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Abstract

The purpose of this thesis is to study the local and global asymptotic stability of the

nonnegative constant steady states of an epidemic reaction-diffusion system (susceptible-
infectious) with a nonlinear incidence in the case of ordinary and partial differential
equations depending on the basic reproduction number, with determining the linearity of
the studied system in both cases . Where the local asymptotic stability is determined by the
nature of the eigenvalues, but for the global asymptotic stability we use the Lyapunov
method, in addition to illustrate the analytical results through numerical examples.

Key words: The reaction-diffusion system, nonlinear incidence, global and local

asymptotic stability, equilibrium, basic reproduction number, Lyapunov function,
linearization.
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Résumé

Le but de cette thése est d'étudier la stabilité asymptotique locale et globale de la non
négative états stationnaires constants d'un systeme de réaction-diffusion épidémique
(susceptible-infectieux) avec incidence non linéaire dans le cas d'équations aux dérivées
ordinaires ou partielles dépendant du nombre de reproduction de base, avec détermination
de la linéarité du systéme étudié dans les deux cas ol la stabilité asymptotique locale est
déterminé par la nature des valeurs propres, mais pour la stabilité asymptotique globale
nous utilisons la méthode de Lyapunov, en plus d'illustrer les résultats analytiques par des

exemples numériques.

Mots clés: Systeme de réaction-diffusion, incidence non linéaire, stabilité asymptotique
globale et locale, équilibre, nombre de reproduction de base, fonction de Lyapunov,
linéarisation.
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General Introduction

Throughout history, many epidemics have had major implications for human society, from killing
large proportions of the world’s population to making humans think of a solution to reduce them,
mathematical modelling has been the way to do so, by modeling problems and analyzing them
mathematically using non-linear differential equation systems.

The models have multiplied and become very widely used, but one of the most important of
them is epidemiological modelling or so-called infectious disease modelling and is an important
tool to improve our understanding of how a disease spreads and make an approximate guess
by predicting its future course for the purpose of mitigating its effects, where scientists use a
combination of mathematics and data to apply this modeling.

Daniel Bernoulli was the first to create a model to defend the practice of radical vaccination in
1760. In the 20th century, William Hammer and Ronald Ross introduced the Mass Action Act to
explain epidemiological behavior. The 1920s saw the emergence of fragmented models, the most
important of which was the Kermack-Mckendrick model (1927), which succeeded in predicting
the behaviour of outbreaks in a very similar way to the behavior observed in many recorded
epidemics, where it was considered a fixed set of only three sections: susceptible S(t), infected
I(t) and recovery R(t), this model is known as SIR, as well as other models including: SIS, SERS,
SI and so on.

This thesis aims to highlight the study of the local and global asymptotic stability of an epidemic
reaction-diffusion SI (susceptible-infectious) model with a nonlinear incidence.

The subject of this study was divided into two sections, an analytical (theoretical) and an appli-
cation section (numerical).

The theoretical has two chapters which are as follows:

Chapter one: Giving the most general form of the system of reaction-diffusion with initial con-
cepts, theories and definitions related to local and total stability.

Chapter two: Customizing the study of the reaction-diffusion SI epidemic model with a non-



linear incidence for the global and local approach stability of both ODEs and PDEs.
The practical aspect includes:
chapter three: it confirms the analytical results by examples of data that are accompanied by

numerical analysis and calculations.




Chapter 1

Stability theory

1.1 Introduction

Reaction-diffusion systems of partial differential equations play an important role in modeling
real-life applications, which attracted the interest of scientists, including the scientist Alan Turing
in 1952.

Reaction-diffusion systems basically represent the change in space and time of certain physical
quantities as a result of two phenomena. The first phenomenon is reaction, which denotes the
transformation of one quantity to another, while the second is diffusion and corresponds to the
spatial spreading of the quantities.

The most general form of a reaction-diffusion system may be given by

%U (t,z) = DAU (t,z) + F(U (t,z)) x€Q, t >0, (1.1)

where
Ut,z) = (u(t,x), us(t, ), ..., up(t, ©))* (1.2)

is the unknown vector function, D is an n x n matrix of diffusion coefficients, and

F(u) = (fi(w), fa(w), .., fulu))" (1.3)

is a functional representing the interaction.
In this chapter, we will present some preliminary concepts, with a mention of theories and defin-

itions related to the local and global asymptotic stability of this system.
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1.2 Preliminary Concepts

1.2.1 The space L?

Definition 1.1 Let €2 be a domain in R" and let p be a positive real number. We denote by L? (Q2)
the class of all measurable function U defined on ) for wich

/ U ()] dz < oo.
Q

IfU € L? (), we define its norm

HU(axmpzz([gU<uanm);.

Corollary 1.1 L2 (Q) is a Hilbert space with respect to the inner product

<ammﬂM@=AWM-

1.2.2 Sobolev space

Definition 1.2 The Sobolev space W*? (Q) consists of functions u € LP () such that for every multi-
index a with |«| < k, the weak derivatives D*u exists D*u € L (§2) .Thus

WP (Q) = {ue LP (Q), Du e L* (Q), |a| < k}.
Definition 1.3 We call Sobolev space of order 1 on € the space

W2 (Q)=H'(Q) ={vel*Q), d,,vel*Q),1<i<d}.

1.2.3 Equilibrium point

Definition 1.4 ([13]) A point U* € R" is called an equilibrium point of (1.1) if

F(U") =0.

1.2.4 Stability and asymptotic stability

Definition 1.5 ([16]) U* is said to be stable if for any € > 0 there exists § > 0 such that if
|\U (0,z) — U*|| < 4§, then |U (t,x) — U*|| < eforallt > 0.

e U* is unstable if it is not stable.

1.2. Preliminary Concepts |
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Figure 1.1: Stability of an equilibrium point.

Definition 1.6 ([16]) U* is said to be asymptotic stable if it is stable and there esists 6 > 0 such
that whenever ||U (0,z) — U*|| < 0 then ||U (t,z) — U*|| — 0 as t — oo.

In our thesis we will study two type of stability: local asymptotic stability and global asymptotic
stability.
Local asymptotic stability [16]

The local asymptotic stability of a model at U* is that the solution of the system must approach
an equilibrium point under initial condition close to the equilibrium point; i.e. at U* if there is a
d > 0 such that ||U (t,x) — U*|| < ¢ that implies U (¢t,z) — U* as t — 0.

global asymptotic stability [16]

The global asymptotic stability of a model at U* is that the solution of the system must approach
to the equilibrium point under all initial condition; i.e. for every U (¢, x) , we have U (¢t,2) — U*

ast — oo.

1.2. Preliminary Concepts
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Figure 1.2: Asymptotic stability of an equilibrium point.

1.2.5 Non-negativity of solutions

Definition 1.7 ([8]) Let F : I C R}, — R™.
Then F is essentially nonnegative if f;(U) > 0, forall i = 1..nand U € Rz such that u; = 0,

where u; denotes the i" component of U.

Proposition 1.1 ([11]) Suppose I C Ri Then Ei is an invariant set with respect to ODEs system

if and only if F is essentially nonnegative.

1.2.6 Intermediate value theorem

Theorem 1.1 ([14]) Let h(z) be a real-valued function which is continuous on the closed interval
la,b] . If k is any number between h (a) and h (b) , then there exists at least one number ¢ € [a, b] such
that h(c) = k.

The Intermediate value theorem can be used to determine whether there exists a solution to the

equation h (z) = k when & (x) is a continuous function on a closed interval [a, b] .

Corollary 1.2 ([14]) Let h be a real-valued function which is continuous on the closed interval
la,b] . If h(a) x h(b) < 0, then there exists at least one number ¢ € [a, b] such that h(c) = 0.

Remark 1.1 ([12]) if the function h is strictly monotonic and continuous on [a,b] (i.e. strictly

increasing or strictly decreasing) then the equation h (x) = k, has a unique solution.

1.2. Preliminary Concepts
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1.2.7 Eigenfunction

In mathematics, an eigenfunction of a linear operator P defined on some function space is any
non-zero function ® in that space that, when acted upon by P, is only multiplied by some scaling

factor called an eigenvalue. As an equation, this condition can be written as
Pd = )\o.

for some scalar eigenvalue \. The solutions to this equation may also be subject to boundary

conditions that limit the allowable eigenvalues and eigenfunctions.

1.2.8 Gronwall’s Inequality

Theorem 1.2 ([10]) Let N (t) be a continuous nonnegative function such that
t
N(t) < a+/ (BN () + ) ds, ont > to,
to

where a > 0, > 0 and v > 0. Then for t > ty, N (t) satisfies

N(t) < aexp(B (¢ = o)) + 5 exp(5 (¢ = t0)) = 1)

1.2.9 Green Formula

[9] Let u, v are two function such that u € H? (Q) and v € H' (Q2) then we have

/Auv: @vds—/Vqudx.
Q a0 On Q

1.3 Theories of local stability in case ODEs

In order to know the basic theories for the stability of the system ODEs, first we omitting the
Laplacian operator A and setting the time derivative.

In general, system (1.1) can made up of two-component expressed in the following form

du
o = F(U), 1.4
where F(U) = (f (u,v), g (u,v))" (here, we changing notation).
We assume that the system (1.4) has as its equilibrium the point (u*,v*) = (0,0), we get the
linearity of this system at (u*, v*) .

— =AU, (1.5)

1.3. Theories of local stability in case ODEs
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A — fulw,v)  folu,v) I aixr a2 and U — U ’ (1.6)
Gu(u,v)  go(u,v) Q21 A22 v

and that If A is nonsingular. We are going to study the qualitative properties of the solutions

where

to system (1.5), in particular their asymptotic behavior as ¢ — +o00. To know the asymptotic
behavior we denote by A\; and )\, the eigenvalues of A, where this dependency is summarized in
the following table [1]

Eigenvalues Equilibrium

A2 € R, A, Ay <0 || Asymptotically stable node

M2 €R, A, A >0 Unstable node

M2 €ER A - A <0 Unstable saddle

A2 =a=£if, a <0 | Asymptotically stable node
Me=axif,a>0 Unstable focus

A2 = £if, Stable center

Table 1.1: The asymptotic behavior of solutions to the linear 2-component system (1.5) based on

the nature of the eigenvalues of A

The first stability case, from the table 1.1, a linear system (1.5) is asymptotically stable if the real
parts of the eigenvalues of A are negative. If at least one eigenvalue is positive or has a positive
real part, then system (1.5) is unstable at (u*,v*) = (0,0).

The second stability case, the asymptotically stable node, can be guaranteed in the following
theory

Theorem 1.3 ([4]) The system (1.5) is locally asymptotically stable at the equilibrium (u*,v*) if

and only if the trace of A is negative and its determinant is positive, i.e.

tr (J) = a1 + as <0,
det (J) = @11Q92 — Q12091 > 0.

Definition 1.8 ([7]) A subset D C ) is an invariant set relative to (1.4) if D contains the orbits of

all its points.

Definition 1.9 ([7]) (A Positively Invariant Set)

1.3. Theories of local stability in case ODEs
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A positively invariant set is a set with the following properties: Given a dynamical system (1.4) and
trajectory U (t,Uy) where Uy is the initial point. Let D = {U € R"; N (U) = 0} where N is a real
valued function. The set D is said to be positively invariant if Uy € D implies that U (t,U,) € D for

all times t > 0. In other words, a solution that starts in D remains in D for all times t > 0.

Definition 1.10 ([7]1) (The Region of Attraction of the Equilibrium)
Assume that U = U* is an equilibrium point of (1.4) and let N be the solution of the system. The set

D= {c €/ lim sup N (£,() = U*}

is called the region of attraction of the equilibrium U*.

1.4 Theories of local stability in case PDEs

One of the common methods for studying the local asymptotic stability of the PDEs system is the
eigenfunction expansion method [5]. It is important to recall some of the theory related to the

eigenvalues of the Laplace operator.

1.4.1 Properties of the Eigenvalues of the Laplace Operator

Let us denote these eigenvalues by 0 = \g < A\; < Xy < A3 < --- /7 and the corresponding
normalized eigenfunctions in €2 by &g, .-, ®,,--- . We assume Neumann boundary conditions.

These eigenvalues and eigenfunctions satisfy the eigenvalue problem
— ADy = N Dy, (1.7

in Q, with 2 = 0 on 92, and

P, = / 7 (v)dx = 1. (1.8)
Q

1.4.2 Local Stability

In general, system (1.1) can made up of two-component with a linearized reaction expressed in

the following form

2U — DAU = JyU, (1.9)
ot
in the simplest case, D is assumed to be diagonal and cross—diffusion is neglected, i.e.
d, 0
D= , (1.10)
0 d,

1.4. Theories of local stability in case PDEs
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where d, and d, denote the diffusivity constants for substances « and v, respectively,

and J, is the Jacobian matrix of the corresponding ODEs system evaluated at the equilibrium
point.

Let denote the linearizing operator by £ = JoU + DAU. Suppose (¢ (x) ,v (z)) is an eigenfunction
of £ corresponding to an eigenvalue . We have

L(¢(x),¥(2)) =€ (¢ (x), ¢ (2)),

cal1)-(2)

For simplification purposes, let us set

{ ¢ = Do<icoo1<j<m; Gii i

UL ) >

leading to

We can now write (¢ (z),9 ()" =3

This can be rearranged to the form

ij 0
3 (JO—/\iD—§I)<a‘7><I>ij:( )
0<i<00,1<j<my; bij 0

31300,157>

Pl S i

The equilibrium point is locally asymptotically stable if all the eigenvalues of £ have negative real

parts.

Theorem 1.4 ([5]) The equilibrium point of (1.1) is (locally) asymptotically stable if the equilib-

rium point of the linearized problem (1.9) is asymptotically stable.

1.5 Theories of Global Asymptotic Stability

One of the important methods for studying global asymptotic stability is the direct Lyapunov
method, which was developed by the Russian mathematician Aleksandr Lyapunov at the begin-

ning of 1900’s. We will describe this method and illustrate its applications.

1.5.1 The direct Lyapunov method

Definition 1.11 ([4]) If U* € R" is an equilibrium point of (1.1) and Q@ C R" be an open set
containing U*. A real valued function V € C* (Q,R) is called a Lyapunov function for (1.1) if

V(U)>V(U"), foralU € Q, U #U", (1.11)

1.5. Theories of Global Asymptotic Stability
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and
V(U )

7 =(VV(U),F(U)) <0, forallU € Q. (1.12)

Theorem 1.5 ([4]) (Liapunov stabilty theorem).
() If (1.1) has a Lyapunov function, then U* is stable.

(1) If one has that ° (t) <0, for all U # U*, then U* is asymptotically stable.
Theorem 1.6 ([7]) (LaSalle’s theorem)
Let U = U* be an equilibrium points and 2 C R" be a domain containing U*. Let V : 0 — R be

a continuously differentiable function such that “ ( ( ) < 0in Q. Let M = {u € Q, M = 0} =
{u*} . Then, U* is asymptotially stable.

Remark 1.2 If Q = R", in the last theorem, U* is globally asymptotially stable.

1.5. Theories of Global Asymptotic Stability



Chapter 2

Global and local asymptotic stability of an
epidemic reaction-diffusion model with a

nonlinear incidence

To study disease dynamics, compartmental models have played an important role in eliminating
the disease at the local and global levels, giving us simple equations to determine the number
of people affected by an outbreak or to determine the size of the susceptible population. The
original compartmental models have produced many different forms, for example: SI, is a classic
model in mathematical epidemiology and the simplest form of all disease models, showing the
spread of infectious disease in a population. Individuals are in simulation without immunity
once infected and without treatment, so individuals remain infected throughout their lives, they
remain in contact with susceptible populations.

In this chapter, we consider the following reaction-diffusion epidemic phenomena proposed in

[6], with the nonlinear incidence up(v), which is an extended version of the SI epidemic model.

2.1 System model

Systems of the form (1.1) appear naturally in many phenomena but we are interested in the

following mathematical model

u — diAu= A — pu — dup(v) =: F(u,v) in (0,00) x €, 2.1
D — dyAv = —ov + Aup(v) =: G(u,v) in (0, 00) x Q. .
We assume the initial conditions
u(0,z) = ug(x), v(0,z) = vo(z) in £, (2.2)

17
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where g, vy € C(Q), and impose homogeneous Neumann boundary conditions

% = g—z =0 on (0,00) x 09, (2.3)
with v being the unit outer normal to 2. We will also assume that the initial conditions ug(z), vo(x) €
R>o.

The constants d;, d; > 0 are the diffusion coefficients and the constants parameters A, i, o, A > 0.
The incidence function ¢ (v) introduces a nonlinear relation between the two classes of individu-

als. We assume ¢ to be a continuously differentiable function on R" satisfying

©(0) =0, (2.4)

and
0 <vy'(v) < (v) forall v > 0. (2.5)

This system may describe the transmission of a communicable disease between individuals such
as HIV/AIDS.

2.2 Interpretation of model

Initially, the N population is confined to the study region (2 where there is no migration, which

ou _ v

is expressed as 5 = 5

= 0. To interpret the mathematical model, we rely on the scheme in the
figure 2.1.

N is divided into two different categories known as compartments, with the first compartment
comprising the susceptible population u and the second reflecting the infection population v, (i.e.
N = u+ v). Both v and v change with regard to time ¢ and location z.

The susceptible people become an infected at a rate of A\, (the more v in moment ¢, the greater
the )\), where the number of susceptibles is reduced by leaving a sensitive community and joining
the category of infected individuals, so we have —A\uyp (v) and Aug (v). The number of births A in
addition to the natural mortality rate should be included p, both of which fall into the u category,
so we have A — puu. The infection is supposed to leave an infectious layer at the rate o of infection,
quarantine and then die, so we have —ow.

Susceptible Peoples actually become infected by mixing with infected people in some way, for
example through exposure to coughing or sneezing and so on, the latter are called diffusion
coefficients d; and d, to spread the disease spatially.

The main objective of modeling is to predict the number of infections in order to eliminate the

disease by reducing transmission, i.e. we need to reduce the average number of secondary infec-

2.2. Interpretation of model
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Augp(v)

L ovﬂ

Figure 2.1: Epidemiological scheme of the proposed system model.

tions caused by a single infection to less than 1, which is known as the basic reproduction number

Ry, which is an essential measure of disease biology and societal structure.

2.3 Preliminaries Properties of the Model

2.3.1 Positivity of the solution

Let us assume that the initial conditions (uo, vg) € R, .Note that for (u,v) € R%,. We have

(2.6)

F(0,v) =A >0,
G(u,0) =0 forall v > 0,

which makes the function (F, G)* essentially nonnegative. Hence, the nonnegative quadrant R;O,

is an invariant set.

2.3.2 Absence of diffusion

By dropping the spatial variable, the proposed system reduces to the following system of ODEs:

{ i = F(w) i (0,00), o
%= G(u,v) in (0, 00),
with initial conditions

u(0) =up >0, v(0)=uwvy>0. 2.8)
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Firstly, we study this system.

2.3.3 Invariant Regions
We define the invariant Regions , where we let N = u + v and 0y = min(o, ;)
A
D= {(u,v) cu,v >0and u+v < —}
00

The following proposition shows that D is an invariant region of system (2.7)-(2.8).

Proposition 2.1 ([6]) The region D is non—empty, attracting and positively invariant.

Proof. We start by summing the equations of system (2.7)-(2.8), which yield

d d

— = —N

o (u+v) o (1)
= F(u,v)+G(u,v)
= A—pu—ov
< A—O'U(U‘i‘?)),

SO

d

Integration of both sides
t t
/iN(s)ds < /(A—UON(S))ds
o d 0
t
N(#) = N(©0) < At -0 / N(s)ds
0

t
N(t) < N(0)+At— ao/ N(s)ds,
0
application of the Gronwall’s inequality

N(t) < Nge 70" — A(e“’ot - 1),
0o
Substituting the value of N yields
A
(u+0)(t) < (u+v)(0)e " + —(1 — e~ "), for t > 0.
g0

If the initial states satisfy (u + v) (0) < 2, then (u +v) (t) < 2 and

a

(=)

As a result, region D is positively invariant and attracting within RQZO . Therefore, it is sufficient
to consider the dynamics of the model within D as D is the biologically feasible region of the

system where the existence and uniqueness results hold for the system . m
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2.3.4 Existence of equilibrium solutions

Theorem 2.1 ([6]) Under conditions (2.4)-(2.5)

> System (2.7)-(2.8) admits always a disease-free equilibrium Ey = (=,
» If Ry > 1, System (2.7)-(2.8)has a endemic equilibrium , E* = (u*,v*) .
Proof. First, we calculate Equilibrium points :

The positive equilibria of model (2.7)-(2.8) satisfy :

{ F(u,v) = A — pu — Aup(v) =0,
G(u,v) = —ov + Aup(v) = 0.

> Equilbrium FEj
If uw = 0, it is easy to see that the system has no equilibrium.
Ifv=0, A— pu— Iup(0) =0 implies that u = %
So there’s only equilibrium is : £y = (%, 0) .
> Equilbrium E*
We have
F(u*,v*) + G(u*,v*) = A —ov — pu* = 0.
(*)
By subtracting F'(u*,v*) out of (x)

A
F(u*,v*) — (%) = =Aup(v*) + ov = 0 implies that v* =

we make up v* in (x)
A—o (M) — pu* = 0 implies that v* =
o

Whose solution is

A Au*gp(v))
Ap(v)+p’ o ’

B = (u*,v*) = <

2.0).

Ap(v*) + 1

(2.9)

u*p(v)

Y

Second, we study the existence conditions of an endemic steady state in the case v > 0. We have

from the second part of (2.9), and because A > 0 and ¢(v) > 0, we obtain

Substituting this into the first equation yields
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and from it

implies that
h(v) =0 for any v > 0,

where I \
o) = Me) _ Xel)
ovl U
is continuous for any v > 0, because
A
limh(v) = lim Aolv) _ Aelv) 1,
v—0 v—0 ovl u
by applying EHopital’s rule
, AN Ap(v)
limh = lim—¢'(v) =1 - "=
limh(v) ¥ (v) "
AN
= —¢'(0)—1=Ry—1.
op

Now we calculate lim h(v) by using oq = min(u, o), we have

V— ==
70

lim h(v) = h(£>
v—s B (o))

90
A og A A A
= AP\ ) el -1
ou 0o M 0o
A A
- Zo-a)e () -1<0

op
Hence for Ry > 1

A A
limh(v)h | — | = —1Dh| — :
b0 ) (00) (o ) <Uo> <!
By applying the intermediate value theorem, there exist a real v* € (0, %) . Using the condition

(2.5), we find

dh, . AX[ve'(v) — ¢ (v)] — oA (v)
%(’U) = O_/“}2 < 0.

So, the function h decreases monotonically for all v > 0, then there exists a unique real v* €

<0, O_%) such that /2(v*) = 0, which is implies the existence of a unique u* = ;7.

The second equation of (2.9) has no solution in (%, —|—oo> because

max h(v) <h <A) < 0.

ue(UAO,o) o 0o
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2.3.5 The basic reproduction number R,

The basic reproduction number is a central concept indicating the threshold for the epidemiolog-
ical model. To give his exact definition , Diekmann, Heesterbeek and Metz (1990) introduced the
next generation operator, which is a positive linear operator by which R, can be defined as the
spectral radius of this operator.

Van den Driessche and Watmough (2002) have similarly done so that the models are ODEs sys-
tems. The next generation operator is described in terms of matrices, in this case R, is the largest
eigenvalue of a matrix that describes the next generation operator. To calculate the basic repro-
duction number by using the next generation matrix method [17], we now move to the steps
of this method :

The whole population is divided into n» compartments in which there are m < n infected compart-
ments. Leti = 1,2, --- ,m be the numbers of infected individuals in the i** infected compartment
at time ¢.

o> First, the ODEs system can be written as
aU
= Y
o =7 U)=0(U),

where

FU)=(FU),F(U),--, Fn (U)"

is the rate of appearance of new infections in compartment 7, and

9 (U) = 01 (U),92(U) -, 0, (U)",

the function ¢ has the following decomposition
I (U) =0~ (U) =97 (U),

where » 9" be the rate of transfer of individuals into compartment i by all other means.
» ¢~ be the rate of transfer of individuals out of compartment .

> Second, let Ej be the disease-free equilibrium. We calcule the Jacobian matrices of F and ¥ in

J(F(Ey)) = (O g)

J(ﬁ(Eo»—(; O)
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where s and z are the m x m matrices defined by

OF; 07, . .
— = < <m.
s (&Ej (EO)) and z (axj (EO)) with1 <i,5 <m

Further, s is non-negative, z is a non-singular M-matrix and all eigenvalues of v, have positive

real part.

> The next generation matrix method is defined as
K =sz71.
> Now, the basic reproduction number is simply the spectral radius of K i.e.
Ry=p (sz_l) )

We apply this method to the system (2.7).

We rewrite the system (2.7)-(2.8) in vector form as

& _ Aup(v) B ov
u 0 A+ pu+ dup(v) )

A
We calculate the Jacobian matrices corresponding to vectors up(v) and 7Y
0 —A + pu + Aup(v)

at the disease—free equilibrium E, are given, respectively, by

(30)-(:2)
(an)-(n)

Where the next generation matrix is

and

So
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2.3.6 The Local ODEs Stability

In this theorem, we will examine the local stability of the previously defined E, and E* points.

Theorem 2.2 ([6]) Always under conditions (2.4)-(2.5), the two statements are achieved for (2.7)-
(2.8):

(1) If Ry < 1, the disease-free equilibrium solution Ej is the only steady state of the system and is
locally asymptotically stable.

(1) If Ry > 1, Ey is unstable and the positive constant endemic steady state E* is locally asymptoti-
cally stable .

Proof. We calculate Jacobian matrix :

J(uw) = ( —dp(v) —p - —Aug(v) > '
’ Ap(v)  dug'(v) — o

» First , We study the stability of E, for Ry < 1 and R, > 1.
Evaluating J(u,v) at E, with (2.4) in mind yields

e —ARR0)
7 () = ( 0 M) -0 )

And from there we have A, = —pand A, = A3¢/(0) — 0.

If Ry < 1,itis easy to see that \; < 0 and )\, < 0, leading to the asymptotic stability .
If Ry > 1 ,itis easy to see that A\; < 0 but A\, > 0, leading to unstability.

»second, We study the stability of F*for Ry > 1.

Evaluating J(u,v) at E* yields

J(E) = —dp(v) —p =g (v7)
Ao(v') M) —o )

The determinant and trace of the Jacobin can be given by

det J(u*,v*) = Aop(v*) + po — pu*¢'(v*),
tr(J(u",0") = —(Ap(v") + p) + Au'y'(v") — 0.

We have from «* and v*

(2.10)

Au*p(v*)

o= ~
v

{ A= durp(v?) + pu”,
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Using this, we get

det J(u*,v*) = /\AUUL*(U)QO(U*) + MMUL*(U) — pAu* ' (v*)
2 x *\)2 *
A AC) Y [M _ w/(v*)} |
v v
and
S o N
u v
From the condition (2.5)
) .
— —¢'(v") >0 forall v* > 0,
(Y

we obtain det (J(u*,v*)) > 0 and tr(J(u*,v*)) <O.
Hence, the equilibrium E* is locally asymptotically stable. m

Now, we study the system PDEs .

2.3.7 The local PDEs stability

Theorem 2.3 ([6]) Assuming that the incidence function o satisfies , the following statements hold
for system

(1) If Ry < 1, the disease-free equilibrium Fj is locally asymptotically stable.

(17) If Ry > 1, the positive constant endemic steady equilibrium E* is locally asymptotically stable.

Proof. (i) First, we proof the stability of E, If Ry < 1.

In the presence of diffusion, E, satisfies

diAu+ A — Mutp (v*) — pu* =0,
doAv + \u*p (v*) — ov* =0,

with the Neumann boundary

ou  Ov .

8—U—a—v—00nR x 0.
Through the properties of Laplace eigenvalues, which were mentioned in the first chapter.
Let us denote the eigenvalues of the —A by 0 = \g < \; < Xy < A3 < -+ 7T over  with Neu-
mann boundary conditions, where each \; has algebraic multiplicity m; > 1, and let (®;;) .

Jj=1m;’

be the corresponding normalized eigenfunctions. It is important to note that the set (®;), 7,

forms a complete orthonormal basis in L? (Q).
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Linearizing system (2.1) around E, by using (1.9)
dy 0 o A
ou [ d Al — p 2¢'(0) U
ot 0 dy 0 A3¢'(0)—o

o [ dA—p —A%(p’ (0) o
ot 0 A + A2 (0) — 0 ’

we get

then the linearizing operator may be given by

Ly = DT 0
0 bA+ A (0) =0 )

Suppose (¢ (z),1 (x)) is an eigenfunction of £ corresponding to an eigenvalue . By definition of

eigenfunction in the chapter 1, we have
leading to

Substituting for £ yields

BA —p—€& Ay (0) o) [0
0 A + A2 (0) — 0 — & v ) \o)’

For simplification purposes, let us set

{ o= ZO<i<oo 1<j<m; aij P,

b s R

Il L

We can now write

ij 0
> @«(E@—ﬂ)(“ )%:( )
0<i<00,1<j<m; bij 0

P L ) >

where the matrix J; (Ey) is defined as

—diNi —p =A% (0)

A ) ,forall i > 0.
0 —d2>\i + /\;90 (0) — 0

() = (

The eigenvalues are
ria = —diN — p,
T = —dg)\Z + /\%QOI (0) — 0.
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Since the Laplacian eigenvalues are positive, and from him

> It’s clear that r;; have negative real parts.

> For Ry < 1 implies that %cp’ (0) — 0 < 0, and from it we find that r;» have negative real parts.
Consequently, the disease-free equilibrium Fj is locally asymptotically stable.

(77) Now, The stability of the second steady state E*.

We use the same method from the first steady state Fj.

Linearizing system (2.1) around E*, we get

£(E") = diA = Ap (v°) = —Au¢' (v7) .
Ap (v%) doA + Mu*¢' (v*) — o
The matrix J; (E*) is defined as
—dihi = Ao (V) — =t (v
Ji (E") = ! P (V) — i W' (v) Jforall7 > 0.
A (v¥) —da i + Mg (vF) — o

Calculation the trace of J; (E*)

tr (J; (E*)) = —dihi — Ao (v*) — pp — do i + M@’ (v*) — 0
= _)\i (dl + dQ) +tr (J (’LL*,U*)) s

we have tr (J (u*,v*)) < 0sotr(J; (E*)) <0 forall:> 0.
Calculation the determinant of J; (E*)

det (J; (E*)) = (=dihi — Mg (v*) — i) (—da)i + Mu*@' (v*) — o) + N2u*y' (v*) ¢ (v*)
= didoA? + N [—diAut @ (vF) 4+ Adap (vF) + dyo + dopt] + po — phute’ (vF) 4+ Ao (v)
= dydo)] + N\ Hp + det (J (u*,v%)),

such as
Hy = —di \u*¢' (v°) + Ao (v*) + dyo + dap,

using (2.10)

A * *
Hy = —di \u*¢' (v*) + Mo (v°) + dl%@) + dap,
using (2.5) we obtain
* A * *
H > —dl)\u*% + Mo () + dl%(v) +dopt

= d2 (Ao (V") + )

A
= dy— > 0.
1
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From the above we have det (J (u*,v*)) > 0, and from it we find that det (J; (E*)) > 0 for all
1> 0.
Hence, £* is locally asymptotically stable. m

2.4 Global asymptotic stability

In this section, we study the global asymptotic stability of the steady state solutions F, and
E* for the system PDEs (2.1)-(2.3), which is based on the reproduction number R, this is when
Ry < 1and R, > 1 by using an appropriate Lyapunov functional.

Lemma 2.1 ([2]) Condition (2.5) implies that

¢ (v)

0<

< ¢'(0) forallv > 0. (2.11)

Proof. Of (2.5), which is equivalent to

Therefore, the function @ is decreasing .

Now, for some h € (0,v), we have

o(h) , 20)
h — w
implying that
i 20 5 2@
h—0 h v
which yields
: p (v)
>
v (0) 2 —
]

Lemma 2.2 ([15]) Given that ¢ satisfies criterion (2.5) and

L(z)=2z—1—In(z) forallz >0,

L(G) =1 ().

where v* is the second component of the equilibrium point E*, holds.

the inequality

2.4. Global asymptotic stability
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Proof. The function @ is decreasing for all v > 0, from the condition (2.5).
We may separate the proof into two cases:
Case 1: Suppose v > v*.

We have @is a decreasing function, This means that

(%
v+

consequently
20 v
T op(vr) T
We have [/ (z) =21
x 0 +00
L' (z) — 0 +
L@ | N,

When z > 1 The function L (x) is increasing, thus

L(“’(”)) <) forallv>wv"

v

Case 2: Suppose 0 < v < v*.

The function @ is decreasing for all v > 0, This means that

and ¢ is non-decreasing

We get
2 () > >0
A C R

When 0 < x < 1 the function L is decreasing, thus

L (;15%) <L (%) for all v > v*.

1>
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2.4.1 Global Asymptotic Stability with R) < 1

We consider the Lyapunov function

0 AN? 1, A
Ve(t)z/ uv+§<u—;> —|——v2+;v
0

5 dx, where 6 > 0.
Theorem 2.4 ([6]) Assuming that (2.5) holds, if Ry < 1, then Ej is a globally asymptotically stable

disease-free steady state for system (2.1)-(2.3) under the assumption

o)< 11T 2.12)
A =3
A(04+ 1)
with )
(dq + d3)
> e 2.1
b2 idd, (2.13)

Proof. We proof that Vj is a Lyapunov function.

i)

Vo (t) >0forallt >0

this implies that Vj (t) > Vj (Ep).
Vo (Eo) =0 }

?
ii) We show if 4V} (¢) < 0.

Evaluating the derivative to Vj (¢) with respect to time

d d 0 A\? 1, A
EVG() = E(/Q uv+—<u—;) —|—§v + —v

dx)
2 o

ou ov ou A
= /S)(Ev+ua—>d:v+0/ﬂa(u—;)dxjt/v—daﬂ— /—da:

Substituting the time derivatives with their values from (2.1)

%‘/9() = /[dlAu—i-A—uu—/\ugo(v)]v—i-u[dgAv—av+)\u<p(v)]dx
Q

—1—0/ [diAu+ A — pu — Aup (v)] <u - é) dr + / v [daAv — ov + Aup (v)] dx
Q H Q

A / [da v — v + ugp (v)] dar,
Q

o
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simplifying the resulting equation

ng(t) = dl/Auvdx+A/vd:17—p/uvd:p—A/ugp(v)vdm+d2/Avudz—a/vudw
dt Q Q Q Q Q Q

+)\/u2<p (v) dm—I—Gdl/uAud:v—i—A@/udm—@u/qux—H)\/u2go (v)dx
Q Q Q 0

Q

A A? A
—H—dl/Audx—G/—da:+9A/ud:z:+9—)\/u<,0 (v) d:zs—l—dg/vAvda:
H Q Q M Q Ko Jo Q

A A
—a/U2da:+)\/vugp(v)da:—l——dg/Avdx—A/qu:+—)\/wp(v)da:.
Q Q o Q Q g Ja

We apply Green’s formula

d

—Vy(t) = —(d1+ d2)/ VuVudx + A/ vdr — )\/ wvy (v) dr + /\/ u?o (v) dx
dt Q Q Q Q

2
_(,u—l—a)/uvdx—edl/ |Vu|2dx—u9/ (u—é) dx—/\H/u2<p(U)dx
Q Q Q H Q

+9é>\/U(p<U)d$—d2/ |Vv\2da:+)\/uwp(v)dx—a/vzdx
Q 0 0

12 Q

—i—é/\/ugp(v)dx—/\/vdx

g Ja Q

= —d10/ |Vu|2d:n—(d1+d2)/Vqud:1:—d2/ |Vv|2d93+)\(1—0)/u290(v)dx
Q Q Q 0

AN? A A
—(,u+a)/uvdx—#9/ (u——) dx—a/02d$+)\(9—+—>/ugp(v)da:
Q Q H Q o0/ Ja

= I+ J
such as the first part is
I= / —d10|Vul® = (dy + dy) VuVv — dy |Vo|* dz = — / Q (Vu,Vv) dz,
Q Q

where
Q (Vu, Vo) = 0 |[Vul* + (dy + do) VuVv + dy | V).

We have (2.13) implies that 46d,d, > (d; + d)? this means that
A - (dl —|— d2)2 - 4d1¢9d2 S 0,

which @ (Vu, Vov)dz > 0, so
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And the second part is

J = A(l—@)/ﬂuzgp(v)d:v—(u—i—a)/ﬂuvdm—a/ﬂvzdaﬁ —u@/g(u—%)il:v

A A
+)\(9—+—)/u<p('u)da:.
K0/ Ja
We have )
(dy + do) . )
> 7 > —0 <
0 > 1 ds > 1 implies that 1 — 0 < 0,
SO

2
JSA(@A—Fé)/ugp(v)d:c—uH/ (u—é) d:c—a/dex —(,u—i—a)/uvdx.
w0/ Ja Q 2 Q Q

Applying lemma 2.1

A A , A\® )
J<A0—+— /uvgp(())dx—u&/ u— — d.r—a/vdx—(u—i—a)/uvdx
o0/ Ja Q H Q Q
2
g/ [A <0é+é) QOI(O>—</J/+U):| uvdw—u@/ (u—é) dx—a/v2d:c,
Q I Q H Q

under the assuming (2.12) implies that A <9% + 5) ¢ (0) < p+ o, yields

A 2
JS—,uH/(u——) dx—a/dex <0.
Q 2 Q

So we get £V (¢) <0 forallt > 0.
As a result Vj (¢) is Lyapunov function, by Lyapunov’s direct method, Ej is globally asymptotically
stable. m

2.4.2 Global Asymptotic Stability with R, > 1

Theorem 2.5 ([6]) Assuming that ug,vo > 0 and (2.5) holds, if Ry > 1, E* is a globally asymptoti-
cally stable endemic steady-state for system (2.1)-(2.3).

Proof. We consider the candidate Lyapunov function

V(1) = /Q w'L (ui) 'L (Uﬁ)} d,

which is a positive definite and continuously differentiable function.

2.4. Global asymptotic stability
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We have
L(ﬂ*):%—1—1n<ﬂ),
U U U
d U 1 du 1 duu* 1 u*\ du
()= =—(1——] —.
dt <u*> u*dt  urdt u u*( u)dt

?
We proof that 2V (t) < 0.

Evaluating the derivative to V' (¢) with respect to time
d d u d v
v = [wiL(2)d L (=)
iV /Q“ i\ $+/Q” at )
= /u"‘i <1_u_) d—udaz:—i—/v"“i (1—U—) d—vdx
Q u* u ) dt Q U* v ) dt
- / (1—“-) d—“da:+/ <1—“—) KL

Substituting the time derivatives with their values from (2.1)

*

SO

%V(t) _ /Q<1—“’_*> [dlAHA—W—AW(m]dH/ﬂ(l—”—* (o0 — v+ dugp (v)] da

u

v
= dl/ <l—u—) Audm+A/ (1_u_> dx—/\/ (l—u—) up (v) dx
Q Uu Q U Q U
—u/ (l—u—) uda:—i—dg/ (1—7}—) Avda:—i—)\/ (1—U—) uyp (v) dz
Q u Q v Q v
—0/ (1 - U—) vdx,
Q v
we apply Green’s formula with Neumann boundaries
iV(t) = —dl/v (1— u_) Vudx—i—A/ <1— u_> dx—/\/ (1— u_) up (v) dx
dt Q Uu Q u Q Uu
u* v* v*
—M/ (1——) udx—dz/v (1——) Vvd:L‘—I—)\/ <1——> up (v) dz
Q U Q v Q v
—a/ (1 — U—) vdx
Q (%

— I+,

where

[:—dl/V(l—u—)Vudx—dg/v<1—v—)Vvd:c
Q U Q v

= —/ {dlu—z |Vu|® + dgv— |VU|2:| dex <0.
Q u v
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e / (1 - %) A = Mg (0) = do + | (1 - —) g (v) = o] dr,

using (2.10)
(1 - “—*) [Aw (v) — Mv] de,

v v*

J = /Q (1 — u_*> [Au*p (v°) + pu* — Aup (v) — pu) de —|—/

u Q

simplifying the resulting equation

J = /9(1—%) Au*¢(v*)dx+/g<1—%*) ,uu*da:—/ﬂ(l—%*) Mg (v) da
_/Q(l—%*),uuda:—i—/g(l—%*) Augo(v)dx—/ng;@v(b%*)dx
_ /9(1—%> {1—%} )\u*go(v*)dm—i—/ﬂ [(1—%) (1—%)]Mu*d:g

e 2] (- 2)er

J = / [pu* Jy 4+ At (v*) Jo] dz,
0

where
_ I_EJFIH(U_)_1n<u_)+1—%*+ln<5>—ln(%*)
- ()
and
n= () (-5) - (-5) (- 5)
o) v v e

A= () - () e S - (5 ) +n (555)

- () (F) () <L (5.

2.4. Global asymptotic stability



Chapter 2. Global and local asymptotic stability of an epidemic reaction-diffusion model with a
nonlinear incidence

Substituting in J we find
J = —uu*/QL (uﬂ) 4L (%) dz + Mo (v") /Q L (%) —L (Ui) .y (%)
w1 (o) o * * *
- —uu*/QL (=)+z (%) de — g (u*)/Q {L (—;Z%)*jv) +L (%)} dr
+Au*<p(v*)/ﬂ [L (;O(ij}*))) ) (Uﬁ)} dz.

We have the positivity of L and applying lemma 2.1, thus

J <0.

Hence 4V (t) < 0.
As a result V (t) is Lyapunov function, by Lyapunov’s direct method, £* is globally asymptotically
stable. m

2.4. Global asymptotic stability



Chapter 3
Numerical Examples

To clarify the results of the theories obtained in the second section, we will present in this section
three numerical examples (from [6]) that illustrate and confirm the results of this study using
the incidence function uy (v) with the employment of theorems 2.4 and 2.5 in order to evaluate
the global asymptotic stability of the disease-free equilibrium £, at Ry < 1 and equilibrium £* at
Ry > 1.

3.1 First Example
In this example, we consider the function
¢ (v) = av, forall & > 0,

by substituting in (2.1), we get the following problem

%‘ — diAu = —dauv + A — pu in (0,00) x €,

D — dyAv = Aoauv — ov in (0,00) x €, 3.1)
u(0,x) =ug (), v(0,x) =wv () onf,
Gu — Juv =, on (0,00) x ON.

The system (3.1) is a special case of the system (2.1), and he is identical to the bird system.
Conditions (2.4) and (2.5) are satisfied as



Chapter 3. Numerical Examples

Finding steady states for the system (3.1)

{ —dauw*v* + A — pu* =0,

Aau*v* —ov* =0,

we sum the first and second equations of (3.2)

A—pu* —ov* =0

this implies that

We substitute in the first equation the value of v*

A_ *
)\au*< Mu)—./\—i—,uu*_o,
o

we get a quadratic polynomial

_—/\a(u*)Q—i-(M—i—l)u*—é:O,

o ol

we calculate the discriminant of this equation

2
A:(M—l) > 0.
o

The equation has two solutions

AL
u] = — this implies that v} =0,
L

and
Uy = % this implies that v = % - %,
we have
Ry = &90/ (0) = &047
Uo Uo
o}

* H

The system (3.1) possesses two constant steady states

(3.2)

3.1. First Example
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EO (l‘« ) 0) )
B = ()\a’ da <RO - 1))
e When R, > 1, the second steady state £* exists and it is globally asymptotically stable.

e When Ry < 1,the first steady state F, is globally asymptotically stable with dﬂflf <6<
& (Lt2 — A) when d; # do.

To obtain numerical solutions we use the information mentioned in the table 3.1

Set Figul‘e U() V() dl d2 Alal|locl A 7 R()
Set1| 1 4+ 164+ ) g g | 821 3 11.9200
Set2 | 2 0.4+ % 24 @ 3o 2| 1] 2]9]4]0750

Table 3.1: Simulation parameters for example 1

We assume a single spatial dimension with 2 = (0, 10) .

e Figure 3.1 depicts the solution subject to parameter set 1, where R, = 1.9200 > 1, which by
Theorem 2.5 means that £* = (4.1667,5.75) is globally asymptotically stable.

e Figure 3.2 depicts the solution subject to parameter set 2, where Ry = 0.7500 < 1. By Theorem
2.4 and given 6 € [2,2], E, = (2.25,0) is globally asymptotically stable.

3.1. First Example
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Figure 3.1: Numerical solutions of system (3.1) subject to the first set of parameters.
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Figure 3.2: Numerical solutions of system (3.1) subject to the second set of parameters.

3.1. First Example
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3.2 Second Example

In this example we consider the function

o
T

a>0andk > 0.

p(v)

The system is given (2.1) by substituting the considered function

Qv diAu= - 22 4 A —pu in (0,00) x €,

1+kv
P — dyAv = A — oV in (0,00) x Q,
u(0,2) = uo(x), v(0,2) =wo(x) onf,
Gu— v =0 on (0,00) x 9.

Checking that the function (3.3) meets the conditions (2.4) and (2.5)
©(0) =0 and ¢(v) > 0 for all v > 0.
Derive the function (3.3)

/ _ « / —
©'(v) = e a>0and ¢'(0) = a.

Finding steady states for the system (3.4)

> If u = 0, the system (3.4) has no equilibrium.
> If v = 0, then equilibrium is Ey = (£,0).
Next, we find E*

)\10:? ]:v* — ov* = 0 implies that u* = %.
We have
A —pu* —ov* =0,
we replace u* this equation
1+ kv*
o = A (M) |
A
we find
alA—1
p (—0 - 1) Ro—1
vt = - implies that v* = plfo—1)
a + pk a + pk
o)

B a(1+kv*)’”(Ro— 1)
Ao a + pk

(3.3)

3.4)

3.2. Second Example
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e F* exists and it is globally asymptotically stable provided that the reproduction number R, > 1.

e F, is globally asymptotically stable when R, < 1 with (did*ff <0< & (L2 L) whend # ds.

To obtain numerical solutions in we use the information mentioned in the table 3.2

Set | Figure U Vo di|do | A |a|o|A|pulk| Rp
Set1|3 54 @) g4l Ly 9 65 3 | Ty 5894
Set2 | 4 0.6+ <8 | 1545 |3 118652119589
Set3 |5 0.4+ < g3 el |34 g | L9 Lg 6| 0.3761
Set4 |6 08+ @ 392G [ g 1 a g 1lelulg]slose

Table 3.2: Simulation parameters for example 2

e Figure 3.3 shows the PDEs solution obtained using parameter set 1 with E£* = (4.5760, 0.1302).
In this case, Ry = 1.5824 > 1 and by Theorem 2.5, E* is globally asymptotically stable.

e Figure 3.4 shows the PDEs solution obtained using parameter set 2 with E* = (4.4565,0.2138).
Since Ry = 1.5824 > 1, E* is globally asymptotically stable.

e Figure 3.5 shows the PDEs solution obtained using parameter set 3 with £y = (0.9167,0). In this
case, Ry = 0.3761 < 1 and using Theorem 2.4 with 6 € [281,7.0833] , Ej, is globally asymptotically
stable.

e Figure 3.6 shows the PDEs solution obtained using parameter set 4 with £y, = (0.9167,0). In this
scenario, we again have Ry = 0.3761 < 1 and with § € [%31,7.0833] , E, is globally asymptotically
stable.

3.2. Second Example
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Figure 3.3: Numerical solutions of system (3.4) subject to the first set of parameters.
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Figure 3.4: Numerical solutions of system (3.4) subject to the second set of parameters.

3.2. Second Example
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Figure 3.5: Numerical solutions of system (3.4) subject to the third set of parameters.
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Figure 3.6: Numerical solutions of system (3.4) subject to the fourth set of parameters.

3.2. Second Example
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3.3 Third Example

In this example, we consider the function

go(v):k—v, forall &« > 0 and k > 0,

L+ (3)

by substituting in (2.1), we get the following problem

(%4 Au = )\kH”Zv)quA puin (0,00) x Q,
— doyAv = /\k; u in (0 Q
2 Av = (Z)u ov in (0,00) x Q, (3.5)
U(O x) =g (x), v(0,2) = vy (x) on ,
[ Qv =v =0, on (0,00) x 8.
Conditions (2.4) and (2.5) are satisfied as
v (0) =0,
! k
¢ (v) = ——= >0forallv>0
N EE)
¢ (0) =k,
| P = =P T
Finding steady states for the system (3.5)
MY u* + A — put =0
(%) (3.6)

Ak =0

@u* —ov
> If u* = 0, the system (3.5) has no equilibrium.

> If v* = 0, then equilibrium is Ey = (£,0).

Next, we find E*.

From the second equation for (3.6) we extract

. _olatv)
ut = ——.

Aok
We sum the first and second equations of (3.6)

A —pu* —ov* =0,

we substitute the value of u*

3.3. Third Example
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we find

We have R, = 2% so

po

*

Hoa <

MeAa — poa
Aako + po

AkA
op 1

*

(Ro—1)
YNk + 1)

o (Aak + p)

Ther are two steady states of system (3.5) are given by

Ew():<A

W

0),

(Ro—1)

)

E* — (O’(CM-"-'U*)

ok MY Dot

e [* exists and it is globally asymptotically stable.

e [ is globally asymptotically stable if

(dy + do)?

4d;ds

<

et (e

- T A\ XN

).

- é) when d; # ds,
g

To obtain numerical solutions we use the information mentioned in the table 3.3

Set | Figure U Vo dy|do | A |a|o | A|ul|k Ry
Set1|7 254 @) |5 ) 13 ] 84 Lg ] 2] 1119000
Set2 | 8 314+ @ gl g 8 4L g2 1179000
Set3 |9 1.5+ b g5 pon | 21 5 19g )| 8 147 190 L1 998
Set4 | 10 0.3+ o) | pq ) |4 g2 152 T3 9g)3
Set5 | 11 0.3+ < g4 M) | g |15 | 1132 1112 (9000

Table 3.3:

Simulation parameters for example 3

3.3. Third Example
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Time ¢ 0o Time ¢ 00
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Figure 3.7: Numerical solutions of system (3.5) subject to the first set of parameters.

e Figure 3.7 shows the solution obtained using parameter set 1 with £* = (21.9659, 5.4481). In
this case, Ry = 11.2 > 1 and by Theorem 2.5, E* is globally asymptotically stable.

e Figure 3.8 shows the solution obtained using parameter set 2 with £* = (21.9659, 5.4481). In
this case, Ry = 11.2 > 1 and E* is globally asymptotically stable.

e Figure 3.9 shows the solution obtained using parameter set 3 with £* = (4.1974,0.2655). In this
case, Ry = 1.2281 > 1 and E* is globally asymptotically stable.

e Figure 3.10 shows the solution obtained using parameter set 4 with £, = (1.1250,0). In this
case, Ry = 0.2813 < 1 and by Theorem 2.4 with 6 € [£5 9.5185] , Ej is globally asymptotically
stable.

e Figure 3.11 shows the solution obtained using parameter set 5 with £, = (0.6667,0). In this

case, Ry = 0.2 < 1 and by Theorem 2.4 with § € [341 8] , Ej, is globally asymptotically stable.

3.3. Third Example
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Figure 3.8: Numerical solutions of system (3.5) subject to the second set of parameters.
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Figure 3.9: Numerical solutions of system (3.5) subject to the third set of parameters.
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Figure 3.10: Numerical solutions of system (3.5) subject to the fourth set of parameters.
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Figure 3.11: Numerical solutions of system (3.5) subject to the fifth set of parameters.

3.3. Third Example



Conclusion

We have arrived here with you until the end of the mathematical scientific research in which we
addressed the stability of the epidemic reaction-diffusion system.

Where we proceeded from the beginning of the research with preliminary concepts and theories
related to global and local asymptotic stability, presenting the most general form of an reaction-
diffusion system, and then dedicating the study to a model of the reaction-diffusion of an epidemi-
ological (susceptible, infectious) with the non-linear incidence under the conditions (2.4) — (2.5)
and determining R, the basic reproduction number by which the discussion takes place.

In the case of ODEs, the disease-free equilibrium is asymptotic stable if R, is less than unity,
while the endemic equilibrium is asymptotic stable if R, is greater than unity, and by applying
the Lyapunov function we determine the state of global stability PDEs, we confirming this results
numericaly.

Hence, we suggest some aspects for future research, which are:

e When R, is equal to the unit. Are the disease-free and endemic equilibrium asymptotically
stable?

e When condition (2.5) is like this:

o(v) < vy (v) for all v > 0.

Will the results of this study change and how will that be ?

50
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