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Résumé 

Dans cette thèse, nous présentons une méthode d'analyse 
d'homotopieoptimale pour obtenir une solution approximative pour des 
équations aux dérivées partielles d'ordre fractionnaire.  

Cette méthode a été appliquée pour obtenir une solution numérique de 
l'équation différentielle partiellehyperbolique fractionnaire. Une autre méthode 
appelée méthode asymptotique d'homotopie optimale a été appliquée pour 
obtenir les solutions analytiques approchées de deux problèmes oscillatoires non 
linéaires d'ordre fortement fractionnaire.  

En conséquence, ces méthodes nous permettent de contrôler la région 
convergente de la solution en série. Quelques exemples numériques sont 
présentés pour prouver l'éfficacité de la méthode. 

 

Les mots clés : Équation différentielle fractionnaire, Dérivé fractionnaire de 

Caputo, Solution en série, Méthode d'analyse d'homotopie. 

 

 

 

 



Abstract 

In this thesis, we present an optimal homotopy analysis method to obtain 
approximate solution for partial differential equation of fractional order. This 
method was applied to obtain a numerical solution of time-fractional hyperbolic 
partial differential equation.  

 
Another method called the optimal homotopy asymptotic method was 

applied to get the approximate analytic solutions for two strongly fractional-
order nonlinear benchmark oscillatory problems. 

 
 As a result, these methods allow us to control the convergent region of 

the series solution. Some numerical examples are presented to prove the 
accuracy of the method. 

 

Keywords: Fractional differential equation ,  Caputo fractional derivative, Series 
solution, Homotopy analysis method 

 

 

 

 

 

 



 ملخص

الأطروحة نقدم طريقة الهوموتوبي التحليلية لإيجاد حل تقريبي للمعادلة التفاضلية الجزئية ذات في هذه 

 .ةالكسريرتب ال

هذه الطريقة تم تطبيقها لإيجاد حل عددي للمعادلة التفاضلية الجزئية الزائدية الكسرية, كما تم تطبيق طريقة  

حلول تحليلية تقريبية لمعادلتي تذبذب غير الخطيتين اد أخرى تدعى طريقة الهوموتوبي المقاربة المثالية لإيج

 ذات الترتيب الكسري.

 ةنجاع, بعض الأمثلة العددية تم تقديمها لإثبات كنتيجة هذه الطرق تسمح لنا بالتحكم في تقارب سلسلة الحلول

 .الطريقة

سلسلة الحلول, طريقة , Caputoمعادلة التفاضلية الكسرية, المشتق الكسري ل ال:الكلمات المفتاحية:

 الهوموتوبي التحليلية.
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General Introduction

The concept of fractional calculus linked back to 1695, when Liebniz (the inventor of

both integer derivative dnf(x)/dxn and integral
∫
f(x)dx) wrote a letter to Hôpital asking him

about the meaning of the semi-derivative. Euler was the first one who was interrested in this topic,

he noticed that the semi-derivative has a meaning, then Fourier suggested the idea of using the

equality
dpf(x)

dxp
=

1

2π

∫ +∞

−∞
λpdλ

∫ +∞

−∞
f(t) cos(λx− tλ+ p

π

2
)dt

in order to define the derivative for non-integer order. This topic attracted the interest of other

well-known mathematicians as Laplace, Liouville, Riemann, Grûnwald, Letnikov .... In the

last decade, fractional-order partial differential equation (FoPDEs) played a vital role in many fields

such as physics, biology, chemistry, .... Actually, obtaining exact solutions for such equations in its

nonlinearity case is extremely tough according to the view of many mathematicians. Thus, propos-

ing numerical schemes for obtaining approximate solutions for such equations is a very urgent need.

To meet this need, several iterative approaches have been recently suggested, such as variational it-

eration method (VIM) [74], finite difference method (FDM) [65], generalized differential transform

method (GDTM) [5, 7, 20], adomian decomposition method (ADM) [68], homotopy perturbation

method (HPM) [75], and homotopy analysis method (HAM) [29, 82].The fractional-order hyper-

bolic problem (FoHP) is one of the most important nonlinear problems in mathematical physics.

This type is simply generated by replacing the second-order derivative of its classical equation by

another one of fractional-order, say α, where 1 < α ≤ 2 [5, 18]. This replacement in such orders

provides much more degrees of freedom, letting researchers to model several real-life phenomena

more comfortably than before. Over the past few years, lots of researchers paid their attentions

to explore the solutions of the FoHPs and discuss their stabilities. The nonlocal problems for the

degenerate FoHP were studied by Kilbas et al in [41]. Some conditions were set up by Kirane and

Laskri in [42] to guarantee the nonexistence of solutions for some types of FoHPs. For obtaining

the solutions of some FoHPs, difference approaches were proposed in [9].

The nonlinear fractional-order oscillators are typically considered to be a significant exemplar of such

equations. The strongly nonlinear oscillator, which is one of the major types of these oscillators,

could be dealt with by means of three main schemes. Constructing new or using some special

existent functions that relies on the nature of nonlinearity is the first scheme. On the other hand,

the second scheme could be represented by appropriately rescaling the displacement, and then

inserting a small parameter into motion equation. Whereas, the third scheme can be delineated

by introducing a further small parameter, and then transporting motion equation into a linear
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oscillator perturbation [12, 39, 44].In general terms, the nonlinear fractional-order oscillators have

been examined and explored by many researchers. In particular, Shen et al. studied the primary

resonance of fractional-order van der Pol oscillator analytically and numerically while using the

averaging method [87], and then used the incremental harmonic balance method to analyze some

dynamical properties of fractional-order nonlinear oscillator [88]. The dynamical response of the

fractional-order stochastic Duffi ng equation was explored by Xu et al in [91]. Some novel dynamical

features of fractional-order Duffi ng oscillator had been studied by Chen et al in [14—16]. They

proposed a new powerful bifurcation control approach that is based on the PIλDµ controller [16].

However, obtaining accurate solutions of most of these nonlinear equations is considered to be an

extremely diffi cult mission for lots of researchers.

The homotopy analysis method (HAM) was proposed in 1992 by Liao, who used the basic ideas of

the homotopy in topology. Several nonlinear fractional-order engineering and mechanics problems

have been, very recently, solved using HAM such as theKdV—Burgers—Kuramoto and BBM—Burgers

problems, Riccati DEs, the Klein—Gordon equation, the heat-like PDEs according with Neumann

boundary conditions, diffusion-wave equations and others [43]. Such method has been also engaged

in chemistry field by Hariharan [28]. He, actually, has obtained numerical solutions of Schrödinger

equation and viscid equations of gas dynamics [72]. The role of this technique is to obtain out

the best parameters of the convergence control by minimizing the square residual error as much as

possible.

The HAM contains an auxiliary parameter called the convergence control parameter h, a nonzero

auxiliary function H and a linear operator L, based on these parameters this method provides a

convenient way to guarantee the convergence of series solution. The optimal homotopy analysis

method (OHAM) was recently proposed and developed by Marinca et al as a generalization of the

classical HAM [24,32, 59, 61, 62, 85]. Several solutions of significant nonlinear problems within lots

of studies were then, consequently, constructed based on using this method (see [11, 24, 27, 30, 35—

38, 80, 85]). In view of many of these studies, it was demonstrated that this method is a reliable,

straightforward, and effective tool for offering accurate analytical approximate solutions to lots of

strongly nonlinear problems [11, 61, 80]. Besides, it was revealed that its key characteristic is its

ability to optimally control the convergence of approximate series solutions [11,61,80].

The main objective of this thesis is to solve fractional partial differential equation by using an

optimal homotopy analysis method.

Our thesis is organized as follows: the first chapter introduced the basic idea of fractional calculus:

some special functions, fractional integral, fractional derivatives, Laplace transforms and Fourier

transforms of fractional derivatives. In the second chapter, we describe the homotopy analysis

method, an analytic approach to have an approximate solution for nonlinear differential equations,
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some definitions and examples are given to present thevapproach clearly. Third chapter present

the so called Linearization based approach of HAM, a new modification of the classical homotopy

analysis method based on employing Taylor series solution, to accelerate the convergence of the

solution for such nonlinear hyperbolic partial differential equations of fractional order, we give

some examples to prove the effeciency of the new method. The last chapter, contains one of

the recent approximate methods namely the optimal asymptotic homotopy method to give an

approximate solutions for two strongly fractional-order nonlinear benchmark osciliatory problems,

some numerical results are given to demonstrate the accurate of this method.
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CHAPTER 1

REVIEW OF FRACTIONAL CALCULUS

In this chapter we introduce the basic ideas of fractional calculs, specifically some special functions,

the fractional integral and the fractional derivative (Riemann-Liouville fractional derivative and

Caputo fractional Derivative) and their properties.

1.1 Special functions

1.1.1 Gamma function

One of the basic functions of the fractional calculus which generalizes the fact n! is called Euler’s

gamma function.

Definition 1.1 [51] The gamma function Γ(z) is defined by the integral

Γ(z) =

∞∫
0

exp(−t)tz−1dt (1.1)

Some properties of gamma function [51] The gamma function satisfies the following func-

tional equation:

Γ(z + 1) = zΓ(z) (1.2)

Which can be easily proved by integrating by parts.

Obviousily Γ(1) = 1 and using (1.2) we obtain

Γ(n+ 1) = nΓ(n) = n.(n− 1)! = n!

8



Chapter 1. Review of fractional calculus

The derivative of the gamma function can be expressed as follows

dn

dzn
Γ(z) =

∞∫
0

tz−1 exp(−t)(ln t)ndt, z > 0

1.1.2 Beta function

Definition 1.2 [51] The beta function is usually defined by

B(z, w) =

1∫
0

tz−1(1− t)w−1dt (1.3)

It is connected with the gamma function by the relation

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
(1.4)

The integral (1.3) makes sense when Re z = 0 or Rew = 0 (z 6= 0, w 6= 0).

Properties of Beta functions [51]

•
B(z, w) = B(w, z)

•
B(z + 1, w) = B(z, w)

z

w + z

•

B(z, w) = 2

π

2∫
0

(sin θ)2z−1(cos θ)2w−1dθ, z > 0, w > 0

1.1.3 Mittag-Leffl er Function

The Mittag-Leffl er function is a direct generalization of the expenential function exp(z) which plays

a very important role in the fractional calculs theory [51].

Definition 1.3 The one-parameter representation of Mittag-Leffl er function is denoted by

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, α > 0 (1.5)

1.1. Special functions 9



Chapter 1. Review of fractional calculus

Definition 1.4 The two-parameter function of the Mittag-Leffl er type is defined by the series ex-

pantion

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, α > 0, β > 0 (1.6)

It follows from the definition (1.4) that

•
E1,1(z) =

∞∑
k=0

zk

Γ(k + 1)
=
∞∑
k=0

zk

k!
= ez

•
E1

2
,1

(z) =

∞∑
k=0

zk

Γ(k
2

+ 1)
= ez

2

Erfc(−z)

where Erfc(z) is the error function complement defined by

Erfc(z) =
2√
π

∞∫
z

e−t
2

dt

•
E1,2(z) =

∞∑
k=0

zk

Γ(k + 2)
=

1

z

∞∑
k=0

zk + 1

(k + 1)!
=
ez − 1

z

•
E2,1(z2) =

∞∑
k=0

z2k

Γ(2k + 1)
=
∞∑
k=0

z2k

(2k)!
= cosh(z)

•
E2,2(z2) =

∞∑
k=0

z2k

Γ(2k + 2)
=
∞∑
k=0

z2k+1

z(2k + 1)!
=

sinh(z)

z

•
E2,1(−z2) =

∞∑
k=0

(−z2)k

Γ(2k + 1)
=
∞∑
k=0

(−1)kz2k

(2k)!
= cos(z)

•
E2,2(−z2) =

∞∑
k=0

(−z2)k

Γ(2k + 2)
=
∞∑
k=0

(−1)kz2k+1

(2k + 1)!
=

sin(z)

z

•
1

Γ(ν)

z∫
0

(z − t)ν−1Eα,β(λtα)βdt = zβ+ν+1Eα+β+ν(λz
α), ν > 0

1.1. Special functions 10



Chapter 1. Review of fractional calculus

1.2 Fractional integral

Definition 1.5 [51] Let ϕ(t) ∈ L1(a, b). The left-sided and right-sided fractional integrals of the

order α are defined as:

(Iαa+ϕ)(x)
def
=

1

Γ(α)

x∫
a

ϕ(t)

(x− t)1−αdt, x > a, (1.7)

(Iαb−ϕ)(x)
def
=

1

Γ(α)

b∫
x

ϕ(t)

(t− x)1−αdt, x < a, (1.8)

where α > 0. The accepted names for the integrals (1.19) and (1.20) are the Riemann-Liouville

fractionals integrals.

Properties: Fractional integration has the properties:

Iαa+I
β
a+ϕ = Iα+β

a+ ϕ, Iαb−I
β
b−ϕ = Iα+β

b− ϕ, α > 0, β > 0 (1.9)

Iαa+ [c1ϕ1(x) + c2ϕ2(x)] = c1I
α
a+ϕ1(x) + c2I

α
a+ϕ2(x)

Iαb− [c1ϕ1(x) + c2ϕ2(x)] = c1I
α
b−ϕ1(x) + c2I

α
b−ϕ2(x)

(1.10)

Example 1.1 [52] We calcule the Riemann-Liouville fractional integral of the order α of the

function ϕ(x) = xβ for x > 0 and β > −1

We have

Iαxβ =
1

Γ(α)

x∫
0

(x− t)α−1tβdt

=
1

Γ(α)

x∫
0

(1− t

x
)α−1xα−1tβdt

by substitution u =
t

x
, we get

1.2. Fractional integral 11



Chapter 1. Review of fractional calculus

Iαxβ =
1

Γ(α)

x∫
0

(1− u)α−1xα−1(ux)βxdu

=
1

Γ(α)

x∫
0

(1− u)α−1xα+β(u)βdu

=
1

Γ(α)

x∫
0

xα+βB(β + 1, α)du

=
Γ(β + 1)

Γ(α + β + 1)
xα+β

1.3 Riemann-Liouville Fractional Derivative

Definition 1.6 [51] For functions ϕ(x) given in the interval [a, b], we define the fractional deriv-

ative of order α, 0 < α < 1 left-handed and right-handed respectively:

RLDα
a+ϕ(x) =

1

Γ(1− α)

d

dx

x∫
a

ϕ(t)

(x− t)αdt (1.11)

RLDα
b−ϕ(x) = − 1

Γ(1− α)

d

dx

b∫
x

ϕ(t)

(t− x)α
dt (1.12)

Fractional derivatives (1.23) and (1.24) are usually named Riemann-Liouville derivatives .

For α > 0 we defined the fractional derivatives as:

RLDα
a+ϕ(x) = (

d

dx
)nIn−αa+ ϕ(x) (1.13)

=
1

Γ(n− α)
(
d

dx
)n

x∫
a

ϕ(t)

(x− t)α−n+1
dt, n− 1 < α < n, x > a

RLDα
b−ϕ(x) = (− d

dx
)nIn−αb− ϕ(x) (1.14)

=
1

Γ(n− α)
(− d

dx
)n

b∫
x

ϕ(t)

(t− x)α−n+1
dt, n− 1 < α < n, x < b

The special case of the fractional derivative when α =
1

2
is called the semi-derivative.

Properties: The Riemann-Liouville derivatives have the following properties:

1.3. Riemann-Liouville Fractional Derivative 12
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1.
RLDα

a+I
α
a+ϕ(x) = ϕ(x) and RLDα

b−I
α
b−ϕ(x) = ϕ(x) α > 0

2. If the fractional Derivatives Dm
a+ and D

m+α
a+ ( Dm

b− and D
m+α
b− respectively ) exist then

DmDα
a+ϕ(x) = Dm+α

a+ ϕ(x) and DmDα
b−ϕ(x) = Dm+α

b− ϕ(x),m ∈ N

3. If ϕ(x) ∈ L1(a, b) and ϕn−α(x) ∈ ACn[a, b], then the equality

Iαa+D
α
a+ϕ(x) = ϕ(x)−

n∑
j=1

ϕ
(n−j)
n−α (a)

Γ(α− j + 1)
(x− a)α−j,

holds almost everywhere on [a, b].

4. Let α > 0 and β > 0 be such that n− 1 < α ≤ n,m− 1 < β ≤ m (n,m ∈ N) and α+ β < n,

and let ϕ ∈ L1(a, b) and ϕm−α ∈ ACm([a, b]). Then we have the following index rule

RLDα
a+

RLDβ
a+ϕ(x) = (RLDα+β

a+ ϕ(x))−
m∑
j=1

(Dβ−j
a+ ϕ(a+))

(x− a)−j−α

Γ(1− j − α)

Example 1.2 [52] Let n− 1 < α < n, n ∈ N and ν > −1 the Riemann-liouville derivative of the

function ϕ(x) = (x− a)ν is:

RLDα(x− a)ν =
1

Γ(n− α)

dn

dtn

∫ x

a

(τ − a)ν

(x− τ)α−n+1
dτ (1.15)

substituting into the formula (1.31) τ = a+ s(x− a), we get

RLDα(x− a)ν =
1

Γ(n− α)

dn

dtn
(x− a)n+ν−α

∫ 1

0

(1− s)n−α−1sνds

=
Γ(n+ ν − α + 1)B(n− α, ν + 1)

Γ(n− α)Γ(ν − α + 1)
(x− a)ν−α

=
Γ(n+ ν − α + 1)Γ(n− α)Γ(ν + 1)

Γ(n− α)Γ(ν − α + 1)Γ(n+ ν − α + 1)
(x− a)ν−α

=
Γ(ν + 1)

Γ(ν − α + 1)
(x− a)ν−α

Remark 1.1 The Riemann-Liouville fractional derivative of a constant, in general is not equal to

zero
RLDαc =

c

Γ(1− α)
(x− a)−α

1.3. Riemann-Liouville Fractional Derivative 13
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1.4 Caputo Fractional Derivative

Definition 1.7 [56] The left and right Caputo derivatives with order α > 0 of the given function

ϕ(t),in the interval [a, b] are defined as:

CD
α
a+ϕ(x) = D

−(m−α)

a+ [ϕm(t)] (1.16)

=
1

Γ(m− α)

x∫
a

ϕm(t)

(x− t)α−m−1
dt

and

CD
α
b−ϕ(x) =

(−1)m

Γ(m− α)

b∫
x

ϕm(t)

(t− x)α−m−1
dt (1.17)

respectively, where m is a positive integer satisfying m− 1 < α ≤ m.

The Riemann—Liouville derivative and Caputo derivative of ϕ(t) have the following relation

RLDα
a+ϕ(x) =C D

α
a+ϕ(x) +

m−1∑
k=0

ϕk(a)(x− a)k−α

Γ(k − α + 1)
(1.18)

where m − 1 < α < m, m is a positive integer, ϕ ∈ Cm−1[a, x] and ϕ(m) is integrable on [a, x]. In

fact, (1.34) can be obtained by repeatedly performing integration by parts.

Furthermore, if ϕ ∈ Cm[a, x], then from (1.32) or the Taylor series expansion, we have

RLDα
a+ [ϕ(x)− φ(x)] =C D

α
a+ϕ(x) (1.19)

where φ(x) =
m−1∑
k=0

ϕk(a)(x− a)k

Γ(k + 1)
, On the other hand, it is easy to find that

RLDα
a+ϕ(x) =C D

α
a+ϕ(x) (1.20)

The main advantage of Caputo’s approach is that the initial conditions of fractional differential

equations with Caputo derivatives accept the same form as for integer-order differential equations.

Properties:

1. If ϕ
1
, ϕ

2
∈ Cµ, µ > −1, c1 , c2 ∈ R,C Dαϕ

1
(x) and CD

αϕ
2
(x) exist then:

Dα[c1ϕ1
(x) + c2ϕ2

(x)] = c1 CD
αϕ

1
(x) + c2 CD

αϕ
2
(x)

2. If ϕ ∈ Cµ, µ > −1,C D
αϕ(x) exist then:

CD
αIαϕ(x) = ϕ(x)

1.4. Caputo Fractional Derivative 14
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3.

Iα CD
αϕ(x) = ϕ(x)−

n−1∑
k=0

ϕk(0)

k!
xk

4.

CD
α
CD

βϕ(x) =C D
α+βϕ(x)

Example 1.3 [41] Let n− 1 < α < n, n ∈ N and ν > −1 the Caputo fractional derivative of the

function ϕ(x) = (x− a)ν by using (1.34) is:

CD
α
a+(x− a)ν = RLDα

a+(x− a)ν −
m−1∑
k=0

dk

dxk
(a− a)ν(x− a)k−α

Γ(k − α + 1)

= RLDα
a+(x− a)ν −

m−1∑
k=0

dk

dxk
(0)ν(x− a)k−α

Γ(k − α + 1)

= RLDα
a+(x− a)ν

=
Γ(ν + 1)

Γ(ν − α + 1)
(x− a)ν−α

Remark 1.2 The Caputo fractional derivative of a constant is equal to zero

CD
αk = 0

1.5 Laplace transforms of fractional derivatives

The Laplace transform of the equation f(t) is defined as:

F (s) = L{f(t); s} =

∞∫
0

e−stf(t)dt (1.21)

For the existance of (1.41) the function f(t) must be of exponential order α, which means that there

exist positive constants M and T such that

|f(t)| ≤MeαT , for all t < T

The original function f(t) can be restored from the Laplace transform F (s) with the help of the

inverse Laplace transform

f(t) = L−1{G(s); t} =
1

2πı

c+ı∞∫
c−ı∞

estF (s)ds, c = Re(s) < c0 (1.22)

1.5. Laplace transforms of fractional derivatives 15
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where c0 lies in the right half plane of the absolute convergence of the Laplace integral.

The direct evoluation of the inverse Laplace transform using (1.42) is often complicated; however,

sometime it gives useful information on the behavior of the unknown original f(t) which we look

for.

Next, we present two important properties that will be useful in obtaining the Laplace transform

of the fractional derivative operators.

The Laplace transform of the convolution:

f(t) ∗ g(t) =

t∫
0

f(t− s)g(s)ds =

t∫
0

f(s)g(t− s)ds (1.23)

is given as

L{f(t) ∗ g(t); s} = F (s)G(s) (1.24)

where F (s) and G(s) are Laplace transforms of f(t) and g(t), respectively, and f(t) and g(t) are

equal to zero for t < 0.

Another useful property which we need is the formula for the Laplace transform of the derivative

of an integer n of the function f(t).

L{fn(t); s} = snF (s)−
n−1∑
k=0

sn−k−1fk(0) = snF (s)−
n−1∑
k=0

skfn−k−1(0) (1.25)

which can be obtained from the definition of the Laplace transform (1.41) by integrating by parts

under the assumption that the corresponding integrals exist.

The Laplace transform of some basic functions:

L(tν) =
Γ(ν + 1)

sν+1
, ν > −1 (1.26)

L(eat) =
1

s− a

L(sin(kt)) =
k

s2 + k2

L(cos(kt)) =
s

s2 + k2

L(sinh(kt)) =
k

s2 − k2

L(cosh(kt)) =
s

s2 − k2

Now, let us start with the Laplace transform of the fractional integral Iαf(t) can be rewritten as:

1.5. Laplace transforms of fractional derivatives 16
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Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds =
1

Γ(α)
tα−1 ∗ f(t). (1.27)

It is easy to calculate that.

G(s) = L{tα−1; s} = Γ(α)s−α. (1.28)

Hence

L{Iαf(t); s} =
1

Γ(α)
L{tα−1 ∗ f(t); s} = s−αF (s). (1.29)

1.5.1 Laplace transform of the Riemann-Liouville fractional derivative

Now, we define the Laplace transform of the Riemann—Liouville derivative operator with order

α,m− 1 ≤ α < m [56,64] The optimal homotopy analysis method applied on

nonlinear time-fractional hyperbolic partial differential equations. Let

g(t) = D
−(m−α)
0,t f(t). (1.30)

Then
RLDα

0,tf(t) = g(m)(t). (1.31)

Applying (1.46) gives

L{RLDα
0,tf(t); s} = L{g(m)(t); s} = smL{g(t); s} −

m−1∑
k=0

skgm−k−1(0). (1.32)

By (1.47) one has

L{g(t); s} = L{D−(m−α)
0,t f(t); s} = s−(m−α)L{f(t); s}. (1.33)

Combining (1.48)—(1.51) gives the Laplace transform of the Riemann—Liouville derivative as:

L{RLDα
0,tf(t); s} = smL{f(t); s} −

m−1∑
k=0

sk[RLDα−k−1
0,t f(t)], m− 1 ≤ α < m (1.34)

1.5. Laplace transforms of fractional derivatives 17
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1.5.2 Laplace transform of the Caputo fractional derivative

To establish the Laplace transform formula for the Caputo fractional derivative [48, 56], we write

The α-th order Caputo derivative of f(t) as:

CD
α
0.tf(t) = D

−(m−α)
0,t g(t), g(t) = f (m)(t). (1.35)

Using (1.46) and (1.49) gives

L{CDα
0,tf(t); s} = L{D−(m−α)

0,t g(t); s} = s−(m−α)L{g(t); s} (1.36)

= s−(m−α)

[
smL{f(t); s} −

m−1∑
k=0

sm−k−1f (k)(0)

]

= sαL{f(t); s} −
m−1∑
k=0

sm−k−1f (k)(0).

Therfore, the Laplace transform of the Caputo derivative operator reads us:

L{CDα
0,tf(t); s} = sαL{f(t); s} −

m−1∑
k=0

sm−k−1f (k)(0), m− 1 < α ≤ m.” (1.37)

1.6 Fourier transform of fractional derivatives

The expenential Fourier transform of a continuous function f(t) absolutly integrable in (−∞,∞)

is defined by

F{f(t);w} =

∞∫
−∞

eıwtf(t)dt (1.38)

and the original f(t) can be restored from the Fourier transform F{f(t);w} with the help of the
inverse Fourier transform

f(t) =
1

2π

∞∫
−∞

F{f(t);w}e−ıwtdw (1.39)

The Fourier transform of the convolution

f(t) ∗ g(t) =

∞∫
−∞

f(t− τ)g(τ)dτ =

∞∫
−∞

f(τ)g(t− τ)dτ (1.40)

1.6. Fourier transform of fractional derivatives 18
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of the two functions f(t) and g(t) which are defined in (−∞,∞) is equal to the product of their

Fourier transforms:

F{f(t) ∗ g(t);w} = F{f(t);w}F{g(t);w} (1.41)

We will use the formula (1.61) for the evaluation of the Fourier transform of the fractional derivatives

[56,57].

Another useful property of the Fourier transform which is frequently used in solving applied prob-

lems, is the Fourier transform of the derivatives of f(t). Namely if f(t), f ′(t), . . . , f (n)(t) vanich for

t→ ±∞, then the Fourier transform of the n−th derivative of f(t) is

F{f (n)(t);w} = (−ıw)nF{f(t);w}. (1.42)

1.6.1 Fourier transform of the fractional integrals

Now, we investigate the Fourier transform of the fractional integral D−αa,t with the lower terminal

a = −∞ and 0 < α < 1. Let

h+(t) =


tα−1

Γ(α)
, t > 0

0, t ≤ 0

. (1.43)

Then

D−α−∞,tf(t) = h+(t) ∗ f(t). (1.44)

It is easy to calculate that

F{h+(t);w} = (ıw)−α. (1.45)

Therefore

F{D−α−∞,tf(t);w} = F{h+(t) ∗ f(t);w} (1.46)

= F{h+(t);w}F{f(t);w}

= (ıw)−αF{f(t);w}.

For the right fractional integral operator D−αt,∞ one has

D−αt,∞f(t) = h+(−t) ∗ f(t). (1.47)

1.6. Fourier transform of fractional derivatives 19
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Note that

F{h+(−t);w} = (−ıw)−α. (1.48)

Hence

F{D−αt,∞f(t);w} = F{h+(−t) ∗ f(t);w} (1.49)

= F{h+(−t);w}F{f(t);w}

= (−ıw)−αF{f(t);w}.

1.6.2 Fourier transform of Fractional Derivatives

Next, we discuss the Fourier transform for the fractional derivatives. Suppose that m − 1 < α <

m, f(t) is suffi ciently smooth and f (k)(−∞)(k = 0, 1,. . . ,m−1) are bounded. Then from (1.34), we

see that the left Riemann—Liouville derivative and the left Caputo derivative have the same form:

RLDα
−∞,tf(t)

CD
α
−∞,tf(t)

}
= D

−(m−α)
−∞,t f (m)(t), m− 1 < α < m (1.50)

One can similarly obtain

RLDα
t,∞f(t)

CD
α
t,∞f(t)

}
= (−1)mD

−(m−α)
−∞,t f (m)(t), m− 1 < α < m (1.51)

Now, let us turn to the evaluation of the Fourier transform of (1.67). From (1.66)and (1.68) one

has

F{RLDα
−∞,tf(t);w} = F{RLD − (m−α)

−∞,t f
(m)(t);w} (1.52)

= (ıw)−(m−α)F{f (m)(t);w} = (ıw)−(m−α)(ıw)mF{f(t);w}

= (ıw)αF{f(t);w}

We can similarly obtain

F{RLDα
t,∞f(t);w} = (−ıw)αF{f(t);w} (1.53)

1.6. Fourier transform of fractional derivatives 20



CHAPTER 2

HOMOTOPY ANALYSIS METHOD (HAM)

2.1 Introduction

In 1992, the homotopy analysis method was proposed by Shijun Liao, it is an analytical approach

that provides us a convenient way to guarantee the convergence of series solution of nonlinear

problems by introducing an auxiliary parameter h, called the convergence-control parameter. In

2003, Liao described systematically the basic ideas of the HAM and some applications mostly related

to nonlinear ODEs.

Then, the HAM has been successfully applied by many researchers to solve a lot of nonlinear

problems in science, finance and engineering. The main advantage of this method is its flexibility

to select the auxiliary linear operator, the initial approximation, the auxiliary function and the

auxiliary control parameter [49—54].

2.2 Description of the Homotopy Analysis Method

The homotopy analysis method is based on the concept of the homotopy, a fundamental concept in

topology and differential geometry. Shortly speaking, a homotopy describes a kind of continuous

variation or deformation in mathematics. Essentially, a homotopy defines a connection between

different things in mathematics, which contain same characteristics in some aspects.

Definition 2.1 A homotopy between two continuous functions f(x) and g(x) from a topological

space X to a topological space Y is formally defined to be a continuous function H : X × [0, 1]→ Y

from the product of the space X with the unit interval [0, 1] to Y such that, if x ∈ X then H(x; 0) =

f(x) and H(x; 1) = g(x).
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The concept of homotopy defined above for functions can be easily expanded to equations.

For example, let us consider the general nonlinear equation:

N(u(x, t)) = 0, (2.1)

where N is a nonlinear operator and u(x, t) is unknown function of the independent variables x

and t.

2.2.1 Zero-order deformation equation

We construct the homotopy

(1− q)L[φ(x, t, q)− u0(x, t)] = qhH(x, t){N(φ(x, t))}, (2.2)

where L is an auxiliary linear operator with the property L[0] = 0, q ∈ [0, 1] is the embedding

parameter in topology (called the homotopy parameter), φ(x, t; q) is the solution of (2.2) for q ∈
[0, 1], u0(x, t) is an initial guess, h 6= 0 is the so-called “convergence-control parameter”, and H(x, t)

is an auxiliary function that is non-zero almost everywhere, respectively. Note that, in the frame

of the homotopy, we have great freedom to choose the auxiliary linear operator L, the initial guess

u0(x, t) , the auxiliary function H(x, t) and the value of the convergence-control parameter h.

When q = 0, due to the property L[0] = 0, we have from (2.2) the solution

φ(x, t; 0) = u0(x, t), (2.3)

When q = 1, since h 6= 0 and H(x, t) 6= 0 , equation (2.2) is equivalent to the original nonlinear

equation (2.1) so that we have

φ(x, t; 1) = u(x, t), (2.4)

where u(x, t) is the solution of the original equation (2.1). Thus, as the homotopy parameter

q increases from 0 to 1, the solution φ(x, t; q) of (2.2) varies continuously from the initial guess

u0(x, t) to the solution u(x, t) of the original equation (2.1). As a result, equation (2.2) is called

the zeroth-order deformation equation the base of HAM wich builds a connection (i.e. a continuous

mapping/deformation) between a given nonlinear problem and a relatively

much simpler linear ones.

It should be noted that we have great freedom and large flexibility in the frame of the HAM to

construct the so-called zeroth-order deformation equation using the concept homotopy in topology.

Especially, the convergence-control parameter h plays an important role in the frame of the HAM.

Expanding φ(x; t; q) in Maclaurin series with respect to q i,e

2.2. Description of the Homotopy Analysis Method 22
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φ(x, t, q) = u0(x, t) +

∞∑
m=1

um(x, t)qm (2.5)

converges at q = 1. Then, we have the approximation series

u(x, t) = u0(x, t) +
∞∑
m=1

um(x, t) (2.6)

2.2.2 High-order deformation equation

Substituting the series (2.5) into the zeroth-order deformation equation (2.2) and differentiate m-

times with respect to q then dividing them by m! and finally setting q = 0, we get the following

mth-order deformation equation:

L[um(x, t)− χmum−1(x, t)] = hH(x, t){Rm−1(x, t)} (2.7)

where

Rk(x, t) =
1

k!

∂k

∂qk
[N(u(x, t))]|q=0 (2.8)

and

χm =

{
0, m ≤ 1

1, m > 1
(2.9)

The so-called mth−order deformation equation (2.7) is a linear which can be easily solved by using
symbolic computation software such as Matlab.

2.3 Convergence of the Homotopy Analysis Method

Liao in [51, 52] proved that if the series solution
∞∑
k=0

uk(x, t) given in (2.6) is convergent then it is

an exact solution of the nonlinear problem (2.1)

Theorem 2.1 [77] Let the solution components u0, u1, u2, . . . be defined as given in (2.6). The

series solution
∞∑
k=0

uk(x, t) converges if ∃0 < γ < 1 such that ‖uk+1‖ ≤ γ ‖uk‖ ,∀k ≥ k0, for some

k0 ∈ N.
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Theorem 2.2 [77] Assume that the series solution
∞∑
k=0

uk(x, t) defined in (2.6), is convergent to

the solution u(x, t). If the truncated series
m∑
k=0

uk(x, t) is used as an approximation to the solution

u(x, t) of the problem (2.1), then the maximum absolute truncated error is estimated as,

∥∥∥∥∥u(x, t)−
m∑
k=0

uk(x, t)

∥∥∥∥∥ ≤ 1

1− γ γ
m+1 ‖u0(x, t)‖ . (2.10)

2.4 The valid region of h and the h-curves

The convergence control parameter h plays a key role in the HAM. The value of the auxiliary

parameter h can be freely chosen to increase the convergence rate of the solution series, the freedom

of selecting h is subject to the so-called valid region of h which can be obtained by the so-called

h-curves. These curves have been successfully handled in many nonlinear problems. It has been

found by the HAM researchers that there often exists such an effective region that certain values

of h obtained from some physical quantities result in a convergent homotopy series solution. Even

though such a region can always be found, with less computational effort as compared to the squared

residual, by plotting the curves of these unknown quantities versus h, it is easy to discover the valid

region of h which corresponds to the line segment nearly parallel to the horizontal axis. However,

such kind of h-curves can not tell us the best convergence-control parameter h, which corresponds

to the fastest convergent series.

2.5 Somemethods based on the Homotopy Analysis Method

2.5.1 Homotopy perturbation method

In 1998 Jihuan He published the so-called “homotopy perturbation method”. Like the early HAM,

the “homotopy perturbation method”is based on constructing a homotopy equation

(1− q)L[φ(x, t; q)− u0(x, t)] = −qN [φ(x, t, q)] = 0, x ∈ Ω, t > 0, q ∈ [0, 1] (2.11)

which is exactly the same as the zeroth-order deformation equation (2.2). Like the HAM, the

solution φ(x, t; q) is also expanded into Maclaurin series

φ(x, t; q) = u0(x, t) +

∞∑
n=0

un(x, t)qn (2.12)
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and the approximation is gained by setting q = 1, say,

u(x, t) = u0(x, t) +

∞∑
n=0

un(x, t) (2.13)

Obviously, (2.18) and (2.19) are exactly the same as (2.5) and (2.6), respectively.The only difference

between the “homotopy perturbation method”and the early HAM is that the embedding parameter

q ∈ [0, 1] is regarded as a “small parameter”so that the governing equation of un(x, t) is gained by

substituting the series (2.18) into (2.17) and equating the coeffi cients of the like-power of q.

However, in 2007 Hayat and Sajid [31] proved that, substituting the Maclaurin series the series

(2.18) into (2.17),then differentiating n times with respect to the embedding parameter q, after that

dividing by n! and finally equating the coeffi cients of the like-power of q and setting q = 0, one

obtains

L[un(x)− χnun−1(x)] = − 1

k!

∂k

∂qk
[N(u(x, t))]|q=0 (2.14)

which is the same as the high-order deformation equation (2.7) exactly!

Therefore, Sajid and Hayat [83] pointed out that “nothing is new in Dr. He’s approach, except

the new name the homotopy perturbation method”.

Unfortunately, like the early HAM, the so-called “homotopy perturbation method”can not guaran-

tee the convergence of approximations, so that it is valid only for weakly nonlinear problems with

small physical parameters, as reported by many researchers.

Abbasbandy [1], Liang and Jeffrey [46], Turkyilmazoglu [89] and others proved in their works

that the so-called “homotopy perturbation method”is exactly the same as the early HAM. Thus, as

a special case of the modified HAM when h = −1, the so-called “homotopy perturbation method”

can not give anything new indeed. Besides, they also reveal the importance of the convergence-

control parameter h in theory. The use of the convergence-control parameter h is a milestone of the

HAM: it is the convergence-control parameter h which provides us a convenient way to guarantee

the convergence of series solution so that the HAM becomes independent of small/large physical

parameters in essence. In fact, it is the convergence-control parameter h which differs the HAM

from all other analytic approximation methods.

2.5.2 Optimal homotopy asymptotic method

In 2007, Yabushita et al [92] first used the minimum of squared residual of governing equations

to determine optimal convergence-control parameters in the frame of the HAM which suggested to
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use in 2008 by Akyildiz and Vajravelu [4]. Then Marinca and Heri̧sanu [59] suggested the

so-called “optimal homotopy asymptotic method”.

Conside rthe following partial differential equation:

L(u(x, t)) +N(u(x, t)) = 0, x ∈ Ω

B(u,
∂u

∂t
) = 0, x ∈ Γ

(2.15)

where L is a linear operator, x, t denote independent variable, u(x, t) is unknown function, N(u(x, t))

is a nonlinear operator, B is a boundary operator and Γ is the boundary of the domain Ω .

We first construct the homotopy

(1− q)L[φ(x, t; q)] = H(q)N(φ(x, t; q))

B(φ(x, t; q),
∂φ(x, t; q)

∂t
) = 0, x ∈ Γ

(2.16)

where q ∈ [0, 1] is an embedding parameter, H(q) is a nonzero function for q 6= 0 and H(0) = 0,

φ(x, t; q) is an unknown function, respectively.

Obviously, when q = 0 and q = 1 it holds

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t) (2.17)

respectively. Therefore, when q increase from 0 to 1, the solution φ(x, t) varies from u0(x, t) to the

solution u(x, t). The zeroth-order problem is obtained from (2.21) when q = 0,

L(u0(x, t)) = 0, B(u0,
∂u0

∂t
) (2.18)

The auxiliary function H(q) is chosen in the form

H(q) = qC1 + q2C2 + q3C3 + · · · , (2.19)

where C1, C2, C3, . . . are constants which can be determined later.To get an approximate solution,

φ(x, t; q, Ci) is expanded in a Taylors series about q as

φ(x, t; q, Ci) = u0(x, t) +
+∞∑
k=1

uk(x, t;Ci)q
k, i = 1, 2, 3, . . . (2.20)

Substituting equation (2.26) into equation (2.22) and equating the coeffi cients of like powers of q,

the first and second-order problems are given as

L(u0(x, t)) = C1N0(u0(x, t)), B(u1,
∂u1

∂t
) = 0 (2.21)
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L(u2(x, t))− L(u1(x, t)) = C2N0(u0(x, t)) + C1[L(u1(x, t)) +N1(u0(x, t), u1(x, t))]

B(u2,
∂u2

∂t
) = 0

(2.22)

and the general governing equations for uk(x, t) are given as

L(uk(x, t)) −L(uk−1(x, t)) = CkN0(u0(x, t))

+
k−1∑
i=1

Ci[L(uk−i(x, t)) +Nk−i(u0(x, t), u1(x, t), . . . , uk−1(x, t))]

k = 2, 3, . . . , B(uk,
∂uk
∂t

) = 0

(2.23)

where Ni; i > 0, are the coeffi cients of qi in the nonlinear operator N :

N(u(x, t)) = N0(u0(x, t) + qN1(u0(x, t), u1(x, t)) + q2N2(u0(x, t), u1(x, t), u2(x, t)) + . . . (2.24)

It should be emphasized that the uk for k > 0 are governed by the linear equations (2.24), (2.27),

(2.28) and (2.29) with the linear boundary conditions that come from the original problem, which

can be easily solved. The convergence of the series(2.26) depends upon the auxiliary constants

C1, C2,. . . . If it is convergent at q = 1, one has

u(x, t;Ci) =
∞∑
k=1

uk(x, t;Ci) (2.25)

Generally speaking, the solution of equation (2.21)can be determined approximately in the form

ũ(m) = u0(x, t) +
m∑
k=1

uk(x, t;Ci) (2.26)

We note that the last coeffi cient Ck can be a function of x, t. Substituting equation (2.32) into

equation (2.22) results in the following residual:

R(x, t;Ci) = L(ũ(m)(x, t;Ci)) +N(ũ(m)(x, t;Ci)), i = 1, 2, . . . (2.27)

If R(x, t;Ci) = 0 then ũ(m)(x, t;Ci) happens to be the exact solution. Generally such a case will

not arise for nonlinear problems, but we can minimize the functional

J(Ci) =

∫ t

0

∫
Ω

R2(x, t;Ci)dxdt (2.28)

where R is the residual. The unknown constants Ci(i = 1, 2, . . . ,m) can be optimally identified

from the conditions
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∂J

∂C1

=
∂J

∂C2

= · · · = ∂J

∂Cm
= 0 (2.29)

The disadvantage of the OHAM is the requirement to solve a set of coupled nonlinear algebraic

equation for the unknown convergence-control parameters C1, C2, C3,. . . , Cm which will be obtained

from relation (2.35). It is clear that for the low order of m, the nonlinear algebraic system can be

solved with some ease but if m is large it becomes more diffi cult to solve.

2.5.3 Spectral Homotopy Analysis Method

The approach that use spectral methods falls under the aegis of the Spectral Analysis Method

(SHAM). Motsa et al [69] was one of the first authors to consider the so-called “spectral homotopy

analysis method” by using the Chebyshev pseudospectral method to solve the linear high-order

deformation equations and choosing the auxiliary linear operator L in terms of the Chebyshev

collocation matrices.

In theory, any a continuous function in a bounded interval can be best approximated by Chebyshev

polynomial. So, the SHAM provides us larger freedom to choose the auxiliary linear operator L

and initial guess in the frame of the HAM. It is valuable to expand the SHAM for nonlinear partial

differential equations. Besides, it is easy to employ the optimal convergence-control parameter in

the frame of the SHAM. Thus, the SHAM has great potential to solve more complicated nonlinear

problems, although further modifications in theory and more applications are needed.

Chebyshev polynomial is just one of special functions. There are many other special functions such

as Hermite polynomial, Legendre polynomial, Airy function, Bessel function, Riemann zeta function

and so on. Since the HAM provides us extremely large freedom to choose auxiliary linear operator

L and initial guess, it should be possible to develop a “generalized spectral HAM”which can use

proper special functions for some nonlinear problems.

2.5.4 Generalized boundary element method

In essence, the HAM replaces a nonlinear problem by means of an infinite number of linear sub-

problems, since the high-order deformation equation is always linear and governed by the auxiliary

linear operator L. If the initial guess and the auxiliary linear operator L are so properly chosen

that the analytic solution of the highorder deformation equation can be gained, then we obtain

the analytic homotopy approximation exactly, whose convergence is guaranteed by choosing proper

value of the convergence-control parameter. However, obviously, the linear high-order deformation

equation can be solved by means of different numerical techniques, such as the finite difference
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method (FDM), the finite element method (FEM), the finite volume method (FVM), the boundary

element method (BEM), and so on. So, in theory, it is very easy to combine the HAMwith advanced

numerical techniques. Since the numerical techniques are valid for differential equations defined in

rather complicated domain, the combination of the HAM with numerical techniques can greatly

enlarge the application fields of the HAM.

For example, based on the HAM, Liao [47] proposed the so-called “generalized boundary element

method”. The traditional BEM is often valid for a linear differential equation L0(u) = 0, whose

solution can be expressed by integration of a fundamental solution on the boundary. When the

traditional BEM is applied to solve a nonlinear differential equation

L0(u) +N0(u) = 0

where L0(u) and N0(u) denote the linear and nonlinear parts of the governing equation, one often

rewrites L0(u) = −N0(u) and uses iteration approach by regarding the right-hand side term as

the known ones. Unfortunately, this approach has strong restrictions on the linear operator L0,

and thus does not work if the fundamental solution of L0 is unknown, or if the highest order of

derivative of L0 is lower than that of the governing equation, or if the linear operator L0 does

not exist at all, and so on. However, the HAM provides us extremely large freedom to choose the

auxiliary linear operator L. So, in the frame of the HAM, we can always choose such a proper

auxiliary linear operator L that the linear high-order deformation equation can be solved by means

of the traditional BEM. Combining the HAM with the traditional BEM in this way, many nonlinear

problems can be solved by means of the so-called generalized BEM. For example, by means of the

generalized BEM, in 2005 Wu and Liao successfully obtained the convergent results of driven cavity

viscous flows at Reynolds number up to Re = 10000, governed by the exact Navier-Stokes equation.

Note that, one often obtains convergent numerical result of driven cavity flow with only Re = 1000

by means of traditional BEM.

2.6 Application of HAM for solving fractional differential

equations

In recent years, the fractional differential equations have gained importance, due to their numerous

applications in many fields of physics and engineering. Song and zhang, Cang and his co-authors

used the HAM to solve nonlinear differential equation for the first time then many researchers

used the same analytic approach in their works [5, 29, 76, 79], we consider the following nonlinear

fractional differential equation to illustrate its basic ideas:
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Dαu(x, t) +N(u(x, t) = 0 (2.30)

where m−1 < α ≤ m, N is a nonlinear operator, Dα is the Caputo fractional derivative and u(x, t)

is unknown function of the independent variables x and t.

The so-called zero-order deformation equation can be defined as:

1− q)L[φ(x, t; q)− φ0(x, t)] = qhH(x, t){Dαu(x, t) +N(u(x, t)} (2.31)

where 0 ≤ q ≤ 1 is the embedding parameter, h 6= 0 is a non zero auxiliary parameter, H(x, t) 6= 0

is an auxiliary function, φ0 the initial guess of u(x, t) and L is an auxiliary linear operator that may

be defined as L =
dm

dtm
or L =

dα

dtα
.

When q = 0 the equation (2.37) becomes

L[φ(x, t; 0)− φ0(x, t)] = 0, (2.32)

and when q = 1 the zero-order deformation equation reduces to the original equation (2.36). Thus

as q varies from 0 to 1, the solution of (2.37) varies from the initial guess to the solution u(x, t).

Expanding

φ(x, t; q) in Taylor series with respect to q, one has

φ(x, t; q) = φ0(x, t) +
∞∑
n=0

φn(x, t)qn, (2.33)

where

φn(x, t) =
∂nφ(x, t; q)

∂qn
|q=0. (2.34)

If the auxiliary linear operator, the initial guess, and the auxiliary parameter h are so properly

chosen, the series (2.39) converges at q = 1, one has

u(x, t) = φ0(x, t) +
∞∑
n=0

φn(x, t). (2.35)

Differentiating Eq. (2.37) m times with respect to the embedding parameter q and then setting

q = 0 and finally dividing them by m!, we have the so-called mth-order deformation equation

L[um(x, t)− χmum−1(x, t)] = hH(x, t){Rm−1(x, t)}, (2.36)

where

Rk(x, t) =
1

k!

∂k

∂qk
[Dαu(x, t) +N(u(x, t))]|q=0, (2.37)
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and

χm =

{
0, m ≤ 1

1, m > 1
. (2.38)

The so-called mth−order deformation equation (2.42) is a linear which can be easily solved by using
symbolic computation software such as Matlab.

2.7 Numerical Examples

Example 2.1 Consider the following nonlinear differential equation

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
= 0, x ∈ R, t ∈ [0, 1]. (2.39)

Subject to the initial condition

u(x, 0) = 2x. (2.40)

Which has the following exact solution:

u(x, t) =
2x

1 + 2t
. (2.41)

Following the homotopy analysis approach, if we select the auxiliary linear operator as L[u(x, t)] =
∂u(x, t)

∂t
, we can construct the homotopy

(1− q)L[φ(x, t, q)− φ0(x, t)] = qhH(x, t){∂φ(x, t)

∂t
+ φ(x, t)

∂φ(x, t)

∂x
− ∂2φ(x, t)

∂x2
}. (2.42)

Taking H(x, t) = 1 and substituting (2.5) into the homotopy (2.48) and equating the terms with

identical powers of q, we obtain the following deformation equations:

∂φ1(x, t)

∂t
= h(

∂φ0(x, t)

∂t
+ φ0(x, t)

∂φ0(x, t)

∂x
− ∂2φ0(x, t)

∂x2
)

∂φ2(x, t)

∂t
= h(

∂φ1(x, t)

∂t
+N1(φ0, φ1))

...
∂φk(x, t)

∂t
= h(

∂φk−1(x, t)

∂t
+Nk−1(φ0, φ1, . . . , φk−1)),

(2.43)

where

Nk−1 =
1

(k − 1)!

∂k−1

∂qk−1
[(φ0+. . .+qk−1φk−1)

∂

∂x
(φ0+. . .+qk−1φk−1)− ∂2

∂x2
(φ0+. . .+qk−1φk−1)]. (2.44)
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To solve the above equations, we select the initial guess as φ0(x, t) = 2x, the first few components

of the homotopy analysis solution for Equation(2.45) can be recursively derived as:

φ1(x, t) = 2hx(1 + 2t)

φ2(x, t) = 2hx(1 + h)(1 + 2t) + 8h2x(t+ t2)

φ3(x, t) = 2hx(1 + h)2(1 + 2t) + 8h2x(1 + h)(t+ t2) + 8h2x(1 + h)(t+ t2)

+32h3x(
t2

2
+
t3

3
) + 4h3x(t+ 2t2 +

4t3

3
)

...

(2.45)

and so on, in the same manner, the rest of components can be obtained.

The approximate solution can be given by using the formula (2.6). In figure 2.1, we plot the exact

solutions, the approximate solutions obtained using the Homotopy Analysis Method (HAM) for

problem (2.45)when x = 1, N = 6 and h = −1.

Figure 2.1: plot of approximate solution u(x, t) =
N∑
k=0

φk(x, t) and the

exact solution of the equation (2.45) for x = 1, h = −1 and N = 6.

Example 2.2 Consider the non-linear fractional differential equation:

∂αu(x, t)

∂tα
+ u(x, t)

∂u(x, t)

∂x
= 0 (2.46)

subject to the initial condition

u(x, 0) = x. (2.47)
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The exact solution of this equation, when α = 1 is:

u(x, t) =
x

1 + t
. (2.48)

To solve the equation (2.52) according to the HAM, we select the linear operator as L(u(x, t)) =
∂αu(x, t)

∂tα
, then, we can construct the homotopy

(1− q)L[φ(x, t, q)− φ0(x, t)] = qhH(x, t){∂φ(x, t)

∂t
+ φ(x, t)

∂φ(x, t)

∂x
} (2.49)

Taking H(x, t) = 1 and substituting (2.5) into (2.55) then equating the terms of identical powers of

q, we obtain the following deformation equations

∂αφ1(x, t)

∂tα
= h(

∂αφ0(x, t)

∂tα
+ φ0(x, t)

∂φ0(x, t)

∂x
)

∂αφ2(x, t)

∂tα
= h(

∂αφ1(x, t)

∂tα
+N1(φ0, φ1))

...
∂αφk(x, t)

∂tα
= h(

∂αφk−1(x, t)

∂tα
+Nk−1(φ0, φ1, . . . , φk−1))

(2.50)

where

Nk−1 =
1

(k − 1)!

∂k−1

∂qk−1
[(φ0 + . . .+ qk−1φk−1)

∂

∂x
(φ0 + . . .+ qk−1φk−1)] (2.51)

To solve the above equations, we select the initial guess as φ0(x, t) = x, the first few components of

the homotopy analysis solution for Equation(2.52) can be recursively derived as:

φ1(x, t) = hx(1 +
tα

Γ(α + 1)
)

φ2(x, t) = hx(1 + h)(1 +
tα

Γ(α + 1)
) + 2h2x(

tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
)

φ3(x, t) = (1 + h)[hx(1 + h)(1 +
tα

Γ(α + 1)
) + 2h2x(

tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
)]

+2hx(hx(1 + h)(
tα

Γ(α + 1)
+

t2α

Γ(2α + 1)
+

tα

Γ(α + 1)
) + 2h2x(

t2α

Γ(2α + 1)
+

t3α

Γ(3α + 1)
))

+h3x(
tα

Γ(α + 1)
+ 2

t2α

Γ(2α + 1)
+

Γ(2α + 1)t3α

Γ(α + 1)2Γ(3α + 1)
)

...
(2.52)

and so on, in the same manner, the rest of components can be obtained.

The approximate solution can be given by using the formula (2.6). In figure 2.2, we plot the exact

solutions, the approximate solutions obtained using the Homotopy Analysis Method (HAM) for
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problem (2.52)when x = 1, N = 5 and h = −2.

Figure 2.2: plot of approximate solution u(x, t) =
N∑
k=0

φk(x, t) and the exact

solution of the equation (2.52) for x = 1, h = −2 and N = 5.
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CHAPTER 3

THE OPTIMAL HOMOTOPY ANALYSIS METHOD APPLIED TO

NONLINEAR TIME-FRACTIONAL HYPERBOLIC PDES

3.1 Introduction

In most recent times, a novel approach that relies on a stochastic arithmetic has been introduced

by [72]. It has been shown that the optimization with using this approach is serving us in obtaining

the optimal values for each of iteration, the parameters of convergence control, and the approximate

solution deduced by the HAM [72]. Besides, Odibat [73, 76] has showed a novel procedure, estab-

lished based on employing Taylor series linearization method, for designing an optimal auxiliary

linear operator with its corresponding optimal initial guessing when implementing the so-called the

linearization-based approach of HAM or simply LHAM. He has revealed that such two optimum

contributors will accelerate the convergence of series solutions for the nonlinear fractional-order DEs

(FoDEs). That is, a powerful improvement of OHAM called LHAM has been introduced in [73,76]

for solving the nonlinear FoDEs. In addition in this chapter we presente the proposed method,

and we offer a further extension, enabling one to implement this new scheme on the time-fractional

hyperbolic PDE which has the following form:

∂α

∂tα
u(x, t) = γ

∂2

∂x2
u(x, t) +N [u(x, t)], t > 0, (3.1)

subject to the following initial and boundary conditions{
u(x, 0) = f(x), ∂

∂t
u(x, 0) = g(x),

u(x, t)→ 0, as |x| → ∞, t > 0,
. (3.2)
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where 1 < α ≤ 2, γ ∈ R, N is a the nonlinear term given in the problem.

This work was published in Numerical Methods for Partial Differential Equations titled The op-

timal homotopy analysis method applied on nonlinear time-fractional hyperbolic partial differential

equations. [10]

3.2 The HAM

In this part, for the purpose of dealing with the nonlinear problem given in (3.1), a trustworthy

approach of HAM is introduced by means of deriving its basic ideas from the references [8, 50—52,

54, 55]. In accordance with how a suitable homotopy is identified, one can establish the following

one:

(1− q)L[Φ(x, t; q)− φ0(x, t)] = qhH(
∂α

∂tα
Φ(x, t; q)− γ ∂

2

∂x2
Φ(x, t; q)−N [Φ(x, t; q)]) (3.3)

where q ∈ [0, 1] is the embedding parameter, h is a non zero auxiliary parameter, φ0(x, t) is an

initial guess, H(x, t) 6= 0 is an auxiliary function and L is an auxiliary linear operator with the

following property

L[u(x, t)] = 0, when u(x, t) = 0. (3.4)

Obviously, on can note that when q = 0 then Φ(x, t; 0) = φ0(x, t) whereas when q = 1, then

Φ(x, t; 1) = u(x, t). Thus, , the solution Φ(x, t; q) will varies from the initial guess φ0(x, t) to the

solution u(x, t) corresponding to the increasing of q from 0 up to 1. However the solution of (3.3)

can be expressed as a power series in q as follows:

Φ(x, t; q) = φ0(x, t) +
∞∑
k=1

qkφk(x, t). (3.5)

If the right-hand side of (3.5) converges at q = 1, then, the so-called homotopy series solution will

be obtained in the following form:

u(x, t) = φ(x, t; 1) = φ0(x, t) +

∞∑
m=1

φm(x, t). (3.6)

Differentiating (3.3) m times with respect to q, then setting q = 0, and finally dividing them by m!,

yields the following so-called higher order deformation equations:

L[φm(x, t)− χmφm−1(x, t)] = hHR[φm−1(x, t)], m ≥ 1, (3.7)

3.2. The HAM 36



Chapter 3. The optimal homotopy analysis method applied to nonlinear time-fractional
hyperbolic PDEs

where

R[φm−1(x, t)] =
1

(m− 1)!

∂m−1

∂qm−1
(
∂α

∂tα
Φ(x, t; q)− γ ∂

2

∂x2
Φ(x, t; q)−N [Φ(x, t; q)])|q=0, (3.8)

and

χm =

{
0, m ≤ 1

1, m > 1
. (3.9)

One further principal, the HAM success is based on the suitable choice for each of the initial guess

φ0(x, t), the convergence control parameter h, the nonzero function H(x, t) and also the linear

operator L. In other words, such method allows one to adapt and also control the series solution

convergence of the nonlinear problem, opening minds to the need of finding optimal values for all

these assumptions of the problem.

3.3 The proposed design method

As a result of using the OHAM, there are several evidences showing how the optimal selections of

both auxiliary the linear operator and the initial guessing control the convergence region for the

series solutions and adjust the rate of such convergence for the nonlinear problem (see [73, 76]).

This, indeed, motivated us to construct an appropriate auxiliary linear operator on the basis of

using the Taylor series linearization of such problem. This, surely, would accelerate the convergence

of series solution as reported in the same references above cited. However, the basic idea of the

proposed approach begins first with a linearization of the nonlinear problem given in (3.1). That is,

we firstly assume G as a function of three variables in the form G(Dαu, uxx, u) = Dαu−γuxx−N [u].

As
∂G

∂Dαu
|t=0 = 1 and

∂G

∂uxx
|t=0 = −γ, the Taylor series linearization of G at t = 0 can be derived

as:

G(Dαu, uxx, u) ≈ Dαu− γuxx +
∂G

∂u
|t=0u (3.10)

Immediately, we can establish the following optimal linear operator:

L(u(x, t)) =
∂α

∂tα
u(x, t)− γ ∂

2

∂x2
u(x, t; )− C(x)u(x, t), (3.11)

where 1 < α ≤ 2, and where C(x) can be obtained according to the following relation:

C(x) =
∂N

∂u
|t=0, (3.12)

Thus, the LHAM suggests the following homotopy
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(1− q)[ ∂
α

∂tα
− qhH(γ

∂2

∂x2
+ C(x))][Φ(x, t; q)− φ0(x, t)]

= qhH(
∂α

∂tα
Φ(x, t; q)− γ ∂

2

∂x2
Φ(x, t; q)−N [Φ(x, t; q)]).

(3.13)

Hence the solution u(x, t) =
∞∑
k=0

φk(x, t) of (3.1) can be readily obtained so that the components

functions φk(x, t), k ≥ 1 satisfy the following deformation equations

∂α

∂tα
(φk+1(x, t)− χkφk(x, t))

= h(
∂α

∂tα
φk − γ

∂2

∂x2
φk −Nk[φ0, φ1, . . . , φk] + (γ

∂2

∂x2
+ C(x))(χkφk − χk−1φk−1)),

(3.14)

where

Nk[φ0, . . . , φk] =
1

k!
[
∂k

∂qk
(N [φ0 + qφ1 + q2φ2 + . . .+ qkφk])]|q=0.

Taking H = 1 in (3.13) and using u(x, t) =
∞∑
k=0

φk(x, t) yield the following states

∂α

∂tα
φ1 = h(

∂α

∂tα
φ0 − γ

∂2

∂x2
φ0 −N [φ0]),

∂α

∂tα
φ2 = (1 + h)

∂α

∂tα
φ1 − h(γ

∂2

∂x2
φ1 +N1[φ0, φ1]− (γ

∂2

∂x2
+ C(x))φ1),

∂α

∂tα
φk+1 = (1 + h)

∂α

∂tα
φk + h(γ

∂2

∂x2
+ C(x))(φk − φk−1)

−h(γ
∂2

∂x2
φk +Nk[φ0, φ1, . . . , φk]), k ≥ 2

(3.15)

One might observe that the initial approximation φ0 could be chosen to be as φ0 = (g(x)t+ f(x)),

while for all k ≥ 1, the other component functions φk(x, t) are obtained by solving (3.14). Besides,

the truncated series
M∑
k=0

φk(x, t), is used to be as an approximate solution for problem (3.1) which

its solution has the form u(x, t) =
∞∑
k=0

φk(x, t). However, the following examples will show the

achievement of such new approach which will be performed by obtaining an optimal auxiliary linear

operator, and then designing a suitable linearization-based homotopy for some given problems.

3.4 Numerical results

This section examines the effectiveness of the proposed LHAM by providing several numerical

comparisons performed between the results of using the homotopy constructed in (3.13), and the

results of using the standard HAM. These comparisons are carried out by considering two nonlinear

problems.
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Example 3.1 Consider the nonlinear time-fractional hyperbolic PDE given in (3.1) with γ = 0

and N [u(x, t)] =
∂

∂x
(u(x, t)∂u(x,t)

∂x
). That is,

∂α

∂tα
u(x, t) =

∂

∂x
(u(x, t)

∂u(x, t)

∂x
), , t > 0, (3.16)

associated with the following initial conditions:

u(x, 0) = x2, ut(x, 0) = −2x2. (3.17)

where 1 < α ≤ 2 and x ∈ R. The exact solution to problem (3.16), when α = 2, is given by

u(x, t) = (
x

(t+ 1)
)2 (3.18)

In regarding to the standard HAM, usually it has been performed by first selecting of the auxiliary

linear operator, which could be as L(u(x, t)) =
∂α

∂tα
u(x, t), then constructing a suitable homotopy,

which is also could be as in the following form:

(1− q) ∂
α

∂tα
[Φ(x, t; q)− φ0(x, t)] = qhH[

∂α

∂tα
Φ(x, t; q)− ∂

∂x
(Φ(x, t; q)

∂Φ(x, t; q)

∂x
)]. (3.19)

Taking H(x, t) = 1, and substituting Φ(x, t) =
∞∑
k=0

φk(x, t) into (3.19) yield the following deformation

equation: 
∂α

∂tα
φ1 = h(

∂α

∂tα
φ0 −

∂

∂x
(φ0

∂φ0

∂x
)),

∂α

∂tα
φk+1 =

∂α

∂tα
φk + h(

∂α

∂tα
φk −Nk[φ0, φ1, . . . , φk]), k ≥ 1,

(3.20)

where

Nk[φ0, φ1, . . . , φk]

=
1

k!
[
∂k

∂qk
(
∂

∂x
((φ0 + qφ1 + q2φ2 + q3φ3 + . . .)

∂(φ0 + qφ1 + q2φ2 + q3φ3 + . . .)

∂x
))]|q=0.

(3.21)

Due to φ0(x, t) = u(x, 0) + ut(x, 0)t, one can selects the initial approximation to be as φ0(x, t) =

x2(1 − 2t), which recursively yields the following first few components of the homotopy analysis

solution: 

φ1 = −6hx2(
tα

Γ(α + 1)
− 4

tα+1

Γ(α + 2)
+ 8

tα+2

Γ(α + 3)
),

φ2 = −6h(1 + h)x2(
tα

Γ(α + 1)
− 4

tα+1

Γ(α + 2)
+ 8

tα+2

Γ(α + 3)
)

+72h2x2(
t2α

Γ(2α + 1)
− 2(α + 3)

t2α+1

Γ(2α + 2)

+8(α + 3)
t2α+2

Γ(2α + 3)
− 16(α + 3)

t2α+3

Γ(2α + 4)
).

...

(3.22)
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On the other side, the optimal linear operator could be designed according to the LHAM as follows:

L(u(x, t)) =
∂α

∂tα
u(x, t)− 2qhHu(x, t). (3.23)

Now, as φ0(x, t) = x2(1− 2t), the following homotopy could be constructed:

(1− q)( ∂
α

∂tα
− 2qhH)[Φ(x, t; q)− φ0(x, t)] = qhH[

∂α

∂tα
Φ(x, t; q)− ∂

∂x
(Φ(x, t; q)

∂Φ(x, t; q)

∂x
)]. (3.24)

Setting H = 1 and using Φ(x, t; q) =
∞∑
k=0

qkφk(x, t) yield the following deformation equations:
∂α

∂tα
φ1 = h(

∂α

∂tα
φ0 −

∂

∂x
(φ0

∂φ0

∂x
)),

∂α

∂tα
φ2 = (1 + h)

∂α

∂tα
φ1 − h(N1(φ0, φ1)− 2φ1),

∂α

∂tα
φk+1 = (1 + h)

∂α

∂tα
φk − h(Nk[φ0, φ1, . . . , φk]− 2(φk − φk−1)), k ≥ 2,

(3.25)

Consequently, the following states of the homotopy analysis solution can be recursively derived from

solving the above equations:

φ1 = −6hx2(
tα

Γ(α + 1)
− 4

tα+1

Γ(α + 2)
+ 8

tα+2

Γ(α + 3)
),

φ2 = −6h(1 + h)x2(
tα

Γ(α + 1)
− 4

tα+1

Γ(α + 2)
+ 8

tα+2

Γ(α + 3)
)

+72h2x2(
t2α

Γ(2α + 1)
− 2(α + 3)

t2α+1

Γ(2α + 2)

+8(α + 3)
t2α+2

Γ(2α + 3)
− 16(α + 3)

t2α+3

Γ(2α + 4)
)

−12h2x2(
t2α

Γ(2α + 1)
− 4

t2α+1

Γ(2α + 2)
+ 8

t2α+2

Γ(2α + 3)
).

...

(3.26)

In furtherance of obtaining very satisfactory numerical results through using LHAM, we intend to

explore the effect of the convergent control parameter h on u(x, 0) through the interval [−3, 1.5].

Actually, several h-curves have been numerically plot in Figure 1 according to different values of

x. All these results may allow one to approximately determine the convergence interval of h that,

undoubtedly, necessary to find the LHAM’s solution, and may also lead to choose h itself. In

this example, we choose such parameter to be equal −0.5. Its, indeed, a proper choice during

implementing LHAM due to enable us to successfully gain a series solution convergence of problem

(3.16). For more insight, Figure 2 and Table 1 show some graphical comparisons between the exact

solution and the other two approximate solutions of problem (3.16) obtained by implementing the

standard HAM and the LHAM according to different values of x, when α = 2,M = 4, and h = −0.5.
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Figure 3.1:Plots of several h-curves according different values of x

For more insight, Figure 3.2 shows some graphical comparisons between the exact solution and the

other two approximate solutions of problem (3.16) obtained by implementing the standard HAM

and the LHAM according to different values of x, when α = 2, M = 4, and h = −0.5.
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Figure 3.2: Plots of approximate solutions using HAM and LHAM versus

the exact solution of (3.16) for α = 2 and h = −0.5

TABLE1 The numerical solution of problem (3.16) for α = 2 and h = −0.5
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Example 3.2 Consider the following time-fractional Klein-Gordon type equation:

∂α

∂xα
u(x, t) =

∂2

∂x2
u(x, t)− 3

4
u(x, t) +

3

2
u3(x, t), 1 < α ≤ 2, (3.27)

associated with the following initial conditions:

u(x, 0) = − sec(x), ut(x, 0) =
1

2
sec(x) tan(x). (3.28)

Note that the exact solution of the above problem for α = 2 is of the form:

u(x, t) = − sec(x+
1

2
t). (3.29)

Throughout using the standard HAM, we select the auxiliary linear operator as L(u(x, t)) =
∂α

∂tα
u(x, t),

and then we establish the following homotopy:

(1−q) ∂
α

∂tα
[Φ(x, t; q)−φ0(x, t)] = qhH[

∂α

∂tα
Φ(x, t; q)− ∂2

∂x2
Φ(x, t; q)+

3

4
Φ(x, t; q)−3

2
Φ3(x, t; q)]. (3.30)

Taking H(x, t) = 1, and substituting Φ(x, t) =
∞∑
k=0

φk(x, t) into (3.24) yield the following deformation

equation:
∂α

∂tα
φ1 = h(

∂α

∂tα
φ0 −

∂2

∂x2
φ0 +

3

4
φ0 −

3

2
φ3

0),

∂α

∂tα
φk+1 =

∂α

∂tα
φk + h(

∂α

∂tα
φk −

∂2

∂x2
φk +

3

4
φk −

3

2
Nk[φ0, φ1, . . . , φk]), k ≥ 1,

(3.31)

where

Nk[φ0, φ1, . . . , φk] =
1

k!
[
∂k

∂qk
(φ0 + qφ1 + · · ·+ qkφk)

3]|q=0.

Now, because of φ0(x, t) = u(x, 0) + ut(x, 0)t, one can selects φ0(x, t) = 1
2
t sec(x) tan(x) − sec(x),
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which leads us to the following few parts of solution:

φ1 = −9

8
h tan3(x) sec3(x)

tα+3

Γ(α + 4)
+

9

4
h tan2(x) sec3(x)

tα+2

Γ(α + 3)

−1

2
h tan(x) sec(x)(tan2(x) +

19

2
sec2(x)− 3

4
)

tα+1

Γ(α + 2)

+h sec(x)(tan2(x) +
5

2
sec2(x)− 3

4
)

tα

Γ(α + 1)

φ2 = h(1 + h)(−9

8
tan3(x) sec3(x)

tα+3

Γ(α + 4)
+

9

4
tan2(x) sec3(x)

tα+2

Γ(α + 3)

−1

2
tan(x) sec(x)(tan2(x) +

19

2
sec2(x)− 3

4
)

tα+1

Γ(α + 2)
+ sec(x)(tan2(x)

+
5

2
sec2(x)− 3

4
)

tα

Γ(α + 1)
) +

27

8
h2 sec3(x) tan(x)(3 tan4(x) + 2 sec4(x)

+ tan2(x)(9 sec2(x)− 1

4
))

t2α+3

Γ(2α + 4)
− 9

4
h2 sec3(x)(9 tan4(x) + 2 sec4(x)

+ tan2(x)(19 sec2(x)− 3

4
))

t2α+2

Γ(2α + 3)
+

1

2
h2 sec(x) tan(x)(tan4(x)

+61 sec4(x) + 36 sec3(x) + 2 tan2(x)(27 sec4(x) + 9 sec(x))− 3

2
tan2(x)

−87

8
sec2(x) +

19

2
)

t2α+1

Γ(2α + 2)
− h2 sec(x)(tan4(x) +

19

2
sec4(x)

+
1

2
tan2(x)(63 sec2(x)− 3)− 21

8
sec2(x) +

9

16
)

t2α

Γ(2α + 1)

+
81

16
h2(α + 5)(α + 4) sec5(x) tan5(x)

t2α+5

Γ(2α + 6)
− 81

4
h2(α + 4)(1

8
(α + 11))

sec5(x) tan4(x)
t2α+4

Γ(2α + 5)
+

9

4
h2 sec3(x) tan3(x)(

9

2
sec2(x)(α + 5)

+
1

4
(α + 2)(α + 3) tan2(x)− 3

16
(α + 2)(α + 3)))

t2α+3

Γ(2α + 4)
− 9

4
h2 sec3(x) tan2(x)

(
1

2
sec2(x)(

5

2
(α + 1)(α + 2) + 9) +

1

2
(α + 2)(α + 3) tan2(x)

−3

8
(α + 2)(α + 3))

t2α+2

Γ(2α + 3)
+

9

2
h2 sec3(x) tan(x)(

1

2
(2α + 3) tan2(x)

−3

8
(2α + 3) +

5

2
(α + 1) sec2(x))

t2α+1

Γ(2α + 2)
− 9

2
h2 sec3(x)(tan2(x)

+
5

2
sec2(x)− 3

4
)

t2α

Γ(2α + 1)
.

...
(3.32)

From the LHAM point of view, the optimal linear operator can be designed as:

L(u(x, t)) =
∂α

∂tα
u(x, t)− ∂2

∂x2
u(x, t)− 3

2
(
1

4
− 3 sec2(x))u(x, t). (3.33)
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As φ0(x, t) =
1

2
t sec(x) tan(x)− sec(x), the following homotopy might be constructed:

(1− q)( ∂
α

∂tα
− ( ∂2

∂x2
+ 3

2
(1

4
− 3 sec2(x)))qhH)[Φ(x, t; q)− φ0(x, t)]

= qhH[
∂α

∂tα
Φ(x, t; q)− ∂2

∂x2
Φ(x, t; q) + 3

4
Φ(x, t; q)− 3

2
Φ3(x, t; q)].

(3.34)

Taking H = 1 and using Φ(x, t; q) =
∞∑
k=0

qkφk(x, t) yield the following deformation equations:

∂α

∂tα
φ1 = h(

∂α

∂tα
φ0 −

∂2

∂x2
φ0 +

3

4
φ0 −

3

2
φ3

0),

∂α

∂tα
φk+1 =

∂α

∂tα
φk + h(

∂α

∂tα
φk −

∂2

∂x2
φk +

3

4
φk −

3

2
Nk[φ0, φ1, . . . , φk]

+(
∂2

∂x2
+

3

2
(
1

4
− 3 sec2(x))(φk − φk−1)), k ≥ 1,

(3.35)

One can recursively obtain the first few components of the solution of the problem (3.21) by solving

above equations. These components are of the form:

φ1 = −9

8
h tan3(x) sec3(x)

tα+3

Γ(α + 4)
+

9

4
h tan2(x) sec3(x)

tα+2

Γ(α + 3)

−1

2
h tan(x) sec(x)(tan2(x) +

19

2
sec2(x)− 3

4
)

tα+1

Γ(α + 2)

+h sec(x)(tan2(x) +
5

2
sec2(x)− 3

4
)

tα

Γ(α + 1)

φ2 = −h(1 + h)(
9

8
tan3(x) sec3(x)

tα+3

Γ(α + 4)
− 9

4
tan2(x) sec3(x)

tα+2

Γ(α + 3)

+
1

2
tan(x) sec(x)(tan2(x) +

19

2
sec2(x)− 3

4
)

tα+1

Γ(α + 2)
− sec(x)(tan2(x)

+
5

2
sec2(x)− 3

4
)

tα

Γ(α + 1)
− 3

2
(
3

4
− 3 sec2(x))h(

9

8
tan3(x) sec3(x)

t2α+3

Γ(2α + 4)

−81

4
h2(α + 4)(1

8
(α + 11)) sec5(x) tan4(x)

t2α+4

Γ(2α + 5)
+

9

4
h2 sec3(x) tan3(x)

−(
9

2
sec2(x)(α + 3) +

1

4
(α + 2)(α + 3) tan2(x)− 3

16
(α + 2)(α + 3)))

t2α+3

Γ(2α + 4)

−9

4
h2 sec3(x) tan2(x)(

1

2
sec2(x)(

5

2
(α+)(α + 2) + 9) +

1

2
(α + 2)(α + 3) tan2(x)

−3

8
(α + 2)(α + 3))

t2α+2

Γ(2α + 3)
+

9

2
h2 sec3(x) tan(x)(

1

2
(2α + 3) tan2(x)

3

8
(2α + 3)

+
5

2
(α + 1) sec2(x))

t2α+1

Γ(2α + 2)

9

2
h2 sec3(x)(tan2(x) +

5

2
sec2(x)− 3

4
)

t2α

Γ(2α + 1)

−9

4
tan2(x) sec3(x)

t2α+2

Γ(2α + 3)
+

1

2
tan(x) sec(x)(tan2(x) +

19

2
sec2(x)− 3

4
)

t2α+1

Γ(2α + 2)

− sec(x)(tan2(x) +
5

2
sec2(x)− 3

4
))

tα

Γ(α + 1)
+

81

16
h2(α + 5)(α + 4) sec5(x) tan5(x)

t2α+5

Γ(2α + 6)
.

...
(3.36)
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In order to explore the effect of the convergent control parameter h on u(x, 0), we plot several

h-curves, as shown in Figure 3.3, according to different values of x on [−3, 3]. In view of these

results, we may choose also h = −0.5 because it is a proper choice through implementing LHAM.

Likewise Example 1, we have performed some numerical comparisons, as shown in Figure 3.4 and

Table 2, between the exact solution and the other two approximate solutions of problem (3.27)

obtained by implementing the standard HAM and the LHAM according to different values of x,

when α = 2,M = 3, and h = −1.

Figure 3.3: Plots of several h-curves according different values of x
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Figure 3.4: Plots of two approximate solutions using HAM and LHAM versus

the exact solution of (3.27) for α = 2 and h = −1.

Table 2 The numerical solutions of problem (3.27) for α = 2 and h = −0.5.

Based on the numerical results illustrated in Figures 3.2 and 3.4 and Tables 1 and 2, one can

obviously deduce that the approximate solution obtained using the LHAM is precisely better than
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the other one obtained using the standard HAM.

3.5 Discussion and conclusion

In this chapter, an optimal approach of HAM, called the LHAM, is presented to solve nonlinear

time-fractional hyperbolic PDEs. The proposed approach employs the Taylor series approximation

of the nonlinear PDEs in order to obtain an optimal auxiliary linear operator and its corresponding

initial approximation. All illustrative examples show that the results obtained by using the LHAM

outperforms the other results obtained by the standard HAM.
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CHAPTER 4

THE OPTIMAL HOMOTOPY ASYMPTOTIC METHOD FOR

SOLVING TWO STRONGLY BENCHMARK OSCILLATORY

PROBLEMS WITH FRACTIONAL ORDER

4.1 Introduction

The Optimal Homotopy Asymptotic Method (OHAM) is reliable, straightforward, and effective

tool for offering accurate analytical approximate solutions to lots of strongly nonlinear problems

[11,61,80]. Besides, it was revealed that its key characteristic is its ability to optimally control the

convergence of approximate series solutions [11, 61, 80]. In this section we employs this method to

provide approximate analytic solution for two strongly benchmark nonlinear oscillatory problems

with fractional order through establishing an optimal auxiliary linear operator, an auxiliary function,

and also an auxiliary control parameter. These two nonlinear oscillators are: The fractional-order

Duffi ng-relativistic oscillator and the fractional-order stretched elastic wire oscillator (with a mass

attached to its midpoint).

This work was published in Mathematics titled The Optimal Homotopy Asymptotic Method for

Solving Two Strongly Fractional-Order Nonlinear Benchmark Oscillatory Problems [86].

4.2 The Homotopy Asymptotic Method

The HAM is a common analytical approach for solving both weakly and strongly nonlinear prob-

lems. In pursuance of this method, approximate series solutions are accurately obtained even if

these problems have fractional-order derivatives [78]. In this part, a modified approach of HAM
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is presented for the purpose of handling some types of nonlinear FoDEs that have the following

general form:

Dαu(t) = N (t, u(t)), 1 < α ≤ 2, t > 0, (4.1)

subject to the initial conditions

u(0) = u0, u′(0) = u1, (4.2)

where N is a nonlinear operator, u(t) is an unknown continuous function of the independent variable

t, and Dα is the Caputo differential operator of order α that can be defined, as follows:

Dαf(t) = Jm−αDmf(t), (4.3)

where m − 1 < α ≤ m, m ∈ N, and the real function f ∈ Cm[0, T ]. Here, Dm is the traditional

integer-order differential operator of order m, and Jµ is the Riemann-Liouville integral operator of

order µ = m− α > 0, which can be defined by:

Jµf(t) =
1

Γ(µ)

∫ t

0

(t− η)µ−1f(η) dη, t > 0. (4.4)

For more insight regarding further properties that are associated with these two operators, Caputo

and Riemann-Liouville operators, the reader may referred to [41]. However, in view of the HAM,

the following homotopy can be established:

(1− q)L[Φ(t; q)− u0] = qhH(t)
(
DαΦ(t; q)−N (t,Φ(t; q))

)
, (4.5)

where q ∈ [0, 1] is the embedding parameter, h 6= 0 is a non zero auxiliary parameter, u0 is an

initial guess, h(t) 6= 0 is an auxiliary function, L is an auxiliary linear operator, and φ(t; q) is an

unknown function . Observe that homotopy (4.5) becomes simply L[Φ(t; 0)− u0] = 0 when q = 0,

whereas it returns back to its original nonlinear form given in (4.1) when q = 1. Therefore, as q

differs from 0 up to 1, Φ(t; q) differs from the initial guess u0 up to the exact solution u(t) = φ(t; 1)

that constructed for (4.1). Regardless, Φ(t; q) could be expanded with respect to q by Taylor series

as follows:

Φ(t; q) = u0 +

∞∑
m=1

qmum(t). (4.6)

Note that, whenever the series u0 +
∑∞

m=1 q
mum(t) converges at q = 1, then the following homotopy

series solution could be established:

u(t) = Φ(t; 1) = u0 +
∞∑
m=1

um(t), (4.7)

which should satisfy (4.1). In the same vein, one can track the same procedure that was established

in [11, 61, 80] for the purose of identifying each term of um’s that given in series (4.6). Now,
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substituting series (4.6) in homotopy (4.5) and then equating the coeffi cients of the similar powers

of the q yields the following mth-order deformation equation:

L (um(t)− χmum−1(t)) = hH (t)R[um−1(t)], m ≥ 1, (4.8)

where

χm =

{
0, m ≤ 1,

1, m > 1,
(4.9)

and

R[um−1(t)] =
1

(m− 1)!

∂m−1

∂qm−1

[
DαΦ(t; q)−N (t,Φ(t; q))

]
q=0

. (4.10)

In light of the previous considerations, a further modification has been proposed for the HAM

that can be employed simply and directly for obtaining series solutions for nonlinear FoDEs. It

has clearly appeared that the success of this modification relies on the favorable choice for each of

the auxiliary parameter h, the auxiliary function H (t), and the auxiliary linear operator L. For

more details about the proper selection of the auxiliary function H(t), and the auxiliary control

parameter h, the reader may refer to the references [3,70,90].

4.3 An OHAM for fractional-order nonlinear oscillators

This section targets introducing the OHAM for the purpose of generally establishing approximate

solutions for the strongly fractional-order nonlinear oscillatory problems that can be expressed by

the following form [79]:

Dαu(t) + f(u(t)) = 0, (4.11)

subject to the following initial conditions:

u(0) = u0, u′(0) = 0, (4.12)

where Dα is the Caputo operator of order 1 < α ≤ 2, f is a nonlinear function, and u(t) is an

unknown continuous function of the independent variable t. First of all, we set out to rewrite the

nonlinear oscillator given in (4.11) to be in the following form:

F (Dαu(t), u(t)) = 0, (4.13)

where F is a nonlinear function. The idea of constructing our proposed algorithm relies initially on

choosing an optimal auxiliary linear operator by taking into account that the nonlinear function F

can be written by a Taylor series at t = 0. Therefore, making a linearization of the function F at

t = 0 yields the following linear approximation:

F (Dαu(t), u(t)) ∼= F (Dαu(0), u(0)) +
∂F

∂Dαu
(Dαu(0), u(0))Dαu(t) +

∂F

∂u
(Dαu(0), u(0))u(t). (4.14)
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Accordingly, solving straightforwardly the algebraic equation F (Dαu(0), u(0)) = 0 for Dαu(0) leads

us to design an optimal auxiliary linear operator L in the form:

L[u(t)] = Dαu(t) + k(u0)u(t), (4.15)

where the constant k(u0), which only depends on u0, can be computed according to the following

formula:

k(u0) =
∂F
∂u

(uα0 , u0)
∂F
∂Dαu

(uα0 , u0)
, (4.16)

where uα0 = Dαu(0). One should observe that the designed linear operator is an optimal operator in

the sense that the approximation L[u(t)] = Dαu(t) + k(u0)u(t) is the best linear approximation to

the function F (Dαu(t), u(t)) near t = 0 [79]. In a subsequent step, the optimal approach of HAM

for the nonlinear fractional-order oscillator problem given in (4.11) can be established by employing

the linear operator given in (4.15) as proposed in the following homotopy:

(1− q)
[
Dα + qk(u0)hH (t)

][
Φ(t; q)− u0

]
= qhH (t)F

(
DαΦ(t; q),Φ(t; q)

)
. (4.17)

It is worth noting that the proposed approach divides the linear operator L[u(t)] into two main parts,

namely Dα[u(t)] and k(u0)[u(t)], and it furthermore embeds them into the homotopy as (Dα +

qk(u0)hH (t))[u(t)]. Besides, it utilizes u0 as an initial approximation to simplify computations.

However, the last step that allows to successfully implement OHAM considers that the nonlinear

fractional-order oscillatory problem given in (4.11) has an approximate solution of the form: u(t) =

u0 +
∑∞

m=1 um(t). This solution can be easily obtained where the solution components um’s should

satisfy the following mth-order deformation equation :

Dα(um(t)− χmum−1(t)) + k(u0)hH(t)(χmum−1(t)− χm−1um−2(t)) = hH(t)R[um−1(t)], (4.18)

where

R[um−1(t)] =
1

(m− 1)!

∂m−1

∂qm−1

[
F
(
DαΦ(t; q),Φ(t; q)

)]
q=0

, (4.19)

and where χm is previously defined in (9) such that m ≥ 1..

4.4 Test problems

This section employs the OHAM to provide approximate analytic solutions for two strongly fractional-

order nonlinear benchmark oscillatory problems with , namely: The fractional-order Duffi ng-relativistic

oscillator, and the fractional-order stretched elastic wire oscillator (with a mass attached to its mid-

point). All theoretical findings in this section have been numerically performed using MATLAB

software package.
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Example 4.1 Consider the following fractional-order Duffi ng-relativistic oscillator:

Dαu(t) + δu(t) + γu3(t) = 0 (4.20a)

subject to the following initial conditions:

u(0) = A, u′(0) = 0 (4.20b)

where 1 < α ≤ 2, δ is a constant, and γ is a positive non-dimensional cœffi cient of nonlinearity that

does need to be small [44], If one selects the linear operator L to be as L = Dα, then the standard

homotopy will be established as:

(1− q)Dα[Φ(t; q)− A] = qhH(t)(DαΦ(t; q) + δΦ(t; q) + γΦ3(t; q)) (4.21)

Thus, taking H(t) = 1 makes all components of the standard HAM solution to be gained by collecting

the terms with similar powers of q via the following equation:

(1− q)Dα[u0 + qu1(t) + q2u2(t) + · · · ] = qh(Dα(u0 + qu1(t) + q2u2(t) + · · · ) (4.22)

+δ(u0 + qu1(t) + q2u2(t) + · · · ) (4.20)

+γ(u0 + qu1(t) + q2u2(t) + · · · )3)

The optimal linear operator then has the following form:

L[u(t)] = Dαu(t) + (δ + 3γA2)u(t) (4.23)

and, morever, the optimal homotopy when u0 = A, will be of the form:

(1− q)[Dα + q(δ + 3γA2)hH(t)][Φ(t; q)− A] = qhH(t)(DαΦ(t; q) + δΦ(t; q) + γΦ3(t; q)) (4.24)

Consequently the OHAM’s solution can be obtained as u(t) = A +
∑∞

m=1
um(t), in which all com-

ponents um(t) of that solution satisfy the following mth-order deformation equation:

Dα(um(t)−χmum−1(t)) + (δ+ 3γA2)hH(t)(χmum−1(t)−χm−1um−2(t)) = hH(t)R[um−1(t)] (4.25)

where

R[um−1(t)] =
1

(m− 1)!

∂m−1

∂qm−1
[DαΦ(t; q) + δΦ(t; q) + γΦ3(t; q)]q=0 (4.26)

and where m ≥ 1.

Again, taking H(t) = 1 makes, this time all components of the OHAM’s solution to be obtained by

collecting the terms with similar powers of q via other equations that could be expressed by:

(1− q)[Dα + q(δ + 3γA2)h][u0 + qu1(t) + q2u2(t) + · · · ] = qh(Dα(u0 + qu1(t) + q2u2(t) + · · · )(4.27)

+δ(u0 + qu1(t) + q2u2(t) + · · · )

+γ(u0 + qu1(t) + q2u2(t) + · · · )3),
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which, consequently, implies the following recursive states:
Dαu1(t) = h(δu0 + γu3

0)

Dαu2(t) = Dαu1(t)− (δ + 3γA2)hu1(t) + h(Dαu1(t) + δu1(t) + 3γu2
0u1(t)

...

Dαuk(t) = Dαuk−1(t)− ((δ + 3γA2)h(uk−1(t)− uk−2(t)) + hR[uk−1(t)],

(4.28)

subject to the initial conditions:

u0(0) = A, u′m(0) = 0, (4.29)

where m = 1, 2, . . .. Applying the operator Jα on (4.28) implies:
u1(t) =

hA(δ + γA2)

Γ(α + 1)
tα

u2(t) =
hA(1 + h)(δ + γA2)

Γ(α + 1)
tα.

...

(4.30)

In similar manner, we can obtain the rest of all the components using MATLAB software code. In

addition, the series solutions expression can be then written in the form:

u(t) ' u0 +
N∑
m=1

um(t) = u0 + u1(t) + u2(t) + · · · , (4.31)

or

u(t) ' A+ Ah(2 + h)(δ + γA2)(
tα

Γ(α + 1)
) + Ah(1 + h)2(δ + γA2)(

tα

Γ(α + 1)
) (4.32)

+h(δ + 3γA2)Ah(1 + h)(δ + γA2)(
t2α

Γ(2α + 1)
)

+3γA3h2(δ + γA2)2(
Γ(2α + 1)t3α

(Γ(α + 1))2Γ(3α + 1)
) + · · · .

In connection with the selection of the value of the parameter h or the so-called the convergent-

control parameter h, in Figure 4.1 we draw it corresponding h-curves according to different values

of A, δ,γ and α. In view of such figure, we deduce the convergence interval that guarantees, in

return, a convergence of the approximate solution u(t). Here, such interval is deduced to be as

[−3, 3] so that the value of h can be chosen within this scope. For more simplification, one may

choose the auxiliary function H(t) to be, e.g., equal 1. However, Figure 4.2 shows approximate

solutions u(t) for problem (4.20) by using the OHAM for different values of A,α, h, δ, and γ. For

more effective practice, we perform some graphical comparisons between the OHAM and the HAM

as shown in Figure 4.3. Obviously, these comparisons reveal that the approximate solutions obtained
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by such methods are very close to each other, confirms the effi cient and robustness of the OHAM.

The reader may refer to the references [3, 70,71] to obtain a complete overview about the h-curves

and how they can be utilized to determine the admissible values of the parameter h.

Figure 4.1- Plots of several h-curves according the values: (a) A = 0.75, γ = δ = 1 (b)

A = 1.25, γ = 0.3, δ = 0.5 (c) A = 2, γ = δ = 1 (d) A = 1.5, γ = δ = 1.

Figure 4.2- Plots of the OHAM’s solutions u(t) according to different values of A, δ, γ and α.
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Figure 4.3- Plots of approximate solutions using OHAM and HAM for different values of

A, γ, δ, α and h.

Example 4.2 Consider the following nonlinear fractional-order problem that represents the motion

equation of the stretched elastic wire oscillator (with a mass attached to its midpoint):

Dαu(t) + u(t)− λu(t)√
1 + u2(t)

= 0, (4.33a)

subject to the following initial conditions:

u(0) = A, u′(0) = 0, (4.33b)

where 0 < λ ≤ 1 and 1 < α ≤ 2.

The optimal linear operator here is of the following form :

L[u(t)] = Dαu(t) + (1− λ(1 + A2)
−1
2 + λA2((1 + A2)

−3
2 )u(t). (4.34)

Furthermore, the optimal homotopy, when u0 = A, is then of the form :

(1− q)(Dα + q(1− λ(1 + A2)
−1
2 + λA2((1 + A2)

−3
2 )hH(t))[Φ(t; q)− A]

= qhH(t)[DαΦ(t; q) + Φ(t; q)− λΦ(t; q)(1 + Φ2(t; q))
−1
2 ].

(4.35)
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Consequently, the OHAM’s solution can be formulated as u(t) = A +
∑∞

m=1
um(t), in which um’s

hold the following mth-order deformation equation :

Dα(um(t)− χmum−1(t)) + (1− λ(1 + A2)
−1
2 + λA2((1 + A2)

−3
2 )

×hH(t)(χmum−1(t)− χm−−1um−2(t)) = hH(t)R[um−1(t)],
(4.36)

where

R[um−1(t)] =
1

(m− 1)!

∂m−1

∂qm−1
[DαΦ(t; q) + Φ(t; q)− λΦ(t; q)(1 + Φ2(t; q))

−1
2 ]q=0, (4.37)

and where m ≥ 1.

Now, taking H(t) = 1 allows for one to gain all components of the OHAM’s solution by collecting

the terms with similar powers of q via the following equation:

(1− q)[Dα + q(1− λ(1 + A2)
−1
2 + λA2((1 + A2)

−3
2 )hH(t)][u0 + qu1(t) + q2u2(t) + · · · ]

= qh[Dα(u0 + qu1(t) + q2u2(t) + · · · ) + (u0 + qu1(t) + q2u2(t) + · · · )
λ(u0 + qu1(t) + q2u2(t) + · · · )(1 + (u0 + qu1(t) + q2u2(t) + · · · )2)

−1
2 .

(4.38)

This leads us to establish the following recursive states :
Dαu1(t) = h(Dαu0(t) + u0(t)− λu0(1 + u2

0)
−1
2 ,

Dαu2(t) = (1 + h)Dαu1(t)− hku1(t) + h[u1(t)− λN1(u0, u1(t))],
...

Dαuk(t) = (1 + h)Dαuk−1(t)− hk(uk−1(t)− uk−2(t)) + h[uk−1(t)− λNk−1(u0, u1(t), . . . , uk−1(t))],

(4.39)

where k = (1− λ(1 + A2)
−1
2 + λA2((1 + A2)

−3
2 ), and where

Nk−1(u0, u1(t), . . . , uk−1(t)) =
1

(m− 1)!

∂m−1

∂qm−1
[−λ(u0 + qu1(t) + q2u2(t) + · · · ) (4.40)

×((1 + (u0 + qu1(t) + q2u2(t) + · · · )2)
−1
2 ]q=0,

subject to the following initial conditions:

u0(0 = A, u′m(0) = 0 (4.41)

where m = 1, 2, . . . .

Now, applying jα on (4.39) yields:
u1(t) = Ah(1− λ√

1 + A2
)

tα

Γ(α + 1)
,

u2(t) = Ah(1 + h)(1− λ√
1 + A2

)
tα

Γ(α + 1)
+

2A3h2

(1 + A2)
3
2

(1− λ√
1 + A2

)
t2α

Γ(2α + 1)
,

...

(4.42)
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In a similar manner, the rest of other components can be obtained, and then the series solutions

expression will be, as given before, in (4.31). That is :

u(t) = A+ Ah(2 + h)(1− λ√
1 + A2

)
tα

Γ(α + 1)
(4.43)

+
2A3h2

(1 + A2)
3
2

(1− λ√
1 + A2

)
t2α

Γ(2α + 1)
+ · · · .

Similarly to Example 4.1, Figure 4.4 illustrates several h-curves in accordance with different values

of A, λ and α. Based on this figure, one may candidate the interval [−2, 1.5] to be also the interval

of convergence. The value of the parameter h can be, then, chosen from such interval. On the other

hand, the auxiliary function H(t) can be chosen once again 1. Taking the previous data into account

when carrying out the OHAM via MATLAB software code generates the results shown in Figure 4.5

that represents the approximate solutions for problem (4.33) according to different values of A, α,

h, and λ. For more insight,Figure 4.6 shows some graphical comparisons are performed between

the OHAM and the HAM. Such comparisons reveal the influence and impact of the method under

consideration.

Figure 4.4 —Plots of several h-curves according the values: (a) A = 0.75, λ = 0.5, (b)

A = 1.25, λ = 0.5, (c) A = 2, λ = 0.9, (d) A = 1.5, λ = 0.95.
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Figure 4.5- Plots of the OHAM’s solutions u(t) according to different values of A, λ, α and h.

Figure 4.6- Plots of approximate solutions using OHAM and HAM for different values of A, λ, α

and h.
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In this chapter, a further modification for an Optimal Homotopy Asymptotic Method (OHAM) has

been successfully implemented to solve two strongly fractional-order nonlinear benchmark oscillat-

ory problems, namely: The fractional-order Duffi ng-relativistic oscillator, and the fractional-order

stretched elastic wire oscillator (with a mass attached to its midpoint). Such modification has

been performed by establishing an optimal auxiliary linear operator, an auxiliary function, and an

auxiliary control parameter. The proposed scheme has shown its reliability in comparison with the

approximate solutions that were obtained using HAM, and its effi ciency in handling the considered

problems.
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General Conclusion
.

To conclude, we applied an optimal approach of the homotopy analysis method to obtain

approximate solution of fractional partial differential equations. To get the desired results the

basic ideas of fractional calculus and the homotopy analysis method are presented in the first and

the second chapter, then in third and the last chapter we present an optimal homotopy analysis

method to give an analytic approximate solution for nonlinear time-fractional hyperbolic PDEs and

two strongly fractional-order nonlinear oscillators. After the presentation of our results we figured

that:

• The homotopy anlysis method is an effective method to solve fractional partial differential
equations.

• The effi ciency of the proposed method based on the best selection of the auxiliary parameter
h, the auxiliary function H, the linear operator L, and the initial approximation. All these

parameters provides us to control the convergence of the series solution.

• The future research will focus on this method to find an analytic approximate solution for
more complicated fractional differential problems.

• We are going to find an analytic approximate solutions for nonlinear differential problems
with order α(t), where α is a known function of the independant variable t.
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