the

system where the existence and uniqueness results hold for the system .

2.3. Preliminaries Properties of the Model 20
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2.3.4 Existence of equilibrium solutions

Theorem 2.1 ([6]) Under conditions (2:4)-(2:5)

I System (2:7)-(2:8) admits always a disease-free equilibrium E0 = (
�
�
; 0) .

I If R0 > 1; System (2:7)-(2:8)has a endemic equilibrium , E� = (u�; v�) .

Proof. First, we calculate Equilibrium points :

The positive equilibria of model (2:7)-(2:8) satisfy :(
F (u; v) = �� �u� �u'(v) = 0;

G(u; v) = ��v + �u'(v) = 0:
(2.9)

B Equilbrium E0

If u = 0, it is easy to see that the system has no equilibrium.

If v = 0 , �� �u� �u'(0) = 0 implies that u = �
�

So there’s only equilibrium is : E0 = (�� ; 0) .

B Equilbrium E�

We have

F (u�; v�) +G(u�; v�) = �� �v � �u�| {z }
(�)

= 0:

By subtracting F (u�; v�) out of (�)

F (u�; v�)� (�) = ��u'(v�) + �v = 0 implies that v� =
�u�'(v)

�
;

we make up v� in (�)

�� �

�
�u�'(v�)

�

�
� �u� = 0 implies that u� =

�

�'(v�) + �
:

Whose solution is

E� = (u�; v�) =

�
�

�'(v�) + �
;
�u�'(v)

�

�
:

Second, we study the existence conditions of an endemic steady state in the case v > 0. We have

from the second part of (2:9), and because � > 0 and '(v) > 0, we obtain

u =
�v

�'(v)
:

Substituting this into the first equation yields

�� �

�
�v

�'(v)

�
� �'(v)

�
�v

�'(v)

�
= 0;
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and from it

�� �v � ��v

�'(v)
= 0

implies that

h(v) = 0 for any v > 0;

where

h(v) =
��'(v)

�v�
� �'(v)

u
� 1

is continuous for any v > 0, because

lim
v!0

h(v) = lim
v!0

��'(v)

�v�
� �'(v)

u
� 1;

by applying L’Hopital’s rule

lim
v!0

h(v) = lim
v!0

��

��
'0(v)� 1� �'(v)

u

=
��

��
'0(0)� 1 = R0 � 1:

Now we calculate lim
v�! �

�0

h(v) by using �0 = min(�; �), we have

lim
v�! �

�0

h(v) = h

�
�

�0

�
=

��

��

�0
�
'

�
�

�0

�
� �

�
'

�
�

�0

�
� 1

=
�

��
(�0 � �)'

�
�

�0

�
� 1 < 0:

Hence for R0 > 1

lim
v!0

h(v)h

�
�

�0

�
= (R0 � 1)h

�
�

�0

�
< 0:

By applying the intermediate value theorem, there exist a real v� 2
�
0; �

�0

�
: Using the condition

(2:5), we find
dh

dv
(v) =

�� [v'0(v)� ' (v)]� ��v2'0(v)

��v2
< 0:

So, the function h decreases monotonically for all v > 0, then there exists a unique real v� 2�
0; �

�0

�
such that h(v�) = 0, which is implies the existence of a unique u� = �v�

�'(v�) :

The second equation of (2:9) has no solution in
�
�
�0
;+1

�
because

max
v2( �

�0
;0)
h(v) � h

�
�

�0

�
< 0:
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2.3.5 The basic reproduction number R0

The basic reproduction number is a central concept indicating the threshold for the epidemiolog-

ical model. To give his exact definition , Diekmann, Heesterbeek and Metz (1990) introduced the

next generation operator, which is a positive linear operator by which R0 can be defined as the

spectral radius of this operator.

Van den Driessche and Watmough (2002) have similarly done so that the models are ODEs sys-

tems. The next generation operator is described in terms of matrices, in this case R0 is the largest

eigenvalue of a matrix that describes the next generation operator. To calculate the basic repro-

duction number by using the next generation matrix method [17], we now move to the steps

of this method :

The whole population is divided into n compartments in which there are m < n infected compart-

ments. Let i = 1; 2; � � � ;m be the numbers of infected individuals in the ith infected compartment

at time t:

B First, the ODEs system can be written as

dU

dt
= F (U)� # (U) ;

where

F (U) = (F1 (U) ;F2 (U) ; � � � ;Fm (U))T

is the rate of appearance of new infections in compartment i; and

# (U) = (#1 (U) ; #2 (U) ; � � � ; #m (U))T ;

the function # has the following decomposition

# (U) = #� (U)� #+ (U) ;

where I #+ be the rate of transfer of individuals into compartment i by all other means.

I #� be the rate of transfer of individuals out of compartment i.

B Second, let E0 be the disease-free equilibrium. We calcule the Jacobian matrices of F and # in

E0, are

J (F (E0)) =
 
s 0

0 0

!
;

and

J (# (E0)) =

 
z 0

v1 v2

!
;
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where s and z are the m�m matrices defined by

s =

�
@Fi
@xj

(E0)

�
and z =

�
@#i
@xj

(E0)

�
with 1 � i; j � m:

Further, s is non-negative, z is a non-singular M-matrix and all eigenvalues of v2 have positive

real part.

B The next generation matrix method is defined as

K = sz�1:

B Now, the basic reproduction number is simply the spectral radius of K; i.e.

R0 = �
�
sz�1

�
:

We apply this method to the system (2:7).

We rewrite the system (2:7)-(2:8) in vector form as 
dv
dt
du
dt

!
=

 
�u'(v)

0

!
�
 

�v

�� + �u+ �u'(v)

!
:

We calculate the Jacobian matrices corresponding to vectors

 
�u'(v)

0

!
and

 
�v

�� + �u+ �u'(v)

!
at the disease–free equilibrium E0 are given, respectively, by 

��
�

0

0 0

!
=

 
s 0

0 0

!
;

and  
� 0
��
�

�

!
=

 
z 0

v1 v2

!
:

Where the next generation matrix is

K =

�
��

�
'0(0)

�
(�)�1 =

��

��
'0(0):

So

R0 =
��

��
'0(0):
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2.3.6 The Local ODEs Stability

In this theorem, we will examine the local stability of the previously defined E0 and E� points.

Theorem 2.2 ([6]) Always under conditions (2:4)-(2:5), the two statements are achieved for (2:7)-

(2:8):

(i) If R0 < 1 , the disease-free equilibrium solution E0 is the only steady state of the system and is

locally asymptotically stable.

(ii) If R0 > 1, E0 is unstable and the positive constant endemic steady state E� is locally asymptoti-

cally stable .

Proof. We calculate Jacobian matrix :

J(u; v) =

 
��'(v)� � ��u'0(v)

�'(v) �u'0(v)� �

!
:

I First , We study the stability of E0 for R0 < 1 and R0 > 1:

Evaluating J(u; v) at E0 with (2:4) in mind yields

J (E0) =

 
�� ���

�
'0(0)

0 ��
�
'0(0)� �

!
:

And from there we have �1 = �� and �2 = ��
�
'0(0)� �:

If R0 < 1 ,it is easy to see that �1 < 0 and �2 < 0, leading to the asymptotic stability .

If R0 > 1 ,it is easy to see that �1 < 0 but �2 > 0, leading to unstability.

Isecond, We study the stability of E�for R0 > 1 .

Evaluating J(u; v) at E� yields

J(E�) =

 
��'(v�)� � ��u�'0(v�)

�'(v�) �u�'0(v�)� �

!
:

The determinant and trace of the Jacobin can be given by

det J(u�; v�) = ��'(v�) + �� � ��u�'0(v�);

tr(J(u�; v�)) = �(�'(v�) + �) + �u�'0(v�)� �:

We have from u� and v� (
� = �u�'(v�) + �u�;

� = �u�'(v�)
v� :

(2.10)
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Using this, we get

det J(u�; v�) = �
�u�'(v�)

v�
'(v�) + �

�u�'(v�)

v�
� ��u�'0(v�)

=
�2u�('(v�))2

v�
+ ��u�

�
'(v�)

v�
� '0(v�)

�
;

and

tr(J(u�; v�)) = �(�'(v
�)u� + �u�)

u�
� �u�'(v�)

v�
+ �u�'0(v�)

= � �
u�
� �u�

�
'(v�)

v�
� '0(v�)

�
:

From the condition (2:5)
'(v�)

v�
� '0(v�) > 0 for all v� > 0;

we obtain det (J(u�; v�)) > 0 and tr(J(u�; v�)) < 0.

Hence, the equilibrium E� is locally asymptotically stable.

Now, we study the system PDEs .

2.3.7 The local PDEs stability

Theorem 2.3 ([6]) Assuming that the incidence function ' satisfies , the following statements hold

for system

(i) If R0 < 1; the disease-free equilibrium E0 is locally asymptotically stable.

(ii) If R0 > 1; the positive constant endemic steady equilibrium E� is locally asymptotically stable.

Proof. (i) First, we proof the stability of E0 If R0 < 1:

In the presence of diffusion, E0 satisfies(
d1�u+ �� �u�' (v�)� �u� = 0;

d2�v + �u�' (v�)� �v� = 0;

with the Neumann boundary
@u

@�
=
@v

@�
= 0 on R+ � @
:

Through the properties of Laplace eigenvalues, which were mentioned in the first chapter.

Let us denote the eigenvalues of the �� by 0 = �0 < �1 � �2 � �3 � � � � %+1 over 
 with Neu-

mann boundary conditions, where each �i has algebraic multiplicity mi � 1; and let (�ij)j=1;mi
;

be the corresponding normalized eigenfunctions. It is important to note that the set (�ij)j=1;mi
,

forms a complete orthonormal basis in L2 (
).

2.3. Preliminaries Properties of the Model 26



Chapter 2. Global and local asymptotic stability of an epidemic reaction-di¤usion model with a
nonlinear incidence

Linearizing system (2:1) around E0 by using (1:9)

@U

@t
�
 
d1 0

0 d2

!
�U =

 
�� ���

�
'0(0)

0 ��
�
'0(0)� �

!
U;

we get
@U

@t
=

 
d1�� � ���

�
'0 (0)

0 d2�+ ��
�
'0 (0)� �

!
U ;

then the linearizing operator may be given by

L (E0) =
 
d1�� � ���

�
'0 (0)

0 d2�+ ��
�
'0 (0)� �

!
:

Suppose (� (x) ;  (x)) is an eigenfunction of L corresponding to an eigenvalue �: By definition of

eigenfunction in the chapter 1, we have

L (� (x) ;  (x))t = � (� (x) ;  (x))t ;

leading to

(L � �I)

 
�

 

!
=

 
0

0

!
:

Substituting for L yields 
d1�� �� � ���

�
'0 (0)

0 d2�+ ��
�
'0 (0)� � � �

! 
�

 

!
=

 
0

0

!
:

For simplification purposes, let us set(
� =

P
0�i�1;1�j�mi

aij�ij;

 =
P

0�i�1;1�j�mi
bij�ij:

We can now write X
0�i�1;1�j�mi

(Ji (E0)� �I)

 
aij

bij

!
�ij =

 
0

0

!
;

where the matrix Ji (E0) is defined as

Ji (E0) =

 
�d1�i � � ���

�
'0 (0)

0 �d2�i + ��
�
'0 (0)� �

!
; for all i � 0:

The eigenvalues are (
ri1 = �d1�i � �;

ri2 = �d2�i + ��
�
'0 (0)� �:
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Since the Laplacian eigenvalues are positive, and from him

B It’s clear that ri1 have negative real parts.

B For R0 < 1 implies that ��
�
'0 (0)� � < 0; and from it we find that ri2 have negative real parts.

Consequently, the disease-free equilibrium E0 is locally asymptotically stable.

(ii) Now, The stability of the second steady state E�:

We use the same method from the first steady state E0:

Linearizing system (2:1) around E�, we get

L (E�) =
 
d1�� �' (v�)� � ��u�'0 (v�)
�' (v�) d2�+ �u�'0 (v�)� �

!
:

The matrix Ji (E�) is defined as

Ji (E
�) =

 
�d1�i � �' (v�)� � ��u�'0 (v�)
�' (v�) �d2�i + �u�'0 (v�)� �

!
; for all i � 0:

Calculation the trace of Ji (E�)

tr (Ji (E
�)) = �d1�i � �' (v�)� �� d2�i + �u�'0 (v�)� �

= ��i (d1 + d2) + tr (J (u�; v�)) ;

we have tr (J (u�; v�)) < 0 so tr (Ji (E�)) < 0 for all i � 0:
Calculation the determinant of Ji (E�)

det (Ji (E
�)) = (�d1�i � �' (v�)� �) (�d2�i + �u�'0 (v�)� �) + �2u�'0 (v�)' (v�)

= d1d2�
2
i + �i [�d1�u�'0 (v�) + �d2' (v

�) + d1� + d2�] + �� � ��u�'0 (v�) + ��' (v�)

= d1d2�
2
i + �iH0 + det (J (u

�; v�)) ;

such as

H0 = �d1�u�'0 (v�) + �d2' (v
�) + d1� + d2�;

using (2:10)

H0 = �d1�u�'0 (v�) + �d2' (v
�) + d1

�u�' (v�)

v�
+ d2�;

using (2:5) we obtain

H0 � �d1�u�
' (v�)

v�
+ �d2' (v

�) + d1
�u�' (v�)

v�
+ d2�

= d2 (�' (v
�) + �)

= d2
�

�
> 0:
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From the above we have det (J (u�; v�)) > 0; and from it we find that det (Ji (E�)) > 0 for all

i � 0:
Hence, E� is locally asymptotically stable.

2.4 Global asymptotic stability

In this section, we study the global asymptotic stability of the steady state solutions E0 and

E� for the system PDEs (2.1)-(2.3), which is based on the reproduction number R0, this is when

R0 < 1 and R0 > 1 by using an appropriate Lyapunov functional.

Lemma 2.1 ([2]) Condition (2:5) implies that

0 <
' (v)

v
< '0 (0) for all v > 0: (2.11)

Proof. Of (2:5), which is equivalent to�
' (v)

v

�0
=
'0 (v) v � ' (v)

v2
� 0:

Therefore, the function '(v)
v

is decreasing .

Now, for some h 2 (0; v) ; we have
' (h)

h
� ' (v)

v
;

implying that

lim
h�!0

' (h)

h
� ' (v)

v
;

which yields

'0 (0) � ' (v)

v
:

Lemma 2.2 ([15]) Given that ' satisfies criterion (2:5) and

L (x) = x� 1� ln (x) for all x > 0;

the inequality

L

�
' (v)

' (v�)

�
� L

� v
v�

�
;

where v� is the second component of the equilibrium point E�; holds.
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Proof. The function '(v)
v

is decreasing for all v > 0; from the condition (2:5).

We may separate the proof into two cases:

Case 1: Suppose v � v�:

We have '(v)
v

is a decreasing function, This means that

' (v)

' (v�)
� v

v�
;

and (2:5) implies that ' is non decreasing

' (v) � ' (v�) ;

consequently

1 � ' (v)

' (v�)
� v

v�
:

We have L0 (x) = x�1
x

x 0 1 +1
L0 (x) � 0 +

L (x) &
0

%

When x > 1 The function L (x) is increasing, thus

L

�
' (v)

' (v�)

�
� L

� v
v�

�
for all v � v�:

Case 2: Suppose 0 < v < v�:

The function '(v)
v

is decreasing for all v > 0; This means that

' (v)

' (v�)
>

v

v�
;

and ' is non-decreasing

' (v) < ' (v�) :

We get

1 >
' (v)

' (v�)
>

v

v�
> 0:

When 0 < x < 1 the function L is decreasing, thus

L

�
' (v)

' (v�)

�
< L

� v
v�

�
for all v � v�:
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2.4.1 Global Asymptotic Stability with R0 < 1

We consider the Lyapunov function

V� (t) =

Z



"
uv +

�

2

�
u� �

�

�2
+
1

2
v2 +

�

�
v

#
dx; where � > 0:

Theorem 2.4 ([6]) Assuming that (2:5) holds, if R0 < 1; then E0 is a globally asymptotically stable

disease-free steady state for system (2:1)-(2:3) under the assumption

'0 (0) � �+ �

�
�
��
�
+ �

�

� ; (2.12)

with

� � (d1 + d2)
2

4d1d2
: (2.13)

Proof. We proof that V� is a Lyapunov function.

i)

V� (t) > 0 for all t > 0

V� (E0) = 0

)
this implies that V� (t) > V� (E0).

ii) We show if d
dt
V� (t)

?

� 0:
Evaluating the derivative to V� (t) with respect to time

d

dt
V� (t) =

d

dt

 Z



"
uv +

�

2

�
u� �

�

�2
+
1

2
v2 +

�

�
v

#
dx

!

=

Z



�
@u

@t
v + u

@v

@t

�
dx+ �

Z



@u

@t

�
u� �

�

�
dx+

Z



v
@v

@t
dx+

�

�

Z



@v

@t
dx:

Substituting the time derivatives with their values from (2:1)

d

dt
V� (t) =

Z



[d1�u+ �� �u� �u' (v)] v + u [d2�v � �v + �u' (v)] dx

+�

Z



[d1�u+ �� �u� �u' (v)]

�
u� �

�

�
dx +

Z



v [d2�v � �v + �u' (v)] dx

+
�

�

Z



[d2�v � �v + �u' (v)] dx;
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simplifying the resulting equation

d

dt
V� (t) = d1

Z



�uvdx+ �

Z



vdx� �

Z



uvdx� �

Z



u' (v) vdx+ d2

Z



�vudx� �

Z



vudx

+�

Z



u2' (v) dx+ �d1

Z



u�udx+ ��

Z



udx� ��

Z



u2dx� ��

Z



u2' (v) dx

���
�
d1

Z



�udx� �

Z



�2

�
dx+ ��

Z



udx+ �
�

�
�

Z



u' (v) dx+ d2

Z



v�vdx

��
Z



v2dx+ �

Z



vu' (v) dx+
�

�
d2

Z



�vdx� �
Z



vdx+
�

�
�

Z



u' (v) dx:

We apply Green’s formula

d

dt
V� (t) = � (d1 + d2)

Z



rurvdx+ �
Z



vdx� �

Z



uv' (v) dx+ �

Z



u2' (v) dx

� (�+ �)

Z



uvdx� �d1

Z



jruj2 dx� ��

Z



�
u� �

�

�2
dx� ��

Z



u2' (v) dx

+�
�

�
�

Z



u' (v) dx� d2

Z



jrvj2 dx+ �

Z



uv' (v) dx� �

Z



v2dx

+
�

�
�

Z



u' (v) dx� �
Z



vdx

= �d1�
Z



jruj2 dx� (d1 + d2)

Z



rurvdx� d2

Z



jrvj2 dx+ � (1� �)

Z



u2' (v) dx

� (�+ �)

Z



uvdx� ��

Z



�
u� �

�

�2
dx� �

Z



v2dx+ �

�
�
�

�
+
�

�

�Z



u' (v) dx

= I + J;

such as the first part is

I =

Z



�d1� jruj2 � (d1 + d2)rurv � d2 jrvj2 dx = �
Z



Q (ru;rv) dx;

where

Q (ru;rv) = d1� jruj2 + (d1 + d2)rurv + d2 jrvj2 :

We have (2:13) implies that 4�d1d2 � (d1 + d2)
2 this means that

� = (d1 + d2)
2 � 4d1�d2 � 0;

which Q (ru;rv) dx > 0, so

I � 0 :
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And the second part is

J = � (1� �)

Z



u2' (v) dx� (�+ �)

Z



uvdx� �

Z



v2dx � ��

Z



�
u� �

�

�2
dx

+ �

�
�
�

�
+
�

�

�Z



u' (v) dx :

We have

� � (d1 + d2)
2

4d1d2
� 1 implies that 1� � � 0;

so

J � �

�
�
�

�
+
�

�

�Z



u' (v) dx� ��

Z



�
u� �

�

�2
dx� �

Z



v2dx � (�+ �)

Z



uvdx:

Applying lemma 2:1

J � �

�
�
�

�
+
�

�

�Z



uv'0 (0) dx� ��

Z



�
u� �

�

�2
dx� �

Z



v2dx � (�+ �)

Z



uvdx

�
Z



�
�

�
�
�

�
+
�

�

�
'0 (0)� (�+ �)

�
uvdx� ��

Z



�
u� �

�

�2
dx� �

Z



v2dx;

under the assuming (2:12) implies that �
�
��
�
+ �

�

�
'0 (0) � �+ �, yields

J � ���
Z



�
u� �

�

�2
dx� �

Z



v2dx � 0:

So we get d
dt
V� (t) � 0 for all t � 0:

As a result V� (t) is Lyapunov function, by Lyapunov’s direct method, E0 is globally asymptotically

stable.

2.4.2 Global Asymptotic Stability with R0 > 1

Theorem 2.5 ([6]) Assuming that u0; v0 > 0 and (2:5) holds, if R0 > 1; E� is a globally asymptoti-

cally stable endemic steady-state for system (2:1)-(2:3).

Proof. We consider the candidate Lyapunov function

V (t) =

Z



h
u�L

� u
u�

�
+ v�L

� v
v�

�i
dx;

which is a positive definite and continuously differentiable function.
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We have

L
� u
u�

�
=

u

u�
� 1� ln

� u
u�

�
;

so
d

dt
L
� u
u�

�
=
1

u�
du

dt
� 1

u�
du

dt

u�

u
=
1

u�

�
1� u�

u

�
du

dt
:

We proof that d
dt
V (t)

?

� 0:
Evaluating the derivative to V (t) with respect to time

d

dt
V (t) =

Z



u�
d

dt
L
� u
u�

�
dx+

Z



v�
d

dt
L
� v
v�

�
dx

=

Z



u�
1

u�

�
1� u�

u

�
du

dt
dx+

Z



v�
1

v�

�
1� v�

v

�
dv

dt
dx

=

Z



�
1� u�

u

�
du

dt
dx+

Z



�
1� v�

v

�
dv

dt
dx:

Substituting the time derivatives with their values from (2:1)

d

dt
V (t ) =

Z



�
1� u�

u

�
[d1�u+ �� �u� �u' (v)] dx+

Z



�
1� v�

v

�
[d2�v � �v + �u' (v)] dx

= d1

Z



�
1� u�

u

�
�udx+ �

Z



�
1� u�

u

�
dx� �

Z



�
1� u�

u

�
u' (v) dx

��
Z



�
1� u�

u

�
udx+ d2

Z



�
1� v�

v

�
�vdx+ �

Z



�
1� v�

v

�
u' (v) dx

��
Z



�
1� v�

v

�
vdx;

we apply Green’s formula with Neumann boundaries

d

dt
V (t) = �d1

Z



r
�
1� u�

u

�
rudx+ �

Z



�
1� u�

u

�
dx� �

Z



�
1� u�

u

�
u' (v) dx

��
Z



�
1� u�

u

�
udx� d2

Z



r
�
1� v�

v

�
rvdx+ �

Z



�
1� v�

v

�
u' (v) dx

��
Z



�
1� v�

v

�
vdx

= I + J;

where

I = �d1
Z



r
�
1� u�

u

�
rudx� d2

Z



r
�
1� v�

v

�
rvdx

= �
Z



�
d1
u�

u2
jruj2 + d2

v�

v
jrvj2

�
dx � 0 :
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And

J =

Z



�
1� u�

u

�
[�� �u' (v)� �u] dx+

Z



�
1� v�

v

�
[�u' (v)� �v] dx;

using (2:10)

J =

Z



�
1� u�

u

�
[�u�' (v�) + �u� � �u' (v)� �u] dx+

Z



�
1� v�

v

��
�u' (v)� �u�' (v�)

v�
v

�
dx;

simplifying the resulting equation

J =

Z



�
1� u�

u

�
�u�' (v�) dx+

Z



�
1� u�

u

�
�u�dx�

Z



�
1� u�

u

�
�u' (v) dx

�
Z



�
1� u�

u

�
�udx+

Z



�
1� v�

v

�
�u' (v) dx�

Z



�u�' (v�)

v�
v

�
1� v�

v

�
dx

=

Z



�
1� u�

u

��
1� u' (v)

u�' (v�)

�
�u�' (v�) dx+

Z



��
1� u�

u

��
1� u

u�

��
�u�dx

+

Z



�u�' (v�)

�
u' (v)

u�' (v�)
� v

v�

��
1� v�

v

�
dx;

J =

Z



[�u�J1 + �u�' (v�) J2] dx;

where

J1 =

�
1� u�

u

��
1� u

u�

�
= 1� u

u�
� u�

u
+ 1

= 1� u

u�
+ ln

� u
u�

�
� ln

� u
u�

�
+ 1� u�

u
+ ln

�
u�

u

�
� ln

�
u�

u

�
= �L

� u
u�

�
� L

�
u�

u

�
;

and

J2 =

�
u' (v)

u�' (v�)
� v

v�

��
1� v�

v

�
+

�
1� u�

u

��
1� u' (v)

u�' (v�)

�
= � u' (v)

u�' (v�)
� v

v�
� u�

u
+

' (v)

' (v�)
+ 2

= 1� u' (v) v�

u�' (v�) v
+ ln

�
u' (v) v�

u�' (v�) v

�
� ln

�
u' (v) v�

u�' (v�) v

�
+ 1� v

v�
+ ln

� v
v�

�
� ln

� v
v�

�
� 1

+1� u�

u
+ ln

�
u�

u

�
� ln

�
u�

u

�
� 1 + 1 + ' (v)

' (v�)
� ln

�
' (v)

' (v�)

�
+ ln

�
' (v)

' (v�)

�
= �L

�
u' (v) v�

u�' (v�) v

�
� L

� v
v�

�
� L

�
u�

u

�
+ L

�
' (v)

' (v�)

�
:
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Substituting in J we find

J = ��u�
Z



L
� u
u�

�
+ L

�
u�

u

�
dx+ �u�' (v�)

Z



�L
�
u' (v) v�

u�' (v�) v

�
� L

� v
v�

�
� L

�
u�

u

�
+L

�
' (v)

' (v�)

�
dx

= ��u�
Z



L
� u
u�

�
+ L

�
u�

u

�
dx� �u�' (v�)

Z



�
L

�
u' (v) v�

u�' (v�) v

�
+ L

�
u�

u

��
dx

+�u�' (v�)

Z



�
L

�
' (v)

' (v�)

�
� L

� v
v�

��
dx:

We have the positivity of L and applying lemma 2:1, thus

J � 0:

Hence d
dt
V (t) � 0:

As a result V (t) is Lyapunov function, by Lyapunov’s direct method, E� is globally asymptotically

stable.
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Numerical Examples

To clarify the results of the theories obtained in the second section, we will present in this section

three numerical examples (from [6]) that illustrate and confirm the results of this study using

the incidence function u' (v) with the employment of theorems 2:4 and 2:5 in order to evaluate

the global asymptotic stability of the disease-free equilibrium E0 at R0 < 1 and equilibrium E� at

R0 > 1.

3.1 First Example

In this example, we consider the function

' (v) = �v; for all � > 0;

by substituting in (2:1), we get the following problem8>>>><>>>>:
@u
@t
� d1�u = ���uv + �� �u in (0;1)� 
;

@v
@t
� d2�v = ��uv � �v in (0;1)� 
;

u (0; x) = u0 (x) ; v (0; x) = v0 (x) on 
;
@u
@�
= @v

@�
= 0; on (0;1)� @
:

(3.1)

The system (3:1) is a special case of the system (2:1), and he is identical to the bird system.

Conditions (2:4) and (2:5) are satisfied as8>>>><>>>>:
' (0) = 0;

'0 (v) = � > 0;

'0 (0) = �;

�v = v'0 (v) � ' (v) = �v:
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Finding steady states for the system (3:1)(
���u�v� + �� �u� = 0;

��u�v� � �v� = 0;
(3.2)

we sum the first and second equations of (3:2)

�� �u� � �v� = 0

this implies that

v� =
�� �u�

�
:

We substitute in the first equation the value of v�

��u�
�
�� �u�

�

�
� � + �u� = 0;

we get a quadratic polynomial

���
�

(u�)2 +

�
���

��
+ 1

�
u� � �

�
= 0;

we calculate the discriminant of this equation

� =

�
���

��
� 1
�2

> 0:

The equation has two solutions

u�1 =
�

�
this implies that v�1 = 0;

and

u�2 =
�

��
this implies that v�2 =

�

�
� �

��
;

we have

R0 =
��

��
'0 (0) =

��

��
�;

so

v�2 =
�

��
(R0 � 1) :

The system (3:1) possesses two constant steady states
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8<: E0 =
�
�
�
; 0
�
;

E� =
�
�
��
; �
��
(R0 � 1)

�
:

� When R0 > 1; the second steady state E� exists and it is globally asymptotically stable:

� When R0 < 1;the first steady state E0 is globally asymptotically stable with (d1+d2)
2

4d1d2
� � �

�
�

�
�+�
��
� �

�

�
when d1 6= d2:

To obtain numerical solutions we use the information mentioned in the table 3.1

Set Figure U0 V0 d1 d2 � � � � � R0

Set 1 1 4 + cos(x)
8

0:6 + sin(x)
8

3 2 9
10

2
15

1
2

6 3
4

1:9200

Set 2 2 0:4 + cos(x)
8

2 + sin(x)
8

3 2 2 1
3

2 9 4 0:7500

Table 3.1: Simulation parameters for example 1

We assume a single spatial dimension with 
 = (0; 10) :

� Figure 3.1 depicts the solution subject to parameter set 1, where R0 = 1:9200 > 1; which by

Theorem 2:5 means that E� = (4:1667; 5:75) is globally asymptotically stable.

� Figure 3.2 depicts the solution subject to parameter set 2, where R0 = 0:7500 < 1. By Theorem

2:4 and given � 2
�
25
24
; 2
�
, E0 = (2:25; 0) is globally asymptotically stable.
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Figure 3.1: Numerical solutions of system (3.1) subject to the first set of parameters.

Figure 3.2: Numerical solutions of system (3.1) subject to the second set of parameters.
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3.2 Second Example

In this example we consider the function

'(v) =
�v

1 + kv
; � > 0 and k � 0: (3.3)

The system is given (2:1) by substituting the considered function8>>>><>>>>:
@u
@t
� d1�u = �� �uv

1+kv
+ �� �u in (0;1)� 
;

@v
@t
� d1�v = � �uv

1+kv
� �v in (0;1)� 
;

u(0; x) = u0(x); v(0; x) = v0(x) on 
;
@u
@�
= @v

@�
= 0 on (0;1)� @
:

(3.4)

Checking that the function (3:3) meets the conditions (2:4) and (2:5)

'(0) = 0 and '(v) > 0 for all v > 0:

Derive the function (3:3)

'0(v) =
�

(1 + kv)2
; � > 0 and '0(0) = �:

Finding steady states for the system (3:4)

B If u = 0; the system (3:4) has no equilibrium.

B If v = 0; then equilibrium is E0 = (�� ; 0):

Next, we find E�

�
�u�v�

1 + kv�
� �v� = 0 implies that u� =

� (1 + kv�)

��
:

We have

�� �u� � �v� = 0,

we replace u� this equation

�v� = �� �

�
� (1 + kv�)

��

�
;

we find

v� =
�
�
����1
��

� 1
�

��+ �k
implies that v� =

� (R0 � 1)
��+ �k

so

E� =

�
� (1 + kv�)

��
; �
(R0 � 1)
��+ �k

�
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� E� exists and it is globally asymptotically stable provided that the reproduction number R0 > 1:

� E0 is globally asymptotically stable when R0 < 1 with (d1+d2)2

4d1d2
� � � �

�

�
�+�
��
� �

�

�
when d1 6= d2:

To obtain numerical solutions in we use the information mentioned in the table 3.2

Set Figure U0 V0 d1 d2 � � � � � k R0

Set 1 3 5 + cos(x)
9

0:4 + sin(x)
10

1
2

4 9
10

6
13

5
4

25
6

7
8

4 1:5824

Set 2 4 0:6 + cos(x)
9

1:5 + sin(x)
10

3
2

1
2

9
10

6
13

5
4

25
6

7
8

9
4
1:5824

Set 3 5 0:4 + cos(x)
10

0:3 + sin(x)
9

3 4
9

6 1
13

9
8

11
4

3 6 0:3761

Set 4 6 0:8 + cos(x)
8

3:2 +
sin(�2 x)

8
3 4

9
6 1

13
9
8

11
4

3 3
7
0:3761

Table 3.2: Simulation parameters for example 2

� Figure 3.3 shows the PDEs solution obtained using parameter set 1 with E� = (4:5760; 0:1302).

In this case, R0 = 1:5824 > 1 and by Theorem 2:5 , E� is globally asymptotically stable.

� Figure 3.4 shows the PDEs solution obtained using parameter set 2 with E� = (4:4565; 0:2138).

Since R0 = 1:5824 > 1, E� is globally asymptotically stable.

� Figure 3.5 shows the PDEs solution obtained using parameter set 3 with E0 = (0:9167; 0). In this

case, R0 = 0:3761 < 1 and using Theorem 2:4 with � 2
�
961
432
; 7:0833

�
, E0 is globally asymptotically

stable.

� Figure 3.6 shows the PDEs solution obtained using parameter set 4 with E0 = (0:9167; 0). In this

scenario, we again have R0 = 0:3761 < 1 and with � 2
�
961
432
; 7:0833

�
, E0 is globally asymptotically

stable.
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Figure 3.3: Numerical solutions of system (3.4) subject to the first set of parameters.

Figure 3.4: Numerical solutions of system (3.4) subject to the second set of parameters.
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Figure 3.5: Numerical solutions of system (3.4) subject to the third set of parameters.

Figure 3.6: Numerical solutions of system (3.4) subject to the fourth set of parameters.
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3.3 Third Example

In this example, we consider the function

' (v) =
kv

1 +
�
v
�

� ; for all � > 0 and k > 0;

by substituting in (2:1), we get the following problem8>>>>><>>>>>:

@u
@t
� d1�u = ��k v

1+( v�)
u+ �� �u in (0;1)� 
;

@v
@t
� d2�v = �k v

1+( v�)
u� �v in (0;1)� 
;

u (0; x) = u0 (x) ; v (0; x) = v0 (x) on 
;
@u
@�
= @v

@�
= 0; on (0;1)� @
:

(3.5)

Conditions (2:4) and (2:5) are satisfied as8>>>>>><>>>>>>:

' (0) = 0;

'0 (v) = k

(1+( v�))
2 > 0 for all v � 0;

'0 (0) = k;

v'0 (v) = v k

(1+( v�))
2 � ' (v) = kv

1+( v�)
:

Finding steady states for the system (3:5)8<: ��k v�

1+( v�� )
u� + �� �u� = 0

�k v�

1+( v�� )
u� � �v� = 0

(3.6)

B If u� = 0; the system (3:5) has no equilibrium.

B If v� = 0; then equilibrium is E0 = (�� ; 0):

Next, we find E�.

From the second equation for (3:6) we extract

u� =
� (�+ v�)

��k
:

We sum the first and second equations of (3:6)

�� �u� � �v� = 0;

we substitute the value of u�

�� �
� (�+ v�)

��k
� �v� = 0;
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we find

v� =
�k��� ���

��k� + ��

=
���

�
�k�
��
� 1
�

� (��k + �)
:

We have R0 =
��
��
k so

v� = ��
(R0 � 1)
(�k�+ �)

:

Ther are two steady states of system (3:5) are given by8<: E0 =
�
�
�
; 0
�
;

E� =
�
�(�+v�)
��k

; �� (R0�1)
(�k�+�)

�
:

� E� exists and it is globally asymptotically stable.

� E0 is globally asymptotically stable if

(d1 + d2)
2

4d1d2
� � � �

�

�
�+ �

�k
� �
�

�
when d1 6= d2;

To obtain numerical solutions we use the information mentioned in the table 3.3

Set Figure U0 V0 d1 d2 � � � � � k R0

Set 1 7 2:5 + cos(x)
8

5 + sin(x)
8

1
2

3 8
15

4
5

1
2

9 2
7

1
3

11:2000

Set 2 8 3:1 + cos(x)
5

1:3 + sin(x)
5

2 1 8
15

4
5

1
2

9 2
7

1
3

11:2000

Set 3 9 1:5 + cos(x)
10

2:6 + sin(x)
10

2
3

5
4

10 8
5

4
3

7 19
12

1
27

1:2281

Set 4 10 0:3 + cos(x)
9

1:5 + sin(x)
10

4
7

3 2
9

5
6

2
3

7
4

14
9

3
4

0:2813

Set 5 11 0:3 + cos(x)
9

0:2 + sin(x)
12

8 15
7

1
2

3
4

2
3

1
3

1
2

2
5

0:2000

Table 3.3: Simulation parameters for example 3
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Figure 3.7: Numerical solutions of system (3.5) subject to the first set of parameters.

� Figure 3.7 shows the solution obtained using parameter set 1 with E� = (21:9659; 5:4481). In

this case, R0 = 11:2 > 1 and by Theorem 2:5, E� is globally asymptotically stable.

� Figure 3.8 shows the solution obtained using parameter set 2 with E� = (21:9659; 5:4481). In

this case, R0 = 11:2 > 1 and E� is globally asymptotically stable.

� Figure 3.9 shows the solution obtained using parameter set 3 with E� = (4:1974; 0:2655). In this

case, R0 = 1:2281 > 1 and E� is globally asymptotically stable.

� Figure 3.10 shows the solution obtained using parameter set 4 with E0 = (1:1250; 0). In this

case, R0 = 0:2813 < 1 and by Theorem 2:4 with � 2
�
625
336
; 9:5185

�
, E0 is globally asymptotically

stable.

� Figure 3.11 shows the solution obtained using parameter set 5 with E0 = (0:6667; 0). In this

case, R0 = 0:2 < 1 and by Theorem 2:4 with � 2
�
5041
3360

; 8
�

, E0 is globally asymptotically stable.
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Figure 3.8: Numerical solutions of system (3.5) subject to the second set of parameters.

Figure 3.9: Numerical solutions of system (3.5) subject to the third set of parameters.
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Figure 3.10: Numerical solutions of system (3.5) subject to the fourth set of parameters.

Figure 3.11: Numerical solutions of system (3.5) subject to the fifth set of parameters.
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Conclusion

We have arrived here with you until the end of the mathematical scientific research in which we

addressed the stability of the epidemic reaction-diffusion system.

Where we proceeded from the beginning of the research with preliminary concepts and theories

related to global and local asymptotic stability, presenting the most general form of an reaction-

diffusion system, and then dedicating the study to a model of the reaction-diffusion of an epidemi-

ological (susceptible, infectious) with the non-linear incidence under the conditions (2:4)� (2:5)
and determining R0 the basic reproduction number by which the discussion takes place.

In the case of ODEs, the disease-free equilibrium is asymptotic stable if R0 is less than unity,

while the endemic equilibrium is asymptotic stable if R0 is greater than unity, and by applying

the Lyapunov function we determine the state of global stability PDEs, we confirming this results

numericaly.

Hence, we suggest some aspects for future research, which are:

� When R0 is equal to the unit. Are the disease-free and endemic equilibrium asymptotically

stable?

� When condition (2:5) is like this:

'(v) � v'0(v) for all v > 0:

Will the results of this study change and how will that be ?
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