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Abstract

In this thesis, we study the dynamic proprieties of a nonlinear viscoelastic
Kirchhoff-type equation with initial conditions and acoustic boundary conditions
(see [29]). We show that , the energy of the solution decays exponentially or
polynomially. Our approach is based on integral inequalities and multiplier

techniques. Instead of using a Lyapunov-type technique for some perturbed

energy .

Keywords : Kirchhoff-type equation, Acoustic boudary condition , Original
energy , Energy decay.



&Jumé

Dans ce mémoire , nous étudions les propriétés dynamique de 1’équation
viscoélastique non linéaire de type Kirchhoff définit avec conditions initiales et
conditions aux limites acoustiques (voir [29]). Nous montrons que, I’énergie de la
solution décroit de manieére exponentielle ou polynomiale. Notre approche est
basée sur les inégalités intégrales et les téchniques de multiplicateur. Au lieu

d’utiliser une téchnique de Lyapunov pour une certaine énergie perturbée.

Mots-cl€s : équation de type Kirchhoff, Condition aux limites acostique ,

énergie originelle , Décroissance d'énergie.
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’ General Introduction \

Our understanding of real-world phenomena and our technology today are largely based on
Partial Differential Equations (PDEs). It is indeed thanks to the modeling of these phenomena
through partial differential equations, which allow us to understand the role of such and such a
parameter, and above all to obtain sometimes extremely precise forecasts. In particular the wave
equations model several natural phenomena in: Physics, Chemistry, Biology...

In general, The physical model giving rise to the acoustic boundary condition is that of gas un-
dergoing small irrotational perturbations from rest in a domain €2 with a smooth compact bound-
ary.We assume that each point of the surface S acts like a spring in response to the excess pres-
sure in the gas, and that there is no transverse tension between neighboring points of S, i.e., the
"springs" are independent of each other. (Such a surface is called locally reacting.This type of
boundary condition has been introduced by several authors beginning with Morse and Ingard in
[4], in this context, we can refer [3, 8, 18].

In this work, we study the following initial boundary-value problem for the nonlinear viscoelastic
Kirchhoff-type equation (see [30]):

¢

t
utt—M(HVuﬂg) Au+/h(t—s) Au(s)ds
0

in Qx(0,00),
ta |uy|" P uy = ul’ " u
u=0 t on 'y x (0,00), P
M (| Vull3) 2 —/Oh(t—s) 2) 15 =y, on T x (0,00),
uwta(@)y+p(@)y=0 on Ty x (0,00),
\ u(z,0) =up, u(x,0) =14 in Q,

where () is a bounded domain in R", n > 1, with C?-boundary I' = I'y U Ty, 'y and I'; are closed
and disjoint, meas (I'y) > 0 and meas (I'y) > 0, a > 0, m > 2, and P > 2 are constants, v is the
unit outward normal to ', u; = 88—7;, Y = %, Au=73"" (0%u,/027), M is a positive C'* -function
and h represents the kernel of the memory term, y is the normal displacement to the boundary at
time ¢ at the boundary point x, and « and 3 will be specified later.

When h = 0 and M = 1, The first Eq. in (P) becomes a nonlinear wave equation, this equation has
been extensively studied, and several results concerning existence and nonexistence have been
established. When M is not a constant, the first Eq. in (P) is a Kirchhoff-type wave equation.
This type of models was introduced by Kirchhoff in order to study nonlinear vibrations of an
elastic string. Kirchhoff was the first to study the oscillations of stretched strings and plates. The

existence and nonexistence of solutions in this case have been discussed by many authors.




For the first Eq. in (P) with 2 # 0 and M = 1, Cavalcanti et al. [9] studied the case of m = 2 and
the localized damping a (z) u;. They obtained an exponential decay rate under the assumption
that the kernel i decays exponentially. They studied the case of m > 2 in [8]. The results of this
work were later improved by Cavalcanti et al. [11] and by Berrimi and Messaoudi [7].

The homogeneous Dirichlet boundary-value problems for Kirchhoff-type equations have been con-
sidered by many mathematicians. Nishihara and Yamada [30] considered the global solvability of
the homogeneous Dirichlet boundary value problem for

% —a (/Q|Vu|2dx) Au—f—?v% =0 in Qx[0,00)

and showed the global existence, uniqueness, and asymptotic decay of solutions provided that
the initial data ug (ug # 0), u; are small and «; is much smaller than v, in some sense. Aassila and
Benaissa [1] extended the global existence part of [12] to the case where M (s) > 0, M (HVUOHQ) #
0, and the equation contains the nonlinear dissipative term |u|* > u,. Ono [32], [37] proved the

global existence of a solution to the homogeneous Dirichlet boundary value problem for

uy — M (||Vu||§) Au—au; =blul’?u in Qx(0,00),

where a, b > 0 and 3 > 2 are constants and M (s) is a C'! function on [0, 0o) satisfying

M(s) > mo,  sM(s) > / M (r)dr forall s [0,00)
0

with mg > 1. Wu et al. [36] solved the general Kirchhoff-type equation

w = M ([ Vu (O2) Ao+ ™ e = [uf

with homogeneous Dirichlet boundary condition and positive upper-bounded initial energy blow-
ups. Applying the Banach contraction mapping principle, Gao et al. [17] proved the local existence
of a solution to the homogeneous Dirichlet boundary-value problem for the higher-order nonlin-

ear Kirchhoff-type equation

e+ M ([ D™ (8)]5) (—A)™ w+ ugl " up = Ju” " u,

where p > ¢ > 2 and m > 1. Using Galerkin’s method, Ono and Nishihara [31] proved the
global existence and decay structure of a solutions to the homogeneous Dirichlet boundary-value

problem for

wy — M (|Vul}) Au — aAu, = blu|’u in Qx (0,00)




without smallness conditions on the data. Wu [35] considered the strong damping integro-

differential equation

¢
uy — M (||Vu|\§) Au + / h(t—s)Au(s)ds — Auy = [ul"*u
0

with homogeneous Dirichlet boundary and showed that, under certain conditions on h, the solu-
tion is global in time and energy decays exponentially.

The mixed Dirichlet and Neumann homogenous boundary-value problems for Kirchhoff-type
equations were considered in [16] by Gorain, who studied the uniform stability of two mixed

Dirichlet and Neumann homogenous boundary-value problems for

U + 20Uy = (a2 + b/ Vul? d:c> Au in Qx(0,00),
Q

Uy = <a2 + b/ \Vu\zdx) Au + 2 \Au; in Q x (0,00).
Q

Beale and Rosencrans [4] introduced acoustic boundary conditions of the general form

0
So=y on Tyx (0,00), (1)
yug +m (2)yy +a(z)y, +B(x)y =0 on Ty x (0,00), (2)

and then Beale [5], [6] investigated the global existence and regularity of solutions for the wave
equation

utt—Au:()

with conditions (1), (2) by semigroup methods.

These acoustic boundary conditions have great intuitive appeal. It is easy to imagine a music
hall designed with these conditions in mind but with an absorbing portion of the boundary (for
example, the floor). In recent years, wave equations with acoustic boundary conditions have been

treated by many authors. Frota and Goldstein [15] studied the nonlinear Carrier wave equation

Uy — M (/ qux) Au + |ug|" ug =0
Q

with the v = 0 on I'y, (1) and (2). They proved the existence of solutions, but gave no decay
rate for solutions. Park and Park [34] considered a wave equation of memory type with acoustic

boundary conditions




t
utt—Au—l—/h(t—s)Au(s)ds:O in Qx (0,00),
0
U= on T'; x (0,00),
du ! Ou(s)
= | h(t—s)52ds =y on I'y x (0,00),
v 0 v
w+p @)y +q(@)y=0 on I’ x (0,00),
u(x,0) = uy, ug (x,0) = uy in Q,

investigated the influence of the kernel function &, and obtained the general decay rates of solu-
tions when h does not necessarily decay exponentially.

In [19] — [21], Li et al. proved, respectively, the existence and uniqueness, the uniform energy
decay rates, and the limit behavior of the solution to the nonlinear viscoelastic Marguerre-von
Karman shallow shells system. Li et al. [22] — [25] proved the global existence and uniqueness of
a solution and decay estimates for the nonlinear viscoelastic equation with boundary dissipation.
The same authors studied the blow-up phenomenon for some evolution equations in [26] — [28].
Motivated by the above work, we intend to study the energy decay for the problem (P). By using
multipliers techniques, we prove that, under certain conditions on M, h, «, 3, and on the initial
data, the solution to the problem exists globally, and we obtain the uniform decay rate. The main

author’s contributions in our study is:

(A) The non linearity of viscolastic kirchhoff equation;

(B)They introduce the Lyapunov -type technique for some perturbed energy, they concentrate

on the original energy;

(C') The assumptions on the initial data and the relaxation function h are weaker, and the esti-
mates are precise.

The thesis is organized as follows. In chaptre 1, we introduced and stated without proofs some
important materials must be need in the proof. In chaptre 2, we study a nonlinear viscoelastic
Kirchhoff-type equation with initial conditions and acoustic boundary conditions, we showed that

the energy of the solution decays exponentially or polynomially as t — +oo.




Chapter 1
Preliminaries

In this chapter, we recall the main notions that we will need, after present the normed spaces,
Banach and Hilbert, L? spaces, and sobolev spaces, we will introduce some necessary inequalities

and importants Lemmas and theorems.

1.1 Functional Spaces

1.1.1 Normed spaces and Banach spaces

Definition 1.1 The linear space V' is endowed by a binary operation (vy,vy) — v1+vy : VXV =V
which makes it a commutative group and furthermore it is equipped with a multiplication (a,z) —

axr : R xV — V satisfying

(a1 +ax)v = avy + avy,
a(vy +wv2) = avy + ave, (araz)v
= ay (agv)
and
lo=w.

Definition 1.2 Let V be linear space. A non-negative, degree-1 homogeneous, subadditive functional
|-]ly; : V' — R called a norm if it vanishes only at 0, often, we will write briefly ||-|| instead of ||-||,,, if

the following properties are satisfing respectively:

A%

lo] =0
lav]] = la[ ][]

lu ol <l o]
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forany v € V and a € R and ||v]| = 0 = v = 0. A linear space equipped with a norm is called
a normed linear space . If the last property (i.e.||v||,, = 0 = v = 0 ) is missing, we call such a

functional a seminorm.

Definition 1.3 A Banach space is a complete normed linear space V. Its dual space V' is the linear

space of all continuous linear functional u : V — R.

Notation 1.1 We can consider the linear space ¢ (V,R), being also denoted by V' and called the dual
space to V. The original space V' is then called predual to V'.

Proposition 1.1 V' equipped with the norm ||-||,. defined by

[ull , =sap{|u(z)]: [|z[| < 1},
is also a Banach space. If V' is a Banach space such that, for any
veV,VoR:iu=|u+tol> = |lu—o
is linear, then V is called a Hilbert space. In this case, we define the inner product (also called

scalar product) by

1 1
(u,v) = 1 [|u+ U||2 1 |u — U||2-
Definition 1.4 Since wu is linear we see that

u: X — X",

is a linear isometry of V onto a closed subspace of V", we denote this by

V-V

Let V be a Banach space and u € V’. Denote by

v, V=R

r — 9, (V)

when u cover V', we obtain a family (¢, ), of applications to V' in R

1.1. Functional Spaces
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Proposition 1.2 The weak star topology on V" is the weakest topology on V' for which every (p,.)

xev

is continuous.

Theorem 1.1 Let V' be Banach space. Then, V' is reflexive, if and only if,

By ={z eV :|z| <1},

is compact with the weak topology o (V, V).

Corollary 1.1 Every weakly convergent sequence in V' must be bounded if V' is a Banach space. In

particular, every weakly convergent sequence in a reflexive Banach V must be bounded.

Definition 1.5 Let V' be a Banach space and let (u,), .y be a sequence in V. Then u, converges

strongly to w in V' if and only if

Jim [fu, = ull, =0,

and this is denoted by u,, — u, or tlim Uy, = U.
— 00

1.1.2 The L7 (1)) spaces

Definition 1.6 Let 1 < p < oo and let 2 be an open domain in R™ ; n € N Define the standard
Lebesgue space L? (Q2) by
L () = {f : 2 — R is measurable and / |f ()P dx < oo} :
Q

Notation 1.2 If p = oo ; we have
L™ (Q) = {f : Q — R is measurable and there exists a constant C suchthat |f (z)| < Cie € Q}.

Also, we denote by

[flloe = mf{C | (2)] < Cae e},
Notation 1.3 For p € Rand 1 < p < oo ; we denote by ¢ the conjugate of p i.e. I% + % =1.

Theorem 1.2 L?(Q) is a Banach space for all 1 < p < oc.

1.1. Functional Spaces |}
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Remark 1.1 In particularly, when P = 2 ; L? () equipped with the inner product

(2 ) priey = /Q f(2)g (2)da,

is a Hilbert space.

Theorem 1.3 For 1 < p < oo, LP () is a reflexive space

The L7 (0,7; X') spaces

Let X be a Banach space, denote by L? (0,7"; X) the space of measurable functions such that

' :
([ 07 @cn) =5l < o0 for 1< p< oo

If p=o00

11l = sup ess||f(1)[x
t€]0,T|

LP(0,T;X)

Theorem 1.4 The space L? (0,T'; X) is complete.We denote by D' (0,T'; X) the space of distributions

in |0, T[ which take its values in X and us define

D' (0,T;X) = £(D]0,T[, X)

where £ (¢, ¢) is the space of the linear continuous applications of ¢ to ¢ Since u € D' (0,T; X) ;

we define the distribution derivation as

% () = —u (Z_f) Ve € D(J0,T])

and since, we have u € L? (0,T; X)

u(p) = / u(t) (t) dt, Y € D (0, T

We will introduce some basic results on the L? (0,7; X) space.

Lemma 1.1 Let

felP(0,T;X) and g—{ € L7 (0,T;X),(1<p< )

then the function f is continuous from [0,T] to X: i.e f € C*(0,T; X)

1.1. Functional Spaces [J
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Lemma 1.2 Let ¢ =|0,T[x(2 an open bounded domain in R x R™ ; and g, g ; are two functions in
L9(]0,T[,L?(£2)), 1 < g < oo such that

||gu||Lq(]o,T[,Lq(Q)) <cVpeN

and g, — gin ¢ ; then ¢, — gin L7 (p)

Theorem 1.5 L? (0,7 X) equipped with the norm ||-|| 1 < p < oo is a Banach space.

La(jo,r[,.x)’

Proposition 1.3 Let X be a reflexive Banach space, X' it’s dual, and 1 < p ¢ < oo % + % = 1. Then
the dual of L* (0,T; X) is identify algebraically and topologically with L4 (0,T; X').

Definition 1.7 Let X, Y be Banach space, X C Y with continuous embedding, then we have

LY (0,T;X)c LY (0,T;Y),

with continuous embedding. The following compactness criterion will be useful for nonlinear

evolution problem, especially in the limit of the nonlinear terms

Definition 1.8 (Local L spaces) Let G be an open set in RY. The local L* space on G consists of all
L-measurable functions f defined a.e on G such that for every compact set K C G, the characteristic

function f x k has a finite L” norm ; that is

/’f(il?)!pdiv <o ifl1<p<oo
K

f is essentially bounded on K if p = oo
This set is denoted L; . (G) .from our result on finite measur spaces ,
we have atoncefor 1 <p<¢g< oo

LOO

loc

(G) € Lj,. (G) C L}, (G) C Ly, (G).

The spaces C* (Q2) et C* (Q2),0 <k <

Definition 1.9 We denote by C (€2) where C° (Q) (resp.C* (Q)) ,the space of continuous functions

(resp. continuously differentiable) on 2 with numerical values (i.e real or complex). For k € N,k > 2 ,

we pose

c*(Q) = {u c C*1(Q): g—; cC*1(Q);i=1, ,n}

it is the space of k times continuously differentiable functions on §2. Finally we note

C™ (Q) = NkenC* (),

1.1. Functional Spaces
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1.1.3 Hilbert space

Definition 1.10 A Hilbert space H is a vectorial space supplied with inner product (u,v) such that
|lu|| = +/{u,u) is the norm which let H complete.

Theorem 1.6 (Riesz) If (H;(.,.)) is a Hilbert space, ., .) being a scalar product on H ; then H' = H

in the following sense: to each f € H' there corresponds a unique x € H such that f = (x,.) and

£ = Nl -
Remark 1.2 From this theorem we deduce that H” = H. This means that a Hilbert space is reflexive.

Theorem 1.7 Let (uy,),.y is a bounded sequence in the Hilbert space H;it posses a subsequence

which converges in the weak topology of H
Theorem 1.8 In the Hilbert space, all sequence which converges in the weak topology is bounded.

Theorem 1.9 Let (u,), .y be a sequence which converges to u, in the weak topology and (v,),,.  is

an other sequence which converge weakly to v ; then

lim (v, u,)

n—oo

Theorem 1.10 Let X be a normed space, then the unit ball

B={reX:|z <1},

of X’ is compact in o (X', X) .

1.1.4 Sobolev spaces

Modern theory of differential equations is based on spaces of function whose derivatives exist in

a generalized sense and enjoy a suitable integrability.

Proposition 1.4 Let €2 be an open domain in R", Then the distribution T € D' (Q) is in L? (Q) if
there exists a function f € L? (2) such that

(T, ) = /Q £ () (x) dz, forall ¢ € D (Q)

where 1 < p < oo, and it’s well-known that f is unique.

1.1. Functional Spaces
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Let m € Nand p € [0,00] . TheW™? (Q2),p(W) is the space of all f € L?(2), defined as W™ (Q2),

such that 0*f € LP (Q)for all & € N™ such that

n
al =Y a; < m, where, 9% = 919529

Jj=1

Theorem 1.11 W™P () is a Banach space with their usual norm

Hf”ww(m = Z N0%fll;»,1 <p<oo, forall f e W™ (Q)

laj<m

Definition 1.11 Denote by W"" () the closure of D (Q) in W™? ().

Definition 1.12 When p = 2, we prefer to denote by W2 (Q) = H™ () and W™* (Q) = Hy" (Q)

supplied with the norm

I llemgey = | D (10° 1)

laj<m

which do at H™ (€2) a real Hilbert space with their usual scalar product

(Us V) () = Z /8au8°‘vdac
Q

la|<m

Theorem 1.12 1. H™ ({2) supplied with inner product (.,.) ;g is a Hilbert space.

2. If m>m/, H" (Q) — H™ (Q), with continuous imbedding .

Lemma 1.3 Since D (Q2) is dense in H]" (2) , we identify a dual H™ ™ () of HJ" () in a weak

subspace on 2, and we have

D () — H"(Q) — L? (Q)— H™(Q) — D'(9Q)

The next results are fundamental in the study of partial differential equations

Theorem 1.13 Assume that €2 is an open domain in R™ (N > 1), with smooth boundary 0S). Then,

1. If 1 < p < oo, we have W'?, for every ¢ € [p, p*| , where p* = nts

2. If p = n we have W'? C L?(Q), for every q € [p, ) .

3. If p > n we have W' C L= (Q) N C%* (), where av = 2%

1.1. Functional Spaces
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The W™? () spaces

Proposition 1.5 Let € be an open domain in R". Then the distribution T' € D' (Q2) is in L? (Q) if
there exists a function f € L? (2) such that

(T, ) = /Qf(a:)gp(:c) dz, forall g € D ()

where 1 < p < oo and it’s well-known that f is unique. Now, we will introduce the Sobolev
spaces: The Sobolev space W () is defined to be the subset of L? such that function f and its

weak derivatives up to some order K have a finite L? norm, for given p > 1.

WEP(Q) = {f € L»; D*f € LP (Q) Vo ; |a| < k}.
With this definition, the Sobolev spaces admit a natural norm:

P

Fo 1l @ = | S D gy | for p < +oo

lor|<m
Space W*? (Q) equipped with the norm |||+, is @ Banach space. Moreover is a reflexive space
for 1 < p < oo and a separable space for 1 < p < oo. Sobolev spaces with p = 2 are especially
important because of their connection with Fourier series and because they form a Hilbert space.

A special notation has arisen to cover this case:

Wk (Q) = H* ()

the H* inner product is defined in terms of the L? inner product:

(f, g)Hk(Q) = Z (D, Dag)p(sz)

o] <k
The space H™ (2) and W*? (2) contain C* (2) and C™ (Q2) . The closure of D (2) for the H™ ()
norm (respectively W (Q) norm) is denoted by HJ" (Q) (respectively W, (€2)). Now, we in-
troduce a space of functions with values in a space X (a separable Hilbert space).The space

L?(a,b; X) is a Hilbert space for the inner product

F9) a0 = | (£ (0,90

we note that L® (a,b; X) = (L' (a,b; X)) . Now, we define the Sobolev spaces with values in a
Hilbert space X. For k € N, p € [1, 0], we set:

1.1. Functional Spaces
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Wk (a,b; X) = {v € LP(a,b; X) a@v

L

€ I”(a,b; X).\ﬁgk}

The Sobolev space W*? (a,b ; X) is a Banach space with the norm

k af | >
1 lweogap, x) = ZX_; 5el| e for p < +o0
and
k P
ov
1 llwmooap: x) = forp =+o0
Wk (ab; X) ; DT || pootonix)

The spaces W*? (a,b ; X) form a Hilbert space and it is noted H* (0, T; X). The H* (0, T; X) inner

product is defined by:

k b
ou Ov
(u, U)Hk(a,b;X) = ;/a <8xi axi>x dt.

Theorem 1.14 Let 1 < p < n, then

Wh?(R™) C LF" (R™)

where p* is given by _- =
C = C (p,n) such that

1
p

[ull L» < ClIVul Yu e WH(R").

Lp(R")

Corollary 1.2 Let 1 < p < n, then
WwhP(R") C L*(R"),Vq € [P, P*]
with continuous imbedding. For the case p = n, we have

W™ (R™) C LY (R"),Vq € [n, +oo|

Theorem 1.15 Let p > n, then

— L1 (where p = n ; p = 1). Moreover there exists a constant
n

1.1. Functional Spaces
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WP (R") C L™ (R")
with continuous imbedding.

Corollary 1.3 Let © a bounded domain in R™ of C* class with ' = 9Q and 1 < p < co. We have
if 1 <p < oo, then W' (Q) C L¥ (Q) where ; = 1

if p=n; then W'? (Q) C L1(Q),Vq € [p, +0|

if p>n; then WP (Q) C L*™ (Q) with continuous imbedding. Moreover, if p > n we have:

1
P

Yu e W (Q), Ju(z) —u ()| < Clz —y|* ulyriq) aery€Q

with o = 1—% > 0 and C'is a constant which depend on p, n and 2 In particular wtr(Q) c C ()

Lemma 1.4 (Sobolev-Poincarés inequality)

If 2<q¢<

2
" ,n>3;and, n=1,2;
n—2

then
lull, < C(a,9) [[Vully, Yu € Hy ()
Remark 1.3 For all p € H*(Q),Ap € L? () and for T sufficiently smooth, we have

le Dl 2y < CllIAR (D)l 2

Proposition 1.6 ( Green’s formula). For all u € H' (Q) we have

—/Auvdx:/Vqud:c— @Uda
Q Q 9 9N

where g—: is a normal derivation of u at I

1.2 Some integral inequalities

Young, Holder’s inequalities

Notation 1.4 Let 1 < p < oo, we denote by ¢ the conjugate exponent,

1.2. Some integral inequalities
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We define the convolution product of a function f € L' (R") with a function ¢ € L? (R"™).

Theorem 1.16 Let f € L' (R") and g € L? (R™) with 1 < p < cc. Then for a.e. = € R" the function
y — f(x—y)g(y) is integrable on R™ and we define

(fxg)(z) = mfﬁr—wgwﬁw

In addition (f *x g) € LP(R™ ) and

1F = gll, < [1£1l, gl

Theorem 1.17 Assume f € LP (R") and g € L (R*) with 1 < p < o0, 1 < ¢ < oo and =
p+¢—1>0 Then (fxg) € L"(R" ) and

1+ gl < A1, Mgl
Theorem 1.18 Assume that f € LP and g € LY with

1 <p<oo. Then (f g) € L' and

LF gl < W A1, gl

Corollary 1.4 ( general form) Let f1, fa, ... fr be k functions such that, f; € L? (2),1 <i <k, and
1
p PP Pk

Then, the produc fi fy...fy € L? () and || fufo-- fill, < Il f1ll,, - 1 fll,, -

1.2.1 Minkowski inequality

Lemma 1.5 For 1 < p < co, we have

lu+ vl < llullgo + (0]l o -

1.2. Some integral inequalities
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1.2.2 Cauchy-Schwarz inequality

Lemma 1.6 Every inner product satisfies the Cauchy-Schwarg inequality

(w1, 22) < 21| [|22]] -

The equality sign holds if and only if z; and x, are dependent. We will give here some integral
inequalities. These inequalities play an important role in applied mathematics and also, it is very

useful in our next chapters.

Lemma 1.7 Let 1 <p<r<gq L=

1—
lllpr < Nlullze [l

Lemma 1.8 If u(Q) < o0, 1 < p < q < o0, then LY — LP, and Since our study based on some

known algebraic inequalities, we want to recall few of them here.

Lemma 1.9 For all a,b € R*, we have

2

b
ab§5a2+4—6,,

where § is any positive constant.

Lemma 1.10 For all a,b > 0, the following inequality holds

a? bl
ab< — + —,
p q
1,1
Where,ﬁJra—l.

Lemma 1.11 If h € C' (R) and u is the solution to (2.1) — (2.5), then

| =) ) e as = 35 (hou— / h(s)dsuuué)+§h'ou—§h<t> Jul.

Proof. Indeed
/0 h(t—s)(u(t),u(s))ds = /0 h(t—s)(u(t), (u(s) —u(t)))ds+/0 h(t—s)(u(t),u(t))ds

1/th<t ) ) = u ()2 d +1/th< sl
= —= —5)—||u(t) —u(s s+ = s)ds— ||u
2 /o dt 2 2 /o dt " "2

1.2. Some integral inequalities
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1d ! 2 L, 1 2
— i (rou= [ nasul) + g 0w gl

1.2. Some integral inequalities
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Energy Decay of nonlinear viscoelastic
Kirchhoff type equation with Acoustic
Control Boundary Conditions

This chapter is devoted to provide the general decay of solution by using the multiplier techniques
and some integral inequalities for the problem of a Nonlinear Viscoelastic Kirchhoff-Type Equation

with Acoustic Control Boundary Conditions

2.1 Statement of problem

We study the following Problem

wy — M (||[Vulld) Au+ [T h(t —s) Au(s)ds

+afug|™ P uy = uf’ " u in Q x (0,00), @D
u=>0 on I'y x(0,00), (2.2)
M (|[Vul3) 24 — [h(t —s) 2 ds =y, on Ty x (0,00), (2.3)
wta(@)y+0@)y=0 on Ty x (0,00), 2.4
u(z,0) =u,, u(x,0)=1wu in Q, (2.5)

2.2 Preliminaries and Assumptions

Throughout this works, we use the space

19
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V={ucH (Q)|u=00nT,},

the scalar products

(u,v) = /Qu (z)v(z)dr, (u,v)p, =u(r)v(v)dS,
and the norms

1 =

1
P P
||u||Lp(m=( / |u|pdx) , ||u||Lp(FO):(F |u|pds) .
0

To simplify notation, we denote ||u||;,q, and |[ul g by |[ullp and ||ul/py,, respectively. The

symbol h * u stands for convolution, that is,

h*u:/oth(t—s)u(s)ds,

and by o we denote

hOVu(t):/O h(t—s)/ﬂ]Vu(s)—Vu(t)\2dxds:/0 h(t—s)||Vu(s) — Vu(t)|*ds.

We make the following general assumptions on M, «, 3, and h.
(A1) The notation M (s), s > 0, is used for a positive C'! function satisfying

M (s) >mg >0 and M (s) < sM (s),

where s
T (s) = / M (1) dt.

(A,) The notation A : [0,00) — [0, 00) is used for a nonincreasing C"* function satisfying

mo—/ h(s)ds=1>0.
0

Furthermore, there exists a p € (2, 00| and a £ > 0 such that

K (t) < —€h*Y? forall t >0,

(for p=00,1,/p=0is set to 0).

(As3) Functions « (x) and f (z) are assumed to satisfy the conditions « (z), S (z) € C (I'g) and
a(x), B (z) > 0 for all z € I'y. This assumption implies that there exist positive constants a; and
B; 1= 0,1, such that,

2.2. Preliminaries and Assumptions
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ap < a(x) <ay, By<pB(xr)<p, forall zeT,.

(Ay) Either2 <p<2n/(n—2),2<m<2n/(n—2),andn >3orp>2 m>2and n=1,2.

Remark 2.1 Assumption (A,) implies that, for some t, > 0,

t to
/ h(s)ds > / h(s)ds:=hy forall t>t,.
0 0

Remark 2.2 Assumption (Ay) implies that, for p € (2, 00),

ht) < 5 forall ¢>0.

_k
T (1+1t)
Therefore,

1
h? (t) € L' (0,00) forall >0 forany o > —.
P

Our result is based on the following existence and uniqueness theorem for a solution to problem
(2.1) — (2.5).

Theorem 2.1 Suppose that Assumptions (A;)—(A,), hold and (ug,u;) € (V. N H?*(Q)) x V. Then

there exists a unique solution u of (2.1) — (2.5) satisfying

ue LY (0,00; V0H2(Q)),

loc

w € Lis, (0,005 V), uy € Ly, (0,00; VNL*(Q), y,y € L?(0,00; L*(I)).

Moreover,

ue C(0,00); V), u €C([0,00); L*(Q)),

u(w,t) —up(z) inV, u(x,t)—u(r) in L*(Q) as t— 0,

Proof. This theorem is proved by using Galerkin’s method and a calculus theorem in an abstract

space [19], [33], [13]. In what follows, we shall use the following lemmas. m

2.2. Preliminaries and Assumptions
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Lemma 2.1 (Poincare” inequality, [2]).

Let ¢ satisfy

2< ¢ <2 n>3,
2< ¢ n=12.

Then there exists a positive constant ¢, such that

[ull, < ce(q) [Vul, forall ueV.

Moreover, the trace theorem implies

Jul2r, < A Vul? forall ueV .

2.3 General Decay results

In order to define the energy function £ (¢) of problem (2.1) — (2.5), we give the following com-
putation. Multiplying u, by both sides of Eq. (2.1), integrating the resulting equation over 2, we

obtain

¢

/uttutdx—/M | Vull; )Auutdm+// h(t—s)Au(s)utdsd:z:—l—a/|ut|m2|ut|2dx
0 Q

/ [ul”™ wyd. (2.6)

using Green’s formula and (A;) on the second and third terms in the left hand sid of (2.6)

_/M(Hvuug) Auuyds — /M(Hvuug) VuVutd:B—/ (HVuH) s
Q Q

o
1 d
= 5 [ (Vul) 5 1Val e — [ v (19ulR) Gruds
Q I‘0
— vl = [ 21 (1Val) Shuds 2.7)
Y “ . “t :
// (t — s) Au(s) wpdsdx = — // (t—s)Vu(s Vutdsdx+// (t—s) >utdS
T JO

(2.8)

we add and subtract the terms — [ fOt h(t —s) Vu(s) Vudsdz to (2.8) we get

2.3. General Decay results
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—/Q/Oth(t—s)VuﬂVu(s)—Vu(t)|2dsdx—/g/0th(t—S)VutVu(t)dsdx

_ —1//th<t— )L S (s) = Y (0) dsd —1//th<t— )L vupa
= 2 0 /s Sdt uils u saxr 2 0 /s Sdt u T

¢
th// (t—s)|Vu(s) — Vu(t)|2dsdx—1//h'(t—s)|Vu(3)—Vu(t)|2dsdx
—15%// (t —s) |Vul? dsda:——//h (t — s) |Vu| dsdz

1 1
5% h(t—s) /|VU u(t))? dmds—§/ h'(t—s)/\Vu(s)—Vu(t)Fd;gds

—_—— —_— —_— 4 J—
+2dt// (t — s) |Vu| dsda // W (t — s)|Vu|? dsdx

1d / 2
3o [ H= ) I9u ()~ ulds = 3 [ () IVuls) - VuolEds
—!—5%// (t — ) |Vul? dsda:——/ (t — s) |Vu|* dsdx
, 1d
iahoVU— —h oVu+§d— h(t—s) ds ||Vul|3 — —h (t — s)||Vul3ds 2.9)

Nou we treat the source terme

using (2.

p—2 d _ p—2 | = 2
/Q|u| uudx /| | {th ] T
= pdt/ |u|” dx

= — |lul|? 2.1
 l (2.10)

2) (2.3) we obtain

[ (M vul) G - [ =9 25 ) ds = = = (0 @) ), H g (3002,

substituting(2.7),(2.8),(2.9),(2.10), (2.11)and using Lemma 2-11 into (2.6)

2.3. General Decay results
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L 2 LW (|Vul?) - 2 Ld ([ 2 1d
oW <||ut||2 + M(||Vull3) - p ||u||§) ~ 39 (/O h(s)||Vul|2ds — hoVu ) + 55/% (8 (=) 9,

1 1
— w2 - Gh OVl + 300 Vu—. [ a()sids

o

The above computation inspires us to define energy functional as

1 1 /— t 1
B0 = gludi+ s (3 QVal) ~ [ 0 dsITulz) + g0 v
1 , 1
+g FOﬁ(ﬂf)y dS—];||U||§ (2.12)

Lemma 2.2 The energy functional E(t) satisfies

1 1
E'(t) = ~a Jully = b () Vul+ 57 o Vu~ [ a(@)tds <o

1)
Proof. It is easy to see from the above computation and Assumptions (As) and (Aj3) that
1 1
E'(6) = ~a Jully = b ) Vul+ 57 o Vu~ [ a(@)stds <o
o
In what follows, we prove that the energy functional F (¢) is nonnegative under appropriate
conditions on the initial energy and data. By the definition of F (¢), using Assumptions (A;) and

(A2) and Lemma(2.1) we obtaine
1 5 1 9 ¢ ) 1 1 ) 1w
E@) = Sllully+5 {molVuly = [ h(s)IVullyds ) + ShoVu+ o [ f(x)y"dS — = [[ull,
2 2 0 2 2 Jr, P

1 2 1 2 1 Cg: P
> 5l + SVl + Jho Vu— £ [9ul]

1 , 1 o
E(t) > §l||VuH2+§hOVu—§||Vqu

1 9 b P
> 3 (1IVully + h o Vu) — o [Vull5

> G((IVul2+hoVu))?  forall ¢>0, (2.13)
where B
1 P c
G(\)==-\—-—"X\N and B=-2

It is easy to verify that G’ (\) has a maximum at \, = B~"/(?~2) and its maximum value is

G'(\) = A-BXNT =0

A
APt
NTPo= BP

2.3. General Decay results
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replace \; = B77/?=2) in G ())

1 BP 1 1
E, = M- XN=(=—-=|X>0.
oot (2 p) 1> 0

Lemma 2.3 Let u be the solution of (2.1) — (2.5), and let the initial data satisfy F (0) < E; and
12 |Vuoll, < 1. Then

1.
1
(L|Vulz +hoVu)® <X\ for t>0;

ul2 < 162/ @=227 2 (g) |3 = ¢ () | Vull; - for g such that

in particular,

2
[ull; < HIVully;

3. the following inequality holds:

1 1

1 1 1
E<t>z§||ut||§+(—2 p)l||w||§+§ B (x)y?dS + Sho Vu > 0;

o

Jull; < (2pk/ (P —2))E(t) forsome k< 1.

Proof. (1) To obtain the desired conclusion (1), we argue by contradiction. Indeed, if (1) does

not hold,then it follows from the continuity of « (¢) that there exists a ¢, > 0 such that

(1Y (t)|I2 + (ho V) (1)) = Ay,
which. together with (2.13), implies
E (1) = G ((L[Vuto)ll3 + (ho Vu) (1)) = G () = Ev. (2.14)

2.3. General Decay results
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Using Lemma 2.2 and the assumption F(0) < E;, we see that
E(t) <E(0) < E; forall ¢>0. (2.15)

Inequalities (3.12) and (3.13) contradlct each other.

(2) Noting that A\; = B2 = <fﬁ) = — |22 ¢, "2 we see from conclusion (1) that

—_P 2 D p 2
mvm@SHWM@+hovw<ﬁ:(BFﬁ :Qmﬁwws>

that is,
2p

IVl < 172e 72,

which, together with Lemma 2.1, implies
q—2

q—2 2 2p Tz
lllt < e [ Vullt < @ [Val (19u]2) (19ul?)F < e (z ) IVl

2(17 q)

lully < 1F5e = |Vl (2.16)

(3) From (2.12) and (2.16), we obtain

1 - ! 1
B = gluli+ g (F9ad) - [ 1o)as|Valg) + 300 v

1
- 2dS — = ||ull%
+y ) B@)ypds - 5 lull;
B(t) = 5luli+5 (mo— [ his)ds ) [Vul}+Sho Vut | B(2)y*dS — ||Vul}
0 To p
1 5 1 5 1 9 ) 9
> 3wl + SUIVul} + Sho Vu+ | 8@)yds — |Vl
To p
1 9 1 9 1
B 2 5 i+ (5 - ) vl + [ B@)gS +ghoVuz0.  @17)

(4) By Lemma 2.1 and (2.15), we have
ps
lully < & IVully < & [IVull; (Vull) 2

using(2.17)

1 [ 2 1
B> 3l + (L2 ) 1Vul + 5 [ 5 sds+ ghovuzo

B)> (%) 7l

2.3. General Decay results
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implies that

p—2 2p p;Q
i <[
SO
2p Tw 2p T 2
P 2 <
ol < @lval | 2y E0] T <5 | o] vl
)
2 < kYl < ]%E(t) forall t> 0, (2.18)
where -
e 2p R
k‘z{up—m mﬂ
and

k=

tlomro] <tlnten)

replace \; = B2 whith E,

replace F; whith &

where

p
() =
(Brfz’> > — B

The proof of Lemma 3.2 is complet. m

Remark 2.3 We conclude from the above inequality that E(0) < E; if and only if k < 1.

Below we state our main result and then make use of the above assumptions and preliminaries to

prove it. By ¢; and C; we denote different positive constants

2.3. General Decay results
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Lemma 2.4 (see[l4]).

Let E(t) be a nonnegative decreasing function defined on [0, c0). If

400
/ E(t)dt < CE(s) forall s> s

for some constants Sy and C > 0, then

E(t) < B(0)e! 0+ forall t>0.

Lemma 2.5 (See[14]).

Let F(t) be a nonnegative decreasing function defined on [0, c0). If
+o0
/ E"(t)dt < CE° (0)E(s) forall s> s
for some constants s, and C' > 0, then

(so+C)(1+0
9t+$0+c

E(t) < E(0) [ )} . forall t>0.

Theorem 2.2 Let u be the global solution of problem (2.1) — (2.5) with conditions (A1) — (A4),
E(0) < Ey, and I2

|Vugl|, < A1 . Then the following decay estimates are valid:

t
C+to

E(t) < FE(0)exp (1 - ) for all t>0  with p = 00,

E(O){(?:ﬁ(&(ig)} forall t>0 with pe(2,00).

Proof. Multiplying (2.1) by ¢ (t) u (t) (where ¢ (¢) : [0,00) — [0,00) is a nonincreasing func-

tion),integrating the result over Q x [t1, ts] (to < t; < t3), we obtain

[0 [uwe@uas~ [ow [ Miuosm o

/ // (t — s) Au (s) wpdsdzdt
/ /|ut "% (t) uydadt
/ /yuv’ 2w (t) u (t) wdadt (2.19)

using Green’s formula dans(2.19)

2.3. General Decay results
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- [T [ arvu o) s o) dea
— / (t) /M IV (1)]|2) Ve (t) Vudxdt—/tng(t) : M(||Vu (t)ug)%u(t) dsdt
[ oomuveopivawia- [“ow [ M0vi@BFwase @20

using Green’s formula

/: ¢ () /Q /0 "t ) Ao (5) wedsdnds

_ /2¢(t)/ h(t—s) (Vu(s), Va(t) . dsdt

L2(9)
/ // (t—s) u (t)dSdt (2.21)
To
Where :
w= [ MVl —dS // (t—s) Io x (0, 00)
I'o To
substitant (2.20), (2.21) and y; whith (2.19)
60 u000) gy e+ / 6 (1) MI7u (1)) 70 (1) de

/ /0 h(t—s) ), Vu (t ))L2(n) dsdt
¢

+a/ & (1) (Jue ()™ e () ,u (t)) dt

L2(Q)
_ / 6 (1) [lu () Hgdt+/ O (1) (0 (1) 0 (8)) ey (2.22)
t1 t1

It follows from (A;) and (2.12) that

B = gl (FHATa@l) - [ 1o)asIva@I) + 3ho v

1 205 _ - P
+3 ] B@) s - 5l @l

IV (8)1l5 M (I Vu (#)]15)
M|V (8)[5) [Vu ()]l — lu ()]

M(|[Vu(®)])
M([Vu®)lly) = llu @)l

IAIA
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implies that

M(IVu@)3) = lu @)l = 2E(t)—llut(t)lliJr/0 h(s)ds |[Vu(®)|3 —hoVu
- [ Bwtds s L OIE - ol
implies that
28(0)+ 5 Ol = 01 + [ B ()5 [Tu (0]} ~hoTu ()

— | Blx)y*dS — Ju(®)lp

= M([Vu@®)]3) — llu @)l < M(IVu@)l5) [1Va @)l — lu @)l

ZE(t)Jr%H ®lp < M(\|VU(t)H§)HVu(t)H§—Hu(t)HﬁJr/F B (z)y*dS
+||uf;(t)||§—/O h(s)ds |[Vu ()]l + ho Vul(t)

Multiplying by ¢ (¢) and integrating the result (¢, t,) weget

/¢ dt+—/ 6 (1) Ju (DI dt

< Mo ( (VI O) Ve @1 - T @)1) @+ | oWl wiia

t1

+ Mo how()dt—/:¢<t)/0th<s>ds||w<t>||§dt

/ / B (x t)dSdt. (2.23)
Note that

{ /: /Q 6 (1) utudxdt] — /: /Q ¢ (1) wudwdt + /: /Q & (£) ugrudadt + /: /ﬂ b (1) udadt

implies that

- / "6 1) (e (8) 0 (8)) gy b = / 8 () (e (1) 0 (8)) gy + / " () e ()12 e

b (1) (e (£) 0 (1)) oy | (2.24)

t1
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Substituting (2. 22) and (2.24) into (2.23), we obtain

2 ¢ dt—l——/d) ) llu ()7 dt

< 2/ (1) flue (¢ ||2dt+/ ¢ (t) (ug (), (8)) dt — & () (g (8) ,u (1))
/" 1/ t—s(Vu()Vumwmﬁ—a/ & (1) (Jue (O™ e (1), (0) dt
/ ) (ho V) ( dt—/:qﬁ(t)/oth(s)ds IV (0)|2 dt
/ (), dt + /:gé(t) [ By 0 st (2.25)

Since

/“¢ ) [ it us,vwmww—[jmwzhwwwvwm@
= [Too [0
225

) as

/o> dt+—/ o (8) lu (1) 2 at

/’¢|m mw+/'¢ (e (1) 0 (1))t — (1) (u (1) 0 (8)) [

) (Vu(s)
(t—s)(Vu(s) — Vu(t),Vu(t)) dsdt,

we can write

IN

+Z’¢w{4hu—6MVu<>vawmﬁ—at2¢@Mwamm2m@mu@»w

—l—/t 2 o (t) /0 h(t—s)(Vu(s),Vu(t))dsdt + ¢ (t) (ye (1) ,u(t))p, dt

t1
to
+ / o) | B(x)y*(t)dsdt.
t1 Ty
= S+ L+ 3+Jdi+ I+ Jg+ Jr + Js. (2.26)

By Lemma 2.3, we have

to t2

/ o(t dt+— ¢()]|u(t)\|£dt2(2—2k)/ o(t)E(t)dt
t1 t1

Next, we shall estimate every term of the right-hand side of (2.26). First,by the Young inequality

and Lemmas 2.1, we can write

1 1 2
|(ug,w)| = /utudm < = (/ utdx) + = (/ udm)
Q 2 \Ja 2 \Ja

1 9 1 9 1 2 2
< 2 ||Ut||2 + B ”qu < 9 (HutHz + Ci ||VU||2)

2.3. General Decay results



Chapter 2. Energy Decay of nonlinear viscoelastic Kirchhoff type equation with Acoustic Control
Boundary Conditions

by Lemma (2.2) we have

E(t) =5

\Utﬂg
by Lemma (2.3)
1 1
B0 (5-1) vl

implies that

2p
2
[Vul; <

N (p—Q)ZE(t)

applying young inquality and Lemma 2.1

DN | —

1 c2p

)] < 5 (lluel3+ [ull2) < 5 (a3 +E1Val2) < (1+ L) B 1)
2 (p—2)1

which, together with Lemma 2.2 and the definition of ¢ (¢), implies

| Jo| =

|J3!=|—¢(t)(ut(t)7 \<2¢ 0)cr B (1), (2.28)

where ¢; =1+ 2p/((p—2)1).

Using the Holder and Young inequalities, we obtain

) . ) (m—1) (m—1)/m 1/m
Q Q Q Q

Young ineqaulity :

o L 01 1 1
X V<—X'4+—Y? X Y>00>0-+-=1
r q r o q
o ST )
m—1 m m—1\ 1
m m—1
n m _=1_m m
e — (m—1)
e e S
m o, m—1 m
— L+ el For >0
m n(m—l)m
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which, together with Lemmas 2.2, 2.3 implies

to

3 = | [0 (00,0 (0) ar
< %g ”¢uwu@mzﬁ+f%%£§l/b¢wuw@mzﬁ
< el /“¢ ) IVu ol i+ S /ﬁ¢ )l
< é T 2/“¢ Ot / ot
= :acy / ¢ (t) E (t)dt + %E (t1), (2.29)

where ¢y = 2pc(m) / (ml (p — 2)).
Applying (A,) and Lemma 2.3, we obtain

|Js| = /t2¢(t)/0 h(t—s)(Vu(s) —Vul(t), Vu(t))dsdt.

< [ oovueizas g [Co0 ([ a9 19u - Tu@lyds)

2
n & 2
< 2 e Ivumla

t1

+%§h?w>( [ e ) M“m 5[ Vu(s) - 1mm@@)ﬁ
< 1y ), e B ‘i;,/ ) [T o Tu(o)a
pn t2 @ - 1=1/p (&) ds
< oty | e E@Es kn/o B (5) dsE (1) (2.30)

It follows from Lemmas 2.1, 2.2, and 2.3 and Assumption (Aj3) that, for all > 0, we have

to

000 () u D] < - [0 I Oyt [ 60 IO,

t1 t1

| J7| =

0 !
< fogoz/t E( dt+"2/ 6 (1) | Vul2 dt
0) E (t1) A 0 to
¢(2)a07] : 77 : / t=: ;bogm)?E(th?,n/tl o (t)E(t)dt, (2.31)

where c3 = pA/ (L (p — 2)).
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Using (2.4), the Holder and Cauchy inequalities, and Lemma 2.1, we obtain

1d

[ By (s = (1) (g, — (e () (), — 30 (@ ()07 (1),
sO®. 0@ < 22 (@I, + lu®E,) < 22 (b O, +r1vaol)
Ap 1
< ity 5] e0E®.

which, together with(2.31) and Lemmas 2.2 and 2.3, implies

J = /t2¢() 8 () 2 (1) dSdt

= y,po\—/qﬁ (y, u dt/¢> (e (¢ dt

560 (@@).y? (t))po +§ o) (o <)y2<t>>rodt
S ’ y’ dt' yt
‘¢ (2),y° (t))p0 y
3\p 3 1
= L( 2) " By " 200 ﬁo] ) “3"/ o .

Let us estimate the first term on the right-and side of (2.11). Multiplying (2.1) by
o) [ it =) w®) - u(s) ds

and integrating the result over Q x [ty t5], where £, < #, > t,, we obtain

- /:W) [ =5 G 00 0) = ) s

- /: 0 /Ot h(t—s) (M (||Vul3) Vu(t), Vu(t) — Vu(s)) dsdt

= [0 [ 1= 9 w0 = o), dsr

_/: 6 (1) /Oth(t — ) /Oth(t — 1) (Va(r), Vu () — Vu(s)) drdsdt

+a / o) [ e 5) () (e O e (1) — (5)) s

= [0 [ =9 (#0000~ uo) s, (2.39)
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Note that

_/t2¢(t)/0 h(t—s) (uy (t),u(t) —u(s))dsdt

:/tng(t)/o B (t - s) (ut(t),u(t)—u(s))dsdt—l—/thzS(t)/0 h(s) ds |lug )2 dt

t2

—¢<t>/0 Bt — s) (ur (£) u (t) — u(s)) ds

t1

- " / At 5) (e (8) s (8) — u (s)) dsdt. (2,30

Substituting (2.33) into (2.34), we obtain

/t "6 () / i (s) ds |jur]|2 dt

= [ o) [ nte =) (O (19 Tute), Tulo) - Tu) s
= [0 [ =9 ) — ey s
—/:gb(t)/oth(t—s)/oth(t—f) (Vu (), Vu () — Vau (s)) drdsdt
b [ 000 [ (=5 (0P 0000~ u() s

_/t2¢<t>/o h(t—s) (]u(t)\p_2u(t),u(t)—u(s))dsdt

_/t2¢(t>/0 Wt — ) (ur () u (£) — u(s)) dsd

+¢<t>/0 Bt — 5) (e (8) u () — u(s)) ds

t1

_/tz¢,(t)/0 h(t—s)(u(t),u(t) —u(s))dsdt

= T1+T2+T3+T4+T5+T6+T7+T8. (235)
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Now, we estimate the terms on the right-hand side of (2.35). By virtue of the Young inequal-
ity,Lemmas 2.2 and 2.3, formula (2.30), and Assumption (A;) (where M(s) is a positive c!-

function), we have

11| =

/ng(t)/ ht—s) (M (|Vull3) Vu(t), Vu(t) — Vu(s)) dsdt‘

t1 0

2}
1
< 3 [ o®M(IVul) [Vu o) i

2

+% :W) (/0 hit—s) ||Vu(s)—VU(t)||zd8> dt
C?\/[P t2 w 00 e () 4
ﬁl(p_Q) /ﬂ o (t) E(t)dt + ko /0 h (s)dsE (t1), (2.36)

where M (||Vul3) < cM.

Using the Holder and Cauchy inequalities and Lemmas 2.2 and 2.3, we obtain

n = ‘_/t2¢<t>/th(t_5)(yt(t>,u(t>_u@))rodsdt’

t1 0

< [Tow [ =9 (5 I O, + B ITu0) - Vu o)l ) s

t1 0
Ny [t 1 te
< G [Towtovuyart o tmob |6 I @), d
to
< M gb(t)E(t)dtJrTZO;gb(O)E(tl) forall 7> 0. (2.37)
t1 0
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Boundary Conditions

The Holder and Cauchy inequalities, Lemma 2.2, and (2.30) imply

T3] =

IA

IN

<

<

—/t2¢(t)/th(t—s)/th(t—r)(Vu(r),Vu(t)—Vu(s))drdsdt‘

t1 0 0

/:qﬁ(t) /Q(/Oth(t—S)(VU(t)—Vu(s))ds> (/Oth(t—T)Vu(T)dr)dxdt'
/:W) /Q(/Oth<t—s><w<t>—ws))ds)

« (/Ot h(t—7) (Va () — Vau (7) — Va (8) dT)) dxdt'

2

/: o) /g </oth (t=5)[Vu(s) - Vu (t)yds) dadt

/t2¢(t) /th(t— s) (/Oth(f) drVu (t),Vu (s) — Vu (t)) dsdt'

t1 0

moi (0) /OOO hl—l/p (8) dsE (t1>

+%/t:2gb(t)/Q[%(/oth(t—s) (Vu(t)—Vu(s))ds)2+n(/Oth(T)dTVu(t))Zl dadt

+

@ <mo + ;”_;) / TR (s)dsE (1) + 2 (mo = 1)? / “o(t) [Vul? dt
20) <mo n %O) e as )+ p—fz’;_‘;)) 0 CoMEMa @39

By the Holder inequality and Lemmas 2.1 and 2.11, we have

IN

IA

IN

IN

a/o ht—s) (Ju ()™ 2 (8) ,u(t) —u(s)) ds

il Wi — )|V Vu (t)| ds)™d m 1 "
a— Q(O (t —s)|Vu(s) — Vu(t)| ds) $+a771/(m—_1)m||ut||m

m

t
i (m=1)/m (4 _ oy pt/m (4 _ _ m om=1
am Q</0 h (t—s)h/™(t—s)|Vu(s) — Vu(t)|ds) daz—i—anl/(m_l)m el
t t
—1
aﬂ(/ h(s)ds)m—l/ Bt = s) [lu (£) = u(s)|[7 ds + a—r—s—
0 0 n

4 5 el

(m=2)/2  pt
a%c;”(mo—l)m_l{ i E(O)} /0h(t—s>||vu(t)—vu(s)||§ds

L(p—2)
m—1 m
+anl/(m——1)m ][
(m—2)/2
n m . m—1 4p m — 1 m
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which, together with Lemma 2.2, implies

l(p—2

m— 1 /t2
ta——— [ o) [lu @I, dt
771/(m—1)m " t

. (m-2)/2
< q2n (mo—l) 1[(;P2)E(0)] [ () E(t)dt

n . B 1 4p (m—2 to . )
Ti < ael (mo—1) [—)E(O)] /t & (t) ho Vu (t) dt

(2.39)

By the Holder inequality and Lemmas 2.2 and 2.3, we can write

/o h(t—s) (|u(t)|p72u(t) ,u(t) —u(s))ds

1 t >p p_l
< h(t—s)|Vu(s)—Vu(t)ds| doz+——n|ul?
WAA(A (t— ) [V (s) - V(1) Ll

P

-1

= = 1/ (/ pp—1- l/p)/P( —5) p(+1/0)/p (t—s)|Vu(s) — Vu (t)|ds> dx—i—p 77”“”2
pn Q p

p—1-1/p ¢ p—1
< h(s /h't—s u(t) —u(s)||Pds + ——n||lul?
pml(A i) [0 - ulgds +
o th’(t ) IV (t) = Vu(s)|lyd p=l [Jull,
< = (me 1)’ / —35)||Vu u s+ ——n|u
pnp ( 0 ) o » n »
4 (p—2)/2 -1
< _ P A e VI B / p—1 »
< -y [ p @) eV + Pl
which,together with Lemma 2.2,implies
to t 9
|n|=\1/¢@/%ﬁ—QWWWwwww—u@ww4
t1 0
(p—2)/
1 4
< _ _ n\p-1-1/p D /
< s me -y E 6(0) 1 o V(1) dt
-1 t2
2 [T o0 Jullar
p t1
) ) (r-2)/2
< & (my — 1PV | 2L E(t
2 E(p
2nk(p—1) / o (t (2.40)
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Using the Holder and Cauchy inequalities and Lemmas 2.1 and 2.2, we obtain

el = ‘_/Z(b(t)/”(t_s)(ut(t)au dsdt’
t1 0
1) 2 t2
<3/ <)HuH2dt+25 ¢<>/m—s s [ 0= 9 19u® - Vu o) Ras
5[
< 5 oMl B o Vudt
<3 2¢<t>uutu§dt+ME<tl> )
t1

Using the Holder and Cauchy inequalities and (2.12), we see that

/0h(t—s)(ut(t%u(t)—U(S))ds < %/0 h(t—s) (lJue ()1 + [lu () — u(s)]|*)ds
< 5 lmo— D) (I + 5o Vu < (mo—1+¢) B (),

which, together with Lemma 2.3, implies

to

<2(mog—1+c2) ¢ (0)E (t1), (2.42)

17| = '¢(t)/0 h(t —s) (u (t),u(t) = u(s))ds

t1

Ty = \— [ o [ ne-9 . —u(s))dsdt] < (mo— 1+ ¢ E(t). (2.43)

t1 0

Remark 2.1 and the inequality ¢; > ¢, imply

to
/!/ ﬁW%ﬁ>%/|Mﬁﬁ (2.44)
t1

Combining (2.35)-(2.42) and choosing § = h, , we conclude that

J = / o(t ||ut||2dt < —0417/ o(t t)dt + —c5qb( )E (t1), (2.45)
where
C3p p(mg—1)7 2 o1 ( 4p )(’H)/ > 2k(p-1)
Cp=—"— 4+ N+ —— " F+a—"(mg — [ E(0 +
T p-2) I(p—2) (mo —1) I(p—2) (0) p—2
1 & mo—1 1 m & m—1
= — [ WYr(s)d 0 - 2 / R P (s)ds 4 2—————
cs i ), (s)ds + - | o+ o) |, (s)ds + oy
2 4p R 2h(0)
— e | 2 =~ — 2) .
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Combining Lemma 2.3, (2.26)—(2.32), and (2.45), we obtain

to
(2 — Zk)/ o(t)E(t)dt < 0677/ ¢ (t)E(t)dt + cz¢ (0) E (t1) / ¢ (t)hoVul(t)dt, (2.46)
t1
where
Cg = T—C4+acs+ b + 2c3,
ho lp—2)
2 —1 1 _ 1 3A\p 1 ay
= — 3 ——— + — hl e (s)d —
“ hocsjL Cl+77/( DUm k77 (5) S+20€077+Z(P—2)+50+204077 50
Then, choosing 1 > 0 small enough, we conclude from (2.46) that
/ o (t)E(t)dt < Ci1¢(0) E (t1) / o (t) (hoVu)(t)dt, (2.47)
where (] is a positive constant.
Case 1: p = o0 . Setting ¢ (t) = 1 in (3.37), we see from Lemma 3.1 that
to [2)
/ hoVu(t)dt < —5/ h' o Vu (t)dt < 2¢FE (t1),
t1 t1
that is,
to
/ E(t)dt < CE(t). (2.48)
t1

Now, letting ¢, — oo in (2.47), we obtain

/ E (t) dt <CFE (tl) for all t1 > tp.

t1

Therefore, by Lemma 2.4, we have

t
< — > 0.
E(t) < E(0)exp (1 C—i—to) for t>0

Case 2: p € (2,00) . Setting ¢ (t) = E™* (t), n > 1 in (2.46), taking into account Assumption

(As),and using the Holder inequality and Lemma 2.2, we obtain

/ * B (1) o Y (1) dt

t1

to t
=[BT [ e ) [ (s) - T o)

t1 0
p/(p+m)

w p 1= (m=1)/(p+m) (t—s)||Vu(s) — Vu (t)H; dsdt
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< [TEee ([0 1vut) - Vunlas) e

t1
p/(p+m)

<([rrre-91vee - vuwigas)

< < /t f BRI (1) ( /O BT (6 5) [Vu(s) — Vi <t>||§ds> dt) e

X (/: (/Ot AITVP(t — 5) || Vu(s) — Vu (t)H;ds) dt) p/(p+m)

< le ( / ® g () ( / U () [V (s) - Va (t)||§ds) dt)

t1 0

% (_ / ® (W o V) (1) dt> e

t1

2 p/(p+m) ta t m/(p+m)
(g) (/ EYm/e (1) (/ Y™t — 5) ||V (s) — Vu (1) ds) dt>
t1 0

< B (1) . (2.49)

m/(p+m)

For any m > 1, we define

e (0= [ B (4= 5)[Vus) = Vuo) s

so that ¢, (t) is bounded. Indeed, thanks to Remark 2.2, we know that h'/? € L' (0, o), since
p > 2. Hence, recalling Lemma 2.3, we obtain

t o]
oy (1)] < C/ W2 (t —s)(E(s) + E(t)ds < 20/ h'2dsE (0) forallt > 0,
0 0

Thus,
sl < cE(0), (2.50)

as claimed.
Owing to (2.49) and (2.50), we have

to ts 2/(p+2) .
/ E*? (t)hoVu(t)dt < (/ E%@)dt) lallon”™ o 21e+2 B/ e+2) (4,)
t1

t1

to
< 0[BT @+ )l B ). @51)

t1
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Thanks to (2.51), for > 0 small enough, (2.47) with ¢ (t) = E%/” (t)becomes

to
/ EY2e () dt < cE¥?(0)E (t;) forall ¢ > t. (2.52)
t1

Letting ¢t — oo in (2.52) and applying Lemma 2.5, we obtain

(to+¢)(2+p)
2t + p (to + )

/2
E(t) < E(0) [ r forall ¢ > 0. (2.53)

Recalling Lemma 2.3 and the fact thatp > 2 and using (2.53), we obtain

lpy (B)] < /0 IVu (s) — Vu (t)]3 ds < ﬁ (/000 E(s)ds+tE (t)) < cE(0). (2.54)

Owing to (2.49) and (2.54), we have

to ta 1/(p+1) i)
/ EYP (tYhoVu(t)dt < O(/ E1+1/"(t)dt) o4 | EPIPHD) (1))
t1

t1 >
[
<o [ BT @t ) oL E o). (255)
to
Thanks to (2.55), for n > 0 small enough, we know that (3.37) with ¢ (t) = E'/* (t) becomes
to
/ EYWYr (t)ydt < cEY?(0) E (t,) forall t; > t,. (2.56)
t1

As above, letting ¢, — oo in (3.46), we can write

/ EYYe (t)dt < cEY?(0)E (t,) forall t; > t,.
t1
Letting ¢, — ooin (2.56)and applying Lemma 2.3, we obtain

(to+c)(L+p
t+p(to +c)

E(t)gE(O){ )r forallt > 0.
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Conclusion

The study of the dynamic properties over time of the solutions of nonlinear evolution equations
with acoustic control boundary conditions has aroused the interest of many mathematicians for
a long time. Instead of using a lyapunov-type technique for some pertubed energy, a new active

method, due to komornik is presented so as to achieve arbitrily large decay rate for the energy of
the problem.
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