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 شكر و عرفـان

 

 
شكره اإ شكرا جزیلا  نحمد الله و  الق ا ،ذ هو  و معی  

 ٔ ٔ فهو ا لشكر في كل ا .وقات و الظروفولى   

ا ي وفق لیه الخير كله ا ني  ل و ن  نحمد الله عز و 

س ،تمام هذا العمللإ    ان يجعل هذا كلهٔ و 

ه فع به من بعد ن  ینفعنا به ٔ  الكريم و الصا لو .و ی  

كل  ٔ تر إ نتقدم  شكر و عرفاننا ل ر  سو ام و تقد رستاذ و البروف  

نا في البحث  ي كان مو العلميالفاضل ا  

اح ،"زراولیة الحاج" ير في شق الطریق نحو الن ي كان  الفضل الك ا  

لى كل النصائح .و التوجيهات و   

ٔ كما نتقدم  راسیةلشكر لكل ا بر مسيرتنا ا ا  كوی ساتذة في   

،لى الجامعةإ بتدائیة من الإ   

دة من قری  كلإلى و و من بعیدب ٔ من قدم لنا ید المسا  

الص الإ  ا  رف م ،ترام و التقد  

.ن يجازي الجمیع كل الخيرٔ ل الله ٔ س  

 

 

 

  



  

  

 إھداء
ي زد و بارك و علمت بما أنفع م نور،علماالل و قل يع ر القرآن اجعل م الل

مي اب ذ و ي حز جلاء و ن–صدري -آم  

إ دي ج ثمرة دي :أ  

الر  بلغ مةمن ن و مانة أدى و وإسالة عليھ الله ص محمد سيدنا الرحمة ن

  .سلم

العلم ق طر د ليم ي در عن شواك حصد من إ منھ نتغذى الذي ان الشر يا،إ

قل حب و ي حيا يشمعة مأ رؤوسنا،الكر فوق تاجا أدامك و عمرك الله .أطال  

العقل كمال و كمة ا علمت من إ رض الله جنة من،إ إ عتدال قوة و

الليا م رت س و الصعاب ق طر م ع،شقت مث و ي در أنار را با قمرا يا

ياة شر،الغاليةأميا ل من حفظك و عمرك الله .أطال  

ء ع تبخل لم و ي ولاد منذ ساندت من أجل،إ من شتعل ال الشمعة إ

ميع الثانية،ا أمي فطومإ شرخال ل من حفظك و الله .شفاك  

جب و ي قو و ي ا إت و سندي و مسندي يميل،إ لا الذي الثابت ضل وكب ال أو

ز الصديقالعز   .محمد

رو و ي صغ ل الم ة ب و حلوى ي ،إ ال الصغ جعلكأ و وفقك و الله أعزك

ن المتفوق .من  

العمل ذا إنجاز ك شر أخرىخلودإ أعمال رفقتك كة،أتم الشر خ كن  

حياتك التوفيق . ل  

م يذكر لم و قل م سع من ل دي،قلميإ ج ثمرة دي أ ؤلاء ل   .إ

رمق آخر إ أس الدرب ع فمازلت براحلة لست قلت الرحيل قالوا خ و

الله شاء إن ي .حيا  
 

 بثینة
    



  

   

 

 إھداء
 

عدٌ  أما و ومن لھ وأ المصطفى ب ب ا ع والصلاة وكفى مد :ا  

وفقنا الذي وأبدا دائما مد بمذكرتناا الدراسية تنا مس طوة ا ذه ن لتثم

إ داة م عا بفضلھ النجاح و د ا :ثمرة  

ي:  جد

م ي ا,ل م أك فأن ي ل من ت الشكر رة- عبارات الز جيال-طراد ية مر و ي  مر

واعتمر من وعدد المطر قطرات عدد العرفان و التقدير .ل  

 والدي

أنت, إليك إلا ستحقھ لا الذي الشكر عقد لتنظم العبارات احم وت لمات ال سابق :ت

العطا تظر ت ولم بذلت يء،يامن أ يا الله شفاك والتقدير الشكر عبارات دي أ إليك

رؤوسنا فوق تاجا وادامك عمرك وأطال .الغا  

ي:  والد

كتاب ا ووقر ا قدم تحت نة ا عا و سبحانھ المو وضع زمن العز بة-ھ ب ا -أمي

قدم ما ع شكر ألف غالي يا الله .حفظك  

يوسف ز العز  أ

. ا ل لك وكتب ك در وأنار الله حفظك ونوره ت الب اس  : ن

ي:  أخوا

الله وفقكم ي سعاد مصدر يا زعرورة إيناس، رحاب،   إكرام،

أعمالكم ل وس كم در .وأنار  
 

و   



 
 

 
 
 
 
 
 
 
 
 
 
 

 أخوا

شكرا قلت إن م نا و م ،أبنا م زوجا ل و سليم،رشيد،أحمد ي، الغا عبد ي الثا ي : أ

حقكم يوفيكم لن مشكورا،فشكري الس ان ف سعيتم عن،حقا ي ح جف وإن

ا عب ب يا قل يكتبكم .التعب  

ي:  خالا

لقل فرحة الله أدامكم ي اسعاد و سندي يا م نا و م ،وأبنا م وأزواج يبة, أمال  و

لدعكم إمتنان وألف ي حيا لوجودكم .شكرا  

عزاء: عائل  با

ي شة،يمينة:جدا وعم،عا م،أعمامي وأزواج م زوجا وجميع ي وخالا م،أخوا أبنا

لكم ارك و الله حفظكم م نا التقدير،و و الشكر فائق م .لكم  

الثانية_ عائل أبدا أ من-سعودي- ولا متنان و الشكر عبارات بأجمل لكم أتقدم

عز الله داعية لكم والتقدير ام بالإح فاض  قلب

حميكم و يحفظكم أن .وجل  

 

ي  صديقا

ثانية ل ل لكم شكرا والسعادة الفرح مصدر نور مروة، اجر،صفاء، ة، أم :إكرام،

كم در وأنار الله وفقكم نا محب و عشرتنا الله أدام معكم ا .أمضي  

المذكرة ك  شر

الغالية. صديق يا ي ووفق عشرتنا الله أدام الشكر ل جز م ي ل نة  :بث

لمة بال ولو ي ساند من ل ل بالشكر أتقدم آخرا س ول ا ختامھوأخ الطيبةوالسلام

.مسك  

 خلود



 

 

 
 
 
 
 
 
 
 
 

 
Abstract 

 
The objective of this thesis is to study the dynamical behaviors of 
the Zeraoulia- Sprott mapping. In particular, this map is the first 
simple rational map whose fraction has no vanishing denominator 
and gives chaotic attractors . 

 In the first chapter, we mentioned some important and 
comprehensive concepts of dynamical system theory. 

 In the second chapter, we introduced a two-dimentional 
smooth discrete bounded map capable of generating multi-
fold strange attractors . 

 In the third chapter we studied periodic 2-orbits of the 
Zeraoulia-Sprott mapping and we investigete also the 
bounded and unbounded orbits. 
 

 
 
 
 
 
 
 



 

 

 
 
 
 
 
 

Resumé 
 
L'objectif de cette thèse est d'étudier le comportement 
dynamique d’application de Zeraoulia-Sprott. En particulier, 
l'application étudiée est la première application rationnelle 
simple dont la dénominateur est non zéro et donne des 
attracteurs chaotiques. 
 Dans le premier chapitre, nous avons mentionné 

quelques concepts importants  de la théorie des systèmes 
dynamique. 

 Dans le deuxième chapitre, nous avons introduit une 
application lisse,  bornée, discrète et bidimensionnelle 
capable de générer des attracteurs étranges multi-plis. 

 Dans le dernier chapitre nous avons étudié les périodique 
de période 2 de l’applications de Zeraoulia-Sprott et 
nous avons également étudié leur orbites bornées et non 
bornées. 
 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 

 ملخص
 
الھدف من ھذه الرسالة ھو دراسة السلوك 

 . سبروت-زراولیة لتطبیقات الدینامیكي
التطبیق المدروس ھو أول تطبیق   على وجھ الخصوص 

یعطي  صفريكسري بسیط لا یحتوي كسره على مقام 
 .جاذبات فوضویة

  ذكرنا في الفصل الاول بعض المفاھیم
 .الھامة والشاملة للنظام الدینامیكي

  الثاني قدمنا تطبیقا ثنائي الفصل  في
محدود منفصل قادر  قابل للاشتقاق الابعاد

 .الطیات-متعددةجاذبات غریبة على تولید 
  لتطبیقات  2في الفصل الاخیر درسنا الدور

و درسنا ایضا مداراتھا  سبروت-زراولیة
 .المحدودة و غیر المحدودة
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General Introduction

Dynamical systems are developed during the 19th century. Indeed in the end of this century, the

French mathematician, physicist and philosopher Henri Poincaré had already put highlights the

phenomenon of sensitivity to initial conditions. He showed in his study of solar system that there

were stable and unstable orbits and that sometimes, a very weak disruption in the system could

cause an orbit to change the state. He surrendered take into account that perfectly similar causes

may not have the same effects.

In our work, we focus on the simplest two dimensional rational discrete chaotic mapping called

the Zeraoulia- Sprott map which describes different random evolutionary processes. It produces

several new chaotic attractors obtained via the quasi-periodic route to chaos.

In this thesis, we will provide a basic analysis of this mapping and give a detailed study of its

dynamics. Our thesis is composed of three chapters: The first chapter presents some definitions

and concepts that we will used later. In the second chapter we will introduce a two-dimensional,

C∞-discrete bounded map capable of generating multi- fold strange attractors via period-doubling

bifurcation routes to chaos. The third chapter is devoted to the analysis of Zeraoulia- Sprott map

and its dynamics.
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Chapter 1

Notions of dynamical systems and

prelimanery concepts

1.1 Dynamical systems

A dynamical system is a model describing the evolution over time of a set of interacting objects,

it is defined by a triplet (X,T, f) made up of the state space X, the time domain T , and a state

transition application f : X × T → X which makes it possible to define from a vector of initial

conditions the state of the system at any time.

Definition 1.1 A discrete dynamical system is described by a system of equations with finite difer-

ences, in other words, by a following recurrence:
xk+1 = f(xk, c), k ∈ N

x0 given

where f : Rn → Rn is a function, c ∈ R is the vector of parameters, x0 ⊂ Rn is the initial value,

xk ∈ Rn is the vector of the system states at iteration tk.

For an initial value x0 we obtain x1 = f(x0), x2 = f(x1) = f(f(x0)) = f 2(x0). In general, we have

xn = fn(x0), where fn = f ◦...... ◦ f︸ ︷︷ ︸
n fois

Here f(x0) is called the first iteration of x0 by the function f . f 2(x) = f(f(x0)) is called the second

iteration of x0 by the function f . fn(x0) is called nth iteration of x0 by the function f.

4



Chapter 1. Notions of dynamical systems and prelimanery concepts

Definition 1.2 The phase space is a structure corresponding to the set of all possible states of the

considered system. It can be a vector space, or a measurable space.

Definition 1.3 A discrete-time dynamical system is a pair (x, f) where x is a compact metric space

and f is a map from x into itself.

1.2 Fixed points

Definition 1.4 A point x∗ is called a fixed point of the map xt+1 = f(xt) if f(x∗) = x∗.

Geometrically: The fixed point is an intersection of the curve of our function y = f(x) with the

line y = x.

1.2.1 Stability of fixed points

Finding solutions for nonlinear systems is not easy. Usually these solutions do not provide enough

information to control systematic stability. Therefore, we need to finding the approximated linear

system to study the stability of nonlinear systems.

Definition 1.5 A fixed point x∗ of f : I → I, I ⊂ Rn, is said to be attractive, if there is a

neighborhood of x∗ such that for any v0 in this neighborhood, the sequence (vn)n∈N defined by v0

and vn+1 = f(vn), converges to x∗, i.e.,

∀x0 ∈ I, ∃δ > 0, ‖x∗ − x0‖ < δ ⇒ ‖x∗ − f (x0)‖ < 0

If

∀x0 ∈ I, ∃δ > 0, ‖x∗ − x0‖ < δ ⇒ lim
k→∞

f (xk) = x∗

then the point x∗ is asymptotically stable.

Definition 1.6 A fixed point x∗ of f : I → I, I ⊂ Rn, is unstable if:

∀x ∈ I,∃ε > 0, ‖x∗ − x0‖ < δ ⇒ ‖x∗ − f (x)‖ > 0

Theorem 1.1 Let x∗ be a fixed point of f and suppose f ∈ C1.

(i) If |λ| < 1 for every eigenvalue λ of Df (x∗), then x∗ is an asymptotically stable fixed point of f .

(ii) If |λ| > 1 for some eigenvalue λ of Df (x∗), then x∗ is not a Lyapunov stable fixed point of f .

1.2. Fixed points 5



Chapter 1. Notions of dynamical systems and prelimanery concepts

• The eigenvalues of Df (x∗) are called the stability multipliers of x∗.

• Here we consider the linear map in two dimensions and write A =

[
a b

c d

]
. The stability

multipliers of the fixed point 0 are the roots of λ2 − τλ + δ = 0 where τ = a + d, δ = ad − cb.
Solving |λ| = 1 produces three cases: (i) λ = 1, here δ = τ − 1. (ii) λ = −1, here δ = −τ − 1.

(iii) λ = eiΦ for some Φ ∈ (0, π), here δ = 1 and τ ∈ (−2, 2). The origin 0 is stable in the triangle

of the (τ , δ)-plane bounded by the lines (i), (ii), and (iii).

Definition 1.7 Two maps f1 : X1 → X1 and f2 : X2 → X2 are said to be conjugate if there exists a

homeomorphism h : X1 → X2 such that h (f1 (y)) = f2 (h (y)), for all y ∈ X1.

Definition 1.8 A family of maps x → f (x, µ), where f : X × Rm → X, is structurally stable at a

given value of µ if xi+1 → f
(
xi,
∼
µ
)

is conjugate to xi+1 → f (xi, µ) for all
∼
µ in some neighbourhood

of µ.

In order to describe structural stability more generally we need to think about spaces of functions.

For simplicity we consider only phase spaces X that are compact and we begin in one dimension:

Definition 1.9 A forward invariant region of f(x) is a set Ω ⊂ X for which f (Ω) ⊂ Ω. A trapping

region is a non-empty, compact set Ω ⊂ X for which f (Ω) ⊂ int (Ω) .

Definition 1.10 A set Λ ⊂ X is said to be an attracting set of f(x) if there exists a trapping region

Ω such that:

Λ =
∞⋂
n=0

fn (Ω)

An attractor is an attracting set that contains a dense orbit [1] .

Definition 1.11 A C1-map f on a smooth manifold X is said to be Axiom A if the non-wandering set

of f is compact and hyperbolic and the the set of periodic points of f is dense in the non-wandering

set.

Theorem 1.2 A C1-map f on a smooth compact manifold X is C1 structurally stable if and only if

it is Axiom A.

Definition 1.12 A continuous map f : [0, 1] → [0, 1] is said to be unimodal if there exists c ∈ (0, 1)

such that either f (x) < c for all x 6= c or f (x) > c for all x 6= c. Furthermore, f is said to be

S-unimodal if it is C3 and the Schwarzian derivative

s (f) =
f
′′′

f ′
− 3

2

(
f
′′

f ′

)2

1.2. Fixed points 6



Chapter 1. Notions of dynamical systems and prelimanery concepts

is non-positive in [0, c) ∪ (c, 1[ .

Theorem 1.3 Let f : [0, 1] → [0, 1] be a S-unimodal map with extremum c ∈ (0, 1). Suppose

f (c) = 1, f (1) = 0 and f
′′

(c) 6= 0, then there exists a unique attractor Λ ⊂ [0, 1] such that

Λ = ω (x) for almost all x ∈ [0, 1] and either (i) Λ is periodic solution, (ii) Λ is a cycle of disjoint

intervals,or (iii) Λ is a Feigenbaum-like attractor.

1.2.2 Nature of fixed points

Definition 1.13 Let f : R → R, we define the multiplier f by: m = f
′
(x∗) as the tangent of the

fixed point x∗of f which determines the type (or nature) of the fixed point.

Theorem 1.4 Suppose x∗ is a fixed point of xk+1 = f (xk), then the fixed point x∗ is: (1) Attractive

if |m| < 1. (2) Repulsive if |m| > 1. (3) Indifferent if |m| = 1 we cannot conclude. (4) Super stable

if m = 0. Here m is called the multuplicator of f at point x∗. [2] .

Proof. We use Taylor’s formula in the neighborhood of x∗ with f (x∗) = x∗and f ′ (x∗) = m to get

f (x) = f (x∗) + f
′
(x∗) (x− x∗) +O

(
(x− x∗)2)

= x∗ +m (x− x∗) +O (x− x∗)2

f 2 (x) = f (f (x)) = f (f (x∗)) +m (m (x− x∗)) +O (x− x∗)2

= x∗ +m2 (x− x∗) +O (x− x∗)2

then

fp (x) = x∗ +mp (x− x∗) +O (x− x∗)2

Thus, we get the following results:

(1) x∗ is attractive if |m| < 1 because

fp (x) = x∗ +mp (x− x∗) +O (x− x∗)2

when p→∞⇒ fp (x)→ x∗.

(2) x∗ is repulsive if |m| > 1 : fp (x) away from x∗, i.e., |fp (x)− x∗| → ∞.
(3) x∗ is indifferent if m = ±1 : The nature of x∗ depends on terms of order greater than 1 of one

of the development of Taylor.

(4) x∗ is super stable if m = 0 : The attraction is the strongest because the first order term in

(x− x∗) is completely disappears.

1.2. Fixed points 7



Chapter 1. Notions of dynamical systems and prelimanery concepts

Example 1.1 Stability of the fixed points for the following map: xn+1 = axn(1− xn), 0 ≤ a ≤ 4. We

have

f(x) = x =⇒ ax(1− x) = x =⇒ x(−ax+ (a− 1)) = 0{
x = 0

−ax+ (a− 1) = 0
=⇒

{
x1 = 0

x2 = a−1
a

, a 6= 0

We have f ′(x) = a− 2ax :

i) m1 = f ′(x1) = f ′(0) = a :

m1 < 1⇐⇒ a < 1, x1 is attractive.

m1 = 1⇐⇒ a = 1, case of doubt.

m1 > 1⇐⇒ a > 1, x1 is repulsive.

m1 = 0⇐⇒ a = 0, super stable.

ii) m2 = f ′(x2) = f ′(a−1
a

) = 2− a.
m2 < 1⇐⇒ 2− a < 1⇐⇒ a > 1, x2 is attractive.

m2 = 1⇐⇒ 2− a = 1⇐⇒ a = 1, case of doubt.

m2 > 1⇐⇒ 2− a > 1⇐⇒ a < 1, x2 is repulsive.

m2 = 0⇐⇒ 2− a = 0⇐⇒ a = 2, super stable.

1.2.3 Some definitions of chaos

Definition 1.14 Larousse definition: General confusion of elements, of matter, before the creation

of the world.

Definition 1.15 Definition of E. Lorenz: A system agitated by forces where only exist three in-

dependent frequencies, can become destabilized, its movements then becoming totally irregular and

erratic.

Definition 1.16 R. L. Devaney: Let (I, d) be a compact metric space (d is a distance) and let f be

a function such that f : I → I, xk+1 = f (xk) .This discrete dynamic system is said to be chaotic if the

following conditions are not verified:

(1) f has a sensitivity to the initial conditions: There exists a real number ε > 0 such that, for

all x0 ∈ I and for all ρ > 0, there exists a point y0 ∈ I and an integer k > 0, satisfying:

d (x0, y0) < ρ⇒ d (xk, yk) > 0

(2) f is topologically transitive: If there exists xk ∈ I such that the orbit O =
{
fk (xk) , k ∈ N

}
is

dense in I.

1.2. Fixed points 8
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(3) The set of periodic points of f is dense in I : {x0 ∈ I,∃k > 0, xk = x0} is dense in I.

Characterization of chaos: 1. Sensitivity to initial conditions. 2. Phase space. 3. Fractal di-

mension. 4. Lyapunov dimension. 5.Capacity dimension (Kolmogorov). 6. Strange attractors. 7.

Positive Lyapunov exponents.

Definition 1.17 We call the sequence {f(x0)}nk=0 an orbit (or a trajectory) of the point x0 and we

note it by O(x0), i.e.,

x1 = f(x0), x2 = f(x1) = f(f(x0)) = f 2(x0),

x3 = f(x2) = f 3(x0), xk = fk(x0)

The orbits is:

O(x) = {x0, x1, x2, ...., xk} =
{
x0, f(x0), f 2(x0), ...., fk(x0)

}
Definition 1.18 The chaotic attractors is the set of all limits for the sequence (xn, yn) when n→ +∞
for different values of (x0, y0), or it becomes an accumulation set of all limits.

Definition 1.19 Lyapunov exponent is a mathematical quantity calculated from the application, and

classified into three parts to see the nature of the solution, and we have an algorithm that calculates

it: (i) If LE < 0, then the solution is a fixed point. (ii) If LE = 0, then the solution is a cyclical

solution. (iii) If LE > 0, then the solution is chaotic and bounded.

Definition 1.20 A quasi-periodic solution is described by the following function xt+T = λxt where t

is the period of cycle.

Definition 1.21 A bifurcation is a quantitative or qualitative change in the solution of a dynamical

system with a modification of the parameters on which it depends, and in a manner more precise the

disappearance or change of stability or the appearance of new solutions.

Types of bifurcation: There are two types of bifurcation (local and global) each of these bifur-

cations is characterized by a normal form. For example, we recall the following types of bifurca-

tions: 1. Fold bifurcation. 2. Transcritical bifurcation. 3. Fourch bifurcation. 4. Flip bifurcation. 5.

Neimark-Sacker bifurcation. 6. Hopf bifurcation. 7. Doubling of period bifurcation...etc.

We are interested here in the so-called local bifurcations, i.e., relative to a fixed point of a

discrete system.

Definition 1.22 A fixed point x∗ of a map f is said to be hyperbolic if no eigenvalue of Df(x∗) has

modulus 1.

1.2. Fixed points 9
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Non-hyperbolicity occurs ifDf(x∗) has (i) aneigenvalue 1, (ii) an eigenvalue−1, or (iii) eigenval-

ues e±iφ, where φ ∈ (0, π) . These correspond to (i) saddle-node bifurcations, (ii) period-doubling

(or flip) bifurcations, and (iii) Neimark-Sacker bifurcations.

We now describe this in these theories:

Theorem 1.5 Consider the one-dimensional map

x→ f (x, µ) (1.1)

where f : R× R→ R is Ck (k ≥ 2). Suppose:

(i) f (0, 0) = 0, (x = 0 is a fixed point when µ = 0).

(ii) ∂f
∂x

(0, 0) = 1, (the associated stability multiplier is 1).

(iii) ∂f
∂µ

(0, 0) 6= 0, (transversality condition).

(iv) ∂2f
∂x2 (0, 0) 6= 0, (non-degeneracy condition).

Then there exists δ > 0 and a unique Ck function ξ : [−δ, δ]→ R with

ξ (0) = 0, ξ
′
(0) = 0, ξ

′′
(0) =

∂2f
∂x2 (0; 0)
∂f
∂µ

(0; 0)

such that f (x, ξ (x)) = x for all x ∈ [−δ, δ].

If (1.1) satisfies the conditions of this Theorem, we say that (1.1) has a saddle-node bifurcation

at µ = 0. Here two fixed points (one stable, one unstable) collide and annihilate.

Theorem 1.6 Consider (1.1) where f is Ck (k ≥ 3). Suppose:

(i) f (0, 0) = 0 (x = 0 is a fixed point when µ = 0).

(ii) ∂f
∂x

(0, 0) = −1 (the associated stability multiplier is −1).

(iii) α =
(

∂2f
∂µ∂x

+ 1
2
∂f
∂µ

∂2f
∂x2

) ∣∣
(x,µ)=(0,0) 6= 0 (transversality condition).

(iv) β =

(
1
2

(
∂2f
∂x2

)2

+ 1
3
∂3f
∂x3

) ∣∣
(x,µ)=(0,0) 6= 0 (non-degeneracy condition).

Then there exists δ > 0 and a unique Ck−1 function ξ : [−δ, δ] → R with ξ (0) = 0, ξ
′
(0) = 0,

ξ
′′

(0) = −β
α
, such that f 2 (x, ξ (x)) = x for all x ∈ [−δ, δ].

Here f 2 refers to the second iterate of f (not the square of f ). If (1.1) satisfies the conditions of

this theorem, we say that (1.1) has a period-doubling bifurcation at µ = 0. Here a fixed point

changes stability and a period-2 solution is created.

Theorem 1.7 Consider (1.1) where f is Ck (k ≥ 4). Suppose: i) f (0, µ) = 0 for all µ in a neigh-

bourhood of 0 (x = 0 is a fixed point for small µ), ii) D f (0, µ) has eigenvalues r (µ) e±Φ(µ) with

r (0) = 1 and einΦ(0) 6= 1 for n = 1, 2, 3, 4 (at µ = 0 the associated stability multipliers have modulus

1.2. Fixed points 10
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1 and are not strongly resonant), iii) r′ (0) 6= 0 (transversality condition), iv) α 6= 0 where α is the

first Lyapunov coefficient (non-degeneracy condition). Then (1.1) has an invariant topological circle,

of size asymptotically proportional to
√
|µ|, emanating from x = 0 for either µ < 0 or µ > 0.

If (1.1) satisfies the conditions of this Theorem, then (1.1) has a Neimark-Sacker bifurcation

at µ = 0 and a fixed point changes stability and an invariant circle is created on which the

dynamics may be quasiperiodic or weakly resonant.

1.3 Basins of attraction

An attractor’s basin of attraction is the region of the phace space, over which iterations are

defined, such that any point (any initial condition) in that region will asymptotically be iterated

into the attractor. For a stable linear system every point in the phase space is in the basin of

attraction. However, in nonlinear systems, some points may mapped directly or asymptotically

to infinity, while other points may lie in different basin of attraction and mapped asymptotically

into a different attractor, other initial conditions may be in or mapped directly to a non-attracting

point or cycle.

1.3. Basins of attraction 11
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About C∞-multifold Zeraoulia-Sprott

chaotic attractors

Discrete mathematical models are usually derived from theory or experimental observation, or

as an approximation to the Poincaré section for some continuous-time models. Many papers

have described chaotic systems, one of the most famous being a two-dimensional discrete map

suggested by Hénon and studied in detail by others [4, 5, 6, 7]. It is possible to change the form of

this map to obtain other chaotic attractors or to make some C1-modifications to obtain multifold

strange chaotic attractors with possible applications in secure communications because of their

chaotic properties [9, 10] . The Hénon map [4] is a prototypical two-dimensional invertible iterated

map with a chaotic attractor and is a simplified model of the Poincaré map for the Lorenz

equation proposed by M. Hénon in 1976 and given by:

H (xn, yn) =

(
xn+1

yn+1

)
=

(
1− ax2

n + byn
xn

)
(2.1)

1. For b = 0, the Hénon map reduces to the quadratic map [11], which is conjugate to the

logistic map.

2. Bounded solutions exist for the Hénon map over a range of a and b values and a portion of

this range yields chaotic attractors.

3. The Hénon map does not have attractors with multifolds.

However, a C1-modifications can result in such attractors [20]:

F (xn, yn) =

(
xn+1

yn+1

)
=

(
1− a sinxn + byn

xn

)
(2.2)

12



Chapter 2. About C∞-multifold Zeraoulia-Sprott chaotic attractors

or equivalently:

xn+1 = 1− a sinxn − xn−1 (2.3)

where the quadratic term x2 in the Hénon map is replaced by the nonlinear term sinx. The

essential motivation for this work is to develop a C∞ mapping that is capable of generating

chaotic attractors with multifolds via a period-doubling bifurcation route to chaos. The fact that

this map is C∞ in some ways simplifies the study of the map and avoids some problems related to

the lack of continuity or differentiability of the map. The choice of the term sinx has an important

role since it makes the solutions bounded for values of b such that |b| ≤ 1, and all values of a,

while they are unbounded for |b| > 1.

2.1 Analytical results

In all proofs given here, we use the following standard results:

Theorem 2.1 Let (xn)n and (zn)n be two real sequences if |xn| ≤ |zn| and lim
n→+∞

|zn| = A < +∞
then lim

n→+∞
|xn| ≤ A, or if |zn| ≤ |xn| and lim

n→+∞
|zn| = +∞ then lim

n→+∞
|xn| = +∞. See [20] .

We use this result to construct a sequence (zn)n that satisfies the above conditions for determining

whether the difference equation (2.3) has bounded or unbounded orbits.

Theorem 2.2 For all values of a and b the sequence (xn)n given in (2.3) satisfies the following in-

equality:

|1− xn + bxn−2| ≤ |a|

See [20] .

Proof. We have for every n > 1: xn = 1− a sinxn−1 + bxn−2,then, one has:

|−xn + 1 + bxn−2| = |a sinxn−1| ≤ |a|

since supx∈R |sinx| = 1.

Theorem 2.3 For every n > 1, and all values of a and b, and for all values of the initial conditions

(x0, x1) ∈ R2, the sequence (xn)n satisfies the following equalities:

2.1. Analytical results 13
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(a) If b 6= 1, then:

xn =

{ b
n−1

2 −1
b−1

+ b
n−1

2 x1 − a
P=n−1

2∑
P=1

bp−1 sinxn−(2p−1) if n is odd

b
n
2 −1
b−1

+ b
n
2 x0 − a

P=n
2∑

P=1

bp−1 sinxn−(2p−1) if n is even
(2.4)

(b) If b = 1, then

xn =

{n−1
2

+ x1 − a
P=n−1

2∑
P=1

sinxn−(2p−1) if n is odd

n
2

+ x0 − a
P=n

2∑
P=1

sinxn−(2p−1) if n is even
(2.5)

See [20] .

Proof. Assume that n is odd, then we have for every n > 1, the following equalities:

xn = 1− a sinxn−1 + bxn−2 (2.6)

xn−2 = 1− a sinxn−3 + bxn−4 (2.7)

xn−4 = 1− a sinxn−5 + bxn−6 (2.8)

Then the results in (2.4) and (2.5) are obtained by successive substitutions of

(2.7), (2.8),... into (2.6) for all k = n − 2, n − 4, ..., 2. The other cases can be obtained using the

same logic.

Theorem 2.4 The fixed points (l, l) of the map (2.3) exist if one of the following conditions holds:

(i) If a 6= 0, and b 6= 1, then l satisfies the following conditions:
1− a sin l + (b− 1)l = 0 and l ≤ 1+|a|

1−b if b > 1

1+|a|
1−b ≤ l, if b < 1

(ii) If b = 1, and |a| ≥ 1, then, l is given by l = arcsin( 1
a
).

(iii) If b 6= 1, and a = 0, then, l is given by l = 1
1−b .

(iv) If a = 0, and b = 1, there are no fixed points for the map (2.3). See [20] .

Proof. The proof is direct except for the case (i) where we apply Theorem 2.2, and therefore

one concludes that all fixed points of the map (2.3) are confined to the interval
]
−∞, 1+|a|

1−b

]
if

2.1. Analytical results 14
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b > 1 and to
[

1+|a|
1−b ,+∞

[
if b < 1. On the other hand, case (iii) gives a simple linear second-

order difference equation xn = 1 + bxn−2, for which the situation is standard. Since the location

of the fixed points for map (2.3) cannot be calculated analytically, their stability will be studied

numerically.

2.2 Existence of bounded orbits

In this section, we determine sufficient conditions for the map (2.3) to have bounded solutions.

This is the interesting case since it includes the periodic, quasi-periodic, and chaotic orbits.

Theorem 2.5 The orbits of the map (2.3) are bounded for all a ∈ R, and |b| < 1, and all initial

conditions (x0, x1) ∈ R2. See [20] .

Proof. From equation (2.3) and the fact that sinx is a bounded function for all x ∈ R, one has the

followings inequalities for all n > 1:

|xn| ≤ 1 + |a|+ |bxn−2| (2.9)

|xn−2| ≤ 1 + |a|+ |bxn−4| (2.10)

|xn−4| ≤ 1 + |a|+ |bxn−6| (2.11)

This implies from (2.9), (2.10), (2.11),... that

|xn| ≤ 1 + |a|+ |bxn−2| (2.12)

|xn| ≤ (1 + |a|) + |b| (1 + |a|+ |bxn−4|) (2.13)

|xn| ≤ (1 + |a|) + (1 + |a|) |b|+ |b|2 |xn−4| , ... (2.14)

Hence, from (2.10) and (2.14) one has:

|xn| ≤ (1 + |a|) + (1 + |a|) |b|+ |b|2 (1 + |a|) + |b|3 |xn−6| , ... (2.15)

Since |b| < 1, then the use of (2.15) and induction about some integer k using the sum of a

geometric growth formula permits us to obtain the following inequalities for every n > 1, k ≥ 0

|xn| ≤ (1 + |a|)
(

1− |b|k

1− |b|

)
+ |b|k |xn−2k| (2.16)

where k is the biggest integer j such that j ≤ n
2
. Thus one has the following two cases:

2.2. Existence of bounded orbits 15
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(1) if n is odd, i.e., ∃m ∈ N , such that n = 2m+ 1, then the biggest integer k ≤ n
2

is k = n−1
2

, for

which (xn)nsatisfies the following inequalities:

|x2m+1| ≤ (1 + |a|)
(

1− |b|m

1− |b|

)
+ |b|m |x1| = zm (2.17)

(2) if n is even, i.e., ∃m ∈ N , such that n = 2m, then, the biggest integer k ≤ n
2

is k = n
2
, for

which (xn) satisfies the following inequalities:

|x2m| ≤ (1 + |a|)
(

1− |b|m

1− |b|

)
+ |b|m |x0| = um (2.18)

Thus, since |b| < 1, the sequences (zm)m and (um)m are bounded, and one has:
zm ≤ (1+|a|)

1−|b| +
∣∣∣|x1| − (1+|a|)

1−|b|

∣∣∣ , for all m ∈ N

um ≤ (1+|a|)
1−|b| +

∣∣∣|x0| − (1+|a|)
1−|b|

∣∣∣ , for all m ∈ N
(2.19)

Thus Formulas (2.17), (2.18), and inequalities (2.19) give the following bounds for the sequence

(xn)n:

|xn| ≤ max

(
(1 + |a|)
1− |b| +

∣∣∣∣|x0| −
(1 + |a| δ)

1− |b|

∣∣∣∣ , (1 + |a|)
1− |b| +

∣∣∣∣|x1| −
(1 + |a|)
1− |b|

∣∣∣∣) (2.20)

Finally, for all values of a and all values of b satisfying |b| < 1 and all initial conditions (x0, x1) ∈
R2, one concludes that all orbits of the map (2.3) are bounded, i.e., in the subregion of R4:

Ω1 =
{

(a, b, x0, x1) ∈ R4 : |b| < 1
}

(2.21)

2.3 Existence of unbounded orbits

In this section, we determine sufficient conditions for which the orbits of the map (2.3) are un-

bounded. First we prove the following theorem:

Theorem 2.6 The map (2.3) possesses unbounded orbits in the following subregions of R4:

Ω2 =

{
(a, b, x0, x1) ∈ R4 : |b| > 1 and both |x0| , |x1| >

|a|+ 1

|b| − 1

}
(2.22)

and

Ω3 =
{

(a, b, x0, x1) ∈ R4 : |b| = 1 and |a| < 1
}

(2.23)

See [12].

2.3. Existence of unbounded orbits 16
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Proof. (a) For every n > 1, we have: xn = 1−a sinxn−1 +bxn−2 then |bxn−2 − a sinxn−1| = |xn − 1|
and ||bxn−2| − |a sinxn−1|| ≤ |xn − 1| . (We use the inequalities: |x| − |y| ≤ ||x| − |y|| ≤ |x− y|).
This implies that:

|bxn−2| − |a sinxn−1| ≤ |xn|+ 1 (2.24)

Since |sinxn−1| ≤ 1, this implies − |a sinxn−1| ≥ − |a| , and |bxn−2| − |a sinxn−1| ≥ |bxn−2| − |a| .
Finally, one has from (2.24) that:

|bxn−2| − (|a|+ 1) ≤ |xn|

Then, by induction as in the previous section, one has:

|xn| ≥


(−(|a|+1)
|b|−1

+ |x1|) |b|
n−1

2 + |a|+1
|b|−1

, if n is odd

(−(|a|+1)
|b|−1

+ |x0|) |b|
n
2 + |a|+1

|b|−1
, if n is even

Thus, if |b| > 1, and both |x0| , |x1| > |a|+1
|b|−1

, one has limn→+∞ |xn| = +∞.
(b) for b = 1, one has:

|xn| ≥


(1− |a|)(n−1

2
) + x1, if n is odd

(1− |a|)(n
2
) + x0, if n is even

Hence, if |a| < 1, then one has limn→+∞ |xn| = +∞.
For b = −1, one has from Theorem 2.3 the inequalities:

|xn| ≤



−(n−1
2

) + x1 +

∣∣∣∣∣∣
p=n−1

2∑
p=1

a(−1)p−1 sinxn−(2p−1)

∣∣∣∣∣∣ , if n is odd

−(n
2
) + x0 +

∣∣∣∣∣∣
p=n

2∑
p=1

a(−1)p−1 sinxn−(2p−1)

∣∣∣∣∣∣ , if n is even

Because
∣∣a(−1)p−1 sinxn−(2p−1)

∣∣ ≤ |a| , then one has:

|xn| ≤


(1− |a|)(n−1

2
) + x1, if n is odd

(1− |a|)(n
2
) + x0, if n is even

Thus, if |a| < 1, then one has limn→+∞ |xn| = −∞. Note that there is no similar proof for the

following subregions of R4 :

Ω4 =

{
(a, b, x0, x1) ∈ R4 : |b| > 1, and both |x0| , |x1| ≤

|a|+ 1

|b| − 1

}

2.3. Existence of unbounded orbits 17
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Figure 2.1: Chaotic multifold attractors of the map (2.3) obtained for (a) a = 2.4,b = −0.5. (b)

a = 2, b = 0.2. (c) a = 2.8, b = 0.3. (d) a = 2.7, b = 0.6.

Ω5 =
{

(a, b, x0, x1) ∈ R4 : |b| = 1, and |a| ≥ 1
}
.

2.4 Some observed multifold attractors

In this section, we present some observed mutifold chaotic attractors obtained by an appropriate

choice of the parameters a and b.

2.5 Route to Chaos

It is well known that the Hénon map typically undergoes a period-doubling route to chaos

as the parameters are varied. By contrast, the Lozi map [17] has no period-doubling route, but

rather it goes directly from a border-collision bifurcation developed from a stable periodic orbit.

Similarly, the chaotic attractor given in [12] is obtained from a border-collision period-doubling

bifurcation scenario. The Zeraoulia-Sprott map (2.3) is obtained from a quasi-periodic route

to chaos. Thus, the four chaotic systems go via different and distinguishable routes to chaos.

Furthermore, the multifold chaotic attractors presented in Fig. 2.1 are obtained from the map

(2.3) via a period-doubling bifurcation route to chaos as shown in Fig. 2.5(a).

2.4. Some observed multifold attractors 18
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Figure 2.2: Regions of dynamical behaviors in ab-space for the map (2.3).

2.6 Dynamical behaviors with parameter variation

In this section, the dynamical behaviors of the map (2.3) are investigated numerically.

1. Figure 2.2 shows regions of unbounded (white), fixed point (gray), periodic (blue), and

chaotic (red) solutions in the ab-plane for the map (2.3).

2. If we fix parameter b = 0.3 and vary −1 ≤ a ≤ 4, the map (2.3) exhibits the dynamical

behaviors as shown in Fig. 2.5.

3. In the interval −1 ≤ a ≤ 0.76, the map (2.3) converges to a fixed point.

4. For 0.76 < a ≤ 1.86, there is a series of period-doubling bifurcations as shown in Fig. 2.5

(a).

5. In the interval 1.86 < a ≤ 2.16, the orbit converges to a chaotic attractor.

6. For 2.16 < a ≤ 2.27, it converges to a fixed point.

7. For 2.27 < a ≤ 2.39, there are periodic windows.

8. For 2.39 < a ≤ 2.92, it converges to a chaotic attractor.

9. For a > 2.92, the map (2.3) is chaotic. For example, the Lyapunov exponents for a = 3

and b = 0.3 are λ1 = 0.56186 and λ2 = −1.76583, giving a Kaplan-Yorke dimension of

DKY = 1.31818. There are also fixed points and periodic orbits.

2.6. Dynamical behaviors with parameter variation 19
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Figure 2.3: Chaotic multifold attractors of the map (2.3) obtained for (a) a = 3.4, b = −0.8. (b)

a = 3.6, b = −0.8. (c) a = 4, b = 0.5. (d) a = 4, b = 0.9.

10. This map is invertible for all b = 0, especially for |b| < 1,and there is no hyperchaos since

the sum of the Lyapunov exponents λ1 + λ2 = ln |b| is never positive.

11. Generally, if we fix b = 0.3 and −150 ≤ a ≤ 200, map (2.3) is chaotic over all the range as

shown in Fig. 2.6, except for the small intervals mentioned above and shown in Fig. 2.5.

12. If we fix parameter a = 3 and vary b ∈ R, the map (2.3) exhibits very complicated dynamical

behaviors as shown in Fig. 2.7, which shows some fixed points and some periodic windows.

13. Finally, for |b| > 1, the map (2.3) does not converge as shown in the previous section analyt-

ically.

14. There are regions of ab-space where two coexisting attractors occur as shown in black in

Fig. 2.8, both in the regular and chaotic regimes. For example, with a = 2 and b = −0.6,

a two-cycle (1.314326,−0.584114) coexists with a period-3 strange attractor. Similarly, for

a = 2.2 and b = −0.36, there is a strange attractor surrounded by a second period-3 strange

attractor as shown in black in Fig. 2.9 with their corresponding basins of attraction shown

in yellow and magenta, respectively.
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Figure 2.4: Multifold chaotic attractors of the map (2.3) obtained for b = 0.3 and (a) a = 3. (b)

a = 5. (c) a = 7. (d) a = 10.

Figure 2.5: (a) Bifurcation diagram for the map (2.3) obtained for b = 0.3 and −1 ≤ a ≤ 4. (b)

Variation of the Lyapunov exponents of map (2.3) over the same range of a.
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Figure 2.6: Variation of the Lyapunov exponents of map (2.3) over the range −150 ≤ a ≤ 200

with b = 0.3.

Figure 2.7: (a) Bifurcation diagram for the map (2.3) obtained for a = 3 and −1 ≤ b ≤ 1. (b)

Variation of the Lyapunov exponents of map (2.3) for the same range of b.
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Figure 2.8: The regions of ab-space where multiple attractors are found (shown in black).

Figure 2.9: Two coexisting attractors occur for a = 2.2 and b = −0.36, where a strange attractor

is surrounded by a second period-3 strange attractor with their corresponding basins of attraction

shown in yellow and magenta, respectively.
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Chapter 3

Periodic 2-orbits of the Zeraoulia-Sprott

mapping

In this chaptre, we present general study on the cycles, especially cycles of order 2 and their

stability.

3.1 The p-cycles

A cycles of order p (or periodic orbit of order p or a p-cycle) is a set of p points
(
x∗0, x

∗
1, ..., x

∗
p−1

)
verifying: (

x∗i+1

y∗i+1

)
= f

(
x∗i

y∗i

)
, i = 0...p− 2(

x∗P

y∗p

)
= f

(
x∗P−1

y∗p−1

)
=

(
x0

y0

)
(
x∗i

y∗i

)
= fP

(
x∗i

y∗i

)
, i = 0...p− 1(

x∗i

y∗i

)
6= fh

(
x∗i

y∗i

)
, i = 0...p− 1 i ≤ h ≤ p

p is the minimal integer that fp
(
x∗0

y∗0

)
=

(
x∗0

y∗0

)
. An orbit of ordre 2 is defined by

∀n ≥ 1 : xn+2 = xn and yn+2 = yn

(f ◦ f) (x, y) =

{
f 2 (x, y) = (x, y)→ A

f (x, y) = (x, y)→ B, the fixed points
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The periodic solution is: {A/B} .We have the following results: (x, y) is a fixed point of f ⇒ (x, y)

is a fixed point of f 2 ⇒ (x, y) is a fixed point of fn, ∀n ≥ 1.

Theorem 3.1 If f : R2 → R2 and f (x∗) = x∗, we calculate the jacobian matrix Df (x∗). If the two

eigenvalues λ1, λ2 are real:

∀i = 1, 2 : |λi| < 1, x∗ is an attractive saddle.

∀i = 1, 2 : |λi| > 1, x∗ is an repulsive saddle.

If the two eigenvalues λ1, λ2 are complex:

∀i = 1, 2 : |λi| < 1, x∗ is an attractive facus.

∀i = 1, 2 : |λi| > 1, x∗ is an repulsive facus.

If the two eigenvalues λ1, λ2 are real and |λ1| < 1, |λ2| > 1, then x∗ is a Node point.

3.2 Cardan method

This method [13] makes it possible to obtain formulas, called Cardan formulas, giving as a func-

tion of p and q for the solutions of the equation:

z3 + pz + q = 0

It allows to prove that the equations of degree 3 are solvable by radicals. Only the equations of

degree 1, 2, 3, 4 are solvable by radicals in all cases, that is to say that only these equations have

general methods of resolution giving the solutions according to the coefficients of the polynomial

using only the four usual operations on rational numbers, and the extraction of n−th roots.

Theorem 3.2 The complex solutions zk (0 ≤ k ≤ 2) of the third degree equation z3 + pz + q = 0,

where the coefficients p and q are real, are given by:

zk = uk + vk

with

uk = jk 3

√√√√1

2

(
−q +

√
−∆

27

)
and 3ukvk = −p from where

vk = j−k 3

√√√√1

2

(
−q −

√
−∆

27

)

where ∆ = − (4p3 + 27q2) is the discriminant of the equation and where j = e
2iπ
3 .

• ∆ > 0, then there are three distinct real solutions.
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• ∆ = 0, then a solution is multiple and all are real.

• ∆ < 0, then one solution is real and the other two are complex conjugates.

Remark 3.1 By asking p = 3p′, q = 2q′and ∆ = 4× 27∆′ we obtain:

∆′ = −
(
q′2 + p′2

)
, un = jk

3

√
−q′ +

√
−∆′, vn = j−k

3

√
−q′ −

√
−∆′

If we start from the general equation ax3 + bx2 + cx+d = 0, a 6= 0 we come back to the reduced form

by puting:

x = z − b

3a
, p =

−b2

3a3
+
c

a
and q =

b

27a

(
2b2

a2
− 9c

a

)
+
d

a

• if ∆ is negative: The equation then has a real solution and two complexes roots. We pose:

u =
3

√
−q +

√
−∆
27

2
, v =

3

√
−q −

√
−∆
27

2
, u =

3

√
−q′ +

√
−∆′ and v =

3

√
−q′ +

√
−∆′

The only real solution is then z0 = u + v, there are also two complex solutions combined with each

other: 
z1 = ju+ jv

z2 = j2u+ j2v

where j =
−1

2
+ i

√
3

2
= ei

2π
3 and j2 =

−1

2
− i
√

3

2
= ei

4π
3

• if ∆ is null: if p = q = 0, the equation has 0 as a triple solution. Otherwise, p and q are non-nulls.

The equation then has two real solutions, a single and a double:
z0 = 2 3

√
−q
2

= 3q
p

z1 = z2 = − 3

√
−q
2

= −3q
2p

• if ∆ is positive: The equation then has three real solutions. Solutions are the sums of two complexes

conjugués jku and jku where u =
3

√
−q+

√
−∆
27

2
and k ∈ {0, 1, 2} either the following set:
z0 = u+ u

z0 = ju+ ju

z0 = j2u+ j2u

The real form of the solutions is obtained by writing jku in the trigonometric form, which gives:

zk = 2

√
−p
3

cos

(
1

3
arccos

(
3q

2p

√
2

−p

)
+

2kπ

3

)
with k ∈ {0, 1, 2} .
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3.2.1 Principle of the method

Consider the following general equation of the third degree: ax3 + bx2 + cx + d = 0. By puting

x = z − b
3a
, we come back to an equation of the form:

z3 + pz + q = 0

We are now going to put z = u+ v with u and v complex, so as to have two unknowns instead of

one and thus give oneself the possibility of subsequently setting a condition on u and v allowing

the problem to be simplified. The equation z3 + pz + q = 0 becomes so:

(u+ v)3 + p (u+ v) + q = 0

this equation turns into the following form:

u3 + v3 + 3uv2 + 3vu2 + p (u+ v) + q = 0

u3 + v3 + (3uv + p) (u+ v) + q = 0

The announced simplification condition will then be 3uv + p what gives us on the one hand

u3 + v3 + q = 0 and on the other hand uv = −p
3

which, by raising the two limbs to the power of

3, gives u3v3 = −p3

27
, we finally obtain the sum-product system of the two following unknowns u3

and v3: 
u3 + v3 = −q

u3v3 = −p3

27

The unknowns u3 and v3 being two complexes of which we know the sum and the product, they

are therefore the solutions of the quadratic equation:

X2 + qX − p3

27
= 0

The discriminant of this quadratic equation is δ = q2 − 4× 1× −p3

27
= q2 + 4

27
p3 and the roots are:

u3 = −q+
√
δ

2
and v3 = −q−

√
δ

2
, if δ is positive

u3 = −q+i
√
δ

2
and v3 = −q−i

√
δ

2
, if δ is negative

u3 = v3 = −q
2
, if δ is null

Note that the discriminant ∆ of the third degree equation z3 + pz + q = 0 is related to the

discriminant δ above by the relation ∆ = −27δ.

3.2. Cardan method 27



Chapter 3. Periodic 2-orbits of the Zeraoulia-Sprott mapping

3.3 Quartic equation

Elimination of degree 3 term: The equation

ax4 + bx3 + cx2 + dx+ e = 0

is reduced, after division by a and change of variable x = y − b
4a

to an equation of the form:

y4 + py2 + qy + r = 0

with 
p = c

a
− 3b2

8a2

q = d
a
− bc

2a2 + b3

8a3

r = e
a
− bd

4a2 + cb2

16a3 − 3b4

256a2

One can then solve the equation by the method of Ferrari, that of Descartes, or that below of

Lagrange. All three provide, under different appearances, the same formula for the four solutions.

3.3.1 Lagrange method

It is a question of finding an expression involving the 4 roots y1, y2, y3, y4 of: y4 + py2 + qy+ r = 0,

and allowing to obtain, by permutations, only 3 distinct values. This is the case for example of:

−(y1 + y2)(y3 + y4) which, by permutations, only gives the values:
z1 = −(y1 + y2)(y3 + y4)

z2 = −(y1 + y3)(y2 + y4)

z3 = −(y1 + y4)(y2 + y3)

Any symmetric polynomial in z1, z2, z3 can be expressed as a symmetric polynomial of y1, y2, y3, y4.

The coefficients of the polynomial R(z) = (z − z1)(z − z2)(z − z3) can be expressed as a function

of p, q et r. It is certain that the property y1 + y2 + y3 + y4 = 0 facilitates calculations. We show in

fact that then: 
z1 + z2 + z3 = −2p∑
i<j zizj = p2 − 4r

z1z2z3 = q2

The three reals z1, z2, z3 are then solutions of the equation:

z3 + 2pz2 + (p2 − 4r)z − q2 = 0

3.3. Quartic equation 28



Chapter 3. Periodic 2-orbits of the Zeraoulia-Sprott mapping

It remains now to find y1, y2, y3, y4 in terms of z1, z2, z3 knowing that y1 + y2 + y3 + y4 = 0. We then

notice that: 
z1 = (y1 + y2)2 = (y3 + y4)2

z2 = (y1 + y3)2 = (y2 + y4)2

z3 = (y1 + y4)2 = (y2 + y3)2

so that: 
y1 + y2 =

√
z1 et y3 + y4 = −√z1

y1 + y3 =
√
z2 et y2 + y4 = −√z2

y1 + y4 =
√
z3 et y2 + y3 = −√z3

(the notation
√
zi as one of the square roots of zi). The values of yi are then found by simple

addition.

Results: The solutions of y4 + py2 + qy + r = 0 are:
y1 = 1

2
(
√
z1 +

√
z2 +

√
z3)

y2 = 1
2
(
√
z1 −

√
z2 −

√
z3)

y3 = 1
2
(−√z1 +

√
z2 −

√
z3)

y4 = 1
2
(−√z1 −

√
z2 +

√
z3)

Case inventory: In the case where the coefficients p, q and r are real, we notice that the product

of the roots of the polynomial R is q2, we are therefore limited to the shape of the roots of the

polynomial R and on the solutions of the quartic equation.

• If the three roots of R are real positive, we get four real values.

• If the three roots of R are real and two are negative, we get two pairs of conjugate complexes.

• If R has a real root and two conjugate complex roots, the real root is positive and we get two

real values and two conjugate complexes.

3.3.2 Special equations

Among the equations of degree four some particular, can be solved only using the quadratic

equations, this is the case for bicarled equations and symmetric equations or, more generally

equations ax4 + bx3 + cx2 + dx+ e = 0 as ad2 = eb2

Quadruple equations: They are written in the form:

ax4 + bx2 + c = 0

and are resolved by changing the variable y = x2 and the resolution of ay2 +by+c = 0. Quadruple

equations, as well as some other equations of degree 4, can also be solved by circular or hyperbolic

trigonometry.
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Symmetric equations: They are written in the form:

ax4 + bx3 + cx2 + dx+ a = 0

and are resolved by changing the variable z = x + 1
x

and the resolution of az2 + bz + c− 2a = 0.

This process is generalized to equations of the form ax4 + bx3 + cx2 + kbx+ k2a = 0 (with k 6= 0),

which are resolved by posing z = x+ k
x
.

3.4 Some basic properties of the Zeraoulia-Sprott mapping

In the following new 1-D discrete iterative system with a rational fraction was discovered in a

study of evolutionary algorithms:

g (x) =
1

0.1 + x2
− ax (3.1)

where a is a parameter [15]. The map (3.1) describes different random evolutionary processes, and

it is much more complicated than the logistic system. In [16] an extended version of the former

one-dimensional discrete chaotic system given in [15] to two-dimensions is given as follows:

h (x, y) =

( 1
0.1+x2 − ay

1
0.1+y2 + bx

)
(3.2)

where a and b are parameters. The map (3.2) has more complicated dynamical behavior than the

one-dimensional map (3.1). Based on these studies in [15, 16] a new and very simple 2-D map,

characterized by the existence of only one rational fraction with no vanishing denominator is

constructed and it is given by:

f (x, y) =

( −ax
1+y2

x+ by

)
(3.3)

where a and b are bifurcation parameters.

1. The new map (3.3) is algebraically simpler but with more complicated behavior than map

(3.2) .

2. It produces several new chaotic attractors obtained via the quasi-periodic route to chaos.

3. The map (3.3) is defined for all points in the plane.

4. The associated function f (x, y) of the map (3.3) is of class C∞ (R2), and it has no vanishing

denominator.
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5. The new chaotic map (3.3) is symmetric under the coordinate transformation (x, y) −→
(−x,−y), and this transformation persists for all values of the map parameters.

6. The fixed points of map (3.3) are the real solutions of the equations −ax
1+y2 = x and x+by = y.

Hence, one may easily obtain the equations (a+ 1 + y2)x = 0 and (1− b) y = x. Assume

that −1 ≤ a ≤ 4. Then if b 6= 1, the only fixed point of the map (3.3) is p = (0, 0), and if

b = 1,then the y-axis is invariant by iteration of the map f .

7. The Jacobian matrix of map (3.3) evaluated at a point (x, y) is given by:

Df (x, y) =

(
−a

1+y2
2axy

(1+y2)2

1 b

)

and at the fixed point p = (0, 0), the Jacobian matrix is given by Df (0, 0) =

(
−a 0

1 b

)
.

8. The local stability of p is studied by evaluating the eigenvalues of the Jacobian Df (p). The

eigenvalues of Df (p) are: λ1 = −a and λ2 = b. Then one has the following results:

(1) If |a| < 1 and |b| < 1, then p is asymptotically stable.

(2) If |a| > 1 or |b| > 1, then p is an unstable fixed point.

(3) If |a| < 1 and |b| > 1, or |a| > 1 and |b| < 1, then p is a saddle point.

(4) If |a| = 1 or |b| = 1, then p is a non-hyperbolic fixed point.

3.5 Observation of chaotic attractors

In this section, we will illustrate some observed chaotic attractors, along with some other dynam-

ical phenomena.

1. In (3.3) the chaotic attractors are obtained via a period-doubling bifurcation route to

chaos as shown in Fig. 3.3(a). Possibly, the map (3.3) is the first simple rational map whose

fraction has no vanishing denominator that gives chaotic attractors via a quasi-periodic

route to chaos.

2. Figure 3.3 (b) shows regions of unbounded (white), fixed point (gray), periodic (blue),

quasi-periodic (green), and chaotic (red) solutions in the abplane for the map (3.3).
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Figure 3.1: Attractors of the map (3.3) with (a) a = 2.4, b = 1.3, (b) a = 2.9,b = 0.6, (c) a= 2.9,

b = 0.8, (d) a = 3.3, b = 0.4, (e) a = 4, b = 0.8, (f) a = 4, b = 0.9.
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Figure 3.2: (a) The quasi-periodic route to chaos for the map (3.3) obtained for b = 0.6 and −1 <

a ≤ 4. (b) Variation of the Lyapunov exponents of map (3.3) versus the parameter −1 < a ≤ 4

with b = 0.6.

3. If we fix parameter b = 0.6 and vary −1 ≤ a ≤ 4, the map (3.3) exhibits the following

dynamical behaviors as shown in Fig. 3.2(a):

In the interval −1 ≤ a ≤ 1, the map (3.3) converges to the fixed point (0, 0).

For 1 < a ≤ 2, it converges to a period-2 attractor followed by a quasi-periodic orbit for 2 <

a ≤ 3 as shown in Fig. 3.4(a).

In the interval 3 < a ≤ 4, it converges to a chaotic attractor shown in Fig. 3.4 (b) via a

quasi-periodic route to chaos except for a number of periodic windows. See [17] .

3.6 Periodic 2-orbits of the Zeraoulia-Sprott mpaping

In order to calculate the cycle 2 for the map f(x, y). First we must found the fixed points:

f(x, y) =

(
−ax
1+y2

x+ by

)
=

(
x

y

)
{

−ax
1+y2 = x

x+ by = y
=⇒

{
(a+ 1 + y2)x = 0

(1− b)y = x

3.6. Periodic 2-orbits of the Zeraoulia-Sprott mpaping 33



Chapter 3. Periodic 2-orbits of the Zeraoulia-Sprott mapping

Figure 3.3: (a) Regions of dynamical behaviors in the ab-plane for the rational map (3.2). (b)

Regions of dynamical behaviors in the ab-plane for the rational map (3.3).

Figure 3.4: Attractors of the map (3.3) (a) Quasi-periodic orbit for a = 2.7,b = 0.6. (b) Chaotic

orbit for a = 3.7, b = 0.6.
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Assume that −1 ≤ a ≤ 4
(a+ 1 + y2) = 0 or x = 0

and

(1− b)y = x

=⇒


a+ 1 + y2 = 0

and

(1− b)y = x

or


x = 0

and

(1− b)y = x

For the case a + 1 + y2 = 0 the solution is refused. For x = 0 and (1 − b)y = x, we have two

options: If b 6= 1, x = 0 and (1 − b)y = x =⇒ (1 − b)y = 0 =⇒ y = 0, then the only fixed point is

p(x, y) = p(0, 0). If b = 1, x = 0 and (1− b)y = x, (1− b)y = 0 =⇒ (1− b) = 0 or y = 0 =⇒ y 6= 0,

then the y-axis is invariant by iteration of the map f.

We will calculate the cycle 2 for the map f :

f 2(x, y) =

 −a( −ax
1+y2 )

1+(x+by)2

( −ax
1+y2 ) + b(x+ by)

 =

(
x

y

)

By compensation we find: 
(x+ by)2 = a2−(1+y2)

1+y2

x = (y−b2y)(1+y2)
−a+b(1+y2)

Then we get:

y8+(3+b2−2ab)y6+(3+3b2−6ab)y4+(1+a2b2+2a3b+a2+3b2−6ab)y2+(a2+b2+2a3b−2ab−a2b2−a4) = 0

To find the roots of the above polynomial, we must change it into a fourth degree polynomial,

then use Quartic equation method. First let’s put:

k1 = 1

k2 = 3 + b2 − 2ab

k3 = 3 + 3b2 − 6ab

k4 = 1 + a2b2 + 2a3b+ a2 + 3b2 − 6ab

k5 = a2 + b2 + 2a3b− 2ab− a2b2 − a4

and y2 = z, we get:

k1z
4 + k2z

3 + k3z
2 + k4z + k5 = 0

Secondly, let’s put z = α− k2

4k1
, then we find:

α4 + pα2 + qα + r = 0

Such that:
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p =
k3

k1

− 3k2
2

8k2
1

=
3 + 3b2 − 6ab

1
− 3(3 + b2 − 2ab)2

8

= −3

2
a2b2 +

3

2
ab3 − 3

2
ab− 3

8
b4 +

3

4
b2 − 3

8

q =
k4

k1

− k2k3

2k2
1

+
k3

2

8k3
1

=
1− a2b2 + 2a3b+ a2 + 3b2 − 6ab

1
− (3 + b2 − 2ab) ∗ (3 + 3b2 − 6ab)

2

+
(3 + 3b2 − 6ab)3

8

= −27a3b3 + 2a3b+
81

2
a2b4 +

67

2
a2b2 + a2 − 81

4
ab5 − 69

2
ab3

−57

4
ab+

27

8
b6 +

69

8
b4 +

57

8
b2 − 1

8

r =
k5

k1

− k2k4

4k2
1

+
k3k

2
2

16k2
1

− 3k4
2

256k4
1

=
a2 + b2 + 2a3b− 2ab− a2b2 − a4

1

−(3 + b2 − 2ab) ∗ (1− a2b2 + 2a3b+ a2 + 3b2 − 6ab)

4

+
(3 + 3b2 − 6ab) ∗ (3 + b2 − 2ab)2

16
− 3(3 + b2 − 2ab)4

256

= − 3

16
a4b4 + a4b2 − a4 +

3

8
a3b5 − 11

8
a3b3 + a3b− 9

32
a2b6

+
13

16
a2b4 − 25

32
a2b2 +

1

4
a2 +

3

32
ab7 − 9

32
ab5 +

9

32
ab3

− 3

32
ab− 3

256
b8 +

3

64
b6 − 9

128
b4 +

3

64
b2 − 3

256

The roots of α4 + pα2 + qα + r = 0 are:

α1 =
1

2
(
√
β1 +

√
β2 +

√
β3)

α2 =
1

2
(
√
β1 −

√
β2 −

√
β3)

α3 =
1

2
(−
√
β1 +

√
β2 −

√
β3)

α4 =
1

2
(−
√
β1 −

√
β2 +

√
β3)

Since β1, β2, β3 the roots of the polynomial R:

R(β) = β3 + 2pβ2 + (p2 − 4r)β − q2
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We solve R by using Cardon method, let’s put β = γ − 2p
3
, then we get:

γ3 +H1γ +H2 = 0

where

H1 = −4p2

3
+ p2 − 4r

H2 =
2p

27
(8p2 − 9p2 + 36r)− q2

∆ = −(4H3
1 + 27H2

2 )

• If ∆ < 0, then one solution is real and the other two are complex conjugates:

γ1 = u+ v

γ2 = ju+ jv

γ3 = j2u+ j2

Such that: j = e
2iπ
3 , u =

3

√
−H2+

√
−∆
27

2
, v =

3

√
−H2−

√
−∆
27

2
.

• If ∆ = 0, then a solution is multiple and all are real:

γ1 = 2
3

√
−H2

2
=

3H2

H1

γ2 = γ3 = − 3

√
−H2

2
=
−3H2

2H1

• If ∆ > 0, then there are three distinct real solutions:

γ1 = u+ u

γ2 = ju+ ju

γ3 = j2u+ j2u

Since u =
3

√
−H2+i

√
−∆
27

2
. The rest of the calculation must be numerical.

3.7 Bounded and unbounded orbits of the Zeraoulia-Sprott

mapping

In [23], the following problem was formulated: Find regions in the a-b plane in which the map

(3.3) is bounded and chaotic in the rigorous mathematical definition of chaos and boundedness of
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attractors. The boundedness of the attractors of the map (3.3) is studied and the corresponding

analytical estimation of absorbing set is obtained, thereby giving an answer to the above problem.

Introduce the notation

h (yk) =
−a

1 + y2
k

, k ∈ N0

The eigenvalues and eigenvectors of the map are defined by the following relation:(
xk+1

yk+1

)
= A

(
xk
yk

)
+

(
axky

2
k

1+y2
k

0

)
, A =

(
−a 0

1 b

)

det (A− PI) = det

(
−a− p 0

1 b− p

)
= (−a− p) (b− p)

= p2 + p (a− b)− ab

Thus, the eigenvalues are p = b, p = −a. For the eigenvalue p = −a, one has(
−a 0

1 b

)(
x

y

)
=

(
−ax
−ay

)

Hence, the corresponding eigenvectors are proportional to
(
1,− 1

a+b

)
. For the eigenvalue p = b,

one has (
−a 0

1 b

)(
x

y

)
=

(
bx

by

)
and, thus, x = 0. Next, the following four cases are considered, with the associated properties

proved:

• |a| < 1, |b| < 1: Global asymptotic stability,

• |a| < 1, |b| > 1: Existence of unbounded solutions,

• |a| > 1, |b| < 1: Localization of nontrivial global attractor,

• |a| > 1, |b| > 1: Existence of unbounded solutions.

The cases of |a| = 1 or |b| = 1 are not considered here, which require special consideration.
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3.8 Case 1: |a| < 1, |b| < 1. Global asymptotic stability

There exists δ > 0 such that max (|a| , |b|) < δ < 1. Then, |h (yk)| < δ < 1, ∀k, and |xk| ≤ δk |x0|,
∀k ≥ 0. Since δ < 1, one has xk −→ 0

k−→∞
. For yk, one has

|yk+1| = |byk + xk| =
∣∣b2yk−1 + bxk−1 + xk

∣∣
≤ |b|k+1 |y0|+ |b|k |x0|+ |b|k−1 |x1|+ |b|k−2 |x2|+ ...+ |b| |xk−1|+ |xk|

≤ |b|k+1 |y0|+ (k + 1) δk |x0|

Taking into account the fact that |b| < δ < 1, one gets yk+1 −→ 0
k→∞

. Thus, for |a| < 1, |b| < 1, the

global asymptotic stability is confirmed. (See Fig. 3.7).

3.9 Case 2 |a| < 1, |b| > 1. The existence of unbounded solu-

tions

It will be shown that if |a| < 1, |b| > 1, then there exists (x0, y0) such that |xk (x0, y0)| −→ 0
k→∞

,

|yk (x0, y0)| −→ ∞
k→∞

. For |a| < 1, there exists δ > 0 such that |a| < δ < 1. Then, |h (yk)| < δ < 1,

∀k ≥ 0, and |xk| ≤ δk |x0|, ∀k ≥ 0. For yk, one has

yk+1 = byk + xk = b2yk−1 + bxk−1 + xk

= bk+1y0 + bkx0 + bk−1x1 + bk−2x2 + ...+ bxk−1 + xk

= bk+1y0 + bk
(
x0 +

x1

b
+
x2

b2
+ ...+

xk−1

bk−1
+
xk
bk

)
Taking into account the fact that |xk| ≤ δk |x0|, where |a| < δ < 1, one has

|yk+1| ≥ |b|k+1 |y0| − |b|k
(
|x0|+

δ1 |x0|
|b| +

δ2 |x0|
|b|2

+ ...+
δk−1 |x0|
|b|k−1

+
δk |x0|
|b|k

)

≥ bk+1 |y0| − bk
(
|x0|+

δ1 |x0|
|b| +

δ2 |x0|
|b|2

+ ...+
δk−1 |x0|
|b|k−1

+
δk |x0|
|b|k

)

For the sum of the geometric (infinitely decreasing) series, one has

Sk

(
|x0| ,

δ

|b|

)
= |x0|+

δ1 |x0|
|b| +

δ2 |x0|
|b|2

+ ...+
δk−1 |x0|
|b|k−1

+
δk |x0|
|b|k

≤ |x0|
1− δ

|b|
=
|b| |x0|
|b| − δ
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Figure 3.5: Case 1 (|a| < 1, |b| < 1): a = 0.9, b = −0.9 ,x1 = 1, y1 = 1, k = [1, 50].

Figure 3.6: Case 2a: (|a| < 1,|b| > 1, b > 0): a = 0.9, b = 1.1, x1 = 0.8, y1 = 0.1, k = [1, 18].

3.9. Case 2 |a| < 1, |b| > 1. The existence of unbounded solutions 40
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Figure 3.7: Case 2b: (|a| < 1, |b| > 1,b < 0): a = 0.9, b = −1.1, x1 = 0.8, y1 = 0.1, k = [1, 18].

Therefore

|yk+1| ≥ |b|k+1 |y0| − |b|k Sk
(
|x0| ,

δ

|b|

)
≥ |b|k+1 |y0| − |b|k+1 |x0|

|b| − δ

≥ |b|k+1

(
|y0| −

|x0|
|b| − 1

)
If |y0| ≥ |x0|

|b|−1
, then |yk+1 (x0, y0)| −→ ∞

k→∞
. (See Figs. 3.8 and 3.9).

3.10 Case 3: |a| > 1, |b| < 1. The localization of global attractor

Let 0 < δ < 1 and introduce the notations

Ry =
√
|a| − 1 + δ |a|

Rx = |b|Ry +
√
a2 − 1 + δa2

Lemma 3.1 If |a| > 1 and |b| < 1, then for any |x0| and |y0| > Ry, one has

|x1| < |x0|
1

1 + δ

3.10. Case 3: |a| > 1, |b| < 1. The localization of global attractor 41
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Proof. Since

|x0| − |x1| = |x0|
(

1− |a|
1 + y2

0

)
≥ |x0|

(
1− |a|

1 +R2
y

)
= |x0|

(
1− |a|

1 + |a| − 1 + δ |a|

)
= |x0|

(
1− 1

1 + δ

)
one has

|x1| ≤ |x0|
1

1 + δ

Lemma 3.2 If |a| > 1 and |b| < 1, then for |y0| ≤ Ry and |x0| > Rx, one has |x2| ≤ |x0| 1
(1+δ)

< |x0| .

Proof. For y1, one has

|y1| = |x0 + by0| ≥ |x0| − |by0|

≥ |x0| − |b|Ry > Rx − |b|Ry

= |b|Ry +
√
a2 − 1 + δa2 − |b|Ry

=
√
a2 − 1 + δa2

Therefore,
a2

1 + y2
1

<
a2

1 + a2 − 1 + δa2
=

1

1 + δ
< 1

and

|x0| − |x2| = |x0| −
a2 |x0|

(1 + y2
0) (1 + y2

1)

= |x0|
(

1− 1

(1 + y2
0)

a2

(1 + y2
1)

)
≥ |x0|

(
1− 1

1 + δ

)
Consequently, |x2| ≤ |x0|

(1+δ)
< |x0| . By Lemmas 3.1 and 3.2, one gets the following results.

Corollary 3.1 For any x0, y0, there exists n ∈ N0 such that

|xn| ≤ Rx
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Corollary 3.2 If |x0| ≤ Rx, then |xm| ≤ a2Rx, ∀m ≥ 0.

Proof. Let |x0| > Rx. If |y0| > Ry, then |x2| ≤ |x1|.If |y1| ≤ Rx, then |x3| < |x1|. Therefore,

|xm| ≤ max (|x1| , |x2|) ≤ |ax1| ≤ a2 |x0| ≤ a2Rx, ∀m > 0.

Lemma 3.3 If |a| > 1 and |b| < 1, then for |x0| ≤ M and |y0| > M+δ
1−|b| , where M > 0 and δ > 0,

one has |y1| < |y0| − δ < |y0|.

Proof. Since,

|y0| − |y1| = |y0| − |by0 + x0| ≥ |y0| − |b| |y0| − |x0| ≥ |y0| (1− |b|)− |x0|

>
M + δ

1− |b| (1− |b|)−M = δ

one has

|y1| < |y0| − δ < |y0| .

Corollary 3.3 For |x0| ≤ Rx and |y0| > a2Rx+δ
1−|b| , there exists n ∈ N0 such that

|xn| ≤ a2Rx, |yn| ≤
a2Rx + δ

1− |b|

Proof. By Corollary 3.2, one has |xn| ≤ Rx, ∀n ≥ 0. By Lemma 3.3, there exists n such that |yn| ≤
a2Rx+δ

1−|b| .

Lemma 3.4 If |a| > 1 and |b| < 1, then for |x0| ≤ M and |y0| ≤ M+δ
1−|b| , where M > 0 and δ > 0,

one has

|y1| ≤
M + δ

1− |b|
Proof. We have

|y1| = |by0 + x0| ≤ |b| |y0|+ |x0| ≤ |b|
M + δ

1− |b| +M =
M + |b| δ

1− |b| <
M + δ

1− |b|
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Figure 3.8: Case 3: (|a| > 1, |b| < 1): a = 2.5,b = 0.1, δ = 0.00001, x1 = 16.59,y1 = 18.44,

k = [1, 100].

Corollary 3.4 If |x0| ≤ Rx, then there exists N > 0 such that

|yn| ≤
a2Rx + δ

1− |b| ,∀n > N

See [21] .

Proof. By Corollaries 3.2 and 3.3, there exists n > 0 such that

|xn| ≤ a2Rx, |yn| ≤
a2Rx + δ

1− |b|

where |xm| ≤ a2Rx, ∀m ≥ 0. It follows from Lemma 3.4 with M = a2Rx that

∀k > n, |yk| ≤
a2Rx + δ

1− |b|

Therefore, by Corollaries 3.1, 3.2 and 3.4 for any x0 = 0, y0 = 0, there exists n > 0 such that, ∀k > n,

|xk| ≤ a2
(
|b|
√
|a| − 1 + |a| δ +

√
a2 − 1 + a2δ

)
= a2Rx

|yk| ≤
a2
(
|b|
√
|a| − 1 + |a| δ +

√
a2 − 1 + a2δ

)
+ δ

1− |b|

=
a2Rx + δ

1− |b|

Thus, all possible attractors are placed in the above absorbing set. Figure 3.10 shows the absorbing

set and a self-excited attractor.
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Figure 3.9: Case 4 : (|a| > 1,|b| > 1): a = 1.1, b = 1.1, x1 = 0.01, y1 = 0.01, k = [1, 60].

3.11 Case 4: |a| > 1, |b| > 1.The existence of unbounded solu-

tions

Consider a certain δ satisfying |b|−1 < δ < 1. Let |y0| ≥
√
|a| − 1 and |x0| ≤ |y0|

(
|b| − δ−1

)
. Then,

|x1| =
∣∣∣∣ −ax◦1 + y2

0

∣∣∣∣ ≤ |x0| , |y1| = |by0 + x0| ≥ |by0| − |x0| ≥ δ−1 |y0| > |y0|

and |x1| ≤ |y1|
(
|b| − δ−1

)
. Therefore, yk (y0) −→∞

k→∞
. Figure 3.11 shows a solution, which tends to

infinity. See [21] .

3.12 Conclusion

The concept of chaos is related to all areas of life and it became possible to predict the behavior

of any evolutionary phenomenon, and each of these phenomena is translated into equations and

thus it is possible to study its dynamical behaviors, including the so called Zeraoulia- Sprott map.

In this work, we present a more comprehensive study of the dynamical behaviors of Zeraoulia-

Sprott map, based on theoretical analysis and numerical simulations. We also presented results

on its ability to generate smooth multifold strange attractors via period-doubling bifurcations.

3.11. Case 4: |a| > 1, |b| > 1.The existence of unbounded solutions 45
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