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 ملخص

الهدف من هذا العمل هو دراسة نظام المعادلات التفاضلية العادية من الدرجة الأولى لتحليل ديناميكيات فيروسات     

ليابونوف  دالةي للنموذج الموسع من خلال كليتم إجراء تحليل الاستقرار ال. الكمبيوتر من خلال نموذج رياضي مقترح

أي أجهزة )إلى أجهزة غير مصابة  فأجهزة الكمبيوتر الداخلية المتصلة بالإنترنت والتي تصنب حيث نهتم فقط المناسبة، 

 أن  مكني.  ستخترق، أجهزة الكمبيوتر المصابة الكامنة حاليًا وأجهزة الكمبيوتر المصابة التي (كمبيوتر خالية من الفيروسات

فإن التوازن  R0 < 1دورًا في تحديد ما إذا كان الفيروس سينقرض أو يستمر، إذا كان  R0لعب رقم التكاثر الأساسي ي

 .R0 > 1 اذا كانوغير مستقر  كليا الخالي من الفيروس يكون مستقرًا

وازن الخالي من الأمراض والمتوطن هل الت. R0 = 1عندما : للبحث المستقبلي ، وهي حالاتومن ثم ، فإننا نقترح بعض ال

 مستقر بشكل مقارب؟

فيروس الحاسوب، دالة ليابونوف،  ، استقرار كلي،يروس الحاسوب نماذج ديناميكية، انتشار ف  :لمفتاحيةالكلمات ا  

  .ليابونوف-استقرار فولتيرا

Résumé 

           Le but de ce travail est d’étudier un système d’équations différentielles ordinaires de 

premier ordre est utilisé pour analyser la dynamique des virus ordinateurs via un modèle 

mathématique proposé. L’analyse de la stabilité globale est menée pour le modèle étendu par 

la fonction appropriée Lyapunov, intéressant seulement sur les ordinateurs internes connectés 

à Internet qu’ils sont classés à des ordinateurs non infectés (c.-à-d., ordinateurs sans virus), les 

ordinateurs infectés qui sont actuellement latents et les ordinateurs infectés qui sont entrain de 

se piraté. Le numéro de reproduction de base R0  peut être utilisé pour déterminer si le virus 

va disparaître ou persister, si R0 < 1, alors l’équilibre exempt de virus est globalement 

asymptotiquement stable et instable lorsque R0> 1. 

Par conséquent, nous suggérons quelques aspects pour des recherches futures, qui sont : 

lorsque R0=. 1 Les équilibres sans maladie et endémiques sont-ils asymptotiquement stables ? 

    Mots clés: Modèles dynamiques , Propagation virale d’ordinateur , Stabilité globale , Virus 

d’ordinateur, Fonction de Lyapunov , Stabilité de Volterra–Lyapunov 

Abstract. 

           The aim of this work is to study  a system of first order ordinary differential equations 

is used to analyse the dynamics of computer viruses via a mathematical model proposed. The 

global stability analysis is conducted for the extended model by suitable Lyapunov function, 

interesting only on internal computers connected to the internet which they are classified  to 

uninfected computers (i.e., virus-free computers), infected computers that are currently latent 

and infected computers that are currently breaking. The basic reproduction number R0 can be 

played role in determining whether the virus will extinct or persist, if R0 < 1 then the virus-

free equilibrium is globally asymptotically stable and unstable when R0>  .1   

Hence, we suggest some aspects for future research, which are : when R0=  .1  Are the disease-

free and endemic equilibrium asymptotically stable? 

 

Key words: Dynamical models, Computer viral propagation,  Global stability,  Computer 

virus,  Lyapunov function,  Volterra–Lyapunov stability. 
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List of abbreviations and symbols

• The set of the real numbers is denoted by R.

• The set of the real numbers of the n-elements, is denoted by Rn.

• The determinant of real and complex martices is denoted by det (A).

• The trace of real and complex matrices is denoted by tr (A).

• The invers of real and complex matrices is denoted by A−1.

• The transpose of matrix A is denoted by AT .

• The diagonal of real and complex matrices is denoted by diag(A).

• The real part of a complex number is denoted by Re(A).

• The spectral radius of A, is denoted by ρ(A).

• R0 Basic Reproduction Number.

• The space of continuous and derivative functions is denoted by C1.

• The disease-free equilibrium is denoted by (DFE).

Larbi Tebessi Univ-Tebessa - 2 nd Master / PDEv



Introduction

By development of computer technologies and network applications, the Internet has

become a powerful mechanism for propagating computer virus. Because of this, computers

connected to the Internet become much vulnerable to digital threats. Computer viruses,

including the narrowly defined viruses and network worms, are loosely defined as malicious

codes that can replicate themselves and spread among computers. In this scenarioge

number of existing computer viruses and their high level of destructivity appear as an

important risk factor for corporations and individuals.

Developing a mathematical model for the computer viral propagation is of critical

importance not only for under standing better the behavior of computer virus but also

for stopping the spread of the virus.

The study of the global stability is not only mathematically important, but also es-

sential in predicting the evolution of the virus in the long run, so that prevention and

intervention strategies can be effectively designed.

In our work, we focus on the study of a dyn, the laramical model characterizing the

spread of computer viruses over the Internet.

This work is divided into three chapter:

Chapter1: An Introduction to Computer Viruses
Presents an ovreview of computer viruses .

Chapter2:Notions of global stability and preliminary concepts
Introducing some definitions and concepts that we will used later.

Chapter3: Global stability of equilibrium points

Is devoted to the global stability of computer viruses

Larbi Tebessi Univ-Tebessa - 1 2 nd Master / PDE



CHAPTER 1

AN INTRODUCTION TO COMPUTER

VIRUSES

1.1 Introduction

A computer virus is a manmade destructive computer program or code that is generally

loaded onto a computer system without the knowledge of a user and causes unauthorized

and unwanted changes to the information stored on the computer. The term computer

virus may be applied to software, code, code blocks and code segments which perform

illegal damaging functions.

It is important to note that all software that causes damage is not virus. Popular legal

software may cause damages because of certain unfixed bugs. But viruses are made for

infecting other programs and troubling others, which these software are not.

Computer viruses are called viruses because they share some of the traits of biological

viruses. A computer virus transmits from computer to computer like a biological virus

transmits from person to person.

There are many who consider computer viruses as the offspring of Dr. Frederick

B. Cohen. He created a virus, as part of his doctoral thesis, in an effort to find ways

to defend computer systems from self-replicating programsThere are others who claim

that computer viruses existed well before 1984 when Dr. Cohen did his research. The

debate about the appearance of the first virus will probably continue far into the future.

Currently it does not appear likely that computer scientists will agree upon an ‘offi cial’

definition of the term.([13]
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1.2 History and evolution

The viruses started to grow during mid 1980’s till mid 1990’s, when the use of PCs

started to grow for businesses and homes. During that period computer games were very

important and applications like word processors and spreadsheets were very popular. The

viruses typically attached themselves to games or other bona fide computer programs.

Here , we present a brief chronology of computer viruses :

1986 , First PC virus was created and termed the Brain virus. The virus was created

in Pakistan and is a boot sector virus, i.e., it affects only the boot records. It falls under

the stealth virus category.

1987, First memory resident file infector was discovered in Lehigh University and

named Lehigh. Attacks executable files. Jerusalem virus first appeared at the Hebrew

University, Jerusalem. It’s another memory resident file infector.

1988, First anti-virus was Den Zuk created in Indonesia. It was designed to detect

and remove the Brain virus and immunize disks against a Brain infection. Cascade Virus

is found in Germany. It is an encrypted virus, meaning it was coded so that it could not

be analyzed easily

1989, Data Crime virus is on the loose and strikes on Friday the 13th. Dark Avenger

virus, attacks slowly, so that it goes unnoticed. It is the first full-stealth file infector.

1990, Many anti-virus products are introduced including IBM’s McAfee, Digital Dis-

patch and Iris. Viruses combining various characteristics spring up like the Polymorphism

and Multipartite.

1991, Symantec releases Norton antivirus software. Tequlia, a stealth, polymorphic

and multi-partite virus is found.

1992, Media mayhem greeted the virus Michelangelo that March. Predictions of

massive disruptions were made, and anti-virus software sales soared.

1994, A virus called Kaos4 was posted on a pornography news group file. It was

encoded as text and downloaded by a number of users. Virus Pathogen appeared in

England; the writer was tracked down by Scotland Yard’s computer crime unit.

1994, The SatanBug virus appears; The anti-virus industry helps the FBI find the

person who wrote it-a kid. Cruncher was considered a good virus as it compressed infected

programs.

1995, Anti-virus companies worry about staying profitable with the emergence of

Windows 95 because the boot viruses cannot infect it, hence the possible catastrophic

loss of business. But the macro viruses that do infect the Windows-95 applications soon

appear keeping the anti-virus companies happy and in the green.

1996, Concept, a macro-virus, becomes the most common virus in the world. Laroux
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is the first virus to infect Microsoft R© Excel spreadsheets.

1997, The Anti-Virus Research Center in Cupertino develops an exclusive technology

called Bloodhound-Macro to address the growing number of new and unknown macro

viruses.

1998, Posing as an anti-virus software, an e-mail attachment virus infects computers

worldwide.

1999, The Melissa virus, a macro,causes worldwide destruction. Primarily infecting

Microsoft(r) Word and Outlook, it automatically sends mail to everyone in the user’s

address book.

2000, I Love You virus causes havoc; it is transmitted via e-mail and, when opened,

it automatically sends mail to everyone in the user’s address book.

2001, Code Red virus exploits a security hole in Microsoft Internet Information Server

(IIS) to spread. It disables the system file checker (SFC) in Windows. It probes random

IP addresses to spread to other hosts.

2002 Nimda is a complex virus with a mass mailing worm component, which spreads

itself in attachments named README. EXE. Nimda affects EXE files on local machines,

locates email addresses and spreads itself. It also locates Web servers and infects them[16].

1.3 A Computer Virus

A computer ‘virus’is defined as a program that can ‘infect’other programs by modifying

them to include a possibly evolved copy of itself. With the infection property, a virus

can spread throughout a computer system or network using the authorizations of every

user using it to infect their programs. Every program that gets infected may also act as

a virus and thus the infection grows[15].

The following pseudo-program shows how a virus might be written in a pseudo-

computer language. The ‘ := ’ symbol is used for definition, the ‘:’ symbol labels a

statement, the ‘;’separates statements, the ‘= ’symbol is used for assignment or compar-

ison, the ‘− ’symbol stands for not, the ‘{‘and′}’symbols group sequences of statements
together, and the ‘... ’symbol is used to indicate that an irrelevant portion of code has

been left implicit.

1. This example virus (V ) (Fig. 1) searches for an uninfected executable file (E) by

looking for executable files without the “1234567”in the beginning, and prepends

V to E, turning it into an infected file (I). V then checks to see if some triggering

condition is true, and does damage. Finally, V executes the rest of the program it

was prepended ’to. When the user attempts to execute E, I is executed in its place;
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it infects another file and then executes as if it were E. With the exception of a slight

delay for infection, I appears to be E until the triggering condition causes damage.

We note that viruses need not prepend themselves nor must they be restricted to

single infection per use[15].

Fig.1 Simple virus ’V’
(fig.1)

2. This program (C) finds an uninfected executable (E), compresses it and prepends

C to form an infected executable (I). It then uncompresses the rest of itself into a

temporary file and executes normally. When I is run, it will seek out and compress

another executable before decompressing E into a temporary file and executing it.

The effect is to spread through the system compressing executable files, decompress-

ing them as they are to be executed. Users will experience significant delays as their

executables are decompressed before being run[15].
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Fig.2 Compression virus ’C’
(fig.2)

1. As a more threatening example, let us suppose that we modify the program V

by specifying trigger-pulled as true after a given date and time and specifying do-

damage as an infinite loop. With the level of sharing in most modern systems, the

entire system would likely become unusable as of the specified date and time. A

great deal of work might be required to undo the damage of such a virus. This

modification is shown in Fig. 3[15].

Fig.3 A denial of services virus
(fig.3)

As an analogy to a computer virus, consider a biological disease that is 100% infectious,

spreads whenever animals communicate, kills all infected animals instantly at a given

moment, and has no detectable side effects until that moment. If a delay of even one week

were used between the introduction of the disease and its effect, it would be very likely
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to leave only a few remote villages alive, and would certainly wipe out the vast majority

of modem society. If a computer virus of this type could spread through the computers

of the world, it would likely stop most computer use for a significant period of time and

wreak havoc on modern government, financial, business and academic institutions[15].

1.4 Computer viruses characteristics

There are thousands of viruses developed by different people at different times. Their

operating platform, modes of operation, level of nuisance are all different. But all of them

are unlawfully developed with malefic intentions. Some of the common characteristics of

the viruses are as follows([14].

• Virus programs are illegitimate and secretly developed. No software company pub-
licly declares to be developing viruses.

• One fundamental characteristic of a computer virus is that it is executable. Either
the virus executes itself or attaches its code to another file to get executed. Without

execution capability it can do no harm and will gain no importance.

• Another fundamental characteristic of a computer virus is that it replicates. A virus
infects other programs generally by attaching its copies to those programs. Without

replication the viruses cannot grow or survive.

• Virus can transmit from one computer to another through an infected file or an

infected disk. Some viruses are capable of transmitting themselves across networks

even bypassing security systems.

• Different types of viruses have different capabilities and limitations. For example,
a boot sector virus infects boot sector and not the data files, a macro virus infects

the documents and not executable files and so on.

• Skilled virus writers don’t want their viruses to be detected. So they adopt stealth
techniques. Thus many viruses use encryption mechanism and even change the

encryption key as they travel from one host to another.

• The viruses are harmful whether intentionally or unintentionally. The socalled

harmless viruses may appear to be harmless but they at least replicate themselves

and utilize some memory of the system. This by itself is a harmful behavior.

• Every virus does not act immediately. Some viruses, like Trojan horses, wait pa-
tiently as benign programs until their events are triggered to become active.
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• One of the weaknesses of viruses is that they generally don’t do too much calculation
without drawing attention to themselves. Hence although a virus is aware of the

original checksum of a file it would be diffi cult for the virus to add itself to the file

without changing the checksum.

1.5 How does the virus function

As the function of a computer system is very complex, there are many possible ways for

a virus to get into a computer system[14].

• A boot sector virus enters through infected floppies. When a user transports an

infected floppy disk to a second computer the virus infects the second computer and

so on. The boot sector virus changes the master boot record of the hard disk and

permanently resides in the computer system.

• A file virus works by copying itself to each executable program file it infects. When
the executable program executes, the virus gains control of the computer and at-

tempts to infect other files.

• An email virus takes the help of emails to be carried to other computers. Some email
viruses create emails by using the address book in the infected system. Some viruses

attach themselves to the outgoing emails and get transferred to the destination

computer.

• A worm is a small piece of software that scans the network for another machine that
has a specific security hole. When it finds the desired security hole it copies itself to

the new machine by using the security hole and then starts replicating from there

as well.

• A virus generally wants to get executed first before the host program is executed.

Hence the virus typically adds its executable codes to the beginning of the program

or replaces its first instructions, causing the program to be invoked with the first

instructions of the virus instead of the first instructions of the program.

• Since a virus is a software code it can be transmitted along with any legitimate
software that enters the computer. For example, a virus can spread from a LAN/

WAN based file server to any of the client systems attached to the server. Some

viruses can rapidly spread through the Internet.

Larbi Tebessi Univ-Tebessa - 8 2 nd Master / PDE



• In most cases the offending user spreads the virus without his knowledge. For

example, a person might download an infected program and run it. In this case the

virus loads itself into memory and infects other programs on the disk. Although the

virus goes on infecting one file after other the user has no way to know even that a

virus had ever ran.

1.6 Viruses infection patternes

There are several patterns of virus infections. Some viruses add themselves at the be-

ginning of the host program. Some viruses append themselves to the host program and

modify the header of the original host so that the execution will begin at the virus rather

than the host. In these two patterns the original code of the host program remains in one

single block.([14]

Fig.4 Virus Infection Paterns
(fig.4)

However there are many more complicated patterns too. The overwriting viruses

overwrite a portion of the host and modify the header of the host so as to begin execution

inside the virus. This pattern is dangerous as the original program is likely to suffer

permanent damage. Modified overwriting viruses may write themselves at the beginning,

end and other places in the original program. There are some complicated modified

Larbi Tebessi Univ-Tebessa - 9 2 nd Master / PDE



overwriting viruses who scramble and overwrite the original host in various different ways

and make them totally useless.

1.7 The result of viruses infection

Viruses may cause various kinds of damages to a computer system. The damage caused

by a virus depends upon the type of virus causing the damage. Some viruses may cause

fewer problems like displaying notorious messages on the screen, whereas some may cause

serious dangers like formatting hard disk, causing permanent destruction of data and

thereby making the system completely unusable and irreparable. The following are some

of the common problems caused by the viruses([14].

Fig.5 Different levels of harms made by computers viruses
(fig.5)

• Some viruses interfere into the display system by scrambling characters on the video
display screens, displaying misleading text, video or audio messages to users. How-

ever these viruses are less dangerous.

• The so-called benign viruses even create problems for the computer user because
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they typically take up computer memory used by legitimate programs. As a result,

they often slow down the system or even result in system crashes. Apart from that

many viruses are bug-ridden, and the bugs may lead to system crashes and data

loss.

• Most viruses intend to alter or destroy data stored on the disks. They damage
the computer by corrupting programs, erasing files, scrambling data on the hard

disk, attacking FAT (File Allocation Table), attacking partition table, and even by

formatting the hard disk. Some viruses operate to destroy the contents of the system

hard disk thereby causing the system to completely inoperable.

• Many viruses like. Trojan horses, have a payload, which is a trigger such as a date
or an action done by the user. When the payload is triggered the virus does its

intended damages which can be mild to severe.

• Some viruses consume excessive amount of computer resources thereby preventing
users from performing the desired tasks or leading to hang the computer. Even a

simple virus can be dangerous as the virus ca quickly use a large portion of the

available memory and possibly bring the computer system down.

• The viruses may attack client computers, network servers, network traffi c or even
the whole network. If an infected computer system is part of a network then viruses

can be transmitted to other systems in the network causing widespread damage.

Some viruses may use excessive amount of network resources or choke the network

traffi c.

• Another type of virus is a so-called stealth virus, which can take over some actions
of the operating system, such as opening a file, in order to hide the infection of

that file, before other programs can read that file (Conventional scanning programs

cannot detect these viruses).

• Generally viruses try to exploit the loopholes of the operating system. Some viruses
are carefully written to exploit the loopholes of anti-virus programs. As the users

blindly believe on the anti-virus program intelligent viruses can exploit the loopholes

of such programs.
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1.8 Analogy Between Biological and Computer Vir-

uses

Von Neumann’s works aimed at finding a model to describe biological evolution process,

and particularly self-reproduction. Later on, it was no accident when the term virus was

chosen by Fred Cohen, since it perfectly matched phenomena already present in the wild.

Gradually, a parallel between these two fields was naturally drawn in researchers’s minds.

There are many historical examples showing that scientific researchers have always drawn

their inspiration from nature and have always tried to reproduce it.

As a matter of fact, each viral biological mechanism has an equivalent in the world of

computer viruses. The following table summarizes the main features which are shared by

both fields (further details about biological viruses are available in [18]).

Biological Viruses Computer viruses

Attack on specific cells Attack on specific file formats

Infected cells producenew viral off-springs Infected programs produce viral codes

Modification of cell’s genome Modification of program’s functions

Viruses use cell’s structures to replicate Viruses use format tructures for copy mechanisms

Viral interactions Combined or antiviruses

Viruses replicates only in living cells Execution is required to spread

Already infected cells are not reinfected Viruses use infection marker to prevent over infection

Viral mutation Viral polymorphism

Healthy virus carriers Latent or dormant viruses

Analogy Between Biological Viruses and ComputerViruses

As a basic but powerful comparison, a cell’s genetic material (DNA or Desoxyribo-

nucleic Acid and RNA or RiboNucleic Acid) can be compared with program’s codes

(respectively source code and binary code; indeed in the same way DNA is the blueprint

for RNA, source code is the blueprint for the executable code).As an example, a biological

virus like the Ebola virus is very close to a computer worm such as Sapphire/Slammer

insofar as in both cases, the virus quickly overcomes the carriers who consequently are

unable to propagate the infection for very long. Similarly, a parallel could be drawn

between the hiv and any polymorphic computer virus. In 1997, some researchers belong-

ing to the Computer Departement of New Mexico University in Albuquerque, defined the
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computer immunology concept by studying existing analogies between computer viruses

and biological viruses with respect to the human immune system.

1.9 Conclusion

The viruses generally try to exploit the loopholes of the operating system application

programs, windows sockets and even anti-virus programs. Som viruses are so dangerous

that they can make the system completely unusabl and irreparable.

The large number of existing computer viruses and their high level of destructiv-

ity appear as an important risk factor for corporations and individuals, so developing a

mathematical model ( who lead to a better understanding and prediction of the scale and

speed of computer virus propagation) for the computer viral propagation is of critical

importance not only for under standing better the behavior of computer virus but also

for stopping the spread of the virus.
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CHAPTER 2

NOTIONS OF GLOBAL STABILITY

AND PRELIMINARY CONCEPTS

In this chapter, we define and introduce the basic functional tools necessary to the global

stability

2.1 Spectral radius

Definition 1 [19]Let T be an operator in a finite dimensional Banach space X (i.e T is

a square matrix). Then the set σ(T ) is compact and it is composed of the eigenvalues of

T .

Definition 2 Let M be a square matrix with complex coeffi cients, we call spectral radius

of M , and we denote by ρ(M) the greatest modulus of the eigenvalues of M

Definition 3 [19] The spectral radius ρ(M) of matrix M is the number

ρ(M) = max {|λ, λ ∈ σ(M)|}

2.2 Ordinary Differential Equations

2.2.1 Definitions

Let Ω ⊂ R1+n be qn open connected set. We will note the points in Ω by (t, x) where

t ∈ R and x ∈ Rn . Let f : Ω→ Rn a continuous function .

14



From an initial point (t0, x0) ∈ Ω , we want to build a unique solution to the initial

value problem: {
x
′
= f(t, x),

x(t0) = x0,
(2.1)

For it , x(t) must be a function of classe C1 in some interval I ⊂ R containing the
initial instant t0 with values in Rn such that the solution curve satisfies

{(t, x(t)) : t ∈ I} ⊂ Ω

Such a solution is called a local solution when I 6= R. When I = R,the solution is
called global.

The Cauchy-Peano Existence Theorem

Theorem 4 ((Cauchy-Peano)[8]) If f : Ω → Rn is continuous, then for every point
(t0, x0) ∈ Ω the initial value problem (2.1) has local solution.

The Picard Existence Theorem
The failure of uniqueness can be rectified by placing an additional restriction on the

vector field. The next definitions introduce this key property.

Definition 5 ([8]) Let S ⊂ Rm. Suppose x 7→ f(x) is a function from S to Rn.
The function f is said to be Lipschitz continuous on S if there exists a constant C > 0

such that

‖f (x1)− f (x2)‖Rn ≤ C ‖x1 − x2‖Rm

for all x1, x2 ∈ S.

Definition 6 ([8]) Let Ω ⊂ Rn+1 be an open set. A continuous function (t, x) 7→ f(t, x)

from Ω to Rn is said to be locally Lipschitz continuous in x if for every compact set K ⊂ Ω,

there is a constant CK > 0 such that

‖f (t, x1)− f (t, x2)‖ ≤ CK ‖x1 − x2‖ ,
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for every (t, x1) , (t, x2) ∈ K. If there is a constant for which the inequality holds for all
(t, x1) , (t, x2) ∈ Ω, then f is said to be Lipschitz continuous in x.

Lemma 7 ([8]) If f : Ω→ Rn is C1, then it is locally Lipschitz continuous in x.

Theorem 8 (Picard [8]). Let Ω ⊂ Rn+1 be open. Assume that f : Ω→ Rn is continuous
and that f(t, x) is locally Lipschitz continuous in x. Let K ⊂ Ω be any compact set. Then

there is a δ > 0 such that for every (t0, x0) ∈ K, the initial value problem ( 2.1) has a

unique local solution defined on the interval |t− t0| < δ.

Theorem 9 (Uniqueness ). Suppose that f : Ω → Rn satisifes the hypotheses of the
Picard Theorem. For j = 1, 2, let xj(t) be solutions of x′(t) = f(t, x(t)) on the interval

Ij. If there is a point t0 ∈ I1 ∩ I2 such that x1 (t0) = x2 (t0), then x1(t) = x2(t) on the

interval I1 ∩ I2. Moneover, the function

x(t) =

x1(t), t ∈ I1

x2(t), t ∈ I2

defines a solution on the interval I1 ∪ I2.

Lemma 10 (Gronwall( [8])). Let f(t), ϕ(t) be nonnegative continuous functions on an

open interval J = (α, β) containing the point t0. Let c0 ≥ 0. If

f(t) ≤ c0 +

∣∣∣∣∫ t

t0

ϕ(s)f(s)ds

∣∣∣∣
for all t ∈ J , then

f(t) ≤ c0 exp

∣∣∣∣∫ t

t0

ϕ(s)ds

∣∣∣∣
for t ∈ J .
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Proof 11 Suppose first that t ∈ [t0, β). Define

F (t) = c0 +

∫ t

t0

ϕ(s)f(s)ds.

Then F is C1 and

F ′(t) = ϕ(t)f(t) ≤ ϕ(t)F (t)

for t ∈ [t0, β), since f(t) ≤ F (t). This implies that

d

dt

[
exp

(
−
∫ t

t0

ϕ(s)ds

)
F (t)

]
≤ 0,

for t ∈ [t0, β). Integrate this over the interval [t0, τ) to get

f(τ) ≤ F (τ) ≤ c0 exp

∫ τ

t0

ϕ(s)ds

for τ ∈ [t0, β).

On the interval (α, t0], perform the analogous argument to the function

G(t) = c0 +

∫ t0

t

ϕ(s)f(s)ds

2.2.2 Stability of equiliberia

Let Ω = R × O for some open set O ⊂ Rn and the suppose that f : Ω → Rn satisfy the
Picard theorem hypothesis .

Definition 12 A point x ∈ O is called an equiliberium point if f(t , x) = 0 for each

t ∈ R.

Let the differential equation
.
x = f(x), (2.2)
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where f : Ω ⊂ Rn → Rn is a function of class C1. Let x∗ an equiliberium point of

the eq(2.2)

Definition 13 ( [9]) The equiliberium point x∗of (2.2) is stable if for all ε > 0, there

exist η > 0 for every solution x(t) of (2.2) we have

‖x(0)− x∗‖ < η ⇒ ∀t ≥ 0, ‖x(t)− x∗‖ < ε.

Definition 14 ( [9]) The equiliberium point x∗of (2.2) is stable if for all ε > 0, there

exist η > 0, such there exist a solution x(t) of (2.2) verify

‖x(0)− x∗‖ < η ⇒ ∀t ≥ 0, ‖x(t)− x∗‖ ≥ ε.

Definition 15 ( [9]) The equiliberium point x∗of (2.2) is asymptotically stable if it is

stable and there is a r > 0 such that for every solution x(t) of (2.2) we have

‖x(0)− x∗‖ < r ⇒ lim
t→∞
‖x(t)− x∗‖ = 0.

Case of linear system
Consider the linear system

ẋ = Ax (2.3)

where A is a square matrix of order n . λ1, ..., λs ( with s = 1, ..., n) the eigenvalues

of the matrix A and x∗ the equilibrium point of linear system (2.3) .

Theorem 16 ( [9]
1) If the eigenvalues of the matrix A have a zeros or negatives real parts then the

equilibrium x∗ is stable .

2) If the eigenvalues of the matrix A have strictly negative real part then the equilibrium

x∗ is asymptotically stable .

3) If the real part of the matrix A have at least one eigenvalue is positive then the

equilibrium x∗ is unstable

Consider the system (2.2), we denote by Jf (x∗) := ∂f
∂x

(x∗) the jaccobian matrix of f

evaluated at the point x∗.

The linear system

ẋ = Ax,

where A = Jf (x∗) , is called the linearized or the linear approximation of the nonlinear

system in x∗.
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The study of the stability of the origin for the linearized allows in certain cases to

characterize the stability of the equilibrium x∗of (2.2) . More precisely we have:

Theorem 17 ( [9]

1) If x = 0 is asymptotically stable ((i.e. if all the eigenvalues have a strictly negative

real part )for (2.3) then x∗ is asymptotically stable for (2.3).

2) If x = 0 is unstable (i.e there exist at least one eigenvalue which his real part is

strictly positive ) for (2.3) then x∗ is unstable for (2.3).

3) In all other cases nothing can be said about the stability of x∗ for(2.3).

2.3 Lyapunov stability

2.3.1 Stability of equilibria

Let the differential equation
.
x = f(x), (2.4)

where f : Ω ⊂ Rn is a given function , and Ω is an open set from Rnsuch that 0 ∈ Ω,

and f(0) = 0.

Let x∗ = 0 an equilibrium point of (2.5), and V : Ω → Rn a function defined in a
neighborhood Ω of the origin and admitting continuous partial derivatives.

Lemma 18 ( [10]) Let V be a nonnegative function defined in a neighborhood V ⊂ U

of the origin. Suppose that V̇ (x) = (d/dt) (V (Xt(x)))|t=0 ≤ 0 for all x ∈ V , then M0 is

positively invariant and M0 ⊂M∗.

Proof 19 Since the function V decreases along the trajectories of (2.1) , we have

0 ≤ V (Xt(x)) ≤ V (x).

So if x ∈ M0, then 0 ≤ V (Xt(x)) ≤ V (x) = 0 for all nonnegative t, which proves that

M0 is positively invariant. Moreover,

V̇ (x) =
d

dt
(V (Xt(x)))

∣∣∣∣
t=0

= 0.

So M0 ⊂M .
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Theorem 20 (Stability in the sense of Lyapunov [10]) If there exist a neighborhood
V ⊂ U of the origin and a function V ∈ C1(V,R) such that

(1) V (x) ≥ 0 for all x ∈ V and V (0) = 0,

(2) V̇ (x) = X · V (x) ≤ 0 for all x ∈ V , and
(3) there exists ∆ > 0 such that B∆ ∩ {x ∈ V : V (x) = 0} does not contain any negative
orbit except the trivial one x ≡ 0,

then the origin is Lyapunov stable.

Proof 21 Suppose that the origin is not stable. Then there exist ε > 0, a sequence

(x0n)n∈N ⊂ Bε, lim
n→∞

‖x0n‖ = 0,

and a sequence (tn)n∈N ⊂ R+in such a way that‖Xt (x0n)‖ < ε for 0 ≤ t < tn,

‖Xtn (x0n)‖ = ε, ∀n ∈ N.

Sε is compact so without loss of generality we can assume that the sequence yn = Xtn (x0n)

tends to y ∈ Sε. On the other hand, because of the continuity of solutions of (1), tn → +∞
as n→ +∞.
First we show that γ−(y) ⊂ Bε\{0}. Ad absurdum, suppose that there exists τ < 0 such

that ‖Xτ (y)‖ > ε. We choose µ > 0 in such a way 0 < µ < 1
2

(‖Xτ (y)‖ − ε). The
solutions of (1) are continuous functions of the initial conditions so we can find a positive

number v = v(µ) > 0 such that

‖y − z‖ < v ⇒ ‖Xτ (y)−Xτ (z)‖ < µ.

The sequence yn = Xtn (x0n) tends to y so there exists N ⊂ N such that

‖y − yn‖ < v, ∀n ≥ N.

Thus we have

‖Xτ (y)−Xτ (yn)‖ < µ, ∀n ≥ N.

We can choose the integer N suffi ciently large in such a way that 0 < tn + τ , ∀n ≥ N
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(since tn → +∞ ).

d
(
Xτ (yn) , Bε

)
≥ d

(
Xτ (y), Bε

)
− d (Xτ (yn) , Xτ (y)) ≥ d

(
Xτ (y), Bε

)
− µ, ∀n ≥ N

so

d
(
Xτ (yn) , Bε

)
= d

(
Xtn+τ (x0n) , Bε

)
> 0, ∀n ≥ N,

which means ‖Xtn+τ (x0n)‖ > ε for all n ≥ N but this contradicts (2) because 0 <

tn + τ < tn. So we have proved that γ−(y) ⊂ Bε\{0} and ‖y‖ = ε.

Now we show that V (γ−(y)) = 0; let τ be any negative number, there exists n ∈ N such
that tn + τ ≥ 0 (tn → +∞). So, using hypothesis (1) and (2) of theorem , we have

0 ≤ V (Xtn+τ (x0n)) ≤ V (x0n) .

Moreover, limn→∞ x0n = 0, so by continuity of V and by (1) of theorem (2.6) we have

lim
n→∞

V (Xtn+τ (x0n)) = lim
n→∞

V (Xτ (Xtn (x0))) = V (Xτ (y)) = 0.

Thus we have proved that V (γ−(y)) = 0 which ends the proof of Theorem (2.6).

Theorem 22 ( Asymptotic stability in the sense of Lyapunov[10])If there exist a neigh-
borhood V ⊂ U of the origin and a function V ∈ C1(V,R) such that

(1) V (x) ≥ 0 for all x ∈ V and V (0) = 0,

(2) V̇ (x) = X · V (x) ≤ 0 for all x ∈ V , and
(3) there exists ∆ > 0 such that B∆ ∩ {x ∈ V : V̇ (x) = 0} does not contain any negative
orbit except the trivial one x ≡ 0,

then the origin is asymptotically stable.

Proof 23 By Lemma 1 the set M0 = {x ∈ V : V (x) = 0} is contained in M = {x ∈
V : V̇ (x) = 0}, so by Theorem (2.6) the origin is stable, that is, for any positive ε there

exists a positive number δ such that any solution of (1) which starts in Bδ remains in

Bε for all positive t. Suppose the origin is not attractive, that is, there exists x0 ∈ Bδ in

such a way that L+ (x0) 6= {0}. Let y ∈ L+ (x0) with y 6= 0, because of the invariance

of L+ (x0) , γ−(y) is contained in L+ (x0) which is contained in Bε. On the other hand,
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LaSalle’s invariance principle implies that L+ (x0) ⊂ M , so γ−(y) ⊂ M ∩ Bε, which

contradicts hypothesis (3) of Theorem (2.7).

Theorem 24 ( Lyapunov[11]) Let ẋ = f(x) be a time-independent ODE defined on some

subset G of Rn. Let V : G→ R be continuously differentiable. If for some solution x(t),

the derivative V̇ of the map t→ V (x(t)) satisfies the inequality V̇ ≥ 0 (or V̇ ≤ 0 ), then

ω(x)
⋂
G is contained in the set {x ∈ G : V̇ (x) = 0} (and so is α(x) ∩G).

Proof 25 If y ∈ ω(x) ∩ G, there is a sequence tk → +∞ with x (tk) → y. Since V̇ ≥ 0

along the orbit of x, one has V̇ (y) ≥ 0 by continuity. Suppose that V̇ (y) = 0 does not

hold. Then V̇ (y) > 0. Since the value of V can never decrease along an orbit, this implies

V (y(t)) > V (y0), (2.5)

for t > 0. The function V (x(t)) is also monotonically increasing. Since V is continuous,

V (x (tk)) converges to V (y), and hence

V (x(t)) ≤ V (y), (2.6)

for every t ∈ R. From x (tk)→ y it follows that x (tk + t)→ y(t) and hence

V (x (tk + t))→ V (y(t))

so that by (2.5)

V (x (tk + t)) > V (y)

for k suffi ciently large. This contradicts (2.6)

2.3.2 Stability of matrix

We write a matrix A > 0(< 0) if A is symmetric positive (negative) definite. The following

fundamental result on matrix stability was originally proved by Lyapunov.

Lemma 26 [4]. Let A be an n × n real matrix. Then, all the eigenvalues of A have

negative (positive) real parts if and only if there exists a matrix H > 0, such that
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HA+ ATHT < 0(> 0).

Definition 27 We say a nonsingular n × n matrix A is V olterra − Lyapunov stable if
there exists a positive diagonal n× n matrix M , such that MA+ ATMT < 0.

The following lemma determines all 2× 2 V olterra− Lyapunov stable matrices.

Lemma 28 [5]. Let D =

[
d11 d12

d21 d22

]
be a 2×2 matrix. Then D is V olterra−Lyapunov

stable if and only if d11 < 0, d22 < 0, and det(D) = d11d22 − d12d21 > 0.

The characterization of V olterra − Lyapunov stable matrices of higher dimensions,

however, is much more diffi cult. We need the following definition.

Definition 29 We say a nonsingular n × n matrix A is diagonally stable (or positive

stable) if there exists a positive diagonal n× n matrix M , such that MA+ ATMT > 0.

From Definitions (2.10) and (2.11), it is clear that a matrix A is V olterra−Lyapunov
stable if and only if its negative matrix, −A, is diagonally stable.

Notation 30 For any n×n matrix A, let Ã denote the (n− 1)× (n− 1) matrix obtained

from A by deleting its last row and last column.

The following generalized result was obtained by Redheffer (1985a, b) which will be

frequently used in our global stability analysis. For simplicity, we only state the suffi cient

condition below .

Lemma 31 [7] LetD = [dij] be a nonsingular n×n matrix (n ≥ 2) andM = diag (m1, . . . ,mn)

be a positive diagonal n× n matrix. Let E = D−1. Then, if dnn > 0, M̃Ẽ + (M̃Ẽ)T > 0,

and M̃D̃ + (M̃D̃)T > 0, it is possible to choose mn > 0, such that MD +DTMT > 0.

Lemma 32 [6]. Consider a disease model system written in the form:
dX1
dt

= F (X1, X2)
dX1
dt

= G (X1, X2)

G (X1, 0) = 0,

(2.7)
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where X1 ∈ Rm denotes (by its components) the uninfected populations and X2 ∈ Rn de-
notes (by its components) the infectious populations; X0 =

(
XE

1 , 0
)
denotes the diseasefree

equilibrium of the system.

In addition, assume the conditions (C1) and (C2) below:

• C1 : For dX1
dt

= F (X1, 0) , XE
1 is globally asymptotically stable;

• C2 : G (X1, X2) = AX2 − Ĝ (X1, X2), with Ĝ (X1, X2) ≥ 0 for (X1, X2) ∈ Ω, where

the Jacobian matrix A = ∂G
∂X2

(
XE

1 , 0
)
has all non-negative off-diagonal elements and

X is the region where the model makes biological sense.

Larbi Tebessi Univ-Tebessa - 24 2 nd Master / PDE



CHAPTER 3

STABILITY OF COMPUTER VIRUSES

MODEL

3.1 Introduction

In this chapter, we are interested in a mathematical model of computer virus proposed by

Yang et al.[12] . A computer is classified as internal and external depending on weather

it is connected to internet or not. In this model, assumes that only internal computers

are concerned, and all internal computers are categorized into three classes: uninfected

computers (i.e., virus-free computers), infected computers that are currently latent (latent

computers, for short), and infected computers that are currently breaking out (seizing

computers, for short). Due to the fact that in the future, the total amount of computers

in the world would tend to saturation, it is reasonable to suppose that this total number is

constant. Let S(t), L(t), and B(t) denote, at time t, the percentages of uninfected, latent,

and seizing computers in all internal computers, respectively. Then, S(t)+L(t)+B(t) = 1

Unless otherwise stated, let S, L, and B stand for S(t), L(t), and B(t), respectively.

The mathematical model of the transmission of Computer Virus is described by the

following system of differential equations :


dS
dt

= δ − βS(L+B) + γ1L+ γ2B − δS,
dL
dt

= βS(L+B)− γ1L− αL− δL,
dB
dt

= αL− γ2B − δB,
(3.1)

25



with the initial conditions

S(0) > 0, L(0) > 0, B(0) > 0. (3.2)

The coeffi cients δ, α, β, γ1, γ2 are positives and they are explained in the following :

δ : the rate of a computer leaving the internet

α : the breaking rate

β : the incidence rate

γ1 : the recovred rate

γ2 : the rate of an infected computers reinstalling the operating system

3.2 Existence , positivity and boundedness

3.2.1 Existence

Let x = (S, L,B)T . The system (3.1) become{
x
′
(t) = g(x(t)),

x(0) = (S0, L0, B0)T ,

where

g(x) =

 δ − βS(L+B) + γ1L+ γ2B − δS
βS(L+B)− γ1L− αL− δL
αL− γ2B − δB

 ,

the function g is globally Lipschitz , according to the theorem of Cauchy—Lipschitz,

the global existence of the solutions is ensured.

3.2.2 Positivity

Since the second member of the equations of the system (3.1) are polynomes , then the

system (3.1) is quasipositive, if the condition

x ≥ 0, xk = 0⇒ gk(x) ≥ 0,

∞
where g = (g1, ..., gk) for every k = 1, 2, 3. So the solutions of (3.1), (3.2) with initial

condition x(0) ∈ R3
+ stay in R3

+ for all t positive.
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3.2.3 Boundedness

We will show that the solution of system (3.1) is borned .

Let (S(t), L(t), B(t)) the solution of (3.1) with the initial conditions (3.2) , and (0, T )

the maximal interval of existence of the solution.

We pose

N(t) = S(t) + L(t) +B(t),

then
dN

dt
=
dS

dt
+
dL

dt
+
dB

dt
.

we obtain

dN

dt
= δ (1−B − L− S) .

Hence

lim sup
t→∞

N ≤ δ.

3.3 Basic repoduction number

In this mathematical model , the basic reproduction number, is defined as the number of

previously uninfected computers that are infected by a single infected computer during

its life cycle, can be calculated as follow :

Let


F1 = δ − βS(L+B) + γ1L+ γ2B − δS,
F2 = βS(L+B)− γ1L− αL− δL,
F3 = αL− γ2B − δB.

. (3.3)

We extract the Jacobian Matrix where

J =


dF1
dS

dF1
dL

dF1
dB

dF2
dS

dF2
dL

dF2
dB

dF3
dS

dF3
dL

dF3
dB

 , (3.4)

by compensation we find
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J =

 −δ −Bβ − Lβ γ1 − Sβ γ2 − Sβ
β (B + L) Sβ − δ − γ1 − α Sβ

0 α −δ − γ2

 , (3.5)

Evaluating the Jacobian matrix (3.5) at E0 yields

J (E0) =

 −δ γ1 − β γ2 − β
0 β − δ − γ1 − α β

0 α −δ − γ2

 ,

where

w =

(
−α− γ1 β

α −δ − γ2

)
, (3.6)

and

W = F − V =

(
β β

0 0

)
−
(
γ1 + α + β 0

−α γ2 + δ

)
,

where F and V are the 2× 2 matrices defined by

F (E0) =

(
β β

0 0

)
and

V (E0) =

(
γ1 + α + β 0

−α γ2 + δ

)
The conditions listed above allow us to partition the matrix J(E0) as shown by the

following

R0 = ρ(FV −1) = max(|λ1| , |λ2|) (3.7)

V −1 =
1

det(V )

(
Ṽ
)t
, (3.8)

we count
(
Ṽ
)t

:

(
Ṽ
)t

=

(
δ + γ2 0

α α + β + γ1

)
, (3.9)

which has determinant
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det(V ) = (δ + γ2) (α + β + γ1) . (3.10)

Using (3.9) and (3.10), this can be rewritten as

V −1 =
1

(δ + γ2) (α + β + γ1)

(
δ + γ2 0

α α + β + γ1

)
, (3.11)

then

FV −1 =
1

(δ + γ2) (α + β + γ1)

(
β β

0 0

)(
δ + γ2 0

α α + β + γ1

)

=

(
β

α+β+γ1
+ α β

(δ+γ2)(α+β+γ1)
β

δ+γ2

0 0

)

=

(
β α+δ+γ2

(δ+γ2)(α+β+γ1)
β

δ+γ2

0 0

)
, (3.12)

Using (3.12), we obtain

det(FV −1 − λI2) =

(
β α+δ+γ2

(δ+γ2)(α+β+γ1)
− λ β

δ+γ2

0 −λ

)
,

λi,i=1,2 are the eignvalue {
λ1 = β α+δ+γ2

(δ+γ2)(α+β+γ1)

λ2 = 0
. (3.13)

Then, the basic reproduction number is defined, as the spectral radius of the next

generation matrix, FV −1 :

R0 = ρ(FV −1) = max(|λ1| , |λ2|) = |λ1|
R0 = β α+δ+γ2

(δ+γ2)(α+β+γ1)
.

3.4 Equilibrium Points

The endemic equilibrium point E∗ = (S∗, L∗, B∗) the system (3.1) as follows:
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
δ − βS∗ (L∗ +B∗) + γ1L

∗ + γ2B
∗ − δS∗ = 0

βδ (L∗ +B∗)− γ1L
∗ − αL∗ − δL∗ = 0

αL∗ − γ2B
∗ − δB∗ = 0

, (3.14)

by adding the seconde equation to the third one ze get

δ − L∗α− L∗δ − S∗δ +B∗γ2 = 0, (3.15)

from the seconde eauqtion we get

βS∗(L∗ +B∗) = (γ1 + α + δ)L∗, (3.16)

from the third equation we get

L∗ =
(γ2 + δ)

α
B∗, (3.17)

substitute L∗ in (3.15)

δ −
(

(γ2 + δ)

α
B∗
)
α−

(
(γ2 + δ)

α
B∗
)
δ − S∗δ +B∗γ2 = 0,

we get

δ − δB∗ − δS∗ −B∗δ δ + γ2

α
= 0 (3.18)

substitute L∗ in (3.16)

βS∗
(

(γ2 + δ)

α
B∗
)

+B∗) = (γ1 + α + δ)

(
(γ2 + δ)

α
B∗
)
,

we get

S∗ =
(δ + γ2) (α + δ + γ1)

β (α + δ + γ2)
=

1

R0

. (3.19)

From (3.18) we have

B∗ =
α (1− S∗)

(α + δ + γ2)
, (3.20)

substitute S∗ in (3.20)

B∗ =
α
(

1− 1
R0

)
(α + δ + γ2)

,
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we get

B∗ =
α (R0 − 1)

R0 (α + δ + γ2)
. (3.21)

Substitute B∗ in (3.17)

L∗ =
(γ2 + δ)

α

(
α (R0 − 1)

R0 (α + δ + γ2)

)
,

we get

L∗ =
(δ + γ2) (R0 − 1)

R0 (α + δ + γ2)
. (3.22)

So the value of endemic equilibrium point E∗= (S∗, L∗, B∗) is

S∗=
1

R0
=
(δ + γ2) (α + δ + γ1)

β (α + δ + γ2)

B∗=
α (R0 − 1)

R0 (α + δ + γ2)

L∗=
(δ + γ2) (R0 − 1)
R0 (α + δ + γ2)

. (3.23)

If B∗ = 0 , then from (3.17) we get

L∗ = 0,

and we get from the first equation of the system (3.1)

S∗ = 1.

So the value of disease-free equilibrium is

E0= (1, 0, 0)

3.5 Global stability of equilibrium points

3.5.1 Global stability of the DFE

In this section we will study the global stability of the disease-free equilibrium of the

model (3.1).

Theorem 33 If R0 < 1 , then the disease-free equilibrium f system (3.1) E0 = (1, 0, 0) is
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a globally asymptotically stable

Proof 34 We will use the theorem by Castillo-Chavez [6] to prove the global stability res-
ult.

Applying Lemma 2.7 to system(3.1) , consider X1 = S,X2 =

[
L

B

]
.

When L = B = 0, the uninfected subsystem (i.e., the equation for S ) becomes

dS

dt
= δ − δS = δ (1− S)

integrate the both side ∫
1

1− SdS=

∫
δdt

we pose I1 =
∫

1
1−SdS and I2 =

∫
δdt

starting by integrating I1:

I1 =

∫
1

1− SdS,

apply u-substitution

I1 =

∫
−1

u
dS,

take the constante out

I1 = −
∫

1

u
dS,

use the common integral :
∫

1
u
dS = ln (|u|)

I1 = − ln (u) ,

substitute back u = 1− S
I1 = − ln |1− S| ,

add constante to solution

I1 = − ln |1− S|+ c1.

Now integration I2 =
∫
δdt

I2 =

∫
δdt,

= δt,
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add constante to solution

I2 = δt+ c2,

now we take I1 = I2

ln |S − 1|+ c1 = δt+ c2

ln |S − 1| = δt+ c2 − c1,

we pose c = c2 − c1

ln |S − 1| = δt+ c,

by exponents both side

eln|S−1| = eδt+c,

S − 1 = eδtec,

we pose C = eC

S − 1 = eδtC,

for t = 0

S(0)− 1 = eδ(0)C,

we get

C = S(0)− 1,

finally we

S(t) = e−δt (S(0)− 1) + 1

obviously, S(t) → 1 as t → ∞ regardless of the initial value S(0). Therefore, it shows

that condition (C1) in Lemma 3.2 holds for our model.

Next, the right-hand side of the infectious subsystem (i.e., the equations for L and B )

can be written as
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dX2

dt
= G(X1, X2)

=

[
βBS − L (−α− δ − γ1 + βS)

αL−B (δ + γ2)

]

=

[
βBS − L (−α− δ − γ1 + βS)

αL−B (δ + γ2)

]

=

[
β (−α− δ − γ1) β

α − (δ + γ2)

][
L

B

]
−
[
βSL+ βL− βSB + βB

0

]
= AX2 − Ĝ(X1, X2)

where

A =

[
β (−α− δ − γ1) β

α − (δ + γ2)

]
and Ĝ(X1, X2) =

[
βSL+ βL− βSB + βB

0

]

It is obvious that, S ≤ 1, hence, it is clear that condition (C2) holds for our model.

We also notice that the matrix A is an M matrix, since all its off-diagonal elements are

non-negative.

Hence, this proves the global stability of the DFE (E0).

3.5.2 Global stability of endemic equiliberium

In this section we will study the global stability of the equilibrium point E1 of the model

(3.1).

Theorem 35 Assume R0 > 1 Then, the endemic equilibrium E1 = (S∗, L∗, B∗) is globally

asymptotically stable.

Proof 36 To prove global stability result, we propose the following Lyapunov function:

V = w1 (S − S∗)2 + w2 (L− L∗)2 + w3 (B −B∗)2 , (3.24)

where w1, w2, and w3 are positive constants. Calculating the time derivative of V along
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the trajectories of the system (3.1), we obtain

V̇ =2w1 (S − S∗) Ṡ + 2w2 (L− L∗) L̇+ 2w3 (B −B∗) Ḃ

=2w1 (S − S∗) [−βS(L+B) + βS∗ (L∗ +B∗)

+γ1 (L− L∗) + γ2 (B −B∗)− δ (S − S∗)]
+ 2w2 (L− L∗) [βS(L+B)− βS∗ (L∗ +B∗)

−γ1 (L− L∗)− α (L− L∗)− δ (L− L∗)]
+ 2w3 (B −B∗) [α (L− L∗)− γ2 (B −B∗)− δ (B −B∗)]

Then, we add the expression βS ′L and βS ′B into the first and second square bracket. As

a result, we obtain

V̇ =2w1 (S − S∗) [−βSL− βSB + βS∗L∗ + βS∗B∗ + βS∗L

− βS∗L+ βS∗B − βS∗B + γ1 (L− L∗) + γ2 (B −B∗)
−δ (S − S∗)] + 2w2 (L− L∗) [βSL+ βSB − βS∗L∗

− βS∗B∗ + βS∗L− βS∗L+ βS∗B − βS∗B − γ1 (L− L∗)
−α (L− L∗)− δ (L− L∗)] + 2w3 (B −B∗) [α (L− L∗)
−γ2 (B −B∗)− δ (B −B∗)] ,

therefore, we have

V̇ =2w1 (S − S∗) [(−βL− βB − δ) (S − S∗) + (−βS∗ + γ1)

(L− L∗) + (−βS∗ + γ2) (B −B∗)] + 2w2 (L− L∗)
[(βL+ βB) (S − S∗) + (βS∗ − γ1 − α− δ) (L− L∗)
+βS∗ (B −B∗)] + 2w3 (B −B∗) [α (L− L∗)− (γ2 + δ)

(B −B∗)] = 2w1(−βL− βB) (S − S∗)2

+ 2w1 (−βS∗ + γ1) (S − S∗) (L− L∗)
+2w1 (−βS∗ + γ2) (S − S∗) (B −B∗)] + 2w2(βL+ βB)

(L− L∗) (S − S∗) + 2w2 (βS∗ − γ1 − α− δ) (L− L∗)2

+ 2w2βS
∗ (L− L∗) (B −B∗) + 2w3α (L− L∗) (B −B∗)

− 2w3 (γ2 + δ) (B −B∗)2 = Y
(
WP + P TW T

)
Y T ,

(3.25)
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where Y = [S − S∗, L− L∗, B −B∗] ,W = diag (w1, w2, w3), and

P =

 −βL− βB − δ −βS∗ + γ1 −βS∗ + γ2

βL+ βB βS∗ − γ1 − α− δ βS∗

0 α −γ2 − α

 . (3.26)

Theorem 37 The matrix P defined in Eq (Equation 3.25) is V olterra−Lyapunov stable

To discuss the global asymptotic stability of E1 = (S∗, L∗, B∗) we proceed to show

that the matrix P defined in Eq (3.26) is V olterra− Lyapunov stable or −P is diagonal
stable. For this goal, we prove the following lemmas.

Lemma 38 For the matrix P defined in eq. (3.25) −P is diagonal stable.

Proof 39 To prove the diagonal stability of −P and based on Lemma 3.3 , we need to

show that the following three conditions are satisfied:

• Condition 1:−P33 > 0

• Condition 2:D = −P̄ is diagonal stable

• Condition 3:E = −P̃−1 is diagonal stable

1. clearly −P33 > 0

2. Let us delete the last row and last column of matrix−P and call it matrix−P̄
It follows that

D = −P̃ =

[
βL+ βB + δ βS∗ − γ1

−βL− βB −βS∗ + γ1 + α + δ

]

For this purpose, it is necessary to show that −D is V olterra − Lyapunov

stable:

−D =

[
−βL− βB − δ −βS∗ + γ1

βL+ βB βS∗ − γ1 − α− δ

]
Clearly, −D11 < 0. Next, we show −D22 < 0; according to (3.14), we have

βS∗ (L∗ +B∗) = (γ1 + α + δ)L∗,

and it is obvious that

βS∗L∗ ≤ (γ1 + α + δ)L∗,
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hence, −D22 < 0. Now, we show −D12 < 0, that is

−βS∗ + γ1 < 0,

using (3.14), (3.21), we can see that

βS∗ (L∗ +B∗)− (γ1 + δ)L∗ − (γ2 + δ)B∗ = 0

since 0 < γ1 < γ2, we have

βS∗ (L∗ +B∗)− (γ1 + δ)L∗ − (γ2 + δ)B∗ < βS∗ (L∗ +B∗)

− (γ1 + δ)L∗ − (γ1 + δ)B∗

therefore

βS∗ (L∗ +B∗) > (γ1 + δ) (L∗ +B∗) ,

hence, −D12 < 0. It is easy to see −D21 > 0. Therefore, −D is V olterra −
Lyapunov stable based on Lemma 2.5.

3. We show that the matrix E = −P̃−1 is diagonal stable. In fact, we show that

−E is V olterra− Lyapunov stable:

−E = −
(
−P̃−1

)
=

1

det(−P )

[
−E11 −E12

−E21 −E22

]

where
−E11 = − (γ2 + δ) (−βS∗ + γ1 + α + δ) + αβS∗,

−E12 = − (γ2 + δ) (−βS∗ + γ1) + α (βS∗ − γ2) ,

−E21 = −(βL+ βB) (γ2 + δ) .

−E22 = −(βL+ βB + δ) (γ2 + δ) .

It is obvious that −E21 < 0 and −E22 < 0. Below, we show −E11 = 0 and

−E12 > 0. The (1, 1) entrie of this −E is writen as

−E11 = − (γ2 + δ) (−βS∗ + γ1 + α + δ) + αβS∗,

multiplying the (3.14) by α, and using (??) we have

βS∗αL∗ + βS∗αB∗ − (γ1 + α + δ)αL∗ = 0. (3.27)
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Therefore

βS∗ (γ2 + δ)B∗ + βS∗α ·B∗ − (γ1 + α + δ) (γ2 + δ)B∗ = 0 (3.28)

from where

βS∗ (γ2 + α + δ) = (γ1 + α + δ) (γ2 + δ) , (3.29)

You sent hence, −E11 = 0. It is easy to see det(−E) > 0, see the Appendix

of this paper. Therefore, −E is V olterra− Lyapunov stable based on Lemma
2.5.

So based on Lemma 2.6 and Lemma 3.1, there exists a positive diagonal matrix W ,

such that W (−P ) + (−P )TW T > 0 . Thus W (P ) + (P )TW T > 0 .

We conclude that the matrix P defined in (3.25) is V olterra− Lyapunov stable .
We result the global asymptotic stability of E1 = (S∗, L∗, B∗) .

3.6 Numerical results

Consider system (3.1) with α = 0.6, β = 0.3, δ = 0.1, γ1 = 0.1, γ2 = 0.3. We plot the

phase plane portrait of L vs. S and B vs. S in Figs. (Fig.6),(Fig.7) for R0 = 0.9375, a

typical case of R0 < 1, where theDFE is globally asymptotically stable. This is evidenced

in these figures by the fact that all the five orbits converge to the DFE at S = 1 and

L = B = 0.

Remark 40 The figure (Fig.6) and (Fig.7) represent the five curves correspond to dif-

ferent initial conditions with L(0) = 0.1, 0.3, 0.5, 0.7, 0.9, respectively

In addition, consider system (3.1) with α = 0.3, β = 0.4, δ = 0.1, γ1 = 0.1, γ2 = 0.3.

Then, R0 = 1.4 in this case, and the unique positive endemic equilibrium is located at

S∗ = 0.71, L∗ = 0.1 and B∗ = 0.1. We pick five different initial conditions, and plot these

five solution curves by the phase plane portrait of L vs. S and B vs. S in Figs. (Fig.8),

(??). From which one can see all these five orbits converge to the endemic equilibrium,

showing the global asymptotic stability of the endemic equilibrium.([17])

Remark 41 the figure(Fig.8) and (??) represent the five curves correspond to different

initial conditions with L(0) = 0.1, 0.3, 0.5, 0.7, 0.9, respectively.
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• R0 ≺ 1

Fig. 6 Phase plane portraits of L vs. S for system (3.1).

(Fig.6)

Fig.7 Phase plane portraits of B vs.S for system(3.1).

(Fig.7)
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• R0 � 1

Fig. 8 Phase plane portraits of L vs. S for system (3.1).

(Fig.8)

•

Fig. 9 Phase plane portraits of B vs. S for system (3.1).

(fig.9)
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Numerical reuslts doing by matlab
Here is another numerical results for system (3.1) doing with matlab .

Fig. 10 Phase plane portraits of L vs. S for system (3.1).

(Fig.10)

The figure (Fig.10) represent the five curves correspond to different initial conditions

with L(0) = 0.1, 0.3, 0.5, 0.7, 0.9, respectively.

Fig.11 Phase plane portraits of B vs.S for system(3.1).

(Fig.11)

the figure (Fig.11) represent the five curves correspond to different initial conditions

with B(0) = 0.1, 0.3, 0.5, 0.7, 0.9, respectively.
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Fig. 12 Phase plane portraits of L vs. S for system (3.1).

(Fig.12)

the figure(Fig.8) represent the five curves correspond to different initial conditions

with L(0) = 0.1, 0.3, 0.5, 0.7, 0.9, respectively .

Fig. 13 Phase plane portraits of B vs. S for system (3.1).

(Fig.3)

the figure(Fig.3) represent the five curves correspond to different initial conditions

with B(0) = 0.1, 0.3, 0.5, 0.7, 0.9 respectively.
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Conclusion

We study a dynamical model characterizing the spread of computer viruses over the

Internet. It is assumed that all infected computers possess infectivity, and latent comput

ers have a lower cure rate than seizing computers. As we know, a computer user might

try to clear viruses sponta neously even if he is not sure that viruses are staying in his

computer possibly because:

1. he is accustomed to running antivirus program regu larly, or

2. he is informed that viruses are spreading over the Internet.

The global stability of a computer virus propagation model, which incorporates the two

features mentioned above, is investigated. One major diffi culty in studying the qualitative

properties of this model lies in the construction of suitable Lyapunov functions, so that its

success largely depends on trial and error as well as on specific problems. By combining

this classical approach with the Volterra—Lyapunov matrix analysis, we have leveraged

the diffi culty of determining specific coeffi cient values, and as such, wider application of

Lyapunov functions to dynamical systems could be promoted. The method Volterra—

Lyapunov stability in this work is applied for a model of a computer virus propagation

model. The analytical expressions of the stability analysis are provided and their numer-

ical implementation is discussed .
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