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ABSTRACT

This thesis deals with the impact of buckling on the carrying capacity of slender sections
(class 4) considering the elastic and inelastic analyses. Steel sections can be regarded as a combination
of individual plate elements connected together to form the required shape. Two instabilities are being
investigated: Local buckling (LB), Lateral Torsional Buckling (LTB) and most often their interactions.
LB influences the behaviour of slender sections by preventing them to attain their full capacity, greatly
diminishes their load bearing capability. While LTB makes the overall behaviour of steel member
changing from initially in-plane bending to combined a large lateral displacement and twist angle with
a partial failure or whole failure element. The classification of steel sections with regard to local
buckling is presented as per EC3 and AISC provisions. In order to accomplish the objectives of this
research work, the author has followed the procedure: First of all, an extensive literature overview has
been made covering the different instability phenomenon susceptible to occur in slender beams: LB
and LTB with the code's provisions. The necessary theoretical background of advanced analysis of the
Effective Length Approach (ELA) of slender sections has been reviewed with application to the
studied cases. The essential understanding of basic theory of the elastic (eigen modes) and inelastic
behaviours of steel slender sections was also performed. The parametric comparative study undertaken
in this investigation considers some parameters that are believed to influence the bending strength of
slender sections of three sections S1, S2 and S3. These parameters are the slenderness (class) of
flanges and load locations in the cross section. The study covers both elastic linear and inelastic
buckling behaviour. Analytical elastic buckling study as per EC3 of the prediction of M, taking into
account of the elastic and effective properties respectively was performed. Another buckling analysis
based on the eigen modes, taking into account the same parameters, is carried out by mean of FE
modelling using LTBEAM and ABAQUS software. Very good agreement was found when comparing
the outcomes of the three studies were compared. Then a true, more sophisticated inelastic analysis to
describe the nonlinear behaviour of slender sections has been carried out throughout 3D models built-
up in ABAQUS. The inelastic analysis was done using RIKS approach implanted in ABAQUS. The
results have shown the particular importance of the flange class in an inelastic behaviour of slender
section with regard to LTB which is mainly bending behaviour. According to the obtained results, it
seems that, in the elastic range, the class of flange does not have any significant impact on the general
resistance to LTB of slender sections. However, as far as the inelastic behaviour is concerned, sections
S1, S2 and S3, despite that all sections are classified in class 4, have shown different behaviours
according to their flange class in the prediction of P, and the post-buckling behaviour of the section.
Better performance has been found in S1 and lesser in S2 and the worst was S3 (web and flanges being

class 4). The load positions of have shown their importance in both elastic and inelastic behaviours. It




has been found that situations when the load is applied in the compressive flange. Some very
interesting conclusions have been drawn this parametric comparative investigation with some

suggestions for future work.

Key words: Instability, classification, LB, LTB, ELA, FEA, elastic and inelastic behaviour,

load location, flange class.
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Résumé

Cette thése traite de I'impact de l'instabilité sur la capacité portante des sections élancées
(classe 4) en utilisant les analyses élastiques et inélastiques. Les profilés en acier peuvent étre
considérés comme une combinaison d'éléments individuels de plaque reliés entre eux pour former la
forme requise. Deux instabilités sont étudiées : le voilement local (LB), le déversement (LTB) et
éventuellement leurs interactions. LB influence le comportement des sections élancées en les
empéchant d'atteindre leur pleine capacité, diminue considérablement leur capacité de résistance. Alors
que LTB balance le comportement global de I'élément d'une flexion initiale dans le plan de forte
inertie a la combinaison d'un grand déplacement latéral et d'un angle de torsion avec une défaillance
partielle ou totale de I'élément. La classification des profilés en acier dépend du voilement local est
présentée selon les dispositions des codes EC3 et AISC. Afin d'accomplir les objectifs de ce travail de
recherche, l'auteur a suivi la démarche suivante : Tout d'abord, une revue bibliographique abondante a
été faite couvrant les différents phénomenes d'instabilité susceptibles de se produire dans les poutres
élancées : LB et LTB avec les recommandations des codes. Le contexte théorique nécessaire a
I'analyse avancée de I'approche de la longueur efficace (ELA) avec des applications aux sections
élancées considérées dans cette étude. La compréhension essentielle de I'analyse modale des
comportements élastiques (modes propres) et inélastiques des sections élancées en acier a également
été effectuée. L'étude comparative paramétrique entreprise dans cette enquéte considere certains
paramétres qui sont censés influencer la résistance a la flexion des sections minces de trois sections S1,
S2 et S3. Ces parameétres sont I'élancement (classe) des semelles et les emplacements des charges dans
la section transversale. L'étude couvre a la fois le comportement de flambement linéaire élastique et
inélastique. Une étude analytique du flambement élastique selon EC3 de la prédiction de M, tenant
compte respectivement des propriétés élastiques et effectives a été réalisée. Une autre analyse de
flambement basée sur les modes propres, prenant en compte les mémes parametres, est réalisée au
moyen d'une modélisation EF a l'aide des logiciels LTBEAM et ABAQUS. Un trés bon accord a été
trouvé lors de la comparaison des résultats des trois études. Ensuite, une véritable analyse inélastique
plus sophistiquée pour décrire le comportement non linéaire des sections élancées a été réalisée a
travers des modeles 3D construits dans ABAQUS. L'analyse inélastique a éte réalisée a l'aide de
I'approche RIKS implantée dans ABAQUS. Les résultats ont montré I'importance particuliére de la
classe de semelle dans un comportement inélastique de section élancée vis-a-vis du LTB qui est
principalement un comportement en flexion. D'aprés les résultats obtenus, il semble que, dans le
domaine élastique, la classe de semelle n‘ait pas d'impact significatif sur la résistance générale au LTB
des sections élancées. Cependant, en ce qui concerne le comportement inélastique, les sections S1, S2

et S3, bien que toutes les sections soient classées en classe 4, ont montré des comportements différents




selon leur classe de semelle dans la prédiction de P, et le comportement post-voilement de la section.
De meilleures performances ont été trouvées en S1 et moins en S2 et les pires étaient en S3 (I'ame et
les semelles étant de classe 4). Les positions de charge appliquee par rapport au centre de torsion ont
montré leur importance aussi bien dans les comportements élastiques qu'inélastiques. Notamment, des
situations défavorables lorsque la charge est appliquée dans la semelle en compression. Des
conclusions trés intéressantes ont été tirées de cette étude comparative paramétrique avec quelques

suggestions pour des travaux futurs.

Mots clés : Instabilite, classification, LB, LTB, ELA, FEA, comportement élastique et

inélastique, localisation de la charge, classe de la semelle.




GENERAL INTRODUCTION

1. Slender steel beams

The main objective of this thesis is the investigation of the impact of buckling behaviour of
class 4 slender steel cross section on their carrying capacity of these beams. The term ‘slender section’
should not be confused with ‘slender beam’. Where the slenderness of any plate element is more than
the yield limit, the section is classified as slender. Normally it is best to avoid using slender sections,
but it is sometimes necessary to check a section of this type. When the aspect ratio is relatively high,
then local buckling may prevent any part of the cross-section from reaching the design strength. Such
sections are called slender sections and are classified as Class 4 sections; their capacity is based on a
reduced design strength as specified in Clause 3. The limiting aspect ratios for elements of the most
commonly used cross-sections subject to pure bending, pure axial load or combined bending and axial
loads. A parametric investigation is made a numerical elastic and inelastic modelling along with a
theoretical background of such sections. For class 4 cross-sections it is assumed that parts of the area
under compression due to local instability phenomena do not have any resistance (lost area): typically,
the compressed portions of the cross-sections, which have to be neglected for the resistance checks, are
the parts close to the free end of an outstand flange or the central part of an internal compressed

element. Currently, EC8-1 does not account for structures with class 4 members.

In general, the properties of the effective section in cross-sections of class 4 (slender) are
obtained by defining certain effective widths in the compressed areas of the parts, in accordance with

the criteria.

Recent research on the behaviour of slender sections have been reported namely [Taras and
Greiner 2010; Couto et al 2015; Jodo Ferreira et al 2017; Lee and Chiew 2019; Couto et al 2019, and
Seres and Fejes 2020]. These and others have investigated the inelastic behavior to LTB of slender

steel sections of class 4 as per EC3 with some interesting conclusions.

2. General considerations

Flexural members built up of plates that form horizontal flanges at top and bottom and joined to
vertical or near vertical webs are called plate girders. They differ from beams primarily in that their
web depth-to-thickness ratio is larger flange. The webs generally are braced by perpendicular plates
called stiffeners, to control local buckling or withstand excessive web shear. Plate girders are most
often used to carry heavy loads or for long spans for which rolled shapes are not available

Steel members with thin-walled cross-sections are commonly used in steel structures due to its

lightness and long span capacity. Beams are members subjected to bending are also generally affected




by shear forces, which have to be adequately considered in all the safety checks. Furthermore, the
design of beams has to take into account both serviceability (mainly, check on deflections and dynamic
effects) and ultimate limit states, including, in addition to resistance, stability verifications when

relevant.

Slender steel I- girder sections are commonly used for long-span beams of industrial halls,
composite bridges, where mainly flanges provide the bending resistance and web has a relatively small
thickness providing only hinged support to the flanges and resistance to shear stresses. To maximize
their load-carrying capacity, steel beams are often oriented in such a way that the strong axis of the
cross-section is perpendicular to the loading plane. When a beam is loaded in this manner, several
failure modes are possible depending on its lateral unsupported length L. For a doubly symmetric I-

shaped compact section, if L is less than a reference length referred to by the AISC (2011).

The buckling resistance assessment is usually based on appropriate buckling curves and
requires the computation of the elastic critical moment, which is strongly dependent on several factors
such as, the bending moment distribution, the restraints at the end supports and in correspondence of
the load points, the beam cross-section, the distance between the load application point and the shear
centre. The high strength and stiffness-to-weight ratios of structural steel often results in relatively

slender members and systems in which stability is a primary design consideration.
Steel mode failures

According to [Chen and Duan 2014] there are four fundamental failure modes for steel
members; yielding, rupture, buckling, and fatigue. Buckling failures can be characterized by an
instability of a member as a whole (global buckling) or as instability of one or more of the elements of
a cross section (local buckling). In this context, the word “element” is meant to describe a plate
component that makes up part of a cross section. For instance, the web of an I-shaped girder or the
flanges of a channel are cross-sectional “elements.” With respect to local buckling, classification of the
cross-sectional elements as slender, non-slender, compact, or noncombat aids greatly in determining
which of the four fundamental failure modes may govern and how they are addressed. This section

provides the background needed to understand the classification of the sections for local buckling.
Buckling of steel thin-walled members

The steel material is characterized by a symmetrical mono axial stress-strain (c—¢) constitutive
law, which can be determined by monotonic tension tests on samples taken from the base material
before the working process or from the products in correspondence of appropriate locations. The
response of steel members can, however, be significantly different in tension or compression, owing to

the relevant influence of the buckling phenomena.




In case of thin-walled members, that is member which has a cross-section components with
high values of ratio width over thickness, the local instability phenomena might occur in the elastic
range, hence preventing the spread of plasticity in the cross-section, that is, the achievement not only
of the plastic moment but also of the elastic moment. These kinds of cross-sections are sensitive for
local web buck-ling; however, the dominant failure mode of the entire girder is lateral-torsional
buckling (LTB). Therefore, these girders should be designed for coupled instabilities, for the
interaction of local plate buckling of the web and global LTB of the entire girder.

Individual members may be combined in a quite great variety of ways to produce a more
efficient compound cross-section member. The resistance can significantly be limited by instability

phenomenon in the range of standard products.

The instability of compressed steel members as well as of all the members realized with other
materials can be distinguished in:

* An overall buckling or Euler buckling, which affects the element throughout its length (or a
relevant portion of it).

» Local buckling, already which affects the compressed plates forming the cross-section,

characterized by relatively short wavelength buckling.

N.B. Also, there is a third type of instability, the so-called distortional buckling, distortional
buckling is characterized by relative displacements of the fold-line of the cross-section and the
associated wave-length is generally in the range delimited by one of local buckling and one of global
buckling.

Local buckling

A very important phenomenon affecting steel slender member behaviour and, as a
consequence, the whole structural performance, is the local buckling that typically affects thin-walled
members. Local buckling is a phenomenon that influences the behaviour of thin-walled structural steel
elements in a major way and it can be the determining factor for their design in contemporary
construction. Its occurrence prevents slender sections from attaining their full capacity, greatly
diminishes their load bearing capability and should be completely avoided to ensure the safety and

serviceability of steel structures.
Lateral torsional buckling

Lateral-torsional buckling is a kind of failure that occurs when the in-plane bending capacity of
a member exceeds its resistance to out-of-plane lateral buckling and twisting. Physically, the

phenomenon of LTB in which the overall behaviour of steel member changes from initially in-plane




bending to combined a large lateral displacement and twist angle due to an application of load on an
unsupported beam. The LTB can cause partial failure or whole failure in the structure. The stress at
which buckling occurs depends on a variety of factors ranging from the dimensions of the member to
the boundary conditions to the properties of the material of the member. The resistance of a steel beam

in bending depends on the cross-section resistance or the occurrence of lateral instability.
Classification of sections

The local buckling of cross sections affects their resistance and rotation capacity and must be
considered in design. The evaluation of the influence of local buckling of a cross section on the
resistance or ductility of a steel member is complex. Consequently, a deemed-to-satisfy approach was

developed in the form of cross section classes that greatly simplify the problem.

AISC cross-section classification criteria are based, as in Eurocode 3, on the steel grade and on
the width-to-thickness ratios distinguished for stiffened elements (elements supported along two edges
parallel to the direction of the compression force) and unstiffened elements (elements supported along

only one edge parallel to the direction of the compression force).
More details will be provided in Chapter 4.

- Classification in Accordance with European Standards

Eurocode 3 proposes a criterion for the classification of cross-sections based on the slenderness
ratio (width over thickness ratio) of each compressed component of the cross-section, as well as on
other factors. It should be noted that, in case of compressed member, no distinctions can be observed
in the performance of the elements of the first three classes, owing to the stress distribution in axially
loaded cross-sections limited to yielding strength. The cross-section resistance to axial compression
should be based on the plastic capacity (plastic axial force) in compact sections (class 1, 2 or 3), but
taking into account the local buckling resistance through an effective elastic capacity in class 4
sections. The buckling resistance should be evaluated according to the relevant buckling mode and

relevant imperfections of real members, as described in the following sections.

- Classification in Accordance with US Standards

AISC 360-10 addresses classification of cross-sections in Chapter B, Section B4; the code deals
with members subjected to axial load and members subjected to bending in a different way. The
classification of cross-sections is classified on the basis of type of load acting on the element (i.e.
compression and bending).

N.B. Contrary to the European approach, which assumes the same classification criteria for
both static and seismic design, it must be remarked that AISC Seismic provisions propose a different

classification criterion when profiles are used in seismic areas.




Resistance of cross sections to EC3

According to [Simdes da Silva et al 2010], the resistance of cross sections depends on their class
(clause 6.2.1(3)) in EC3. According to the definition of the four cross section classes (see 2.4), cross
section classes 1 and 2 reach their full plastic resistance, while class 3 cross sections only reach their
elastic resistance. Class 4 cross sections are not able to reach their elastic resistance because of local
buckling. Nevertheless, using the concept of effective section [EC3 2006], they are effectively treated

as class 3 cross sections and their resistance is evaluated as an elastic resistance.

The design value of an action effect, at each cross section, should not exceed the corresponding
design resistance, and if several action effects act simultaneously, the combined effect should not
exceed the resistance for that combination (clause 6.2.1(1)). Shear lag effects and local buckling
effects should be included according to the concept of effective section of EC3-1-5 (CEN, 2006c).
Shear buckling effects should also be considered according to EC3-1-5 (clause 6.2.1(2)).

3. Motivation and aim of the present work

Exploring the impact of different buckling phenomenon on the elastic and inelastic behaviour
of slender steel beam under static loadings is quite interesting, consideration several parameters that
are believed to greatly influence the elastic and inelastic buckling. These parameters are: variation of
flange's slender ratio, from class 1, class 3 and class4, load localisation in the cross section. The
numerical modelling of the beams has been developed through well-known software: LTBeam for
elastic buckling analysis and ABAQUS for both elastic and inelastic buckling behaviours of slender
steel beams. By performing this task, the author of this dissertation has learned how to deal with

complex analyses in 3D models.

4. Methodology
To be able to meet the aim of the thesis the following steps were performed with tasks that need

to be executed:

e Understanding the different instability phenomenon susceptible to occur in beams under
transverse static loadings.

e Detecting the buckling interaction: local and torsional buckling.

e Understanding the theoretical background of the effective length approach used for
effective geometric properties.

e Hand-calculations of some cases using effective length approach.

e Explore the methods and assumptions used in LTBEAM and ABAQUS software

e Understand the elastic and inelastic instability behaviour of steel slender sections and the

theory behind lateral-torsional buckling.




e Built-up 3D models of beams with slender sections for linear and nonlinear buckling
analyses in ABAQUS software.

e Extract and discuss the obtain results.

e Compare the performance of different beams

e Draw some conclusions and suggestions for future wok.

5. Organisation of the dissertation

The present thesis has been partitioned in six chapters as follows:

- A general introduction on steel beams summarises some concepts used in this work
along with important definitions. Also, a description of the scope and objective of the present research
work and the way to attain the planned objectives is given.

- Chapter 1: A concisely presentation and discussion on the local buckling and
classification criteria of steel beams sections along with the parameters influencing this classification.
A special attention has been paid to components under compression and bending.

- Chapter 2: A concisely presentation of the theory of stability of thin-walled steel
structures is given. Introduces a theoretical insight of LTB with an overview of LTB in standards and
guides and background of the European standards (EC3) with some details, EC3 and ANSI/AISC 360-
16 (June 2018) provisions.

Chapter 3: Dealing with the effective length approach. A detailed hand calculation of
the designed beams of class 4 used in this study is given.

- Chapter 4: Displays an overview of the use the finite element method in structural
analysis. LTBeam and ABAQUS are introduced. Technics and capabilities of assessing the lateral
torsional buckling of laterally of unrestrained beams.

- Chapter 5: In this chapter, presents and discusses the results of the elastic linear
buckling analysis. Some concluding remarks are given.

- Chapter 6: This chapter is devoted to a presentation of results of the inelastic buckling

analysis with a full discussion and the comparison of obtained results.

- Conclusions and recommendations for future works: provides the essential the
conclusions coming up from this research work on the key parameters governing the elastic and

inelastic behaviours of slender beams, and followed some recommendations for future works
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1.1 Introduction

Sections normally used in steel structures are I-sections, Channels or angles etc. which are
called open sections, or rectangular or circular tubes which are called closed sections. These sections
can be regarded as a combination of individual plate elements connected together to form the required
shape. The strength of compression members made of such sections depends on their slenderness
ratio. Higher strengths can be obtained by reducing the slenderness ratio i.e. by increasing the moment
of inertia of the cross-section. Similarly, the strengths of beams can be increased, by increasing the
moment of inertia of the cross-section. For a given cross-sectional area, higher moment of inertia can
be obtained by making the sections thin-walled. As discussed earlier, plate elements laterally supported
along edges and subjected to membrane compression or shear may buckle prematurely. Therefore,
the buckling of the plate elements of the cross section under compression/shear may take place
before the overall column buckling or overall beam failure by lateral buckling or yielding. This
phenomenon is called local buckling. Thus, local buckling imposes a limit to the extent to which
sections can be made thin-walled.

1.2 Local buckling

1.2.1 General definition

Local buckling is a phenomenon that influences the behaviour of thin-walled structural steel
elements in a major way and it can be the determining factor for their design in contemporary
construction. Its occurrence prevents slender sections from attaining their full capacity, greatly
diminishes their load bearing capability and should be completely avoided to ensure the safety and
serviceability of steel structures. Also, local buckling has the effect of reducing the load carrying
capacity of columns and beams due to the reduction in stiffness and strength of the locally buckled
plate elements. Therefore, it is desirable to avoid local buckling before yielding of the member. It is
important to point out that most of the hot rolled steel sections have enough wall thickness to eliminate
local buckling before yielding. However, fabricated sections and thin-walled cold-formed steel
members usually experience local buckling of plate elements before the yield stress is reached.

1.2.2 Effect of local buckling on structures

Local buckling prevents the development of plastic hinges with such rotation capacity for
cross-sections of higher classes and, unless computationally demanding shell elements are used,
elastic analysis is required. For cross-sections liable to buckle locally, special precautions need to
be taken in design. However, it should be remembered that local buckling does not always spell
disaster. Local buckling involves distortion of the cross-section.

1.2.3 Types of local buckling

Some kinds of local buckling can be mention as follows:
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Local buckling exhibit local deformation of outstand e.g. a flange of | beam
Local buckling occurs when the flange outstands to thickness ratio (b/t;) is high Called flange buckling
The web is also subjected to compressive stresses from bending with a limiting to d/t,, ratio beyond
which web will buckle even though the axis of the axis remains straight called web buckling

Consider an I-section column, subjected to uniform compression. The plates supported on
three sides (outstands) have a buckling coefficient k roughly one-tenth that for plates supported on all
four sides (internal elements). Therefore, in open sections such as I- sections, the flanges which are
outstands tend to buckle before the webs which are supported along all edges. Further, the entire
length of the flanges is likely to buckle in the case of the axially compressed member under
consideration, in the form of waves. On the other hand, in closed sections such as the hollow
rectangular section, both flanges and webs behave as internal elements and the local buckling of the
flanges and webs depends on their respective width-thickness ratios. In this case also, local buckling
occurs along the entire length of the member and the member develops a ‘chequer board’ wave pattern
Figure. 1.2 (b) and Figure 1.2.
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Figure 1.2 Experimental local buckling in flanges and web of steel member

Normally, the bending moment varies over the length of the beam and so local buckling may
occur only in the region of maximum bending moment. Local buckling has the effect of reducing
the load carrying capacity of columns and beams due to the reduction in stiffness and strength of the
locally buckled plate elements. Therefore, it is desirable to avoid local buckling before yielding of the
member. Most of the hot rolled steel sections have enough wall thickness to eliminate local buckling
before yielding. However, fabricated sections and thin-walled cold-formed steel members usually
experience local buckling of plate elements before the yield stress is reached.

1.3 Section classifications

1.3.1 General

Structural analysis of steel frames is typically performed using beam elements. Since these
elements are unable to explicitly capture the local buckling behaviour of steel cross-sections,
traditional steel design specifications use the concept of cross-section classification to determine the
extent to which the strength and deformation capacity of a cross-section are affected by local buckling.
In the case of beams, the compression flange behaves as a plate element subjected to uniform
compression and, depending on whether it is an outstand or an internal element, undergoes local
buckling at the corresponding critical buckling stress. However, the web is partially under
compression and partially under tension. Even the part in compression is not under uniform
compression. Therefore, the web buckles as a plate subjected to in- plane bending compression.

1.3.2 Objectives of the classification
To determine strength of the structural steel component, it requires the designer to consider the
cross-sectional behaviour and the overall member behaviour.
Purpose of classification: to identify the extent to which the resistance and rotation capacity of cross
sections is limited by its local buckling resistance.

Clause 5.5.1 and 6.2 cover the cross-sectional aspects of the design process.
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1.4 Classification of cross sections to codes

1.4.1 Principles

It is useful to classify sections based on their tendency to buckle locally before overall failure
of the member takes place. There is no shift in the position of the cross-section as a whole as in
global or overall buckling. In some cases, local buckling of one of the elements of the cross- section
may be allowed since it does not adversely affect the performance of the member as a whole. In the
context of plate bucking, it was pointed out that substantial reserve strength exists in plates beyond the
point of elastic buckling. Utilization of this reserve capacity may also be the objective of design.
Therefore, local buckling may be allowed in some cases, provided due care is taken to estimate the
reduction in the capacity of the section due to it and the consequences are clearly understood.

1.4.2 Classification process

The classification process of a cross section depends on the following parameters:
width to thickness ratio c/t of the parts subjected to compression (clause 5.5.2(3)),
type of element (internal part or an outstand part),
the applied internal forces,
the steel grade.

As the plate elements in structural sections are relatively thin compared with their width, when
loaded in compression (as a result of axial loads and/or from bending) they may buckle locally.
The disposition of any plate element within the cross section to buckle may limit the axial load
carrying capacity, or the bending resistance of the section, by preventing the attainment of yield.
Avoidance of premature failure arising from the effects of local buckling may be achieved by limiting

the width-to-thickness ratio for individual elements within the cross section.

Cutstand
ntemal
Outstand /, Intemal

]

Imternal
Web Wehb
nternal
o Weh .r’J
[ _\\\I\
Flange lange Flange
(a) Raolled 1-section (b} Huollow section {c) Welded box section

Figure 1.3 Internal or outstand elements EC3
1.4.3 Parameters affecting the classification

In the design of steel structures, classification of steel section is fundamentally important as it
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determines many basic properties of the section as well as how the section resistances are calculated in
many design guidelines.
The cross-section of most structural members is considered as an assemblage of individual parts. As
these parts are plate elements and are relatively thin, they may buckle locally when subjected to
compression (local buckling). In turn, this may limit the compression resistance and the bending
resistance. This phenomenon is independent of the length of the member and hence is termed local
buckling. It is dependent upon a number of parameters:
The following are of particular importance:
Width to thickness ratio of the individual compression elements. This is often termed the aspect
ratio. Wide, thin compression elements are more prone to buckling.
Support conditions: This is dependent upon the edge restraint to the individual compression element.
If the compression element is supported by other elements along both edges parallel to the direction of
the member, then it is called an internal part as both edges are prevented from deflecting out of plane.
If this condition only occurs along one edge, it is said to be an outstand part as the free edge is able to
deflect out of plane. Each half of the flange of an | section is an outstand part; the web is an internal
compression part.
Yield strength of the material: The higher the yield strength of the material, the greater is the
likelihood of local buckling before yielding is reached.
Stress distribution across the width of the plate element: The most severe form of stress
distribution is uniform compression, which will occur throughout a cross-section under axial
compression or in the compression flange of an | section in bending. The web of an | section under
flexure will be under a varying stress, which is a less severe condition. This is because the maximum
compressive stress will only occur at one location and the stress level will reduce across the width of
the element, possibly even changing to a tensile value.

1.4.4 Classification to Eurocode 3

In EC3 code, cross-sections are placed into one of four behavioural classes depending upon the
material yield strength, the width to thickness ratios (b/ts or d/t,) of the individual compression parts (e.g.
web and flanges) within the cross-section and the loading arrangement. In the Eurocode 3 (EC3), four
classes of section are defined namely: class 1 (Plastic); class 2 (compact), class 3 (semi-compact) and
class 4 (slender). The use of plastic design methods is restricted to Class 1 cross-sections, which
possess sufficient rotation capacity for plastic hinges to develop and a collapse mechanism to form.
According to clause 5.5.2(1), four classes of cross sections are defined, depending on their rotation
capacity and ability to form rotational plastic hinges:
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Class 1 cross sections are those which can form a plastic hinge with the rotation capacity
required from plastic analysis without reduction of the resistance;

Class 2 cross sections are those which can develop their plastic resistance moment, but have
limited rotation capacity because of local buckling;

Class 3 cross sections are those in which the stress in the extreme compression fibre of the
steel member, assuming an elastic distribution of stresses, can reach the yield strength. However, local
buckling is liable to prevent development of the plastic resistance moment;

Class 4 cross sections are those in which local buckling will occur before the attainment of
yield stress in one or more parts of the cross section.

The bending behaviour of members with cross sections of classes 1 to 4 is illustrated in Figure
1.2, where Mel and My, are, respectively, the elastic moment and the plastic moment of the cross
section.

The classification of a cross section depends on the width to thickness ratio t ¢ of the parts
subjected to compression (clause 5.5.2(3)), the applied internal forces and the steel grade. Parts subject
to compression include every part of a cross section which is either totally or partially in compression
under the load combination considered (clause 5.5.2(4)).

According to EC3, the classification of a cross section is based on its maximum resistance to the type
of applied internal forces, independent from their values. This procedure is straightforward to apply for
cross sections subject to compression forces or bending moment, acting separately. However, in the
case of bending and axial force, there is a range of M-N values that correspond to the ultimate
resistance of the cross section. Consequently, there are several values of the parameter (limit for
classes 1 and 2) or the parameter (limit for class 3), both being dependent on the position of the neutral

axis.
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Table 1.1 summarises the classes in terms of behaviour, moment capacity and rotational

capacity.
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The moment resistances for the four classes defined above are:
for Classes 1 and 2: the plastic moment (Mpl= Wpl. fy) ,
for Class 3: the elastic moment (Mel= Wel. fy) ,
% for Class 4: the local buckling moment (Mo< Mel).
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e
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Table 1.2 Maximun width —to-thickness rations for internal comprassion parts as per EC3

Table 2.21 — Maximum width-to-thickness ratios for internal compression parts

Internal compression parts
“C |C
. S -| S :
tL | t 4}
1 7_:’ S
| e Tt t
| .‘ c
— — | T | - Lo
Class Part subjected Part subjected to Part subjected to bending and
to bending compression compression
f f f,
Stress = —
distribution " 2 o ®
c ¢
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+ve) 1, Y f,
i @sl5, glpg 200
1 c/t<T2e c/t<33e 13a-1
; - 36¢
if <05, ¢/t<
o
" 05. cft< 456 ¢
1L @ >0, €l = =
> c/t<83¢ c/t<38¢ 13a—1
: - 415¢
if <05, ¢/t<
o
Stress — fY_‘ f f,
distribution * i
(compression I + c ¢
P dRr.
+ve) oo
Vi
if ¥ >-1,
3 c/t<124¢ c/t<de /i< 42¢
C' s ——mm-r
0.67+0.33%¥
if ¥<-17,
c/t<62e(1-¥)(-P)
= 235/f1, 5 (N/mmz) 235 275 355 420 460
E 1.00 0.92 0.81 0.75 0.71

*) W < —1 applies where either the compression stress & < f. , or the tensile strain g > f‘, / Y 8

Local buckling and section classifications in steel design codes

Page 8



Manel Dahlouz CHAPTER 1

Table 1.3 Maximun width —to-thickness rations of flanges as per EC3

Table 2.22 — Maximum width-to-thickness ratios of outstand flanges

Outstand flanges

: C | Cc C
L l 1
t t t! th -+
c
Rolled sections Welded sections
cl Part subjected to Part subjected to bending and compression
ass e
compression Tip in compression Tip in tension
distribution :", | — N ___
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Table 1.4 Maximun width —to-thickness angles and tubular sections as per EC3

Table 2.23 — Maximum width-to-thickness ratios of angles and tubular sections

Angles
h Does not apply to angles in
See also Table 2.22 continuous contact with
t k other components
Class Section in compression
B E——
distribution
(compression
+ve)
- b+h .
3 h/t<l <11
2t
Tubular sections
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Class Section in bending and/or compression
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= NOTE: For ¢ /1 >90 £ see EN 1993-1-6
* (N 2 5 ~ 3 ~
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Table 1.5 Outstand compression elements as per EC3
Table 4.2: Outstand compression elements
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1.4.5 Features of class 4 sections

In calculating the effective geometrical properties for Class 4 sections, and as already
mentioned, it is assumed that parts of the area under compression due to local instability phenomena
do not have any resistance (lost area): typically, the compressed portions of the cross-sections, which
have to be neglected for the resistance checks, are the parts close to the free end of an outstand flange
or the central part of an internal compressed element.

Furthermore, the effects of local plate buckling usually control the load carrying capacity of
thin-walled sections, denominated as class 4 sections in EC3. Local plate buckling is taken into
account by effective cross-section properties. The values Ae¢s and Wesr are calculated each for the
relevant loading case only. For example, A is calculated under the assumption that an axial force N is
present only.

United States Provisions for Steel Design

The main specification to apply for the design of steel structures in United States is
ANSI/AISC 360-10 ‘Specification for Structural Steel Buildings’ that addresses steel constructions as
well as composite constructions: steel acting compositely with reinforced concrete. This specification
states design requirements (stability and strength) for steel members and composite constructions,
design of connections, fabrication and erection, Quality Control and Quality Assurance.

Differently from Eurocodes, AISC 360-10 allows use of the semi-probabilistic limit state
method as well as the working stress (allowable stress) design method. The first method is called Load
and Resistance Factor Design (LRFD) and the second one ASD. The two methods are specified as
alternatives and the ASD method is maintained for those who have been using it in the past (senior
engineers), before LRFD method was introduced.

Very useful tools for the designer are the AISC manuals: mainly the AISC 325 Steel
Construction Manual and AISC 327 Seismic Design Manual, which discuss very interesting design

examples to help in design activity.

M, : .
| Sl
My :F *************** = '-:
Plastic i Compact | Semi- i Slender
| { Compact |
b 2 Ps f=bt
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As already mentioned, AISC 360-10 addresses classification of cross-sections in Chapter B,
Section B4; the code deals with members subjected to axial load and members subjected to bending in a

different way:

Members subjected to axial load are distinguished as non-slender or slender;
Members subjected to flexure are distinguished as compact, non-compact or slender.
The classification for members subjected to axial load and bending is absent in the US
approach.
Classifications criteria are listed in Table B4.1.a of AISC specifications (reproduced in Table
4.43) for compressed members and in Table B4.1b (reproduced in Table 4.4b) for members in bending.
Classification criteria are based, as in the EC3 code, on steel grade and on width-to-thickness
ratios for stiffened elements (elements supported along two edges parallel to the direction of the
compression force, typically webs of I- or C-shaped sections) and unstiffened elements (elements
supported along only one edge parallel to the direction of the compression force, typically flanges of
I- or C-shaped sections).
AISC code defines:
(a) for members subjected to axial load:
A, that is width-to-thickness ratio that defines non-slender/slender limit;
(b) for members subject to flexure:
Ay, that is width-to-thickness ratio that defines compact/non-compact limit;
/., that is width-to-thickness ratio that defines non-compact/slender limit.
It should be noted that:
US flange width is one-half of full flange width, while in EC3 it is the outstanding part of the flange
(one-half of full flange width less one-half of web thickness less the fillet or corner radius);
US web width of rolled sections, as in EC3 code, is the clear distance between flanges less the fillet or

corner radius at both flanges;
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Table 1.6 Width-to-thickness ratios for members subject to axial compression (from Table B4.1a

of AISC 360-10)
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Table 1.7 Width-to-thickness ratios for members subject to flexure (from Table B4.1b of AISC

360-10).
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2.1 General

Historically, buckling of structural members have long been recognized as a potentially
dangerous failure mode. Buckling of columns was first brought to attention by Euler (1744) more than
two hundred years ago. Bryan (1891) first introduced the theoretical work on the elastic buckling of
plates. He presented how the elastic buckling of plates could be applied to the sides of a ship. It was
quickly realized that the buckling behaviour of a plate was quite different from that of a column. For a
column, buckling terminates the ability of a member to resist axial load, and the buckling load is thus
the failure load of the member. However, this might not be the behaviour for plate elements. Most of
the structural plate elements can, subsequent to reaching the buckling load, continue to resist
increasing axial loads. These structural plate elements do not fail until a load considerably in excess of
the buckling load. In essence plate elements possess substantial post-buckling strength. The buckling
load of a plate is therefore not the failure load. Also, the failure load of a structural member made up
with these plate elements may not correspond to the local buckling of its plate elements. Thus, one
must determine the load-carrying capacity of a plate or a structural member made of plate elements by
considering the post-buckling behaviour.

2.2 Concept of stability

The Stability is one of the most critical ultimate states for steel structures during the
construction and during their lifetime. The main objective and the most difficult challenges of
structural stability is to determine the critical load under which a structure loses its stability. Due to
their high strength, steel beams are characterized by small thicknesses of section walls, which leads to
various forms of stability losses. Structural stability problems have substantial effects on the design
steps of steel structures. Stability is a potent issue in the design of steel structures which may cause
serious structural failure. The stress at which buckling occurs depends on a variety of factors ranging
from the dimensions of the member to the boundary conditions to the properties of the material of the
member. Determining the buckling stress is a fairly complex undertaking [Erath, S. (2020)].

2.3 Stability analysis

In a broad sense, the purpose of analysis of stability of a structure is to determine the loads on a
structure, which leads to the appearance of new forms of equilibrium. These forms of equilibrium
usually lead to collapse of a structure and corresponding loads are referred as critical ones. The
stability of a structure will be provided if acting loads are less than the critical ones. While, the
buckling analysis is to determine the critical load (or critical loads factor) and corresponding buckling
mode shapes.

A study of the stability of structures is aimed at calculating the elastic critical load and

deducing appropriate design loads for the compression elements, to ensure that buckling does not
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occur. This is generally a complex procedure although the techniques can be built up from the matrix
analysis methods presented in later chapters. Fortunately, the stability analysis of a structure can be
considered subsequent to the linear elastic analysis. Further, in many cases Codes of Practice offer
sufficient guidance for a stability analysis not to be necessary. Nevertheless, important structures are
subjected to stability analysis and the computational effort required is continually being reduced by
developments in computer applications [Erath, S. (2020)].

2.4 General definition of stability

Broadly speaking, stability can be defined as the ability of a physical system to return to
equilibrium when disturbed slightly. For a mechanical system, Dirichlet stated: "the equilibrium of a
mechanical system is considered stable if, when moving the points of the system from their
equilibrium position with an infinitesimal quantity with a low initial speed, the displacement of
different points of the system remain, during the displacement, contained within the limits imposed
[Erath, S. (2020)].

2.5 Stability theories of thin-walled steel structures

By approaching thin-walled structures, the consideration of inherent stability phenomenon is
imperative. Over the past century, compressive research works have been invested to help predict the
critical buckling load limits for different types of structures. The theoretical and experimental research
indicated the effect of geometric imperfections and boundary conditions can altered limits of the value
of the buckling load.

Stability theories have been developed in order to determine the conditions via which a
structure, in equilibrium, ceases to be stable. Stability is essentially an extreme geometrical property of
structures, which can be found for large slenderness, flat thin plates or cylindrical thin shells.
Normally, systems are considered with a variable parameter which typically represents the external
load (mechanical), but which can also be temperature (thermal buckling) or other types of loadings.
For each limit load value, there is only one non-buckling configuration [A.Labed].

It is possible that systems undergo large deformations before even the elastic limit of the
material is reached, especially in the case of structures with Class 4 sections as a result of the local
buckling. However, this situation is not dangerous for the system when the deformations do not
contribute to the increase of mechanical stresses. The system is still elastically stable. On the other
hand, and despite the fact that the elastic limit is not yet reached, it does exist a situation where large
deformations contribute to the increase of internal stresses, which generally leads to the ruin of the
system and then elastically unstable.

Critical stability loads can be determined using:

- The classical resolution of differential equations of equilibrium.
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- Approaches based on energy methods.

It is worth to remind that the resolution of differential equations of equilibrium can only be
accomplished for simple buckling problems. For more complicated structures situations, it is common
to use the alternative energy methods, iterative methods can also be utilized to solve stability
problems. Hypotheses on the nature of the deformation, the elastic system can be approached using
suitable and modifiable parameters or generalized coordinates, determined in such a way as to meet the
equilibrium conditions.

2.6 General on the instability Modes in steel structures

As explained in the resistance of a steel member subjected to axial compression depends on the
cross-section resistance or the occurrence of instability phenomena. As steel members usually have
high slenderness the design for compression is governed by the instability phenomena such as:

* Flexural buckling

* Torsional buckling

* Flexural torsional buckling

* Lateral torsional buckling

The buckling resistance should be evaluated according to the relevant buckling mode and
relevant imperfections of real members, as described in the following sections.

Flexural Buckling

Flexural buckling is a phenomenon that occurs about the axis of the highest slenderness ratio
and the smallest radius of gyration. It can happen in any member subjected to compression, which in
the end will lead to deflection of the member. An illustration of the flexural buckling can be seen in
Figurel.3.

Torsional Buckling

Torsional buckling is a form of buckling occurring about the longitudinal axis of a member,
where the centre of the member remains straight while the rest of the section rotates. Flexural
Torsional Buckling

According to [da Silva et al., 2010], flexural torsional buckling consists of the simultaneous
occurrence of torsional and bending deformations along the axis of the member.

2.7 Lateral torsional buckling

2.7.1 General

Open section beams bent in their stiffer principle plane are susceptible to a type of buckling
deflecting sideways and twisting, the so-called lateral instability, lateral-torsional or flexural-torsional

instability. In particular, this form of instability is due to the compression force acting on a part of the
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profile causing instability with lateral deflection partially prevented by the tension part of the profile,
which generates twist.

Design standards consider lateral-torsional buckling as one of the ultimate limit states that
must be checked for steel members in bending, when relevant. The buckling resistance assessment is
usually based on appropriate buckling curves and requires the computation of the elastic critical
moment, which is strongly dependent on several factors such as, the bending moment distribution, the
restraints at the end supports and in correspondence of the load points, the beam cross-section, the
distance between the load application point and the shear centre

2.7.2 Definition

Lateral Torsional Buckling (LTB), is a mode of buckling that occurs when a flexural member
undergoes both lateral deflection and twisting as illustrated in Fig. 1. However, the complex nature of
the LTB phenomenon makes it difficult to embrace all the affecting factors and assumptions
responsible for that phenomenon. In fact, the LTB resistance capacity of a slender section depends
upon a number of factors. These several factors which are believed to influence the resistance to LTB
such as : the distance between lateral and /or torsional braces, the type and position of the applied
loads, the restraints at the ends and at intermediate positions along the beam axis, the material
properties, the magnitude and distribution of residual stresses, initial imperfections of geometry,
changes in the cross section (steps or taper in the cross section, holes), and interaction between local
and overall buckling.

When a beam is laterally braced at discrete points along its length and is loaded such that it is
bent about its strong axis, the possibility that the beam will buckle laterally and with a torsion before
reaching its plastic moment or local buckling moment must be investigated. Figure 2.1 shows moment

resistance versus unbraced length of a flexural member.

/— Plastic moment
M

Inelastic LTB

[ Elastic LTB

Moment capacity, M,
=

T T
L, L
Unbraced length, L,
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2.7.3 Theory of LTB

Traditionally, the theoretical study of LTB mentioned phenomenon starts for the basic case
representing members with rectangular section. A particular interest of slender sections, I-shaped of
classes 3 and respectively, in which the ratio of 1,/ I, is large as they are mainly concerned by the LTB.
These type of section are very common in the steel structures having large span. The manner in which
the point of application of loads in the top flange , the shear centre or at the lower flange, affects
considerably the global behaviour of flexural members in their resistance with regard to the lateral-
torsional buckling. In order to understand the real behaviour (inelastic) of the so-called real beams, the
initial imperfection must be considered.

The following assumptions are considered to understanging the LTB phenomenon in the
particular case of I-shaped steel sections:

- The beam is prismatic.

- The beam is initially undistorted.

- The member cross section retains its original shape during buckling.

- The externally applied loads are conservative.

- The global behaviour is elastic (no yielding).

-The analysis is limited within the elastic limit.

- The transverse load passes through the axis of symmetry in the plane of
bending.

- Residual stresses are not considered.

- Simply supported vertically and laterally bouandring conditions.

In order to determine the lateral torsional buckling capacity of beams, different structural steel
design standards (e.g., CAN-CSA S16-14 (2014), AISC-ANSI 360-10 (2010), AS 4100 (1998), and
Eurocode 3 (2005)) provide different algebraic equations. However, in a general sense, all of them
start with calculating the elastic LTB resistance Mu of a simply supported beam under uniform
moments.

The finite element method is a numerical technique used to solve problems that may be
otherwise difficult to solve analytically. The basic concept behind the finite element method is to
model a continuum with infinite degrees of freedom and as a system of elements having finite degrees
of freedom. These elements are assembled to accurately approximate the behavior of the entire
system. The next point will be the causes of failures for beams is the lateral-torsional buckling LTB
either elastically or inelastically. A beam can fail by reaching My, and a plastic hinge will be created.
The failure can be one of the three types of bucklings: LTB is the first reason for failur and also the

flange local buckling (FLB) in elastic or inelastic manners.
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2.8 Parameters effecting the design background of members subjected to LTB

2.8.1 General

The buckling is essentially flexure behaviour. Due to their high strength, steel beams are
characterized by small thicknesses of section walls, which leads to various forms of stability loss.
Structural stability problems have substantial effects on the design steps of steel structures. Stability is
a potent issue in the design of steel structures which may cause serious structural failure. Lateral-
torsional buckling is a kind of failure that occurs when the in-plane bending capacity of a member
exceeds its resistance to out-of-plane lateral buckling and twisting. Physically, the phenomenon of
LTB in which the overall behaviour of steel member changes from initially in-plane bending to
combined a large lateral displacement and twist angle due to an application of load on an unsupported
beam.

2.8.2 LTB codes provisions

The elastic stability of flexural members has been an important consideration in civil
engineering design since the beginning of the 20th century. In fact, International design codes in
United States, Australia, Europe and Canada contain relative provisions for designing flexural
members considering the limit state. Therefore, LTB is one of the most important stability problems
and may often be a controlling parameter in steel beam design. Various design standards and codes
recommend methods in order to calculate lateral torsional buckling of steel members. Critical elastic
lateral torsional buckling moment capacities for I-shaped steel members are considered in various
standards and codes: AISC 360-10, EC3, BS 5950 etc.

With regard of LTB, the effect of moment distribution between supports and the effect of load
height with respect to the shear centre, the beam being or not laterally restrained etc. The LTB can
cause partial failure or whole failure in the structure. The stress at which buckling occurs depends on a
variety of factors ranging from the dimensions of the member to the boundary conditions to the
properties of the material of the member.

2.8.3 Effect of moment distribution

To designate the effects of moment distribution between supports codes used an expression
termed the equivalent uniform moment factor. This factor is an attempt at modifying the basic strength
of a loaded member by referring its strength versus the strength of a member loaded with a constant
moment distribution. The factors used by these codes are inaccurate for some loading circumstances
on both the conservative and unconservative ends of capacity prediction. This issue arises due to the
broad range of moment distributions for which the factor is intended to predict capacities. Current
efforts to improve the effectiveness of these moment factors involve producing expressions for specific

loading types. Although extensive effort has been put into producing solutions for possible
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distributions, many loading scenarios remain uncharacterized. Without solutions for a comprehensive
range of load distributions, it is unlikely design codes will alter their methods and use moment factors
tailored to specific load distribution types.

2.8.4 Effect of load position in the cross section

The effects of load locations are characterized in the design codes that consider this effect by
modifying the members’ effective length. In the case of a sagging bending moment, when a member is
loaded below its shear centre, the effective capacity of the member increases because the load acts to
correct the torsional displacement tendency (tension zone). When the load is above the shear centre,
however, the capacity decreases significantly as the load produces additional destabilizing forces in the
torsional direction.

It is worth to recall that neglecting the fact of actual location of the applied load, the design
codes at risk of producing weak structural components and therefore entire the entire structures are
structurally deficient during critical phases of their life. The most significant of these phases being the
construction period, as many of the members will be loaded in a standalone temporary fashion where
they do not have suitable lateral bracing to ensure negation of the load height effect.

2.9 Lateral-Torsional Buckling according to EC3

2.9.1 Cross-section classification
o Basis: The role of cross section classification is to identify the extent to which the resistance
and rotation capacity of cross sections is limited by its local buckling resistance as shown in (Figure
4.1).

o Classification: Four classes of cross-sections are defined, as follows:

- Class 1 cross-sections are those which can form a plastic hinge with the rotation capacity

required from plastic analysis without reduction of the resistance.

- Class 2 cross-sections arc those which can develop their plastic moment resistance, but
have limited rotation capacity because of local buckling.

- Class 3 cross-sections are those in which the stress in the extreme compression fiber of the
steel member assuming an elastic distribution of stresses can reach the yield strength, but
local buckling is liable to prevent development of the plastic moment resistance.

- Class 4 cross-sections are those in which local buckling will occur before the attainment of

yield stress in one or more parts of the cross-section.
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........

o Classification criteria
- For the particular case of Class 4, the cross sections effective widths may be used to make the
necessary allowances for reductions in resistance due to the effects of local buckling, [EN 1993-1-5,
4.4].
- The classification of a cross-section depends on the width to thickness ratio of the parts subject to
compression.
- Compression parts include every part of a cross-section which is either totally or partially in
compression under the load combination considered.
- The various compression parts in a cross-section (such as a web or flange) can, in general, be in
different classes.
- A cross-section is classified according to the highest (least favourable) class of its compression
parts.
o Particular remarks
Alternatively, the classification of a cross-section may be defined by quoting both the flange
classification and the web classification. The limiting proportions for Class 1, 2, and 3 compression
parts should be obtained from Table 4.1. A part which fails to satisfy the limits for Class 3 should be
taken as Class 4. Except as given in (10) Class 4 sections may be treated as Class 3 sections if the

width to thickness ratios are less than the limiting proportions for Class 3 obtained from (Table 4.2)

, Ty
when £ is increased by % , Where o,,m gq 1S the maximum design compressive stress in the part
com.Ed

taken from first order or where necessary second order analysis.
However, when verifying the design buckling resistance of a member using section 6.3 [EN
1993-1-1:2005], the limiting proportions for Class 3 should always be obtained from Tables
Cross-sections with a Class 3 web and Class | or 2 flanges may be classified as class 2 cross
sections with an effective web in accordance with 6.2.2.4 [EN 1993-1-1:2005].
Where the web is considered to resist shear forces only and is assumed not to contribute to the bending
and normal force resistance of the cross section, the cross section may be designed as Class 2, 3 or 4

sections, depending only on the flange class.
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2.9.2 Uniform members in bending: buckling resistance

In order to analyses buckling effect on a structure subjected to transverse loading, and
according to section EN-1993-1, where no lateral-torsional buckling checking is needed, two main
cases are considered:

1. Beams with sufficient restraint to compression flange, which are not susceptible to lateral-
torsional buckling.

2. Beams with particular cross-section shape, such as square or circular hollow sections,
fabricated circular tubes or square box sections are not susceptible to lateral-torsional buckling.
According to EN-1993-1-1, lateral-torsional bukling checking for a member laterally unrestrained

subject to major axis bending, should be verified as the follow:

MEg
<1 2.1
MpRrd ~ ( )
Where, Meg is the design value of the moment
Mp, Rd is the design buckling resistance moment
If the ratio MM—E" < 1.0 then My, Rq is the highest value that section can reach, so Mgg cannot
b,Rd

exceed it.

The design buckling resistance moment is calculated as:
Ay
YMm1

Where, Wy is the appropriate section modulus as follows:

Mpra = XLT- Wy (2.2)

In which Wy is Wy, y for Class 1 or 2 cross-sections, and Wy is W y for Class 3 cross-sections.

For Class 4 cross-sections Wy is Weg, y

And, ¥Ym Is the partial factor for buckling resistance.
fy Is the yield strength of the material.
XLT Is the non-dimensional reduction factor for lateral-torsional buckling that ranges from

0 to 1. Further details will be provided later in the chapter.
2.9.3 Lateral-torsional buckling parameter and buckling curves
For bending members of constant cross-section, the value of  y;r for the appropriate non-

dimensional slendernessA, ; , should be determined from the given formulation:
1

XLT = o

Where, @+ = 0.5(1 4+ app(ALr — 0.2) + Afr)and ranges from 0 to 1. It is a non-dimensional

A < 1. (2.3)

parameter.
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ot Is an imperfection factor and must be taken from Table 4.3. It is a non-dimensional parameter.

AT Is the non-dimensional slenderness, it is calculated as:

_LT _ Wy * fy
MCI'

(2.4)

M, s the elastic critical moment for lateral-torsional buckling. It is based on gross cross sectional
properties and takes into account the loading conditions.

The Standard provides a table to determine what buckling curve we must chose and other
recommended values that belongs to each curve (see Table 4.2 and Table 4.3).
In addition, EN-1993-1-1 says that it is not necessary check the phenomenon for 4,7 < 0.4. Table 4.2

Recommended values for lateral torsional buckling curves for cross-sections using for x.r [EN-1993-
1-1, Table 6.4]

Cross-section Limits Buckling curve
. hb < 2 a
Rolled I sections
hb > 2 b
hb < 2
Welded I sections ‘
hb > 2
Other cross-sections - d
Buckling curve a b ¢ d
Imperfection factor a;p 0,21 0,34 0,49 0.76

Buckling curves:

The graphical representation of these curves is the following one:
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Figure 2.3 Buckling curves. [EN-1993-1-1, 2005]

- Curve a, represents quasi perfect shapes.

- Curve b, represents shapes with medium imperfections.

- Curve c, represents shapes with a lot of imperfections.

- Curve d, represents shapes with maximum imperfections.

2.10 Elastic critical moment, Mcr

The 3-factor formula (EC3)

When finding the lateral-torsional buckling resistance of a beam, a certain maximum
theoretical moment is needed which applies for the beam if it was ideal. That moment is the elastic
critical moment, M. It depends on number of factors, for example the length of the beam, the moment
diagram, the support conditions, the stiffness of the beam about the minor axis and the torsional
stiffness.

The elastic critical moment is used to find the non-dimensional slenderness of a beam in the
process of designing it according to Eurocode3. However, there is nothing stated about how to
determine Mcr in Eurocode3. In an earlier version of Eurocode3, the pre-standard ENV 1993-1-
1:1992, an approximating formula is presented to estimate Mcr, which gives conservative results. The
formula is valid for beams in a major axis bending with a uniform cross section that is symmetric
about the minor axis (ECCS 2006, p. 229). Beams in reality are not ideal. That is why a reduction
factor must be used to find the design capacity. The formula mentioned above is often called the 3-

factor formula and is expressed as follows:

n2EL, K \%1, (K, L)2GI,
Zi J<—2> ﬂ+w+(czzg—632j)2—(czzg—cgzi) (2.5)

M = Cq.———L
T (K L)Z | \Ky) 1, n2El,,

Where,
C, = factor depending on the moment diagram and the end restraints.
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C, = factor depending on the moment diagram and the end restraints, related to the vertical
position of loading.

C; = factor depending on the moment diagram and the end restraints, related to the mono-
symmetry of the beam.

E = Young is modulus of elasticity.

G = shear modulus.

I: = Torsional constant.

Iw = Warping constant.

Iz = second moment of area about the minor axis.

L = length of the beam between points which have lateral restraints.

Kw = effective length factor which refers to end warping.

Kz = effective length factor which refers to end rotation in plan.

Zy= coordinate of the point of load application w.r.t the shear Centre in the z-direction.

Zj = mono-symmetry parameter.

Values of the factorsC1, C,, and Cs referred to as the C-factors, for the two load cases studied

in the present theses, given by ECCS (2006) are presented in Table 4.4. Different values for the C-
factors can be found in other literature, such as in Access Steel (2010) and Access Steel (2006), where
only Kz=Kw=1 is considered and in the pre-standard ENV 1993-1-1:1992, where various load cases

are considered but some values are overestimated as shown in Mohri et al. (2003).

E
2(1+9)

The shear modulus is calculated as follows: G = (2.6)

Where, 9 = Poisson’s ratio

The parameter Zgy describes the vertical position of the PLA ??. In lateral-torsional buckling, the
PLA has a significant influence. If the load acts on the compression flange, i.e. above the SC, the
parameter Zg is positive and M, lower than for Z4=0, so the load has a destabilizing effect. If the load
acts below the SC, like on the tension flange, the parameter Zg is negative and M, higher than for Z
=0 so the load has a stabilizing effect.

2.11 Lateral-Torsional Buckling according to ANSI/AISC 360-16 (June 2018)

2.11.1 Cross-section classification

For members subject to axial compression, sections are classified as non-slender element or
slender-element sections. For a non-slender-element section, the width-to- thickness ratios of its
compression elements shall not exceed Ar from Table 4.5(sheet 1 of 2). If the width-to-thickness ratio

of any compression element exceeds Ar, the section is a slender-element section.
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For members subject to flexure, sections are classified as compact, noncompact or slender-
element sections. For a section to qualify as compact, its flanges must be-continuously connect to the
web or webs, and the width-to-thickness ratios of its compression elements shall not exceed the
limiting width-to-thickness ratios, Ap, from Table 4.5(sheet 2 of 2). If the width-to-thickness ratio of
one or more compression elements exceeds Ap, but does not exceed Ar from Table 4.5(sheet 2 of 2).,
the section is noncompact. If the width-to-thickness ratio of any compression element exceeds A, the
section is a slender-element section.

2.11.2 Doubly symmetric compact I-shaped members and Channels

When Lb < Lp, the limit state of lateral-torsional buckling does not apply.

v Whenly<Ly<L M, =Cy|M,— (M, - 07E,S)(=D)| < M, 2.7)
b~ Lp

v Whenly>L M, = .Sy < M, (2.8)

where

Ly = length between points that are either braced against lateral displacement of the compression flange

or braced against twist of the cross section in (mm)

2
F., = CTZ f\/l + 0'07851—;0 (:—2)2 = critical stress, ksi (MPa) (2.9)
T'ts

E = modulus of elasticity of steel = 29,000 ksi (200 000 MPa)

J = torsional constant, in.4 (mm4)

Sx = elastic section modulus taken about the x-axis, in.3 (mm3)

ho = distance between the flange centroids, in. (mm)

The square root term in Equation (2.10) may be conservatively taken equal to 1.0.

Equations (2.9) and (2.10) provide identical solutions to the following expression for lateral-torsional

buckling of doubly symmetric sections that has been presented in past editions of this Specification:

M,, = C,— |ELGI+ (E)ZI C (2.10)
cr bLb y Lb y-w '

The advantage of Equations (4.8) and (4.9) is that the form is very similar to the expression for
lateral-torsional buckling of singly symmetric sections given in Equations (2.9) and (2.10).

e L, the limiting laterally unbraced length for the limit state of yielding, in. (mm), is:

E
L, = 1.76m, j;y (2.11)
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L, the limiting unbraced length for the limit state of inelastic lateral-torsional buckling, in.

- _ _E e o [(Je)? 0.7Fy\?
(mm), is: L, = 1'95”50.7ijsxho+\/(sxho) +6.76(*22) (2.12)
Where
e 1y =radius of gyration about y-axis, in. (mm)
o r =i (2.13)

and the coefficient ¢ is determined as follows:

- For doubly symmetric I-shapes c=1 (2.14)

- For channels c= %\/% (2.15)
Where

e |, =moment of inertia about the y-axis, in.4 (mm4)

For doubly symmetric I-shapes with rectangular flanges, C,, = % (2.16)

Hence, 1.2 = IZ:: (2.17)
rs may be approximated accurately and conservatively as the radius of gyration
of the compression flange plus one-sixth of the web:

= by (2.18)

Tts
1 ht,,
j 1201+ 55t
User Note: All current ASTM A6 W, S, M, C and MC shapes except W21x48, W14x99, W14x90,

W12x65, W10x12, W8x31, W8x10, W6x15, W6%9, W6x8.5 and M4x6 have compact flanges for Fy
=50 ksi (345 MPa); all current ASTM A6 W, S, M, HP, C and MC shapes have compact webs at Fy <

70 ksi (485 MPa)
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3.1 INTRODUCTION

In this chapter full details will be provided on calculations of geometrical properties of the
selected slender sections becoming to class 4 as per EC4. Determining the resistance (or strength) of
structural steel components requires the designer to consider firstly the cross-sectional behaviour and
secondly the overall member behaviour. Clauses 5.5.1 and 6.2 cover the cross-sectional aspects of the
design process. Whether in the elastic or inelastic material range, cross-sectional resistance and
rotation capacity is limited by the effects of local buckling.

As this research work is devoted to the study of the elastic and inelastic buckling behaviour of
slender section of class 4, more interest in the theoretical back ground of such type of sections will be
discussed.

3.2 DESIGN OF THE CROSS SECTIONS TO EC3

3.2.1 Introduction

In Eurocode 3, cross-sections are placed into one of four behavioural classes depending upon
the material yield strength, the width-to-thickness ratios of the individual compression parts (e.g. webs
and flanges) within the cross-section, and the loading arrangement.

Class 1 cross-sections are those which can form a plastic hinge with the rotation capacity required
from plastic analysis without reduction of the resistance.

Class 2 cross-sections are those which can develop their plastic moment resistance, but have limited
rotation capacity because of local buckling.

Class 3 cross-sections are those in which the elastically calculated stress in the extreme compression
fibre of the steel member assuming an elastic distribution of stresses can reach the yield strength, but
local buckling is liable to prevent development of the plastic moment resistance.

Class 4 cross-sections are those in which local buckling will occur before the attainment of yield stress
in one or more parts of the cross-section.

N.B The classifications from BS 5950 of plastic, compact, semi-compact and slender are
replaced in Eurocode 3 with Class 1, Class 2, Class 3 and Class 4, respectively[De Gardner et al,2010].

.3.2.2 Behavioural classes

The moment-—rotation characteristics of the four classes are shown in Figure 4.1.

Class 1 cross-sections are fully effective under pure compression, and are capable of reaching
and maintaining their full plastic moment in bending (and may therefore be used in plastic design).

Class 2 cross-sections have a somewhat lower deformation capacity, but are also fully effective

in pure compression, and are capable of reaching their full plastic moment in bending.
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Class 3 cross sections are fully effective in pure compression, but local buckling prevents
attainment of the full plastic moment in bending; bending moment resistance is therefore limited to the
(elastic) yield moment.

For Class 4 cross-sections, local buckling occurs in the elastic range. An effective cross-section
is therefore defined based on the width-to-thickness ratios of individual plate elements, and this is used
to determine the cross-sectional resistance. In hot-rolled design the majority of standard cross-sections
will be Class 1, 2 or 3, where resistances may be based on gross section properties obtained from
section tables. Effective width formulations are not contained in Part 1.1 of Eurocode 3, but are instead
to be found in Part 1.5; these are discussed later in this section.

It must be notated that both compression parts include every part of a cross-section which is
either totally or partially in compression under the load combination considered.

The various compression parts in cross-section such as web or flange can be in different classes as
per EC3.

Class 1 - high
rotation capacity

Mg fmmeme Class 2 — limited
rotation capacity

Class 3 - local buckling prevents
attainment of full plastic moment

Applied moment, M

Class 4 - local buckling prevents
attainment of yield moment

Rotation, &

3.3 Class 4 cross-sections according to EC3
3.3.1 General

For class 4 cross-sections it is assumed that parts of the area under compression due to local
instability phenomena do not have any resistance (lost area): typically, the compressed portions of the
cross-sections, which have to be neglected for the resistance checks, are the parts close to the free end
of an outstand flange or the central part of an internal compressed element. It is worth to note that the
design principles of Class 4 sections are very specific and usually more difficult than for normal
sections. The local buckling of cross sections affects their resistance and rotation capacity and must be
considered in design. The evaluation of the influence of local buckling of a cross section on

Effective length approach and hand calculations of geometric properties Page 30



Manel Dahlouz CHAPTERS

the resistance or ductility of a steel member is complex. Consequently, a deemed-to-satisfy approach

was developed in the form of cross section classes that greatly simplify the problem.
3.3.2Class 4 to EC3

Class 4 cross-sections (see clause 6.2.2.5 of EC3) contain slender elements that are susceptible
to local buckling in the elastic material range. It is well-known that allowance for the reduction in
resistance of Class 4 cross-sections as a result of local buckling is made by assigning effective widths

to the Class 4 compression elements see Chapter 1.

The formulae for calculating effective widths are not contained in Part 1.1 of Eurocode 3; instead, the
designer is directed to Part 1.3 for cold-formed sections, to Part 1.5 for hot-rolled and fabricated
sections, and to Part 1.6 for circular hollow sections. The calculation of effective properties for Class 4
cross-sections is described in detail in Section 6.2.2 of this guide [De Gardner et al,2010].

3.3.3 Load type effect on the classification under combined bending and axial force

Cross-sections subjected to combined bending and compression should be classified based on
the actual stress distribution of the combined loadings. For simplicity, an initial check may be carried
under the most severe loading condition of pure axial compression; if the resulting section
classification is either Class 1 or Class 2, nothing is to be gained by conducting additional calculations
with the actual pattern of stresses. However, if the resulting section classification is Class 3 or 4, it is

advisable for economy to conduct a more precise classification under the combined loading.

Once again, for checking against the Class 1 and 2 cross-section slenderness limits, a plastic
distribution of stress may be assumed, whereas an elastic distribution may be assumed for the Class 3
limits. To apply the classification limits from Table 5.2 (EC3) for a cross-section under combined
bending and compression first requires the calculation of (for Class 1 and 2 limits) and (for Class 3
limits), where is the ratio of the compressed width to the total width of an element and is the ratio of

end stresses (Figure 3.2).

1 (h NEgg .
; E - & “E' + J"_] = ]
W

+ :
Ly Jlr}'

y =

bd |
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where c,, is the compressed width of the web (see Figure 3.2) and Ngq is the axial compression force;
use of the plastic stress distribution also requires that the compression flange is at least Class 2.

The ratio of end stresses (required for checking against the Class 3 limits) may be determined
by superimposing the elastic bending stress distribution with the uniform compression stress
distribution

Design rules for verifying the resistance of structural components under combined bending and
axial compression are given in clause 6.2.9 for cross-sections and clause 6.4.3 for members. An
example demonstrating cross-section classification for a section under combined bending and

compression is given below [De Gardner et al, 2010].

+
+
Gy Cy
[

3.4 Principles of effective width calculation

To determine the resistance of Class 4 cross sections subject to direct stresses by using the
effective width method, the ef fective? widths of each plate element in compression are calculated
independently. Based on these effective? widths effective effective geotrical properties of cross

section are calculated : A.¢r, I.rr and W, are calculated (see Fig.3.3 , Fig.3.4, Fig3.5).

Compression : For compression elements the effective widths are determined by taking into

account the combined effect of shear lag and plate buckling.

Tension : For tension elements, ef fective® widths come only from shear lag effects. Tension
elements without shear lag effects are taken as fully effective. The effective cross section is then
treated as an equivalent Class 3 cross section, with the assumption of a linear elastic strain and stress
distribution over the reduced cross section. The ultimate resistance is reached with the onset of

yielding in the centre of the compressed plate located furthest from the centroid of the cross section.
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The maximum stress may be calculated in the mid-plane of the critical plate — for | girders, for
instance in the mid-plane of flanges (see Fig.4.3).

Combined loadings: If axial force and bending moment act simultaneously, the calculation of
effective widths may be based on the resulting stress distribution. EN 1993-1-5 allows a simplified
approach where A.r is calculated only for stresses due to pure compression and W,z only for
stresses due to pure bending.

In non-symmetrical cross sections subject to an axial force N,,4, a shift ey occurs (of the centroid G
of the effective area A, relative to the centre of gravity of the gross cross section G, see Fig.4.4).
This shift results in an additional bending moment AM = exNq4 that should be taken into account in
the cross-section verification (see section 2.4.6). According to clause 4.3(3) of EN 1993-1-5 the shift
ey (see Fig3.5) of the centre of gravity due to pure bending can be disregarded in the calculation of
AM, even if the cross section is subject to the combination of axial force and bending moment.

N. B. The following material including figures is mainly taken from Beg et al 2012, see bibliography
[De Beg, Darko et al, 2012]

Aeff
=7 leff
G’ Wesy

e S 4+G.G'

a) Symetric cross sections

|| 4G | sy 1G, [y

b) Unsymetric cross sections
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Figure 3.5: Class 4 cross section in pure bending [De Beg, Darko et al, 2012]

3.5 Iterative procedure
3.5.1 General
Generally, the calculation of ef fectiveP widths requires an iterative procedure shown in Fig.

4.6 that ends when the differences between two steps are sufficiently small.

Ist iteration: 2nd iteration 3rd itcrali:m
2ross cross section
Figure 3.6 Determination of effective area by iterative procedure [De Beg, Darko et al
,2012]
The first iteration starts with the stress distribution on the gross cross section AG1. The

effective area for the second iteration A, is calculated from this stress distribution and the effective
area for the third iteration Aeff3 from the stresses onA. .

3.5.2 Step

For I-section and box cross section in bending EN 1993-1-5 allows a simplified approach that
ends in two steps.

In the first step: effective widths in flanges (if they are in Class 4) are determined from the
stress distribution on the gross cross section.

In the second step: the stresses are determined on the cross section composed of the
ef fectiveP area of the compressed flanges and the gross areas of the web and the tension flanges. The

ef fectiveP width in the web is calculated based on these stresses and this is taken as the final result.
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3.5.3 Cases of stages of construction

When different stages of construction have to be considered, which is a normal case in the
design of composite bridges, the following simplified approach proposed in a Note to clause 4.4 (2) of
EN 1993-1-5 may be used:

In all relevant construction stages (e.g. concreting of the slab, normal use of a bridge) the stresses
should be calculated on the gross cross section of the web and effective cross section of the flanges
(plate buckling and/or shear lag), when relevant.
The stresses from different construction stages are summed up and used to determine a single effective
cross section of the web that is used for all construction stages.

e Finally, the stresses for individual construction stages are calculated on corresponding effective

cross sections and summed up to get the final cumulative stresses [De Beg, Darko et al ,2012].

3.6 Effective width implanted in EC3 method for section properties calculation

3.6.1. An overview

It is well known that a side supported thin steel plate with aspect ratio « = a/b > 1 (Fig 3.7)
subject to direct loading along in-plane direction tends to buckle at a stress level o, less than the yield
stress fy, However, after o, is reached, resistance of the plate is not completely exhausted and it shall
have sufficient post-buckling strength due to stress redistribution. According to the ultimate resistance
of the plate will be reached after yielding occurred at the two supported sides and this will result in
final a non-uniform stress distribution oa«<fy (Fig. 3.8). This phenomenon is commonly known as
“plate like buckling” and is most obvious for geometrical prefect elastic plate but less remarkable for a
realistic imperfect inelastic plate. It is also well known that as the value of @ reduces, the post-
buckling resistance of the plate will diminish gradually and the 2D plate like buckling behaviour of the
plate will change back to the 1D buckling behaviour like a column. Obviously, the non-uniform
distribution of a4 is not ideal for design of thin plate subjected to direct stress. Hence, in EC3 Part 1-
5, two different design methods, namely the effective width method (Fig. 3.8b) and the effective stress
(Fig. 3.8c) method are suggested.

In summary, both methods aim to employ uniform stress block for design. While the effective
width method reduces the gross width to an appropriate effective width b.rs= p.b < b that subjected
to the constant yield strength f for design (Fig. 4.8b), the effective stress method maintains a uniform
stress oequ =xf <f along the whole width. The reduction factors p and y are calculated based on the

principle of equivalent in-plane force such that
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E
':'_-::c'td-:'::b-_f:-";'zp'bjﬂ

For the effective width method : ~ T @3

Iy Gacedx=b-Coni=bf;=1%;
For the effective stress method : (3.2)

It is obvious that for a cross section consisting of a single plate, the two methods are equivalent
to each another such that (Fig. 3.8b and Fig. 3.8c) y,fy=pbs, and y=p. However, for cross sections that
consist of more than one plate element (e.g. an | section), the two methods are not equivalent to each
another and the effective stress method are generally more conservative.

It should be noted that EC Part 1-5 can be considered as largely “biased” towards the effective
width method as Sections 4 to 7 (16 pages in length) of EC3 Part 1-5 were written based on this
method while only Section 10 (2 pages in length) was devoted to describe the design approach if the
effective stress method is employed. Hence, in the design of thin-walled structural components like
plate girder and box section using EC3, the calculation of effective width of a Class 4 section is one of

the most important steps during the section properties calculation [De Lee, Chi-Kinget, 2019].

Direct
stress &

Prefect elastic Imperfect

plate (=0, fy=2x} elastic plate,

- Suppofted4
0
(>0, fir=) ends
........... | b |
Plan view of plate supported
Direct an two sides
stress O

Imperfect plate with
yielding {&>0, f<x) /2

L j

& Centre out of plane /2
displacement

Section wview of plate
supported on two sides

Figure 3.7Failure of plate with a=a/b >1 subject to in-plane direct loading [De Lee, Chi-Kinget,
2019]
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3.6.2. Effective width calculation procedure

In EC3 Part 1-5, for a given plate element (either supported on a single or on both sides) the
effective width reduction factor p is solely based on two parameters: (i) b /t, the appropriate width (b)
to the plate thickness (t) ratio of the element and (ii) the stress ratio at the two ends y = o,/0y
whereo, < oy In general, b is the appropriate clear width between the supports of the plate element. b
is always slightly less than b, the overall width of the plate element, and should be calculated
according to the section classification table (Table 5.2) of EC3 [1] and Section 4.4 of [2]. Figs. 3 and 4
respectively show the possible stress distributions for an internal compression element (i.e. the plate is
supported at both ends) and an outstanding compression element (i.e. only one end of the plate is
supported). Note that in Fig. 3 and Fig. 4, it is assumed that the stress distribution is linear and
compressive stress is taken as positive. Furthermore, for y< 0, the whole plate element is divided into
two parts that are under tension and compression respectively with widths equal to b, andb,, so that
b = b, +b. and b, =b / (1 — ) (Fig. 3c, Fig. 4b and Fig. 4d). In general, the effective parts of the
plate element consist of those parts that are either under tensile stress (i.e. the stress is negative) or
those compressive parts that locate near the supported ends where local buckling is prevented to occur.
Once the values of b /t and y = o,/0, are known, the effective width of the plate element could be

computed by using the following steps [De Lee, Chi-Kinget, 2019].

Effective length approach and hand calculations of geometric properties Page 37



Manel Dahlouz CHAPTERS

Internal compression part (Fig. 3)

Range of ks
-3<y~=-1 (Fig. 3c) 5.08(1-w)*
-1=y=0 (Fig. 3c) 7.81-6.29y+9 78"

0<w=] (Figs. 3a and 3b) 8.2/(1.05+y)

Qutstand compression part with high stress
at supported ends (Figs. 4a and 4b)

Range of v ke
_1=p=0 (Fig. 4b) 175p+17.147
1<y<D (Fig. 4a) 0.578/(y+0.34)

Ouistand compression part with lower stress
at supported ends (Figs. 4c and 4d)

Range of y ke
1<y=<-3 (Figs. 4c and 4d) 0.57-0.21y+0.07 47

Use the equations listed in Table 1 to calculate the buckling factor k, according to the stress ratio y for
different stress distributions shown in Fig 3.9 and Fig 3.10.

Compute the plate slenderness Zp ratio such that
7 _ hw/tw — @
Ap “284¢.,/K, —E= \’ fy (33)

Calculate the reduction factor p for the compressive part of the element such that (EC3 Part 1-5,

Equations. 3.2 and 3.3) For an internal plate element (Fig.3.10):

Ap—0.055(3+)
=T i
i

< 1.0 and 4, > 0.5+ ,/0.085 — 0.055y
(3.4)

For an outstanding plate element (Fig. 4):

Ay—0.188 -
= PT =< 1.0 and HP = 0.784
(3.5)

Calculate b.sf , the effective width for the compressive part of the plate element, (Fig. 3.9 and Fig.

3.10)
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For p=0: besr = pb
b
For y<0:  bgfr= “P_—Jm = pb,

(3.6)

Note that for the case of an internal compression element with y>0 (i.e. the whole plate element is
under compression), the effective width of the element be b, (is further divided into two parts (Figs.
3(a) and 3(b)) with width b, and b, such that b,y + b, = b.sf . The relative sizes of bel and be2
are defined in Fig 3.10.

Finally, the total effective width of the whole plate elements is computed as b, (Fig 3.9a, Fig 3.10a

and Fig 3.9c) for y>0 when the whole plate element is under compression or b, s+ b, fory.

@ | | ‘ | o
a
| 1
bes ! " b, \h\
— a3
b bes bez \l ’
(a) Constant stress distribution, p=1 1
be T b
92 (c) Ends with opposite stress status, =D
bet 4 ‘r bez be=bertbe:
_ For 20, I.e. (b), bes=2begy/(5-w)
b For <0, i.e. (c), ber=0.4besy

(b) Ends with same stress status, 1.>y=0

Figure 3.9 Stress distribution and effective width for internal compression elements (i.e. both
ends supported), effective part of the plate is shaded Note: Compressive stress is positive

witho, < o3. [De Lee, Chi-Kinget, 2019]

il
i

{a) Supparted end with higher stress, 139270 [b) Supported end with higher stress, ge0

@

| {H
!I

{e] Supported end with lower stress, 32D [d) Supported end with kawer stress, w0

Figure 3.10 Stress distribution and effective width for outstand compression elements (i.e. only

end supported), effective part of the plate is shaded. [De Lee, Chi-Kinget, 2019]
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3.7 Full iteration calculation procedure for class 4 section properties calculation

CHAPTERS3

By assuming the whole section is effective, calculate the gross section properties (Ggross: Agross

andlyyoss)-

Set Geff :GgT0551 Aeff:Agross’ Ieff:Igross and Ay:AZ:O.

Base on the stress ratioy, determine the effective area of all plate elements by using Table 3.1 and

Fig.3.9 and Fig.3.10.

Compute the new centroid of the effective area G;ff and the corresponding effective area A;ff and

effective second moment of area Ie}f :

Determine the shift of the centroid G.ss - G;ff =(Ay, Az) and the relative change of effective area

and effective second moment of area such that

—_—
Jarisay®
min(b, i)

S,:;-':%:l = X LUU%

(3.7)

C(%) =220 1009% and € (%) =|‘“”r'%x 100%
ef ] ef

(3.8)

where b and h in Equation 10a is the overall width and depth of the section.

> Update the section properties s0 that Gerr < Gorr, Aepre Aepp and Loppe Logy.

» Check for convergence of the section properties: The section

properties are assumed to be converged if the following criteria are satisfied.
S6SStol Ca=Cytor Ci<Citor -
where Sy, , Caror@nd Cyy; are tolerances for the convergences of Gerr, Acrrand

Losr, respectively.

> If the section properties are converged, output the value of G, Acrf

and I¢¢ and stop. Otherwise, go to step. [De Lee, Chi-Kinget, 2019]

3.8 Section properties calculation examples
3.8.1 General

In the present study, sections, three sections: S1, S2 and S3 will be designed with different

flange thicknesses. All sections are being bi-symmetric. The design procedure concern beams which

Effective length approach and hand calculations of geometric properties

Page 40



Manel Dahlouz CHAPTERS

are predominantly loaded in bending, that is, where axial loads, if any, are small and transverse shear
forces are not excessive. In all models, the elastic analysis of simply supported beams undergoing
uniformed transverse load is carried out.
All members subject to bending should be checked for the following at critical sections:
@ A combination of bending and shear force
(b) Deflection
(©) Lateral restraint
(d) Local buckling
(e) Web bearing and buckling.
The application of a theoretical treatment of the problem would be too complex for routine design

so a combination of theory and test results is required to produce a reliable (safe) design approach.

Before considering the analysis of the problem, it is useful to attempt to gain an insight into the
physical behaviour by considering a simplified model. Since bending of an I-section beam is resisted
principally by the tensile and compressive forces developed in two flanges, as shown in Figure 3.11,
the compression flange may be regarded as a strut.

Generally, compression members buckle in the weaker direction i.e. the flange buckles
downwards. However, this is prevented by the presence of the web. Therefore the flange is forced to
buckle sideways, which will induce some degree of twisting in the section as the web too is required to
deform. Whilst this approach neglects the real influence of torsion and the role of the tension flange, it
does approximate the behaviour of very deep girders with very thin webs or of trusses or open web

joists. Indeed, early attempts at analysing lateral-torsional buckling started with this approach [Abutair.
Baker Wael].
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3.8.2 Case 1 studied
Once again, we will present only one type of cross section will be studied with different thickness

of flanges for a single spanned beam, supported at both ends.

3.8.3 Sections bi-symmetric
The beam with the bi-symmetric I-section chosen to be modelled will be made of elastic

material, with E = 210 Gpa and v = 0.4. The beam length is L =20 m.
The beam will be subjected to a uniform distributed load along of the beam, with different

position of load.

qu

! 20 m !

M(x) > 0
M(X) =qeu- g

X L

L L
=-- M(X: E) =qelr- E = Mmax(X) =qel1 - Z

X =
2

L20 m; S355 — f, =355 Mpa — f, = 470 Mpa or 510 Mpa

tf tf tf
11 | t\\"" h | t\,\"— h | t“‘

b _ ) b _ ) b

a) Section 1 b) Section 2 c) Section 3
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| v
h ‘ t\\w
b

3.8.4 Pre-defining

h,, =—. L =— 20000 = 1300 mm
15 15

1 _ 1 _
tW—E.hW—E.l:'))OO—lomm

h 1300
b=—==="""=250mm
5.2 5.2

ty =—.b=— 250 =20 mm
12.5 12.5

b= =.250=12mm
20
b= -+ .250=10 mm
25
3.8.5 Geometrical proprieties (section 1)
Cross-sectional area
A; =h.t, +2b. tg; = (1300. 10) + (2.250.20) = 23000 mm? = 230 cm?

Moment of inertia

_ bH3—(b-ty).h® _ 250.13403—(250-10).13003

I, =2 & = 6187166667 mm* = 618716.66 67cm*
3 3
[y= 2RI 2 2250 204 130010 - 52191666.67 mm* = 5219.1667 cm*

Elastic resistance modulus

2,22 =p, SETIO00T - 92345771 cm?

Wely,= H 134

Elastic moment

Mel,, = Wel,,; . f, = 9234.5771. 3550 = 32782748.7100 dan. cm = 3278.2749 KN. m

Inertia of torsion

I = 31 (h. tw? +2b. t7,3) = 33 (1300. 103 +2.250. 203) =1766666.6670 mm* = 176.6667 cm*
Factor of warping

Iy = 121*(% 2 = 52191666.67* (

1340—-20
2

)2 =2.273469. 1013 mm® = 22734690 cm®
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» Shear modulus

_ E  _ 210000 _
G =15 = 71y 03y - 807692308 Mpa

Table 3.2 Section 1 e p (with thickness of flange =20 mm)

CHARACTERISTI A, I, Wel,, Mel,,, I
c [em?] [em*] [em?] [KN.m] [cm*)
GEOMETRIC

Table 3.3 Section 2 (with thickness of flange =12 mm)

CHARACTERISTI A, 1, Wel,, Mel,, I, 1, G E
c [em?] [em*] [cm?] [KN.m] [em*] [em®] [Mpa] [Mpa]
GEOMETRIC

Table 3.4 Section 3 (with thickness of flange =10 mm)

CHARACTERIST , I3 Welys Mel,; I3 G E
Ic [em*] [em?] [KN.m] [em*] [Mpa] [Mpa]
GEOMETRIC

3.8.6 Classifications of the used sections
> Web
v" Section 1

ti5124g—>e=0.81

w

5% — 130 > 100.44 > classe04

10
v' Section 2
tiS124e—>e=0.81

w

%20 =130 > 100.44 —» classe04

v" Section 3

tis124e—>e=0.81

w
1300

0 = 130 > 100.44 — classe04

» Flange
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c=22_1—-190 mm
2 2
v" Section 1
< <9eg—-e=081
tf1

% =6<9¢ =744 - classe 01

v" Section 2
< <14e-> £=081
tf2

% =10< 14¢ = 11.34 — classe 3

v" Section 3

£ <14e-> £=0.81
tf3

= = 12> 14& = 11.34 - classe 4
3.8.7 Determining the elastic loading acing on the beam

Mely1= Mypax= "Z—L for the section 1.

3278275 =2 g, = 655.656 KN /m

gs = 427.721KN /m

3.8.8 Case 2 studied
Once again, we will present one type of cross section will be studied with different thickness of
flanges for a single spanned beam, supported at both ends.
3.8.9 Sections bi-symmetric
The beam with the bi-symmetric I-section chosen to be modelled will be made of effective material,
with E = 210 Gpa and 9 = 0.4. The beam length is L =20 m.
The beam will be subjected to a uniform distributed load along of the beam, with different position of

load.
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qu

! 20 m !

Figure 3.14 Beam with supports under uniform distributed load

tf if if
h tw h|  tw h ‘ tw
l |
_ . ) b _ b

a) Section 1 b) Section 2 c) Section 3

tf

b .
/
Figure 3.15 bi-symmetric cross-section of the beam (elastic)
M(x) > 0
X
M(X) =Gesyr- 5

X = % - M(ng) =qeff- g = Mipax(X) =qesy - %

L20 m; S235 — f, =235 Mpa — f, = 360 Mpa or 510 Mpa
3.8.10 Geometrical proprieties effective (section 3)
The gross section properties of the section are given by: h,=1300mm,t,=10mm,
Agross=18000 mm? | I;,45,=397600.000 mm* and W,,=6024.242 mm?>

> Flange

v Determine the stress ratio, :

From Table 4 of EN 1993-1-5, the buckling factor y = +1, K, =0.43
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v The normalized slenderness ratio /Tp is given by

7= c/t 120/10
P 284¢ /Ky, 28.4.081. 043

X, > 0673

=0.795

v The reduction factor p for an internal compression member is given by

=882 - 0,910
A

D

v The effective depth b,ffis given by
besrs=p.¢=0.910. 120 = 109.2
> WEB SECTION

v Eirst iteration
< Calculation of effective area, Acss3
v Determine the stress ratio, y:
From Table 4.1 of EN 1993-1-5, the buckling factor K, = 23,9 for y =—1,0.

v The normalized slenderness ratio /’Tp is given by

= _ hw/tw _  1300/10

= = = >
P 284¢./K; 284.081. 249 1.156 1.08
v The reduction factor p for an internal compression member is given by

_ 2p—0.055(3+%) _ 1.156-0.055(3—-1)

T — = 0.783
v The effective depth b.sf is given by
_ phw _ 0.784.1300 _
besr =1y =Ty = 908.95mm

v The depth of web left at the top b,;:
be1= 0.4 borr = 0.4x 508.95 = 204.58 mm

v The depth of web left at the bottom (above the centroidal axis), be2:
bez= 0.6 bys; = 0.6 x 508.95 = 305.37 mm

v The ineffective portion of web has a length

[ o=x=1¥
w—AT

v The net loss of area of the web, A,, is given by

4 A, = l,.t, = 141.05.10 = 1410.50 mm?

By — buy = 650— 204.58 —305.37= 141.05 mm
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v Effective area of section, A

Agpp3=A—A, =18000-1410.50 = 16589.50 mm?*=165.895 cm?

Ca(%) = % x 100% — C,(%) = 7.84%>0.1%

Compressive
stress

.

tensile stress

o= < fi

/

% Figure 3.16 Calculation of effective cross section. [Lee, Chi-King & Chiew, Sing-Ping,
2019]

v Calculation of A3 Position of effective centroid, z.ss:

x _ 1300
2 2

_ hw 141.05
=5 bem

204.58 —

= 375.89mm

_ _ —375.89. 1410.50 _
r. AW + Aeff' AG=0o0r AG = W =-31.96mm

Note, z. s rev IS the neutral axis position at the previous iteration.

For the first iteration, z. pre, = /2

v Effective second moment of area, Ioss3
— 2 x3tw 2
Ieff3 - Igross +A(AG) “ —( TH + A, (r + AG) ©)

_ 4 2 ,141.053.10 P
=397600.10*+18000(31.96) “— (————+1410.50 (375.89 31.96) )

12

= 3757422587 mm* = 375742.259 c¢cm*

| 1 -1 7| 397600—-375742.259
€, (%) = T8 x 100%= |
e

x 100% — C,=5.49% > 0.1%
397600

d="" +2 — AG = 650+5+31.96= 686.96 mm

hw

d,==" +=*+ AG =650+5-31.96 = 624.04 mm
v The lesser elastic section modulus W,z is given as

_ leffs _ 375742259 _ 3
Weff3_ d. = 65.696 = 5469638 cm
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Since both C, and C;>0.1%, further iteration is carried out.
v Effective moment
Meff;= Weffs. f, =19417214.9 dan .cm

=1941721490 N. cm = 1941.721 KN. cm
v Second iteration

< Calculation of effective area, A,zf

v Determine the stress ratio, :
h 1300
(2 -AG) ( =—-31.96)
VY=-—2 =- —% =-0.906
(55 46) (——+31.96)

K, =7.81-6.29y +9.78 y? = 21.536

v The normalized slenderness ratio /’Tp is given by

= _ hw/tw _ 1300/10

= = = >
P 284¢./K, 28.4.081 v21.536 1.218 1.08
v The reduction factor p for an internal compression member is given by

_ Ap—0.055(3+1) _ 1.218-0.055(3-0.906 )

2 2
Zp 1.218

= 0.743

v The effective depth b, ;¢ is given by

b.=hw [2+AG=1300/2+31.96= 681.96 mm
besr =p. b =0.744. 681.96 = 506.70 mm
v The depth of web left at the top b,:

be1=0.4 bsr = 0.4x 506.70 = 202.68 mm
v The depth of web left at the bottom (above the centroidal axis), be2:

bez= 0.6 by = 0.6 x 506.70 = 304.02 mm

v The ineffective portion of web has a length

l, =X= b, - byy — by, = 681.96-202.68— 304.02= 175.26 mm

v The net loss of area of the web, A,, is given by

Ay, = ly.ty = 175.26.10 = 1752.60 mm?

v Effective area of section, A,
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Aerrz =A— A, =18000-1752.60 = 16247.40mm?

_ |Aefrza—Aerr3| _ |16589.50—16247.40|

0, 0 0, 0, 0,

C4(%) = Ao e x 100% — C,(%) = 1658950 x 100% C,(%)

=2.06 % >0.1%

% Calculation of A3

v Position of effective centroid, z,:

r=Jw_ by, — * =139 50268 — 17526 _ 359 69mm
2 2 2 2
359.69. 175260 _ ag g o

r. AA + AeffAG:O or AG =-
16247.40
This means that shift of G’ to G’’=(-31.96—(-38.80))= 6.84mm (downward)
Note, z. s »rev IS the neutral axis position at the previous iteration. For

the first iteration, z, ¢ pye, = /2
v Effective second moment of area, I.ff3

3.tw
Iefrz = Igross t A (AG) 2—( x12 + A, (r + AG)?)
3
(A526710 1 1757 60 (359.69 + 38.80) 2 )

= 397600.10*+18000(38.80) 2 —(——=
= 372030898.1 mm* = 372030.898 cm*

Iepp— I 375742.259 —372030.898
C’(%) :MXIOO%= l 375742.259 | 100% - ¢
eff :

=0.99% > 0.1%

hTW + %W — AG = 650+5+38.80= 694.8 mm
d;="" += + AG =650+5-38.80 = 616.20 mm

The lesser elastic section modulus W5 is given as

d.=

v

_ lefrz _ 372030.898 _ 3
Weff3_ d, = 69.38 =5362.221 cm

v Effective moment
Mors = Wesrs . f, = 5362.221. 3550 = 19035884.55dan .cm

=1903588455 N.cm =1904.588 KN. cm

v third iteration

% Calculation of effective area, Acss3

Page 50
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v Determine the stress ratio, y:
h 1300
(2 -A6) ( =— -38.80)
lP - - hz =- 13?00 =- 0.887
( TW+ AG) ( =+ 38.80)

K, =7.81-6.29y +9.78 y? = 21.020

v The normalized slenderness ratio /Tp is given by

= hw/tw _ 1300/10

= = = >
P 284¢,/K; 284.081 v21.02 1.233 1.08
v The reduction factor p for an internal compression member is given by

2,—0.055(3+ 1.233-0.055(3—-0.887
==L _2( L ( ) = 0.734
Zp 1.2332

v The effective depth b,/ is given by

b.=hw [2+AG=1300/2+38.8= 688.80 mm
berr =p. b =0.734. 688.80= 505.58 mm
v The depth of web left at the top b,;:

be1=0.4 b.sr = 0.4x 505.58= 202.23 mm
v The depth of web left at the bottom (above the centroidal axis), be2:

bey= 0.6 by = 0.6 x 505.58 = 304.35 mm

v The ineffective portion of web has a length

l, =X= b.- byy — byy = 688.80— 202.23— 304.35= 184.22 mm

v The net loss of area of the web, A,, is given by
A, = l,.t, =184.22. 10 = 1832.2 mm?
v Effective area of section, A,f3:

Aerpz =A— A, =18000-1832.20 = 16167.80mm?*= 161.678 cm?

_|16247.40-16167.80|

Ca(%) = % x 100% — C, (%) = x 100%

16247.40
= C,(%) = 0.49% > 0.1%

< Calculation of A.¢f

v Position of effective centroid, z,¢:
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h 1300 184.22
[=—"- boy —>=——-202.23 -

= 356.16mm

356.16. 1832.20 _

r. AA+ Agpr. AG=00r AG =- =-40.36mm
16167.40

This means that shift of G’ to G’’= (-38.80—(-40.36)) =1.56mm (downward)
Note, Z.rrprev 1S the neutral axis position at the previous iteration. For the first
iteration, zef ¢ prey = /2

v Effective second moment of area, I.ff3

x3'tw

Ieff3: Igross+A (AG)Z_( + Ay, (T' + AG)Z)

184.223.10
(—

=397600.10*+18000(40.36) 2 —(~—

+1832.20 (356.16 + 40.36) 2)
= 3712121875 mm* = 371212.187 cm*

Iepp— I 372030.898 — 371212.187
C,(%) = Mxloo% = | L 100%
Iefs 372030.898

- €=0.22% > 0.1%
d="" +2 — AG = 650+5+40.36= 695.36mm

2

hw

+ 2 4 AG =650+5-40.36 = 614.64mm

2 2

de=

v The lesser elastic section modulus W, is given as

W= lerrs _ 371212187
eff3= q, 69.536

=5338.417
v Effective moment
Meff3 = Weff3 . fy = 5338417 3550

=18951380.35 dan .cm =1895138035N. mm = 1895.138 KN. m
v For iteration

< Calculation of effective area, A,zf

v Determine the stress ratio, :
h 1300
(2 -A6) (—=—-40.36)
Y=-—2 =- —%% =-0.883
( 54 46) (——+4036)

K, =7.81-6.29y +9.78 y? =20.989

v The normalized slenderness ratio /Tp is given by

= _ hw/tw _ 1300/10

P "284¢ /K, 28.4.0.81. 20989 =1233> 108
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v The reduction factor p for an internal compression member is given by

A,—0.055(3+1) _ 1.233-0.055(3—0.883
_ Ap0055 - ( ) = 0.734

2
2 1.233

v The effective depth b.sf is given by

b.=hw [2+AG=1300/2+40.36= 690.36 mm
bess =p. be =0.734.690.36= 506.72mm
v The depth of web left at the top b,4:

be1=0.4 b.sr = 0.4x 506.72= 202.69 mm
v The depth of web left at the bottom (above the centroidal axis), be2:

bey= 0.6 by = 0.6 x 506.72 = 304.03 mm

v The ineffective portion of web has a length

L, =X= bg- byy — buy = 690.36— 202.69— 304.03= 184.64 mm

v The net loss of area of the web, A,, is given by

A, = l,.t, = 184.64 10 = 1836.40 mm?

v Effective area of section, A.y:

Aesp=A— A4, =18000-1836.40 = 16164.60mm?= 161.636 cm?

C(06) = 2oL 1000 0 = L1 1010040 4

= C,(%) = 0.025% < 0.1%

< Calculation of A,ff

v Position of effective centroid, z,:
r==2- byy — 2 =22 202.69 -~ = 355.49mm
r. AA+ Agrr. AG=0or AG =- % =-40.39mm

This means that shift of G’ to G’’= (-40.36—(-40.39))=0.03mm (downward)

Note, z.rr prep 1S the neutral axis position at the previous iteration. For the first

iteration, Zes prey = /2
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v Effective second moment of area, I.ff3

x3'tW

Ieprs = lgross + A (AG) 2 —( + A, (r + AG)?)

184.643.10

397600.10*+18000(40.39) 2 —( +1836.40 (355.49 + 40.39) 2)
= 3712401098 mm* = 371240.110 cm*

| 371241.240-371240.110 |
100%
371240.110

Lepr— 1p
C,(%) = |+ﬁff|x100%

- (;=0.003% < 0.1%

hw
2

d.= + t—w — AG = 650+5+40.39= 695.39mm

hw

dt— L + AG =650+5-40.39 = 614.61mm

v The lesser elastic section modulus W is given as

W= lefrs _ 371240110
eff3™ g, 69.54

=5338.512 cm?

v Effective moment
Megrs = Wepss . f, = 5338.512. 3550 =18951717.60 dan .cm
=1895171760 N. mm = 1895.172 KN. m
Table 6.5 Section 1 (with thickness of flange =20 mm)

Iteration Acif1 Lefr1 Wetr1 Mefrq AG
[cm?] [cm*] [cm3] [KN. m [mm]

0 (Gross) 230 618716.667 9234.577 3278.275 =1t
1

_ 215.895 597251.355 8724.602 3097.234 24.56 -0.927
214.271 594496.113 8634.531 3065.258 28.51 -0.916
212.901 594161.381 8624.157 3061.221 29.03 -0.914

4 (Full) 212.820 594069.425 8620.196 3060.169 29.16 -0.913
Simplified 215.895 597251.355 8724.602 3097.234 24.56 -0.927
Full/Simplified 0.99 0.99 0.99 0.99
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Table 3.6 Section 1 (with thickness of flange =12 mm)

Acffa Wessa M55, AG v
[em?] [em?] [KN. m] [mm]
-1

Iteration

0 (Gross) 190.000 441292.133 6666.044 2366.446
175.895 419530.153 6114.352 2170.595 30.14 -0.911
172.793 416247.068 6015.305 2135.433 35.98 -0.895
172.096 415522.590 5994.180 2127.934 37.21 -0.892
4 (Full) 171.995 415440.014 5991.520 2126.990 37.38 -0.891
Simplified 175.895 419530.153 6114.352 2170.595 30.14 -0.911
Full/Simplified 0.98 0.99 0.98 0.98

Table 3.7 Section 1 (with thickness of flange =10 mm)

Wesrs Mesps AG v
[em?3] [KN. m] [mm]
180.000 397600.000 6024.242 2138.606 -1
165.895 375742.259 5469.638 1941.721 31.96 -0.906
162.474 372030.898 5362.221 1904.588 38.80 -0.887
161.674 371241.240 5338.569 1895.192 40.36 -0.883
161.636 371240.110 5338.512 1895.172 40.39 -0.882
Simplified 165.895 375742.259 5469.638 1941.721 31.96 -0.906
Full/Simplified 0.98 0.99 0.98 0.98

3.8.11 Determining the effective loading acing on the beam

Msp3= Mipax= quL for the section 4.

1941.721 = fo"

Section 1 Gefr1 = 619.447 KN/m

Section 2 9efr2 = 434.119 KN /m

Section 3 deff3 = 388.344 KN/m
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4.1 General introduction to stability of members in bending

This chapter deals the technics of modelling structures with finite element. This modelling
concerns the elastic and inelastic buckling behaviour of slender sections. The author suggests a brief
introduction to the stability theory and the types of analysis of buckling. A general introduction to
software used in modelling the considered sections. The used software, the first is a free (LTBEAM)
and the second is the more general purpose: well-known (ABAQUS).

The main material described in this chapter is extracted from Master thesis previously submitted under
the supervision of A. Labed in The University of Tebessa.

A study of the stability of structures is aimed at calculating the elastic critical load and

deducing appropriate design loads for elements under compression to ensure that buckling does not
occur. This is generally a complex procedure although the techniques can be built up from the matrix
analysis methods are available. Fortunately, the stability analysis of a structure can be considered
subsequent to the linear elastic analysis. Further, in many cases Codes of Practice offer sufficient
guidance for a stability analysis not to be necessary. Nevertheless, important structures are subjected to
stability analysis and the computational effort required is continually being reduced by developments
in computer applications.
LTB can be considered as a critical condition for laterally unsupported beams. Like members in
compression, the resistance of members in bending to lateral torsional buckling depends on the non-
dimensional slenderness and an allowance for initial imperfections. However, no simple expression is
given for non-dimensional slenderness for lateral torsional buckling. Its value is to be derived from the
elastic critical buckling moment for the member. There are two methods for determining LTB
slenderness manually, without the need to determine elastic critical moment. Both are based on
empirical simplifications that give conservative values of slenderness [Abutair. Baker Wael,2017].

4.2 Solution by Finite Element Analysis for stability problems

4.2.1 Introduction

The recourse can be made to finite element analysis software (LTBEAM, ABAQUS ANSYS)
when it is not possible to isolate uniform structural components, the loading on the components is
complex or the interaction between components makes it difficult to determine boundary conditions
for the critical components in order to determine elastic critical buckling loads using matrix analysis.
The eigenvalue of interest to the designer is therefore not the lowest value but the one relevant to the
first global LTB mode. The eigenvalue of interest to the designer is therefore not the lowest value but
the one relevant to the first global LTB mode. The Eigen value of interest to the designer is therefore

not the lowest value but the one relevant to the first global LTB mode.
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Two types of analysis i.e. elastic buckling analysis and non-linear analysis are performed to estimate
the ultimate load carrying capacity of beams. Firstly, an eigenvalue analysis is performed for elastic
buckling analysis in which eigenvalues of corresponding Eigen modes are determined using the linear
perturbation buckling analysis. In this study, four eigenvalues for each run are extracted. Finally, RIKS
method (ABAQUS 2014) is selected for non-linear post buckling analysis since it is suitable for
predicting the instability as well as for understanding the non-liner behaviour of geometric collapse
(ABAQUS 2014). RIKS method is based on Arc-length method and a form of Newton-Raphson
iteration method, in which an additional unknown, named load proportionality factor is introduced to
provide solutions concurrently for load and displacement [Abutair. Baker Wael, 2017].

4.2.2 First order analysis

First order analysis software will determine buckling loads by considering a particular loading
situation and evaluating the eigenvalues for the stiffness matrix. Each eigenvalue has a corresponding
eigenvector that defines the particular buckling mode associated with that value. The eigenvalues thus
represent the critical buckling loads for each possible mode of buckling. Each eigenvalue gives the
multiple of the applied loading at which the structure buckles in that particular mode and thus it is only
the lowest values that are of relevance.
First order buckling analysis will be adequate for determining elastic critical buckling loads for most
situations, which means that material non-linearity and geometric deformation are not taken into
account. Note, however, that since the software for determining elastic critical loads generally uses
stress stiffness matrices, which are based on initial linear stress and displacements, the destabilizing
effect of any loads applied above the member centroid is automatically taken into account.
The effects of initial imperfections are not considered in first order analysis.
The primary result of an FE buckling analysis is a series of eigenvalues representing the load factors
(multipliers on the magnitude of the given loading) at which the various buckling modes are critical
(such as the higher harmonic modes referred to for flexural buckling). The results are normally
presented in ascending order and only the lowest modes are of interest. However, the effective design
resistance is not necessarily given by the lowest eigenvalue. To determine the design resistance, the
designer must consider not just the eigenvalues but also the associated eigenvectors (which reveal the
mode shape): when there are slender plate elements, local buckling can occur at a lower load than
member buckling but the local buckling does not represent failure and does not determine the
slenderness that is needed in the evaluation of design resistance of the member.
The top flange in a mid-span region may well be proportioned such that it is close to the out stand limit

for Class 3 or 4, this occurs when its slenderness is about 0.75. If the slenderness for LTB were the
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same as this value (and thus the eigenvalues for the two buckling modes would be the same), then the
reduction factor for LTB (assuming a welded section and buckling curve d) would be about 0.6. In
practice, economic design would probably require a ‘better’ (higher) reduction factor and thus alower
slenderness and a greater elastic critical buckling load. In such a situation, the eigenvalue for LTB (the
ratio of elastic critical load to load applied to the model) would be higher than that for flange buckling.
The eigenvalue of interest to the designer is therefore not the lowest value but the one relevant to the
first global LTB mode.
To analyse members in bending, shell elements should be used for the webs and the flanges.
Generally, the FE mesh size should be sufficiently fine that the model is able to represent torsional
effects in the elements and the overall buckling modes. The mesh will also be able to model the local
buckling of the compression flange and the webs in bending, although not with accuracy unless the
mesh is fine. Shear buckling of the web will not normally be modelled as it would require a much finer
mesh than is appropriate for determining member buckling [Abutair. Baker Wael, 2017]

4.2.3 Second order analysis

A full second order analysis takes account of material non-linearity and geometric deformation.
To carry out such an analysis to determine failure load in accordance with Eurocodes requires complex
software. It can determine failure loads directly, without reference to buckling curves, but the model
does need to incorporate initial imperfections that are equivalent to those assumed in the Euro code
design rules; it should be noted that the design imperfections exceed the geometrical limits given in
EN 1090-2 because the former also include the effects of residual stresses through additional
equivalent geometric imperfection. Evaluation of appropriate imperfections for the analysis requires a
thorough understanding of the design basis in Eurocode3.
Second order analysis is essential when the buckling behaviour is influenced by the modified geometry
of the structure under load. First order buckling analysis would only give eigenvectors for buckling
modes related to the original geometry. However, the axial strain in the arch members will cause the
arch to flatten, which increases the axial forces and strains. (In a sufficiently flat arch, the arch will
snap through.) The true buckling load is thus only given by a second order analysis.
Nonlinear FE model is developed using the commercial finite element software package ABAQUS
(ABAQUS 2014). Both geometric and material nonlinearities are considered in modelling. Since shell
element is the most suitable element for complex buckling behaviour and has the capability of
providing accurate solutions in case of a structure whose thickness is much smaller than the other
dimensions (Smalberger 2014), a 8-node doubly curved shell element with reduced integration S8R
(ABAQUS 2014) has been chosen from ABAQUS element library to model the web and flanges of |
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sections (i.e. W and WWF) [Abutair. Baker Wael].
4.3 Overview of Software used in this thesis
In this chapter the following tow commercial structural engineering software tools will be
introduced:
e LTBEAMV1.0.11
e ABAQUS v6.14-1

The software will hereinafter be referred to as LTBEAM and ABAQUS respectively.
Information about their background will be given. Their methods for finding the elastic critical
moment M, described and their possibilities and limitations in that area discussed.

Two types of analysis i.e. elastic buckling analysis and inelastic analysis are conducted to estimate the
ultimate load carrying capacity of simply supported beam subjected to uniform loading. Firstly, as it
was the case with LTBEAM, an eigenvalue analysis is performed for elastic buckling analysis in
which eigenvalues of corresponding Eigen modes are extracted using the linear perturbation buckling
analysis. In this study, four eigenvalues for each run were extracted. From the eigenvalue analysis a
suitable pattern of imperfection is obtained and incorporated into nonlinear analysis.

Nonlinear buckling analysis is usually the more accurate approach and is therefore recommended for
design or evaluation of actual structures. This technique employs a nonlinear static analysis with
gradually increasing loads to seek the load level at which your structure becomes unstable. Using the
nonlinear technique, the model can include features such as initial imperfections, plastic behaviour,

gaps, and large-deflection response [Abutair. Baker Wael, 2017].

4.4 Modelling beams of class 4 using LTBEAM (CTICM LTBeam)
4.4.1 General

The Centre Technique Industrial de la Construction Métallique (CTICM) in France have
developed a computer program which enables the designer to quickly calculate the elastic critical
lateral torsional buckling moment in a matter of seconds. The elastic critical lateral torsional buckling
moment is determined using an iterative calculation process in which a linear eigenvalue analysis is
performed. The behaviour of the beam is treated using the finite element method and the discretization
of the beam can be varied from 100 elements up to 200 elements.

LTBEAM is software used in the field of the computational structural steel. It was developed by
CTICM within a European research project, partly funded by the European Coal and Steel Community
(ECSC), and completed in 2002 (CTICM, n.d.). LTBEAM is software that deals with elastic lateral-

torsional buckling of beams subjected to bending about their major axis (CTICM, n.d.).It uses FEM
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to obtain it’s results. This software applies to straight beams with one or more spans under simple
bending about their major axis. The cross section must be symmetric about the minor axis, but can
vary along the x-axis. Each node has four degrees of freedom (DOFs). At the beam ends, the user can
choose which one of them to restrain. The four DOFs are:
e Lateral displacement
e Torsion rotation
o Lateral flexural rotation
e Warping
Along the beam the following restraints can be applied:
o Lateral displacement, local and continuous
Torsional rotation, local and continuous Supports conditions in the bending plane and
externally applied loads are taken into account by the bending moment distribution [A. Galea].
4.4.2 User interface
The program provides a database of different steel profiles, saving the designer time to input
the material and geometrical properties of the beam. Of course a manual input is possible .The next
step is to choose the support conditions at the end of the beam. The program also allows the designer
to apply one, two, or a continuous lateral restraint at different heights to the beam. After that, the load
conditions must be chosen. Many types of load combinations can be chosen. The point of application
is located in the shear Centre by default; however, the distance from the shear Centre can be varied as
well. The program also calculates the maximum bending moment for the chosen loads. The final step
is to calculate the elastic critical lateral torsional buckling moment with just a mouse click. As a result,
the value of the elastic critical lateral torsional buckling moment is given as well as a graphical
example of the deformed shape [A. Galea].
Two input methods are available; the simple input mode and the file input mode, shown in Figure 4.1.
As the name indicates the simple input mode is simpler and therefore faster. It is unnecessary to use
the file input mode unless the beam to be checked has a variable cross section or if complex loading
conditions are present.
4.4.3 Simple input mode
The software gives the possibility to choose members from its built-in catalogue, or to
manually enter the geometry. Additionally, it can be entered as in the following sectional properties:
The second moment of area about the minor axis, the torsional constant, the warping constant and the
Wagner’s coefficient. The last option must be used if beams with a channel section are to be modelled.

No channel sections or mono-symmetric I-sections are available from the built-in catalogue.
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Bl-symmetric I-sections can be defined by choosing the By Dimensions option, as shown in Figure
5.1. Then the corresponding sectional properties will be calculated by the software. The usercan
choose between 100, 120, 150 and 200 elements. When lateral restraints are chosen, fixed, andfree
or spring restraints are the alternatives but for the end supports in the plane of bending, fixed and free
are the only options. No spring supports are available in simple input mode. It is also a possibility to
apply local lateral restraints or a continuous lateral restraint along the whole beam. Different typesof
loading can be applied; a point load, a distributed load and a point moment about the major axis. The
location of the forces can be chosen along the beam and the point load and the distributed load canbe
placed at different heights as well. The cross section must be constant along the x-axis in the simple
input mode. In order to model a multi-span beam, the interior supports in the plane of bending must be
replaced by its reactions and applied as point loads[Abutair. Baker Wael, 2017].

Beam - Section - Steel
Beam Steel
Totallength L] 20 m MNbelements M {100 - E| 210000 MPa \’T G MPa
s i
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h [1340 mm =T
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4.4.4 File input mode

To use the file input mode for more complex cases, a preparation and even pre calculations are
sometimes needed. Here the cross section can vary, but the user must then define the sectional
properties in each element. Between 50 and 300 elements can be chosen. The bending moment
distribution for the whole beam has to be established and specified, it is defined by the values of
bending moment in the endpoints of each element. Any loading, such as external moments and loads,
and support reactions in the plane of bending are taken into account by the bending moment
distribution. In addition to that, loads that are not applied at the shear Centre of the beams cross

section, and result in destabilising or stabilising effects, need to be specifically stated [A. Galea].

Finite element modelling for slender beam sections Page 61



Manel Dahlouz CHAPTER4

4.5 Modelling beams of class 4 using ABAQUS (Manuel of ABAQUS)

4.5.1 Prologue
Undoubtedly, the finite element method represents one of the most significant achievements in the
field of computational methods in the last century. Historically, it has its roots in the analysis of
weight-critical framed aerospace structures. These framed structures were treated as an assemblage of
one-dimensional members, for which the exact solutions to the differential equations for each member
were well known. These solutions were cast in the form of a matrix relationship between the forces
and displacements at the ends of the member. Hence, the method was initially termed matrix analysis
of structures. Later, it was extended to include the analysis of continuum structures. Since continuum
structures have complex geometries, they had to be subdivided into simple components or “elements”
interconnected at nodes. It was at this stage in the development of the method that the term “finite
element” appeared. However, unlike framed structures, closed form solutions to the differential
equations governing the behavior of continuum elements were not available. Energy prin-ciples such
as the theorem of virtual work or the principle of minimum potential energy, which were well known,
combined with a piece-wise polynomial interpolation of the unknown displacement, were used to
establish the matrix relationship between the forces and the interpolated displacements at the nodes
numerically. In the late 1960s, when the method was recognized as being equivalent to a minimization
process, it was reformulated in the form of weighted residuals and variational calculus, and expanded
to the simulation of nonstructural problems in fluids, thermo-mechanics, and electromagnetics. More
recently, the method is extended to cover multiphysics applications where, for example, it is possible
to study the effects of temperature on electromagnetic properties that might affect the performance of
electric motors [Khennane. A. 2013].

4.5.2 General

FEA is widely useful tool for studying the behaviour of various structural and mechanical
designs. It can also be used to predict the ability of a design to withstand extreme loading conditions
that cannot be duplicated in an experiment. Hopefully these extreme loading conditions will be
considered early in the design process. An example of such a finite element analysis is the simulation
of the ability of an offshore platform to withstand the forces produced by a storm.

With the advances in modern computing techniques, finite element analysis has become a
practical and powerful tool for engineering analysis and design. In Structural Engineering,
development of structural design code equations, their redeveloping is a continuous process and

requires a wide range of experimental studies. However, performing many numbers of experiments is
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costly, time consuming and hence uneconomical. On the other hand, conducting experiments is a
compulsion for the research to progress.

ABAQUS is a suite of powerful engineering simulation programs based on the Finite Element
Method, sold by Dassault Systems as part of their SIMULIA Product Life-cycle Management (PLM)
software tools. Abaqus is a software package that is widely used in various industries and in the field
of construction to solve a wide variety of problems in structural mechanics. It allows the
implementation of very complex and customized material behaviours, up to the definition of failure
criteria. The problem gets enormously simplified with the use of ABAQUS 6.9 (2009). ABAQUS is a
highly sophisticated, general purpose finite element program, designed initially to model the behaviour
of solids and structures under various externally applied loadings .

4.5.3 Brief introduction to ABAQUS

The ABAQUS 6.14.1 software was used for the finite element analysis (FEA). Which is a
general-purpose finite element analysis program, capable of handling non-linear static analysis and
elasto-plastic materials? In addition, Abaqus allows to take into account very complex contact
behaviours that consider large rotations and friction.

Designed as a general-purpose simulation tool, ABAQUS can be used to study more than just
structural (stress/displacement) problems. It can simulate problems in such diverse areas as heat
transfer, mass diffusion, thermal management of electrical components (coupled thermal-electrical
analyses), acoustics, soil mechanics (coupled pore fluid-stress analyses), and piezoelectric analysis.
ABAQUS contains an extensive library of elements that can model virtually any geometry. It has an
equally extensive list of material models that can simulate the behaviour of most typical engineering
materials including metals, rubber, polymers, composites, reinforced concrete, crushable and resilient
foams, and geotechnical materials such as soils and rock.

ABAQUS includes the following features:

e Capabilities for analysing both static and dynamic problems;

e The ability to model very large changes in shape of solids, in both two and three
dimensions;

e A very extensive element library, including a full set of continuum elements, beam
elements, shell and plate elements.

e A sophisticated capability to model contact between solids

e An advanced material library, including the usual elastic and elastic— plastic solids;

models for foams, concrete, soils, piezoelectric materials and many others
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e Capabilities to model a number of phenomena of interest, including vibrations, coupled

fluid/structure interactions, acoustics, buckling problems and so on.

ABAQUS is simple to use and offers the user a wide range of capabilities, even the most
complicated analyses can be modelled easily [Marwa Boudjadja, 2019].

4.5.4 Modelling sequence

Every complete finite-element analysis consists of 3 separate stages:

Pre-processing or modelling: this stage involves creating an input file, which contains an engineer's
design for a finite-element analyser (also called "solver").
Processing or finite element analysis: This stage produces an output visual file.

Post-processing or generating report, image, animation, etc. from the output file: This stage is a
visual interpretation stage.

In fact, ABAQUS/CAE is capable of pre-processing, post-processing, and monitoring the
processing stage of the solver; however, the first stage can also be done by other compatible CAD
software, or even a text editor.

ABAQUS/Standard, ABAQUS/Explicit or ABAQUS/CFD is capable of accomplishing the
processing stage. Assault Systems also produces ABAQUS for CATIA for adding advanced
processing and post processing stages to a pre-processor like CATIA.

As shown in the picture below, 11 modules are implanted in ABAQUS CAE which have to be used
one after the other in order to modelling, loading, defining boundary conditions and finally analysis
and then showing the results, diagrams and etc. Thesell modules are named: Part-Property-
Assembely-Step-Intreaction-Load-Mesh-Optimization-Job-vizualation-Sketch.

In the following, some details will be provided for each module:

e PART MODULE: This module allows the creation of the geometry required for the problem.

Prior to create a 3-D geometry, the creation of 2-D must be performed and then manipulate it
to obtain the solid geometry.

e PROPERTY MODULE: For defining material properties for the analysis and assigning them

to available parts.

e ASSEMBLY MODULE: For assembling created parts together. Even with a single part,

assembly is needed.
e INTERACTION MODULE: Permits to rely different parts by Tie, Rigid body, etc.

e STEP MODULE: To select the kind of analysis to be performed and define the parameters

associated with it. variables to include can be also selected.in the output files in this module.
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Load is applied over a step; the sequence of loads creates several steps and define the loads for
each of them. Most complex analysis are likely to have a sequence of steps. An analysis step
during which the response is nonlinear is called general analysis step. An analysis step during
which the response is linear is called a linear perturbation step. A linear perturbation analysis
step provides the linear response of the system about the base state i.e. the state at the end of
the last nonlinear analysis step prior to the linear perturbation step.

e LOAD MODULE: Allows defining the loads and boundary conditions of the model for a

particular step (indicated in the toolbar below).

e MESH MODULE: The mesh module controls how to mesh your model: the type of element,

their size etc.
e JOB MODULE: To submit the model for analysis.
e VISUALIZATION MODULE: To look at the deformed model. A plot of values of stress,

displacement, reaction forces, etc. with the possibility of using contours, surface, vectors or

tensors.

e MODEL TREE: Provides a graphical overview of the model and the objects that it contains,

such as parts, materials, steps, loads, and output requests. In addition, the Model Tree provides
a convenient, centralized tool for moving between modules and for managing objects. If the
model database contains more than one model, Model Tree can be used to move between
models.

e RESULTS TREE: provides a graphical overview of your output databases and other session-

specific data such as X-Y plots. When more than one output database is open in the session,
the Results Tree can used to move between output databases.
N.B. There is no inherent set of units used in ABAQUS. It is up to the user to decide on a consistent
set of units and use that unit [ABAQUS].

Modelling demonstration

S —
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Figure 4.2: ABAQUS Modules [ABAQUS]
4.6 Elements in ABAQUS
4.6.1 Element types
Wide range of elements in the ABAQUS/Explicit element library are available and provides
flexibility in modelling different geometries and structures.
Each element can be characterized by:
- Family: Continuum, shell, membrane, rigid, beam, truss elements, etc. Figure 4.3
- Number of nodes: Element shape and Geometric order. Figure 4.4
- Linear or quadratic interpolation
- Degrees of freedom: Displacements, rotations, temperature: translation towardsl; translation
towards 2; translation direction 3; rotations around the axis 1; rotations around the axis 2;
rotations around the axis 3.
Directions 1, 2 and 3 correspond to the global directions 1, 2 and 3, respectively; unless a local
coordinate system has been defined at the nodes. Figure 4.5
- Formulation: Small and finite strain shells, etc.
- Integration: Reduced and full integration
Each element in ABAQUS has an assigned name: S4R, B31, M3D4R, C3D8R and C3D4 and the
element name identifies primary element characteristics.
Each element can be differed by family, number of nodes, and Degrees of freedom.

- Family: solid (Continuum), shell, membrane, rigid, beam, truss elements, etc.
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Figure 4.3 Family of element in ABAQUS [Marwa Boudjadja, 2019]
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Figure 4.4: Number of nodes of element in ABAQUS [Marwa Boudjadja, 2019]
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Figure 4.5 Displacement and Rotational degrees of freedom [Marwa Boudjadja, 2019]
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Figure 4.6 Elements Shapes in ABAQUS [Marwa Boudjadja, 2019]
4.6.2 Shell element overview
Shell elements are needed for out-of-plane loading. Shell elements can also be used where the
loading is planar but the material is made of composites. Since shell elements by definition allow for
through thickness variation of material properties these are the appropriate elements to be used in these

cases.
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The ABAQUS shell element library provides elements that allow the modelling of curved,
intersecting shells that can exhibit nonlinear material response and undergo large overall motions
(translations and rotations). ABAQUS shell elements can also model the bending behaviour of
composites.

The library is divided into three categories consisting of general-purpose, thin, and thick shell
elements. Thin shell elements provide solutions to shell problems that are adequately described by
classical (Kirchhoff) shell theory, thick shell elements yield solutions for structures that are best
modelled by shear flexible (Mindlin) shell theory, and general-purpose shell elements can provide
solutions to both thin and thick shell problems. All shell elements use bending strain measures that
approximate those of Koiter-Sanders shell theory. While ABAQUS/Standard provides shell elements
in all three categories, ABAQUS/Explicit provides only general-purpose shell elements. For most
applications the general-purpose shell elements should be the user's first choice from the element
library. However, for specific applications it may be possible to obtain enhanced performance by
choosing one of the thin or thick shell elements. It should also be noted that not all ABAQUS shell
elements are formulated for large-strain analysis.

The general-purpose shell elements are axisymmetric elements SAX1, SAX2, and SAX2T and three-
dimensional elements S3, S4, S3R, S4R, S4RS, S3RS, and S4RSW, where S4RS, S3RS, and S4RSW
are small-strain elements that are available only in ABAQUS/Explicit. The general-purpose elements
provide robust and accurate solutions in all loading conditions for thin and thick shell problems.
Thickness change as a function of in-plane deformation is allowed in their formulation.
They do not suffer from transverse shear locking, nor do they have any unconstrained hourglass
modes. Furthermore, in geometrically nonlinear analyses in ABAQUS/Standard the cross-section
thickness of finite-strain shell elements changes as a function of the membrane strain based on a user-
defined “effective section Poisson's ratio,” 1. In ABAQUS/Explicit, the thickness change is based on
the “effective section Poisson's ratio” for all shell elements in large-deformation analyses, unless the
user has specified that the thickness change should be based on the element material definition. The
thickness change based on the “effective section Poisson's ratio”.

SHELL181 is a 4-node 3-D shell element with 6 degrees of freedom at each node. The element has full
nonlinear capabilities including large strain and allows 255 layers. The layer information is input using
the section commands rather than real constants. Failure criteria is available using the FC commands
[Marwa Boudjadja, 2019].

4.6.3 Element Shapes
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There are various kinds of element shapes in ABAQUS:

e Quad: Use exclusively quadrilateral elements.

e Quad-dominated: Use primarily quadrilateral elements, but allow triangles in transition regions.
e This setting is the default.

e Tri: Use exclusively triangular elements.

e Hex: Use exclusively hexahedral elements. This setting is the default.

e Hex-dominated: Use primarily hexahedral elements, but allow some triangular prisms (wedges)

in transition regions.
e Tet: Use exclusively tetrahedral elements.

e Wedge: Use exclusively wedges elements[Marwa Boudjadja, 2019].
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5.1 Introduction

In this chapter, the results and the discussion of the linear elastic buckling for laterally
unrestrained beams S1, S2 and S3 made from S355 are provided. Two type of models have been used:
Analytical method and Finite Element modelling. The evaluation of the elastic and effective critical
lateral torsional buckling moment by means of analytic equation as per EC3 and throughout an eigen
analysis by means of two Finite Element software: LTBeam and ABAQUS w sections of cross-
sections will be presented. The parameters being investigated are: the class of the flange, the position
of applied load and the effect of the effective geometrical properties on the whole behaviour of the
considered sections. Also, a comparison of outcomes and some concluding remarks concerning the
effect of the studied parameters will be drawn at the end of the chapter.

5.2 Elastic critical moment, M,

When looking for the lateral-torsional buckling resistance of a beam, a certain maximum
theoretical moment is needed to be applied to the ideal beam. That is the elastic critical moment, noted
Mcr as per EC3. It depends on number of factors: the lateral length of the beam, the bending moment
diagram, the support conditions in both flexure and torsion, the stiffness of the beam about the minor
axis and the torsional stiffness.

In this study, two distinct cases are investigated: section with class 4 with different flange classes
ranging from 1, 3 and 4.

The elastic critical moment is used to find the non-dimensional slenderness A |t of a beam to
Eurocode3. Eurocode3 proposed an approximating formula to estimate M, which gives conservative
results. The formula is valid for when the beam is bent in its major axis bending with a uniform cross
section that is symmetric about the minor axis (ECCS 2006, p. 229). Beams are, in reality, are not
ideal. That is why a reduction factor must be used to find the design capacity. The formula mentioned

above is often called the 3-factor formula and is expressed as follows:

m2El; K,\2lw; | (KzL)2Gl, 2
Mer = Cy s [\/(K—w) [ (C2Zg — C3Z;)" — (CoZg — C3Z) (5.1)

Details of the above equation are presented in Chapter 3.

5.3 Results presentation
In the following, the weakest section, i.e. S3 with flange and web class 4 will be given in

details. An evaluation of M, with the elastic and effective properties will be respectively presented. It
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must be recalled that this investigation considers three types of cross sections belonging to class 4,
slender sections to AISC and three loading conditions. For the remaining sections: S1 and S2,
summarising tables display their results for both elastic and effective properties. Each table provides
Meci in terms section S; namely the class of flange (t;) and the load position. A comparative table
provides the differences is provided to express the percentage in the prediction of M. Finally, a plot
representing the variation of Mc.in terms of flange's thicknesses for the whole analysed section.
Similarly, the results will be displayed in the same manner for the sections with effective properties.

5.3.1 Linear analyse using elastic properties (EC3)

e Worked example of the analytical evaluation of M, for S3

Cross-section of the beam with the thickness of flange = 10 mm (load applied at the top of flange).

if
11 | t\_\' T

b

m2El,, K,\*1,  (Kz.L)2GI, 2
M., = Cl'(KZT)Z (K—W) T + TEL, +(CyZg — C3Z;)" — (CuZg — C3Z))

C1=135 ;C2=059 ;C3=0.411
Kw=K,=1

E = 210. 10° KN/m?

I, =2.615.10° m* L =20 m; I, = 1.122. 10 > m®; G = 80769230 KN/m?
l;=6.00* 10" m*

Zy=0.66 m

M, = 182.92 * [J0.429 + 0.357 + 0.151— 0.389]

M, = 106.09 KN. m
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Table 5.1 Results of Section S1 (t; =20 mm)

ci K S355 1,
SECTION 1
[m*]
cl c2 c3 Kw Kz G E

[mpa] [KNm?]

POSITION OF
LOAD

0.67 241.98
TOP
SHEAR 0 358.25
CENTRE 1.35 059 0411 1 1 80769230  210.10° 5.219.10°° 2273.10°° 1.767.10°°

-0.67 530.38
BOTTOM

Table 5.2 Results of Section S2 (t; =12 mm)

ci K S355 I,
SECTION 2
[m*]
cl c2 c3 Kw Kz G E

[mpa) [KN/m’]

POSITION OF
LOAD

TOP
SHEAR 0 194.79
CENTRE 1.35 0.59 0.411 1 1 80769230 210.10°  3.135.10°° 1.349.10°° 7.213.107
-0.662 298.25
BOTTOM

Table 5.3 Results of Section S3 (t =10 mm)

i K
SECTION 3

Kw Kz G
[mpa]

[KN/m?]
POSITION OF

LOAD

0.66 106.09
TOP
SHEAR 0 162.27
CENTRE 1.35 059 0411 1 1 80769230  210.10°  2.615.10°° 1.122.10°° 6.00. 1077

-0.66 248.41
BOTTOM
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Table 5.4 Comparison of the whole considering the elastic properties

M., DIFFERENCE M., DIFFERENCE M., E=ENeS
POSITION OF
LOAD

241.98 0.675<1 127.20 0.653<1 106.09 0.653<1
SH EAR 358.25 1 194.79 1 162.27 1
CENTRE

BOTTOM 530.38 1.480>1 298.25 1.531>1 248.41 1.530>1

600
550 ]

m  Top (EC3) 4
500 7 @ Shear Centre (EC3)
4504 | 4 Bottom (EC3)

400 ]

= ]
& 350 )
300 <
& 250 ] < .
200 .
150 1
N | ]
1004 "

50 1

T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24

410 (m)

Figure 5.2 Results as per EC3 of the variation of M, in terms of flange's thickness
. Discussion of the results
The overall results for the elastic linear analysis are shown in tables (5.1 to 5.4), and figure 5.2 depicts
the variation of the of M, in terms of flange's thickness. Broadly speaking, one can notice from the
above shown results that the values of the elastic critic moment depend mainly on the slenderness of
flange, that the position of the applied load. For each section as expected, M., values depends on the
load position with larger values in the bottom flange (tension zone). These values decrease when P is
applied at the shear centre and less values are found when the applied load is located at the top flange
(compressive zone). However, the differences of the amount of M, varies from S1 to S3. In fact, the
differences are being quasi- constant ranging from around 0.7 in the compressive flanges to 1.5 for
tension flanges.

5.3.2 Linear analyse using effective properties (EC3)
. Worked example of the analytical evaluation of M, for S1 and S2

It must be reminded that S1 and S2 are of class 4 with flanges belonging to class 1 and 3
respectively. Carrying the hand calculations of effective properties, the only difference from the case
previously presented is the fact that the down translation of G.
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Cross-section of the beam with the thickness of flange = 20 mm (load applied at the top of flange).

Figure 5.3 Bi-symmetric cross-section of the beam (effective)

2El,, , 21Wl. (Kz.L)2Gly,
Mer = Cr. s \/(K—) 2y 2T (0,7, — C3Z;)” — (CoZg — C5Z)

Kw/ g m2Ely,;

Cl1=135 ;C2=059 ;C3=0.411
Kw=K;=1

E = 210. 10° KN/m?

l,=5219*10° m* L=20m; I, =2.273* 10> m®; G = 80769230 KN/m?
ly=1.767 * 10 ° m*

Z,=0.64544 m

Mer = 365.073 * [0.435 + 0.528 + 0.145-0.381]

M =245.189 KN. m
Table 5.5 Results of Section S1 with effective properties (t; =20 mm)

ci
cl c2 c3 Kw Kz
[mpa]  [KN/m’]

POSITION OF
LOAD
TOP

K $355 I, I
SECTION 1
[m*] [m*]
G E

0.64544

245.18

SHEAR - 363.40

CENTRE i

B 135 059 0411 1 1 80769230 210.10° 5219.10°  2273.10° 1.767.10°° i 52337
M 0.64544
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Table 5.6 Results of Section S2 with effective properties (t; =12 mm)

ci K S355 1,
SECTION 2
[m*]
cl c2 c3 Kw K G E

z [mpal] [KN/m?
POSITION OF ]
LOAD
TOP

0.63186  129.45

SHEAR = 198.77

CENTRE 0.03014

BOTTO 135 059 0411 1 1 80769230 210.10° 31](.)?155 1.349.10°° 7.213.1077 ) 203.05
M 0.63186

Cross-section of the beam with the thickness of flange = 10 mm (load applied at the top of flange).

by

Figure 5.4 Sections mono-symmetric (effective)

m?EL,, K\%1,. (KzL)2GI,, 2
M = Gyt (—) 4 (CuZg — C3Z)” — (CZg — C3Z)
. K,/ 1 T2El,

C1=135 ; C2=0.59 ; C3=0.411
Kw=K;=1

E = 210. 10° KN/m?

I, =2.306 * 10 ° m* L=20m; I, =9.727 * 10 °* m®; G = 80769230 KN/m?
ly=5.931*10""m*

Z,=0.636m

M. = 161.306 * [v0.422 + 0.401 + 0.141— 0.375]
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M =97.886 KN. m

Table 5.7 Results of Section S3 with effective properties (t =10 mm)

S355
Kw
[mpa] [KN/m?
POSITION OF
LOAD

0.6360 97.88

TOP
SHEAR -0.03196  149.42
CENTRE

135 059 0411 1 1 80769230  210.10° 2306.10°  9727.10°  5931.107 06360  216.092
BOTTOM

Table 5.8 Comparison of the whole considering the effective properties

M., DIFFERENCE M. | DIFFERENCE M., DIFFERENCE
POSITION OF
LOAD

245.18 0.674<1 129.45 0.651<1 97.88 0.655<1

SHEAR 363.40 1 198.77 1 149.42 1
CENTRE

BOTTOM 523.37 1.440>1 293.05 1.474>1 216.09 1.446>1

600
550

m Top(EC3) >
500 71 | ® ShearCentre (EC3)
4504 | <4 Bottom (EC3)

4004
350 L]
300 - <

250 ] n
200 4«

150 4
100 4 -
50 -

M, (KN.m)

—T T T T T T T T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 24

t*10~ @)

Figure 5.5 Results as per EC3 of the Variation of M, in terms of flange's thickness
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. Discussion of the results

The overall results for the elastic linear analysis are shown in tables (5.5 to 5.8), and figure 5.5 depicts
the variation of the of M, in terms of flange's thickness. Similarly, with changing the geometrical
properties from elastic to effective, the tendency of M, is quite similar and the same remarks can be
made as it was discussed in previous section. Once again, the impact of the investigated parameters
shown their importance. In fact, one can notice from the above shown results that the values of the
effective moment depend mainly on the slenderness of flange, that the position of the applied load. For
each section as expected, M, values depends on the load position with larger values in the bottom
flange (tension zone). These values decrease when P is applied at the shear centre and less values are
found when the applied load is located at the top flange (compressive zone). However, the differences
of the amount of M, varies from S1 to S3. In fact, the differences are being quasi- constant ranging
from around 0.7 in the compressive flanges to 1.45 for tension flanges.

N.B. From the above results of the elastic analysis to EC3, it can be concluded that changing the

geometrical properties from elastic to effective has no important effect as the M, are of the same

range.
5.4 Linear Buckling Analysis by LTBEAM
5.4.1 Elastic characteristics

. Presentation of a sample of results

As previously mentioned in chapter 4, LTBEAM is free Finite Element software dealing with the
linear buckling analysis throughout an eigen analysis mode. Firstly, the geometrical properties of the
used section are displayed before running the linear buckling analysis. It gives also several modes with
the per for each mode. In the following, only the first mode (fundamental mode) of buckling is
considered. The extracted value of g permits the evaluation of the M, which is given by the software.
The following demonstration is devoted to section S3 that is web and flanges of class 4.

In this section, the elastic critical lateral torsional buckling moment is calculated for unrestrained beam
with different position of loads that is applied at the top flange, at the shear centre and at the bottom
flange for all bi-symmetric sections. The demonstration considers the following:

Figure 5.6 shows how to introduce the input file of the elastic properties of the studied section.

Figure 5.7 shows how to introduce the boundary conditions including torsion limitation.

Figure 5.8 shows how to introduce the applied load and location in the cross section.

Figure 5.9 shows how to get the results: p- and M,
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1 Lateral Restraints. 1 Loading 1 Critical Moment

Beam - Section - Steel

Beam Steel
Totallength L[ 20 m Nb elements N[100 = { E[ 20000  MPa

v[ 03 G 20768 | MPa
@ -
Section 1
Other Properties
" In Catalogue & By Dimensions " By Properties
Other Properties
ho ] 1320 mm Area A 180 cm2
T - 755 Jemd
o [ 10 mm & Strong inertia ly 397600 emd
i Position of centioid G / base 6 3 cm
bf [250  mm " T It [ 003 |emd
h| Position of shear center S / centroid G 5 [TTE75eETE - om
t 0 mm "
tf Elastic modulus for upper fibre Welpsup BOzdz  cmd
;[ b lw [11219E+07 |omB 516G
T Elastic madulus for lower fibre Welyinf gPaz  omd
o [ o |m Elastic madulus for wesk 2xis welz [ 2092 cm3
—I Plastic modulus for strong axis wily 7500 em3
L e e etk e wplz 345 om3

Figure 5.6 Shows how to introduce the input file of the elastic properties of the studied section

BeanvSection/Steel T iLateral intsi T Critical Moment

Loading T

| Lateral Restraints
- Help
=225 [ 0 mm

v [Fed =1 »
o [Frea =1 1 e
v [Fee A0 v
I = —— | .

[ Left End Right End

- Help
z /5 I o i

Lateral

Mo int iate lateral
Local Restraints I't inuou
'I_ 1 [ Along the whole beam length
rr |
= [ 05 « [ 05 25 [ rom
=5 [ o rrn =ss [ o mm

w IFree - I
B IFree - I
(=) IFree -~ I

Figure 5.7 Shows how to introduce the boundary conditions including torsion limitation

Beam/Section/Steel T iLateral ints; 1 Loading T Critical Moment

| Lateral Restraints
Help [

[ Left End Right End

Help [

=25 | o ram
W IFiHEd - I

=5 | ] mm
" IFiHEd -~ I

B e — 1

L IFlHed -1

v [Free ~1
& [Free ~1

v [Fre= ~1
e [Free ~1

Lateral

lateral

Local Restraints

I' Continuous Restraint

(o s r o5
wf o5 = 0s 45 IT (DD
=05 | o mm =5 | 5] mm

Along the whole beam length

W IFree - I
v' |Free -1
-] IFree ~1

Figure 5.8 Shows how to introduce the applied load and location in the cross section
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Beam/Section/Steel T Lateral Restraints. 1 Loading T iCritical Moment

| Critical Moment

Critical Factor Critical Moment
Procee: d M* Iteration Current value 0.050932
Mmax 21386 kM.
B o «f [ 0.500
Dichotomic prosess on Convergence achisved
determinant
5.0926E-02 Mmax 10891 kM.m
Tolerance o0.0001 Ber [—] cr
Deformed Shape
=
&
o
= v
e

Figure 5.9 Shows how to get the results: pc and M,
Table 5.9 Results of Section S1 (t; =20 mm)

655.656 7.476*1072 245,09

Shear Centre 655.656 0.10933 358.41
Bottom 355.656 0.15892 520.98

Table 5.10 Results of Section S2 (t; =10 mm)

473.289 5.5153*10~2 130.52

Shear Centre 473.289 8.3038*10~2 196.51
Bottom 473.289 0.12424 294.02

Table 5.11 Results of Section S3 (t; =10 mm)

427.721 5.0926*10~2 108.91

Shear Centre 427.721 7.6591*10~2 163.80
Bottom 427.721 0.11449 244.86

Table 5.12 Comparison of the whole considering the elastic properties

LTBEAM st | m, DIFFERENCE | S2 | M, | DIFFERENCE | S3 | M, | DIFFERENCE
POSITION OF
LOAD

245.09 0.683<1 130.52 0.664<1 108.91 0.664<1
SHEAR 358.41 1 196.51 1 163.80 1
CENTRE

520.98 1.453>1 294.02 1.496>1 244.86 1.494>1
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550

s500] [ m Top (LTBeam) b
1 # Shear Centre (LTBeam)
4507-| «_ Bottom (LTBeam)
400
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Figure 5.10 Results as per LTBEAM of the Variation of M, in terms of flange's thickness
) Discussion of the results
The overall outcomes from LTBEAM for the elastic linear analysis are shown in tables (5.9 to 5.12),
and figure 5.10 depicts the variation of the of M, in terms of flange's thickness. It can be noticed, once
again as discussed in 5.2.1, that the values of the elastic critic moment depend mainly on the
slenderness of flange, the position of the applied load with the same proportions: the amount of M,
varies from S1 to S3. In fact, the differences are being quasi- constant ranging from around 0.7 in the

compressive flanges to 1.5 for tension flanges.

5.4.2 Effective characteristics (LTBEAM)
o Bi-symmetric sections
In this section, in the contrary of the previous section, the effective characteristics are rather used to
evaluate the effective critical lateral torsional buckling moment. The demonstration concerns the case
of bi-symmetric section of unrestrained beam with different position of loads that is applied at the top
flange, at the shear centre and at the bottom flange.

Table 5.13 Results of Section S1 (t; =20 mm)

619.447 8.02000%10~2 248.40
Shear Centre 619.447 0.11738 363.55
Bottom 619.447 0.16605 514.18
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Table 5.14 Results of Section 2 (t; =12 mm)

L - o

_ ~ ShearCentre 434119 9.22702*1072 - 20028
I e e

. Mono-symmetric sections
In this section, the effective geometrical properties of section of a mono-symmetric section in terms
of the same parameters as above.
Table 5.15 Results of Section S3 (t; =10 mm)

_ .~ ShearCentre 388344 8.0627 x 1072 . 15656
I N e

Table 5.16 Comparison of the whole considering the effective properties

LTBEAM il M., DIFFERENCE S2 M., DIFFERENCE S3 M., DIFFERENCE
POSITION OF
LOAD

248.40 0.683<1 132.85 0.663<1 254.49 0.708<1
SHEAR
S S S
BOTTOM 514.18 1.414>1 289.01 1.444>1 537.80 1.497>1

e N O O W B

ss0l
1| ®m To TBeam
200 | P (L )

1 | ® Shear Centre (LTBeam)
4504 | 4 Bottom(LTBeam)
400

E.\ 350
300

5 250 ]
200
150
100 n
50

0 2 4 6 8 10 12 14 16 18 20 22 24

%10 @m)

Figure 5.11 Results as per LTBEAM of the Variation of M, in terms of flange’s thickness
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° Discussion of the results

The overall results for the elastic linear analysis with effective characteristics are presented in
tables (5.13 to 5.16), and figure 5.11 depicts the variation of the of M, in terms of flange's thickness.
Similarly, with changing the geometrical properties from elastic to effective does not greatly affect the
results. The tendency of M, is quite similar and the same remarks can be made as it was discussed in
previous section. Once again, the impact of the investigated parameters shown their importance. In
fact, one can notice from the above shown results that the values of the effective moment depend
mainly on the slenderness of flange, that the position of the applied load. For each section as expected,
M, values depends on the load position with larger values in the bottom flange (tension zone). These
values decrease when P is applied at the shear centre and less values are found when the applied load
is located at the top flange (compressive zone). However, the differences of the amount of M, varies
from S1 to S3. In fact, the differences are being quasi- constant ranging from around 0.7 in the
compressive flanges to 1.50 for tension flanges.

N.B. From the above results of the elastic analysis to LTBEAM, it can be concluded that
changing the geometrical properties from elastic to effective has no important effect as far as the
extracted values of M, are concerned.

5.5 Linear Buckling Analysis (ABAQUS)

5.5.1 General

To determine the elastic critical lateral torsional buckling load of the beam, a linear buckling
analysis (LBA) is performed. During this analysis, the bifurcation point is determined by solving an
eigenvalue problem. This eigenvalue problem is solved when the stiffness matrix of the model
becomes singular and provides nontrivial solutions.

The software gives the option to choose from two different methods to solve the eigenvalue
problem, namely the Lanczos and the subspace iteration method. Both methods provide the option to
determine multiple eigenvalues. However, for this research project only the first positive buckling
mode is required, therefore only the first positive eigenvalue needs to be determined.

To eventually determine the elastic critical lateral torsional buckling load of the beam, the
applied load needs to be multiplied by the eigenvalue resulting from the linear buckling analysis and
subsequently, the elastic critical lateral torsional buckling moment can be determined.

5.5.2 Results with elastic characteristics

In the same manner, results from LBA of ABAQUS will be presented in tables (5.17 to 5.20)
and single figure 5.12.

Results and discussion of linear buckling analysis Page 83



Manel Dahlouz CHAPTERS5

Table 5.17 Results of Section S1 (t; =20 mm)

L - o

_ ~ ShearCentre =~ 655656 0.10799 . 35402
I N I

Table 5.18 Results of Section S2 (t; =12 mm)

L - -

_ ~ ShearCentre 473.289 8.45167*102 20002
I O

Table 5.19 Results of Section S3 (t; =10 mm)

_ ~ ShearCentre 427.721 7.87790%102 16845

Table 5.20 Comparison of the whole considering the effective properties

ABAQUS st | M, DIFFERENCE 2 | m, DIFFERENCE | S3 | M., DIFFERENCE
POSITION OF
LOAD

254.48 0.718<1 138.36 0.691<1 115.85 0.684<1
SHEAR
S S O
BOTTOM 537.78 1.519>1 309.08 1.545>1 258.85 1.536>1
e O S
550 4| m  Top (Abaqus)

5001 ] #® Shear Centre (Abaqus)

< Bottom (Abaqus)

450
400
T 350
E 300
E:: 250 < i
200
150 -
100 L
50
0

0 2 4 5] 3 10 12 14 16 18 20 22 24

tp 1073 (m)

Figure 5.12 Results as per ABAQUS of the Variation of M, in terms of flange's thickness
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o Discussion
The same remarks made in the two-above analysis can be applied to the present analysis by
ABAQUS. However, some slight differences can be noticed.
5.6 Linear Buckling Analysis with effective characteristics
In the following, a demonstration of the use of ABAQUS for Linear Buckling Analysis (LBA)
is presented. A summary of the procedure of defining the model and the steps performed are given.
1. Part — defines the geometry of a structural element or model to be used in the analysis.
. Property — defines materials and cross sections.
. Assembly — assembles a number of parts to form the global geometry of a model.
. Step — defines the different analyses to be carried out.

. Interaction — defines connections and interface conditions between different parts.

. Mesh — provides the discretization of the model into finite elements.

2

3

4

5

6. Load — defines the boundary conditions of the model.

7

8. Job — defines the jobs to be carried out by the analysis program.
9.

Visualization — is utilized for viewing and post processing the results.
10. Sketch — can be used as a simple CAD programme for making additional drawings.

Defining the geometry

[E File Model Viewport View Pat Shape Feature Tools Plug-ins Help W? - &

X|
EEsE g e A REBNEAFHO R Vs @ owE @TF 00w o K- ¢ R.E
BE UMl 12 3 4 4
i %9 Part defaults M~
Model | Resulte Module: [ Part M Modet [2 Moder-1 M pat[Zpat1
& Model Databv| & 9
£ Model-1
5 Parts (1)
& partl.
=& Features (4)
Shell extrude-1
Section Skef
Partition face-1
Section Skel
Datum plane-1
Partition face-
&y Sets ()
Set-1
Set-2
o Suraces
® Skins
¢ string
= 58 Section Assig

ame (Shell, Hol
semelle (Shell,

Figure 5.13 Typical model

Defining the material and cross-sectional properties
Assigning the values of E= 210000; v =0.3.
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B Ackaieei T L4 Material Behaviors

Model | Resuts Materal ibrary  Module |5 Propery v
= Model Datab| = R of Z

E Model-1 2 jE‘

By Parts (1)
Pat-1 E
B2 Mareiat (1) X General  Mechanical Thermal  Electrical/Magnetic ~ Other L4
Material-1 = Elastic
& Calibrations s
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Figure 5.14 Defining material properties
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Figure 5.15 Setting-up the analysis

Defining the boundary conditions Boundary conditions

These conditions are defined in the Load module.
The various boundary conditions are generated in a given Step and may be transferred to subsequent
steps, see Figure 5.4.
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Figure 5.16 Defining the boundary conditions Boundary conditions

Defining loads
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Figure 5.18 Discretization
Choosing the type of analysis
In the first stage, only the elastic buckling analysis will be selected. This analysis will provide the
Eigen values of different buckling modes.
Running the analysis
In order to submit the analyses to ABAQUS/Standard use the running module. This is the solver,
which provides an output database that may later be accessed from ABAQUS/CAE.
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Figure 5.19 Visualisation and post- processing of the results
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Figure 5.21 Linear buckling analysis deformed shape mode 2
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Figure 5.22 Linear buckling analysis deformed shape mode3
) Results and discussion
In this section, we calculate the effective critical lateral torsional buckling moment for unrestrained
beam with different position of loads that is applied at the top flange, at the shear centre and at the

bottom flange for all bi-symmetric sections.

Table 5.21 Results of Section S1 (t; =20 mm)

619.447 8.21665*102 254.49

Shear Centre 619.447 0.11593 359.06
Bottom 619.447 0.17364 537.80

Table 5.22 Results of Section S2 (t; =12 mm)

434.119 6.37449%102 138.36

Shear Centre 434.119 9.35867*102 203.13
Bottom 434.119 0.14240 309.09

In this section, we calculate the effective critical lateral torsional buckling moment for restrained

beam with different position of loads that is applied at the top flange, at the shear centre and at the

bottom flange for all mom-symmetric sections.
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The overall results for the elastic linear analysis are shown in tables (5.21 to 5.24), and figure
5.23 depicts the variation of M in terms of flange's thickness. Similarly, with changing the
geometrical properties from elastic to effective, the tendency of M, is quite similar and the same
remarks can be made as it was discussed in previous section. Once again, the impact of the
investigated parameter showed their importance. In fact, one can notice from the above shown results
that the values of the effective moment depend mainly on the slenderness of flange, that the position of
the applied load. For each section as expected, M, values depends on the load position with larger
values in the bottom flange (tension zone).

Table 5.23 Results of Section S3 (t; =10 mm)

388.344 5.43004*102 105.44

Shear Centre 388.344 7.91957 « 1072 153.77
Bottom 388.344 0.11879 230.66

Table 5.24 Comparison of the whole considering the elastic properties

ABAQUS st | M, DIFFERENCE s2 | M, | DIFFERENCE | S3 | M., DIFFERENCE
POSITION OF
LOAD

254.49 0.708<1 138.36 0.681<1 105.44 0.685<1
SHEAR 359.06 1 203.13 1 153.77 1
CENTRE

BOTTOM 537.80 1.497>1 309.09 1.521>1 230.66 1.500>1

These values decrease when P is applied at the shear centre and less values are found when the

applied load is located at the top flange (compressive zone). However, the difference of the amount of
Mocr varies from S1 to S3. In fact, the differences are being quasi- constant ranging from around 0.7 in

the compressive flanges to 1.50 for tension flanges.
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Figure 5.23 Results as per ABAQUS of the Variation of M, in terms of flange's thickness
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5.7 Overall comparison and conclusions of the linear elastic buckling analysis

In this chapter the results of linear elastic buckling analysis have been presented and individually
discussed. It is worth to recall that three means have been used: EC3 analytical, LTBEAM and
ABAQUS. The comparison of results reveals the importance and the impact of the investigated
parameters on the carrying capacity of the cross-sections S1, S2 and S3.

Tables 5.25 To 5.27 show the obtained values from EC3, LTBEAM and ABAQUS for S1, S2 and S3
respectively using the elastic characteristics. These values of M, are given in terms of load position:
upper flange, at the shear centre and the lower flange.

As it can be easily noticed, values of M, despite the mean by which is was determined are almost the

same. Particularly for the finite element software where no sensitive difference has been detected.
Table 5.25 Variation of M., between EC3 LTBEAM and ABAQUS When P is applied the at the

upper flange

POSITION DIFFERENCE M., DIFFERENCE DIFFERENCE
OF LOAD

254.49 1.038 127.20 0.974 106.09 0.974
1.006 0.919 0.915

LTBEAM 245.09 0.963 130.52 1.026 108.91 1.026
- 1.019 0.943 0.940
ABAQUS 240.43 0.944 138.36 1.087 115.85 1.091
- 0.980 1.060 1.063

Table 5.26 Variation of M, between EC3 LTBEAM and ABAQUS when P is applied the at the

POSITION DIFFERENCE DIFFERENCE DIFFERENCE
OF LOAD
SHEAR
CENTRE

358.25 0.999 194.79 0.991 162.27 0.990
1.011 0.973 0.963

LTBEAM 358.41 1.000 196.51 1.008 163.80 1.009
- 1.012 0.982 0.972
ABAQUS 354.02 0.988 200.02 1.026 168.45 1.038
- 0.987 1.017 1.028
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Table 5.27 Variation of M, between EC3 LTBEAM and ABAQUS when P is applied the at the

lower flange

POSITION OF St M., DIFFERENCE S2 M., DIFFERENCE S3 M., DIFFERENCE
LOAD
BOTTOM

EC3 530.38 1.018 298.25 1.014 248.41 1.014

0.986 0.964 0.959
LTBEAM 520.98 0.982 294.02 0.985 244.86 0.985
0.968 0.951 0.945

ABAQUS 537.80 1.013 309.08 1.036 258.85 1.054
1.032 1.051 1.057
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Figure 5.24 Variation of M, between EC3 LTBEAM and ABAQUS When P is applied the at the
upper flange, shear centre and lower flange

5.8 COMPARISON EFFECTIVE (EC3, LTBEAM and ABAQUYS)

Tables 5.28 To 5. 30 show the obtained values from EC3, LTBEAM and ABAQUS for S1, S2
and S3 respectively using the effective characteristics. These values of M, are given in terms of load
position: upper flange, at the shear centre and the lower flange.

As it can be easily noticed, values of M, despite the mean by which is was determined are almost the
same. Particularly for the finite element software where no sensitive difference has been detected.
Table 5.28 Variation of M, between EC3 LTBEAM and ABAQUS when P is applied the at the

upper flange

POSITION OF DIFFERENCE M., DIFFERENCE DIFFERENCE
LOAD

245.18 0.987 129.45 0.974 97.88 0.939
0.963 0.935 0.928

LTBEAM 248.40 1.013 132.85 1.026 104.16 1.064
- 0.976 0.960 0.987
ABAQUS 254.49 1.037 138.36 1.068 105.44 1.077
- 1.024 1.041 1.012
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Table 5.29 Variation of M, between EC3 LTBEAM and ABAQUS when P is applied the at the

POSITION DIFFERENCE DIFFERENCE DIFFERENCE
OF LOAD
SHEAR
CENTRE

EC3 363.40 0.999 198.77 0.992 149.42 0.954
1.012 0.978 0.971

LTBEAM 363.55 1.000 200.28 1.007 156.56 1.047
- 1.012 0.985 1.018
ABAQUS 359.06 0.988 203.13 1.021 153.77 1.029
- 0.987 1.014 0.982

Table 5.30 Variation of M, between EC3 LTBEAM and ABAQUS when P is applied the at the

lower flange
POSITION OF S1 M., DIFFERENCE S2 M, DIFFERENCE S3 M, DIFFERENCE
BOTTOM
EC3 523.37 1.017 293.05 1.013 216.09 0.966
0.973 0.948 0.936
LTBEAM 514.18 0.982 289.01 0.935 223.53 1.034
0.956 0.935 0.969

ABAQUS 537.80 0.027 309.09 1.054 230.66 1.067
1.045 1.069 1.031
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Figure 5.25 Variation of M, between EC3 LTBEAM and ABAQUS When P is applied the at the

upper flange, shear centre and lower flange
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5.8 Comparison (ELASTIC and EFFECTIVE)
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Figure 5.26 Variation of M., between EC3 LTBEAM and ABAQUS When P is applied the at the

upper flange with elastic and effective characteristics
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Figure 5.27 Variation of M, between EC3 LTBEAM and ABAQUS When P is applied the at the

SC with elastic and effective characteristics
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Figure 5.28 Variation of M, between EC3 LTBEAM and ABAQUS When P is applied the at the
lower flange with elastic and effective characteristics
Table 5.31 Variation of M, EC3 LTBEAM and ABAQUS when P is applied the at the upper
flange considering elastic and effective characteristics

POSITION | ELASTIC | EFFECTIVE | DIFFERENCE | ELASTIC | EFFECTIVE | DIFFERENCE | ELASTIC | EFFECTIVE | DIFFERENCE
OF LOAD

241.98 245.18 0.986 127.20 129.45 0.982 106.09 97.88 1.083
- .--.--.--
ABAQUS 254.49 254.49 1.000 138.36 115.85 1.194 138.36 105.44 1312

Table 5.32 Variation of M, EC3 LTBEAM and ABAQUS when P is applied the at the SC
considering elastic and effective characteristics

POSITION | ELASTIC | EFFECTIVE | DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE ELASTIC EFFECTIVE DIFFERENCE
OF LOAD

SHEAR
CENTRE

358.25 363.40 0.985 194.79 198.77 0.979 162.27 149.42 1.085
o .--.--.--
ABAQUS 354.02 359.06 0.985 200.02 168.45 1.187 203.13 153.77 1.320
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Table 5.33 Variation of M, EC3 LTBEAM and ABAQUS when P is applied the at the lower

flange considering elastic and effective characteristics

POSITION | ELASTIC | EFFECTIVE | DIFFERENCE | ELASTIC | EFFECTIVE | DIFFERENCE | ELASTIC | EFFECTIVE | DIFFERENCE
OF LOAD
st M, SI M, 2 M, S2 M, 3 M, S3 M,

BOTTOM

530.38 523.37 1.013 298.25 293.05 1.017 248.41 216.09 1.149

520.98 514.18 1.013 294.02 289.01 1.017 244.86 22353 1.095
ABAQUS 537.80 537.80 1.000 309.08 258.85 1.194 309.09 230.66 1.340

5.9 Discussion and concluding remarks

As far as the elastic buckling analysis is concerned, it has been demonstrated trough the
outcomes of this study the importance of each parameter. Some general conclusions can be made,
namely:
- What ever the mean used for determining the Mc,, similar values have been extracted.
- The analytical equation given in EC3 does give accurate prediction, with less effort, of M.
Thus, EC3 can be used safely in the design process.
- Finite element packages do not have the concept of classification recommended by EC3.
- The class of the flange being of S1 and S2, no notable differences between the elastic and
effective properties with bi-symmetric sections have been remarked. As if the class of flange does not
influence the overall resistance to LTB of sections. However, for S3 where the flange class is 4, the
cross-section is mono-symmetric  some differences can be noticed.
- The position of the applied load has an important effect on the M, value.
- The eigen analysis performed by LTBEAM and ABAQUS give roughly the same values
specially for the first buckling mode. This will give a more confidence to the ABAQUS model, as it
will be used later on for more sophisticate analysis: inelastic buckling analysis taking into account the

imperfection.
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6.1 Introduction

In this chapter, an introduction to the inelastic buckling analysis background is given. A full
second order analysis takes into account the material non-linearity and geometric deformation. This
second order analysis is essential when the buckling behaviour is influenced by the modified geometry
of the structure under load. However, the axial strain in the arch members will cause the arch to flatten,
which increases the axial forces and strains. The inelastic buckling models are built-up in Abaqus to
investigate the impact of lateral torsional buckling on the carrying capacity of slender sections is
provide and discussed.

6.2 Inelastic buckling analysis (GMNL)

When studying the behaviour of steel beam resistance to LTB instability, a geometrical and
material non-linear imperfection analysis (GMNL) is carried out. To determine the lateral torsional
buckling resistance of the beam as it considered to give most true lateral torsional buckling resistance
of beam. Also, as explained in the previous section, the first order buckling analysis would only give
eigenvectors for buckling modes related to the original geometry. The buckling instability, the load-
displacement response shows a negative stiffness and the structure must release strain energy to remain
in equilibrium( Figure 6.1). Therefore, it is important that a solution method is chosen that can predict
the load-displacement response after lateral torsional buckling has occurred.

Load

displacement

6.3 Modelling the nonlinear behaviour using ABAQUS

The theoretical background of such solution can be the modified Riks method or arc-length
method. In ABAQUS, this is an algorithm which provides effective solutions for such cases. The
modified Riks method uses a tangent line of a function to intersect with an arc, situated at the end of
every step. From this point on, the curve will converge over the arc-length until it reaches an
intersection of the arc with the function. At this point, the step is completed and the process will

continue with the next step (Figure 6.2).
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Figure 6.2 Graphical example of the modified RIKS method
In addition to the linear elastic model, the non-linear plastic model also includes the plastic
material properties.
6.4 Material properties
(1) Material properties should be taken as characteristic values.
(2) Depending on the accuracy and the allowable strain required for the analysis the following
assumptions for the material behaviour may be used, see (Figure 6.3):
a) elastic-plastic without strain hardening
b) elastic-plastic with a nominal plateau slope
c) elastic-plastic with linear strain hardening

d) true stress-strain curve modified from the test results as follows

Model

O (o F 3
L 4l 8 —
y fy 1
with
yielding
plateau a) b)
1
tan'(E) Jtan '(E)
€ €
1 ran(E/10000)
(or similarly small value)
»~ »~
o o 1 .
e \ -1 2 B ~
vl tan '(E/100)(f 4 = k
v 2
ith
\\\\\\\\\
Nardening ‘ <) d)
tan '(E) .tan"(E)
€ =
€
1 rrue stress-strain curv
2 smress-strain curve from rests

Figure 6.3 Modelling of material behaviour [Eurocode 3: Design of steel structures]

Cpe =0 (L+€)
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6.5 Demonstration

In the following, a demonstration how to perform Riks approach implanted in ABAQUS.
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Figure 6.11 Deformed shape at ultimate increment

6.6 Results and Discussion

The discussion will be held on the basis of the derived load-deflection curves from the
modified RIKS analysis implanted in ABAQUS. Another discussion will be provided dealing with the
ultimate of displacements. Hence, for each single step, the displacement and stiffness matrices are
updated, with the inclusion of initial geometrical imperfection which is liable to generate torsion
and/or lateral bending is obviously of concern, and normally with residual stresses (not considered in
this study). Tables 6.

First of all, it should be noted that both load and boundary conditions have very important
effects on the inelastic LTB failure mode results. The results from the modified RIKS method are

given in terms of load proportionality factor A (LPF). In order to determine the actual critical load after
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which the instability occurs, the applied load needs to be multiplied by the LPF A. In Table, the load
proportionality factor (LPF) and the actual critical load of unrestrained beam given.

Figures 6.12 and 6.13 show the outcomes during the whole loading history by considering three
load positions with an elastic branch for elastic behaviour and then the beams behave nonlinearly due
to the initial geometric imperfections and the nonlinear geometric and material.

Figures 6.12 (a), (b) and (c), for S1 to S3 respectively, retrace the Loads — Lateral deflections
curves extracted from the modified RIKS results in terms of load application locations. taking into
account the elastic geometrical properties. While Figures 6.13 (a), (b) and (c) represent the case of
effective properties. Despite the fact that all considered sections are classified as class 4 to EC3, in the
contrary to the linear buckling analysis discussed in the previous chapter, major differences in their
behaviours can be seen as depicted in Figures 6.12 to 6.13 (a), (b) and (c). Independently of the used
geometric properties, S1 shows quiet-different behaviour compared to S2 and S3 with flanges
belonging to class 3 and 4 respectively.

For the particular cases of S2 and S3, it is evident from Figures 6.12 and 6.13 that linear load-
deflection behaviour exists before inelastic lateral buckling starts to occur. It is obvious that varying
flange slenderness, the member capacity is governed by the inelastic capacity, as mentioned in the
previous section a soft decrease in stiffness in the post-buckling behaviour can be observed.

In fact, all considered sections show almost the same behaviour in the elastic range, with of
course different value of P, with larger values for S1 to S3 which can be attributed to the flange class.
Thus, for sections loaded at the top flange, in the compressive zone, the values of P, decrease from
50.89 kN to 27.67 and 23.19 kN for S1, S2 and S3 respectively. For sections loaded at the shear centre,
the values of P decrease from 70.80 kN to 40 and 33.69 kN for S1, S2 and S3 respectively. Thus, for
sections loaded at the bottom flange, in the tension zone, the values of P decrease from 107.55 kN to
61.81 and 51.76 kN for S1, S2 and S3 respectively.

Considering the obtained effective geometric properties, the same remarks can be made. With
exception that in the case of S3 (i.e. web and flanges of class 4). In fact, for the cases of Sland S2
similar results have been found but with larger lateral displacements, the beam is weaker because of
less lateral stiffness. For S3, P increases from 21.08 kN to 30.75 and 46.13 kN for load being
localised in the top, at SC and at the bottom flange respectively. Compared to the above values, it can
be seen that S3 with effective properties is weaker than it was with the elastic properties. In all
considered cases, an almost the same behaviour in the elastic range, with of course different value of
P with larger values for S1 to S3. For sections loaded at the shear centre, the values of P decrease
from 70.80 kN to 40 and 33.69 kN for S1, S2 and S3 respectively. Thus, for sections loaded at the
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bottom flange, in the tension zone, the values of P, decrease from 107.55 kN to 61.81 and 51.76 kN

for S1, S2 and S3 respectively. These values show the undeniable effects of the flange class and load

location. In fact, with flange belonging to class 1 aids considerably the carrying capacity of the section

to LTB. This strength decreases as the flanges slenderness’s increase to about twice lesser for S3.

As can be easily seen, for the case of S2 and S3, two distinct branches curves characterized by

linear pre-critical behaviour for the first branch and an inelastic post-buckling behaviour is recognised

in the second branch. The second part of curves show a decrease in the stiffness of the beam. The load-

lateral deflection curve starts to soften which means that the capability to resist LTB starts to degrade.

The observed tendency of all studied 1-beams subject to LTB to twist about their longitudinal axis and

is suspected that such I-beams contain a form of negative rotational stiffness about their longitudinal

axis.
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Figure 6.12 Load- lateral displacement curves with a=S1, b=S2 and ¢=S3 to elastic properties
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Figure 6.13 Figure 6.12 Load- lateral displacement curves with a=S1, b=S2 and ¢=S3 to effective
properties
6.7 Comparison
6.7.1 Comparison considering elastic characteristics
In the contrary of the conclusions made on the elastic buckling analysis in chapter 5, as
the LTB is mainly bending behaviour, the class of flange plays an important role. In fact, as shown in
Table 6.1 and Figure 6.14, providing flanges of class 1, the strength of the section, even class 4, has
shown a full resistance to LTB. For sections S2 and S3, a decrease of the values of P to almost the
half for upper flange loaded with similar behaviour in elastic range.
The same tendency can be remarked in Tables 6.2, Table 6.3 and Figures 6.15, 6.16 for section
loaded in SG and at lower flange respectively.

Table 6.1 Variation of P, applied at the top for S1, S2 and S3

Position of load DIFFERENCE
TOP

50.89 1.839
2.194
27.67 0.543
1.193
23.19 0.455
0.838
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Figure 6.14 Comparison of results with applied load at the top for S1, S2 and S3

Table 6.2 Variation of P, applied at the SG for S1, S2 and S3

POSITION OF LOAD DIFFERENCE
SHEAR CENTRE

70.80 177
2.101

40.00 0.564
1.187

33.69 0.475
0.842
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Figure 6.15 Figure 6.14 Comparison of results with applied load at SG for S1, S2 and S3
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Table 6.3 Differences in P, prediction of S1, S2 and S3 at the bottom

POSITION OF LOAD DIFFERENCE
BOTTOM

107.55 1.740
2.077
61.81 0.574
1.194
51.76 0.481
0.837

Critical Load (KN)
2
|

—a— Bottom (Flange Class 1 and Web Class 4)
—— Bottom (Flange Class 3 and Web Class 4)
10 3 —¥— Bottom (Flange Class 4 and Web Class 4)
0+— T T T T T T T T
000 005 010 015 020 025 030 035 040

Displacem ent (m)

Figure 6.16 Figure 6.14 Comparison of results with applied load at the bottom for S1, S2 and S3
6.7.2 Comparison considering the calculated effective characteristics
In models with effective properties, the same conclusions made be drawn as in the previous
section with slightly different behaviour and values. Tables 6.4, 6.5 and 6.6, Figures 6.17, 6.18 and
6.19 give the general tendency of the elastic and inelastic LTB behaviour. Better performance of S1
can be noticed followed by S2 and at last S3 showed poorer behaviour with regard to LTB resistance.
Table 6.4 Variation of P, applied at the SC for S1, S2 and S3

POSITION OF LOAD Per DIFFERENCE
e
S1 50.89 1.839
S2 27.67 0.543
S3 21.08 0.414
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Figure 6.17 Load- lateral displacement curves with a=S1, b=S2 and ¢=S3 to effective properties

Table 6.5 Variation of P, applied at the SC for S1, S2 and S3

at top

POSITION OF LOAD Per DIFFERENCE
SHEAR CENTRE
S1

71.81 1.767
2.335
40.62 0.565
1.320
30.75 0.428
0.757
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Figure 6.18 Load- lateral displacement curves with a=S1, b=S2 and ¢=S3 to effective properties

at SC
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Table 6.6 Variation of P, applied at the bottom for S1, S2 and S3

POSITION OF LOAD DIFFERENCE
I I I
107.56 1.740
S2 61.81 0.574

46.13 0.428

0.746

f=]
o
1

Critical Load (KN)
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—#— Bottom (Flange Class 3 and Web Class 4)
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T T T T T
000 005 010 015 020 025 030 035 040

Displacem ent (m)

Figure 6.19 Load- lateral displacement curves with a=S1, b=S2 and ¢=S3 to effective properties
at the bottom
6.7.3 Comparison between results considering elastic and effective
characteristics

Considering both properties, it can be seen from Tables 6.7 Figure 6.20 that values of P
decrease with effective properties exclusively for S3, but not for S1 and S2 for the case of upper flange
loaded. For Table 6.8 and Figure 6.21, all sections show a slight difference is noticed in P values
when section are loaded at SG. Table 6.9 and Figure 6.23 show a notable decrease in P in S3 rather

than the other sections.

Table 6.7 Differences in P, prediction (elastic and effective) of S1, S2 and S3 at the top

POSITION OF LOAD ELASIC EFFECTIVE DIFFERENCE

50.89 50.89 50.89=50.89
23.19 21.08 23.19>21.08
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Figure 6.20 Comparison of P, (elastic and effective) for S1, S2 and S3 at the top
Table 6.8 Differences in P, prediction (elastic and effective) of S1, S2 and S3 at the SC

POSITION OF LOAD ELASIC EFFECTIVE DIFFERENCE
SHEAR CENTRE

40.00<40.62
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60 4
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(5.
o
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l
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Figure 6.21 Differences in P, prediction (elastic and effective) of S1, S2 and S3 at the SG
Table 6.9 Differences in P, prediction (elastic and effective) of S1, S2 and S3 at the bottom

POSITION OF LOAD ELASIC EFFECTIVE DIFFERENCE
BOTTOM
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Figure 6.22 Differences in P, prediction (elastic and effective) of S1, S2 and S3 at the bottom
6.8 Interpretation of deformed shaped beam
In the following, sample of results representing the last increment of section 3 are displayed.
Figures depicted 6.23 To 6.25 shows the unreformed shape, for S3 exclusively with flange and web of
class 4, at the ultimate loading increment. As can be seen, for three load positions, the occurrence of
the local buckling instability phenomenon which exhibit local deformation of outstand flanges of |
beam: upper, shear centre and lower flanges respectively. The general shape of the deformation looks

like a continues thin plate in flexion which indicates that flanges undergoe local buckling. For flanges

of class 1 and 2, the local buckling was not observed or, at least, not clearly for section S2.

Figure 6.23 Local buckling at the upper flange at ultimate increment with load applied at the

upper flange of S3

pary;) T =

Figure 6.24 Local buckling at the upper flange at ultimate increment with load applied at the SG
flange of S3
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Figure 6.25 Local buckling at the upper flange at ultimate increment with load applied at the

lower flange of S3
An interaction between the LB and LTB was observed in S3, with less significance in S2 but no
interaction in S1. This prove, once more, that providing a flange of class 1 will transform in bending to
some extent, the whole behaviour of class 2 even if it is declared to be class 4 as stated in EC3 as it
envisages some exceptions to the general procedure for the classification. For cross sections with a
class 4 web and class 1 or 2 flanges may be classified as class 2 cross sections with an effective web in
accordance (clause 5.5.2(11)). For cross sections with a class 4 web and class 1 or 2 flanges may be

classified as class 2 cross sections with an effective web in accordance (clause 5.5.2(11)).
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CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORKS

1. Conclusions

This present Master’s dissertation aims to evaluate the impact of instability in elastic and
inelastic behaviours on the carrying capacity of slender sections (of class 4). Despite the fact that their
flanges class belong to class 1, 3 and 4 all studied sections are classified into class 4 because of web
class 4. Some general conclusions can be made. As far as the elastic buckling analysis is concerned,
applying the first order buckling analysis, it has been demonstrated throughout of the outcomes of this
study the importance of each parameter., namely:

- Whatever the mean used for determining the Mc,, similar values have been extracted.

- The analytical equation given in EC3 does give accurate prediction of M. Thus, EC3
can be used safely in the design process.

- Finite element numerical analysis gives very close values of M, to those given by EC3
without considering the concept of classification recommended by EC3 with regard of different flange
slenderness and location of load as explained in chapter 5.

- For S1 and S2, no notable differences have been remarked between the elastic and
effective properties with bi-symmetric sections and hence, no significant effect of flange in the overall
resistance to LTB of sections. However, for S3 where the flange class is 4, the cross-section is mono-
symmetric some differences have been be noticed.

- The position of the applied load has an important effect on the M., value, with as
expected, the unfavourable case when the load is applied in the compressive flange.

- An important result is that the eigen buckling analysis performed by LTBEAM and
ABAQUS software give roughly the same values specially in the first buckling mode. This gives a
more confidence to the ABAQUS model, as it will be used later on for more sophisticate analysis:
inelastic buckling analysis taking into account the imperfection.

As far as the inelastic buckling analysis, some interesting results have been found and
discussed in chapter 6 3D models were implanted in ABAQUS software. The modified RIKS method
uses a tangent line of a function to intersect with an arc, situated at the end of every step, the curve will
converge over the arc-length until it reaches an intersection of the arc with the function. Figures in
chapter 6 show the Loads.

Lateral deflections curves extracted from the modified RIKS results during the whole loading
history by considering three load positions with an elastic branch for elastic behaviour and then the
beams behave nonlinearly due to the initial geometric imperfections and the nonlinear geometric and

material.



Summary of inelastic buckling results is given as follows:
A validation of 3D linear model of ABAQUS with the LTBEAM was done. After, a parametric study
using a second-order analysis carried out to investigate the same parameters. Some interesting
findings can be enumerated:
Bearing in mind that torsional buckling is essentially flexural behaviour, the section of flanges is very
important to equilibrated the bending moment.
Despite the fact that all considered sections are classified as class 4 to EC3, in the contrary to the linear
buckling analysis discussed in the previous chapter, major differences in their behaviours can be seen
as depicted in relative Figures.
All considered sections show almost the same behaviour in the elastic range, with of course different
value of P with larger values for S1 to S3 which can be attributed to the flange class.
Independently of the used geometric properties, S1 shows quiet-different behaviour compared to S2
and S3 with flanges belonging to class 3 and 4 respectively.
Better performance of S1 can be noticed followed by S2 and at last S3 showed poorer behaviour with
regard to LTB resistance.
The class of flange plays an important and determinant role with high values of P, despite the location
of the applied load for S1 compared to other sections, i.e. S2 and S3.
An interaction between the LB and LTB was observed in S3, with less significance in S2 but no
interaction in S1. This prove, once more, that the global behaviour of cross section in flexure is
governed by flange class section.
It seems that providing a class 1 flange, the bending performance capacity is not greatly affected by
web class 4.
For all sections, the effective properties calculated seem to not have large influence for a beam mainly
bent, even if some differences are being noticed for S3 with flange and web belonging to class 4.
Some kind of interaction between the LB and LTB has been detected in upper flange of S3.
2. Recommendations suggestions for future work:
It seems to be interesting to carry out a particular study in order:
To assess the effect of steel grade: S235 ductile material on slender sections.
To evaluate the effect other loading: dynamic, cyclic and even seismic on slender section.

To explore the contribution of the web in high flexure loaded slender sections.
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