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 ملخص

الهدف من هذا العمل هو دراسة نظام المعادلات التفاضلية العادية من الدرجة الاولى التي تستخدم       

عبر نموذج  رياضي مقترح ،ويتم إجراء تحليل الاستقرار  Covid-19لتحليل ديناميكيات مرض 

عرضون العالمي للنموذج الموسع بواسطة دالة ليابونوف المناسبة، حيث يتم إما بانتشار السكان الم

للإصابة او المصابون بالعدوى ويعتمد استقرار المرض على كل من معدل انتقال المرض ومعدل تطور 

دورا في تحديد ما اذا كان  0R   الحالة المعدية الى حالة معزولة او في المستشفى، يمكن ان يلعب الرقم

فإن التوازن الخالي من الامراض يكون مستقرا بشكل  0R˂1المرض سينقرض او يستمر ،اذا كان 

 .10R<مقارب وغير مستقر عالميا عندما 

:   مفتاحيةلالكلمات ا   

 دالة ليابونوف ، التوازن نقاط ، العالمي الاستقرار ، المحلي الاستقرار

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



Résumé 

        Le but de ce travail est d'étudier le système d'équations différentielles 

ordinaires du premier ordre utilisé pour analyser la dynamique de la maladie 

COVID-19 via un modèle mathématique proposé. L'analyse de stabilité globale 

est réalisée pour le modèle étendu par une fonction de Lyapunov appropriée, 

dans laquelle soit les populations sensibles ou infectieuses sont diffusives. La 

stabilité de la maladie dépend à la fois du taux de transmission de la maladie et 

du taux de progression de l'état infectieux vers l'état isolé ou hospitalisé. Le 

nombre R0 peut jouer un rôle dans la détermination de l'extinction ou de la 

persistance de la maladie, si R0 < 1, alors l'équilibre sans maladie est 

globalement asymptotiquement stable et instable lorsque R0 > 1. 

    Mots clés : Stabilité locale, Stabilité globale, Points d'équilibre, Fonction de 

Lyapunov. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract. 

           The aime of this work is to study system of rst order ordinary differential 

equations is used to analyse the dynamics of COVID-19 disease via a 

mathematical model proposed. The global stability analysis is conducted for the 

extended model by suitable Lyapunov function, in which either susceptible or 

infective populations are diffusive. The stability of the disease is dependent on 

both transmission rate of the disease and the progression rate of the infectious 

state to isolated or hospitalized state. The number R0 can be played role in 

determining whether the disease will extinct or persist, if R0 < 1 then the 

disease-free equilibrium is globally asymptotically stable and unstable when 

R0>1 . 

Key words: Stability local, Stability global, Equilibriums points, Lyapunov 

function 
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Introduction

Mathematical models are useful to understand the behavior of an infection when it

enters a community and investigate under which conditions it will be wiped out or contin-

ued. Currently, COVID-19 is of great concern to researches, governments, and all people

because of the high rate of the infection spread and the signi�cant number of deaths that

occurred. In December 2019, coronavirus �rst reported inWuhan, China, is an infectious

disease caused by a newly discovered coronavirus. The virus that causes COVID-19 is

mainly transmitted through droplets generated when an infected person coughs, sneezes,

or exhales. These droplets are too heavy to hang in the air and quickly fall on �oors

or surfaces. Coronavirus-con�rmed cases reached nearly 174 million in the world, and

approximately 3,74�106 people have lost their lives due to this virus [34].
In 2020 The Coronavirus pandemic has spread in Algeria starting from 25 February

2020, when a positive test for Coronavirus disease 2 associated with severe acute respir-

atory syndrome (SARS-2-CoV) for a sample from an Italian citizen, and then revealed

other cases infected with Covid-19, the total of co�rmed cases in Algeria reached 131.283

Including 3.527 deaths, up to 08 june 2021, the Algiers wilaya ranked �rst with 6506

con�rmed cases, followed by the wilaya of Blida with 4453 cases [35].

Some models have made modi�cations based on the conventional �SEIR�model [28]

and concluded that strictly controlled interventions are critically important to impede

COVID-19 outbreak [8] [29]. Several other model instead established a stochastic trans-

ition model to evaluate the transmission of COVID-19 and also emphasized the necessity

of interventions such as social-distancing, isolation and quarantine [8]. Meanwhile, asymp-

tomatic patients are covert cases which represent a serious threat to public health [32].

A few models have been developed to evaluate the role of coronavirus transmission based

on asymptomatic cases [29] [30] [31].

This work is divided into three chapter:

Chapter1: Fundamental concepts and description of COVID-19 model.

In this chapter, we de�ne and introduce the basic functional tools necessary to Reaction-

di¤usion.

Chapter2: Stability of COVID-19 model.

As we have seen before the Covid-19 model, in this chapter we will study the local and

global stability of the equilibriums points of this model in the case of ordinary di¤erential

equations.

Chapter3: Reaction-Di¤usion system of COVID-19 model.
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In this chapter we will study change as Covid-19 spreads to the population, we will

examine the local stability and global stability of the system (PDE) of the equilibrium

points of the Covid-19 model.
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List of abbreviations and symbols

� The set of the real numbers is denoted by R.

� The set of the real numbers of the n-elements, is denoted by Rn:

� The determinant of real and complex martices is denoted by det (A).

� The trace of real and complex matrices is denoted by tr (A).

� The invers of real and complex matrices is denoted by A�1.

� The transpose of matrix A is denoted by AT .

� The diagonal of real and complex matrices is denoted by diag(A).

� The real part of a complex number is denoted by Re(A).

� The Sobolev spaces, is denoted by H1(
).

� The spectral radius of A, is denoted by �(A).

� R0 Basic Reproduction Number.

� The space of continuous and derivative functions is denoted by C1.

� @Ai
@x

=
@

@x
(A1; A2; :::A3) denotes the partial derivative of (A1; A2; :::A3) :

� �A =
nP
i=1

@2A
@x2i

denoted the Laplacian operator A,

� rA =
�
@A
@x1
; @A
@x2
; :::; @A

@xn

�
denoted the gradient of A

� The disease-free equilibrium is denoted by (DFE).

� The ordinary di¤erential equations denoted by (EDO).

� The partial di¤erential equations denoted by (EDP).
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CHAPTER 1

Fundamental concepts and description of

COVID-19 model

In this chapter, we de�ne and introduce the basic functional tools necessary to Reaction-

di¤usion and description of COVID-19 model

De�nition 1 Epidemiology is the subject that studies the patterns of health and illness
and associated factors at the population level. The word �epidemiology� is derived from

the Greek terms epi, which means �upon,� demos, which means � people,� and logos,

which means �study.�This etymology implies that the subject of epidemiology applies only

to human populations. The role of father of epidemiology is often assigned to the Greek

physician Hippocrates (460�377 B.C.E.), who described the connection between disease

and environment. The term �epidemiology� appears to have �rst been used to describe

the study of epidemics in 1802 by the Spanish physician de Villalba in Epidemiologia

Espanola. Until the twentieth century, epidemiological studies were mostly concerned with

infectious diseases. Nowadays, the leading causes of deaths worldwide are diseases such

as stroke and coronary heart disease, positioning diseases that do not transmit from one

person to another as a central concern of epidemiology. Among infectious diseases, those

that dominate worldwide as a cause of death include lower respiratory infections (such as

pneumonia).
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1.1 Reaction-di¤usion systems

Di¤usion - reaction systems are well established in di¤erent life science disciplines .When

applied to �human question�they are used to estimate the demographic processes involved

in major human (or animal) dispersal episodes and to estimate the general spread pattern

of new ideas or technologies through cultures.This manuscript gives an introduction to

di¤usion-reaction systems for a non-mathematical audience.We focus on describing dis-

persal processes and start with modelling and analysing the spread dynamic of a single

population under di¤erent dispersal and growth hypotheses. Further we focus on the

impacts of population interactions on spread behaviour of a particular population.

De�nition 2 (Di�usion) :The concept of di¤usion originale from physical sciences (Fick�s
law is regarded as the fundamental principle of di¤usion). In its physical sense di¤usion

is de�ned as a phenomenon where a certain particle group as a whole spreads according to

the irregular motion of each particle. There by the spread is always directed from regions

of higher concentration to regions of lower concentration and the time dependence of the

distri-bution of the particles in space is given by the so called di¤usion equation which is

the mathematical formulation of the described spread dynamic. The di¤usion theory seeks

to explain the spread behaviour of a group of particles (rather than spread behaviour of

asingle particle) and consequently the variable of interest is the proportion of the particle

group which can be found. In this way phenomena like the di¤usion of an ink drop in

water or di¤usion of heat can be described, of di¤usion is applied in biology to describe

processes of biodi¤usion and to model population dynamics or the spread of infectious dis-

eases among the population, or in a less quantitative way, in social sciences to describe the

spread of ideas (di¤usion of innovations, lexical di¤usion, trans-cultural di¤usion).[33]

De�nition 3 (Reaction) :After modelling dispersal phenomena we turn our attention
to growth processes. Here we understand growth as the increase or decrease of the variable

of interest (e.g. population size number of individuals who use a new technology) due to

intrinsic birth-death pro-cesses. Similar to di¤usion dynamics, where Fick�s law provided

the fundamental principle growth behaviour can be characterised by a very small number

of basic concepts such as the Malthusian or the logistic growth model. The Malthusian law

of growth proposes that the human population of a nation grows exponentially (at least

for a while). Contrarily the logistic law postulates that the rate of growth is proportional

to both the present population size and the amount of available resources and is therefore

bounded if the amount of resources are limited.[33]
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1.2 Interaction between dispersing populations

After considering di¤erent approaches for describing reproduction and dispersion, whether

for infection, prey or population separately we now study the population dynamic in[19]

obtained by combining both mechanisms. We allow the population or infection to grow

and to disperse at the same time and are interested in the temporal and spatial beha-

viour of the population size under di¤erent growth models (exponential growth, logistic

growth,...). We analyse so called di¤usion-reaction systems of the form

@A (x; t)

@t
= D�A (x; t) + F (A); (1.1)

where A is an m-vector the time- and space dependent function A again describes the

population size at any location x and time t. The mathematical symbol � de�nes the

Laplacian operator, which is the mathematical description of the process of moving the In-

fection or population from local spatial regions of high density or the most common infec-

tion to those of a lower density or the least infection, D =daigonal matrix(D1; D2; :::; Dm)

,the temporal change of the population or infection size at location x is given by the

di¤usion component D�A (x; t) ;and the growth component F = (F0; F1; :::; Fm).

So far we focused on describing the dispersal pattern of a single population in an

unoccupied habitat. But what happens if the dispersing population comes into contact

with other populations? Depending on the kind of interaction one would expect signi�cant

changes in the dispersal patterns. [18]Very generally interactions can be divided into three

groups:

� Prey-predator interactions:If the growth rate of one population is increased but
decreased for the other then we are in a predator-prey situation.

� Competition:If the presence of the population carrying the infection reduces the
number of healthy people, then we face competition to spread infection

� Mutualism:If each population�s growth rate is enhanced then it�s called mutualism.

Example 4 (Prey-Predator models).

When predators are successful at catching prey[18] they will reproduce more reliably

and their species will increase in numbers whereas the numbers of their prey will fall.

However, the larger predators population will struggle to �nd enough food to support them

and their numbers will fall because of the reduced population of prey species. Eventually

the situation will reverse it self as the number of prey increase due to less predation. If

the ecosystem is large enough and other factors do not have an excessive e¤ect, this can

result in a situation in which populations of predator and prey rise and fall at regular
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intervals, with a small time lag between them. This dynamic is described mathematically

by the following Lotka-Volterra system8>>><>>>:
@N

@t
= N(a� bP )

@P

@t
= P (cN � d)

(1.2)

The time-dependent variables N andP stand for the population sizes of the prey and

predator population, respectively, and the terms
@N

@t
and

@P

@t
de�ne the temporal change

in frequency of both populations, In the absence of any predators (that means P = 0)

the prey grows exponentially, modelled by the term aN(a > 0). So the coe¢ cient a is the

intrinsic growth rate of the prey population if no interactions with the predator population

occur. The e¤ect of predation is to reduce the growth aN by the term�bPN(b > 0) which
is proportional to both, the prey and the predator population. In the absence of any prey

(that means N = 0) the predator population is reduced exponentially which is modelled

by the term �dP (d > 0). Lastly the predators growth is dependent on the availability of
prey and therefore is modelled by the term cPN(c > 0).

1.3 Stability of system Reaction-di¤usion

The study of the endemic global stability is not only mathematically important, but also

essential in predicting the evolution of the disease in the long run so that prevention and

intervention strategies can be e¤ectively designed, and public health administrative e¤orts

can be properly scaled.and public health administrative e¤orts can be properly scaled.

There are some methods, i.e. those based on the monotone dynamical systems(1.1), the

geometric approach [22], and Lyapunov functions,[23] to conduct global stability analysis

for epidemic models.

Under certain assumptions one might expect that the solution to (1.1) would approach

as t �!1 to a solution of the system of steady state equations

D�A (x; t) + F (A) = 0: (1.3)

In D with Neumann boundary data. Solutions of (1.3) with the Neumann bound-

ary condition are called equilibrium solutions, we are interested in constant equilibrium

solutions to ((1.3).
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De�nition 5 (equilibrium point) we say that x an equilibrium point of a system(
d
dt
x(t) = f(x(t));

x(0) = x0:
(1.4)

if xE verify the equationt

f(xE) = 0: (1.5)

for all t � t0.

Lemma 6 [14] Let A =

"
a11 a12

a21 a22

#
be a 2 � 2 matrix Then A is Volterra-Lyapunov

stable if and only if a11 < 0, a22 < 0 and

det(A) = a11a22 � a12a21 > 0: (1.6)

The characterization of Volterra-lyapunov stable matrices of higher dimensions, how-

ever, is much more di¢ cult We need the following de�nition.

Lemma 7 [15]If xo is the disease free equilibrium (DFE) of model

dx

dt
= fi(x) = Fi(x)� Vi(x) 8i = 1; n;

Fi(x) be the rate of appearance of new infections in compartment i;

V +i (x) be the rate of transfer of individuals into compartment i by all other means

V �i (x) be the rate of transfer of individuals out of compartment i.

It is assumed that each function is continuously di¤erentiable at least twice in each

variable.

and fi(x) satis�es (A1) through (A5), where

(A1) If x > 0, then Fi; V
+
i ; V

�
i � 0 for i = 1; :::; n.

(A2) If xi= 0 then V �i = 0. In particular, if x 2 Xs then V �i = 0 for i = 1; :::;m.

(A3) Fi = 0 if i > m.

(A4) If x � Xs then Fi(x) = 0 and V
+
i (x) = 0 for i = 1; :::;m.

(A5) If F (x) is set to zero, then all eigenvalues of Df(x0) have negative real parts.

then the derivatives DF (xo) and DV (xo) are partitioned as

DF (xo) =

"
F 0

0 0

#
; and DV (xo) =

"
V 0

J3 J4

#
; (1.7)
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where F and V are the m�m matrices de�ned by

F =

�
@Fi
@x

(xo)

�
; and V =

�
@Vi
@x

(xo)

�
; with 1 � i; j � m: (1.8)

Further, F is non-negative, V is a nonsingular M-matrix and all eigenvalues of J4 have

positive real part.

De�nition 8 We denote by L2 (
) the set of integrable square. A functions

f de�ned on 
 is called an integrable square if f is measurable.We then de�ne the

norme on

k f kL2(
)=
�Z

j f j2
� 1

2

= 0 (1.9)

De�nition 9 [15]The equilibrium XE is said to be stable if for everything " > 0 ; it

exists � > 0 as for all solution X (t) of (1), we have

X0 �XE
 < � )

X (t)�XE
 < " (1.10)

De�nition 10 [15](Locally asymptotically stable) Let J (XE) = @f
@X
(XE) the Jacobian

matrix of f evaluates at point XE. Consider the following linear system

dX

dt
= AX: (1.11)

where A = J (XE) is say the linearized or the linear approximation of the non-linear

system (1:4) in XE.

The study of the stability of the origin for the linearized allows in certain cases to

characterize the stability of the (1:4) : More precisely we have.

� If all the eigenvalues of the matrix A are of strictly negative real part, then the

system (1:4) is stable.

� If there is at least one eigenvalue of the matrix A of strictly positive real part then,
the system (1:4)is unstable.
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De�nition 11 (Globally asymptotically stable)The equilibrium point XEis say to be

globally asymptotically stable if it is stable, and for any X(t) solution for (1:4), we have

lim
t!1

X (t)�XE
 = 0 (1.12)

De�nition 12 The basic reproduction number R0 is the spectral radius of the next gener-
ation matrix, namely R0 = � (FV �1) :The following interpretation is given to the matrix

FV �1.

� Let us consider an infected individual introduced into a compartment FV �1of a
population without disease. The entry (i; k) of the matrix V �1is the average time that

the individual will spend in compartment i during his life assuming that the infection has

been blocked.

� The entry (j; i) of matrix F is the speed at which an infected person in compartment
i produces infections in compartment j thus the entry (j; k) of FV �1 is the expected

number of new infections in compartment j produced by an infected individual originally

introduced into compartment k .The spectral radius of the matrix FV �1 is the basic

reproduction number That is to say R0 = � (FV �1) :

Lemma 13 For all function � of H1 (
),and all function �of H1 (
) ,we have the Green
formula

Z



(�u) v =

Z



@u

@�
vd� �

Z



rurv (1.13)

Proof 14 On suppose �u =
Pn

i=1
@2u
@x2i

the Laplacian of a distribution u. Then, if u is a

function of H1(
)

�
Z



(�u) v = �
nX
i=1

@2u

@x2i
vdx:

=

nX
i=1

�Z



@u

@xi

@v

@xi
�
Z



@u

@xi
v�id�

�
;

=

nX
i=1

Z



@u

@xi

@v

@xi
�
Z



@u

@�
vd�;

Z



rurv �
Z
@


@u

@�
vd� (1.14)
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De�nition 15 The spectral radius of a matrix A is de�ned as the maximum of the abso-

lute values of the eigenvalues of A:

�(A) = supfj�j : � 2 �(A)g;

where �(A) denotes the set of eigenvalues of A.

Theorem 16 (Routh-Hurwitz)
Consider the characteristic equation

det(�In � A) = �n + a1�n�1 + a2�n�2 + :::+ an�1�+ an: (1.15)

Determining the n eigenvalues � of a real n�n square matrix A,where I is the identity
matrix. Then the eigenvalues � all have negative real parts if

�1 > 0;�2 > 0; :::;�n�1 > 0;�n > 0; (1.16)

where

�1 = a1;�2 =

����� a1 1

a3 a2

����� = a1a2 � a3; (1.17)

and

�k =

�������������

a1 1 0 0 0 0 � � � 0

a3 a2 a1 1 0 0 � � � 0

a5 a4 a3 a2 a1 1 � � � 0
...

...
...

...
...

...
. . .

...

a2k�1 a2k�2 a2k�3 a2k�4 a2k�5 a2k�6 � � � ak

�������������
: (1.18)
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1.3.1 Stability Based on Lyapunovs Method

The method of Lyapunov functions has been known for many decades The challenge in

the application of this method is that there is no systematic way to construct Lyapunov

functions (particularly, the determination of the appropriate coe¢ cients is often a matter

of luck), so that its success largely depends on trial and error as well as on speci�c

problems.

In this study, we are aiming to establish the global stability of constant steady-state

solutions to reaction�di¤usion systems with Neumann boundary conditions. The approach

here,is to construct Lyapunov function-alsforpartial di¤erential equations(PDE) using
Lyapunov function als for ordinary di¤erential equations(ODE).

De�nition 17 (function Lyapunov)

A associated function V (t) or system (1.1) is the Lyapunov if

1- V (t) � 0 and

2-
d

dt
[V (t)] � 0 8t � 0:

(1.19)

Description of the method

Let A be the non-negative vector of concentrations A1; :::; Am, and let the reaction be

governed by the ordinary di¤erential equation[19]

_A = F (A); with F : Rm �! Rm is a C1 function. (1.20)

Let 
 be a bounded domain in Rn with smooth boundary @
 and D = (d1; :::; dm)

with di � 0. Suppose A�is a positive equilibrium of (1.20). Then u

is also a spatially homogeneous steady-state solution to the following reaction�di¤usion

system with Neumann boundary condition

@A

@t
= D�A+ F (A) in 
� (0;+1);

@A

@�
= 0 on @
� (0;+1);

A(x; 0) = A0(x) in 
:

(1.21)

where � is the Laplacian in the variable x 2 
 � Rn; and@A
@�

is the outward normal

derivative on @
. System (1.21) is the kinetic system of (1.20).
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LetV (A) be a C1 function de�ned on some domain in Rm+ . When A(t) is a solution of
(1.20), it is often necessary to compute the time derivative of V (A(t)). It holds that

dV (A(t))

dt
= rV (A) � f(A): (1.22)

We assume that the range of A(t) is contained in the domain of V (A). The right

hand side is given by the gradient of the function V (A) and the vector �eld F (A). Thus

the right hand side is de�ned without the fact that A(t) is a solution of (1.20), and it is

important for our calculation of Lyapunov functionals.

Let A(t; x) be a solution of (1.21)[19], and we put

W =

Z



V (A(t; x))dx: (1.23)

Calculating the time derivative of W along the positive solution of model (1.21), we

get
dW

dt
=
R


rV (A) � (D�A+ f(A)) dx;

=
R


rV (A)f(A)dx+

R


rV (A)D�Adx:

(1.24)

Hence,
dW

dt
=

Z



rV (A)f(A)dx+
mX
i=1

di

Z



@V

@Ai
�Aidx: (1.25)

We assume the integrand of the �rst term of (1.25) is already calculated as (1.22) for

the ordinary di¤erential equation (1.20). The second term is simpli�ed by using Green�s

formula, and we obtainZ



@V

@Ai
�Ai =

Z
@


@V

@Ai

@Ai
@�
d� �

Z



rAir
�
@V

@Ai

�
dx: (1.26)

since
@Ai
@�

= 0 on @
 , then

Z



@V

@Ai
�Aidx = �

Z



Z



rAir
�
@V

@Ai

�
dx: (1.27)

Hence
dW

dt
=

Z



rV (A) � f(A)dx�
mX
i=1

di

Z



rAir(
@V

@Ai
)dx: (1.28)
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So we construct the function V such that

di

Z



rAir(
@V

@Ai
)dx � 0; for all i = 1:::m: (1.29)

In literature, many authors constructed explicit Lyapunov functions of the form

V =

mX
i=1

ai (Ai � A�i lnAi) : (1.30)

In this case, we haveZ



rAir(
@V

@Ai
)dx = aiA

�
i

Z



jrAij2
A2i

dx � 0:

We summarize the above in the following proposition.

Proposition 18 [19]1-If the Lyapunov function for the ordinary di¤erential equation
(1.20) veri�es (1.29), then the function W de�ned by (1.23) is a Lyapunov functional

for the Reaction�di¤usion system

2-If the Lyapunov function for the ordinary di¤erential equation (1.20) is of the form

described by (1.30), then W is a Lyapunov functional for the Reaction�di¤usion system

(1.21).

Finally, we say that Reaction�di¤usion systems have become important in many areas

of life, it in various are well-established in di¤erent life science disciplines.

1.4 Model formulation

In the model, total population N(t) is divided into four classes: Susceptible:S(t), Infected

I(t), Hospitalized: H(t) and Recovered:R(t) So N(t) = S(t)+I(t)+H(t)+R(t):We have

not considered human mobility and it is assumed that the recovery from the disease gives

total immunity. Also, for all compartments per day infection rate, recovery time are �xed

and natural death rate are considered same for all the compartments. All the hospitalized

individuals are isolated and do not come in contact with susceptible individual.
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The mathematical model of the transmission of COVID-19 is described as follows:

Diagram1-Flow diagram for COVID-19 disease transmission model

8>>>><>>>>:
dS(t)
dt

= � � �SI � �S
dI(t)
dt
= �SI � (k + � + �) I

dH(t)
dt

= kI � (� +  + �)H
dR(t)
dt

= �I + H � �R:

: (1.31)

The coe¢ cients used into our model are explained in the following :

N : total human population size

S : susceptible population size

I : infected (infectious) population size

H : hospitalized(isolated) population size

R : immunes (recovered) population size

� : recruitment rate

� : death rate

�: transmission coe¢ cient

� : recovery rate in infected population

 : recovery rate in isolated population

� : disease induced death rate

K : progression rate from infected to isolated population
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1.4.1 Existence and boundedness

Suppose, M = f(S; I;H;R) 2 R4 : S; I;H;R � 0g : Then M should be positively invari-

ant. The solution of the system, the state variables S; I;H;R cannot exit M by crossing

the boundaries

S = 0; I = 0; H = 0; R = 0:

From the system (1:31), we have

N = S + I +H +R:

Thus

dN
dt
= � � �N � �H � � � �N

N � �
�
(1� exp (��t))�N (0) exp (��t) :

Hence

lim supN � �

�
: (1.32)

There for, S(t); I(t); H(t) and R(t) are bounded above by �
�
on [0; d) for some d > 0.

Hence for some d > 0 the solution of the system (1:31) are bounded on [0; d):

Assume that, the initial conditions of the system are as follows

S(0) > 0; I(0) > 0; H(0) > 0; R(0) > 0: (1.33)

Let

x(t) = (S(t) + I(t) +H(t) +R(t)) 2 R4: (1.34)

The system (1:31)is written in the form x = w(x) with wi , i = 1; 2; 3; 4 are the components

of the vector eld w, which consists of the algebraic polynomials of state variables. Thus

wi are continuous autonomous functions on R4and partial derivatives

@wi
@S
;
@wi
@I
;
@wi
@H

;
@wi
@R

(1.35)

exist and are continuous. Hence by Existence and Uniqueness Theorem, for any initial

condition x(0) > 0 2 R4 a unique solution of the system x = w(x) exists
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1.4.2 Equilibrium Points and Basic Reroduction Number

Compartmental models are deterministic, that is given the same inputs, they produce

the same results every time.They are able to predict the various properties of the spread

of the virus can estimate the duration of epidemics and can be used to understand how

di¤erent situations or interventions can a¤ect the results of the spread. To do this, the

R0 parameter describing the average number of new infections due to a sick individual

plays a crucial role. As you can imagine if this number is less than (1:31) then the

epidemic will tend to die out. In this case, the disease-free equilibrium (DFE) will be

locally asymptotically stable and the disease cannot persist in the population. While it

may persist or even spread to the whole population if.This implies that the disease-free

equilibrium (DFE) is unstable. Using next generation matrix he baic reproduction of

(1:31) is found here. Since the DFE is E0 =
�
�
�
; 0; 0; 0

�
and hence the basic reproduction

number can be found using theanalytical approach.

Let 8>>>><>>>>:
� � �SI � �S = F1

�SI � (k + � + �) I = F2
kI � (� +  + �) I = F3
�I + H � �R = F4

: (1.36)

We extract the Jacobian Matrix where

Df =

0BBBB@
dF1
dS

dF1
dI

dF1
dH

dF1
dR

dF2
dS

dF2
dI

dF2
dH

dF2
dR

dF3
dS

dF3
dI

dF3
dH

dF3
dH

dF4
dS

dF4
dI

dF4
dH

dF4
dR

1CCCCA ; (1.37)

by compensation we �nd

Df =

0BBBB@
��I � � ��S 0 0

��I �SI � (k + � + �) 0 0

0 k �(� +  + �) 0

0 �  ��

1CCCCA ; (1.38)

Evaluating the Jacobian matrix (1.38) at E0 yields
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Df (E0) =

0BBBB@
�� ���

�
0 0

0 ��
�
� (k + � + �) 0 0

0 k � (� +  + �) 0

0 �  ��

1CCCCA ;

where

W =

0B@ �S � (k + � + �) 0 0

k �(� +  + �) 0

�  ��

1CA ; (1.39)

and

W = F � V =

0B@ �S 0 0

k 0 0

� 0 0

1CA (1.40)

�

0B@ (k + � + �) 0 0

0 (� + �+ �) 0

0  ��

1CA
0B@ (k + � + �) 0 0

0 (� +  + �) 0

0  ��

1CA ;
where F and V are the 3� 3 matrices de�ned by

F (E0) =

0B@
��
�

0 0

k 0 0

� 0 0

1CA ;
and

V (E0) =

0B@ (k + � + �) 0 0

0 (� +  + �) 0

0 � �

1CA
The conditions listed above allow us to partition the matrix Df(E0) as shown by the

following

R = �(FV �1) = max(j�1j ; j�2j ; j�3j) (1.41)
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V �1 =
1

det(V )

�
~V
�t
; (1.42)

we count
�
~V
�t
:

�
~V
�t
=

0B@ (� +  + �)(�) 0 0

0 (k + � + �)(�) 0

0 (k + � + �) () (k + � + �) (� +  + �)

1CA ; (1.43)

which has determinant

det(V ) = (k + � + �) (� +  + �) (�): (1.44)

Using (1.43) and (1.44), this can be rewritten as

V �1 =
1

(k + � + �)(� +  + �)�

0B@ (� +  + �)(�) 0 0

0 (k + � + �)� 0

0 (k + � + �) (k + � + �)(� +  + �)

1CA ;
(1.45)

then

FV �1 =
1

(k + � + �) (� +  + �) (�)
�0B@

��
�

0 0

k 0 0

� 0 0

1CA
0B@ (� +  + �)(�) 0 0

0 (k + � + �)(�) 0

0 (k + � + �) () (k + � + �) (�+ + �)

1CA

=

0BB@
��(�++�)(�)

�(k+�+�)(�++�)(�)
0 0

k(�++�)(�)
(k+�+�)(�++�)(�)

0 0
�(�++�)(�)

(k+�+�)(�++�)(�)
0 0

1CCA

=

0BB@
��

�(k+�+�)
0 0

k
(k+�+�)

0 0
�

(k+�+�)
0 0

1CCA (1.46)

Using (1.46), we obtain
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det(FV �1 � �I3) =

0BB@
��

�(k+�+�)
� � 0 0

k
(k+�+�)

�� 0
�

(k+�+�)
0 ��

1CCA
�i;i=1;3 are the eignvalue 8><>:

�1 =
��

�(k+�+�)

�2 = 0

�3 = 0

R0 = �(FV
�1) = max(j�1j ; j�2j ; j�3j) = j�1j
R0 =

��
�(k+�+�)

:

(1.47)

The endemic equilibrium point E� = (S�; I�; H�; R�) the system (1:31) as follows:

8>>>><>>>>:
� � �SI � �S = 0

�SI � (k + � + �)I = 0
kI1 � (� +  + �)H = 0

�I + H � �R = 0

; (1.48)

we take dI�

dt
= 0 so �S�I� � (k + � + �)I� = 0; thus

S� =
(k + � + �)

�
;

and dS�

dt
= 0 so � � �S�I � �S� = 0, we get

� � � (k + � + �)
�

I� � �(k + � + �)
�

= 0:

On the other hand

I� = ��
�
+

�

(k + � + �)
;

thus

I� =
�

�
(R0 � 1) :

However dH
�

dt
= 0 So

kI� � (� +  + �)C�H = 0: (1.49)

Larbi Tebessi Univ-Tebessa - 21 2 nd Master / PDE



Substitute I� in (1:49)

k
�

�
(R0 � 1) = (� +  + �)H�;

thus

H� = k
�

�(� +  + �)
(R0 � 1) :

From the equation dS�

dt
= 0 So

�I� + H� � �R� = 0: (1.50)

Substitute H� and I� in (1:50)

�
�

�
(R0 � 1) + k

�

�(� +  + �)
(R0 � 1)  = �R�:

And here is the result

R� =
�

�
(R0 � 1) + k



�(� +  + �)
(R0 � 1) ;

thus

R� =
(R0 � 1)

�

�
� + k



(� +  + �)

�
:

So the value of (S�; I�; H�; R�)

S� = (k+�+�)
�

I� = �
�
(R0 � 1)

H� = k �
�(�++�)

(R0 � 1)
R� = (R0�1)

�

�
� + k 

(�++�)

� : (1.51)
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CHAPTER 2

Stability of COVID-19 model

As we have seen before the Covid-19 model, in this chapter we will study the local and

global stability of the equilibriums points of this model in the case of ordinary di¤erential

equations.

2.1 Local stability of the disease-free equilibrium (DFE)

Let examine the local stability of the disease-free equilibriumis E0 =
�
�
�
; 0; 0; 0

�
Theorem 19 Disease free equilibrium point of the system of equations (1:31) is locally

asymptotically stable if R0 < 1 and unstable if R0 > 1

Proof 20 About E0, the Jacobian matrix for the system of equations (1:31) is in the

block matrix

M =

 
U1 U2

0 F � V

!
: (2.1)

If all the eigenvalues of M have negative real parts, then E0 is asymptotically stable

[15]. Since M is upper triangular matrix eigenvalues of M are those of U1 and F � V

M =

0BBBB@
��I � � ��S 0 0

�I �S � (k + � + �) 0 0

0 k �(� +  + �) 0

0 �  ��

1CCCCA (2.2)

23



Using the same method from [1], the stability of E0 reduces to examining the eigenval-

ues of the matrices

M(E0) =

0BBBB@
�� ���

�
0 0

0 ��
�
� (k + � + �) 0 0

0 k �(� + �+ �) 0

0 � � ��

1CCCCA : (2.3)

Two eigenvalues of matrix U1 are ��;�� < 0. Now, stability of the disease free

equilibrium depends on the eigenvalues of F � V where F is non-negative and V is non-

singularM-matrix [3]. The eigenvalues of F�V are �(�++�) and (R0�1)(k+�+�)
Thus the eigenvalues of are F � V negative if R0 < 1 and positive if R0 > 1. It shows

that E0 is locally asymptotically stable if R0 < 1 and unstable if R0 > 1:

2.2 Local stability of endemic equilibrium

Theorem 21 The endemic equilibrium point E1 = (S�; I�; H�; R�) is stable if R0 > 1:

Proof 22 Evaluating the Jacobian matrix (2.2) at E1 = (S�; I�; H�; R�) yields

M(E1) =

0BBBB@
���(R0�1)

�
� � ��(k+�+�)

�
0 0

�(R0 � 1) 0 0 0

0 k �(� +  + �) 0

0 �  ��

1CCCCA ; (2.4)

which has trace

tr(M(E1)) = ��R0 � (� +  + �)� �)
= �(�R0 + (� +  + �) + �) < 0:

(2.5)
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The determinant of the Jacobian may be given by

det(M(E1)) = ��R0

������������
0 0 0

k �(� +  + �) 0

�  ��

������������
+(k + � + �)

������������
�(R0 � 1) 0 0

0 �(� +  + �) 0

0  ��

������������
;

(2.6)

then
det(M(E1)) = (k + � + �)�(R0 � 1)(� +  + �)�

= (k + � + �)�2(R0 � 1)(� +  + �);
(2.7)

we obtain det(M(E1)) > 0. Hence, the equilibrium point E1 is locally asymptotically

stable.

2.3 Global stability of the disease-free equilibrium

(DFE)

In this section we will study the global stability of the equilibriums points of the model

(1.31).

Theorem 23 (Global Stability of DFE) Assume R0 > 1. Then the disease free equi-
librium is globally asymptotically stable.

Proof 24 We have R = N � S � I �H, the system (1:31) as follows;8><>:
dS
dt
= � � �SI � �S
dI
dt
= �SI � pI

dH
dt
= KI � qH;

(2.8)

where P = (k + � + �) and q = (� +  + �) :

We know that if disease free equilibrium E0 = (�� ; 0; 0) is globally stable, then R(t)! 0

and E0 for the system (1.31) is globally stable.
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Consider a Lyapunov function

V = �(S � S� � S� ln S
S�
) +

1

P
I +

1

K
H;

where � > 0 to be determined and , S� = �
�
at E1; V = 0:

At �rst we have to show that V > 0 for all (S; I;H) 6=
�
�
�
; 0; 0

�
since 1

p
I > 0 and

1
k
H > 0;it is su¢ cient to show that �S�

�
S
S� � 1� ln

S
S�

�
> 0:

Now di¤erentiating V with respect to t, we get

dV

dt
= �

" 
1� S�

 
1
S�

S
S�

!!#
dS

dt
+
1

p

dI

dt
+
1

k

dH

dt

= �(1� S
�

S
)
dS

dt
+
1

p

dI

dt
+
1

k

dH

dt

= (�� �S
�

S
)(� � �SI � �S) + 1

p
(�SI � pI) + 1

k
(kI � qH)

= �� � ��SI � ��S � ��S
�

S
+
��S�SI

S
+
��S�S

S

+
�

p
SI � p

p
I +

K

K
I � q

K
H

= �� � ��SI � ��S � ��2

�CS
+
���

�
I +

���

�
+
�

p
SI � q

K
H

= 2�� � ��SI � ��S � ��
2

�S
+
���

�
I +

���

�
+
�

p
SI � q

K
H: (2.9)

If we choose � = 1
p
then

dV

dt
= ���

�
�2 + �

�
+
�

�S

�
+
���

�
I � q

K
H: (2.10)

Since from equilibrium equation, we have

H =
K

q
I:

Therefore

dV

dt
= ���

�
�

�
+
�

�S
� 2
�
+
���

�
I � q

K

K

q
I

= ���
�
�S

�
+
�

�S
� 2
�
+

�
��

(k + � + �)
� 1
�
I

= ���
�
�S

�
+
�

�S
� 2
�
+ [R0 � 1] I:
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The last term is negative, since R0 < 1.

Let a = �S
�
then we have the �rst term is

a+
1

a
� 2 = (a� 1)2

a
> 0: if a 6= 1 (2.11)

So a + 1
a
� 2 > 0 for all a > 0 and a 6= 1: Hence, we have dV

dt
< 0. Therefore, by

Lyapunov�s theorem, the disease free equilibrium point is globally asymptotically stable

2.4 Gobal stability of endemic equilibrium

In this section we will study the global stability of the equilibrium point E1 of the model

(1.31).

Theorem 25 Assume R0 > 1 Then, the endemic equilibrium is globally asymptotically

stable.

Proof 26 Consider the system of equation (2.8). Consider a Lyapunov function

w = (S � S� � S� ln S
S�
) + (I � I� � I� ln I

I�
) +

k + � + �

k
(H �H� �H� ln

H

H� ): (2.12)

Here,w = 0 when (S; I;H) = (S�; I�; H�), otherwise w > 0, w is also radially unbounded.

Now it is remained to show that dw
dt
< 0:

Di¤erentiating w with respect to t and using (1.31) we get

dw

dt
=

�
1� S

S�

�
dS

dt
+

�
1� I

I�

�
dI

dt
+

�
1� H

H�

�
dH

dt

=

�
1� S

S�

�
(� � �SI � �S) +

�
1� I

�

I

�
(�SI � pI) (2.13)

+
p

K

�
1� H

H�

�
(KI � qH)
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From equilibrium equation � = S�I� + �S�, we get

dw

dt
= �S�I� + �S� � �SI � �S � BS

�2I�

I
� �I

�2

S
+ �S�I

+�S + �S�I + �S + �SI � PI � �I�S + PI� + PI

�pq
k
H � pH

�I

H
� pq
k

H�H

H

= ��S
�2

S
+ �S� + �S + �S�I� � �S

�2I�

S

+�S�I + P � � pq
k
H � pH

�I

H
� pq
k
H� � �I�S

=
�� (S� � S)2

S
+ �S�I� � �S

�2

I
I� + �S�I � �I�S + PI�

� 1
K
pqH � pI�

�
IH�

I�H

�
+
1

K
pqH�

Again, we have from equilibrium equation KI� = qH� and �S�I� = pI�

1

k
pqH� = pI�: (2.14)

Substituting this into the �rst equation yields

dw

dt
= �� (S� � S)2 + �S�I� � BS

�2I�

S
+ �S�I � �S�I�

��S�I � �S�I�
�
IH�

I�H

�
+ �S�I�

= �� (S� � S)2 + �S�I�
�
3� S

�

S
� S

S�
� IH

�

I�H

�
: (2.15)

Clearly the �rst term of right hand side of (2:15) is negative unless S = S�: In the second

term we have to show that
�
3� S�

S
� S

S� �
IH�

I�H

�
is non-positive for this suppose

a1 =
S�

S
; a2 =

S

S�
; a3 =

IH�

I�H
: (2.16)

The Geometric Mean of the sequence is

3
p
a1a2a3 =

3

r
IH�

I�H
> 0: if R0 > 1

The Arithmetic Mean of the sequence is

a1 + a2 + a3
3

=
S�

S
+ S

S� +
IH�

I�H

3
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since AM � GM . It is clear that

a1 + a2 + a3 � 3 3

r
IH�

IH
> 3 whenever 3

r
IH�

IH
> 1:

Thus, the second term is also non-positive, whenever 3

q
IH�

IH
> 1 hence,

dw

dt
� 0: (2.17)

Now we apply the Krasovkii-LaSalle Theorem. Consider a set

U = fx 2 Rn=w0(x) = 0g

dw
dt
= 0 if and only if S = S�and�

S�

S
+
S

S�
+
IH�

I�H

�
= 3; (2.18)

since S = S� then dS
dt
= 0 from the system (1:31) we get I = I�: Finally, we get from

(2.18), H = H� Therefore the set U consists only one element (S�; I�; H�) Hence the

theorem is proved.
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CHAPTER 3

Reaction-Di¤usion system of the model

Covid-19

In the previous chapter, we studied the changes of infection Covid-19 in relation to time,

and in this chapter we will study the change in time the place of the spread of � infec-

tion Covid-19 spreads to the population, by increasing the mathematical factor in each
equation of the system (1.31). Where and we will use the same equilibriums point for
the system (EDO), we will study the local stability and the global stability of the system
(PDE) for equilibriums points of the model Covid-19.

Let the systeme the reaction-di¤usion of the model Covid-19 is the form:

8>>>><>>>>:
dS
dt
� a�S = � � �SI � �S in R+ � 


dI
dt
� b�I = �SI � (K + � + �)I in R+ � 


dH
dt
� c�R = KI � (� +  + �)H in R+ � 


dR
dt
� d�R = �I + H � �R: in R+ � 


: (3.1)

Where 
 is an open bounded subset of Rn with piecewise smooth boundary @
.

Subject to the homogeneous Neumann boundary condition

@S

@t
=
@I

@t
=
@H

@t
=
@R

@t
= 0: (3.2)

We denote the inde �nite sequence of positive eigenvalues for the Laplacian operator

� over 
 with Neumann boundary conditions by 0 = �0 � �1 � �2 � �3 � ::: ! +1.
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Note that the �rst eigenfunction is a constant, which is why the corresponding eigenvalue

is equal to zero. The corresponding sequence of eigenfunctions is denoted by (�ij)j=1;mi;
,

where mi � 1 is the algebraic multiplicity of �i. These functions are the solutions of,

(
�(��ij) = �i�ij in

@�ij
@�

= 0: on @

: (3.3)

The eigenfunctions are normalized according to,

k�ijk2 =
Z



�2ij(x)dx = 1: (3.4)

The set of eigenfunctions
�
�ij : i � 0; j = 1;mi;

	
forms a complete orthonormal basis

in L2(
). In order to establish the local asymptotic stability of the steady states, we must

examine all the eigenvalues of the linearizing operator and if they all have negative real

parts, then the solution is locally asymptotically stable.

3.1 Local stability of the equilibruims pionts of the

model covid-19

We will study the local stability of the pionts equilibriums of stability of the pionts

equilibriums of PDE

J =

0BBBB@
��I � (�+ a�i) ��S 0 0

�I �S � (p+ b�i) 0 0

0 k � (q+c�i) 0

0 �  � (�+d�i)

1CCCCA : (3.5)

Let us examine the local stability of the disease-free equilibriumis E0, Applying the

next generation method Now, we compute The basic reproduction number of the model

(1:31) , by de�ntion, we get:

Ri = �
�
FV �1i

�
; for i = 0; 1; :::; (3.6)
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we have

J(E0) =

0BBBB@
� (�+ a�i) ���

�
0 0

0 ��
�
� (p+ b�i) 0 0

0 k � (q + c�i) 0

0 �  � (�+ d�i)

1CCCCA ; (3.7)

we have

W =

0B@
��
�
� (p+ b�i) 0 0

k � (q + c�i) 0

�  � (�+ d�i)

1CA ;
and

W = F � V =

0B@
��
�

0 0

k 0 0

�  0

1CA�
0B@ p+ b�i 0 0

0 q + c�i 0

0 0 �+ d�i

1CA :
Hence, the stability of E0 rests on the negativity of the real parts of the eigenvalues

of matrices.

The conditions listed above allow us to partition the matrix J(E0) as shown by the

following:

Ri = �(FV
�1) = max (j�1j ; j�2j ; j�3j) (3.8)

where

V �1 =
1

det(V )

�
~V
�t

=
1

det(V )
�0B@ (p+ c�i) (�+ d�i) 0 0

0 (q + b�i) (�+ d�i) 0

0 0 (q + b�i) (p+ c�i)

1CA ; (3.9)

which implies that

FV �1 =
1

det(V )

0B@
��
�

0 0

k 0 0

�  0

1CA�
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0B@ (p+ c�i) (�+ d�i) 0 0

0 (p+ b�i) (�+ d�i) 0

0 0 (q + b�i) (p+ c�i)

1CA ;

=
1

det(V )

0B@
��(�++�+c�i)(�+d�i)

�
0 0

k (p+ c�i) (�+ d�i) 0 0

� (p+ c�i) (�+ d�i)  (q + b�i) (�+ d�i) 0

1CA :
The determinant of the matrix V may be given by

det(V ) = (k + � + �+ b�i) (� +  + �+ c�i) (�+ d�i) ; (3.10)

it follows that

FV �1=

0B@
��

(k+�+�+b�i)�
0 0

k
k+�+�+b�i

0 0
�

k+�+�+b�i


�++�+c�i

0

1CA ; (3.11)

where

det(FV �1 � Ti) =

�������
��

(k+�+�+b�i)�
� T1 0 0

k
k+�+�+b�i

�T2 0
�

k+�+�+b�i


�++�+c�i

�T3

������� (3.12)

and 8><>:
T1 =

��
(K+�+�+b�i)�

;

T2 = 0;

T3 = 0:

(3.13)

This implies that

Ri =
��

(K + � + �+ b�i)�
; (3.14)

the stability of E0 reduces to examining the eigenvalues of the matrices

(i) If R0 < 1 and Ri � 1 < 0, the disease-free equilibrium E0 = (�
�
; 0; 0; 0) is locally

asymptotically stable.

In the presence of di usion, the equilibrium point E0 = (S0; I0; H0; R0) = (�
�
; 0; 0; 0)

satis�es
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F � V =

0B@
��
�
� (k + � + �+ b�i) 0 0

k � (� +  + �+ c�i) 0

�  � (�+ d�i)

1CA
The eigenvalue of (F � V )

det(F � V � Ti) =

�������
��
�
� (p+ b�i)� T1 0 0

k ��
�
� (q + b�i)� T2 0

�  � (�+ d�i)� T3

������� ;
(3.15)

which are given for all i � 0 by

8><>:
T1 = (Ri � 1)(k + � + �+ b�i)
T2 = �(� +  + �+ c�i)
T3 = � (�+ d�i) :

(3.16)

The eigenvalues of F � V are (Ri � 1)(k + � + � + b�i) and �(� +  + � + c�i) and
� (�+ d�i)Thus, the eigenvalues of are F � V:

Since the Laplacian eigenvalues are positive and in ascending order, both T1; T2; T3
and clearly have negativereal parts for R0 � 1 and Ri < 1 leading to the local stability of
E0

(ii) If R0 > 1, the positive constant endemic steady equilibrium E1 = (S�; I�; H�; R�)

is locally asymptotically stable

The second steady state E1 = (S�; I�; H�; R�) satis�es

J =

0BBBB@
��I� � (�+ a�i) ��S� 0 0

�I� �S� � (p+ b�i) 0 0

0 k � (q + c�i) 0

0 �  � (�+ d�i)

1CCCCA : (3.17)

The corresponding linearization operator is:
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J(E1) =

0BBBB@
�� �

�
(R0 � 1)� (�+ a�i) �� (k+�+�)

�
0 0

� �
�
(R0 � 1) � (k+�+�)

�
� (p+ b�i) 0 0

:0 k � (q + c�i) 0

0 �  � (�+ d�i)

1CCCCA :
(3.18)

Hence, the stability of E1 rests on the negativity of the real parts of the eigenvalues

of matrix:

J(E1) =

0BBBB@
��R0 + a�i � (k+�+�)

�
0 0

� (R0 � 1) �b�i 0 0

:0 k � (q + c�i) 0

0 �  � (�+ d�i)

1CCCCA ;

which is guaranteed if the trace and determinant of J(E1) satis es the conditions

tr(J(E1)) < 0 and det(J(E1)) > 0, for all i > 0.

Since

tr(J(E1)) = � (�R0 + a�i)� b�i � (� +  + �+ c�i)� (�+ d�i) (3.19)

= � [(2 +R0)�+ � +  + a�i + b�i + c�i + d�i] < 0:

The determinant is given by

det(J(E1)) = � (�R0 + a�i)

�������
�b�i 0 0

k � (� +  + �+ c�i) 0

�  � (�+ d�i)

�������
+(k + � + �)

�������
� (R0 � 1) 0 0

0 � (� +  + �+ c�i) 0

0  � (�+ d�i)

�������
= (�R0 + a�i) b�i (� +  + �+ c�i) (�+ d�i)

+(k + � + �) (� (R0 � 1)) (� +  + �+ c�i) (�+ d�i) ;

(3.20)

which leads to det(J(E1)) > 0

Hence, E1 is locally asymptotically stable.
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3.2 Global stability of the equilibruims pionts of the

model covid-19

We have, the function

L(x) = x� 1� lnx; x > 0 (3.21)

Theorem 27 Assume R0 > 1. E1 is a globally asymptotically stable endemic steady-state
for system (3.1)-(3.2)

Proof 28 Consider the system of (3.1). Consider a Lyapunov function

W 0 =

Z



�
S�L

�
S

S�

�
+ I�L

�
I

I�

�
+
k + � + �

k
H�L

�
H

H�

��
dx: (3.22)

Di¤erentiating W 0 with respect to time yields

dW 0

dt
=

Z



��
1� S

�

S

�
dS

dt
+

�
1� I

�

I

�
dI

dt
+
k + � + �

k

�
1� H

�

H

�
dH

dt

�
dx

=

Z



�
1� S

�

S

�
(a�S + � � �SI � �S) dx

+

Z



�
1� I

�

I

�
(b�I + �SI � (k + � + �) I) dx

+

Z



k + � + �

k

�
1� H

�

H

�
(c�H + kI � (� +  + �)H) dx:

= M + �M;

where

M =

Z



�
1� S

�

S

�
(a�S) dx+

Z



�
1� I

�

I

�
(b�I) dx (3.23)

+

Z



k + � + �

k

�
1� H

�

H

�
(c�H) dx;

and

�M =

Z



�
1� S

�

S

�
(� � �SI � �S) +

�
1� I

�

I

�
(�SI � (k + � + �) I)

+
k + � + �

k

�
1� H

�

H

�
(kI � (� +  + �)H) dx

=
dW

dt
dx � 0: (3.24)
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We start by looking atM Using Green�s formula and assuming the Neumann boundary

conditions, we obtain

M = �a
Z



r
�
1� S

�

S

�
rSdx� b

Z



r
�
1� I

�

I

�
rIdx� c

Z



r
�
1� H

�

H

�
rHdx

= �a
Z



S�

S2
jrSj2 dx� b

Z



I�

I2
jrIj2 dx� a

Z



H�

H2
jrHj2 dx � 0: (3.25)

Hence dW 0

dt
< 0; and, consequently, W 0 is non increasing in time with W 0(t) = 0 only

at the steady state E1:The global asymptotic stability of E1 follows from Lyapunov�s direct

method�s.

3.3 Model Validation of Algeria

the results are shown in Figure 1 illustrates the daily reported data of COVID-19 cases

of Algeria [35]. It contains total con�rmed cases, recovered cases and death cases due to

COVID-19 infection from February 24 to May 31, 2021.

Reported cumulated data of COVID-19 in Algeria from February 24 to May 22,

2021
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3.4 Conclusion

Based on the transmission dynamics of COVID-19 in Algeria, we constructed a time

dependent simple SIHR mathematical model. We computed the disease free equilibrium

point, endemic equilibrium point and basic reproduction number of the model. Also, we

discussed about the local and global stability of the disease at the equilibrium points. The

disease free equilibrium point is locally and globally stable when R0 < 1 and unstable

when R0 > 1. Further, the endemic equilibrium point is locally and globally stable when

R0 > 1. Thus, for the stability of disease COVID-19, we need to get R0 < 1 using di¢ erent

types of control measures such as social distancing, self-isolation, testing facilities, face

mask wearing etc...
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