

People's Democratic Republic of Algeria

Ministry of Higher Education and Scientific

Research

Larbi Tébessi University - Tébessa

Faculty of Exact Sciences and Natural and Life

Sciences

Department: Mathematics and Computer Science

End of studies thesis

For obtaining the MASTER diploma

Field: Mathematics and Computer Science

Sector: IT

Option: networks and computer security

Theme

A Smart System to Detect

Cheating in the Online Exam.

Presented by:

Khelif Mohamed Sayeb

In front of the jury:

Dr Mekhaznia Tahar MCA Université Larbi Tébessi Président

Mr Mahmoudi Rachid MAA Université Larbi Tébessi Examiner

Dr. Merzoug Soltane MCB Université Larbi Tébessi Framer

Defense date: 21 / 06 / 2021

1 | P a g e

Thanks

We thank God the Almighty who gave us the will and the courage

to do this work.

First, we would like to thank our supervisor: Dr. Merzoug Soltane

for all his advice, support, help, and guidance.

We thank the jury members for agreeing to judge our work.

We thank all the teachers of the department, and the colleagues of

our 2020-2021 master class.

We thank all the people who supported us for near or far in

carrying out this work.

2 | P a g e

Dedications

I dedicate this modest work to:

My parents who did encourage me to get to the end path;

My mother source of my success and happiness. My father who

encourage me and always sacrifices to see me succeed; my respect

and deep feelings towards them, may god protect them for me.

To my dear brother and sister.

To all those who helped me to carry out this work of research.

To all my friends and comrades.

3 | P a g e

Abstract
The COVID-19 pandemic, caused the whole globe some serious downfall in terms of

economy, even the day-to-day activities are being restricted due to enforcements like

lockdown. Wish made restrictions on the exam process.

In this paper we aim to make a fully automated online cheat detection system capable

of detecting whether a student is attempting to cheat or not during the process of the exam.

This system will use deep learning techniques (AI) such as face recognition, sound detection,

active-window detection. To note that the face recognition process will use a CNN based

module for its high accuracy and stability.

Résumer
La pandémie de COVID-19 a causé au monde entier une grave chute en termes

d'économie, même les activités quotidiennes sont restreintes en raison d'applications telles

que le verrouillage. Qui a fait des restrictions sur le processus d'examen.

Dans ce papier, nous visons à créer un système de détection de triche en ligne

entièrement automatisé capable de détecter si un étudiant tente de tricher ou non pendant le

processus de l'examen. Ce système utilisera des techniques d'apprentissage en profondeur (IA)

telles que la reconnaissance faciale, la détection de sons, la détection de fenêtre active. A noter

que le processus de reconnaissance faciale utilisera un module basé sur CNN pour sa grande

précision et sa stabilité.

 الملخص
تم يفي حدوث بعض الانهيارات الخطيرة في العالم بأسره من حيث الاقتصاد ، حتى COVID-19 تسبب جائحة الملخص

 .على عملية الامتحانقيوداً جعلت .تقييد الأنشطة اليومية بسبب إجراءات الإنفاذ مثل الإغلاق

إلى إنشاء نظام آلي بالكامل للكشف عن الغش عبر الإنترنت قادر على اكتشاف ما إذا كان علميةالورقة ال هنهدف في هذ

مثل التعرف على الوجوه واكتشاف الصوت سيستخدم هذا النظام تقنيات التعلم العميق .الطالب يحاول الغش أم لا أثناء عملية الاختبار

 CNN الشبكة العصبية التلافيفية ملاحظة أن عملية التعرف على الوجوه ستستخدم وحدة معتمدة على .ة النشطةواكتشاف النافذ

 .لدقتها العالية واستقرارها

4 | P a g e

.

Acronyms

AI: Artificial Intelligence.

CNN or Conv: Convolutional Neural Network.

NN: Neural network.

URL: Linear rectified units.

DL: Deep Learning.

MLP: Multilayer perceptron.

GPU: Graphic processing unit.

API: Application-programming interface.

CPU: Central processing unit.

FCL: Fully connected layer.

5 | P a g e

Summary

Thanks ... 1

Dedications .. 2

Acronyms .. 4

General Introduction ... 9

Chapter 1 Artificial Intelligence (Deep Learning). .. 11

1. Introduction. .. 11

2. Artificial Intelligence (AI) .. 11

3. Historic. ... 11

3.1. Dartmouth Conference 1956: the birth of AI. .. 12

4. Deep Learning. .. 15

4.1. Definition. ... 15

4.2. Defining Neural Networks. ... 15

4.3. Deep Learning Algorithms. .. 16

5. Conclusion. ... 20

Chapter 2 Intelligent Detection & Recognition Methods .. 22

1. Introduction ... 22

2. Object detection Methods ... 22

3. Object recognition methods .. 23

4. Facial recognition ... 24

4.1. Techniques for face recognition ... 25

5. Convolutional neural networks ... 25

5.1. Introduction ... 25

5.2. CNN Architecture ... 26

5.3. CNNs layers .. 27

5.4. Advantage of CNNs .. 27

6. Related works.. 28

6 | P a g e

6.1. Automated Online Exam Proctoring .. 28

6.2. Examity Automated Proctoring .. 28

7. Synthase .. 28

8. Discussion ... 29

9. Conclusion .. 29

Chapter 3 A Smart System to Detect Cheating in the Online Exam. 31

1. Introduction ... 31

2. Part One: Architecture of the developed system .. 31

3. Part Two: The development tools environment ... 34

3.1. Equipment ... 34

3.2. Python .. 35

3.3. Spyder ... 35

3.4. The Anaconda environments .. 36

4. Libraries used .. 37

4.1. Numpy .. 37

4.2. TensorFlow ... 37

4.3. Keras ... 38

4.4. Cmake ... 38

4.5. Dlib ... 38

4.6. Face-recognition ... 39

4.7. OpenCV-python .. 39

4.8. Pyaudio ... 39

5. System and environment configuration .. 40

6. Application .. 43

7. Conclusion .. 48

Conclusion ... 50

Bibliography ... 53

Annex ... 56

7 | P a g e

Figure List
Figure 1: AI history .. 144

Figure 2 Neural Networks .. 166

Figure 3 Convolutional Neural Networks [S1] ... 177

Figure 4 Long Short Term Memory Networks [S1] .. 188

Figure 5 Multilayer Perceptrons [S1] .. 199

Figure 6 Autoencoders [S1] ... 20

Figure 7 represents the typical architecture of CNN ... 266

Figure 8 System features .. 322

Figure 9 Result proses .. 322

Figure 10 System Architecture .. 333

Figure 11 How the system work's .. 344

Figure 12 The Anaconda environnements home page .. 366

Figure 13 install library example ... 377

Figure 14 install python ... 40

Figure 15 install pip & pip3 ... 40

Figure 16 install anaconda ... 40

Figure 17 configure conda packages ... 411

Figure 18 upgrade conda .. 411

Figure 19 create conda environment .. 411

Figure 20 activate conda environment ... 411

Figure 21 export conda environment ... 411

Figure 22 conda info’s ... 422

Figure 23 Example of a known face .. 433

Figure 24 Example of an unknown face .. 433

Figure 25 system starts after known face ... 444

Figure 26 system detect sound and records it .. 455

Figure 27 system detect to much movements .. 466

Figure 28 system detect another person ... 477

Tables List
Table 1 comparison ... 28

8 | P a g e

9 | P a g e

General Introduction

 The COVID-19 pandemic, caused the whole globe some serious downfall in terms of

economy, even the day-to-day activities are being restricted due to enforcements like

lockdown. However, technology, allowed the strings of knowledge to remain intact. Well,

knowledge is available, through the right sources. However, how about the examination

processes, or the test process; it has to be executed under a controlled environment, with

supervision. How are we to conduct it when all the students are sitting at their homes and are

not allowed stepping out to gather for anything like an exam, how are we going to move with

this thing forward? Well, technology yet again gives us a solution; intelligent monitoring

system to detect cheating in the exam is our only option for this. However, security

authenticity during the exams is one of the most important key criteria for its success.

 How can we ensure that the right candidate is the one attempting an online exam?

 How do we ensure that no cheating or malpractice is happening during the online exam

process?

 Is there any way where system can to do all that; confirm the test taker identity and preventing

any cheating or malpractice during the examination process?

Intelligent monitoring system to detect cheating in the exam is the answer to all our

questions. Intelligent monitoring is the technology that allows you to monitor the online

exams for candidates in different locations of the earth. There are different parameters of

intelligent monitoring such as audio monitoring, video monitoring, and image monitoring,

and user screen monitoring. With the help of all these mechanisms, we can provide a secure,

controlled and cheat-free environment.

This paper is divided into four chapters structured as follows:

 Chapter_1: - Artificial Intelligence and Deep Learning.

 Chapter_2: - Detection and Recognition methods.

 Chapter_3: - a smart system to detect cheating in the online exam.

 In the end, we have a general conclusion and perspective.

10 | P a g e

11 | P a g e

Chapter 1 Artificial Intelligence (Deep Learning).

1. Introduction.

 In this chapter we present some notions that related to our work such as Artificial

Intelligence (AI) its definition and history then we move to Deep Learning were we define it

and Neural Networks, see some of its top Algorithms such as CNN and LSTM.

2. Artificial Intelligence (AI)

 Artificial Intelligence (AI) started in the 1950s, when some people in the nascent

field of computing began to wonder if computers could be made to "think". A concise

definition of the field would be: "the effort to automate the intellectual tasks usually

performed by humans”. As such, AI is a broad field that encompasses machine learning and

deep learning, but also includes many more approaches that do not involve any learning. The

original chess programs, for example, were only about hard-coded rules made by

programmers and did not qualify as machine learning. For quite a long time, many experts

believed that AI at the human level could be achieved by having programmers handcraft a

large enough set of explicit rules to manipulate knowledge. This approach is known as

Symbolic AI and was the dominant AI paradigm of the 1950s and late 1980s. It peaked in

popularity during the expert systems boom of the 1980s. Although symbolic AI proved

appropriate for solving well-defined logical problems, such as playing chess, it was difficult

to find explicit rules for solving more complex fuzzy problems, such as classification of

images, recognition of speech and translation. A new approach has emerged to take the place

of symbolic AI: "machine learning" [1].

3. Historic.

 The history of Artificial Intelligence (AI) began in antiquity, with myths, stories

and rumors of artificial beings endowed with intelligence or consciousness by master

craftsmen. The seeds of modern AI were planted by classical philosophers who attempted to

describe the process of human thinking as the mechanical manipulation of symbols. This work

culminated in the invention of the programmable digital computer in the 1940s, a machine

12 | P a g e

based on the abstract essence of mathematical reasoning. This device and the ideas behind it

inspired a handful of scientists to begin seriously discussing the possibility of building an

electronic brain.

The field of AI research was founded at a workshop held on the campus of Dartmouth College

during the summer of 1956. [1] Those who attended would become the leaders of AI research

for decades. Many of them predicted that a machine as intelligent as a human being would

exist in no more than a generation, and they were given millions of dollars to make this vision

come true.

Eventually, it became obvious that they had grossly underestimated the difficulty of the

project. In 1973, in response to the criticism from James Lighthill and ongoing pressure from

congress, the U.S. and British Governments stopped funding undirected research into artificial

intelligence, and the difficult years that followed would later be known as an "AI winter".

Seven years later, a visionary initiative by the Japanese Government inspired governments

and industry to provide AI with billions of dollars, but by the late 80s the investors became

disillusioned and withdrew funding again. Investment and interest in AI boomed in the first

decades of the 21st century when machine learning was successfully applied to many

problems in academia and industry due to new methods, the application of powerful computer

hardware, and the collection of immense data sets.

3.1. Dartmouth Conference 1956: the birth of AI.

 The Dartmouth Conference of 1956[1] was organized by Marvin Minsky, John

McCarthy and 2 senior scientists: Claude Shannon and Nathan Rochester of IBM. The

proposal for the conference included this assertion: "every aspect of learning or any other

feature of intelligence can be so precisely described that a machine can be made to simulate

it".[1] The participants included Ray Solomonoff, Oliver Selfridge, Trenchard More, Arthur

Samuel, Allen Newell and Herbert A. Simon, all of whom would create important programs

during the first decades of AI research.[1] At the conference Newell and Simon debuted the

"Logic Theorist" and McCarthy persuaded the attendees to accept "Artificial Intelligence" as

13 | P a g e

the name of the field.[1] The 1956 Dartmouth conference was the moment that AI gained its

name, its mission, its first success and its major players, and is widely considered the birth of

AI.[2] The term "Artificial Intelligence" was chosen by McCarthy to avoid associations with

cybernetics and connections with the influential cyberneticist Norbert Wiener.[2]

The diagram in figure 1 summarize the history of AI;

14 | P a g e

Figure 1: AI history

15 | P a g e

4. Deep Learning.

 Deep learning is a set of machine learning methods that play an important role in

artificial intelligence. This approach has enabled several major breakthroughs where a

program can draw conclusions on new data. Indeed, Deep learning is based on an artificial

neural network which is made up of thousands of units (neurons), each of which receives and

interprets information from the preceding layer, for example: for visual recognition, the first

layers of 'units identify lines, curves, angles, etc., upper layers identify shapes, combinations

of shapes, objects, contexts, etc.

These techniques have enabled significant progress thanks to the development of computers

and large databases (big data). This concept was introduced to bring Machine Learning closer

to its main objective, namely artificial intelligence. It also relates to machine learning

algorithms that try to learn at several levels of representation to model complex relationships

between data corresponding to different levels of abstraction. In addition, it has a good ability

to extract features through raw data thanks to the multiple layers of processing which are

composed of various transformations. Linear and nonlinear [2, 10].

4.1. Definition.

 Deep learning uses artificial neural networks to perform sophisticated computations on

large amounts of data. It is a type of machine learning that works based on the structure and

function of the human brain.

Deep learning algorithms train machines by learning from examples. Industries such as health

care, e-commerce, entertainment, and advertising commonly use deep learning. [S1]

4.2. Defining Neural Networks.

 A neural network is structured like the human brain and consists of artificial neurons,

also known as nodes. These nodes are stacked next to each other in three layers [S1]:

 The input layer

 The hidden layer(s)

 The output layer

16 | P a g e

Figure 2 Neural Networks

Data provides each node with information in the form of inputs. The node multiplies the inputs

with random weights, calculates them, and adds a bias. Finally, nonlinear functions, also

known as activation functions, are applied to determine which neuron to fire.

4.3. Deep Learning Algorithms.

4.3.1. Convolutional Neural Networks (CNNs).

 CNN's, also known as ConvNets, consist of multiple layers and are mainly used for image

processing and object detection. Yann LeCun developed the first CNN in 1988 when it was

called LeNet. It was used for recognizing characters like ZIP codes and digits. [S1]

CNNs are widely used to identify satellite images, process medical images, forecast time

series, and detect anomalies. [S1]

How Do CNNs Work?

CNN's have multiple layers that process and extract features from data:

Convolution Layer

 CNN has a convolution layer that has several filters to perform the convolution

operation.

Rectified Linear Unit (ReLU)

 CNN's have a ReLU layer to perform operations on elements. The output is a

rectified feature map.

17 | P a g e

Pooling Layer

 The rectified feature map next feeds into a pooling layer. Pooling is a down-sampling

operation that reduces the dimensions of the feature map.

 The pooling layer then converts the resulting two-dimensional arrays from the pooled

feature map into a single, long, continuous, linear vector by flattening it.

Fully Connected Layer

 A fully connected layer forms when the flattened matrix from the pooling layer is

fed as an input, which classifies and identifies the images.

Below is an example of an image processed via CNN.

Figure 3 Convolutional Neural Networks [S1]

4.3.2. Long Short-Term Memory Networks (LSTMs).

 LSTMs are a type of Recurrent Neural Network (RNN) that can learn and memorize long-

term dependencies. Recalling past information for long periods is the default behavior. [S1]

LSTMs retain information over time. They are useful in time-series prediction because they

remember previous inputs. LSTMs have a chain-like structure where four interacting layers

communicate in a unique way. Besides time-series predictions, LSTMs are typically used for

speech recognition, music composition, and pharmaceutical development. [S1]

How Do LSTMs Work?

 First, they forget irrelevant parts of the previous state

 Next, they selectively update the cell-state values

18 | P a g e

 Finally, the output of certain parts of the cell state

Below is a diagram of how LSTMs operate:

Figure 4 Long Short Term Memory Networks [S1]

4.3.3. Multilayer Perceptrons (MLPs).

 MLPs are an excellent place to start learning about deep learning technology.

MLPs belong to the class of feedforward neural networks with multiple layers of perceptrons

that have activation functions. MLPs consist of an input layer and an output layer that are

fully connected. They have the same number of input and output layers but may have multiple

hidden layers and can be used to build speech-recognition, image-recognition, and machine-

translation software. [S1]

How Do MLPs Work?

 MLPs feed the data to the input layer of the network. The layers of neurons connect in

a graph so that the signal passes in one direction.

 MLPs compute the input with the weights that exist between the input layer and the

hidden layers.

 MLPs use activation functions to determine which nodes to fire. Activation functions

include ReLUs, sigmoid functions, and tanhs.

19 | P a g e

 MLPs train the model to understand the correlation and learn the dependencies

between the independent and the target variables from a training data set.

Below is an example of an MLP. The diagram computes weights and bias and applies suitable

activation functions to classify images of cats and dogs.

Figure 5 Multilayer Perceptrons [S1]

4.3.4. Autoencoders.

 Autoencoders are a specific type of feedforward neural network in which the input and

output are identical. Geoffrey Hinton designed Autoencoders in the 1980s to solve

unsupervised learning problems. They are trained neural networks that replicate the data from

the input layer to the output layer. Autoencoders are used for purposes such as pharmaceutical

discovery, popularity prediction, and image processing. [S1]

How Do Autoencoders Work?

An Autoencoders consists of three main components: the encoder, the code, and the decoder.

 Autoencoders are structured to receive an input and transform it into a different

representation. They then attempt to reconstruct the original input as accurately as

possible.

 When an image of a digit is not clearly visible, it feeds to an Autoencoders neural

network.

 Autoencoders first encode the image, and then reduce the size of the input into a

smaller representation.

20 | P a g e

 Finally, the Autoencoders decodes the image to generate the reconstructed image.

The following image demonstrates how Autoencoders operate:

Figure 6 Autoencoders [S1]

5. Conclusion.

 In this chapter we have seen that AI is intelligence demonstrated by machines, and

what it can do from successfully understanding human speech, competing at the highest

level in strategic game systems (such as chess and Go), and also imperfect-information

games like poker, to self-driving cars. Also had read its history from antiquity, with

myths, stories and rumors. The seeds of modern AI that were planted by classical

philosophers who attempted to describe the process of human thinking as the

mechanical manipulation of symbols, to Now were it still continue to grow. We also

spoke of Deep Learning and some of its top algorithms like CNN and LSTM.

21 | P a g e

22 | P a g e

Chapter 2 Intelligent Detection & Recognition Methods

1. Introduction

 In this chapter we will talk about Object detection Methods it’s definition and

approaches, we also talk about object recognition methods what it is and also, its approaches,

we take a look at face recognition plus face recognition techniques, Convolutional neural

networks Architecture layers and Advantages, then we take a look at some related works to

end it with a small conclusion.

2. Object detection Methods

 Intelligent detection methods are a phenomenal field with various studies in our work

we will focus on the object detection field. Object detection is a computer technology related

to computer vision and image processing that deals with detecting instances of semantic

objects of a certain class (such as humans, buildings, or cars) in digital images and videos.[1]

Well-researched domains of object detection include face detection and pedestrian detection.

Object detection has applications in many areas of computer vision, including image retrieval

and video surveillance. It is widely used in computer vision tasks such as image annotation,

[2] activity recognition, [3] face detection, face recognition, video object co-segmentation. It

is also used in tracking objects, for example tracking a person in a video. Every object class

has its own special features that helps in classifying the class – for example, all circles are

round. Object class detection uses these special features. For example, when looking for

circles, objects that are at a particular distance from a point (i.e. the center) are sought.

Similarly, when looking for squares, objects that are perpendicular at corners and have equal

side lengths are needed. A similar approach is used for face identification where eyes, nose,

and lips can be found and features like skin color and distance between eyes can be found.

 Methods for object detection generally fall into either neural network-based or non-

neural approaches. For non-neural approaches, it becomes necessary to first define features

using one of the methods below, then using a technique such as support vector machine

(SVM) to do the classification. On the other hand, neural techniques are able to do end-to-end

23 | P a g e

object detection without specifically defining features, and are typically based on

convolutional neural networks (CNN).

 Non-neural approaches:

 Viola–Jones object detection framework based on Haar features

 Scale-invariant feature transform (SIFT)

 Histogram of oriented gradients (HOG) features [5]

 Neural network approaches:

 Region Proposals (R-CNN,[6] Fast R-CNN,[7] Faster R-CNN,[8] cascade R-

CNN.[9])

 Single Shot MultiBox Detector (SSD) [10]

 You Only Look Once (YOLO) [11][12][13][4]

 Single-Shot Refinement Neural Network for Object Detection (RefineDet)

[14]

 Retina-Net [15][9]

 Deformable convolutional networks [16][17]

3. Object recognition methods

 Object recognition – technology in the field of computer vision for finding and

identifying objects in an image or video sequence. Humans recognize a multitude of objects

in images with little effort, despite the fact that the image of the objects may vary somewhat

in different viewpoints, in many different sizes and scales or even when they are translated or

rotated. Objects can even be recognized when they are partially obstructed from view. This

task is still a challenge for computer vision systems. Many approaches to the task have been

implemented over multiple decades.

 Approaches based on CAD-like object models

o Edge detection

o Primal sketch

o Marr, Mohan and Nevatia[1]

o Lowe

24 | P a g e

o Olivier Faugeras

 Appearance-based methods

o Use example images (called templates or exemplars) of the objects to perform

recognition

o Objects look different under varying conditions:

 Changes in lighting or color

 Changes in viewing direction

 Changes in size/shape

o A single exemplar is unlikely to succeed reliably. However, it is impossible to

represent all appearances of an object.

 Feature-based methods

o A search is used to find feasible matches between object features and image

features.

o The primary constraint is that a single position of the object must account for

all of the feasible matches.

o Methods that extract features from the objects to be recognized and the images

to be searched.

 surface patches

 corners

 linear edges

4. Facial recognition

 A facial recognition system is a technology capable of matching a human face from a

digital image or a video frame against a database of faces, typically employed to authenticate

users through ID verification services, works by pinpointing and measuring facial features

from a given image.

While initially a form of computer application, facial recognition systems have seen wider

uses in recent times on smartphones and in other forms of technology, such as robotics.

Because computerized facial recognition involves the measurement of a human's

physiological characteristics facial recognition systems are categorized as biometrics.

25 | P a g e

Although the accuracy of facial recognition systems as a biometric technology is lower than

iris recognition and fingerprint recognition, it is widely adopted due to its contactless

process.[18] Facial recognition systems have been deployed in advanced human-computer

interaction, video surveillance and automatic indexing of images.[19] They are also used

widely by law enforcement agencies.

4.1. Techniques for face recognition

 While humans can recognize faces without much effort, [20] facial recognition is a

challenging pattern recognition problem in computing. Facial recognition systems attempt to

identify a human face, which is three-dimensional and changes in appearance with lighting

and facial expression, based on its two-dimensional image. To accomplish this computational

task, facial recognition systems perform four steps. First face detection is used to segment the

face from the image background. In the second step the segmented face image is aligned to

account for face pose, image size and photographic properties, such as illumination and

grayscale. The purpose of the alignment process is to enable the accurate localization of facial

features in the third step, the facial feature extraction. Features such as eyes, nose and mouth

are pinpointed and measured in the image to represent the face. The so established feature

vector of the face is then, in the fourth step, matched against a database of faces.[21]

5. Convolutional neural networks

5.1. Introduction

 Convolutional neural networks are designed to work with grid-structured inputs, which

have strong dependencies. Images are an example of data structured in a grid and which are

generally well suited for this type of neural networks. Other forms of data like text, time series

and sequences (which are sequential data) can be seen as special cases of grid structure data

with various types of relationships between adjacent elements. The vast majority of

applications of convolutional neural networks focus on image data, although these networks

can also be used for all types of temporal, spatial and spatiotemporal data. The main feature

of convolutional neural networks is the convolution operation which is a dot product operation

between a set of grid-structured weights and similar grid-structured inputs [18].

26 | P a g e

5.2. CNN Architecture

5.2.1. Architectural principle of a CNN

 A convolutional neural network is not just a deep neural network with many hidden layers.

Rather, it is a deep network that simulates the functioning of the brain's visual cortex to

recognize and classify images or videos, and to discover an object or even part of an image.

The concept and functioning of convolutional neural networks are different from other neural

networks, in fact a convolutional neural network has two distinct parts with an input in which

an image in the form of a two-dimensional pixel matrix (with 2 dimensions, black and white),

or a color image with 3 dimensions (colors: red, green and blue).

The first part of a convolutional neural network is the convolutional part, which is used to

extract the characteristics of the image. Then the image goes through the filter sequence file,

or the winding core, which leads to the creation of a new image called convolution maps.

Usually, intermediate filters reduce the resolution of the image. Then, the feature maps are

flattened into a feature vector to form the input data for the fully connected layer portion. The

main role of this layer (fully connected) is to combine the characteristics contained in the

vector of its input for the classification of images. The output of the CNN will be neurons

which represent one neuron per class and the values obtained are generally normalized

between 0 and 1 [2, 19]. Figure II.1 shows the typical CNN architecture.

Figure 7 represents the typical architecture of CNN

27 | P a g e

5.2.2. The training of a new CNN

 Creating a convolutional neural network is a difficult and expensive task because it

requires good experience, hardware and the amount of data needed. The first step is to ground

the network architecture i.e., the number of layers, the size and the matrix operations that

connect them, then the training is to optimize the network parameters to reduce the error of

output classification. Execution time can take several days for the best CNN networks because

graphics processing units (GPUs) run on hundreds of thousands of frames [19].

5.3. CNNs layers

CNN's have multiple layers that process and extract features from data:

1. Convolution Layer

 CNN has a convolution layer that has several filters to perform the convolution

operation.

2. Rectified Linear Unit (ReLU)

 CNN's have a ReLU layer to perform operations on elements. The output is a

rectified feature map.

3. Pooling Layer

 The rectified feature map next feeds into a pooling layer. Pooling is a down-sampling

operation that reduces the dimensions of the feature map.

 The pooling layer then converts the resulting two-dimensional arrays from the pooled

feature map into a single, long, continuous, linear vector by flattening it.

4. Fully Connected Layer

 A fully connected layer forms when the flattened matrix from the pooling layer is

fed as an input, which classifies and identifies the images.

5.4. Advantage of CNNs

 The main advantage of convolutional networks is the use of the unique weight associated

with the signals that all neurons enter into the same convolutional nucleus. This method

reduces the memory footprint, improves performance, and enables processing stability.

28 | P a g e

6. Related works

6.1. Automated Online Exam Proctoring

 Present a multimedia analytics system that performs automatic online exam proctoring.

The system hardware includes one webcam, one wearcam, and a microphone for the purpose

of monitoring the visual and acoustic environment of the testing location. The system includes

six basic components that continuously estimate the key behavior cues: user verification, text

detection, voice detection, active window detection, gaze estimation, and phone detection. By

combining the continuous estimation components, and applying a temporal sliding window,

the designed a higher-level feature to classify whether the test taker is cheating at any moment

during the exam.

The paper was published by Yousef Atoum, Liping Chen, Alex X. Liu, Stephen D. H. Hsu,

Xiaoming Liu Michigan State University, and East Lansing, MI, USA in 2017.

6.2. Examity Automated Proctoring

 Examity is an online proctoring solution that gives students the flexibility to take exams

remotely. It provides teachers, schools and students with the tools they need to prevent

cheating and to preserve integrity.

7. Synthase

 In
tellig

en
t

U
ser

v
erificatio

n

F
ace

reco
g
n

itio
n

F
ace

d
etectio

n

V
o
ice

d
etectio

n

G
aze

estim
atio

n

Iris

d
etectio

n

A
ctiv

e

w
in

d
o

w

d
etectio

n

R
eco

rd
in

g

Automated

Online

Exam

Proctoring

Yes

Yes

No

Yes

Yes

Yes

No

Yes

No

Our Work Yes Yes Yes Yes Yes No Yes Yes Yes

Examity No Yes No NO No No No Yes No

Table 1 comparison

29 | P a g e

8. Discussion

 In the previous automated online exam proctoring system, there were many complaints

from students and others that tried it like some cases were students were flagged by the system

for simply reading the question with high volume or simply moving too much, in our work

we try to provide a system which is more lenient while providing a decent accuracy in an

attempt to provide a fair and well-shaped environment for the students partaking in the exams.

As for Examity it cannot be called an automated system for it is a person who is responsible

for watching during the exam and the system itself does not have even a little intelligence on

the other hand our system work and decides on its own to give us a result in the end based on

the data extracted using the webcam and the microphone of the user’s computer.

9. Conclusion

 In this chapter, we have presented some concepts that relate to our work, such as detection

and identification of whether a person is known or not from images, and to track his or her

movements. We have also presented the basic concepts of networks of convolutional neurons

(CNN) and we have presented the basic operations of CNN networks namely, the operation

of the convolutional layer, Polling, the fully connected layer and the ReLU activation

function). We have seen related works such as Automated Online Exam Proctoring and

Examity we also had a table of comparison with our system (Work to be).

In the next chapter, we will discuss our work and its details.

30 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

31 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Chapter 3 A Smart System to Detect Cheating in the Online

Exam.

1. Introduction

 In this chapter, we will present the stages of implementation of our

experimentation system and we present the results obtained. To do this, we will first

present a brief overview of the language resources and the development environment

used in our work, then the steps followed for the development of our system with Deep

Learning as well as the tests carried out.

2. Part One: Architecture of the developed system

 Our system monitors audiovisual cues of the test taker using a camera and a

microphone. The cam is located above the monitor facing the test taker wish is referred

to as the Webcam, the microphone is used to capture any sound cues in the room, we

extract features from audio-visual streams utilizing five basic components(figure_8)

while extracting those features the cheat engine estimate whether the test taker is

cheating or not by following a set of rules pre-given then determine the possibility of

cheating and then give’s the result(figure_9) while taking records in some cases such

as when a high sound is detected by the mic, or an unknown person is detected in the

Webcam range of view. The system architecture is shown in figure_10.

32 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Figure 8 System features

Figure 9 Result proses

33 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Figure 10 System Architecture

 For user detection and verification, we use deep learning-based facial recognition including

the concept of “deep metric learning”. For this, we use Dlib facial recognition network (CNN).

Our network architecture for face recognition is based on ResNet-34 from the Deep Residual

Learning for Image Recognition paper by He et al., but with fewer layers and the number of

filters reduced by half.

The network itself was trained by Davis King on a dataset of ~3 million images. On the

Labeled Faces in the Wild (LFW) dataset, the network compares to other state-of-the-art

methods, reaching 99.38% accuracy.

For sound detection, we will make use of the pyaudio package to detect high sound frequency

and record it in some cases.

Our system will focus on face-recognition as we will first identify the test taker then follow

his/her movements we also take note of the sound is the area while monitoring the active

window. Therefore, if the test taker is not himself, he will be flagged or if there is too much

movement or another person the frame with him, the system will also flag him if he makes

too much noise or speak loudly.

34 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

To monitor the user movements, we will use the face location and coordinates while

implementing a threshold on his movements and the sound frequency in his surroundings.

Figure 11 How the system work's

As shown in the figure above the user will be monitored in real time using the webcam and

the mic, data will be extracted and compared to the data set we have and send them to the

system engine if there is no problem with it. The engine will use a set of pre-given rules to

make a decision on whether the test taker is cheating or not, all that in real time.

3. Part Two: The development tools environment

3.1. Equipment

The configuration of the hardware used in our implementation is as follows:

 Processor AMD R5 3400g with Radeon Vega graphics (4C/8T 4.2GHZ 6MB 65W

AM4).

 RAM DDR4-3000 Gaming 8GB.

 Disk Maxtor SSD 500GB 2.5.

 64-bit Ubuntu 20.04.2 LTS operating system.

35 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

3.2. Python

In this work we used the programming language Python which is a high-level interpreted

programming language (there is no compilation step), interactive and object oriented with

dynamic semantics.

Python is designed to be highly readable and it frequently uses English keywords while other

languages use punctuation, and it has fewer syntactic constructs than other languages. It is in

great demand by a large community of developers and programmers.

Created by Guido van Rossum and released in 1991, Python has a design philosophy that

emphasizes code readability; including using large spaces, and has a large and comprehensive

standard library. Its main characteristics are:

Python is an interpreted language; the instruction is processed at the time of execution by the

interpreter. Therefore, the python program does not need to be compiled before it is executed.

This is similar to PERL and PHP.

Python is interactive; it offers the possibility of using a Python command prompt and

interacting directly with the interpreter to write the programs.

Python is object oriented; it supports the style or technique of Object-oriented programming

that encapsulates code in objects. [W2]

3.3. Spyder

Spyder is a free and open-source scientific environment written in Python, for Python, and

designed by and for scientists, engineers and data analysts. It features a unique combination

of the advanced editing, analysis, debugging, and profiling functionality of a comprehensive

development tool with the data exploration, interactive execution, deep inspection, and

beautiful visualization capabilities of a scientific package. [W3]

36 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

3.4. The Anaconda environments

Anaconda is a free, open-source distribution of the Python and R programming languages for

scientific computing (data science, machine learning applications, large-scale data processing,

predictive analytics, etc.), which aims to simplify the management and development of

packages (Package: set of programs designed to meet IT tasks). The distribution includes data

science packages suitable for operating systems: Windows, Linux and macOS. It is developed

and maintained by the "Anaconda, Inc." Company, which was founded by Peter Wang and

Travis Oliphant in 2012.

Package versions in Anaconda are managed by the Conda Package Management System, this

package manager was created as a separate open-source. There is also a scaled-down

bootstrap version of Anaconda called Miniconda, which only includes Conda, Python, the

packages they depend on, and a small number of other packages. Figure 8 presents the home

window of the Anaconda environment. [W4]

Figure 12 The Anaconda environnements home page

37 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

4. Libraries used

To install any of the libraries bellow all you need to do is type this command in the

terminal Pip install ‘library name’ or follow the example in the figure bellow:-

Figure 13 install library example

4.1. Numpy

Numpy is a library for performing numeric arithmetic operations in Python. The basic

package around which the scientific computation stack is built is called Numpy (Numerical

Python).

Numpy library provides easier handling of number tables and complex functions

(propagation). It also provides an abundance of useful features for n-array and array

operations in python, in addition to the guidance provided for Numpy array type math

operations, which improves performance and thus speeds execution.

4.2. TensorFlow

TensorFlow is an open-source software library for high performance numerical computing.

Created by the Google team in to facilitate the creation of machine learning modules. Its

flexible architecture allows easy deployment of compute on various platforms (CPU, GPU,

TPU), from desktops to server clusters. Even though TensorFlow was designed for neural

networks, it works well for other networks where the computation can be modeled as a graph

of data flow.

TensorFlow also uses several features of Theano such as common and subexpression

elimination, automatic differentiation, shared and symbolic variables.

TensorFlow allows you to build several different types of deep networks, such as

convolutional networks.

38 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

4.3. Keras

Keras is considered a powerful, easy-to-use Python library for developing and evaluating deep

learning models. It has a minimalist design that allows you to build a network layer by layer;

train him and run it. It encompasses the efficient Theano and TensorFlow numerical

computational libraries and allows you to define and train neural network models in a few

short lines of code.

It is a high-level neural network Application-programming interface (API), helping to widely

use deep learning and artificial intelligence. It runs on top of a number of lower-level libraries

including TensorFlow, Theano, etc. The Keras code is portable; we can implement neural

network in Keras using Theano or TensorFlow as back end without any code change.

4.4. Cmake

Cmake is used to control the software compilation process using simple platform and compiler

independent configuration files, and generate native make files and workspaces that can be

used in the compiler environment of your choice.

The suite of Cmake tools were created by Kitware in response to the need for a powerful,

cross-platform build environment for open-source projects such as ITK and VTK.

4.5. Dlib

Dlib is a modern C++ toolkit containing machine learning algorithms and tools for creating

complex software in C++ to solve real world problems. It is used in both industry and

academia in a wide range of domains including robotics, embedded devices, mobile phones,

and large high performance computing environments. Dlib's open source licensing allows you

to use it in any application, free of charge.

Major Features:

 Documentation

 High Quality Portable Code

 Deep Learning Algorithms

39 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

 Numerical Algorithms

 Graphical Model Inference Algorithms

 Image Processing

4.6. Face-recognition

The face recognition library, created by Adam Geitgey, wraps around Dlib’s facial

recognition functionality, making it easier to work with.

4.7. OpenCV-python

OpenCV is a cross-platform library using which we can develop real-time computer vision

applications. It mainly focuses on image processing; video capture and analysis including

features like face detection and object detection.

4.8. Pyaudio

Pyaudio provides Python bindings for Port Audio, the cross-platform audio I/O library. With

Pyaudio, you can easily use Python to play and record audio on a variety of platforms. Pyaudio

is inspired by:

1. pyPortAudio/fastaudio: Python bindings for PortAudio v18 API.

2. tkSnack: cross-platform sound toolkit for Tcl/Tk and Python.

40 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

5. System and environment configuration

 To start our work, we must first install and configure our operating system ‘Ubuntu 20.04.2

LTS’ install both python_3 and anaconda with the latest versions create our work environment

and activating it, then we install all our packages, those steps are shown in the figures below:

This figure below is to install python3:

Figure 14 install python

The two figures below help facilitate future packages installment:

Figure 15 install pip & pip3

The figure below is to install anaconda wish we downloaded before:

Figure 16 install anaconda

41 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Here we configure anaconda with all packages:

Figure 17 configure conda packages

We upgrade conda to the latest version:

Figure 18 upgrade conda

We create our conda environment by typing:

Figure 19 create conda environment

Then activate it:

Figure 20 activate conda environment

In addition, export it to save its progress:

Figure 21 export conda environment

42 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

This figure shows our environment version and information’s related to it:

Figure 22 conda info’s

43 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

6. Application

Here we will present our results; the two figures below present the cases of known and

unknown faces:

Figure 23 Example of a known face

Figure 24 Example of an unknown face

44 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

The system starts by taking one frame and running face recognition on it if the person is

unknown the system will not continue, but if the test taker exist in the data set the exam will

continue and the listening will start

This figure here present the beginning of the test in case of a known test taker where his name

is shown and the sound listening starts:

Figure 25 system starts after known face

In the next figure, a case is presented were sound is detected and the test taker is flagged with

attempting to cheat and the recording starts to come back to the listening state a while later,

storing the record for later use:

45 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Figure 26 system detect sound and records it

While this figure 27 show the case of too much movements from the test taker wish exceeds

the threshold that was set in this case the test taker is flagged with attempting cheat:

46 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Figure 27 system detect to much movements

In the next figure 28, the case of another person appearing next to the test taker; in this case

the system notifies us that the test taker is attempting to cheat, and also take a photo and

store’s it for later use

47 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

Figure 28 system detect another person

48 | P a g e

Chapter 3: A Smart System to Detect Cheating in the Online Exam.

7. Conclusion

 In this chapter we have presented the design of our system “a smart system to detect

cheating in the online exam” wish allows the user to take the exam using simply his home

computer without the presence of a supervisor to monitor him/her.

 Our system monitors audiovisual cues of the test taker using a camera and a microphone.

The cam is located above the monitor facing the test taker wish is referred to as the Webcam,

the microphone is used to capture any sound cues in the room, we extract features from audio-

visual streams utilizing five basic components while extracting those features the cheat engine

estimate whether the test taker is cheating or not by following a set of rules pre-given then

determine the possibility of cheating given us a result while taking records in some cases such

as when a high sound is detected by the mic, or an unknown person is detected in the Webcam

range of view.

The system can be further upgraded by integrating other AI features.

 We would like to point that although our system is automated and offer a solution to

problem it does not replace the human being and can never do it, it simply aids in this

exceptional crisis.

49 | P a g e

50 | P a g e

Conclusion

 This year 2021 is considered an exceptional year because it has known the hardest

health and economic crisis history due to the spread of the Coronavirus pandemic, wish

led the whole globe to follow some serious downfall in terms of economy, even the

day-to-day activities are being restricted due to enforcements like lockdown. However,

with the blessings of technology, the strings of knowledge and learners are still intact.

However, not the same can be said for exams.

 This is where our work provides a solution. Our system, which is a smart system

to detect cheating in the online exam, allows taking the exam using only your computer

avoiding making contact with other people. Our work, make use of AI and Deep

Learning technology’s such as face recognition, face detection, sound detection and

active window detection to deliver a solution and help conduct exams in a controlled

environment.

 Our system monitors audiovisual cues of the test taker using a camera and a

microphone. The cam is located above the monitor facing the test taker wish is referred

to as the Webcam, the microphone is used to capture any sound cues in the room, we

extract features from audio-visual streams utilizing five basic components while

extracting those features the cheat engine estimate whether the test taker is cheating or

not by following a set of rules pre-given then determine the possibility of cheating

given us a result while taking records in some cases such as when a high sound is

detected by the mic, or an unknown person is detected in the Webcam range of view.

51 | P a g e

Perspectives

 This work can be exploited for several diverse applications, can be added to or

reshaped to serve other purposes. This work although it helps it is not the best solution

as it does not replace the human monitoring but offers aid.

 In the end, this work was very beneficial for us because it allowed us to learn many

new concepts that we did not learn during our course of training, such as AI, deep

learning and intelligent techniques, programming with python software, etc. We hope

this work helps future students wishing to work on this subject.

52 | P a g e

53 | P a g e

Bibliography

[1] CHOLLET Francois,Deep learning with python, November 2017.

[2] Boughaba Mohammed et Boukhris Brahim., L`apprentissage profond (Deep Learning)

pour la classification et la recherche d’images par le contenu. Thèse de master: University

Kasdi Merbah, Ouargla .2016-2017.

[3] Maria ZIMINA, l’apprentissage automatique appliqué à l’évaluation de la traduction

automatique, UNIVERSITÉ PARIS DIDEROT (PARIS 7).

[4] Marref Nadia, Apprentissage Incrémental and Machine Vecteurs Supports, Thèse de

master : Université Batna.

[5] Julien Ah-Pine, Université Lyon 2M DM 2019/2020.

[6] Hassane Hilali, Application De La Classification Textuelle Pour L'extraction Des Règles

D'association Maximales, avril 2009.

[7] Youcef Djeriri, Les Réseaux de Neurones Artificiels, septembre 2017.

[8] Labiad Ali, Sélection Des Mots Clés Basée Sur La Classification Et L’extraction Des

Règles D’association, Juin 2017.

[9] ZACCONE Giancarlo, MD REZAUL Karim, MENSHAWY Ahmed. Deep learning with

tensorflow 2017.

[10] DIALLO Nene Adama Dian, La reconnaissance de l’expressions faciales ; Thèse de

master : Université 8 Mai 1945, Guelma. Juillet 2019.

[11] Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective

search for object recognition. International journal of computer vision, 104(2), 154-171.

[12] PARIZEAU Marc ; Réseaux de neurones ; 2004.

[13] J.F. Jodouin, "Les réseaux de neurones. Principes et définitions", édition Hermis, Paris,

1994.

54 | P a g e

[14] Trask, A. W. (2019). Deep learning.

[15] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature.

[16] Deng, L., & Yu, D. (2014). Deep learning: methods and applications. Foundations and

trends in signal processing.

[17] Uijlings, J. R., Van De Sande, K. E., Gevers, T., & Smeulders, A. W. (2013). Selective

search for object recognition. International journal of computer vision.

[18] Charu C. Aggarwal, Neural Networks and Deep Learning, IBM T. J. Watson Research

Center International Business Machines,Yorktown Heights, NY, USA.

[19] Phil Kim; Matleb Deep learning with machine learning, neural networks and Artificial

intelligence.

[20] Li, Stan Z.; Jain, Anil K. (2005). Handbook of Face Recognition. Springer Science &

Business Media.

[21] de Leeuw, Karl; Bergstra, Jan (2007). The History of Information Security: A

Comprehensive Handbook. Elsevier.

[w1] : https://fr.mathworks.com/discovery/deep-learning.html .

[w1] : https://www.saagie.com/fr/blog/qu-est-ce-que-le-deep-learning

[w2] https://www.python.org/

[w3] https://koor.fr/Python/Tutorial/python_ide_pycharm.wp

[w4] https://jupyter.org/

[w5] https://en.wikipedia.org/wiki/Anaconda_ (Python_distribution)

55 | P a g e

56 | P a g e

Annex

This here is the part of the code responsible for detecting sound and recording it: -

import pyaudio

import math

import struct

import wave

import time

import os

Threshold = 10

SHORT_NORMALIZE = (1.0/32768.0)

chunk = 1024

FORMAT = pyaudio.paInt16

CHANNELS = 1

RATE = 16000

swidth = 2

TIMEOUT_LENGTH = 5

f_name_directory = r'/home/sayeb/records'

class Recorder:

 @staticmethod

 def rms(frame):

 count = len(frame) / swidth

 format = "%dh" % (count)

 shorts = struct.unpack(format, frame)

 sum_squares = 0.0

57 | P a g e

 for sample in shorts:

 n = sample * SHORT_NORMALIZE

 sum_squares += n * n

 rms = math.pow(sum_squares / count, 0.5)

 return rms * 1000

 def __init__(self):

 self.p = pyaudio.PyAudio()

 self.stream = self.p.open(format=FORMAT,

 channels=CHANNELS,

 rate=RATE,

 input=True,

 output=True,

 frames_per_buffer=chunk)

 def record(self):

 print('Noise detected, this person is attempting to cheat, start recording')

 rec = []

 current = time.time()

 end = time.time() + TIMEOUT_LENGTH

 while current <= end:

 data = self.stream.read(chunk)

 if self.rms(data) >= Threshold: end = time.time() + TIMEOUT_LENGTH

 current = time.time()

 rec.append(data)

 self.write(b''.join(rec))

 def write(self, recording):

 n_files = len(os.listdir(f_name_directory))

 filename = os.path.join(f_name_directory, '{}.wav'.format(n_files))

 wf = wave.open(filename, 'wb')

58 | P a g e

 wf.setnchannels(CHANNELS)

 wf.setsampwidth(self.p.get_sample_size(FORMAT))

 wf.setframerate(RATE)

 wf.writeframes(recording)

 wf.close()

 print('Written to file: {}'.format(filename))

 print('Returning to listening')

 def listen(self):

 print('Listening beginning')

 while True:

 input = self.stream.read(chunk)

 rms_val = self.rms(input)

 if rms_val > Threshold:

 self.record()

And this down here is the part for detecting and recognizing the user’s face: -

import face_recognition

import cv2

import numpy as np

video_capture = cv2.VideoCapture(0)

sayebb_image = face_recognition.load_image_file("/home/sayeb/images/sayebb.jpg")

sayebb_face_encoding = face_recognition.face_encodings(sayebb_image)[0]

known_face_encodings = [

 sayebb_face_encoding

]

59 | P a g e

known_face_names = [

 "Khelif Mohamed Sayeb"

]

face_locations = []

face_encodings = []

face_names = []

process_this_frame = True

while True:

 # Grab a single frame of video

 ret, frame = video_capture.read()

 # Resize frame of video to 1/4 size for faster face recognition processing

 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

 # Convert the image from BGR color (which OpenCV uses) to RGB color (which

face_recognition uses)

 rgb_small_frame = small_frame[:, :, ::-1]

 # Only process every other frame of video to save time

 if process_this_frame:

 # Find all the faces and face encodings in the current frame of video

 face_locations = face_recognition.face_locations(rgb_small_frame)

 face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)

 face_names = []

 for face_encoding in face_encodings:

 # See if the face is a match for the known face(s)

 matches = face_recognition.compare_faces(known_face_encodings, face_encoding)

 name = "Unknown"

 # Or instead, use the known face with the smallest distance to the new face

 face_distances = face_recognition.face_distance(known_face_encodings, face_encoding)

60 | P a g e

 best_match_index = np.argmin(face_distances)

 if matches[best_match_index]:

 name = known_face_names[best_match_index]

 face_names.append(name)

 process_this_frame = not process_this_frame

 # Display the results

 for (top, right, bottom, left), name in zip(face_locations, face_names):

 # Scale back up face locations since the frame we detected in was scaled to 1/4 size

 top *= 4

 right *= 4

 bottom *= 4

 left *= 4

 # Draw the box around the face

 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

 # Draw a label with a name below the face

 cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)

 font = cv2.FONT_HERSHEY_DUPLEX

 cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)

 # Display the resulting image

 cv2.imshow('Video', frame)

