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Abstract

The aim of this memory is to study the averaged controllability for parameter-dependent sys-

tems. We discuss the notion of averaged control which has been introduced recently by E.Zauzua

[12]. We apply the method HUM where it is based on uniqueness criteria (the direct and inverse

inequalities) to some hyperbolic equations with an unknown parameter.

First, we consider the problem of controllability for linear finite and infinite dimensional systems

and we give the averaged rank condition for averaged controllability.

Secondly, we study the averaged controllability of wave equation depending on a parameter when

the control is applied on the boundary, by using the Hilbert Uniqueness Method (the method

HUM) which has been introduced by J.L. Lions [8], where this method allows us to design the

avraged control of our parameter-dependent wave equation.

Finally, we study with the same argument of the HUM method the problem of vibrating plate

equation depending on a parameter when the control is applied on the boundary also.

Keywords: Averaged control, hyperbolic equation, the Hilbert Uniqueness Method-(HUM), parameter-

dependent wave equations, parameter-dependent vibrating plate equations, averaged energy, av-

eraged direct inequality, averaged inverse inequality.
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Résumé

L’objectif de ce mémoire est d’étudier la contrôlabilité moyenne pour des systèmes dépendants de

paramètres. Nous discutons la notion de contrôle moyenné récemment introduite par E.Zauzua

[12] . Nous appliquons la méthode HUM où elle est basée sur des critères d’unicité (les inégalités

directes et inverses) à quelques équations hyperboliques avec un paramètre inconnu.

Premièrement, nous considérons le problème de la contrôlabilité pour les systèmes linéaires de

dimension finie et infinie et nous donnons la condition de rang moyen pour la contrôlabilité

moyenne.

Deuxièmement, nous étudions la contrôlabilité moyenne de l’équation d’onde en fonction d’un

paramètre lorsque le contrôle est appliqué sur la frontière, en utilisant la méthode d’unicité de

Hilbert (la méthode HUM) qui a été introduite par J.L. Lions [8] , où cette méthode nous permet

de concevoir le contrôle moyen de notre équation d’onde dépendante des paramètres.

Enfin, nous étudions avec le même argument de la méthode HUM le problème de l’équation de la

plaque vibrante dépendant d’un paramètre lorsque le contrôle est appliqué sur la frontière aussi.

Mots-clés : Contrôle moyenné, équation hyperbolique, méthode d’unicité de Hilbert (HUM),

équations d’onde dépendantes des paramètres, équations de plaque vibrante dépendantes des

paramètres , énergie moyenne, inégalité directe moyenne, inégalité inverse moyenne.
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       ملخص                         

 نناقش. المعلمات على المعتمدة للأنظمة التحكم على القدرة متوسط دراسة ھو الذاكرة ھذه من الھدف

 حیث HUM طریقة نطبق]. E.Zauzua]12 سطةبوا مؤخرًا تقدیمھ تم الذي المتوسط التحكم مفھوم

 المعلمة ذات القطعیة المعادلات لبعض) المساواة عدم والعكسي المباشر (التفرد معاییر على تعتمد

 .المعروفة غیر

 شرط ونعطي الأبعاد المحدودة وغیر المحدودة الخطیة للأنظمة التحكم قابلیة مشكلة نعتبر ، أولاً 

 .المتوسطة التحكم لقابلیة المتوسط الترتیب

 عنصر تطبیق یتم متى معلمة على اعتمادًا الموجة معادلة في التحكم قابلیة متوسط ندرس ، ثانیًا

 JL بواسطة تقدیمھ تم الذي)  HUM طریقة (الفریدة ھیلبرت طریقة باستخدام الحدود على التحكم

Lions [8 [، على المعتمدة الموجة معادلة في التحكم یتم ملف بتصمیم الطریقة ھذه لنا تسمح حیث 

 .المعلمة

 تطبیق عند معلمة على المعادلة تعتمد اللوحة اھتزاز مشكلة HUM طریقة حجة بنفس ندرس ، أخیرًا

 .أیضًا الحدود على التحكم عنصر

 ،) HUM (-الفریدة ھیلبرت طریقة ، القطعیة المعادلة ، المتوسط التحكم :المفتاحیة الكلمات

 متوسط ، المعلمة على المعتمدة الاھتزاز لوحة معادلات ، المعلمة على المعتمدة الموجة معادلات

 .العكسیة المساواة عدم متوسط ، المباشرة المساواة عدم متوسط ، الطاقة
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Notations

R Set of real numbers.

‖.‖H A norm in space H.

〈., .〉H A scalar product in Hilbert space H.

〈., .〉H∗ ,H Duality product between H and H∗ .

C2 The class of functions with continuous first and second derivative.
∂y
∂ν

= ∇y.ν The conormal derivative.

∆ =
n∑
i=1

∂
∂xi

The laplacien operator.

∇ =
(

∂
∂x1
, ..., ∂

∂xn

)T
The gradient operator.

div Divergence.

A∗ The adjoint operator of A.
dΓ Lebesgue measure on boundary Γ.

χω Characteristic function of the set ω.

L (E,F ) The space of linear bounded operators from E to F .

D (Q) The space of functions in C∞ with a compact support tin Q.

ODE Ordinary differential equation.

PDE Partial differential equation.

BI problem boundary initial problem.

iff If and only if.

a.e. Almost every where.

HUM the Hilbert Uniqueness Method
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Introduction

The evolution over time of many physical, biological, economic or mechanics is modeled by partial

differential equations (PDE) and ordinary differential equations (ODE) , the interest of modeling

of a phenomenon of mathematical objects is the possibility of understanding the phenomenon and

from the influence of different parameters, also to forecasting through simulation. Often we seeks

to investigate the possibility of acting on a system so that it functions for a desired purpose, or

"At best", "at least cost" etc. It is the object of the theory of control which is a theory mathematics

allowing to determine the laws of guidance, of action, on a given system. The controllability of

partial differential equations is a subject in full development. His history began with the case of

the finite dimension, its extension to the infinite dimension has experienced several times. This

subject has undergone very significant development since the work of Jacques-Louis Lions [8] in

the late 1970. Specifically, J.L. Lions introduced the so-called Hilbert Uniqueness Method (the

HUM method [8]) and this was the point start of a fruitful period on the subject. The 90’s are

marked by highlights among them, C. Bardos, G. Lebeau and J. Rauch give a condition (almost)

necessary and sufficient exact controllability of the wave equation controlled on part of the edge

or domain using microlocal analysis results.

The issues identifying with nature, climate, and environment are currently the focal point of nu-

merous researchers, residents, ideological groups, organizations, and states due to its worldwide

impact and interest. The environment assumes a critical part at all levels, particularly its sig-

nificant change "an Earth-wide temperature boost". It is notable that air and water are genuine

wellsprings of life for verdure, fauna, and people. In this way, as their inclinations are defiled by

natural assaults, they become threats for living creatures. This may incorporate vegetative issues

for greenery and inebriation or even instances of sicknesses for people. Researchers are attempt-

ing to decide the best palliatives for the security and sterilization of these regular assets. They can

not, hence, prevail without interdisciplinary participation. From data observed by naturalists to

models of equations designed by mathematicians to the expertise of computer engineers, digital

simulation plays a very important role in the mediation between scientific disciplines.

In reality, when modeling those phenomenon and other phenomenon (for instance in physical sci-

ence, statics, dynamic populace and numerous different strengths) we experience some missing

information, due to unavailability of some information or due to different reasons, for instance,

in practically every one of the issues of meteorology or oceanography, we never know the un-

derlying information, we have an incredible assortment of conceivable outcomes while picking
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the underlying second. Same thing for the issues of contamination in a lake, a stream or in an

estuary.

In addition, boundary conditions may also be unknown or only partially known on a part of the

boundary that may, for example, be inaccessible to measurements whether biomedical situations

or situations corresponding to accidents. The same goes for source terms that can be difficult

to access, the same for the structure of the domain, which can also be imperfectly known, for

example in oil well management where part of the boundary of the domain is unknown.

Hence, their modeling leads to PDEs with some incomplete data (or missing data). In system

analysis, incomplete data means that the initial conditions, boundary conditions, second member

of the equation or some of the parameters in the main operator in the system are unknown. One

of the objectives in the study of those problems is to control her regardless of the missing terms

in their associated mathematical model. Throughout this thesis, we use the terms ‘missing data’,

‘incomplete data’ or ‘uncertainty’ equivalently.

In this memory, we are interested in the averaged control [12]of distributed systems with incom-

plete data.

However, average control is a new concept in control theory introduced by E. Zuazua (2014)[12]

to control systems containing an unknown parameter. A natural idea is to solve those problems

is to look for a robust control i.e. looking for control independently of the unknown parameter.

Simply, the idea consists on controlling the average of state with respect to the unknown para-

meter to be equal or closed to a fixed target, then in (Lazar & Zuazua, 2014) authors studied the

problem of averaged controllability and observability both for a wave equation, and in (Lohéac

& Zuazua, 2017) authors treated the problem of averaged controllability for a general control

systems.

Note that in the previous studies of control problems with missing data, authors take into account

an unknown parameter in the main equation. and for find the robust control they applied the

average control.

In our case, we treat the case where the considered model contains an unknown parameter in the

main equation. We introduce the notions of averaged control, averaged rank condition and HUM

method to study such kind of control problems with missing data.

Memory overview

This memory is divided into three chapters:

In the first chapter, we give a brief overview of the classical control theory for distributed systems.

Then, we outline the notions of average control and the equivalent notion of controllability and

observabillty with a characterization of each one in the case of an abstract equation. And we give

applications of the concept of average control. We finish the chapter by the basic principles of the

10



Hilbert Uniqueness Method (HUM).

In the second chapter, we present the wave equation with a parameter depending, the averaged

energy associated to the wave equation and the direct & inverse inequalities which plays an

important role in the application of HUM method.

In the last chapter, we treat the averaged null controllability for a parameter-dependent vibrating

plate equation by the same argument of HUM method.
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Chapter 1

Averaged controllability

We are interested in this chapter to talk about the problem of controlling systems submitted

to parametrized perturbations, either finite or infinite dimensional systems. We have also given

examples of average control system heat equation and the inverted pendulum and we analyze the

problem of averaged observability, this topic is motivated by the control of parameter-dependent

systems. We look for controls ensuring the controllability of the averages of the states with respect

to the parameter. This turns out to be equivalent to the problem of averaged observation in which

one aims at recovering the energy of the initial data of the adjoint system by measurements done

on its averages, under the assumption that the initial data of all the components of the adjoint

system coincide.

1.1 Averaged controllability of finite dimensional systems

1.1.1 Problem position

We consider the finite dimensional control system in the linear case by the following form{
y′(t) = A(ν)y(t) +B(ν)u(t), 0 < t < T,

y(0) = y0.
(1.1)

where A(ν) is a matrix inMN×N(R) , u := u(t) is a M -component control vector in RM such that

M ≤ N , entering and acting on the system through the control matrix B(ν), a N ×M parameter-

dependent matrix. The parameter ν ∈ R, for simplicity, we’ll suppose ν in the interval (0, 1). In

principle, the initial datum y0 ∈ RN is supposed independent of the parameter ν. The state it self

y(t, ν) depends on ν. In (1.1), the vector valued function y(t, ν) := (y1(t, ν), ..., yN(t, ν)) ∈ RN

represent the state of the system.

12



Chapter 1. Averaged controllability

Definition 1.1 [12] We say that the system (1.1) is controllable in average if for final target yd ∈ RN

and arbitrary initial data y0 there exist control time T > 0 and a control function u independent of

ν such that the solution of (1.1) satisfies

∫ 1

0

y(T, ν)dν = yd. (1.2)

1.1.2 Averaged controllability

Theorem 1.1 (The averaged rank condition) [12] The system (1.1) is averaged controllable if

and only if the following rank condition satisfied:

Rank

[∫ 1

0

[A(ν)]j B(ν)dν

]
= N , for all j = 0 · · ·N − 1. (1.3)

Remark 1.1 The averaged rank condition can be simplified when all the matrices A(ν),B(ν) are

multiples of the same constant matrices A,B: A(ν) = α(ν)A , B(ν) = β(ν)B. So in this case,∫ 1

0

[A(ν)]j B(ν)dν = AjB

∫ 1

0

[α(ν)]j β(ν)dν,∀j ≥ 0,

and [∫ 1

0

[A(ν)]j B(ν)dν

]
=

[
AjB

∫ 1

0

[α(ν)]j β(ν)dν

]
for all j = 0 · · ·N − 1.

Thus, under the further assumption that :
∫ 1

0
[α(ν)]j β(ν)dν 6= 0 , j = 1, .., N − 1, the averaged rank

condition is equivalent to the classical one, see the appendix (3.5)

Rank
[
B,AB,A2B, ..., AN−1B

]
= N.[4] (1.4)

Involving only powers of A up to order N − 1. If some of the integrals
∫ 1

0
[α(ν)]j β(ν)dν vanish, then

the condition differs from the classical one. See [5] for the classical kalman rank condition.

1.1.3 The averaged controllability of inverted pendulum equation depend-

ing on a parameter

F What is inverted pendulum control system?

An inverted pendulum is a pendulum that has its center of mass above its pivot point. It can be

suspended stably in this inverted position by using a control system to monitor the angle of the

pole and move the pivot point horizontally back under the center of mass when it starts to fall

over, keeping it balanced.

1.1. Averaged controllability of finite dimensional systems 13



Chapter 1. Averaged controllability

The inverted pendulum is a classic problem in dynamics and control theory and is used as a

benchmark for testing control strategies.

F Equations of the inverted pendulum motion [10]

In a configuration where the pivot point of the pendulum is fixed in space, The equation of

motion below assumes no friction or any other resistance to movement, a rigid massless rod, and

the restriction to 2-dimensional movement.

θ′′ =
g

l
sin θ

Where θ′′ is the angular acceleration of the pendulum, g is the standard gravity on the surface of

the Earth, l is the length of the pendulum, and θ is the angular displacement measured from the

equilibrium position, see the Figure (1).

Figure(1):The Inverted Pendulum.

We will consider here a specific linear parameter-dependent problem about this inverted pendu-

lum [4], so let’s talk about this linearized cart-inverted pendulum system
x′ν

v′ν

θ′ν

ω′ν

 =


0 0 1 0

0 −ν
M

0 0

0 0 0 1

0 ν+M
M

0 0




xν

vν

θν

ων

+


0

1

0

−1

u,

It describes the dynamically behavior of a system composed of a cart of mass M and a rigid

pendulum of length l . Both M and l will be a fixed values. The pendulum is anchored to the cart

and at the free extremity it is placed a (small) variable mass described by the parameter ν. This

1.1. Averaged controllability of finite dimensional systems 14



Chapter 1. Averaged controllability

is the main idea of our problem here where the mass m of the ball is neglected, see the Figure

(2).

Figure (2) : Cart-Inverted Pendulum System .

Where the cart moves on a horizontal plane, the states xν(t) describe its position and vν(t) describe

its velocity, During the motion of the cart the pendulum deviates from the initial vertical position

by an angle θν(t) with an angular velocity ων(t) .

The moving starting from an initial state (xν(0), vν(0), 0, 0) , and our goal will be to find a parameter-

independent control function u and our practical method to check the controllability of our system

is if the average rank condition satisfied it’s means the rank is equal to the number of state vari-

ables for any initial state values. The acceptable control effort u can directing the state to any

final state (xν(T ), 0, 0, 0) values within some finite time.

We will calculate the averaged rank (1.3) for this system to see if it is controllable or not, so we

need to calculate

Rank

[∫ 1

0

[A(ν)]j B(ν)dν

]
, for all j = 0 · · · 3 .

Where

A(ν) =


0 0 1 0

0 −ν
M

0 0

0 0 0 1

0 ν+M
M

0 0

 and, B(ν) =


0

1

0

−1

 ,

so let’s calculate the column vector Cj

Cj =

∫ 1

0


0 0 1 0

0 −ν
M

0 0

0 0 0 1

0 ν+M
M

0 0


j

0

1

0

−1

 dν ,for all j = 0 · · · 3,

1.1. Averaged controllability of finite dimensional systems 15



Chapter 1. Averaged controllability

then for j = 0 · · · 3 we have

C0 =

∫ 1

0


0

1

0

−1

 dν =


0

1

0

−1

 ,

C1 =

∫ 1

0


0 0 1 0

0 − ν
M

0 0

0 0 0 1

0 ν+M
M

0 0




0

1

0

−1

 dν =


0

− 1
2M

−1
M+1
M

 ,

C2 =

∫ 1

0


0 0 1 0

0 −ν
M

0 0

0 0 0 1

0 ν+M
M

0 0


2

0

1

0

−1

 dν =


−2M+1
M
1

3M2

2M−1
2M

−2−3M
6M2

 ,

C3 =

∫ 1

0


0 0 1 0

0 −ν
M

0 0

0 0 0 1

0 ν+M
M

0 0


3

0

1

0

−1

 dν =


−4M2+6M−3

12M3

1
5M4

4M−3
12M3

4−5M
20M4

 ,

so we just need to calculate the rank of the matrix [Cj], for all j = 0 · · · 3, we get

Rank


0 0 −2M+1

M
−4M2+6M−3

12M3

1 − 1
2M

1
3M2

1
5M4

0 −1 2M−1
2M

4M−3
12M3

−1 M+1
M

−2−3M
6M2

4−5M
20M4

 = 4 .

With the condition

2M − 1 6= 0,M 6= 0, 80M4 − 320M3 + 340M2 − 212M + 51 6= 0 .

So we have four state variables then the average rank condition is satisfied, then our system is

average controllable.

1.1.4 Averaged observability inequality

Another characterization of the controllability property is provided by the dual problem of ob-

servability of the ν− dependent adjoint system:

1.1. Averaged controllability of finite dimensional systems 16



Chapter 1. Averaged controllability

{
−ϕ′(t) = A∗(ν)ϕ(t), 0 < t < T,

ϕ(T ) = ϕ0.
(1.5)

for all values of the parameter ν we take for simplicity the same datum for ϕ at t = T , and the

solution ϕ = ϕ(t, ν)of the adjoint system depends on the parameter ν.

Remark 1.2 [12] Let ϕ the corresponding solution of (1.5) and by multiplying (1.1) by ϕ = ϕ(t, ν)

and (1.5) by y = y(t, ν) we deduce that:

〈y′, ϕ〉RN = 〈A(ν)y, ϕ〉
RN

+ 〈B(ν)u, ϕ〉
RN

and 〈−y, ϕ′〉RN = 〈A∗(ν)ϕ, y〉RN ,

then we have d
dt
〈y, ϕ〉

RN
= 〈B(ν)u, ϕ〉RN = 〈u,B∗(ν)ϕ〉

RN
we suppose that

u(t) =

∫ 1

0

B∗(ν)ϕ(t, ν)dν,

where ϕ is the solution of the adjoint system and we integrating with respect to t ∈ (0, T ) and

ν ∈ (0, 1) we get the following∫ T

0

〈
u(t),

∫ 1

0

B∗(ν)ϕ(t, ν)dν

〉
RN

dt =

∫ T

0

∫ 1

0

〈B(ν)u(t), ϕ(t, ν)〉
RN
dνdt

=

〈∫ 1

0

y(T, ν)dν, ϕ0

〉
RN

−
〈
y0,

∫ 1

0

ϕ(0, ν)dν

〉
RN

but we have here the equation satisfied by the state y(t, ν) and the adjoint one ϕ(t, ν) so we get the

following∫ T

0

∫ 1

0

〈B(ν)u(t), ϕ(t, ν)〉
RN
dνdt =

∫ T

0

∫ 1

0

〈y′ − A(ν)y, ϕ(t, ν)〉
RN
dνdt

=

∫ 1

0

〈
y(T, ν), ϕ0

〉
RN
dν −

∫ 1

0

〈
y0, ϕ(0, ν)

〉
RN
dν

+

∫ T

0

∫ 1

0

〈y, (−ϕ′ + A(ν)∗)ϕ〉
RN
dνdt

=

∫ 1

0

〈
y(T, ν), ϕ0

〉
RN
dν −

∫ 1

0

〈
y0, ϕ(0, ν)

〉
RN
dν

In other words, we have the duality identity∫ 1

0

〈
y(T, ν), ϕ0

〉
RN
dν =

∫ T

0

〈
u(t),

∫ 1

0

B∗(ν)ϕ(t, ν)dν

〉
RN

dt+

∫ 1

0

〈
y0, ϕ(0, ν)

〉
RN
dν.

And with the controllability definition (1.2) can be recast as follows〈
y1, ϕ0

〉
=

∫ T

0

〈
u(t),

∫ 1

0

B∗(ν)ϕ(t, ν)dν

〉
dt+

∫ 1

0

〈
y0, ϕ(0, ν)

〉
dν, ∀ϕ0 ∈ RN .
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So, we get the following

〈
y1, ϕ0

〉
=

∫ T

0

〈∫ 1

0

B∗(ν)ϕ(t, ν)dν,

∫ 1

0

B∗(ν)ϕ(t, ν)dν

〉
dt+

∫ 1

0

〈
y0, ϕ(0, ν)

〉
dν,

then 〈
y1, ϕ0

〉
=

∫ T

0

∣∣∣∣∫ 1

0

B∗(ν)ϕ(t, ν)dν

∣∣∣∣2 dt+

∫ 1

0

〈
y0, ϕ(0, ν)

〉
dν,

and we define the quadratic functional over the class of solutions of the adjoint system (1.5) accord-

ing to the Euler-Lagrange equation associated to the minimization of a suitable quadratic functional

so we write here

J(ϕ0) =
1

2

∫ T

0

∣∣∣∣∫ 1

0

B∗(ν)ϕ(t, ν)dν

∣∣∣∣2 dt+

∫ 1

0

〈
y0, ϕ(0, ν)

〉
dν −

〈
y1, ϕ0

〉
. (1.6)

Remark 1.3 (Averaged observability inequality) [12] The system (1.1) is said to be observable

in time T > 0 if there exists C > 0 such that

∣∣ϕ0
∣∣2 ≤ C

∫ T

0

∣∣∣∣∫ 1

0

B∗(ν)ϕ(t, ν)dν

∣∣∣∣2 dt, (1.7)

for all ϕ ∈ RN , ϕ being the corresponding solution of (1.5).

Remark 1.4 Then the problem is reduced to prove the existence of the minimizer of J and for this

it is sufficient to prove the coercivity of the functional J or, in other words, the existence of a positive

constant C > 0 such that the observability inequality (1.7) holds . See theorem 2.1.1 in [13]

1.2 Averaged controllability of infinite dimensional systems

1.2.1 Problem position

Consider the following Cauchy problem which depends on parameter ν{
y′(t) = A(ν)y(t) +B(ν)u(t);

y(0) = y0 ∈ D(A(ν)) ⊂ X;
(1.8)

Where ν ∈ (0, 1) , A(ν) is an operator on the separable Hilbert space X the state space, B(ν) is a

control operator on L(U,X), y(t, ν) ∈ X ,the parameter dependent state variable , u(t) ∈ U is the

control variable (independent of the parameter ν), U being the separable Hilbert control space.

For all ν ∈ (0, 1), the operator A(ν) is generate a C0−semigroup {S(t, ν)}t≥0.

According to the method of varying the constants we can write y(t, ν) the solution of (1.8) in the

following form :
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y(t, ν) = S(t, ν)y0 +

∫ t

0

S(t− s, ν)B(ν)u(s)ds, ν ∈ (0, 1), t ≥ 0.

1.2.2 Averaged controllability

Definition 1.2 (Exact averaged controllability) [13] The system (1.8) is exactly averaged con-

trollable on X if for initial conditions y0 ∈ X and every final target yd ∈ X,there exists a control

u ∈ L2([0, T ], U) (independent of the parameter ν) such that∫ 1

0

y(T, ν)dν = yd. (1.9)

Definition 1.3 (Approximate averaged controllability) [13] The system (1.8) is weakly aver-

aged controllable on X if for initial conditions y0 ∈ X and every final target yd ∈ X, for every ε > 0

there exists a control u ∈ L2([0, T ], U) such that∥∥∥∥∫ 1

0

y(T, ν)dν − yd
∥∥∥∥
X

≤ ε. (1.10)

Definition 1.4 (Null averaged controllability) [13] The system (1.8) is null averaged control-

lable on X if for initial conditions y0 ∈ X and every final target yd ∈ X,there exists a control

u ∈ L2([0, T ], U) (independent of the parameter ν) such that∫ 1

0

y(T, ν)dν = 0. (1.11)

Remark 1.5 The basic idea about the average control is to find an average trajectory independing

to the unknown parameter ν among several trajectories resulting from the unknown parameter ν

resulting from the mathematical modeling of a physical or biomedical phenomena to control our

system , for example in the biomedical phenomena is the X-rays. see the Figure (3).
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Figure (2) : Averaged Controllability[7] .

1.2.3 Characterizations of averaged controllability

Let us introduce two separable Hilbert spaces, namely the state space X and the control space U ,

each of them being identified with its dual . For every ν ∈ (0, 1), consider the operator A(ν) on X

with domain D(A(ν)) and assume that:

(i) A(ν) has a non-empty resolvent ρ(A(ν));

(ii) A(ν) generates a strongly continuous semigroup S(t, ν) on X;

Let us now introduce the control operators. For every ν ∈ (0, 1), we set B(ν) ∈ L(U,X) For every

ν ∈ (0, 1), we introduce the input to state map Φ ∈ L(L2(R, U), X) defined by

Φ(t, ν)u(t) =

∫ t

0

S(t− s, ν)B(ν)u(s)ds,

Then the solution of (1.8) is

y(t, ν) = S(t, ν)y0 + Φ(t, ν)u(t), (t > 0, u ∈ L2((0, T ), U)),

Taking the average of (1.8) with respect to ν, we obtain
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∫ 1

0

y(t, ν)dν =

∫ 1

0

S(t, ν)y0dν + Ftu, (t > 0, u ∈ L2((0, T ), U)),

Where we have defined the averaged input

Ftu =

∫ 1

0

Φ(t, ν)u(t)dν, (t > 0, u ∈ L2((0, T ), U)),

See [6] for more details.

Proposition 1.1 We Consider the system (1.8) then

(i) The system is exactly averaged controllable iff the operator Ft is surjective , i.e.: Im(Ft) = X.

(ii) The system is weakly averaged controllable iff the Image of Ft is dense , i.e.: Im(Ft) = X.

Proof. (i) the system (1.8) is exactly averaged controllable

⇔ ∀y0, y1 ∈ X, ∃ u ∈ L2((0, T );U) : y1 =
∫ 1

0
y(t, ν)dν =

∫ 1

0
S(t, ν)y0dν+

∫ 1

0

∫ t
0
S(t−s, ν)B(ν)u(s)dsdν

we take for simplified y0 = 0 , so : y1 =
∫ 1

0
y(t, ν)dν =

∫ 1

0

∫ t
0
S(t− s, ν)B(ν)u(s)dsdν = Ftu

⇔ Ft surjective

⇔ Im(Ft) = X.

(ii) the system (1.8) is weakly averaged controllable

⇔ ∀y0, y1 ∈ X, ∃ u ∈ L2((0, T );U) :
∥∥∥∫ 1

0
y(t, ν)dν − y1

∥∥∥ < ε ,∀ε > 0,

⇔ ∀y0, y1 ∈ X, ∃ u ∈ L2((0, T );U) :
∥∥∥Ftu− (

∫ 1

0
S(t, ν)y0dν + y1)

∥∥∥ < ε ,∀ε > 0,

⇔ Im(Ft) = X.

1.2.4 Application to PDEs depending on a parameter

Example of heat equation with parameter depending

Let Ω be a bounded domain in Rd , d ≥ 1. Consider the controlled heat equation
yt − div(a(x, ν)∇y) = u(x, t)χω

y = 0

y(x, 0) = y0

in Q,

on Σ,

in Ω.

(1.12)

Where Q = Ω × (0, T ) stands for the space-time cylinder where the equation holds,and Σ =

∂Ω× (0, T ) for the lateral boundary the diffusivity coefficients a(x, ν), taken to be scalar for to be

simplified, and to depend on the parameter ν ∈ (0, 1), and ω be an open non-empty subset of Ω.

We assume that y0 ∈ L2(Ω) and u ∈ L2(Ω× (0, T )) and y ∈ C([0, T ];L2(Ω))∩ L2(0, T ;H1
0 (Ω)), for

all ν ∈ (0, 1).
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F If we study the problem of averaged null controllability of (1.12) that’s leads to find a control

u such that the solution of (1.12) satisfies∫ 1

0

y(T, ν)dν = 0.

Then the problem can be shown to be equivalent to an averaged observability inequality for the

adjoint system 
ϕt − div(a(x, ν)∇ϕ) = 0

ϕ = 0

ϕ(x, T ) = ϕ0

in Q,

on Σ,

in Ω.

(1.13)

So, the control function can be shown to be of the form

u(x, t) =

∫ 1

0

ϕ(x, t, ν)dν.

Where ϕ is a distinguished solution of the adjoint system determined by the datum ϕ0 minimizer

of the functional

J(ϕ0) =
1

2

∫ T

0

∫
ω

∣∣∣∣∫ 1

0

ϕ(x, t, ν)dν

∣∣∣∣2 dxdt+

∫
Ω

y0

∫ 1

0

ϕ(x, 0, ν)dνdxdt,

We observe that, to prove the coercivity of the functional J , the following averaged observability

inequality is needed

∃C > 0 :

∥∥∥∥∫ 1

0

ϕ(x, 0, ν)dν

∥∥∥∥2

≤ C

∫ T

0

∫
ω

∣∣∣∣∫ 1

0

ϕ(x, t, ν)dν

∣∣∣∣2 dxdt
The case where the control set ω is the whole domain Ω does not seem to be an easy one that’s

why we take the simple case where ω ⊂ Ω,

F If we study the problem of average approximate controllability that’s leads to: For given an

initial condition y0 ∈ L2(Ω),a final target y1 ∈ L2(Ω) and ε > 0 then should we find a control

function u ∈ L2(ω × (0, T )) such that the solution of (1.12) satisfies:∥∥∥∥∫ 1

0

y(T, ν)dν − y1

∥∥∥∥
L2(Ω)

≤ ε.
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The wave equation example

Let us consider the following controlled wave equation [6]
ytt − div(a(x, ν)∇y) = u(x, t)χω

y = 0

y(x, 0) = y0 , yt(x, 0) = y1

in Q,

on Σ,

in Ω.

(1.14)

Where Ω be a bounded domain in Rd , d ≥ 1 and Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ) for the

uniformly bounded from below and above by positive constants independent of ν the diffusivity

coefficients a(x, ν) taken to depend on the parameter ν ∈ (0, 1) and ω be an open non-empty

subset of Ω and (y0, y1) ∈ H1
0 (Ω)× L2(Ω).

We assume that u ∈ L2(ω) and y ∈ X = H1
0 (Ω)× L2(Ω),the scalar product on state space X

〈[
z0

z1

]
,

[
y0

y1

]〉
H1
0 (Ω)×L2(Ω)

=
〈
∇z0,∇y0

〉
(L2(Ω))d

+
〈
z1, y1

〉
L2(Ω)

, for all (z0, z1) and (y0, y1).

Let us define the operator A(ν) on L2(Ω) by

D(A(ν)) = H2(Ω)×H1
0 (Ω) and A(ν)f = − div(a(x, ν)∇f) for all f ∈ D(A(ν)),

And let us define the space X(ν) = X endowed with the scalar product

〈[
z0

z1

]
,

[
y0

y1

]〉
X(ν)

=
〈√

A(ν)z0,
√
A(ν)y0

〉
L2(Ω)

+
〈
z1, y1

〉
L2(Ω)

=
〈√

a(x, ν)z0,
√
a(x, ν)y0

〉
(L2(Ω))d

+
〈
z1, y1

〉
(L2(Ω))d

.

Since a(x, ν) is uniformly bounded from above and below then the X(ν) and X-norms are equiv-

alent.

For every ν ∈ (0, 1), let us now define the operator A(ν) on X by

D(A(ν)) = H1
0 (Ω)× L2(Ω) and

A(ν)

[
z0

z1

]
=

[
0 Id

−A(ν) 0

][
z0

z1

]
=

[
z1

div(a(x, ν)∇z0)

]
,

([
z0

z1

]
∈ D(A(ν))

)

With these definitions, A(ν) is skew adjoint on X(ν) and generates a semigroup on X(ν),let us

now define the bounded control operator B ∈ L(L2(ω), H1
0 (Ω)× L2(Ω)) independent of ν, by:
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Bu =

[
0

uχω

] (
u ∈ L2(ω)

)
.

So the system (1.14) can be expressed in the condensed form:

Yt = A(ν)Y +Bu

Y (0) =

[
y0

y1

]
∈ H1

0 (Ω)× L2(Ω) , where Y (t) =

[
y(t)

yt(t)

]
.

1.3 Basic principles of the Hilbert Uniqueness Method

1.3.1 A boundary control Model

We consider the following wave equation with a boundary control action:
ytt −∆y = 0

y = u

y = 0

y(x, 0) = y0 , yt(x, 0) = y1

in Q,

on Σ0,

on Σ̃0,

in Ω.

(1.15)

Where Ω be a bounded domain in Rd , d ≥ 1 and Γ = ∂Ω and Q = Ω× (0, T ) and Σ = Γ× (0, T )

andΣ0 = Γ0 × (0, T ) where Γ0 open part of Γ and Σ̃0 = Γ̃0 × (0, T ) where Γ̃0 = Γ− Γ0 .

The problem of exact controllability of our system is to find u such that

y(T ) = yt(T ) = 0.

If such a u exists, we say there is null controllability of the system.

1.3.2 The Hilbert Uniqueness Method

We describe the HUM method by the following steps [9]:

F Homogeneous system

We consider the following equation with Σ = Γ× (0, T ) and φ1, φ0 ∈ D(Ω)
φtt −∆φ = 0

φ = 0

φ(x, 0) = φ0 , φt(x, 0) = φ1

in Q,

on Σ,

in Ω.

(1.16)
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F The backward equation

We consider the following adjoint system
ψtt −∆ψ = 0

ψ = ∂φ
∂η

ψ = 0

ψ(T ) = 0 , ψt(T ) = 0

in Q,

on Σ0,

on Σ̃0,

in Ω.

(1.17)

Where η the normal vector , ∂
∂η

the derivative in that direction ,(i.e) : ∂φ
∂η

= ∇φ.η =
n∑
i=1

∂φ
∂xi
ηi ,or,

with the summation convention of repeated indices : ∂φ
∂η

= ∂φ
∂xi
ηi.

F The operator Λ

We define a linear operator Λ which associates with
{
φ1, φ0

}
by

Λ
{
φ1, φ0

}
= {ψt(0),−ψ(0)} .

And by multiplying the equation of (1.17) by φ = φ(x, t) and by integrating on Q , we get∫
Q

ψttφdxdt︸ ︷︷ ︸
(I)

−
∫
Q

φ∆ψdxdt︸ ︷︷ ︸
(II)

= 0.

For the first integral (I),we have

(ψtφ)t = ψttφ+ ψtφt,

Then we integrating on (0, T ) , we obtain

〈ψt(T ), φ(T )〉L2(Ω) − 〈ψt(0), φ(0)〉L2(Ω) =

∫
Q

ψtφdxdt+

∫
Q

ψtφtdxdt

And with the condition of the system (1.17) , we find∫
Q

ψttφdxdt = −
∫
Q

ψtφtdxdt− 〈ψt(0), φ(0)〉L2(Ω)

And we have ∫
Q

ψtφtdxdt = 〈ψ(T ), φt(T )〉L2(Ω) − 〈ψ(0), φt(0)〉L2(Ω) −
∫
Q

ψφttdxdt.

Then ∫
Q

ψtφtdxdt = −〈ψ(0), φt(0)〉L2(Ω) −
∫
Q

ψφttdxdt,
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So

∫
Q

ψttφdxdt = 〈ψ(0), φt(0)〉L2(Ω) − 〈ψt(0), φ(0)〉L2(Ω) +

∫
Q

ψφttdxdt (1.18)

=
〈
ψ(0), φ1

〉
L2(Ω)

−
〈
ψ′(0), φ0

〉
L2(Ω)

+

∫
Q

ψφ′′dxdt.

For the second integral (II) , and according to the second identity of Green (3.4) we have∫
Q

ψ∆φdxdt−
∫
Q

φ∆ψdxdt =

∫
Σ

(
ψ
∂φ

∂η
− φ∂ψ

∂η

)
dΓdt,

Then

−
∫
Q

φ∆ψdxdt = −
∫
Q

ψ∆φdxdt+

∫
Σ

ψ
∂φ

∂η
dΓdt (1.19)

We add (1.18) to (1.19), we get

∫
Q

φ(ψtt −∆ψ)dxdt =

∫
Q

ψ(φtt −∆φ)dxdt+
〈
ψ(0), φ1

〉
L2(Ω)

−
〈
ψt(0), φ0

〉
L2(Ω)

+

∫
Σ

ψ
∂φ

∂σ
dΓdt = 0,

And according to the systems (1.16) and (1.17) we have : φtt − ∆φ = 0 and ψt − ∆ψ = 0 in Q

then

〈
ψ(0), φ1

〉
L2(Ω)

−
〈
ψt(0), φ0

〉
L2(Ω)

+

∫
Σ

ψ
∂φ

∂η
dΓdt = 0.

And we have ψ = ∂φ
∂η

on Σ0 and ψ = 0 on Σ̃0. Then

∫
Σ0

(
∂φ

∂η

)2

dΓdt =
〈
ψt(0), φ0

〉
L2(Ω)

−
〈
ψ(0), φ1

〉
L2(Ω)

, (1.20)

We consider
(〈
ψt(0), φ0

〉
L2(Ω)

−
〈
ψ(0), φ1

〉
L2(Ω)

)
like a scaler product of {ψt(0),−ψ(0)} and

{
φ0, φ1

}
, then we get

〈
Λ
{
φ0, φ1

}
,
{
φ0, φ1

}〉
=

∫
Σ0

(
∂φ

∂η

)2

dΓdt,

We introduce the basic idea : we say that the uniqueness property holds whenever

Theorem 1.2 (Uniqueness theorem) [2]

We have the following
∂φ

∂η
= 0 on Σ0 ⇒

{
φ0, φ1

}
= 0 in Ω.
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When the uniqueness property holds,we can introduce the Hilbert space F completion of D(Ω)×
D(Ω) with the norm

∥∥{φ0, φ1
}∥∥2

F
=
〈
Λ
{
φ0, φ1

}
,
{
φ0, φ1

}〉
. (1.21)

By construction, Λ is an isometry between F and F ∗ (where F ∗ the dual of F ) .

Remark 1.6 We consider θ = θ(x, t) the solution of the problem (1.16) corresponding to the initial

data
{
θ0, θ1

}
,then we get

〈
Λ
{
φ0, φ1

}
,
{
θ0, θ1

}〉
=
〈{
φ0, φ1

}
,
{
θ0, θ1

}〉
,∀
{
φ0, φ1

}
,
{
θ0, θ1

}
∈ D(Ω)×D(Ω),

Then from the Cauchy-Schwarz inequality (3.6), we get∣∣〈Λ{φ0, φ1
}
,
{
θ0, θ1

}〉∣∣ ≤ ∥∥{φ0, φ1
}∥∥

F

∥∥{θ0, θ1
}∥∥

F
,∀
{
φ0, φ1

}
,
{
θ0, θ1

}
∈ D(Ω)×D(Ω),

This inequality shows the continuity of the bilinear form defined by Λ in D(Ω)×D(Ω) We define by

F the completion of this space with respect to the norm (1.21), we thus obtain a Hilbert space .

The continuous bilinear form({
φ0, φ1

}
,
{
θ0, θ1

})
→
〈
Λ
{
φ0, φ1

}
,
{
θ0, θ1

}〉
,

Admits an extension by continuity at closure F . Then, we obtain a continuous bilinear form on the

Hilbert space F which is coercive,then according to Lax-Milgram lemma (3.8) , for each
{
θ0, θ1

}
∈ F ∗

, there is a unique
{
φ0, φ1

}
∈ F such that〈

Λ
{
φ0, φ1

}
,
{
z0, z1

}〉
=
〈{
z0, z1

}
,
{
θ0, θ1

}〉
F×F ∗ ,

Therefore, for every
{
θ0, θ1

}
∈ F and for each {z0, z1} ∈ F ∗ there is a unique

{
φ0, φ1

}
∈ F who is

the solution of the equation Λ
{
φ0, φ1

}
= {z0, z1} in F ∗.From all this, it follows that Λ : F → F ∗ is

an isomorphism.

Therefore, if {−y0, y1} ∈ F ∗ then the equation

Λ
{
φ0, φ1

}
=
{
−y0, y1

}
Has a unique solution in F. This solution, we consider

ytt − ν2∆y = 0

y = u

y = 0

y(x, 0) = y0 , yt(x, 0) = y1

in Q,

on Σ0,

on Σ̃0,

in Ω.
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Then y = ψ hence y(T ) = yt(T ) = 0.

Finally, we built a control u which gives the null controllability.
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Chapter 2

Averaged null controllability for a

parameter-dependent wave equation

We are interested here in the averaged null controllability of the wave equation with a control of

the Neumann type on the system boundary.

In this chapter we treat the problem of wave equation we introduce our problem , we also demon-

strate an averaged inverse and direct inequalities giving some coercivity and continuity results

respectively for the main introduced operator in HUM method.

2.1 Wave equation depending on a parameter

We consider the following wave equation
ytt − ν2∆y = 0

y = u

y = 0

y(x, 0) = y0 , yt(x, 0) = y1

in Q,

on Σ0,

on Σ̃0,

in Ω.

(2.1)

Where Ω be a bounded domain in Rd , d ≥ 1 and Γ = ∂Ω and Σ0 = Γ0× (0, T ) where Γ0 open part

of Γ,and Σ̃0 = Γ̃0× (0, T ) where Γ̃0 = Γ−Γ0 and Q = Ω× (0, T ), and Σ = Γ× (0, T ) . The velocity

of propagation parameter ν is unknown in (0, 1) , and the function u presents a boundary control

in L2(Σ0) , y0 ∈ H1
0 (Ω) and y1 ∈ L2(Ω) are independent of ν.

This wave equation has a unique solution y = y(x, t, ν) ∈ X = [C(0, T ;H1
0 (Ω))∩C1(0, T ;L2(Ω))].[8]

Definition 2.1 Null averaged controllability

The system (2.1) is null averaged controllable on X if for initial conditions (y0, y1) and every final

target yd ∈ X,there exists a control u ∈ L2([0, T ], L2(Σ0)) (independent of the parameter ν) such

29



Chapter 2. Averaged null controllability for a parameter-dependent wave equation

that (∫ 1

0

y(x, T, ν)dν,

∫ 1

0

yt(x, T, ν)dν

)
= (0, 0) .

2.2 The averaged energy

We consider the following homogeneous equation with φ1, φ0 ∈ D(Ω)
φtt − ν2∆φ = 0

φ = 0

φ(x, 0) = φ0 , φt(x, 0) = φ1

in Q,

on Σ,

in Ω.

(2.2)

Let’s multiply the homogeneous equation by the multiplicative φ′ then we integrate on Ω and

taking the average with respect to ν

∫ 1

0

∫
Ω

φt (φtt − ν2∆φ)dxdν =

∫ 1

0

∫
Ω

φt φttdxdν −
∫ 1

0

∫
Ω

ν2φt∆φdxdν

=

∫ 1

0

∫
Ω

1

2

d

dt
|φt|

2 dxdν +

∫ 1

0

ν2

(∫
Ω

∇φt∇φdx−
∫

Σ

φt∇φηdΣ

)
︸ ︷︷ ︸

Green formula 3.7

dν

=
1

2

d

dt

∫ 1

0

∫
Ω

|φt|
2 dxdν +

1

2

d

dt

∫ 1

0

∫
Ω

ν2 |∇φ|2 dxdν

=
1

2

d

dt

(∫ 1

0

∫
Ω

(
|φt|

2 + ν2 |∇φ|2
)
dxdν

)
Definition 2.2 (The averaged energy) [1]We define for all t ∈ (0, T ) the averaged energy with

respect to ν associated to the solution of the wave homogeneous equation by the quadratic form

Ea(t) =
1

2

∫ 1

0

∫
Ω

(
|φt|

2 + ν2 |∇φ|2
)
dxdν

Theorem 2.1 Let φ = φ(x, t, ν) be a solution to the homogeneous wave equation . Then the averaged

energy is conserved,i.e.

Ea(t) = Ea(0) =
1

2

∫ 1

0

∫
Ω

(∣∣φ1
∣∣2 + ν2

∣∣∇φ0
∣∣2) dxdν.

Proof. Let’s multiply the homogeneous equation by the multiplicative φt then we integrate on Ω
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and taking the average with respect to ν

0 =

∫ 1

0

∫
Ω

φt (φtt − ν2∆φ)dxdν

=
1

2

d

dt

∫ 1

0

∫
Ω

|φt|
2 dxdν +

∫ 1

0

∫
Ω

ν2∇φt∇φdxdν

=
1

2

d

dt

(∫ 1

0

∫
Ω

(
|φt|

2 + ν2 |∇φ|2
)
dxdν

)
=

dEu(t)

dt

Then the energy is constant so it is conserved for all t ∈ (0, T ).

Remark 2.1 The previous definition of the energy associated to the system is attributed to J.-L.

LIONS [8] with the following form

E(t) =
1

2

∫
Ω

(
|φt|

2 + |∇φ|2
)
dx.

2.3 Averaged inverse and direct inequalities

We are interested here to prove some averaged inverse inequality , we use this inequalities to

proving the coercivity and continuity of an operator Λ who plays an important role in the appli-

cation of HUM method.

And for simplicity of notation we write for example

qiµi =
n∑
i=1

qiµi (2.3)

Theorem 2.2 Let q = (qi) be a vector field in
[
C1(Ω)

]n
independent of the parameter ν. Then, for

every weak solution for the homogeneous equation , then we have the following identity

1

2

∫ 1

0

∫
Σ

ν2qi

∣∣∣∣∂φ∂η
∣∣∣∣2 .ηidΣdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν

+
1

2

∫ 1

0

∫
Q

∂qi
∂xi

(
|φt|

2 + ν2 |∇φ|2
)
dxdtdν (2.4)

−
∫ 1

0

∫
Q

ν2 ∂φ

∂xk

∂qk
∂xk

∂φ

∂xi
dxdtdν.
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Proof. Let’s multiply the homogeneous equation (2.2) by the multiplicative qi ∂φ∂xi and integrating

over (0, 1)× (0, T )× Ω

0 =

∫ 1

0

∫
Q

(φtt − ν2∆φ)qi
∂φ

∂xi
dxdtdν

=

∫ 1

0

∫
Q

φttqi
∂φ

∂xi
dxdtdν︸ ︷︷ ︸

(I)

−
∫ 1

0

∫
Q

ν2∆φqi
∂φ

∂xi
dxdtdν︸ ︷︷ ︸

(II)

Analyze of the first integral (I)∫ 1

0

∫
Q

φttqi
∂φ

∂xi
dxdtdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν −
∫ 1

0

∫
Q

φtqi
∂φt
∂xi

dxdtdν (2.5)

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν − 1

2

∫ 1

0

∫
Q

qi
∂

∂xi
|φt|

2 dxdtdν

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
1

2

∫ 1

0

∫
Q

∂qi
∂xi
|φt|

2 dxdtdν.

Analyze of the second integral (II):∫ 1

0

∫
Q

ν2∆φqi
∂φ

∂xi
dxdtdν =

∫ 1

0

∫
Σ

ν2qi
∂φ

∂xi
∇φ.ηdΣdν −

∫ 1

0

∫
Q

ν2∇ (φ)∇
(
qi
∂φ

∂xi

)
dxdtdν︸ ︷︷ ︸

Green formula (3.4)

,

And we have:

∇ (φ) .∇
(
qi
∂φ

∂xi

)
=


∂φ
∂x1
...
∂φ
∂xj

 .


∂qi
∂x1

∂φ
∂xi

+ qi
∂2φ

∂x1∂xi
...

∂qi
∂xj

∂φ
∂xi

+ qi
∂2φ

∂xj∂xi


=

∂φ

∂x1

(
∂qi
∂x1

∂φ

∂xi
+ qi

∂2φ

∂x1∂xi

)
+ · · ·+ ∂φ

∂xj

(
∂qi
∂xj

∂φ

∂xi
+ qi

∂2φ

∂xj∂xi

)
=

∂φ

∂x1

∂qi
∂x1

∂φ

∂xi
+ · · ·+ ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
+
∂φ

∂x1

qi
∂2φ

∂x1∂xi
+ · · ·+ ∂φ

∂xj
qi

∂2φ

∂xj∂xi
,

And according to (2.3) for simplify we write for all j = 1 · · ·n

∇ (φ) .∇
(
qi
∂φ

∂xi

)
=

∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
+
∂φ

∂xj
qi

∂2φ

∂xj∂xi

=
∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
+
∂φ

∂xj
qi

∂

∂xj

∂φ

∂xi

=
∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
+

1

2
qi
∂

∂xi

∣∣∣∣ ∂φ∂xj
∣∣∣∣2

=
∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
+

1

2
qi
∂

∂xi
|∇φ|2

= |∇φ|2 +
1

2
qi
∂

∂xi
|∇φ|2
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Then we get∫ 1

0

∫
Q

ν2∆φqi
∂φ

∂xi
dxdtdν =

∫ 1

0

∫
Σ

ν2qi
∂φ

∂xi
∇φ.ηdΣdν − 1

2

∫ 1

0

∫
Q

ν2qi
∂

∂xi
|∇φ|2 dxdtdν

−
∫ 1

0

∫
Q

ν2 ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
dxdtdν

Green
=

∫ 1

0

∫
Σ

ν2qi
∂φ

∂xi
∇φ.ηdΣdν − 1

2

∫ 1

0

∫
Σ

ν2qi |∇φ|2 .ηidΣdν

+
1

2

∫ 1

0

∫
Q

ν2 ∂qi
∂xi
|∇φ|2 dxdtdν −

∫ 1

0

∫
Q

ν2 ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
dxdtdν

=

∫ 1

0

∫
Σ

ν2qi
∂φ

∂xi

∂φ

∂ηi
dΣdν − 1

2

∫ 1

0

∫
Σ

ν2qi |∇φ|2 .ηidΣdν

+
1

2

∫ 1

0

∫
Q

ν2 ∂qi
∂xi
|∇φ|2 dxdtdν −

∫ 1

0

∫
Q

ν2 ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
dxdtdν,

and we just have
∂φ

∂xi
∇φ.η =

∂φ

∂xi

∂φ

∂ηi
=

∣∣∣∣ ∂φ∂ηi
∣∣∣∣2 = |∇φ|2 .ηi,

then we result ∫ 1

0

∫
Q

ν2∆φqi
∂φ

∂xi
dxdtdν =

1

2

∫ 1

0

∫
Σ

ν2qi |∇φ|2 .ηidΣdν (2.6)

+
1

2

∫ 1

0

∫
Q

ν2 ∂qi
∂xi
|∇φ|2 dxdtdν

−
∫ 1

0

∫
Q

ν2 ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
dxdtdν.

Then according to (2.5) and (2.6) , we get

0 = −1

2

∫ 1

0

∫
Σ

ν2qi |∇φ|2 .ηidΣdν − 1

2

∫ 1

0

∫
Q

ν2 ∂qi
∂xi
|∇φ|2 dxdtdν

+

∫ 1

0

∫
Q

ν2 ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
dxdtdν +

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν

+
1

2

∫ 1

0

∫
Q

∂qi
∂xi
|φt|

2 dxdtdν

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
1

2

∫ 1

0

∫
Q

∂qi
∂xi

(
|φt|

2 − ν2 |∇φ|2
)
dxdtdν

−1

2

∫ 1

0

∫
Σ

ν2qi

∣∣∣∣ ∂φ∂ηi
∣∣∣∣2 .ηidΣdν +

∫ 1

0

∫
Q

ν2 ∂φ

∂xj

∂qi
∂xj

∂φ

∂xi
dxdtdν
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and this is rewards the identity (2.4):

1

2

∫ 1

0

∫
Σ

ν2qi

∣∣∣∣∂φ∂η
∣∣∣∣2 .ηidΣdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
1

2

∫ 1

0

∫
Q

∂qi
∂xi

(
|φt|

2 + ν2 |∇φ|2
)
dxdtdν

−
∫ 1

0

∫
Q

ν2 ∂φ

∂xk

∂qk
∂xk

∂φ

∂xi
dxdtdν.

Average inverse inequality

In order to arrive at a result of uniqueness of the type of Theorem (1.2) Uniqueness theorem

and a fortiori to obtain additional information on the initial data space in which the controllability

exact or null takes place.

We first introduce some notations :

Let x0 ∈ Rn, then we define the vector :

m(x) = x− x0

with components

mi(x) = xi − x0
i , 1 ≤ i ≤ n

and we introduce a partition of the boundary Σ as follows :

Γ(x0) = {x ∈ Γ,m(x).η(x) > 0}

where η(x) is a field of unit normal vectors.

And Σ(x0) = Γ(x0)× ]0, T [ , and we also introduce :

R(x0) = ‖m(x)‖L∞(Ω) = sup
x∈Ω

∥∥x− x0
∥∥ and T (x0) = 2R(x0).

Theorem 2.3 (Averaged inverse inequality) Let T > T (x0) and for every φ weak solution of the

homogeneous equation (2.2) , then we have the following averaged observability inequality:

(T − T (x0))Ea(0) ≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΓdtdν.

Proof. [1]We have the (2.4) identity :

1

2

∫ 1

0

∫
Σ

ν2qi

∣∣∣∣∂φ∂η
∣∣∣∣2 .ηidΣdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
1

2

∫ 1

0

∫
Q

∂qi
∂xi

(
|φt|

2 + ν2 |∇φ|2
)
dxdtdν

−
∫ 1

0

∫
Q

ν2 ∂φ

∂xk

∂qk
∂xk

∂φ

∂xi
dxdtdν.
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With the choice of multiplicative:

qi(x) = mi(x) = xi − x0
i , 1 ≤ i ≤ n

then we can write according to (2.3):

∂qi
∂xi

=

n∑
i=1

∂qi
∂xi

=

n∑
i=1

∂(xi − x0
i )

∂xi
= n, and

∂φ

∂xk

∂qk
∂xk

∂φ

∂xi
= |∇φ|2

therefore, the identity (2.4) becomes:

1

2

∫ 1

0

∫
Σ

ν2mi(x)

∣∣∣∣∂φ∂η
∣∣∣∣2 .ηidΣdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν

+
2− n

2

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν,

then on Σ(x0) , thanks to the Cauchy-Schwarz inequality (3.6), we have:

0 < m(x).η(x) =
n∑
i=1

mi(x).ηi(x) ≤
(

n∑
i=1

m2
i (x)

) 1
2
(

n∑
η2
i

i=1

(x)

) 1
2

= ‖m(x)‖ ≤ R(x0)

so we can deduce that :

1

2

∫ 1

0

∫
Σ

ν2mi(x)

∣∣∣∣∂φ∂η
∣∣∣∣2 .ηidΣdν ≤ 1

2

∫ 1

0

∫
Σ(x0)

ν2mi(x)

∣∣∣∣∂φ∂η
∣∣∣∣2 .ηidΣdν ≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣdν,

Then we get the following inequality :∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν +

2− n
2

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν

≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣd

and we can write:∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν +

2− n
2

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν

+
1

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν − 1

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n− 1

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν +

2− n
2

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν

+
1

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν
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=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n− 1

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν − n− 1

2

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν

+
1

2

∫ 1

0

∫
Q

|φt|
2 dxdtdν +

1

2

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n− 1

2

∫ 1

0

∫
Q

(
|φt|

2 − ν2 |∇φ|2
)
dxdtdν

+
1

2

∫ 1

0

∫
Q

(
|φt|

2 + ν2 |∇φ|2
)
dxdtdν

then the conservation of the averaged energy (Definition 2.2) gives us:

1

2

∫ 1

0

∫
Q

(
|φt|

2 + ν2 |∇φ|2
)
dxdtdν =

∫ T

0

1

2

∫ 1

0

∫
Ω

(
|φt|

2 + ν2 |∇φ|2
)
dxdν︸ ︷︷ ︸

average energy

dt

=

∫ T

0

Ea(0)dt

= TEa(0)

so our inequality becomes :∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
n− 1

2

∫ 1

0

∫
Q

(
|φt|

2 − ν2 |∇φ|2
)
dxdtdν︸ ︷︷ ︸

(F)

+ TEa(0)

≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣdtdν,

then now we simplify (F) first of all we multiply the homogeneous equation(2.2) by φ and

integrate we get: ∫ 1

0

∫
Q

φφttdxdtdν︸ ︷︷ ︸
(I)

−
∫ 1

0

∫
Q

ν2φ∆φdxdtdν︸ ︷︷ ︸
(II)

= 0,

then we analyze the first integral (I),we have:∫ 1

0

∫
Ω

φφtdx

∣∣∣∣T
0

dν =

∫ 1

0

∫ T

0

∫
Ω

∂

∂t
(φφt) dxdtdν

=

∫ 1

0

∫
Q

φφttdxdtdν +

∫ 1

0

∫
Q

|φt|
2 dxdtdν,

then we get : ∫ 1

0

∫
Q

φφttdxdtdν =

∫ 1

0

∫
Ω

φφtdx

∣∣∣∣T
0

dν −
∫ 1

0

∫
Q

|φt|
2 dxdtdν. (2.7)

2.3. Averaged inverse and direct inequalities 36



Chapter 2. Averaged null controllability for a parameter-dependent wave equation

Then we analyze the second integral (II),we have according to the green formula (3.4) and in the

(2.2) equation φ = 0 on Σ:∫ 1

0

∫
Q

ν2φ∆φdxdtdν = −
∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν. (2.8)

Then according to (2.7) and (2.8) we get :

0 =

∫ 1

0

∫
Q

φφttdxdtdν −
∫ 1

0

∫
Q

ν2φ∆φdxdtdν =

∫ 1

0

∫
Ω

φφtdx

∣∣∣∣T
0

dν −
∫ 1

0

∫
Q

|φt|
2 dxdtdν

+

∫ 1

0

∫
Q

ν2 |∇φ|2 dxdtdν

=

∫ 1

0

∫
Ω

φφtdx

∣∣∣∣T
0

dν −
∫ 1

0

∫
Q

(
|φt|

2 − ν2 |∇φ|2
)
dxdtdν

Then we get :

(F)⇔
∫ 1

0

∫
Ω

φφtdx

∣∣∣∣T
0

dν =

∫ 1

0

∫
Q

(
|φt|

2 − ν2 |∇φ|2
)
dxdtdν,

so our inequality becomes :∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν︸ ︷︷ ︸
(FF)

+ TEa(0) ≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣdtdν.

Now we simplify (FF) , and thanks to the Cauchy ε−inequality (3.7) so for all ε > 0 , we can

write:∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν ≤ ε

2

∫ 1

0

∫
Ω

|φt|
2 dxdν +

1

2ε

∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi
+
n− 1

2
φ

∣∣∣∣2 dxdν,
(2.9)

and on the other hand :∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi
+
n− 1

2
φ

∣∣∣∣2 dxdν =

∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi

∣∣∣∣2 dxdν +
(n− 1)2

4

∫ 1

0

∫
Ω

|φ|2 dxdν

+ (n− 1)

∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi

∣∣∣∣ |φ| dxdν.
Where: ∫ 1

0

∫
Ω

mi
∂φ

∂xi
φdxdν =

∫ 1

0

∫
Ω

n∑
i=1

mi
∂φ

∂xi
φdxdν =

1

2

∫ 1

0

∫
Ω

n∑
i=1

mi
∂

∂xi
φ2dxdν

Moreover, according to the Gauss divergence formula (3.4) and as (φ = 0 on Σ) we have :

1

2

∫ 1

0

∫
Ω

n∑
i=1

mi
∂

∂xi
φ2dxdν = −1

2

∫ 1

0

∫
Ω

n∑
i=1

∂mi

∂xi
φ2dxdν

= −n
2

∫ 1

0

∫
Ω

φ2dxdν,
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then :∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi
+
n− 1

2
φ

∣∣∣∣2 dxdν =

∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi

∣∣∣∣2 dxdν +

[
(n− 1)2

4
− n (n− 1)

2

]∫ 1

0

∫
Ω

|φ|2 dxdν

=

∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi

∣∣∣∣2 dxdν − (n2 − 1)

4

∫ 1

0

∫
Ω

|φ|2 dxdν

but we have according to Cauchy Schwarz inequality (3.6) the following :(
n∑
i=1

mi
∂φ

∂xi

)2

≤
(

n∑
i=1

(mi)
2

)(
n∑
i=1

(
∂φ

∂xi

)2
)

≤ ‖m(x)‖2 |∇φ(x)|2 .

Then we write : ∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi
+
n− 1

2
φ

∣∣∣∣2 dxdν ≤ ∫ 1

0

∫
Ω

∣∣∣∣mi
∂φ

∂xi

∣∣∣∣2 dxdν
≤ R2(x0)

∫ 1

0

∫
Ω

|∇φ(x)|2 dxdν

we can take ε = R(x0) in (2.9) we get :∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν ≤ R(x0)

2

∫ 1

0

∫
Ω

|φt|
2 dxdν +

R(x0)

2

∫ 1

0

∫
Ω

|∇φ(x)|2 dxdν

= R(x0)Ea(0),

so we simplify the following :∣∣∣∣∣
∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν

∣∣∣∣∣ ≤ 2 sup
t∈(0,T )

∣∣∣∣∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dxdν

∣∣∣∣
≤ 2

∥∥∥∥∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dxdν

∥∥∥∥
L∞(0,T )

≤ 2R(x0)Ea(0),

when we take T (x0) = 2R(x0), we get:∣∣∣∣∣
∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν

∣∣∣∣∣ ≤ T (x0)Ea(0),

but we have :∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν + TEa(0) ≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣdtdν
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and on the other hand

TEa(0)− T (x0)Ea(0) ≤ TEa(0)−
∣∣∣∣∣
∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν

∣∣∣∣∣
≤

∫ 1

0

∫
Ω

φt

(
mi

∂φ

∂xi
+
n− 1

2
φ

)
dx

∣∣∣∣T
0

dν + TEa(0),

so we get directly :

(
T − T (x0)

)
Ea(0) ≤ R(x0)

2

∫ 1

0

∫
Σ(x0)

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣdtdν.

Theorem 2.4 (Averaged direct inequality) Let Ω be a bounded domain of Rd with frontier of class

C2. Then, there exists a constant C > 0 such that the solution of the homogeneous equation (2.2)

verifies the following inequality:∫ 1

0

∫
Γ

ν2

∣∣∣∣∂φ∂η
∣∣∣∣2 dΣdtdν ≤ C

∫ 1

0

∫
Ω

(∣∣φ1
∣∣2 + ν2

∣∣∇φ0
∣∣2) dxdν,

moreover this inequality implies the following averaged regularity property for the solution of (2.2):

ν
∂φ

∂η
∈ L2(Σ× (0, 1)).

where η is the unit normal vector.

Proof. See the section 2 of [1],and the chapter 1, lemma 3.1 in [8].

2.4 Averaged null controllability(The Hilbert Uniqueness Method)

In this section we try to solve the problem of averaged null controllability of (2.1) , using the

HUM method introduced in the last chapter.

So let’s start by introducing the backward equation:

ψtt − ν2∆ψ = 0

ψ =


∫ 1

0
ν2∂φ

∂η
dν

0

ψ (T ) = 0, ψt (T ) = 0

in Q,

on Σ0,

on Σ̃0,

in Ω.

(2.10)

where Q , Σ0, Σ̃0 and Ω is the same one introduced in the subsection (1.3.1) , and like we do

in section (1.3.2) for the HUM method we do here for define The operator Λ so first we just
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multiply the backward equation by φ and integrate on Q and taking average between (0,1) we

just get according to (1.18) and (1.19) the following :∫ 1

0

∫
Q

φ
(
ψtt − ν2∆ψ

)
dxdtdν =

∫
Ω

φ1

∫ 1

0

ψ(0)dνdx−
∫

Ω

φ0

∫ 1

0

ψt(0)dνdx+

∫ 1

0

∫
Σ0

ν2ψ∇φ.ηdΓdtdν,

the new here is we just taking the average between (0,1) , so the formula (1.20) becomes :∫
Ω

φ1

∫ 1

0

ψ(0)dνdx−
∫

Ω

φ0

∫ 1

0

ψt(0)dνdx =

∫
Σ0

∣∣∣∣∫ 1

0

ν2∂φ

∂η
dν

∣∣∣∣2 dΓdt,

and now we can define The operator Λ on D(Ω)×D(Ω) by:

Λ
{
φ0, φ1

}
=

〈∫ 1

0

ψ(0)dν,−
∫ 1

0

ψt(0)dν

〉
,

so we get like we just do in the (page 14) and see [1] and [2]:

〈
Λ
{
φ0, φ1

}
,
{
φ0, φ1

}〉
=

∫
Σ0

∣∣∣∣∫ 1

0

ν2∂φ

∂η
dν

∣∣∣∣2 dΓdt,

and like we introduce before the space F we can here take this semi norm on F like that:

∥∥{φ0, φ1
}∥∥2

F
=

∫
Σ0

∣∣∣∣∫ 1

0

ν2∂φ

∂η
dν

∣∣∣∣2 dΓdt

in fact this semi norm defines a norm on space F is equivalent to verifying the following unique-

ness theorem because its satisfies the first condition in the definition of the norm application.

Theorem 2.5 (uniqueness theorem) [1]

Let φ be a solution for the homogeneous equation (2.2) . Then, if
∂φ

∂η
= 0 on Σ0 × (0, 1) we have

φ = 0 in Q× (0, 1).

Proof. For the proof see the page 88 in [8] where we just need the averaged inverse inequality

theorem (2.3).

Remark 2.2 So like in the remark (1.6) The operator Λ is an isomorphism on space F which implies

the averaged null controllability of the (2.1) with averaged control given by u =
∫ 1

0
ν2∂φ

∂η
dν.
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Chapter 3

Averaged null controllability for a

parameter-dependent vibrating plate

equation

Plate vibrations are a subset of the more general issue of mechanical vibrations . Because one

of the dimensions of a plate is substantially less than the other two, the equations regulating

its motion are simpler than those guiding the motion of conventional three-dimensional objects.

This implies that a two-dimensional plate theory will provide a good approximation to the actual

three-dimensional motion of a plate-like object, which is confirmed , see [14].

We are interested here in the averaged null controllability of the vibrating plate equation with a

control of the Neumann type on the system boundary.

In this chapter we treat the problem of the vibrating plate equation we introduce our problem,we

also demonstrate an averaged inverse and direct inequalities giving some coercivity and conti-

nuity results respectively for the main introduced operator in HUM method like we do in the last

chapter.

3.1 Vibrating plate equation depending on a parameter

Let us denote an open bounded subset Ω of (Rd, d ≥ 1) with a regular border Γ and T > 0 , and

we use the term Q = Ω× ]0, T [ , Σ = Γ× ]0, T [ . We consider the controlled system below, which
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describes plate vibrations: 
ytt + ∆(a(x, ν)∆y) = 0

y = 0,
∂y

∂η
= u

y(x, 0) = y0, yt(x, 0) = y1

in Q,

on Σ,

in Ω,

(3.1)

where a ∈ C1(]0, 1[ , L∞(Ω)),H = H2
0 (Ω)×L2 (Ω) is the state space[8], η is the unit normal vector

on Γ, U ⊂ L2(0, T ;L∞(Ω)) be set of admissible controls, For every (y1, y0) ∈ H2
0 (Ω)× L2 (Ω) and

u ∈ U , our system has a unique weak solution :

(y, yt) =

(
yu,

∂yu
∂t

)
∈ C (0, T ;H) ,

see the chapter IV in [8].

Definition 3.1 [1]The system of vibrating plate is said to be averaged null controllable If there is a

control u independent of the parameter ν such that(∫ 1

0

y (x, T, ν) dν,

∫ 1

0

yt (x, T, ν) dν

)
= (0, 0) . (3.2)

3.2 The averaged energy

We consider the following homogeneous plate equation, which has smooth beginning conditions:
φtt + ∆(a(x, ν)∆φ) = 0

φ =
∂φ

∂η
= 0

φ(x, 0) = φ0, φt(x, 0) = φ1

in Q,

on Σ,

in Ω,

(3.3)

where
(
φ0, φ1

)
∈ H2

0 (Ω) × L2 (Ω) don’t depend on ν. The homogeneous plate equation is well-

known for having a unique solution. φ = φ(x, t, ν) [15].

Definition 3.2 (The averaged energy) [1]We define for all t ∈ (0, T ) the averaged energy with

respect to ν associated to the solution of the vibrating plate homogeneous equation by the following

quadratic form:

Ea(t) =
1

2

∫ 1

0

∫
Ω

[
|φt|

2 + a(x, ν) |∆φ|2
]
dxdν . (3.4)

Lemma 3.1 [1]For all φ the solution of the homogeneous problem (3.3) the averaged energy (3.4) is

conserved for all t ∈ (0, T ) i.e.:

Ea(t) = Ea(0) =
1

2

∫ 1

0

∫
Ω

[∣∣φ1
∣∣2 + a(x, ν)

∣∣∆φ0
∣∣2] dxdν.
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Proof. [1]Let’s multiplying the homogeneous equation with φt and we integrate on (0, 1)×Q and

by using the second identity of green (3.4) we get the following:

0 =

∫ 1

0

∫
Ω

(φtt + ∆(a(x, ν)∆φ))φtdxdν

=

∫ 1

0

∫
Ω

φtφttdxdν +

∫ 1

0

∫
Ω

φt∆(a(x, ν)∆φ)dxdν

=
1

2

∫ 1

0

d

dt

∫
Ω

|φt|
2 dxdν +

1

2

∫ 1

0

d

dt

∫
Ω

a(x, ν) |∆φt|
2 dxdν︸ ︷︷ ︸

Green indentity II (3.4)

−
∫ 1

0

∫
Σ

[
a(x, ν)∆φ

(
∂φt
∂η

)
− ∂

∂η
(a(x, ν)∆φ)φt

]
dΣdν︸ ︷︷ ︸

Green indentity II (3.4)

,

but according to the boundary conditions in the homogeneous system we get :

0 =

∫ 1

0

∫
Ω

(φtt + ∆(a(x, ν)∆φ))φtdxdν

=
1

2

∫ 1

0

d

dt

∫
Ω

|φt|
2 dxdν +

1

2

∫ 1

0

d

dt

∫
Ω

a(x, ν) |∆φt|
2 dxdν

=
dEa(t)

dt
,

then the energy is conserved.(i.e):

Ea(t) = Ea(0) =
1

2

∫ 1

0

∫
Ω

[∣∣φ1
∣∣2 + a(x, ν)

∣∣∆φ0
∣∣2] dxdν.

3.3 Averaged direct and inverse inequalities

The goal of this part is to create an identity for the problem’s weak solutions (3.1) , from which

we will show the estimations required for Hilbert Uniqueness Method (HUM) application and

create observability theorems (the averaged inverse inequality).

In this chapter we treat the problem of vibrating plates equation we introduce our problem , we

also demonstrate an averaged inverse and direct inequalities giving some coercivity and conti-

nuity results respectively for the main introduced operator in HUM method.
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Let’s begin by stating the following backward equation (2.10):

ψtt − ν2∆ψ = 0

ψ =


∫ 1

0
ν2∂φ

∂η
dν

0

ψ (T ) = 0, ψt (T ) = 0

in Q,

on Σ0,

on Σ̃0,

in Ω.

(3.5)

Lemma 3.2 [1] Let q = (qk) be a vector field in
(
C1
(
Ω
))n

independent of the parameter ν, then for

every weak solution φ for (3.5), we have:

1

2

∫ 1

0

∫
Σ

a(x, ν)qiηi |∆φ|
2 dΣdν

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dxdν

∣∣∣∣T
0

+
1

2

∫ 1

0

∫
Q

∂qi
∂xi
|φt|

2 dxdtdν

+

∫ 1

0

∫
Q

a(x, ν)∆qi∆φ
∂φ

∂xi
dxdtdν

+2

∫ 1

0

∫
Q

a(x, ν)
∂qi
∂xj

∆φ
∂2φ

∂xj∂xi
dxdtdν

−1

2

∫ 1

0

∫
Q

∂

∂xi
(a(x, ν)qi) |∆φ|2 dxdtdν. (3.6)

Proof. Let’s multiply the backward equation (3.5) by the mulltiplicative qi
∂φ

∂xi
and integrating

over (0, 1)×Q :

0 =

∫ 1

0

∫
Q

(φtt + ∆(a(x, ν)∆φ)) qi
∂φ

∂xi
dxdtdν

=

∫ 1

0

∫
Q

φttqi
∂φ

∂xi
dxdtdν︸ ︷︷ ︸

(I)

+

∫ 1

0

∫
Q

∆(a(x, ν)∆φ)qi
∂φ

∂xi
dxdtdν︸ ︷︷ ︸

(II)

Analyse of the first intgral (I):∫ 1

0

∫
Q

φttqi
∂φ

∂xi
dxdtdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν −
∫ 1

0

∫
Q

φtqi
∂φt
∂xi

dxdtdν (3.7)

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν − 1

2

∫ 1

0

∫
Q

qi
∂

∂xi
|φt|

2 dxdtdν
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and we observe that : ∫ 1

0

∫
Q

φtqi
∂φt
∂xi

dxdtdν

=
1

2

∫ 1

0

∫
Q

qi
∂

∂xi
|φt|

2 dxdtdν

= −1

2

∫ 1

0

∫
Q

∂qi
∂xi
|φt|

2 dxdtdν, (3.8)

then we just get:∫ 1

0

∫
Q

φttqi
∂φ

∂xi
dxdtdν =

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dx

∣∣∣∣T
0

dν +
1

2

∫ 1

0

∫
Q

∂qi
∂xi
|φt|

2 dxdtdν. (3.9)

Analyse of the second intgral (II) , first of all we apply the second identity of green (3.4) we get :∫ 1

0

∫
Q

∆(a(x, ν)∆φ)qi
∂φ

∂xi
dxdtdν

=

∫ 1

0

∫
Q

a(x, ν)∆φ∆

(
qi
∂φ

∂xi

)
dxdtdν

+

∫ 1

0

∫
Σ

∂

∂η
(a(x, ν)∆φ) qi

∂φ

∂xi
dΣdν

−
∫ 1

0

∫
Σ

a(x, ν)∆φ
∂

∂η

(
qi
∂φ

∂xi

)
dΣdν,

and because qi
∂φ

∂xi
= 0 on Σ we get :

∫ 1

0

∫
Q

∆(a(x, ν)∆φ)qi
∂φ

∂xi
dxdtdν =

∫ 1

0

∫
Q

a(x, ν)∆φ∆

(
qi
∂φ

∂xi

)
dxdtdν

−
∫ 1

0

∫
Σ

a(x, ν)∆φ
∂

∂η

(
qi
∂φ

∂xi

)
dΣdν.

And we have :

∆

(
qi
∂φ

∂xi

)
=

(
∆qi

∂φ

∂xi
+ 2

∂qi
∂xj

∂2φ

∂xj∂xi
+ qi

∂∆φ

∂xi

)
,

and
∂

∂η

(
qi
∂φ

∂xi

)
=

(
∂qi
∂η

∂φ

∂xi
+ qi

∂2φ

∂η∂xi

)
= qi

∂2φ

∂η∂xi
,

because of
∂φ

∂xi
= 0 on Σ.
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Then we write : ∫ 1

0

∫
Q

∆(a(x, ν)∆φ)qi
∂φ

∂xi
dxdtdν

=

∫ 1

0

∫
Q

a(x, ν)∆φ∆qi
∂φ

∂xi
dxdtdν

+2

∫ 1

0

∫
Q

a(x, ν)∆φ
∂qi
∂xj

∂2φ

∂xj∂xi
dxdtdν

+

∫ 1

0

∫
Q

a(x, ν)∆φqi
∂∆φ

∂xi
dxdtdν

−
∫ 1

0

∫
Σ

a(x, ν)∆φqi
∂2φ

∂η∂xi
dΣdν.

But we have:∫ 1

0

∫
Q

a(x, ν)∆φqi
∂∆φ

∂xi
dxdtdν =

1

2

∫ 1

0

∫
Q

a(x, ν)qi
∂

∂xi
|∆φ|2 dxdtdν

= −1

2

∫ 1

0

∫
Q

∂

∂xi
(a(x, ν)qi) |∆φ|2 dxdtdν

+
1

2

∫ 1

0

∫
Σ

a(x, ν)qiηi |∆φ|
2 dxdtdν,

so we get: ∫ 1

0

∫
Q

∆(a(x, ν)∆φ)qi
∂φ

∂xi
dxdtdν

=

∫ 1

0

∫
Q

a(x, ν)∆φ∆qi
∂φ

∂xi
dxdtdν

+2

∫ 1

0

∫
Q

a(x, ν)∆φ
∂qi
∂xj

∂2φ

∂xj∂xi
dxdtdν

−1

2

∫ 1

0

∫
Q

∂

∂xi
(a(x, ν)qi) |∆φ|2 dxdtdν

−
∫ 1

0

∫
Σ

(
a(x, ν)∆φqi

∂2φ

∂η∂xi
− 1

2
a(x, ν)qiηi |∆φ|

2

)
dΣdν.

in other hand , because of φ ∈ H2
0 (Ω), we have:

∂2φ

∂η∂xi
=
∂2φ

∂η2
ηi and

∂2φ

∂2xi
=
∂2φ

∂η2
η2
i on Σ,

and we have : ∫ 1

0

∫
Σ

(
−a(x, ν)∆φqi

∂2φ

∂η∂xi
+

1

2
a(x, ν)qiηi |∆φ|

2

)
dΣdν

= −1

2

∫ 1

0

∫
Σ

a(x, ν)qiηi |∆φ|
2 dΣdν.
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So we just get the identity (3.5):

1

2

∫ 1

0

∫
Σ

a(x, ν)qiηi |∆φ|
2 dΣdν

=

∫ 1

0

∫
Ω

φtqi
∂φ

∂xi
dxdν

∣∣∣∣T
0

+
1

2

∫ 1

0

∫
Q

∂qi
∂xi
|φt|

2 dxdtdν

+

∫ 1

0

∫
Q

a(x, ν)∆qi∆φ
∂φ

∂xi
dxdtdν

+2

∫ 1

0

∫
Q

a(x, ν)
∂qi
∂xj

∆φ
∂2φ

∂xj∂xi
dxdtdν

−1

2

∫ 1

0

∫
Q

∂

∂xi
(a(x, ν)qi) |∆φ|2 dxdtdν .

Theorem 3.1 (The direct inequality) [1] Let T > 0 to be arbitrarily, and for every
(
φ0, φ1

)
there

exists a constant c = c(T ) > 0 such that the solution of the adjoint equation (3.5) verifies the

following inequality:

1

2

∫ 1

0

∫
Σ

a(x, ν) |∆φ|2 dΣdν ≤ c

∫ 1

0

∫
Ω

[∣∣φ1
∣∣2 + a(x, ν)

∣∣∆φ0
∣∣2] dxdν . (3.10)

Proof. For the proof see [1] and the chapter 1, lemma (3.2) of [8] where we find the main idea

of the proof.

Lemma 3.3 [1]From the inequality (3.10) we deduce that for any weak solution φ of the homogeneous

plate equation we have ∆φ ∈ L2(Σ).

Let’s start with the notation below , for x0 ∈ Rn we set

m(x) = x− x0 (x ∈ Rn) ,

Γ
(
x0
)

= {x ∈ Γ;m(x).η(x) > 0} ,

Γ̃
(
x0
)

= Γ\Γ
(
x0
)
,

R(x0) = sup
x∈Ω

|m(x)| .

And let λ0 to be the first eigenvalue of the problem

∆(a(x, ν)∆φ) = −λ2
0a(x, ν)∆φ, φ ∈ H2

0 (Ω) .
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Where the eigenvalue λ2
0 is characterized by

λ2
0 = min

φ∈H2
0 (Ω)\{0}

∫ 1

0

∫
Ω
|∇φ|2 dx∫

Ω
a(x, ν) |∆φ|2 dx

dν,

then we have:

λ2
0 ≤

∫ 1

0

∫
Ω
|∇φ|2 dx∫

Ω
a(x, ν) |∆φ|2 dx

dν , ∀φ ∈ H2
0 (Ω) .

Theorem 3.2 (The inverse inequality) [1] Suppose that Γ is of class C3, so for every T we have

T > T
(
x0
)

=
R(x0)

λ0

,

and any every solution φ of homogeneous problem (3.3), so we have the following inequality

(
T − T (x0)

)
Ea (0) ≤ R(x0)

4

∫ 1

0

∫
Σ(x0)

a(x, ν) |∆φ|2 dΣdν . (3.11)

Proof. We just need the notation of lemma (3.3) and see [1].

3.4 Averaged null controllability(The Hilbert Uniqueness Method)

The key procedures for calculating the control function u that guides the averaged state of the

system (3.1) to the null state are presented in this section . Lions [8] established the Hilbert

Uniqueness Technique (HUM), which is the basis for this method.

Theorem 3.3 Assume that Theorem (3.2) assumptions are correct .Then, for any given set of initial

data (y0, y1) ∈ L2 (Ω) ×H−2 (Ω) there exists u ∈ L2(Σ(x0)) such that the solution of (3.1) satisfies

(3.2).

Proof. [1]To begin, consider the following backward equation

ψtt + ∆(a(x, ν)∆ψ) = 0

ψ = 0

∂ψ

∂η
=

{ ∫ 1

0
a(x, ν)∆φdν

0

ψ(x, T ) = ψt(x, T ) = 0

in Q,

on Σ,

on Σ (x0) ,

on Σ̃ (x0) ,

in Ω.

And we define the operator Λ on D (Ω)×D (Ω) by

Λ
(
φ0, φ1

)
=

(∫ 1

0

ψt(x, 0, ν)dν,−
∫ 1

0

ψ(x, 0, ν)dν

)
.
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And we have by mulitipling the backward equation by φ and integrate on (0.1)×Q :∫ 1

0

∫
Q

(ψtt + ∆(a(x, ν)∆ψ))φdxdtdν

=

∫ 1

0

∫
Q

ψttφdxdtdν +

∫ 1

0

∫
Q

φ∆(a(x, ν)∆ψdxdtdν

=

∫ 1

0

∫
Ω

ψ(T, x, ν)φt(T, x, ν)dxdtdν −
∫ 1

0

∫
Ω

ψ(0, x, ν)φt(0, x, ν)dxdtdν

−
∫ 1

0

∫
Ω

ψt(T, x, ν)φ(T, x, ν)dxdtdν +

∫ 1

0

∫
Ω

ψt(0, x, ν)φ(0, x, ν)dxdtdν

+

∫ 1

0

∫
Σ

ψ
∂

∂η
(a(x, ν)∆φ)dΣdν −

∫ 1

0

∫
Σ

a(x, ν)∆φ
∂ψ

∂η
dΣdν

= 0 .

Then according to the boundary condition, we get∫
Ω

φ0(x)

∫ 1

0

ψt(x, 0, ν)dνdx−
∫

Ω

φ1(x)

∫ 1

0

ψ(x, 0, ν)dνdx =

∫
Σ

∣∣∣∣∫ 1

0

a(x, ν)∆φdν

∣∣∣∣2 dΣ,

then we set: (
Λ
(
φ0, φ1

)
,
(
φ0, φ1

))
=

∫
Σ

∣∣∣∣∫ 1

0

a(x, ν)∆φdν

∣∣∣∣2 dΣ.

Then we set the Hilbert space F = H2
0 (Ω)×L2 (Ω) (see [11]) completed by D (Ω)×D (Ω) for the

norm ∥∥(φ0, φ1
)∥∥

F
=

∥∥∥∥∫ 1

0

a(x, ν)∆φdν

∥∥∥∥
L2(Σ)

.

From (3.11) and the Lax-Milgram lemma (3.8) results that Λ defines an isomorphism from

H2
0 (Ω) × L2 (Ω) to H−2

0 (Ω) × L2 (Ω). From HUM we deduce the null controllability of the ini-

tial data (y1,−y0) ∈ H−2
0 (Ω) × L2 (Ω) , the equation Λ

(
φ0, φ1

)
= (y1,−y0) has a unique solution(

φ0, φ1
)

. Then the control u ∈ L2 (Σ0) given by

u =

∫ 1

0

a(x, ν)∆φdν,

Where φ the solution of homogeneous plate equation (3.3) associated with the data
(
φ0, φ1

)
∈

H2
0 (Ω)× L2 (Ω) .
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Conclusion & perspectives

Our work has led us to characterized the average control for the wave equation, and the vibrating

plates equation where we controlled the displacement to be compatible with unknown physical

proprieties.

We have study the HUM method to contol our systems in average. We have avoided the missing

velocity of propagation parameter by controlling the average of the state with respect to this

parameter. Then, we get coontrolling systems characterizing the averaged control.

As well as, we have characterized the control for an wave equation by thr HUM argument, and

we do the same with vibrating plates equation.

We note that in both studied problems, the control has characterized by an adjoint system which

has a simple structure.

In the future, the notion of averaged control and HUM method could be applied to control other

distributed systems depending on an unknown parameter on the boundary.
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Appendices

Definition 3.3 We call a vector field an application f : Rn → Rn who has x = (x1, · · · , xn) associate

f(x) = (f1(x), · · · , fn(x)) for a function g : Rn → R,its Gradient is the vector field defined by

∇g(x) = (∂g(x)
∂x1

, · · · , ∂g(x)
∂xn

).

For a vector field f : Rn → Rn we call Divergence the function div f(x) = ∂f1(x)
∂x1

+ · · ·+ ∂fn(x)
∂xn

.

We call Laplacian of a function g : Rn → R the function ∆g(x) = div(∇g) = ∂2g(x)
∂2x1

+ · · ·+ ∂2g(x)
∂2xn

.

Let Ω be a bounded subset of Rn, the border of which is regular.

Definition 3.4 We call normal to the domain Ω a vector field η(x) defined on the bord ∂Ω of Ω and

such that at any point x ∈ ∂Ω where the bord is regular , η(x) either orthogonal to the edge and

unitary (‖η(x)‖ = 1).We calls external normal a normal which points towards the outside of the

field at any point.

We call normal derivative of a regular function g on the bord of a domain Ω the function defined on

the regular points of ∂Ω by ∂g(x)
∂η

= ∇g(x).η(x),(where ∇g(x).η(x) is the scalar product of the vector

∇g(x) with the vector η(x)).

Meaning of surface or contour integrals

In dimension two

Let Γ be a regular parameterized curve of R2 , {x(t) = (x1(t), x2(t), t ∈ [a, b]}.We call an integral

of a function u on Γ : ∫
Γ

udσ =

∫ b

a

u(x1(t), x2(t)) ‖x′(t)‖ dt,

where ‖x′(t)‖ =
√
x′1(t)2 + x′2(t)2.

Theorem 3.4 (Divergence and Green formula) [11]

Let Ω be a domain of Rn,and η(x) its exterior normal. Let u and v be two regular functions , w a field

of vectors defined on Ω. So∫
Ω

divwdx =

∫
∂Ω

w.ηdσ (divergence formula) (3.12)

∫
Ω

(∆u)vdx = −
∫

Ω

∇u.∇vdx+

∫
∂Ω

∂u

∂η
vdσ (green formula I) (3.13)∫

Ω

(v∆u− u∆v) dx =

∫
Ω

(
v
∂u

∂η
− u∂v

∂η

)
dx (green formula II) (3.14)

Theorem 3.5 (classicl Kalman rank condition) [13]
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Consider the following finite dimensional linear control system where A is a real n × n matrix, B is

a real n × m matrix and y0 a vector in Rn , the function y : [0, T ] → Rn represents the state and

u : [0, T ]→ Rn the control with the form{
y′(t) = Ay(t) +Bu(t), 0 < t < T,

y(0) = y0.

This System is controllable in some time T if and only if

Rank
[
B,AB,A2B, ..., An−1B

]
= n.

Consequently, if our system is controllable in some time T > 0 it is controllable in any time.

Theorem 3.6 (Cauchy-Schwarz inequality) [11]

∀u, v ∈ L2(Ω);

∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ (∫
Ω

|u|2 dx
) 1

2
(∫

Ω

|v|2 dx
) 1

2

.

Theorem 3.7 (Cauchy inequality with ε) [11]

Also called ε−inequality the following :

|ab| ≤ ε

2
|a|2 +

1

2ε
|b|2 .

For all ε > 0 , a, b ∈ R.

Bilinear forms and the Lax-Milgram Theorem:

Definition 3.5 [11]In the variational formulation of boundary value problems a key role is played

by bilinear forms. Given two linear spaces H1, H2 , a bilinear form in H1 ×H2 is a function :

a : H1 ×H2 → R

satisfying the following properties:

i) ∀y ∈ H2 , the function:

x 7→ a(x, y)

is linear in H1 .

ii) ∀x ∈ H1 , the function:

y 7→ a(x, y)

is linear in H2 .

When H1 = H2 , we simply say that a is a bilinear form in the hilbert space H .
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Definition 3.6 (abstract variational problem) [11]

Let H be a Hilbert space a be a bilinear form in H and F ∈ H∗ . Consider the following problem,

called abstract variational problem:{
Find u ∈ H such that :

a(u, v) = 〈F, v〉 , ∀v ∈ H .
(3.15)

Theorem 3.8 (Lax - Milgram) [11]

Let H be a real Hilbert space . Let a = a(u, v) be a bilinear form in H. If:

i) a is continuous.

ii) a is coercive.

Then there exists a unique solution û ∈ H of the problem (2.13).

Proof. For the proof see the page 336 in [11].
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