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ABSTRACT  

 

 

 

Abstract 

It is usually difficult to solve the control problem of any complex nonlinear system . In our work 

we present an effective control method based on an adaptive neural PID controller, and apply it for 

a widely and to check typical academic nonlinear system such as inverted pendulum. There are a 

huge amount of controllers witch have been applied for this system and we compare one of them 

such as a classical PID controller and see the additional advantage of the adaptive neural PID, then 

design and implement it with a typical example for the inverted pendulum such as Two Wheels 

Self-balancing Robot. 

 

Keywords 

Nonlinear system. Adaptive Neural PID. Inverted Pendulum. Neural Network. DC Motor. PID 

controller. Ziegler Nichols. Arduino. Two Wheels Self-Balancing Robot.   

 

 الملخص

، نقدم طريقة تحكم فعالة تعتمد على وحدة أي نظام غير خطي معقد. في عملنا عادة يكون من الصعب حل مشكلة التحكم في

وهناك  ،المعكوس نواسخطي نموذجي مثل ال ونطبقها على نطاق واسع ومتنوع لنظام أكاديمي غير ،العصبية التكيفية PID تحكم

مع ما تحصلنا عليه  PIDمتحكم هذه المتحكمات و قد اخترنا ونقارن احد المطبقة بالفعل على هذا النظام  اتتحكممعدد كبير من ال

ن بعجلتين ل الروبوت ذاتي التوازالمقلوب مث لنواسبمثال نموذجي ل، ثم تصميمها وتنفيذها العصبي التكيفي PIDمع نتائج المتحكم 

 باستخدام أردوينو

Résumé  

Il est généralement difficile de résoudre le problème de contrôle d'un système non linéaire 

complexe. Dans notre travail, nous présentons une méthode de contrôle efficace basée sur un 

contrôleur PID neuronal adaptatif, et l'appliquons à un système non linéaire académique typique 

largement et varié tel qu'un pendule inversé, il existe une énorme quantité de contrôleurs déjà 

appliqués pour ce système et nous en comparons un d'entre eux comme un contrôleur PID classique 

et voyez l'avantage supplémentaire du PID neuronal adaptatif, puis concevez-le et mettez-le en 

œuvre avec un exemple typique pour le pendule inversé tel que le robot auto-équilibré à deux roues. 

 

 

https://www.sciencedirect.com/topics/computer-science/nonlinear-system
https://www.sciencedirect.com/topics/computer-science/control-method


CONTENTS  

 

 

 

General Introduction 
02 

Chapter I: System modelling  

1. Introduction ..................................................................................................................... 
4 

2. Analytical system model…………………………………….…………………………. 
4 

2.1. Transfer function ……………………………………………………………………. 
5 

2.2. State Space …………………………………………………………………...………  
6 

2.3. System parameters ………………………………………………………………….. 
7 

2.4 Open loop response …………………………………………………….……………. 
7 

3. Actuators ………………………………….…………………………………….…….. 
11 

3.1. Linear Stepper Motor Model ……………………………………………………….. 
11 

3.1.1.Mathematical Modelling ………………………………….………………...…….. 
11 

3.2. DC Motor.................................................................................................................... 
13 

3.2.1. Principle of DC Motor………………………………………………………..…… 
13 

3.2.2. Components of the DC Motor ……………………………………………………...  
14 

3.2.2.1 Inductor / Stator ……………………………………………………………...…… 
14 

3.2.2.2 Armature / Rotor ………………………………………………………………..… 
15 



CONTENTS  

 

 

3.2.3. Types of DC Motors……………………………………………………………….  
15 

3.2.3.1. Separately Excited DC Motor………………………………………………….… 
15 

3.2.3.2. Self-Excited DC Motor………………………………………………………….. 
16 

3.2.3.2.1 Shunt DC motor ……………………………………………………………..… 
16 

3.2.3.2.2 Series DC motor……………………………………………………………..… 
16 

3.2.3.2.3 Compound DC motor …………………………………………………..…… 
17 

3.2.3.2.3.1. Short shunt compound DC Motor ……………………………………….……  
17 

3.2.3.2.3.2. Long shunt compound DC motor…………………………………………….. 
18 

3.2.4. DC Motor Modelling………………………………………………………………. 
18 

3.2.4.1. Transfer function of armature-controlled DC motor …………………………… 
20 

4. Conclusion …………………………………………………………………….………. 
20 

Chapter II: PID control for TWSBR 

1. Introduction …………………………………………………………………….……… 23 

2. Continuous and Digital Control …………………………………….……………….… 23 

2.1. Feedback control system………………………………………………………..……. 23 

2.1.1. The characteristics of feedback ………………………………………………….… 23 



CONTENTS  

 

 

2.1.2. Feedback control process ……………………………………………………….… 24 

2.1.3. The objectives of feedback control…………………………………………….…… 24 

2.1.4. Types of feedback system ……………………………………………………..…… 24 

2.1.4.1. Negative feedback ……………………………………………………………... 24 

2.1.4.2. Positive Feedback ……………………………………………………..…………. 25 

2.1.5. The advantages and disadvantages of a feedback control ……..………………......  26 

3. Digital control ……………………………………………………………………… 27 

3.1. The structure of a digital control system ……..………….………………….…..…… 28 

4. PID Controller ……………………………………………………………………….… 28 

4.1. Brief History……………………………………………………………..……….…… 28 

4.2. PID Controller ………………………………………………….………………...…. 30 

4.3. Type of Classical PID Controller …………………………………………………… 31 

4.3.1. Parallel PID ……………………………………………………………………….. 31 

4.3.2. Ideal PID ………………………………………………………………………..…. 32 

4.3.3. Series PID …………..……………………………………………………………… 33 

4.4. PID Tuning …………………………………………………………………...……… 33 



CONTENTS  

 

 

4.4.1. Ziegler–Nichols Rules for Tuning PID Controllers ………………………………. 34 

4.4.1.1. First Method……………………………………………………………………… 34 

4.4.1.2. Second Method…………………………………………………………………… 36 

4.4.1.3. Control of TWSBR using two Ziegler-Nichols method …………………..…… 38 

4.4.1.3.1. Simulation and Discussion……………………………………………….……. 41 

5. Conclusion……………………………………………………………………..………. 44 

Chapter III: adaptive Neural PID control for TWSBR 

1.Introduction………………………………………………………………….…………. 47 

2. Neural Network……………………………………………………………………... 47 

2.1. History of Neural Networks……………………………………………………….… 47 

2.2. Neuron and the neural network………………………………………………..….…  49 

2.3. Properties of neural networks………………………………………………..……… 51 

2.4. Activation functions ………………………………………………………………..…  51 

2.4.1. The binary activation function ……………………………………………………. 51 

2.4.2. The sign activation function…………………………………………………..…… 51 

2.4.3. The linear activation function ……………………………………………………... 51 



CONTENTS  

 

 

2.4.4. The linear activation function with saturation……………………………….…….  54 

2.4.5. The sigmoid activation function………………………………………..………….. 55 

2.4.6. The hyperbolic tangent activation function ……………………………………...… 56 

2.5. Learning ……………………………………………………………………..………. 57 

2.5.1. Supervised learning …………………………………………………………...…… 57 

2.5.2. Unsupervised learning……………………………………………………………… 57 

2.5.3. Hybrid learning……………………………………………………………………..  58 

3. Neural Adaptive PID…………………………………………………………………… 58 

3.1. The model of single neuron ……………………………………………………….… 59 

3.1.1. Single neuron adaptive PID controller …………………………………………… 60 

3.1.1.1. The Normal Incremental Digital PID Controller ………………………………. 60 

3.1.2. Structure of single neuron adaptive PID controller ………………………………. 60 

3.2. Simulation…………………………………………………………………................. 64 

4. Comparaison ……………………………………………………………,,……............. 65 

5. Conclusion ………………………………………………………........……………….. 

 

66 



CONTENTS  

 

 

 

Chapter IV:  Real Implementation for the TWSBR 

1. Introduction ……………………………………………………………….…………… 68 

2. Software…………………………………………………………………..…….……… 

68 

2.1. Arduino IDE……………………………………………………………..………..….. 68 

3. Hardware …………………………………..……………………………………………  69 

3.1. Arduino Nano ………………………………………………………………………... 69 

3.2. MPU-6050 …………………………………………………………………………… 71 

3.3. Motor driver IC L293D …………………………………………………………..…. 73 

3.3.1. Controlling of dc motor with L293D ……………………………………………… 74 

3.3.1.1. PWM – For controlling speed…………………………………………………… 74 

3.3.1.2. H-Bridge – For controlling rotation direction……………………………………  75 

3.3.2. Control Pins ………………………………………………………………...………. 76 

3.3.2.1. Direction control pins……………………………………………………………. 76 

3.4. DC motors……………………………………………………………………………. 77 

3.5. Bluetooth Module…………………………………………………………………….  79 



CONTENTS  

 

 

3.6. Connecting wires and soldering………………………………………………………. 79 

4. Block Diagram and Working ………………………………………………...………… 82 

5. TWSBR…………………………………………………………………………………. 84 

6. Conclusion ………………………………………………………………….…………. 85 

General conclusion  

 

 

 



 

 

 

 

 

 

 

  

 

General introduction 



GENERAL INTRODUCTION   

 

2 
 

 

General introduction 

 In the industrial field, the controlled system has usually great nonlinearity, including spacecraft 

system, vehicle system, robot system, power system, chemical reaction system, etc. It is hard to get 

a precise control performance even by the intelligent control methods, including adaptive control, 

fuzzy control, and neural network control and decoupling control. So many mixed control methods 

have been presented, such as PID neural network. Due to the characteristics of self-learning, self-

organizing and self-adaptation, PID neural network would automatically identify the parameters of 

controlled system and adjust them according to system changes. 

Firstly, we will begin with the control of our nonlinear system by using classical PID controlling, 

witch is widely used in control engineering but it has some disadvantage while it is applied for a 

complex nonlinear system because the parameters of the controller 𝐾𝑝 𝑎𝑛𝑑 𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑    are usually 

fixed  and with the poor capability of dealing with uncertainty, parameter variations and external 

disturbance, the PID controller is not the best controller to apply for a complex nonlinear system. 

In recent years, there has been extensive interest in self-tuning these three controller gains. For 

examples, the PID self-tuning methods based on the relay feedback technique were presented for 

a class of systems. An adaptive PID control tuning was proposed to cope with the control problem 

for a class of uncertain chaotic systems with external disturbance. A genetic algorithm was used to 

find the optimum tuning parameters of the PID controller by taking integral absolute error as fitting 

function. Sliding mode control (SMC) is one of the popular strategies to deal with uncertain control 

systems. Neural networks (NN) have been used for modeling and control of complex physical 

systems because of their ability to handle complex input-output mapping without detailed 

analytical models of the systems [22].   

The neural network controllers have emerged as a tool for difficult control problems of unknown 

nonlinear systems. Neural networks (NN) have been used for modeling and control of complex 

physical systems because of their ability to handle complex input-output mapping without detailed 

analytical models of the systems [22]. 

In our work, we choose to deal with an inverted pendulum as a complex nonlinear system, because 

it is one of the most popular systems used for illustrating various control techniques. The goal of 

controlling of the pendulum is to balance the pendulum in the upright position when it initially 

starts with some nonzero angle off the vertical position. This system is a typical and academic 
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nonlinear control problem, so many techniques have been already applied for this system, like, 

model-based control, fuzzy control, neural network (NN) control, genetic algorithms (GAs)-based 

control, and so on, so we will make our Adaptive neural PID controller to this system and we will 

apply it with a “Tow Wheels Self-Balancing Robot” and see the results. 

In the first chapter, we will talk about the modeling of the inverted pendulum and the modeling 

of the actuator, we will begin by using stepper motor and we will mention the problems that we 

will face using actuator, then we will use the DC motor and see the suitable actuator for our system 

then we will combine them to get our TWSBR modeling.  

In the second chapter, we will control the system “TWSBR” with a classical PID and make a 

simulation in MATLAB Simulink using Ziegler Nichols method for tuning our controller 

parameter such as 𝐾𝑝 , 𝑎𝑛𝑑 𝐾𝑖 , 𝑎𝑛𝑑 𝐾𝑑 , and mention the problem that we will face with choosing 

this parameter and disadvantage of the PID controller. 

In the third chapter we will control our system “TWSBR” with a Neural Adaptive PID controller, 

we will firstly look at a brief background for the neural network and then we will use single neuron 

adaptive PID controller, we will compare the results that we get with the previous results that we 

get from the classical PID controller and discuss why it is better to use Neural Adaptive PID 

controller instead of the classical PID controller, and see the difference between the two controller. 

In the last chapter, we will take about the design and the implementation of our TWSBR using 

Arduino Nano, and talk about all the components that we will use to build our robot, and then we 

will mention the results that we will get and how the system behaves 
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1. Introduction 

A self-balancing robot is a robot, balances itself on two wheels, by constantly correcting its 

position .In the '80s, a Japanese Professor, Kazuo Yama Fuji, built the first model to simulate the 

behavior of an inverted pendulum. Since then, many different prototypes have been built by many 

researchers. The widespread accessibility of economical electronic components has made it a 

fascinating project for makers and students [1]. The TWSBR system is a dynamically unstable 

system and has a behavior equivalent to an inverted pendulum on a cart with wheels, therefore, its 

modeled using as a reference to the inverted pendulum system. The TWSBR system can be 

considered as a mechanical platform composed of two coupled subsystems: the main body 

(pendulum) and the assembled rotation system (pendulum cart). 

2. Analytical system model 

The physical problem of the balancing robot is well described by the widely analyzed inverted 

pendulum. It is commonly modelled as a rigid rod fastened by a frictionless joint to a rigid cart 

moving in one direction. The simplification that the wheel base can be seen as a cart sliding on a 

frictionless surface was made. This model definition is inspired by Math Works tutorial about 

inverted pendulum. See Figure 1 for the simplification steps in this project [2]. 

 

Figure I. 1. Simplification steps of the inverted pendulum 

This is a nonlinear multi-variable and highly unstable system. Inverted pendulum-cart system are 

shown below, in Fig. 2. As a simplifying hypothesis, the cart friction with the surface and the 

pendulum friction with air will be neglected. In this model there is an assumption that the gravity 
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force acts on a point of mass in all instances and are externally influenced by a force that acts on x 

axis, moving the pendulum, system acting like a cart [4]. 

 

 s 

 x  

 m 

 

                                                                                        𝜑 

 mg l 

          𝜃 

          0 u 

 

 

 

Figure I. 2. Equivalent system for the robot. 

 

2.1. Transfer function 

We will begin by the dynamic equations that we can derived from the forces in Fig.1. 

𝑢 =  (𝑀 +  𝑚)�̈� + 𝑓�̇� + 𝑚𝑙�̈�𝑐𝑜 𝑠 𝜃  − 𝑚𝑙�̇�2  𝑠𝑖𝑛 𝜃                                             (𝐼. 1) 

(𝐼 +  𝑚𝑙2)�̈� + 𝑚𝑔𝑙 𝑠𝑖𝑛 𝜃 = −𝑚𝑙�̈� 𝑐𝑜𝑠 𝜃                                                               (𝐼. 2) 

Where g is the gravitational constant, m is the pendulum mass, M is the cart mass, 𝜃 is the tilt 

angle, f is a friction parameter, l – bar length and I is the pendulum moment of inertia [3]. 

The non-linear equations in the linear form [4]: 

(𝐼 + 𝑚𝑙2)�̈� − 𝑚𝑔𝑙𝜑 = 𝑚𝑙�̈�                                                   (I. 3) 

(𝑀 +𝑚)�̈� + 𝑏�̇� − 𝑚𝑙�̈� = 𝑢                                                    (I. 4) 

Rewriting the equations as transfer functions renders: [3] 

 𝜑(𝑠) =

𝑚𝑙
𝑞 𝑠

𝑠3 +
𝑓(𝐼 + 𝑚𝑙2)

𝑞 𝑠2 −
 (𝑀 +𝑚)𝑚𝑔𝑙

𝑞 𝑠 −
𝑓𝑚𝑔𝑙
𝑞

 𝑢(𝑠)                           (𝐼. 5) 

M 
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𝑋(𝑠) =

𝑓(𝐼 + 𝑚𝑙2)𝑠2 − 𝑔𝑚𝑙
𝑞

𝑠4 +
𝑓(𝐼 + 𝑚𝑙2)

𝑞 𝑠3 −
 (𝑀 +𝑚)𝑚𝑔𝑙

𝑞 𝑠2 −
𝑓𝑚𝑔𝑙
𝑞 𝑠

 𝑢(𝑠)                      (𝐼. 6) 

where: 𝑞 = (𝑀 +𝑚)(𝐼 + 𝑚𝑙2) − (𝑚𝑙)2 

Note  

In this work, we will just work with the angle, when it comes to the position, we will just make a 

simulation without implement it. 

2.2. State space model 

This arrangement is viable, since an inverted pendulum is intuitively unstable. The differential 

equations are linearized . According to [2], the system can then also be described in State Space 

form with the states being�̇�, �̈�, �̇�, �̈�.  So from the linear equations (3) and (4) we can obtained the 

state space model [2]. 

[

�̇�
�̈�
�̇�
�̈�

]   =  𝐴 [

𝑥
�̇�
𝜑
�̇�

]  +  𝐵 𝑢                                                    (I. 7) 

𝑦 =  𝐶𝑢                                                                             (𝐼. 8) 

The matrices A, B, C, D [3] 

𝐴 =

[
 
 
 
 
0 1 0

0
−(𝐼+𝑚𝑙2)𝑓

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2
𝑚2𝑔𝑙2

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2

0 0 0

0
−𝑚𝑙𝑓

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2
𝑚𝑔𝑙(𝑀+𝑚)

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2

     

0
0
1
0
]
 
 
 
 

                                        (𝐼. 9) 

𝐵 =

[
 
 
 
 

0
𝐼+𝑚𝑙2

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2

0
𝑚𝑙

𝐼(𝑀+𝑚)+𝑀𝑚𝑙2]
 
 
 
 

                                                        (𝐼. 10)  

𝐶 = [
1 0
0 0

     
0 0
1 0

]                                                     (𝐼. 11) 

𝐷 = [
0
0
]                                                                (𝐼. 12) 

 

2.3. System parameters 

We will take the parameters by measurement as following: 
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                 Parameters                      Values 

                        𝑀               0.3 [kg] 

                        𝑚                0.2 [kg] 

                         I                0.0015 [kg𝑚2] 

                         𝑔                  9.81 [m/𝑠2] 

                         𝑓                  0.1 

                         𝑙                  0.15 [m] 

Table.I.1: the TWBR parameters 

 

With these parameters inserted to the MATLAB model, the State Space system 

Looks as  :   

[

�̇�
�̈�
�̇�
�̈�

] = [

0 1.0000 0
0 −0.2857 4.2043
0  0 0
 0 −1.4286 70.0714

     

0
0

1.0000
0

] [

𝑥
�̇�
𝜑
�̇�

] + [

0
2.1444
0

14.2857

] 𝑢                     (𝐼. 13) 

𝑦 = [
1 0
0 0

     
0 0
1 0

] [

𝑥
�̇�
𝜑
�̇�

] + [
0
0
]  𝑢                                                                              (𝐼. 14) 

2.4. Open loop response 

  Using all the equations and the state space model, a MATLAB simulation yielded a result, 

which we were aware about that the system is unstable without any control  

 

Figure I. 3. Simulink model of Open loop response 
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The result 

1- Angle  

 With initials values 𝑥0 =  [0,0,0,0] 

 

Figure I. 4. Angle open loop response with 𝑥0  =  [0, 0, 0, 0] 

In the open loop response, with initial values x0 = [0, 0, 0, 0] we notice that the system goes to 

the stable point we consider it 180°, the angle reached this point after 30 seconds after the 

oscillation between 0 and 300° 

 With initials values x0 = [0, 0, 180, 0 ] : 

 

Figure I. 5. Angle with open loop control with 180 as initial values 

Interpretation of result: This time we test the open loop response with an initial angle value equal 

to 180°, and we noticed that the system change its direction and continue the oscillation between 

250° and 0°, and reached the stable point 180° and stabilize after 30 seconds  
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2- Position 

 With initials values x0 = [0, 0, 0, 0] 

 

Figure I. 6. Position open loop response with 𝑥0 = [0, 0, 0, 0] 

    With initials values  

 

Figure I. 7. Position open loop response with 𝑥0 =  [0, −45, 0, 0]  

Modelling based on the inverted pendulum shows that the system is unstable without a controller, 

therefore, we need to make a controller for this system and we will begin with PID controller and 

then Neural PID controller and see how the system will act. 
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3. Actuators 

3.1. Linear Stepper Motor Model 

3.1.1. Mathematical Modelling 

In this section, the mathematical model of a hybrid stepper motor is derive. Fig. I.8 Shows the 

schematic drawing of a simple two-phase hybrid stepper motor with three teeth [5] 

 

Figure I. 8. Schematic view of a stepper motor with three teeth 

The mathematical model of a stepper model could be divided into two sub-models, electrical 

model and mechanical model. Starting with the electrical model, each phase of the stepper motor 

phases could be modelled as an RL circuit plus a back electromotive force (𝑒𝑚𝑓)  

In Figure I.8. According to the differential equations of phase a and phase b are given by (I.15) and 

(I.16), respectively [5]. 

                      𝐿𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
=  −𝑅𝑎𝑖𝑎(𝑡) − 𝑒𝑎(𝑡) + 𝑢𝑎(𝑡)                                               (𝐼. 15) 

                      𝐿𝑏
𝑑𝑖𝑏(𝑡)

𝑑𝑡
=  −𝑅𝑏𝑖𝑏(𝑡) − 𝑒𝑏(𝑡) + 𝑢𝑏(𝑡)                                                (𝐼. 16) 

Where 𝑒𝑎(𝑡) =  𝑘𝑚𝜔𝑚 sin(𝑝𝜃𝑚)    and  𝑒𝑏(𝑡) =  𝑘𝑚𝜔𝑚 cos(𝑝𝜃𝑚) [5] 

In equation (I.15) and (I.16), the phase resistances and inductances are assumed equal, 𝑅𝑎 = 𝑅𝑏 =

𝑅 [Ω] and 𝐿𝑎 = 𝐿𝑏 = 𝐿 [H]. Moreover, and are the terminal voltages [V], 𝑒𝑎(𝑡) and 𝑒𝑏(𝑡) are the 

back emf [V], 𝑘𝑚 is the motor constant, 𝑝 is the number or motor poles pairs (teeth), 𝜔𝑚 is the 

rotor (mechanical) angular speed [rad/s], 𝜃𝑚 and is the rotor (mechanical) angular position [rad] 

[5]. 
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Figure I. 9. Equivalent circuits of hybrid stepper motor. 

The shaft of the hybrid stepper motor, which represents the mechanical part of the system 

is modelling as a rigid body subjected to different torques as shown in Fig. 7. The differential 

equation of the mechanical sub-system is given by (I.17) [5]. 

                         𝐽𝑚   
𝑑𝜔𝑚
𝑑𝑡

= 𝜏𝑒𝑚 − 𝐵𝜔𝑚 − 𝜏𝑑𝑚 − 𝜏𝑙                                                             (𝐼. 17) 

Where:    𝜏𝑒𝑚 = 𝐾𝑚(−𝑖𝑎 sin(𝑝𝜃𝑚) + 𝑖𝑏 cos(𝑝𝜃𝑚))    (I.18) 

 and    𝜏𝑑𝑚 = 𝑇𝑑𝑚 sin(2𝑝𝜃𝑚 + 𝛼)                                                                              (I.19) 

 

In the mechanical model,    𝐽𝑚 [kg. 𝑚2] is the motor moment of inertia, B [kg/s.m] is the 

motor viscous friction coefficient, 𝜏𝑒𝑚 [N.m] is the electromagnetic torque, 𝑇𝑑𝑚 [N.m] is the detent 

torque applied, 𝛼 is the phase shift related to 𝜏𝑑𝑚 , and  𝜏𝑙 [N.m] is the applied load torque [5]. 
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Figure I. 10. Mechanical sub-system of the hybrid stepper motor                 

3.2. DC Motor 

3.2.1. Principle of DC Motor 

The principle of the DC motor is to convert direct current (DC) electrical energy into 

mechanical energy. It consists of a stator (inductor) an armature (rotor) with windings of insulated 

wire which are energized by a commutator though brushes [13]. 

A stator magnetic field B is created by permanent magnet or excitation coil supplied from the DC 

source. The rotor winding (armature conductors), which can rotate, is placed in this stator magnetic 

field B. This armature is energized by a direct current, which creates a rotating magnetic field. This 

rotating field across the armature reacts with the stator magnetic field to create a force F on the 

rotor winding which causes it to rotate. This force F acts on both conductors and we have �⃗� = 𝐼 ⋅

𝑙 ∧ �⃗⃗� . With the Fleming’s left hand rule, we can determine the direction of the force, which acts 

on the both conductors. Therefore, there are two forces created. Each of these acts on a conductor 

in the opposite direction and creates a torque [13]. 

 

Figure I. 11. Schema of the principle of DC Motor 
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Figure I. 12. Schema of the operation of DC Motor 

The brushes allow the rotor winding to continue its rotation when it reaches the 

perpendicular position. In fact, the brushes allow the current direction in the both conductors to 

commutate when this position is reached. The direction of the current is inverted, the direction of 

the force is too (Fleming’s left hand rule) and the rotation can continue [13]. 

3.2.2. Components of the DC Motor 

3.2.2.1. Inductor / Stator 

In the DC Motor, the stator is the stationary part. It consists of permanent magnets or 

winding of excitation coil to create the magnetic field thanks to the electric current, which passes 

through this winding. When the stator is composed of permanent magnets, there are not power 

losses by Joule heating but the magnetic excitation field is constant. This solution is more expensive 

depending on the size of the motor [13].  

3.2.2.2. Armature / Rotor  

The rotor of the DC Motor is composed of iron laminated sheets package. Into the package 

slots, rotor winding is immersed. This is very difficult to product and it is expensive. Winding ends 

are connected to the commutator, which is created by the copper lamellas. By means of carbonic 

brushes, rotor winding is connecting to the fix part of machine. This technology allows to create a 

rotating magnetic field which interacts with the magnetic field created by the stator and generates 

the rotation [13]. 

 



Chapter I    System modeling 

 

14 
 

3.2.3. Types of DC Motors 

3.2.3.1. Separately excited DC Motor 

A shunt field windings are supplied from a separate constant DC power source (like Battery) for 

producing the magnetic flux, are represented by resistor 𝑅𝑓. The resistor 𝑅𝑓𝑐 represents an external 

variable resistor (sometimes lumped together with the field coil resistance) used to control the 

amount of current in the field circuit [14]. 

The armature windings are represented by back 𝑒𝑚𝑓 𝐸𝑏 and a resistor𝑅𝑎. Are supplied from 

a DC power source (𝑽𝒕) [14]. 

 

Figure I. 13. Separately Excited DC Motor 

 

𝐸𝑏 = 𝐾𝑎 𝜑 𝑤𝑚                                               (I.20) 

𝑉𝑡 = 𝐸𝑏 + 𝐼𝑎𝑅𝑎                                               (I.21) 

𝑉𝑓 = 𝐼𝑓 ∗ 𝑅𝑓                                                          (I.22) 

𝑇𝑎 = 𝐾𝑎 𝜑 𝐼𝑎                                             (I.23) 

𝑅fw: Resistance of field winding. 

𝑅fc: Resistance of control rheostat used in field circuit. 

𝑅𝑓 = 𝑅𝑓𝑤 + 𝑅𝑓𝑥 : Total field resistance 

𝑅𝑎: Resistance of armature circuit. 

3.2.3.2. Self-Excited DC Motor  

Field windings gets its power from the armature terminals of the motor [14]. 
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3.2.3.2.1. Shunt DC motor 

A shunt winding gets its power from the armature terminals of the motor. Shunt field 

winding connected across (in parallel with) the armature terminals [14]. 

                                       

Figure I. 14. Shunt DC motor 

𝑉𝑓 = 𝑉𝑡 = 𝐼𝑓 ∗ 𝑅𝑓                                                                 (I.24) 

𝑉𝑡 = 𝐸𝑏 + 𝐼𝑎𝑅𝑎                                                                    (I.25) 

𝐸𝑏 = 𝐾𝑎𝜑𝑤𝑚                                                                                                                  (I.26) 

𝐼𝐿 = 𝐼𝑎 − 𝐼𝑓0                                                                        (I.27) 

𝑇𝑎 = 𝐾𝑎𝜑𝐼𝑎                                                                                    (I.28) 

3.2.3.2.2. Series DC motor 

The series field winding connected in series with the armature windings [14].                                      

                                       

Figure I. 15. Series DC motor 

            𝐼𝐿 = 𝐼𝑠𝑒𝑟 = 𝐼𝑎                                                    (I.29) 

      𝑉𝑡 = 𝐸𝑏 + 𝐼𝑎(𝑅𝑎 + 𝑅𝑠𝑒𝑟)                                   (I.30) 
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𝑇𝑎 = 𝐾𝑎𝜑𝐼𝑎                                                        (I.31)  

𝜑 = 𝐶𝐼𝑎                                                                      (I.32) 

𝑇𝑎 = 𝐾𝑎𝐶𝐼𝑎
2                                                        (I.33)                                     

3.2.3.2.3. Compound DC motor  

Both shunt and series field windings are connected with the armature windings in short-shunt or 

long-shunt [14]. 

3.2.3.2.3.1. Short shunt compound DC Motor  

When the shunt field winding is connected directly across the armature terminals, it is called a[14]  

                                                     

Figure I. 16. Short-shunt compound motor. 

                                             𝐼𝐿 = 𝐼𝑠𝑒𝑟                                                               (I.34) 

                                   𝐼𝑎 = 𝐼𝐿 − 𝐼𝑓                                                          (I.35) 

                                 𝐼𝑓 =
𝑉t+𝐼ser∗Rser

Rf
                                                               (I.36) 

𝑉𝑡 = 𝐸𝑏 + (𝐼𝑎 ∗ 𝑅𝑎) + (𝐼𝑠𝑒𝑟 ∗ 𝑅𝑠𝑒𝑟)                               (I.37) 

3.2.3.2.3.2. Long shunt compound DC motor 

When the shunt field winding is connected across the load, it is called a long-shunt compound 

motor [14]. 
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Figure I. 17. Long shunt compound DC motor 

𝐼𝑓 =
𝑉t

Rf
                                                                           (I.38) 

𝐼𝑎 = 𝐼ser = 𝐼𝐿 − 𝐼𝑓                                                                 (I.39) 

𝑉𝑡 = 𝐸𝑏 + (Ia ∗ Ra) + (Iser ∗ Rser)                                         (I.40) 

𝑉𝑡 = 𝐸𝑏 + Ia(Ra + Rser)                                                          (I.41) 

3.2.4. DC Motor modelling 

In an armature-controlled DC motor, the excitation for the field winding is kept constant 

and the torque is varied by varying the supply voltage connected to the armature. In some cases, a 

permanent magnet is used instead of field winding to produce the magnetic flux, which is again 

independent of the armature current. Such motors are called Permanent magnet DC motors. 

 

Figure I. 18. Armature-Controlled DC Motor. 

The mathematical equations for this electrical system are represented below in detail: 

By Kirchhoff voltage law [15], 

𝑅𝑎𝑖𝑎(𝑡) + 𝐿𝑎
𝑑𝑖𝑎(𝑡)

𝑑𝑡
= 𝑣𝑎(𝑡) − 𝑒𝑏(𝑡)             (I.42) 
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Where 𝑒𝑏(𝑡) is the back EMF produced in the DC motor which is proportional to derivative of 

angular position of the shaft nothing but speed or angular velocity [15]. 

𝑒𝑏(𝑡) = 𝐾𝑒𝜔(𝑡)      (I.43) 

Torque of DC motor can be expressed in terms of product of field flux and armature current. Since 

in armature-controlled DC Motor field flux is constant, Torque varies only with respect to 

Armature current. Such torque expression can be given as [15]. 

𝑇(𝑡) = 𝐾𝑡𝑖𝑎(𝑡)      (I.44) 

The mathematical expression presiding over this DC Motor is given by [15] 

𝐽
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵𝜔(𝑡) = 𝑇(𝑡) − 𝑇𝐿(𝑡)    (I.45) 

where:

{
 
 
 
 
 

 
 
 
 
 

𝑅𝑎 ∶ is the armature resistance (Ω)

𝐿𝑎 ∶  is armature inductance (𝐻)

𝐽: is the equivalent moment of inertia of the motor (𝑘𝑔.𝑚2/𝑠2)
𝐵: is the viscous friction coefficient of the motor (𝑁.𝑚. 𝑠/𝑟𝑎𝑑)  
𝐾𝑡: 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑜𝑟𝑞𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑁𝑚/𝐴)                                                     

𝐾𝑒: 𝑖𝑠 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘 𝑒𝑚𝑓 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑉/𝑟𝑎𝑑/𝑠)

𝑖𝑎(𝑡): 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝐴)

𝑣𝑎(𝑡): 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑟𝑚𝑎𝑡𝑢𝑟𝑒 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑉)                                                     

ω(t): is the angular speed (rad/s)

TL(t): is the load torque across the motor shaft (Nm)                    

 

   

3.2.4.1. Transfer function of armature-controlled DC motor 

From the equations (I.42), (I.43), (I.44) and (I.45) we obtained [16]: 

                                              

{
𝐿𝑎

𝑑𝑖𝑎(𝑡)

𝑑𝑡
+ 𝑅𝑎𝑖𝑎(𝑡) + 𝐾𝑒𝜔(𝑡)  = 𝑣𝑎(𝑡)

𝐽
𝑑𝜔(𝑡)

𝑑𝑡
+ 𝐵𝜔(𝑡) − 𝐾𝑡𝑖𝑎(𝑡) = −𝑇𝐿(𝑡)

                                                    (𝐼. 46) 

Assume that all the initial conditions are zero. Taking the Laplace transform of equations (I.46) 

 Results in: 

                                 {
𝐿𝑎𝑠𝐼𝑎(𝑠) + 𝑅𝑎𝐼𝑎(𝑠) + 𝐾𝑒Ω(𝑠) = 𝑉𝑎(𝑠)

𝐽𝑠Ω(𝑠) + 𝐵Ω(𝑠) − 𝐾𝑡𝐼𝑎(𝑠) = −𝑇𝐿(𝑠)
                                                            (𝐼. 47) 
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The transfer function relating the armature voltage 𝑉𝑎(𝑠) and angular velocity Ω(𝑠) , with 

 𝑇𝐿(𝑠) = 0: 

Ω(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑡

𝐿𝑎𝐽𝑠2+(𝐿𝑎𝐵+𝑅𝑎𝐽)𝑠+𝑅𝑎𝐵+𝐾𝑡𝐾𝑒
        (I.48) 

 

4. Conclusion  

In this chapter, we talked about our system modeling for each of the shape and the actuators, 

there are many choices with the actuators, and we worked with both of stepper motor and DC 

motor, but we faced a problem with the stepper motor because it was extremely heavy for our 

system. Therefore, we need to use another actuator, and we choose direct current motor because it 

is light and simple to use and we expect to have good results.  
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1. Introduction  

 It is well known that the classical proportional-integral derivative (PID) controller still plays 

a dominating role in engineering control systems by far. For example, it was reported that over 

95% of process control loops are designed based on PID controller. A more recent survey  

published in 2017 shows that the impact rating of PID control is still much higher than the widely 

studied advanced control techniques, and that “we still have nothing that compares with PID”[17]. 

Designing a PID controller for a complex nonlinear system is appropriate to know How true is this 

saying, and the effectiveness of this controller and its shortcomings, when it comes to the tuning 

the PID controller can be tuned by simple rule-based tuning methods like Ziegler-Nichols, unlike 

many other model-based tuning of the PID parameter.  

2. Continuous and Digital Control 

2.1. Feedback control system 

The feedback is an electric signal, which is transferred from the output to the controller, so the 

controller would be able to calculate how the output is different from the required value. The 

controller would know the past state of the system output with the help of this feedback signal. The 

controller would calculate the error and it would vary the system input to get the required output. 

The closed-loop system is also called a feedback system because it fed back the output into the 

input so that the errors can be cleared and the required output quality can be maintained. The 

feedback control is to remove the measured disturbances. The feedback controls are automated and 

it should do the sensing, calculating, and manipulating to be performed by the equipment, and that 

each element must communicate with the other elements in the control system [6]. 

2.1.1. The characteristics of feedback 

 Good accuracy 

 It has a slight tendency towards oscillation (instability) 

 The non-linear effects are reduced 

 The effects of external disturbances or noise can be reduced 

 The effects of external disturbance and noise are reduced 

 Product quality can be increased 

 The response to the variation in the input is high[6] 



Chapter II  PID control of TWSBR 

 

24 
 

2.1.2. Feedback control process 

In a control system, a feedback loop is an important tool; the feedback loop will consider the 

system output and this will help the system to alter its operation in order to get the required output. 

In order to do this task, a system should have controllers, compensators, and feedback structures to 

the system. The feedback control system is composed of sensors, controllers, process systems, etc. 

The major components of a feedback control system are input, the process that is being controlled, 

output, sensing elements, controllers, and actuating devices. The feedback control would only need 

minimal knowledge of the process that is to be controlled [6]. 

The feedback control can be considered as the easy way to automate the control of a process. 

The sensors in the control system would measure the actual value of the controlled variable. 

Therefore, after measuring the value it will be transmitted to the feedback controller. The controller 

would compare the measured value to the desired value and the difference between these values is 

considered as error. Therefore, if there were an error then the controller would send a proportional 

output to the control value. The controller would send a signal to the plant and sets the process 

variable, according to the set point. So in case if there is a disturbance that affects the process 

variable of the plant then the sensor in the feedback section would detect this and sends a signal to 

the controller [6]. 

2.1.3. Objectives of feedback control 

The major objective of feedback control is to ensure that the output value of the system 

must be similar to the required value. This is done by tracking the reference trajectories or by 

maintaining close to their set points. The feedback signal would resist the disturbance signal, which 

affects the output, and it can improve the performance of the system. The feedback control can also 

stabilize the unstable plant [6]. 

2.1.4. Types of feedback system 

2.1.4.1. Negative feedback 

By definition, negative feedback is when a change (increase/decrease) in some variable results 

in an opposite change (decrease/increase) in a second variable. This is demonstrated in 

Figure II.1 where a loop represents a variation toward a plus that triggers a correction toward the 

minus, and vice versa. Negative feedback leads to a tight control situation whereby the corrective 
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action taken by the controller forces the controlled variable toward the set point, thus leading the 

system to oscillate around equilibrium [7]. 

 

 

 

 

 

         Equilibrium set point 

 

 

 

 

  Figure II. 1. Negative Feedback: Maintenance of equilibrium and convergence 

2.1.4.2. Positive Feedback 

As opposed to negative feedback, positive feedback is when a change (increase/decrease) 

in some variable results in a subsequently similar change (increase/decrease) in a second variable. 

In some cases, positive feedback leads to an undesirable behavior whereby the system diverges 

away from equilibrium. This can cause the system to either run away toward infinity, risking an 

expansion or even an explosion, or run away toward zero, which leads to a total blocking of 

activities (Figure II.2) [7]. 

 Explosion 

 

 

situation at start 

 

 

 Bocking 

 

Figure II. 2. Positive Feedback: Exponential Growth and divergent behavior, no intermediate 

situation 

 



Chapter II  PID control of TWSBR 

 

26 
 

2.1.5. Advantages and disadvantages of a feedback control 

The unique architecture of the feedback control provides for many advantages and 

disadvantages. It is important to look at the exact application the control will be used for before 

determining which type of control will be the best choice (see Cascade Control System sand Feed 

Forward Control) [7]. 

Advantages: The advantages of feedback control lie in the fact that the feedback control 

obtains data at the process output. Because of this, the control takes into account unforeseen 

disturbances such as frictional and pressure losses. Feedback control architecture ensures the 

desired performance by altering the inputs immediately once deviations are observed regardless of 

what caused the disturbance. An additional advantage of feedback control is that by analyzing the 

output of a system, unstable processes may be stabilized. Feedback controls do not require detailed 

knowledge of the system and, in particular, do not require a mathematical model of the process. 

Feedback controls can be easily duplicated from one system to another. A feedback control system 

consists of five basic components: (1) input, (2) process being controlled, (3) output, (4) sensing 

elements, and (5) controller and actuating devices. A final advantage of feedback control stems 

from the ability to track the process output and, thus, track the system’s overall performance [7]. 

Disadvantages: Time lag in a system causes the main disadvantage of feedback control. With 

feedback control, a process deviation occurring near the beginning of the process will not be 

recognized until the process output. The feedback control will then have to adjust the process inputs 

in order to correct this deviation. This results in the possibility of substantial deviation throughout 

the entire process. The system could possibly miss process output disturbance and the error could 

continue without adjustment. Generally, feedback controllers only take input from one sensor. This 

may be inefficient if there is a more direct way to control a system using multiple sensors. Operator 

intervention is generally required when a feedback controller proves unable to maintain stable 

closed-loop control. Because the control responds to the perturbation after its occurrence, perfect 

control of the system is theoretically impossible. Finally, feedback control does not take predictive 

control action towards the effects of known disturbances [7]. 

 



Chapter II  PID control of TWSBR 

 

27 
 

3. Digital control 

In most modern engineering systems, it is necessary to control the evolution with time of 

one or more of the system variables. Controllers are required to ensure satisfactory transient and 

steady-state behavior for these engineering systems. To guarantee satisfactory performance in the 

presence of disturbances and model uncertainty, most controllers in use today employ some form 

of negative feedback. A sensor is needed to measure the controlled variable and compare its 

behavior to a reference signal. Control action is based on an error signal defined as the difference 

between the reference and the actual values. The controller that manipulates the error signal to 

determine the desired control action has classically been an analog system, which includes 

electrical, fluid, pneumatic, or mechanical components. These systems all have analog inputs and 

outputs (i.e., their input and output signals are defined over a continuous time interval and have 

values that are defined over a continuous range of amplitudes). In the past few decades, digital 

controllers whose inputs and outputs are defined at discrete time instances have often replaced 

analog controllers. The digital controllers are in the form of digital circuits, digital computers, or 

microprocessors. Intuitively, one would think that controllers that continuously monitor the output 

of a system would be superior to those that base their control on sampled values of the output. It 

would seem that control variables (controller outputs), that change continuously would achieve 

better control than those that change periodically. This is in fact true! Had all other factors been 

identical for digital and analog control, analog control would be superior to digital control. What, 

then, is the reason behind the change from analog to digital that has occurred over the past few 

decades [18]. 

 Digital control systems employ a computer as a fundamental component in the controller. 

The computer typically receives a measurement of the controlled variable, also often receives the 

reference input, and produces its output using an algorithm. This output is usually converted to an 

analog signal using a D/A converter, then amplified by a power amplifier to drive the plant [18]. 
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3.1. Structure of a digital control system 

 Controlled variable 

 

 

 

 

Figure II. 3. Configuration of a digital control system 

To control a physical system or process using a digital controller, the controller must 

receive measurements from the system, process them, and then send control signals to the actuator 

that effects the control action. In almost all applications, both the plant and the actuator are analog 

systems. This is a situation where the controller and the controlled do not “speak the same 

language,” and some form of translation is required. The translation from controller language 

(digital) to physical process language (analog) is performed by a digital-to-analog converter or 

DAC. The translation from process language to digital controller language is performed by an 

analog-to-digital converter, or ADC. A sensor is needed to monitor the controlled variable for 

feedback control. The combination of the elements discussed here in a control loop is shown in 

Figure 10. Variations on this control configuration are possible. For example, the system could 

have several reference inputs and controlled variables, each with a loop similar to that of Figure 

10. The system could also include an inner loop with digital or analog control [18]. 

4. PID controller 

4.1. Brief history 

There is an apocryphal story you might have heard. A brilliant graduate student was working 

at a prestigious institution under a famous professor of control theory. This ingenious student 

managed to solve several of the deepest longstanding problems of control theory, developing a 

nonlinear, adaptive control algorithm that was guaranteed to converge globally, under extremely 
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and Process 

a 

DAC Computer 

Sensor ADC 

Reference Input 

 



Chapter II  PID control of TWSBR 

 

29 
 

general conditions of noise and modeling uncertainty, to a controller that rep- resented the best 

possible trade-offs among stability, robustness, and performance,  both transient and steady state.   

All that remained to be done was the computer implementation. Unfortunately, the computational 

burden was immense, and years passed before a sufficiently powerful computer could be harnessed 

to perform the massive computations. Finally, the algorithm was implemented, and a group of 

distinguished researchers, all experts in the most advanced methods and theories of control, waited 

expectantly for the ultimate controller. When the computations were finished, the answer appeared 

PID [12]. 

Brief history of PID Controller PIDs combine proportional-integral-derivative control action. 

In 1788, James Watt included a flyball governor, the first mechanical feedback device with only a 

proportional function, into his steam engine. The flyball governor controlled the speed by applying 

more steam to the engine when the speed dropped lower than a set point, and vice versa. In 1933, 

the Taylor Instrumental Company introduced the first pneumatic controller with a fully tunable 

proportional controller. However, a proportional controller is not sufficient to control speed 

thoroughly, as it amplifies error by multiplying it by some constant (𝐾𝑝). The error generated is 

eventually small, but not zero. In other words, it generates a steady state error each time the 

controller responds to the load. Around 1930s, control engineers discovered that steady state error 

could be eliminated by resetting the set point to some artificial higher or lower value, as long as 

the error nonzero. This resetting operation integrates the error, and the result is added to the 

proportional term; today this is known as Proportional-Integral controller. In 1934-1935, Foxboro 

introduced the first PI controller. However, PI controllers can over-correct errors and cause closed-

loop instability. This happens when the controller reacts too fast and too aggressively; it creates a 

new set of errors, even opposite to the real error. This is known as “hunting” problem. In 1920s, 

there were suggestions of including the rate of change of error in conjunction with PI controller. In 

1940, Taylor Instrument Companies successfully produced the first PID pneumatic controller; the 

derivative action was called “pre-act”. With an extra derivative action, problems such as overshoot 

and hunting are reduced. However, issues like finding the appropriate parameter of PID controllers 

were yet to be solved. In 1942, Taylor Instrument Company's Ziegler and Nichols introduced 

Ziegler-Nichols tuning rules. Their well-known paper “Optimum settings for automatic 

controllers”, presented two procedures for establishing the appropriate parameters for PID 

controllers. However, the PID controller was not popular at that time, as it was not a simple 
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concept; the parameters the manufacturers required to be tuned did not make much sense to the 

users. In the mid 1950's, automatic controllers were widely adopted in industries. A report from 

the Department of Scientific and Industrial Research of United Kingdom state, “Modern 

controlling units may be operated mechanically, hydraulically, pneumatically or electrically. The 

pneumatic type is technically the most advanced and many reliable designs are available. It is 

thought that more than 90 percent of the existing units are pneumatic.” The report indicated the 

need to implement controllers in electrical and electronic form. In 1951, The Swartwout Company 

introduced their first electronic PID controller, based on vacuum tube technology. Around 1957, 

the manufacturers started to realize the possibility of implementing the controllers in transistors. In 

1959, the first solid-state electronic controller was introduced by Bailey Meter Co. The advantage 

of using electronic instrument to implement PID controller was explored more deeply years later. 

They are not only capable of including the functions available in pneumatic instruments, but even 

more complicated mathematical operations can be carried out as well. Electronic PID controllers 

became more common and more acceptable since then [8]. 

4.2. PID Controller 

A PID controller is a simple three terms equation. Two terms are functions of the error 

between the measured angle of the robot and the desired angle, which is 90 degrees, the third term 

is just a constant. Each term is multiplied in a parameter [9]. 

These three parameters are called proportional, integral, and derivative parameters. They are 

denoted, 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 respectfully. Below is the equation for a PID controller output [9]: 

 

                                   𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝐾𝑑
𝑒(𝑡)

𝑑𝑡

𝑡

0
                                          (II.1) 

 

The proportional term applies appropriate proportional changes for error (which is the 

difference between the set point and process variable) to the control output. In fact, many control 

applications work quite well with only proportional control [10]. 
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Figure II. 4. Diagram Bloc of PID Controller 

4.3. Type of Classical 𝑷𝑰𝑫 Controller 

There are three most commonly used classical 𝑃𝐼𝐷 controller, namely parallel, ideal or 

ISA and series or interacting 𝑃𝐼𝐷 controller: 

4.3.1. Parallel PID 

Proportional, integral and derivative actions are working separately with each other and combine 

effect of these three actions are act in the system. 

 The parallel 𝑃𝐼𝐷 controller provides a control effort u(t) given by: 

𝑢(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖∫𝑒(𝑡)𝑑𝑡 + 𝑘𝑑
𝑑𝑒(𝑡)

𝑑𝑡
                                          (𝐼𝐼. 2) 

 The corresponding controller transfer function is defined as the ratio of the controller _output 

U(s) and error E(s) as: 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 +

𝑘𝑖
𝑠
+ 𝑘𝑑𝑠                                                  (𝐼𝐼. 3) 

 The parallel structure of a classical 𝑃𝐼𝐷 controller. 
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Figure II. 5. Parallel structure of a classical PID controller 

4.3.2. Ideal PID 

The gain constant 𝐾𝑝 is distributed to all term. So, changes in 𝐾𝑝 affects all other terms. 

 The ideal 𝑃𝐼𝐷 controller provides a control effort u(t) given by: 

𝑢(𝑡) = 𝑘𝑝 (𝑒(𝑡) + 𝑇𝑖 ∫ 𝑒(𝑡)𝑑𝑡 + 𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡
)                                       (II.4) 

 The corresponding controller transfer function is defined as the ratio of the controller output 

U(s) and error E(s) as: 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 (1 +

𝑇𝑖
𝑠
+ 𝑇𝑑𝑠)                                                (𝐼𝐼. 5) 

 The ideal structure of a classical 𝑃𝐼𝐷 controller. 

 

 

Figure II. 6. Ideal structure of a classical PID controller 
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4.3.3. Series PID 

The gain constant 𝑘𝑝 is distributed to all terms same as ideal𝑃𝐼𝐷, but in this form integral and 

derivative constant have an effect on proportional action. 

 The series 𝑃𝐼𝐷 controller provides a control effort u(t) given by: 

𝑢(𝑡) = 𝑘𝑝 (𝑒(𝑡) + 𝑇𝑖∫𝑒(𝑡)𝑑𝑡) (𝑒(𝑡) + 𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡
)                                  (𝐼𝐼. 6) 

 The corresponding controller transfer function is defined as the ratio of the controller output 

U(s) and error E(s) as: 

𝐶(𝑠) =
𝑈(𝑠)

𝐸(𝑠)
= 𝑘𝑝 (1 +

𝑇𝑖
𝑠
) (1 + 𝑇𝑑𝑠)                                          (𝐼𝐼. 7) 

 The series structure of a classical 𝑃𝐼𝐷 controller. 

 

 

Figure II. 7. Series structure of a classical PID controller 

 

 

4.4. PID Tuning 

PID tuning is the process of finding the values of proportional, integral, and derivative gains 

of a PID controller to achieve desired performance and meet design requirements [20], all general 

methods for control design can be applied to PID control. A number of special methods that are 

tailor-made for PID control have also been developed, these methods are often called tuning 

methods. Irrespective of the method used, it is essential to always consider the key elements of 

control, load disturbances, sensor noise, process uncertainty and reference signals. The most well 

known tuning methods are those developed by Ziegler and Nichols. They have had a major 

influence on the practice of PID control for more than half a century. The methods are based on 

characterization of process dynamics by a few parameters and simple equations for the controller 
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parameters. It is surprising that the methods are so widely referenced because they give moderately 

good tuning only in restricted situations. Plausible explanations may be the simplicity of the 

methods and the fact that they can be used for nonlinear system [21]. 

There are three methods to tune the PID controller parameter such as:  

1- Manual tuning 

2- Heuristic tuning  

3- Auto tuning  

The most popular method using to tune the PID parameter is Ziegler-Nichols tuning method  

 

4.4.1. Ziegler–Nichols Rules for Tuning PID Controllers 

 Ziegler and Nichols proposed rules for determining values of the proportional gain 𝐾𝑝, 

integral time 𝑇𝑖 and derivative time 𝑇𝑑 based on the transient response characteristics of a given 

plant. Such determination of the parameters of PID controllers or tuning of PID controllers can be 

made by engineers on-site by experiments on the plant. (Numerous tuning rules for PID controllers 

have been proposed since the Ziegler–Nichols proposal. They are available in the literature and 

from the manufacturers of such controllers.) [19]. 

There are two methods called Ziegler–Nichols tuning rules: the first method and the second 

method. We shall give a brief presentation of these two methods [19]. 

4.4.1.1. First Method 

In the first method, we obtain experimentally the response of the plant to a unit-step input, 

as shown in Figure II.8. If the plant involves neither integrator(s) nor dominant complex-conjugate 

poles, then such a unit-step response curve may look S-shaped, as shown in Figure II.8. This 

method applies if the response to a step input exhibits an S-shaped curve. Such step-response curves 

may be generated experimentally or from a dynamic simulation of the plant. The S-shaped curve 

may be characterized by two constants, delay time L and time constant T. The delay time and time 

constant are determined by drawing a tangent line at the inflection point of the S-shaped curve and 

determining the intersections of the tangent line with the time axis and line c(t)=K, as shown in 

Figure II.8 [19]. 
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Figure II. 8. Unit step response of a plant and its s-shaped curve example 

Table 1. Z-N first method table 

Type of controller KP Ti Td 

P T/L ∞ 0 

PI 0.9 T/L L/0.3 0 

PID 1.2 T/L 2L 0.5L 

 

Ziegler and Nichols suggested to set the values of 𝐾𝑝 , 𝑇𝑖 and 𝑇𝑑 according to the formula shown 

in Table 1. Notice that the PID controller tuned by the first method of Ziegler–Nichols rules 

gives[19]. 

𝐺𝑐(𝑠) = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)

= 1.2
𝑇

𝐿
(1 +

1

2𝐿𝑠
+ 0.5𝐿𝑠)                                                      (𝐼𝐼. 8)

= 0.6𝑇
(𝑠 +

1
𝐿)

2

𝑠
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Thus, the PID controller has a pole at the origin and double zeros at s = –1/L [19]. 

4.4.1.2. Second Method: In the second method, we first set 𝑇𝑖 =  ∞ and 𝑇𝑑 = 0 using the 

proportional control action only, increase 𝐾𝑝 from 0 to a critical value 𝐾𝑐𝑟 at which the output first 

exhibits sustained oscillations. (If the output does not exhibit sustained oscillations for whatever 

value 𝐾𝑝 may take, then this method does not apply.) Thus, the critical gain 𝐾𝑐𝑟 and the 

corresponding period 𝑃𝑐𝑟 are experimentally [19]. 

 

𝒓(𝒕) +  𝒖(𝒕)                                        𝒄(𝒕) 

- 

 

 

 

Figure II. 9. Closed-loop system with a proportional controller 

 

 

Figure II. 10. Sustained oscillation with period 𝑃𝑐𝑟 (𝑃𝑐𝑟  is measured in sec.) 

Determined (see Figure II.10). Ziegler and Nichols suggested that we set the values of the 

parameters  𝐾𝑝 , 𝑇𝑖  , and 𝑇𝑑 according to the formula shown in Table 1 [19]. 

 

 𝑲𝒑 Plant 
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Table 2. Ziegler–Nichols Tuning Rule Based on Critical Gain 𝐾𝑐𝑟 and Critical Period 𝑃𝑐𝑟(Second 

Method) 

 

 

 

 

 

 

 

 

 

 

 

𝐺𝑐(𝑠)& = 𝐾𝑝 (1 +
1

𝑇𝑖𝑠
+ 𝑇𝑑𝑠)                                                        (𝐼𝐼. 9) 

= 0.6𝐾cr (1 +
1

0.5𝑃cr𝑠
+ 0.125𝑃cr𝑠)                                               (𝐼𝐼. 10) 

= 0.075𝐾cr𝑃cr
(𝑠+

4

𝑃cr
)
2

𝑠
                                                                           (II.11) 

 

4.4.1.3. Control of TWSBR using two Ziegler-Nichols method 
 

The PID control method is used to improve the system response to self-balancing robots. The 

response system obtained without using the PID control system was still far from the desired 

response and even the robot did not reach the specified set point. The first thing to do is utilized 

PID control method to calculate the values of 𝐾𝑝 ,  𝐾𝑖 ,and 𝐾𝑑 as parameters of the PID controller. 

The determination of PID parameters is based on the reaction of the closed-loop system in the 

transfer function of self-balancing robots. A 𝐾𝑝 variable is added first to the system, thus the closed-

loop transfer function is determined by adding the proportional gain (𝐾𝑝), as follows [11]. 

 

      
 𝜑(𝑠)

𝑢(𝑠)
=

14,286s

 𝑠3+ 0.286𝑠2 − 70s − 0.0294
                                                     (II.12) 

 

                                  
 𝜑(𝑠)

𝑢(𝑠)
=   

𝐾𝑝 
14,286s

 𝑠3+ 0.286𝑠2 − 70s − 0.0294

1+𝐾𝑝(
14,286s

 𝑠3+ 0.286𝑠2 − 70s − 0.0294
)
                                                    (II.13) 

 

Type of controller 𝐾𝑝 𝑇𝑖 𝑇𝑑 

𝑃 0.5 𝐾𝑐𝑟 ∞ 0 

𝑃𝐼 0.45 𝐾𝑐𝑟 1/1.2 𝑃𝑐𝑟 0 

𝑃𝐼𝐷 0.6 𝐾𝑐𝑟 0.5 𝑃𝑐𝑟 0.125 𝑃𝑐𝑟 
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 𝜑(𝑠)

𝑢(𝑠)
=

14,286 𝐾𝑝 

14,286 𝐾𝑝+ 𝑠3+ 0.286𝑠2 − 70s − 0.0294
                                       (II.14) 

 

The stability of a system can be seen from the location of the pole system in the field 𝑠, if the poles 

of the system are located to the left of the field 𝑠, then the system is stable. To find out the location 

of the poles in a system, hence we used the stability of Routh. The first column in Routh stability 

shows the polar location of a system, if the variable in the column is, positive then it can be 

ascertained that a system has a pole on the left side of the field 𝑠. To get 𝐾𝑝 value to meet the Routh 

stability criteria, it can be determined by referring to the transfer function that has been obtained in 

equation (42). 

𝑠3 →  1                                     − 70                                          (II.15) 

 

𝑠2  →  0.286                      − 0.0294 +  14.286                            (II.16) 

 

𝑠1 →                     
−20.02 + (0.0294 − 14.286𝐾𝑝)

0.286
                                    (II.17) 

 

𝑠0 → −0.0294 +  14.286𝐾𝑝                                                        (II.18) 

 

Then, 𝑠1 can be analyzed as follows 

−20.02 + (0.0294 −  14.286𝐾𝑝)

0.286
 ≥ 0                                            (𝐼𝐼. 19) 

−70 +  0.103 −  49.95 ≥  0                                                  (𝐼𝐼. 20) 

−69.897 −  49.95𝐾𝑝  ≥  0                                           (II.21) 

𝐾𝑝  ≥  −1.399                                                                     (𝐼𝐼. 22) 

Whereas, for 𝑠0, as follows: 

−0.0294 +  14.286 𝐾𝑝 ≥  0                                              (II.23) 

𝐾𝑝 ≥  0.00205                                                                    (𝐼𝐼. 24) 

 

Therefore, we acquired the range of 𝐾𝑝 for TWBR as follows:  

 

0 ≤  𝐾𝑝 ≤  0,00205                                                        (𝐼𝐼. 25) 
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𝐾𝑐𝑟 and 𝑃𝑐𝑟 were yielded by substituting 𝑗𝜔 in the variable 𝑠 for denominator of equation (21). 

Denominator function over the closed-loop system commonly referred to as the equation of system 

characteristics. System characteristic equations with 𝐾𝑝 parameter on self-balancing robots is as 

follows [11]. 

𝑠3 +  0.286𝑠2  −  70s −  0.0294 + 14,286 𝐾𝑝 = 0                                (II.26) 

 

   −𝑗ω3 −  0.286𝑗ω2 +  70𝑗ω −  0.0294 + 14,286 𝐾𝑝 = 0                 (II.27) 

 

         (−0.286ω2 − 0.0294 + 14,286 𝐾𝑝) + j (−ω3 + 70ω) = 0                         (II.28) 

 

From equation (II.28), we obtained two parts, namely the real and imaginary parts. The imaginary 

part will be used to get the value of ω, while the real part is used to get the  𝐾𝑝 value [11]. 

 

     (−ω3 + 70ω) = 0                                                                     (II.29) 

         𝜔 = 8.366.                                                                  (II.30) 

According to equation (II.30), we yielded 𝑃𝑐𝑟 

   𝑃𝑐𝑟 = 
2𝜋

 ω
 = 

2𝜋

 8.366
  = 0.751 𝑠𝑒𝑐𝑜𝑛𝑑                                                        (II.31) 

The 𝐾𝑐𝑟 value was obtained by using the real part by substituting the value 𝜔.[11] 

 

 

   −0.286ω2 − 0.0294 + 14,286 𝐾𝑝 = 0                                               (II.32) 

 

      𝐾𝑝 = 1.3999   (II.33) 

 

𝐾𝑝 = 𝐾𝑐𝑟 = 1.3999. With 𝐾𝑐𝑟 and 𝑃𝑐𝑟 obtained values, thus, the value of the Ziegler-Nichols type 

two PID parameters for TWBMR is presented in Table 3. After the parameters of the 𝐾𝑃, 𝐾𝐼, and 

𝐾𝐷 values are obtained, a simulation can be carried out by adding the PID controller to the transfer 

function of the self-balancing robot, as shown in Figure II.11 [11]. 
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 Kp 

 

 Ki 

 

 Kd 

    

 

 

 

 

Figure II. 11. TWSBR system diagram with PID controller             

Table 3. Parameters of the PID Ziegler-Nichols for TWSBR 

                            Parameter                   PID value 

                                  𝐾𝑝     4.0602 

𝑇𝑖 = 𝐾𝑖 4.4100 

𝑇𝑑 = 𝐾𝑑 1.1025 

                                       

Note 

These parameters will not give as the desired results, so after testing and multiply these parameters 

with 2 and with 10 and with 25 we find that the best results will be with the parameters multiplied 

by 25  

4.4.1.3.1 Simulation and Discussion 

 

Figure II. 12. Simulink model of classical PID control. 

 
1

𝑠
 

Du/Dt 

 

14,286s

 𝑠3 +  0.286𝑠2  −  70s −  0.0294
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Results:  

 With initial values 𝑥0  =  [0, 0, −45, 0]  
 

1- Angle: 

 

 
Figure II. 13. Response of angle with initial values 𝑥0 = [0, 0, −45, 0] 

This is the expected result, multiplied by 25 for the𝐾𝑝, 𝐾𝑖, and 𝐾𝑑 values, as shown in 

Figure 15. We noticed that the system reached its instable equilibrium point that we consider it 0° 

after a small rise time and a small overshoot, with the initial value -45 we can say that the TWSBR 

simulation is suitable for implementation with this PID controller parameters. The rise time is quite 

fast but still not perfect because of the controller itself not because the parameters of the controller 

and the value of steady-state error and settling time are quite small but still not perfect too. 

2- Control input: 

 

Figure II. 14. Power response with initial values 𝑥0 = [0, 0, −45, 0] 
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 With initial values 𝑥0 = [0, 0, 60, 0]:  

1- Angle 

 

 

Figure II. 15. Response of angle with initial values 𝑥0 = [0, 0, 60, 0] 

This result with 60° of initial value shows that the system, the system reached its instable 

equilibrium point with almost 2 seconds, the overshoot value is pretty higher than the overshoot 

value that we found it in the previous section with initial values -45°, as well as the rise time. 

All the performances of the system are acceptable. 

2- Control input 

 

 Figure II. 16. Power response with initial values 𝑥0 = [0, 0, 60, 0]  
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5. Conclusion 

Classical PID controller is a good controller but not a perfect one, however the algorithm 

of the tuning to get the parameters of the controller 𝐾𝑝 𝑎𝑛𝑑 𝐾𝑖 𝑎𝑛𝑑 𝐾𝑑   or even a manually 

determine of them, the results will not be as good as we want specially the system performances 

such as the overshoot, and the rise time and the delay time, the settling time and the peak time 

values , in this chapter we made a PID controller for our TWSBR and we find good results  “ 

minimum overshot and minimum delay time and minimum rise time” , The robot balances itself 

on two wheels without falling and with a slight jitter. However, we need better performances. 

 Therefore, we need to design another controller and compare the results and take the best 

controller.
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Adaptive Neural PID control for TWSBR 
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1. Introduction 

An artificial neural network is a classifier modeled on the functioning of the human brain, 

which is very different from the way computer code is usually written.   

A human brain contains a huge amount of nerve cells, the neurons. Each of these cells is 

connected to many other similar cells, creating a very complex network of signal transmission. 

Each cell collects input from all the other nerve cells to which it is connected, and if it reaches a 

certain threshold, it sends a signal to all the cells to which it is connected.  

In control, engineering neural network is widely used algorithm and applying on many 

complex nonlinear system, and by mixing the neural network and the PID controller we get a high 

accuracy controller called Neural Network PID or NNPID.  

2. Neural Network 

 

2.1. History of Neural Networks  
 

The study of the human brain is thousands of years old. With the advent of modern 

electronics, it was only natural to try to harness this thinking process. The first step toward artificial 

neural networks came in 1943 when Warren McCulloch, a neurophysiologist, and a young 

mathematician, Walter Pitts, wrote a paper on how neurons might work. They modeled a simple 

neural network with electrical circuits [8].  

Reinforcing this concept of neurons and how they work was a book written by Donald 

Hebb. The Organization of Behavior was written in 1949.It pointed out that neural pathways are 

strengthened each time that they are used [8]. 

As computers advanced into their infancy of the 1950s, it became possible to begin to model 

the rudiments of these theories concerning human thought. Nathanial Rochester from the IBM 

research laboratories led the first effort to simulate a neural network. That first attempt failed. 

However, later attempts were successful. It was during this time that traditional computing began 

to flower and, as it did, the emphasis in computing left the neural research in the background [8]. 

Yet, throughout this time, advocates of "thinking machines" continued to argue their cases. 

In 1956, the Dartmouth Summer Research Project on Artificial Intelligence provided a boost to 

both artificial intelligence and neural networks. One of the outcomes of this process was to 
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stimulate research in both the intelligent side, AI, as it is known throughout the industry, and in the 

much lower level neural processing part of the brain [8]. 

In the years following the Dartmouth Project, John von Neumann suggested imitating 

simple neuron functions by using telegraph relays or vacuum tubes. In addition, Frank Rosenblatt, 

a neuro-biologist of Cornell, began work on the Perceptron. He was intrigued with the operation 

of the eye of a fly. Much of the processing which tells a fly to flee is done in its eye. The Perceptron, 

which resulted from this research, was built in hardware and is the oldest neural network still in 

use today. A single-layer perceptron was found to be useful in classifying a continuous-valued set 

of inputs into one of two classes. The perceptron computes a weighted sum of the inputs, subtracts 

a threshold, and passes one of two possible values out as the result. Unfortunately, the perceptron 

is limited and was proven as such during the "disillusioned years" in Marvin Minsky and Seymour 

Papert's 1969 book Perceptrons [8]. 

In 1959, Bernard Widrow and Marcian Hoff of Stanford developed models they called 

ADALINE and MADALINE. These models were named for their use of Multiple ADAptive 

LINear Elements. MADALINE was the first neural network to be applied to a real world problem. 

It is an adaptive filter, which eliminates echoes on phone lines. This neural network is still in 

commercial use [8]. 

Unfortunately, these earlier successes caused people to exaggerate the potential of neural 

networks, particularly in light of the limitation in the electronics then available. This excessive 

hype, which flowed out of the academic and technical worlds, infected the general literature of the 

time. Disappointment set in, as promises were unfilled. In addition, a fear set in as writers began 

to ponder what effect "thinking machines" would have on man. Asimov's series on robots revealed 

the effects on man's morals and values when machines where capable of doing all of mankind's 

work. Other writers created more sinister computers, such as HAL from the movie 2001[8]. 

These fears, combined with unfulfilled, outrageous claims, caused respected voices to 

critique the neural network research. The result was to halt much of the funding. This period of 

stunted growth lasted through 1981[8].  

In 1982, several events caused a renewed interest. John Hopfield of Caltech presented a 

paper to the national Academy of Sciences. Hopfield's approach was not to simply model brains 

but to create useful devices. With clarity and mathematical analysis, he showed how such networks 
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could work and what they could do. Yet, Hopfield's biggest asset was his charisma. He was 

articulate, likeable, and a champion of a dormant technology [8]. 

At the same time, another event occurred. A conference was held in Kyoto, Japan. This 

conference was the US-Japan Joint Conference on Cooperative/Competitive Neural Networks. 

Japan subsequently announced their Fifth Generation effort. US periodicals picked up that story, 

generating a worry that the US could be left behind. Soon funding was flowing once again [8]. 

By 1985, the American Institute of Physics began what has become an annual meeting - 

Neural Networks for Computing. By 1987, the Institute of Electrical and Electronic Engineer's 

(IEEE) first International Conference on Neural Networks drew more than 1,800 attendees [8]. 

By 1989 at the Neural Networks for Defense meeting Bernard Widrow told his audience 

that they were engaged in World War IV, "World War III never happened," where the battlefields 

are world trade and manufacturing. The 1990 US Department of Defense Small Business 

Innovation Research Program named 16 topics, which specifically targeted neural networks with 

an additional 13 mentioning the possible use of neural networks [8]. 

Today, neural networks discussions are occurring everywhere. Their promise seems very 

bright, as nature itself is the proof that this kind of thing works. Yet, its future, indeed the very key 

to the whole technology, lies in hardware development. Currently most neural network 

development is simply proving that the principal works. This research is developing neural 

networks that, due to processing limitations, take weeks to learn. To take these prototypes out of 

the lab and put them into use requires specialized chips. Companies are working on three types of 

neuro chips - digital, analog, and optical. Some companies are working on creating a "silicon 

compiler" to generate a neural network Application Specific Integrated Circuit (ASIC). These 

ASICs and neuron-like digital chips appear to be the wave of the near future. Ultimately, optical 

chips look very promising. Yet, it may be years before optical chips see the light of day in 

commercial applications [8]. 

2.2. Neuron and the neural network 

Figure III.1 shows a diagram with the general structure of an artificial neuron. 
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                                                                                      Threshold 
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            𝑥1 

 y 

            𝑥2 output 

 

            𝑥3 

Signal Weights synaptic 

Input 

Figure III. 1 General structure of an artificial neuron 

An artificial neuron is considered as an elementary element of information processing. It receives 

inputs and produces a result at the output [23]. 

                                                 𝑢 =∑  

𝑛

𝑗

𝑤𝑗𝑥𝑗 + 𝜃 = 𝑊′𝑋 + 𝜃                                                      (𝐼𝐼𝐼. 1) 

                                                        𝑦 = 𝜑(𝑢)                                                                                   (𝐼𝐼𝐼. 2) 

𝑥1 , 𝑥2… . 𝑥𝑛  ; are the external inputs. y is the output. 𝑤1 , 𝑤2… .𝑤𝑛 Are the weights associated 

with each connection. 𝑥 Is the input vector, 𝑤′is the weight vector, θ is called the bias. 

The function φ is called the activation function, it is a nonlinear function [23]. 

Different activation functions can be used, among which we can mention: sign function, sigmoid, 

hyperbolic tangent, Gaussian .and the choice of a type of function depends on the application. 

Artificial neural networks are combinations of elementary functions called formal neurons, or 

simply neurons associated in layers and operating in parallel. Each elementary processor computes 

a unique output based on the information it receives. Any hierarchical structure of networks is 

obviously a network [23]. 

W1 

W2 

Wn 

Σ 
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2.3. Properties of neural networks 

Artificial neural networks have a fundamental property which justify the growing interest in them 

and that they are capable of intervening in very diverse domains, and which distinguishes them 

from classical data processing techniques.  

- Neural networks are universal approximates: This property can be stated as follows: Any 

sufficiently regular bounded function can be approximated uniformly, with good accuracy, in a 

finite domain of the space of its variables, by a neural network that has a finite number of hidden 

neurons, all having the same activation function and a linear output neuron [24]-[26].  

-Parsimony: When modeling a process from its data, we always try to obtain the most 

Always try to obtain the most satisfactory results possible with a minimum number of parameters. 

We say that we are looking for the most parsimonious approximation. To obtain a nonlinear model 

of a given accuracy, an RN needs fewer adjustable parameters than conventional regression 

methods (e.g. polynomial regression). However, the number of data needed to fit the model is 

directly related to the number of its parameters [25]-[27]. 

2.4. Activation functions  

The activation function is a function that defines the internal state of the neuron according to its 

input. It can be a linear, non-linear, continuous or discontinuous function [29]. 

2.4.1. The binary activation function 

The binary function is a linear function whose output is limited to two values. 

It is equal to "1" for positive sign values and "0" for negative sign values [29] 

                                                              𝑓(𝒙) = {
1     si 𝒙 > 𝟎  
0     si 𝒙 < 𝟎  

                                                     (𝐼𝐼𝐼. 3) 

 

Figure III. 2. Binary activation function 
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2.4.2. The sign activation function                                        

The sign function is a linear function whose output value is equal to "1" for positive sign values 

and "-1" for negative sign values [29]. 

𝑓(𝑥) = {
1     si     𝑥 > 0
−1     si     𝑥 < 0

                                                          (𝐼𝐼𝐼. 4) 

 

 

Figure III. 3. Sign activation function 

2.4.3. The linear activation function 

The linear activation function is widely used in the output layer of neural networks. Its 

mathematical expression is given as follows [29]: 

 𝑓(𝑥) = 𝑥                                                                   (𝐼𝐼𝐼. 5) 

 

Figure III. 4. Linear activation function 

2.4.4. The linear activation function with saturation 

The mathematical expression of the linear activation function with saturation is given as 

follows [29]: 
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𝑓(𝑥) = {

1     si 𝑥 ≥ 𝑎
1

𝑎
            si − 𝑎 < 𝑥 < 𝑎

−1     si 𝑥 ≤ 0

                                                  (𝐼𝐼𝐼. 6) 

 

Figure III. 5. Linear activation function with saturation 

2.4.5. The sigmoid activation function 

The sigmoid function is a non-linear function whose value varies between "1" and "0". Its 

mathematical model is written as [29]: 

    𝑓(𝑥) =
1

1 + 𝑒−𝑥
                                                       (𝐼𝐼𝐼. 7)    

 

Figure III. 6. Sigmoid activation function 

2.4.6. The hyperbolic tangent activation function 

The hyperbolic tangent function is also a non-linear function whose value varies between "+1" and 

"-1". Its mathematical expression is given by [29]: 

          

-4 -2 0 2 4
-1

-0.5

0

0.5

1

x

sa
tlin

s(
t)

-10 -5 0 5 10
0

0.2

0.4

0.6

0.8

1

x

lo
gs

ig
(x

)



CHAPTER III ADAPTIVE NEURAL PID 

 

54 
 

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
                                                        (𝐼𝐼𝐼. 8) 

 

Figure III. 7. Hyperbolic tangent activation function 

2.5. Learning 

The objective of learning is to provide a method for the network to adjust these parameters 

when presented with new to be processed. Some rescaux differentiate between a training phase and 

an operating phase (the case of the Perceptron), or not (the case of the rdscau ART). We usually 

distinguish three learning paradigms: supervised, unsupervised and hybrid [30].  

 

2.5.1 Supervised learning 

In this case, the network is given the data to be processed and the expected response. The network 

performs an evaluation of the data, and then compares the value obtained with the desired value; it 

will then modify its internal parameters to minimize the error observed. Reinforcement learning 

(also called Reward and Penalty learning, i.e. ARP) is a variant of the supervised approach, in this 

framework the network is provided with a critique that qualifies the calculated response [30]. 

2.5.2. Unsupervised learning 

In this paradigm, no information (besides the data to be learned) is provided to the system. The 

system has to discover the underlying structure of the data in order to organize them into clusters 

[30].  

2.3.5. Hybrid learning: This approach combines numerical methods (neural networks, genetic 

algorithms) and symbolic methods. Some authors use the term hybrid learning to refer to a 
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supervised, unsupervised coupling; in this case, it is a network that puts in parallel or in series, a 

network trained in supervised mode and another in unsupervised mode [30]. 

 

3. Neural Adaptive PID 

The classical PID control is one of the most utilized techniques in the standard process 

control due to its simple structure and high reliability. This PID controller, however, could not 

easily adapt to the problem of time-variation and the non-linearity of the industry processes, 

because the parameters has been already fixed with a derived constant value [32]. 

With the application of intelligent control and neural networks have also become hot spot 

of control field. Neurons network is based on result of the brain physiological research, it simulates 

some mechanism and mechanism of brain, and it is the network of topological structure, which is 

established with artificial, it processes information by responding on continuous or staccato input 

state, the essence of neural network is nonlinear system, multilayer neural network has the ability 

of any function, it brought the unified model to the description of the nonlinear system, neuron 

network has very strong comprehensive ability, it can well solve the input information redundancy, 

it also can properly coordinate the conflicting input information, can deal with the system 

information which is difficult to describe by the model or rules. The single neuron PID control is 

mainly studied, the experimental results show that the method has stronger robustness than 

common PID control method [31]. 

Artificial neural network (ANN) has been reported to be used as a control system for a time-

dependent nonlinear system. The ANN-based controller system has been usually applied for state 

feedback controller design, nonlinear system control, nonlinear dynamical system identification, 

and control synthesis. The ANN is a massive parallel-distributed processor made up of a simple 

processing neuron for memorizing the knowledge and making it available after training the 

networks weights through a determined learning algorithm. A simple but powerful neural network 

is a multi-layer perceptron (MLP) with one hidden layer, trained by using a back-propagation 

learning mechanism for updating the artificial neural networks parameters. However, the learning 

mechanism of the ANN needs higher computational cost, which hampering the used of this 

technique as a real-time control system. In order to improve the performances of ANN-based 

control system, especially in reducing the networks learning time, a single neuron adaptive PID 

control, which is the hybrid of neuron learning mechanism with a classical PID control technique, 
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has been proposed. Beside the structure of a single neuron, adaptive PID controller is very simple, 

the controller can learn and be adjusted on line during the working process, and hence it can be 

utilized in a complex environment variation of a real plant. Various neural networks weight update 

algorithm are proposed for a single neuron adaptive PID (SNA-PID) controller system, such as 

Hebb learning rule, quadratic object function, and auto gain regulation. However, even though the 

SNA-PID controller system has a self-adaptation and robustness capability, the system 

performance parameters, such as rise time, settling time, and overshoot, is still open for 

improvement. As the system performance parameters are depend on the defined quadratic 

parameter function to be minimized, in this paper, a new quadratic performance function to be 

minimized is proposed. This new quadratic performance function is accomplished by using an 

additional error function that calculated from the difference between the input control signal and 

the actual control signal as an inverse form from the actual output of the plant [32].  

3.1. The model of single neuron 

 

 𝑥1  

 

  𝑌𝑖  

 𝑥2   

 

 

 𝑋𝑁   

 

Figure III. 8. Model of single neuron 

As the basic unit of the neural network, the structure of single neural is simple and easy to 

calculate, after the human brain neurons is simple abstracted, the artificial neural called as 

McCulloch-Pitts model is get, which is shown as Fig 34. , among them, is information received by 

neurons, is the connection strength, which is called as right. The role of the input signal is combined 

by some calculation, which is called as net input and is signed. According to the different operation 

way, there are many methods of expressing net input, the most simple is linear weighted summation 

[31]. 

𝛴      𝜃𝑖 
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The role caused the state change of neurons, assnd the output 𝑦𝑖of the neuron 𝑖 is the function 

g (•) of current state, so, the mathematical expressions for the model are Eq.III.9 and Eq.III.10.[31] 

                                                𝑛𝑒𝑡𝑖 =∑  

𝑁

𝑗=1

𝜔𝑖𝑗𝑥𝑗 − 𝜃𝑖                                                                   (𝐼𝐼𝐼. 9) 

                                                      𝑦𝑖 = 𝑔( net 𝑖)                                                                                 (𝐼𝐼𝐼. 10) 

 

Including,    is the threshold of neuron i. 

 

3.1.1. Single neuron adaptive PID controller  

3.1.1.1. The normal incremental digital PID controller 

The algorithms of normal incremental digital PID can be expressed as follows, [33] 

𝑢(𝑘) = 𝑢(𝑘 − 1) + 𝑘𝑝𝑒(𝑘) + 𝑘𝑖 𝛥𝑒(𝑘) + 𝑘𝑑𝛥
2𝑒(𝑘) 

Where is sampling number, k=0,1,2… 𝑢(𝑘) , is the output of PID controller, 𝑘𝑝 is scale 

parameter, 𝑘𝑖 is integration parameter, 𝑘𝑑 is differential parameter, 𝑒(𝑘) is the error between the 

expected output and the actual output, , 𝛥𝑒(𝑘) , 𝛥2𝑒(𝑘) are the first difference, the second 

difference of e(k) .[33] 

However, the PID controller with fixed parameters cannot meet the requirements of high-

performance control when the operation condition changes. In this section, a combination of a 

single neuron and an incremental PID controller, called the SNA-PID controller, is presented to 

overcome the limitation of parameter tuning in our TWSBR. 

3.1.2. Structure of single neuron adaptive PID controller  

The single neutron adaptive PID can realize the self-study and adaptive function by adjusting the 

weigh coefficients and the tune role of the weigh coefficient is a select study regular, which is easy 

for field debugging. The method can improve the dynamic character of nonlinear time-varied 

object, and guarantees the control system works in the best status, so it is better than PID controller. 

The sketch graph of the single neutron adaptive PID controller is shown as Figure III.9 [34]. 

Where is the desired value or set point, 𝑦𝑟(𝑘) is the desired value after filtered, α (0<α<1) 

is a coefficient and it can adjust robust performance of the system. The more α is large, the more 

the system response is slow and robustness is good; the more α is small, the more the system 

response is fast and robustness is bad, usually α=0.2. 
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             𝑥3    𝑤3 

 

 

Figure III. 9. Sketch graph of the single neutron adaptive PID controller 

 Where is the desired value or set point, 𝑦𝑟(𝑘) is the desired value after filtered, α (0<α<1) 

is a coefficient and it can adjust robust performance of the system. The more α is large, the more 

the system response is slow and robustness is good; the more α is small, the more the system 

response is fast and robustness is bad, usually α=0.2. 

 
The input of converter is the errors, and the output is the state variable 𝑥1, 𝑥2, 𝑥3 they written as 

following [34]:  
 

𝑥1(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1)                                                         (𝐼𝐼𝐼. 11) 
 

𝑥2(𝑘) = 𝑒(𝑘)                                                                               (𝐼𝐼𝐼. 12) 
 

𝑥3(𝑘) = 𝑒(𝑘) − 𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)                                   (𝐼𝐼𝐼. 13) 
 
With the error at time k is e (k) = r (k) - y (k), the error at time k-1 is e (k -1), and for k-2 is e (k -

2), respectively. The outputs of the state convertor are then inputted to the single neuron acting like 

a PID, with the weights matrix of the neuron is defined as W = (𝑤1 , 𝑤2,  𝑤3)
𝑇. The output of the 

neuron [32] 

The control signal 𝑢(𝐾) at 𝐾𝑡ℎ sampling time is then obtained through: [35] 

                   𝑢(𝑘) = 𝑢(𝑘 − 1) + Δ𝑢(𝑘)                                                                           (𝐼𝐼𝐼. 14)  

With:  

T
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n
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𝛴 K TWBR 

Adaptive 

Algorithm 
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                 Δ𝑢(𝑘) = 𝐾[𝑤1(𝑘)𝑥1(𝑘) + 𝑤2(𝑘)𝑥2(𝑘) + 𝑤3(𝑘)𝑥3(𝑘)]                          (𝐼𝐼𝐼. 15) 

 

K is the proportional coefficient of the single neuron and K > 0. 𝑤1 , 𝑤2 and  𝑤3 are respectively 

the weight values of𝑥1, 𝑥2 and 𝑥3.[35] 

The SNA-PID controller aims at minimizing the error between the reference value and the 

Measurement of the closed-loop system. Considering the well-known mean square error (MSE), 

The cost function 𝐽(𝐾) at sampling time k+1 is defined as: [35] 

 

                                 𝐽(𝑘 + 1) =
1

2
(𝑟(𝑘 + 1) − 𝑦(𝑘 + 1))2 =

1

2
(𝑒(𝑘 + 1))2                           (𝐼𝐼𝐼. 16) 

 

If the method of gradient descent is adopted here to minimize the cost function 𝐽(𝐾), then 

the gradient descent can be formulated as: [35] 

𝑤𝑗(𝑘) = 𝑤𝑗(𝑘 − 1) − 𝜂𝑗∇𝑤𝑗𝐽(𝑘)                                            (𝐼𝐼𝐼. 17) 

Where the ∇𝑤𝑗𝐽(𝑘) is the gradient vector of 𝐽(𝑘) , It implies the direction of weight 

updating is along the negative gradient direction. 𝜂𝑗 Is the learning rate of the hidden layer. Thus, 

applying the chain rule, the rule of updating weight is written as: [35] 

 

         

Δ𝑤𝑗(𝑘) = −𝜂𝑗∇𝑤𝑗𝐽(𝑘) = −𝜂𝑗
∂𝐽(𝑘)

∂𝑤𝑗(𝑘)
= −𝜂𝑗

∂𝐽(𝑘)

∂𝑦(𝑘)

∂𝑦(𝑘)

∂𝑢(𝑘)

∂𝑢(𝑘)

∂𝑤𝑗(𝑘)

= 𝜂𝑗𝐾𝑒(𝑘)𝑥𝑗(𝑘)
∂𝑦(𝑘)

∂𝑢(𝑘)

                             (𝐼𝐼𝐼. 18) 

 

For simplicity, Eq (III.18) can be rewritten as: [35] 

 

                                       Δ𝑤𝑗(𝑘) = 𝜂𝑗 Ke(𝑘) 𝑥1(𝑘)𝛽(𝑘) = 𝜂
′
𝑗
𝑒(𝑘)𝑥𝑗(𝑘)𝛽(𝑘)                          (𝐼𝐼𝐼. 19) 

 

Where:                             
∂𝑦(𝑘)

∂𝑢(𝑘)
= 𝛽(𝑘)                                                                                                                                        (III. 20) 

  

In our work, a model-free solution is proposed by replacing 𝛽(𝑘)with input (𝑘) .  

At the low speed, 
∂𝑦(𝑘)

∂𝑢(𝑘)
  the is relatively small. With the growth of speed, 

∂𝑦(𝑘)

∂𝑢(𝑘)
  gradually increases. 

Such variation trend completely coincides with the change of 𝑢(𝑘) [35]. 
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                                 𝑤𝑗(𝑘 + 1) = 𝑤𝑗(𝑘) + 𝜂𝑗
′𝑒(𝑘)𝑥𝑗(𝑘)𝛽(𝑘)                                                (𝐼𝐼𝐼. 21) 

In practice, in order to ensure the convergence and robustness of SNA-PID, the weights are required 

to be normalized before calculation of the control variable. Therefore, Eq (III.21) can be rewritten 

as [35] : 

                                           Δ𝑢(𝑘) = 𝐾∑  

3

𝑖=1

𝑤𝑖
′(𝑘)𝑥𝑖(𝑘)                                                (𝐼𝐼𝐼. 22)  

And 

𝑤′𝑖(𝑘) = 𝑤𝑖(𝑘)/∑  

3

𝑖=1

|𝑤𝑖(𝑘)|(III. 23) 

With 

𝑤1(𝑘 + 1) = 𝑤1(𝑘) + 𝜂1
′𝑒(𝑘)𝑢(𝑘)𝑥1(𝑘)

𝑤2(𝑘 + 1) = 𝑤2(𝑘) + 𝜂2
′ 𝑒(𝑘)𝑢(𝑘)𝑥2(𝑘)

𝑤3(𝑘 + 1) = 𝑤3(𝑘) + 𝜂3
′ 𝑒(𝑘)𝑢(𝑘)𝑥3(𝑘)

                                     (𝐼𝐼𝐼. 24) 

 

𝜂1
′  , 𝜂2

′  , 𝜂3
′   Is respectively proportion, integral, differential learning rate; the different learning 

rate is adopted to adjust respective weighting coefficients. 

 

3.2 Simulation 

 

Figure III. 10. Simulink model of adaptive neural PID controller  

 

Results: 
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1- Angle: 

 

Figure III. 11. Response of angle with initial values 𝑥0 =  [0, 0, −45, 0] 

 The system make a perfect overshoot, as well as rise time and steady-state and the settling 

time it is very suitable, after 2.5 seconds the system reach the instable equilibrium point that we 

consider it previously to 0° (upright position). 

 

2- Control input :  

 

Figure III. 12. Response of input control (force) 
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4. Comparison 

 

Figure III. 13. Comparison between PID and NNPID 

After comparing the classical PID controller and the Adaptive Neural PID controller, we 

notice that the adaptive neural PID has batter performances (small overshoot, fast rise time, small 

steady-state error, small settling time) than the classical PID.   

5. Conclusion 

When examining the system, whether by simulation or by implementation, we noticed that 

the adaptive neural PID controller is accurate with the performances of the system “delay time and 

rise time and overshoot” and it gave us great results when we applied it to our non-linear system, 

both in theory and in practical, for this reason we can canclude that the adaptive neural PID 

controller is much better than the classical PID controller to deal with complex nonlinear systems.  

 



 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 Chapter 4: Real implementation for the 

Two Wheels Self-balancing Robot  
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1. Introduction 

 Two –wheeled or self-balancing robot is an unstable dynamic system unlike other four-

wheeled stale robots that are in equilibrium state. By unstable, here, we mean that the robot is free 

to fall ahead or backward direction without any application of force. Self-balancing means the robot 

balancing itself in an equilibrium state, 90 degrees upright position. This project works on the 

inverted pendulum concept. We are making use of Arduino Uno to build the self-balancing robot. 

We are using the inertial measurement unit MPU6050 for measuring the current tilt angle [39]. An 

Adaptive Neural PID controller will be able to control the pendulum angle. Software and hardware 

components have been used in making the proposed robot. Only one software is used which is 

Arduino IDE, and different hardware is used such as Arduino Nano as the brain, DC Motor to 

provide the motion, and its driver L293D, MPU-6050 to get the orientations.  

2. Software  

2.1. Arduino IDE 

Arduino IDE is simple to use software yet the best one to code, compile and upload the code in 

Arduino microcontroller boards. The Arduino team develops it. One can code on other platforms 

too, such as visual code studio, but Arduino IDE is official and accepted worldwide. It is the first 

one to receive all the updates of the libraries and the boards. Many libraries are available which 

make it convenient to code in the Arduino IDE. A default window of the Arduino IDE is shown in 

Figure IV.1 [36]. 

 

Figure IV. 1. A default Arduino IDE window 
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3. Hardware 

3.1 Arduino Nano 

 

 
Figure IV. 2. Arduino Nano 

The Arduino Nano is used in this paper as the brain of the robot. This microcontroller is the 

smallest member of the Arduino family. It is based on the ATmega328microcontroller, which is 

capable for several projects. It is a 30 pin breadboard-friendly board with 22 I/O pins. It can work 

as same as Arduino UNO in almost all projects, but due to its small size, it is the perfect choice to 

work with. The main difference between UNO and Nano is very minute. Nano has a different 

architecture than UNO and has 8 analog pins, whereas UNO has only 6 analog pins. It works with 

a Mini-B USB cable instead of a power jack. An Arduino Nano is shown in Figure IV.2. Pin 

description of Arduino Nano is provided in [36]. 

Table 4. Pin description for Arduino Nano  

Type Pins Description 

Power Vin, 3.3 V, 

5 V, GND 

Vin is used for giving supply 

to the 

Arduino board, which can 

vary from 6 to 

12 V. 

5 V and 3.3 V give output 

voltages as 

Stated. 

GND refers to the ground pin. 

                 Reset                  RST This is reset pin in Arduino 

which resets 

The Arduino. 

                Analog 

 

 

 

                 A0-A7 These are analog input pins. 

Arduino has 

an inbuilt ADC (analog to 

digital 
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converter) which helps to 

measure the 

Input voltage from 0 to 5V. 

Arduino 

doesn't have a DAC (digital 

to analog 

converter) but it can do PWM 

(pulse 

width modulation) which are 

locate at in 

digital pins and can be used to 

give some 

of the functions of an analog 

output as 

Well. 

A4(SDA), A5(SCL): These 

pins are used 

for TWI (Two-Wire 

Interface) 

Communication. (SCL: serial 

clock line, 

SDA: serial data) 

             Digital Pins                  D0-D13 These are digital input-output 

pins These 

pins give logic high (5V) or 

logic low 

(0V). They can also be used 

as input logic 

High and logic low. 

3,5,6,9,11: These are some 8-

bit PWM 

Output present on the board. 

13: Pin 13 is for inbuilt LED 

             Serial                Rx, Tx Rx-Receiver 

Tx-Transmitter 

These are used for serial 

communication. 

              SPI            10 (SS), 11 

           (MOSI), 12 

           (MISO) and 

            13 (SCK) 

Used for SPI communication. 

SS, MOSI, 

MISO, and SCK stand for 

Slave Select, 

Master out Slave in, Master in 

Slave out, 
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In addition, Serial clock. 

             AREF                AREF To provide reference input 

voltage. 

3.2 MPU-6050 

 

Figure IV. 3. MPU-6050 

The MPU-6050 is a motion-tracking device. Here, this sensor gets the alignment of the bot, 

which is further processed to take the control actions. The MPU-6050, as shown in Fig. , constitutes 

a Micro-Electro-Mechanical Systems (MEMS) 3-axis accelerometer and a MEMS 3-axis 

gyroscope on a single chip. It also has a temperature sensor inbuilt on it. MPU-6050 delivers 

accurate results and can provide hundreds of measurements per second. It captures the x, y, and z 

orientation at the same time. It uses the I2C-bus to interact with the Arduino. Pin diagram and pin 

description of MPU-6050 is given in Figure IV.3 and Table 5, respectively [36]. 

Table 5. Pin description for MPU-6050 

Type Pins Description 
Power VCC, GND VCC is 5 V input.       

GND is for grounding. 

Communication               SDA (Serial 

              Data), SCL 

(Serial Clock) 

SDA transfers data and 

SCL provides clock pulse 

For communication. 

 Auxiliary Communication             XDA (Auxiliary 

              Serial Data), 

            XCL (Auxiliary 

              Serial Clock) 

Can be used to interface 

other modules as Arduino 

have limited SDA and  

XCL ports. 

Other             AD0, INT AD0 (Slave address at 0th 

bit, i.e. this is 0th number 
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bit of a 7-bit slave address 

of the module) is used 

when more than 1 MPU 

6050 modules are used to 

communicate in 

Synchronous. 

INT is interrupt pin to 

indicate that data is 

Available for MCU to read. 
 

 

Figure IV. 4. Pin arrangement of MPU-6050 

3.3. Motor driver IC L293D 

 
 

 

Figure IV. 5. Pin diagram along with description 
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A motor driver Integrated circuit (L293D) chip is designed to control and regulate motors 

.It is a dual H-bridge motor driver Integrated Circuit. They are generally used in mechanics and 

robotics. It acts as an interface between motor and Arduino microprocessor in the circuit. L293D, 

L293NE are most commonly used motor driver Integrated circuits from L293 series. L293D is 

designed to control up to maximum of two direct current motors simultaneously when they are 

integrated with Arduino Nano. It helps to regulate the flow of current before it finally reaches the 

motor. It becomes a necessity and need to use IC L293D due to different requirement of current 

and voltages by microprocessors (low) and 5V DC motor (high) as it acts as a moderator and 

balances the flow of current. It protects the circuit from overload current and provides protection 

against overload temperature. Current should not be directly supplied to the motor because it can 

damage the motor or even the microcontroller. It has an output capability and provides bidirectional 

current of 600 mA per channel. The maximum or peak current, which can flow through per channel 

as output, is 1.2 Amp. It has Enable facility and internal clamp diodes. Input voltage is up to 1.5V-

36V, which is also high noise immunity (logical “0”). Various and un-similar PWM signals are 

received because a motor driver IC interfaces with the microcontroller. A motor driver IC is also 

responsible for achieving required outputs for the speed variation of the DC motor [37]. 

3.3.1. Controlling of dc motor with L293D  

In order to have a complete control over DC motor, we have to control its speed and rotation 

direction. This can be achieved by combining these two techniques, and in our work we just need 

to control the rotation but we will talk about how to control the speed as well [38].  

 PWM – For controlling speed 

 H-Bridge – For controlling rotation direction 

3.3.1.1 PWM – For controlling speed 

The speed of a DC motor can be controlled by varying its input voltage. A common 

technique for doing this is to use PWM (Pulse Width Modulation) [38].  

PWM is a technique where average value of the input voltage is adjusted by sending a series of 

ON-OFF pulses [38]. 

The average voltage is proportional to the width of the pulses known as Duty Cycle [38]. 
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The higher the duty cycle, the greater the average voltage being applied to the dc motor 

(High Speed) and the lower the duty cycle, the less the average voltage being applied to the dc 

motor (Low Speed) [38]. Below image illustrates PWM technique with various duty cycles and 

average voltages [38]. 

 

Figure IV. 6. Pulse Width Modulation (PWM) Technique 

3.3.1.2. H-Bridge – For controlling rotation direction 

It is composed with two H-bridge that are basic circuits. It is a simple circuit for regulating 

a rated motor with low current. L293D comprises of 16 pins which includes 4 (ground, input and 

output) pins and 2 (Enable and Voltage) pins Because of it the DC motors can operate in both 

reverse and forward motion. To rotate it in forward and reverse directions logic function ‘01’ and 

‘00’are used respectively. 1 and 9 are two enable pins for two motors respectively and they should 

be of high value to start operating. The drivers are enabled in pairs bipolar stepping motors, loads 

in high positive power supply applications, relays and solenoids which are fabricated to run various 

inductive loads. TTL compatible inputs along with totem-pole circuit (present with pseudo-

Darlington source and sink) which are also enabled in pairs. It is suitable for various motor 
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applications or solenoid with reversible drive. L293D IC first receives signals send by the 

microcontroller and then emanates the response signal to the motor. Input signal received from the 

input helps to switch the outputs accordingly [37]. 

 

                                                    S1                                                        S3                 

   

 𝑉𝑚   

S2                                                                     S4  

 

 

 

Figure IV. 7. Basic H-bridge circuit diagram 

3.3.2. Control Pins 

For each of the L293D’s channels, there are two types of control pins, which allow us to 

control speed and spinning direction of the DC motors at the same time viz. Direction control pins 

& Speed control pins [38]. 

3.3.2.1 Direction control pins 

 

Figure IV. 8. Direction control pins 

Using the direction control pins, we can control whether the motor spins forward or backward. 

These pins actually control the switches of the H-Bridge circuit inside L293D IC [38]. 

 

M 
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The IC has two direction control pins for each channel. The IN1, IN2 pins control the 

spinning direction of the motor A while IN3, IN4 control motor B [38]. 

The spinning direction of a motor can be controlled by applying either a logic HIGH (5 

Volts) or logic LOW (Ground) to these pins. The below chart illustrates how this is done [38]. 

 

Table 6. The spinning direction 

 

 

 

 

 

 

                                         

3.4. Direct Current motors 

 

Figure IV. 9. DC motors 

A DC (Direct Current) motor is based on a fact that similar poles (magnetic poles) repel 

and dissimilar poles attract each other. An electromagnetic field is generated in a coil of wire when 

a current passes through it and is focused at the center of the coil. When the current changes its 

direction or intensity or switching action on and off) in the coil, the magnetic field can be changed 

be reversed by 180 degrees or can simply generate switching magnetic field. In a Dc motor, a stator 

has a stationary magnets and armature has windings wring around the insulated stacked around 

iron pole commonly known as stack teeth with ends finishing at the commutator. Armature consists 

of bearings, which are mounted at the middle of the motor and connections of commutator. The 

winding is winded around armature and is known as armature winding which uses conductor 

(single or parallel) wires, which are wrapped around stack teeth. EMF’s (Electromagnetic fields) 

IN1 IN2 Spinning Direction 

Low(0) Low(0) Motor OFF 

High(1) Low(0) Forward 

Low(0) High(1) Backward 

High(1) High(1) Motor OFF 
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strength depends on several factors such as current in the coil, size of the coil and the material 

ringed around the coil. Direction of EMF depends upon number of turns and sequence of turns in 

a coil. By removing and injecting the coil inside and A greater control over the DC motor can be 

established by designing the Dc motor in such a way so that the magnetic fields generated by the 

stator fields using electromagnets. Forced air can be used for cooling the DC motors at high power 

usage level. A DC motor has linear Torque –Speed relationship. Here, load and speed are inversely 

proportional to each other. It provides protection against overload current, locked rotor, RFI/EMI 

caused by PWM control, and also protects against instantaneous reversing and dynamic braking 

[37]. 

 

Figure IV. 10. DC motor contacted with the wheel 

3.5. Bluetooth Module 

 

 

 

Figure IV. 11. Images of Bluetooth modulo HC-05 
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 The various features of Bluetooth module are hardware and software features. The 

hardware features such as Low Power 1.8V Operation in the range of 1.8 to 3.6V Input/ output, 

typical sensitivity (-80dBm), PIO control , RF transmission power , programmable UART interface 

baud rate, edge connector and antenna integrated gives it edge above others. Various Software 

features are CTS and RTS system to control data streaming. It has a default baud (Data bits:8) rate 

and supports it (9600,19200,38400,57600,115200,230400,460800) with data control and no parity. 

It can generate PIO0 and PIO1 pulses which disconnect low and high signals and they can be 

connected to blue and red light emitting diodes separately. Red light starts to blink when master 

and slave are paired together and blue light blinks 1 time after every 2-second interval. It has auto-

pairing with pin code “0000”, auto-pairing device used for connection, auto-connect to connect to 

the last device on power and auto-reconnect to reconnect after 30 minutes when disconnected 

during beyond the range of connections used [37] . 

3.6. Connecting wires and soldering 

For our project of this two wheels self-balancing robot we use a PCB circuit. 

 First, we will begin with the circuit on “EasyEDA”. 

 

Figure IV. 12. Schematic on “EasyEDA” 

 the PCB circuit it will appear as following: 
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Figure IV. 13. PCB circuit on “EasyEDA” 

 

 

Figure IV. 14. Printed PCB 

 After we print our circuit it looks as following:  

 

Figure IV. 15. 3D PCB circuit 
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Figure IV. 16. Our electronic circuit 

 

 

 

 

 

              5v  

 

 

         12v                                                                                                               12v 

 

  

 

 

     

Figure IV. 17. Block diagram of the TWSBR                                    

4. Block Diagram and Working 

 

L293d driver   

Arduino Nano 

MPU-6050 

MPU 6050 

Arduino Nano 

L293D Motor 

Driver 

DC Motor2 DC Motor 1 

Wheel 2 Wheel 1 
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                                                                       Start 

 

Ensure 12C 

Communication establishment, 

I.e. MPU-6050 connexion. 

 

 

 

 

                                                          Receive Neural Adaptive  

                                                            PID values and ensures 
                                                Calibration 
                                                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure IV. 18. Neural Adaptive PID Algorithm 

      Read current 

Angles of the bot 

What is the 

difference between 

the 

Reference angle 

and 

Current angle? 

        Difference is 

        Positive 

Neural Adaptive 

PID calculation 

       Forward 

Movement of bot 

No difference 

  No movement 

    Difference is 

Negative 

Neural Adaptive 

PID calculation 

 

      Backward 

Movement of bot 
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To keep the robot adjusted, the engines must neutralize the robot falling. This activity 

requires criticism and revising components. The input component is the MPU6050 (gyroscope and 

accelerometer), which gives both speeding up and pivot in each of the three tomahawks. The 

Arduino utilizes this to know the redressing component is the engine and wheel mix. [39]  

This is done by the implementation of the Neural Adaptive PID controller. 

We need to check if the robot is inclining towards the front or towards the back utilizing 

the MPU6050 and after that if it's inclining towards the front we need to turn the wheels forward 

way and on the off chance that it is inclining towards the back we need to pivot the wheels in the 

invert bearing [39]. 

To know the present position of the robot we utilize the MPU6050, which is a 6-pivot 

accelerometer and gyrator sensor consolidated. So as to get a solid estimation of position from the 

sensor we have to utilize the estimation of both accelerometer and whirligig, in light of the fact that 

the  qualities from accelerometer has commotion issues and the qualities from spinner will in 

general float with time. Therefore, we need to join both and get the estimation of yaw pitch and 

move of our robot, of which we will utilize, just the estimation of yaw [39].  

For the robot to balance properly, it should have a good center of gravity. That can be 

achieved by properly placing all the components on the hardware of the robot on a suitable 

place [39].  

5. TWSBR 

Impalement the system with the components that we have mentioned earlier, such as printed PCB 

and two DC Motors connected with two wheels, L293D driver and Arduino nano programming by 

Arduino IDE.   
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Figure IV. 19. Our TWSBR 

6. Conclusion 

After some testing and calibrating, the two wheels self-balancing robot balanced itself 

independently. It required appropriate values for the Adaptive Neural PID controller fed to the 

Arduino and accurate measurement from MPU-6050 sensor, the implementation helped us to 

compare the results obtained in the second chapter with the results obtained in the third chapter. 
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General conclusion 

The adaptive neural PID controller gives impressive results in maintaining the balance of 

the inverted pendulum that we have formed in a TWSBR, in contrast to the other controllers, which 

we discussed in our work an example for widely used controller “PID controller”, which gave us 

acceptable results when applied in angle control of the instable equilibrium point. The results of 

the adaptive neural PID controller were more applicable, and after we implement the project with 

the controller we found a similar results to the simulation where the robot’s balance as good as we 

want and adaptive. 

In the first chapter we have discussed the modeling of our inverted pendulum as well as the 

modelling of the actuators that we used in the project we have noticed some disadvantage with the 

stepper motor because of its weight, so we decided to work with the DC motor that we found it 

more suitable for this system. 

In the second chapter we have discussed the control of our nonlinear system by a classical 

PID controller, the results showed that the PID controller give a good balancing and get the instable 

equilibrium point with good performances but the results can be better with another advanced 

controller. 

In the third chapter, we have discussed the control of our nonlinear system by an Adaptive 

PID controller, we have gave a brief entry about the neural networks and we applied a single neuron 

for the controller as Single neuron adaptive PID controller. The results were perfect and the system 

get its instable equilibrium point with perfect performances, after the simulation the system was 

ready to be implement and see the practical results. 

In the last chapter, we have implemented our nonlinear system with Arduino Nano, with 

printed PCB. The results were as we found it with the simulation as good as we want. The robot 

were balancing itself and get its instable equilibrium point that we consider it 0°, even with initial 

values (push or pull) the robot returned to the 0°.  
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