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                                       ملخص                                    

 البدایة في. سلوكھ یصف الذي SEIRV النموذج بدراسة قمنا, الجدید بالفیروس اھتماما

 ذلك عدب. مسبقا علیھا العمل تم التي المرض ھذا نماذج بعض عن عامة لمحة نقدم

, اخیرا .عالميوال المحلى الاستقرار نتائج نعطي ثم. لنظاماستقرارا نقاط بایجاد نقوم

   . [2]الصینیة ووھان مدینة احصائیات على بناءً  العددیة  النتائج بعض نقدم

Larbi Tebessi University i Master’s second year, PDE



Abstract

Interesting to the new virus, we studied the SEIRV model which describe the behavior of

the virus. At first, we give a literature overview of some disease models. Next, we analyse

the equilibrium points of our system. After that, we give the local and global stability

results. Finaly, we present some numerical results based on the statistics of the Chinese

city, Wuhan [2].
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Résumé

Suite à notre préoccupation du nouveau virus, nous avons étudié le modèle SEIRV qui

décrit le comportement du virus. Dans un premier temps, nous donnons un aperçu de la

littérature sur certains modèles de maladies. Ensuite, nous analysons les points d’équilibre

de notre système. Après cela, nous donnons les résultats de stabilité locale et globale.

Enfin, nous présentons quelques résultats numériques basés sur les statistiques de la ville

chinoise, Wuhan [2].
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INTRODUCTION

Coronaviruses are a large family that causes respiratory infections that include colds, high

fever, coughing and other symptoms, it is the third zoonotic human coronavirus emerging

in the current century, after the severe acute respiratory syndrome coronavirus (SARS-

CoV) in 2002 that spread to 37 countries and the Middle East respiratory syndrome

coronavirus (MERS-CoV) in 2012 that spread to 27 countries [2]. The first appeared in

Wuhan, China in march 2019 [3], then it spread to most countries of the world and claimed

many lives, as the number of deaths so far reached more than three millions deaths in the

world.

It was more interest in this disease and how to control it to limit its spread and

reducing the rates of injuries and deaths. The transmission of the disease from a person

to other is through shaking hands, touching the eyes, nose or mouth, touching the infected

surfaces and objects . . . clinical evidence shows that the incubation period of this disease

ranges from 2 to 14 days. During this period of time, infected individuals may not

develop any symptoms and may not be aware of their infection, yet they are capable of

transmitting the disease to other people [4], we can reduce the spread of the disease by

following the preventive measures (wearing a medical mask, quarantine, cleaning hands,

social distancing ect · · · ).

Mathematical models play an increasingly important role in our understanding of the

transmission of infectious diseases. Epidemiological models are studied by Mathematics

are constructive in comprising, proposing, planning, implementing, testing theories, pre-

vention, evaluating a variety of detection. On the other hand, to study, examine, analyze,

predict and capture the behaviour of viruses, diseases, threads and others, the mathemat-

ics is the only tool that can help us to better understand disease behavior, To detect and

cure those diseases properly , it is called differential and integral operators are used to
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model real world problems in all fields of sciences as they are able to repilcate some be-

haviors observed in real world [5], we need an effective method to solve these models. For

the solution of the system of linear and nonlinear differential equations. Recently, several

mathematical, computational, clinical and examination studies have been put forward for

modeling, prediction, treatment and fight disease.

Statement of the problem

In this work, we relied on the proposed model in [2] which describes the transmission of

the disease and its focus in environment, as well as the role of preventive measures in

controlling the virus and its spread.

The authors divided the total human population into four compartments, the suscep-

tible (denoted by S ), the exposed (denoted by E), the infected (denoted by I), and the

recovered (denoted by R). Individuals in the infected class have fully developed disease

symptoms and can infect other people. Individuals in the exposed class are in the incu-

bation period, they do not show symptoms but are still capable of infecting others. Thus,

another interpretation of the E and I compartments in our model is that they contain

asymptomatic infected and symptomatic infected individuals, respectively, see (e.g. [4]).

The previous hypothesis are based on the following shema

Figure 1: SEIRV Diagramm.
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Introduction

The scheme (1) can be translated into a set of differential equations:

dS
dt

=Λ− βE(E)SE − βI(I)SI − βV (V )SV − µS, t > 0,

dE
dt

=βE(E)SE + βI(I)SI + βV (V )SV − (α + µ)E, t > 0,

dI
dt

= αE − (ω + γ + µ)I, t > 0,

dR
dt

= γI-µR, t > 0,

dV
dt

= ξ1E + ξ2I − σV, t > 0.

(1)

Here. Λ represent the population influx, µ is the natural death rate of human hosts, α−1 is

the incubation period between the infection and the onset of symptoms, w is the disease-

induced death rate, γ the rate of recovery from infection, ξ1 is the rates of the exposed

individuals contributing the coronavirus to the environmental reservoir, ξ2 is the rates of

the infected individuals contributing the coronavirus to the environmental reservoir and

σ is the removal rate of the virus from the environment. The system (1), associated with

the following initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0, V (0) = V0. (2)

The functions βE(E) and βI(I) represents the direct, human-to-human transmission rates

between the exposed and susceptible individuals, and between the infected and suscepti-

ble individuals, respectively. The function βV (V ) is the indirect, environment-tohuman

transmission rate.

Our objective in this work is to study the local and global stability of the equilibrium

points of the system (1) and to give a numerical results. This work is organized as follows

• In chapter (1), we give some mathematical tools.

• In chapter (2), we present the literature review of some Covid-19 models.

• In chapter (3), we analyze the equilibrium of the SEIRV model.

• In chapter (4), we study the local and global stability of our problem.

• In chapter (5), we give a numerical results of SEIRV model and we present the

conclusion.
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CHAPTER 1

PRELIMINARIES

The mathematical analysis of dynamic systems resulting from epidemiological modeling

uses matrices of a very particular type. The differential systems studied in this thesis are

nonlinear. We will present most of the results that were used in this work. These results

are classic. The stability of a dynamic system, will be revisited. Finally we will present the

method of Lyaponov and La Salle theoreme and the calculation of the basic reproduction

number R0. In the following we will need the following definitions and notations.
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Preliminaries

We introduce some notations that are used in our work and we give the definition of

the parameters that are used in the numerical results.

1.1 Notations

• The determinant of real and complex martices, is denoted by det (A).

• The trace of real and complex matrices, is denoted by tr (A).

• The spectral radius of A, is denoted by ρ(A).

• The disease-free equilibrium, is denoted by (DFE).

• The ordinary differential equations, is denoted by (EDO).

1.2 Parameters

• Λ : Influx rate.

• βE0 : Transmission constant between S and E.

• βI0 : Transmission constant between S and I.

• βV 0 : Transmission constant between S and V.

• c : Transmission adjustment coefficient.

• µ : Natural death rate.

• 1/α : Incubation period.

• w : Disease-induced death rate.

• γ : Recovery rate.

• σ : Removal rate of virus.

• ξ1 : Virus shedding rate by exposed people.

• ξ2 : Virus shedding rate by infected people.

.
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Preliminaries

1.3 Theoretical framework

The following are some general notions we use in our work.

Definition 1. (Equilibrium point) We say that XE an equilibrium point of a system{
dX(t)
dt

= f(X(t)),

X(0) = X0,
(1.1)

if XE verify the equation f(XE) = 0.

Definition 2. [35] The equilibrium XE is said to be stable if for everything ε > 0, it

exists η > 0, as for all solution X(t) of (1.1), we have

||X(0)−XE|| < η =⇒ ||X(t)−XE|| < ε. (1.2)

Definition 3. [35](Stability of an equilibrium point) Let x0 ∈ Ω be an equilibrium point

of the system

ẋ = X(x).

We say that x0 is a stable equilibrium point for ẋ = X(x) or that the system ẋ = X(x)

is stable in x0, if for any positive, there exists a positive real number δ such that for any

x ∈ Ω with ‖ x(0) − x0 ‖< δ, the solution Xt(x(0)) = x(t). If moreover there exists δ0

such that 0 < δ0 < δ and

‖ x(0)− x0 ‖< δ0 ⇒ limt→+∞x(t) = x0,

x0 is said to be asymptotically stable. The system is said to be unstable at x0 if it is not

stable at x0.

Definition 4. [35](Attractive point of equilibrium) - The equilibrium point x0 is said to

be attractive (we will also say that the system

ẋ = X(x)

is attractive in x0 if there exists a neighborhood D ⊂ Ω of x0 such that for any initial

condition x starting in D, the corresponding solution Xt(x) of the system ẋ = X(x) is

defined for all t ≥ 0 and tends to x0 as t tends to infinity. In other words,

limt→∞Xt(x) = x0
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Preliminaries

for any initial condition x0 ∈ D,
ẋ = X(x)

.

Definition 5. [35] The point x0 is said to be globally attractive if

limt→∞Xt(x) = x0,

for any initial condition x ∈ Ω.

Definition 6. [35](globally asymptotically stable equilibrium) Let x0 ∈ Ω be an equilibrium

point of the system ẋ = X(x). This system is said to be globally asymptotically stable at

x0 in Ω if it is both stable, attractive and its basin of attraction is Ω as a whole.

Definition 7. [35](Locally asymptotically stable) Let

J(XE) =
∂f

∂X
(XE),

the Jacobian matrix of f evaluates at point XE. Consider the following linear system

dX

dt
= AX, (1.3)

where A = J(XE) is say the linearized or the linear approximation of the non-linear

system (1.1) in XE. The study of the stability of the origin for the linearized allows in

certain cases to characterize the stability of the (1.1). More precisely, we have,

• If all the eigenvalues of the matrix A are of strictly negative real part, then the

system (1.1) is stable.

• If there is at least one eigenvalue of the matrix A of strictly positive real part then,

the system (1.1) is unstable.

Definition 8. [35](Globally asymptotically stable) The equilibrium point XE is say to be

globally asymptotically stable if it is stable, and for any X(t) solution for (1.1), we have

lim
t→∞
||X(t)−XE|| = 0. (1.4)

Definition 9. [6] The basic reproduction number R is the spectral radius of the next

generation matrix, namely

R = ρ
(
FV −1

)
. (1.5)

Larbi Tebessi University 8 Master’s second year, PDE



Preliminaries

The following interpretation is given to the matrix FV −1: Let us consider an infected

individual introduced into a compartment FV −1 of a population without disease. The entry

(i, k) of the matrix V −1 is the average time that the individual will spend in compartment i

during his life, assuming that the infection has been blocked. The entry (j, i) of matrix F is

the speed at which an infected person in compartment i produces infections in compartment

j. Thus the entry (j, k) of FV −1 is the expected number of new infections in compartment

j produced by an infected individual originally introduced into compartment k. The spectral

radius of the matrix FV −1 is the basic reproduction number. That is to say R = ρ(FV −1).

Definition 10. [35](Lyapunov function) A function V : Ω → R is a Lyapunov function

for the system ẋ = X(x) (X continue) if it decreasing along the trajectories of the system.

If V is of class C1, this amounts to saying that his derivative V̇ with respect to the system

ẋ = X(x) is negative on Ω, i.e., V̇ (x) ≤ 0 for all x ∈ Ω.

Theorem 11. [32](LaSalle’s invariance principle) Let Ω be a subset of Rn ; suppose that

Ω is an open positively invariant for the system (1.1) at x0. Let V : Ω→ R be a class C1

function for the system (1.1) in x0 such than :

• V̇ ≤ 0 on Ω;

• Let E = {x ∈ Ω | V (x) = 0} and L the largest set invariant by X and L ⊂ E.

Then, any bounded solution starting in Ω tends towards the set L as t −→∞.

This theorem is a very important tool for the analysis of systems; unlike Lyapunov,it

requires neither of the function V to be positive definite, nor of its derivative V̇ to be

negative. However, heonly provides information on the attractiveness of the considered

system at the equilibrium point x0 .

Corollary 12. [32] Suppose Ω ⊂ Rn is a connected open such that x0 ∈ Ω. Let V : Ω→ R

be a positive definite function of class C1 such that V̇ ≤ 0 on U . Let E = {x ∈ Ω | V (x) = 0} ,
suppose that the largest positively invariant set containedin E is reduced to the point x0

. Then, x0 is an asymptotically stable equilibrium point for the system (1.1). If these

conditions are satisfied for U = Ω if moreover V is proper on Ω, i.e., if

limV (x) = +∞

when

d(x,
∂

∂x
Ω) + ‖x‖ → +∞,

then all trajectories are bounded for all t ≥ 0 and x0 is a globally stable equilibrium point

for the system ẋ = X(x).
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Preliminaries

Corollary 13. [35] Under the assumptions of the previous theorem, if the set L is reduced

to the point x0 ∈ Ω, then x0 is globally asymptotic stable for the system ẋ = X(x) defined

in Ω.

Definition 14. [36](Routh-Hurwitz Stability Criterion) The method depend upon inequal-

ities involving the so-called Hurwitz determinants.

Dk ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 a0 0 · · · · · · · · · 0

a3 a2 a1 a0 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

a2k−1 a2k−2 · · · · · · · · · · · · ak

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k = 1, 2, · · · , n, (1.6)

where aj = 0 for j > n associated with the coefficients of Q(s). In its most general and

perhaps most efficient from the Routh–Hurwitz criterion may be stated as

Theorem 15. [36] If the polynomial

Q(s) = a0S
n + a1S

n−1 + · · ·+ an−1S + an.

has real coefficients, with a0 > 0, then any one of the following conditions is necessary

and sufficient for every zero of Q(s) to have negative real part:

(i) an > 0, an−2 > 0, an−4 > 0, · · · , D1 > 0, D3 > 0, · · · .

(ii) an > 0, an−2 > 0, an−4 > 0, · · · , D2 > 0, D4 > 0, · · · .

(iii) an > 0, an−1 > 0, an−3 > 0, · · · , D1 > 0, D3 > 0, · · · .

(iv) an > 0, an−1 > 0, an−3 > 0, · · · , D2 > 0, D4 > 0, · · · ,

where the determinants are given by (1.6).
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CHAPTER 2

LITERATURE REVIEW OF SOME

COVID-19 MODELS

In this chapter, we present some models that have already been worked on since the

emergence of virus.
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Literature review of some Covid-19 models.

In [5], the author developed the following three models to understand the nature of

covid-19:

The SIR model 
dS
dt

= −βIS
N
,

dI
dt

= βIS
N
− αυI,

dR
dt

= αυI,

(2.1)

the SEIQR model 

dS
dt

= −β(ωE+I+Q)S
N

,

dE
dt

= β(ωE+I+Q)S
N

− ετE,
dI
dt

= ετE − α (1− υ) I − υϕI,
dQ
dt

= υϕI − αQ,
dR
dt

= αQ+ α (1− υ) I,

(2.2)

and the SEIQLR model 

dS
dt

= −β(ωE+I+Q+λL)S
N

,

dE
dt

= β(ωE+I+Q+λL)S
N

− τE,
dI
dt

= ετE − α (1− υ) I − υϕI,
dQ
dt

= υϕI − αQ,
dL
dt

= (1− ε) τE − ηL,
dR
dt

= αQ+ α (1− υ) I + ηL,

(2.3)

where

S(t) +R(t) + I(t) = N.

The functions in the previous systems are

S Susceptible,

E Number of exposed cases,

I Number of diagnosed cases,

H Number of cured cases,

D Number of dead cases,

N Total population of Hubei Province,
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Literature review of some Covid-19 models.

and the parameters are given by

β contagion rate

α Removal rate for quarantine

η Removal rate for the latent

S Proportion of people with dominant infection

v incubation period

υ Transfer rate of diagnosed cases

1/ϕ Average delay edreporting period

λ Infection-reducing factor sinthelatent infections

α Curerate

µ Antibody failure rate.

By an appropriate stability analysis, He spread from whitch it is possible to predict similar

and sudden diseases in the future and to optimally control them by taking the necessary

measures. In paper [13], the authors introduced the following SEIARW model

dS
dt

= Λ−mS − βpS (I + kA)− βwSW,
dE
dt

= βpS (I + kA) + βwSW − (1− δ)ωE − δω′E −mE,
dI
dt

= (1− δ)ωE − (γ +m) I,

dA
dt

= δω′pE − (γ′ +m)A,

dR
dt

= γI + γ′A−mR,
dW
dt

= µI + γ′A− εW,

(2.4)

associated with the initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0,W (0) = W0.

In system (2.4), the functions are

S susceptible people

E exposed people

I symptomatic infected people

A asymptomatic infected people

R removed people

W dead people.
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Literature review of some Covid-19 models.

and the parameters are

λ = n×N N refer to the total number of people

m the death rate of people

βp the transmission rate from I to S

k the multiple of the transmissible of A to that of I

βw the transmission rate from W to S,

δ the proportion of asymptomatic infection rate of people
1
ω

the incubation period of people
1
ω

the latent period of people
1
γ

the infectious period of symptomatic infection of people
1
γ′

the infectious period of asymptomatic infection of people

µ the shedding coefficients from I toW ,

µ′ the shedding coefficients from A toW
1
ε

the life time of the virus in W.

They incorporates the homotopy analysis method the laplace transform,and the unique-

ness of the solution and the stability of iteration approach using fixed point theory then

compare the results to the results of the caputo derivative. In the work [14], khoshnaw et

al., studied the following model

dS
dt

= υ4 − (υ1 + υ2 + υ3) ,

dE
dt

= υ1 − (υ5 + υ6) ,

dI
dt

= υ6 − (υ9 + υ10 + υ11) ,

dA
dt

= υ5 − υ8,

dSq
dt

= υ3 − υ4,

dEq
dt

= υ2 − υ7,

dH
dt

= υ7 + υ10 − (υ12 + υ13) ,

dR
dt

= υ8 + υ9 + υ12,

(2.5)

in system (2.5), the new functions define

Sq Quarantined Susceptible Individuals

Eq Quarantined Exposed Individuals

H Quarantined Infected (Hospitalized) Individuals

R Recovered Individuals Symbolsand Biological definitions,
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Literature review of some Covid-19 models.

and the parameters are

k1 Contactrate

k2 Probability of transmission percontact

k3 Quarantined rate of exposed individuals

k4 Transition rate of exposed individuals to the infected class

k5 The multiple of the transmissibility of A toI

k6 Rate at which the quarantined uninfected contacts

k7 Probability of having symptomsamong infected individuals

k8 Transition rate of symptomatic infected individuals tothe quarantined infected class

k9 Transition rate of quarantined exposed individuals

k10 Recovery rate of symptomatic infected individuals

k11 Recovery rate of asymptomatic infected individuals

k12 Recovery rate of quarantined infected individuals

k13 Disease-induced death rate.

The most important in the previous work is the new parameter considered, called reaction

rate, which is defined by

υ1 = k1k2 (1− k3)S (I + k5A) , υ2 = k1k2k3S (I + k5A)

υ3 = k1k3 (1− k2)S (I + k5A) , υ4 = k6Sq

υ5 = k5 (1− k7)E, υ6 = k4k7E, υ7 = k9Eq, υ8 = k11A

υ9 = k10I, υ10 = k8I, υ11 = k13I, υ12 = k12H, υ13 = k13H.

The authors in [14] developed two models to this following model its idea is based on

clinical progress, epidemiological personnel and intervention measures, he study the sen-

sitivity analysis of the model. In [15], Mahrouf et al., developed the SRI model to the
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following model of forecasting Spreading of Covid-19

dS(t)
dt

= −β (1− u) S(t)Is(t)
N

,

dE(t)
dt

= βε (1− u) S(t−τ1)Is(t−τ1)
N

− αIs (t)− (1− α) (µs + ηs) Is (t) ,

dI(t)
dt

= β (1− ε) (1− u) S(t−τ1)Is(t−τ1)
N

− ηaIa (t) ,

dA(t)
dt

= αγbIs (t− τ2) (µb + rb)Fb (t) ,

dSq(t)

dt
= αγbIs (t− τ2) (µg + rg)Fg (t) ,

dEq(t)

dt
= αγcIs (t− τ2) (µc + rc)Fc (t) ,

dH(t)
dt

= ηs (1− α) Is (t− τ3) + rbFb (t− τ4) + rgFg (t− τ4) + rcFc (t− τ4) ,

dR(t)
dt

= µs (1− α) Is (t− τ3) + µbFb (t− τ4) + µgFg (t− τ4) + µcFc (t− τ4) ,

(2.6)

in model (2.6), the parameters β, u and ε are the transmission rate, level of the preventive

strateg and the proportion for the symptomatic individual respectevely. Note that u, ε ∈
[0, 1]. α is the proportion of the diagnosed symptomatic infected populattion that moves to

the three forms: Fb, Fg and Fc, by the rates γb, γg and γc, respectively. The mean recovery

period of these forms are denoted by 1/rb, 1/rg and 1/rc, respectivy. The latter forms

die also with the rates µb, µg and µc, respectively. Asymptomatic infected population,

recover with rate ηa and the symptomatic infected ones recover or die with rates ηs and

µs, respectively. τ1, τ2, τ3 and τ4 are the incubation period, the period of time , the time

required before the death of individuals coming from the compartments Is, Fb, Fg, and Fc,

respectively. The authors in [15] divided the population into eight groups : S :susceptible

(symptomatic), I:infected but not transmittinng disease , Fb, Fg, and Fc refer to patients

diagnosed , (under quarantine), and is divided into three categories: benign,critical and

critical forms , D and M are the categories of cure and mortality. As a conclusion, the

work extend the well-known SIR compartmental model to deterministic and stochastic

time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco

and to assess the potential role of multiple preventive measures and strategies imposed

by Moroccan authorities. In [16], a novel forecast deterministic model for the Covid-19

was introduced as follows 
dS
dt

= −βIS
N
,

dI
dt

= βIS
N
− Iγ,

dr
dt

= Iγ,

(2.7)

where N = S + I + r is the total number of population and

R(t) =
β

γ
s(t) = R0s(t).
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The parameters of system (2.7) are

β = 1/Tc contact frequency

Tc the eaverage time between contacts

1/γ = Tr the mean time between infection and removal

r(t) the removed individuals

Tr can be consequently interpreted as the time until removal from the infection process

g(t) typical of the disease

R(t) generalized effective reproduction number,

the authors focus on data for two exemplary countries , italy and germany predict the

course of the Covid − 19 for a period of four to five weeks with reasonable numerical

stability. Bahloul [18] introduced the following SEIRAW model

dSB
dt

= ΛB −mBSB − βBSBIB,
dEB
dt

= βBSBIB − ωBEB −mBEB,

dIB
dt

= ωBEB − (γB +mB) IB,

dRB
dt

= γBIB −mBRB,

dSH
dt

= ΛH −mHSH − βBHSBIB − βHSHIH ,
dEH
dt

= βBHSHIB + βHSHIH − ωHEH −mHEH ,

dIH
dt

= ωHEH − (γB +mB) IB,

dRH
dt

= γHIH −mHRH ,

dSP
dt

= ΛP −mPSP − βPSP (IP + κAP )− βWSPW,
dEP
dt

= βPSP (IP + κAP ) + βWSPW − (1− δP )ωPEP − δPω′PEP −mpEP ,

dIP
dt

= (1− δP )ωPEP − (γP +mP ) IP ,

dAP
dt

= δPω
′
PEP − (γ′P +mP )AP ,

dRP
dt

= γP IP + γ′PAP −mPRP ,

dW
dt

= aW IH
NH

+ µP IP + µ′PAP − εW.

(2.8)
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The functions in system (2.8) represents

SB Susceptible bats

EB exposed bats

IB infected bats

RB removed bats

SH susceptible hosts

EH exposed hosts

IH infected hosts

RH removed hosts

For the parameters, we have

nB birth rate

mB death rate

λB = nB ×NB the number of the new born bats

NB the total number of bats
1
ωB

incubation period of bat infection
1
γB

infectious period of bat infection

ΛH = nH ×NH the new born bats

NH number of hosts
1
ωH

The incubation period
1
γH

the infectious period

βH the transmission rate.

The authors developed BRHP model, to eastimating transmissibility and dynamics of

Covid− 19 transmission, they proved the new reproduction number R0. In the work [19],

the authors studied the following SEIQRDP model

dS(t)
dt

= −αS (t)− β S(t)I(t)
N

,

dE(t)
dt

= −γE (t) + β S(t)I(t)
N

,

dI(t)
dt

= γE (t)− δI (t) ,

dQ(t)
dt

= δI (t)− λ (t)Q (t)− κ (t)Q (t) ,

dR(t)
dt

= λ (t)Q (t) ,

dD(t)
dt

= κ (t)Q (t) ,

dP (t)
dt

= αS (t) ,

(2.9)
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where the functions are

S(t) susceptible people

E(t) exposed people

I(t) infected people

Q(t) quarantined

R(t) removed people

D(t) dead people.

P (t) protected from COVID-19

and the parameters are

α theprotectionrate

β theinfectionrate

γ theinverseoftheaveragelatenttime

δ therateinquarantine,

λ (t) thecurerate
1
ω

the incubation period of people
1
ω

the latent period of people
1
γ

the infectious period of symptomatic infection of people
1
γ′

the infectious period of asymptomatic infection of people

µ the shedding coefficients from I toW ,

µ′ the shedding coefficients from A toW
1
ε

the life time of the virus in W

This fractional-order SEIQRDP model for Simulating the Dynamics of COVID-19 Epi-

demic, the author developed the SEIQRDP model by using the fractional analysis,

because its flexibility and accuracy of its description of complex physical systems also ro-

vides new standards for virus control which predict the end of the virus August 12,2020.

In [20], Khoshnaw et al., developed the following seiarm model

ds
dt

= b− γs (t)− δs(t)(i(t)+βa(t))
N

− εs (t)m (t) ,

de
dt

= δs(t)(i(t)+βa(t))
N

+ εs (t)m (t)− (1− ϑ) θe (t)− ϑαe (t)− γe (t) ,

di
dt

= (1− ϑ) θe (t)− (ρ+ γ) i (t) ,

da
dt

= ϑαe (t)− (σ + γ) a (t) ,

dr
dt

= ρi (t) + σa (t)− γr (t) ,

dm
dt

= τi (t) + κa (t)− ωm (t) .

(2.10)
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In system (2.10) the parameters represent

b the rate of birth

γ rate of death of infected population

σ the transmission coefficient

β transmissibility multiple

α the transmission rate become sinfected

θ the incubation period

ϑ the amount of asymptomatic infection

ε the disease transmission coefficient

ρ recovery rate

σ asymptotically infected population

κ the influence of virus to m by i

ω the rate of virus removing from m.

They apply the Differential Transformation Method (DTM) to analyze and obtain the

solution for the mathematical model previous above. In [21], Ahmad Naim introduce the

new SIUWR model as follows

dS
dt

= −β (I + U) ,

dI
dt

= β (I + U)− (γ + δ) I,

dU
dt

= δI − (η + α1)U,

dW
dt

= γI − (η + α2)W,

dR
dt

= ηW + ηU.

(2.11)

System (2.11) is complemented with the following initial conditions

S(0) initial susceptible individuals

I(0) initiala symptomatic infected individuals

U(0) initial unreported symptomatic infected individuals

W (0) initial reported symptomatic infected individuals

R(0) initially recovered individuals
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The parameters are given by

β Transmission rate between susceptible individuals

γ Transition rate between asymptomatic infected

δ Transition rate between asymptomatic infected
1
η

Average time symptomatic infectious have symptoms

α1 The unreported symptomatic death rate

α2 The reported symptomatic death rate.

The work of [21] represent a quantitative and qualitative analysis of the COVID-19 pan-

demic model,he suggest an updated model that includes a system of differential equations

with transmission parameters. Some key computational simulations and sensitivity anal-

ysis are investigated. Also, the local sensitivities for each model state concerning the

model parameters are computed using three different techniques: non-normalizations,

half normalizations, and full normalizations. The SEIR developed model in the work

[22] 

dS
dt

= −β.I. S
N
,

dE
dt

= β.I. S
N
− α.E,

dI
dt

= α.E − γI,
dR
dt

= γI,

(2.12)

where the parameters are

β average contact rate
1
α

measures of incubation period
1
γ

infectious period.

and the reproduction number is

R0 =
β

γ
.

The system (2.12) of COV ID − 19 modeling in Saudi Arabia, by using the modified

Susceptible-Exposed-Infectious-Recovered (SEIR), They calculated the reproduction num-

ber and simulation results. In [23], the SEI model is introduced as follows
dS (t) = −EfβS (t)C (t) dt,

dE (t) = (−EfβS (t)C (t)− γC (t)) dt+ σC (t) dWt,

dI (t) = γC (t) dt− σC (t) dWt,

(2.13)

Larbi Tebessi University 21 Master’s second year, PDE



Literature review of some Covid-19 models.

where the functions C, S and R represents the infections, the susceptible and the recov-

eries. The Stochastic SIR model for COV ID − 19 Infection Dynamics for Karnataka

after interventions – Learning from European Trends, this is a continuous work in which

we are trying to find the model parameters everyday and project the possible scenarios,

by varying the exposure factor for the rate of infection, as a result of evolving levels of

quarantining. In paper [24], the SEAIHRem model is given by

dS(t)
dt

= −l ∗ β (t) .
(
S(t)A(t)

N
+ S(t)I(t)

N
+ S(t)H(t)

N

)
,

dE(t)
dt

= l ∗ β (t) .
(
S(t)A(t)

N
+ S(t)I(t)

N
+ S(t)H(t)

N

)
− (σ + d)E (t) ,

dA(t)
dt

= (1− γ) δE (t)− (k + d)A (t) ,

dI(t)
dt

= γδE (t)− 0.13λI (t)− 0.87 (κ+ d) I (t) ,

dH(t)
dt

= 0.13λI (t)− kH (t)− (δ + d)H (t) ,

dRem(t)
dt

= k [A (t) + 0.87I (t) +H (t)] + d [A (t) + I (t) +H (t) + E (t)] + δH (t) ,

(2.14)

where

1
σ

incubation period
1
λ

the mean time between symptomon set to hospitalization
1
k

the mean infectious/recovery period
1
δ

the mean time from hospitalization to death

γ the clinical out break rate

l the self-protective measures taken by individuals

d the mitigation measurements taken by the government of the symptomatic .

The system with time-dependent (2.14) for the analyse the evolution of the SARS −
covid − 2 epidemic outbreak in Portugal, a time-dependent dynamic. The SIR model

inspired in a model previously used during the MERS outbreak in South Korea was used

to analyse the time trajectories of active and hospitalized cases in Portugal. In the work
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[25], the SEIHD model is presented by

dS(t)
dt

= µN (t)− βS(t)I(t)
N

− µS (t) ,

dE(t)
dt

= βS(t)I(t)
N(t)

− βS(t−τ)I(t−τ)
N(t)

e−µτ − µE (t) ,

dI(t)
dt

= βS(t−τ)I(t−τ)
N(t)

e−µτ − γH (t)− µI (t)− (1− ω)HN (t) ,

dH(t)
dt

= αI (t)− γH (t)− µH (t) ,

dHN (t)
dt

= (1− α) I (t)− (1− ω)HN (t)− µHN (t) ,

dR(t)
dt

= γH (t) + (1− ω)HN (t)− µR (t) ,

dD(t)
dt

= ωHN (t) + (1− γ)H (t) .

(2.15)

In system (2.15), the functions are

S susceptible

I infected

R recuperated or deceased

H hospitalised

HN infected people but not hospitalised(undetected)

D infected people deceased due to the disease,

and the parameters are

β Rate of contact of infected people with the population

µ Recruitment and natural death rate

α Rate of infected people hospitalised

γ Recovery rate of infected people those whoare hospitalised

ω Death rate due to the disease.

Daniel et al., studied the stability analysis of the epidemic model COV ID − 19 (2.15)

in case of delay presented in the system. In the work [26], the authors introduced the
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following SEIQCRW model

dS
dt

= Λ− b (t)−Q− (bqs + λ)S,

dE
dt

= b (t)− (β + bqs + λ)E,

dI
dt

= βE − (δ + λ+ bqs) I,

dQ
dt

= bqsS + bqsE − (bqs + bqc + λ)Q,

dC
dt

= bqsQ+ bicI − (δ + bcr + λ)C,

dR
dt

= bcrC − λR,
dW
dt

= k1E + k2I − λwW.

(2.16)

Here, the parameters are

Λ Birth rate

N Total population
1
β

Incubation period

bcr Recovery rate

λw Rate of removal of the virus from the environmental reservoir

λ Death rate

beq Rate at which exposed are quarantined

bic Rate at which highly infectious individuals are confirmed

αE Transmission rate from the exposed to the susceptibleαE

αI Transmission rate from the highly infected to the susceptible

αW Transmission rate from the environment to the susceptible

ν Coefficient providing adjustment to the transmission rate

k1 Rate at which the exposed are contributing

k2 Rate at which the infected are contributing

bsq Rate at which susceptible are quarantined

bqs Rate at which quarantined move back to the susceptible class

bqc Rate at which quarantine individuals are confirmed

δ Covid-19 induced death rate.

The Mathematical Model given by (2.16) tak account the transmission of Covid-19 with

nonlinear Forces of Infection and the Need for prevention Measure in Nigeria, the authors

touched in this paper on the boundedness of the solution, equilibrium point, stability

of the free disease equilibrium point, the basic reproduction number , the existence of

endemic equilibrium point, numerical results and discussion. Alanazi et al., [27], present
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the SEIRP model in the following forme

dS
dt

= b− β1SP
1+α1P

− β2S(IA+IS)
1+α2(IA+IS)

+ ψE − µS,
dE
dt

= β1SP
1+α1P

+ β2S(IA+IS)
1+α2(IA+IS)

− ψE − µE − ωE,
dIA
dt

= (1− δ)ωE − (µ+ σ) IA − γAIA,
dIS
dt

= δωE − (µ+ σ) Is − γSIS,
dR
dt

= γSIS + γAIA − µR,
dP
dt

= ηAIA + ηSIS − µPP.

(2.17)

The parameters are

b Birth rate

µ death rate
1
µ

life expectancy

µP Natural death rate
1
µP

Life expectancy of pathogens in the environment

α1 Proportion of interaction with an infectious environment

α2 Proportion of interaction with an infectious individual

β1 Rate of transmission from S to E due to contactwithP

β2 Rate of transmission from S to E due to contact withIAand/orIS

δ Proportion of symptomatic infectious people

ψ Progression rate from E back to S due to robust immune system

ω Progression rate from E to eitherIAorIS

σ Death rate duetothe coronavirus

γS Rate of recovery of the symptomatic population

γA Rate of recovery of the asymptomatic human population

ηS Rate of virus spread to environment by symptomatic infectious individual sor1

ηA Rate of virusspread to environment by asymptomatic infectious individuals.

System (2.17) for COV ID − 19 dynamics incorporating the environment and social dis-

tancing. In paper [28] , the SIR and SIR− F developed models are
dS
dT

= −N−1,

dI
dT

= N−1βSI − γI,
dR
dT

= Iγ,

(2.18)
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and 

dS
dT

= −N−1βS,

dI
dT

= −N−1(1− α1)βSI − (γ + α2)I,

dR
dT

= Iγ,

dF
dT

= N−1α1βSI + α2I.

(2.19)

For system (2.18), we have N = S + I +R, T is the elapsed time from the start date, the

authors studied the stability of the system and also they calculated the new reproductive

rate(contact rate)R0, For system (2.19), we have N = S + I + R + F such that the

parameters T, β and γ are the elapsed time from the start date, optimized contact rate

and mortality rate. In work [28], it is concerned with societal behavior towards the disease

and its translation into electronic data. They developed two models , SIR and SIR− F
, to predict the epidemiological trend of Covid − 19 and monitor infection rates, deaths

and recoveries.
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CHAPTER 3

EQUILIBRIUM’S ANALYSIS OF THE

SEIRV MODEL

In this chapter, we analyze the equilibrium points for the following problem

dS
dt

=Λ− βE(E)SE − βI(I)SI − βV (V )SV − µS, t > 0,

dE
dt

=βE(E)SE + βI(I)SI + βV (V )SV − (α + µ)E, t > 0,

dI
dt

= αE − (ω + γ + µ)I, t > 0,

dR
dt

= γI-µR, t > 0,

dV
dt

= ξ1E + ξ2I − σV, t > 0.

(3.1)

Noting that the total population N is defined by

N(t) = S(t) + E(t) + I(t) +R(t). (3.2)

The SEIRV model is an transmission system and for the epidemiologically meaningful,

it is important to prove that all solutions with non-negative initial data will remain non-

negative for all time see, (e.g. [2]).

3.1 Positivity and boundedness of solutions

For the Positivity of solutions, we introduce the following result

Theorem 16. If S(0), E(0), I(0), R(0) and V (0) are non-negative. Then, the functions
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S(t), E(t), I(t), R(t) and V (t) are non-negative for all time t > 0. Moreover, we have

lim sup
t→∞

(S(t) + E(t) + I(t) +R(t))≤Λ

µ
,

and also

lim sup
t→∞

V (t)≤
(ξ1 + ξ2) Λ

µ

σ
.

Furthermore, if

S(0) + E(0) + I(0) +R(0)≤Λ

µ
.

Then, we have

S(t) + E(t) + I(t) +R(t) ≤ Λ

µ
,

and also

0 ≤ V (t)≤
(ξ1 + ξ2) Λ

µ

σ
.

Proof. Let S(t), E(t), I(t), R(t) and V (t) be any solution with positive initial conditions.

We have

N(t) = S(t) + E(t) + I(t) +R(t),

the time derivative of N(t) along the solution of (3.1) is

d

dt
N(t) =

dS(t)

dt
+
dE(t)

dt
+
dI(t)

dt
+
dR(t)

dt
,

≤ Λ− µN(t).

By using the theory of differential equations, we obtain the following homogene solution

d

dt
N(t) = −µN(t)⇒ N(t) = N0e

−µt,

and the non-homogene solution given by

dN(t)

dt
=

(
dN0(t)

dt
− µN0(t)

)
e−µt.

Hence, we have

N(t) ≤ Λ

µ

(
1− e−µt

)
+N0e

−µt,

and for t→∞, we have

lim
t→∞

N(t) = lim sup
t→∞

N(t) ≤Λ

µ
. (3.3)
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From equation (3.1)4, we have

d

dt
V (t) = ξ1E + ξ2I − σV (t),

≤ (ξ1 + ξ2)
Λ

µ
− σV (t).

By using the theory of differential equations, we obtain the following homogene solution

given by
dV (t)

dt
= −σV (t)⇒ V (t) = V0e

−σt,

and the non-homogene solution given by

dV (t)

dt
=

(
dV0(t)

dt
− σV0(t)

)
e−σt.

Hence, we have

N(t) ≤ Λ

µ

(
1− e−σt

)
+V 0e

−σt,

and for t→∞, we have

lim
t→∞

V (t) = lim sup
t→∞

V (t) ≤
(ξ1 + ξ2) Λ

µ

σ
. (3.4)

Clearly, it has been proved that all the solutions of (3.1) which initiate in R4
+ confined in

the region D defined by

D =

{
(S,E, I,R, V ) ∈ R5

+ : S(t) + E(t) + I(t) +R(t)≤Λ

µ
, 0 ≤ V (t) ≤

(ξ1 + ξ2) Λ
µ

σ
.

}
(3.5)

So, the solution are bounded in the interval [0,∞) . �

3.2 Existence of the equilibrium points

In the section, we find the quilibrium pionts of model (3.1). By solving the SEIRV model

equation, we get 

dS
dt

= 0,

dE
dt

= 0,

dI
dt

= 0,

dR
dt

=0,

dV
dt

= 0,
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Then, we have 

Λ− βEESE − βIISI − βV V SV − µS = 0,

βEESE + βIISI + βV V SV − (α + µ)E = 0,

αE − (w + γ + µ) I = 0,

γI − µR = 0,

ξ1E + ξ2I − σV = 0.

(3.6)

3.2.1 Existence of disease-free equilibrium

The disease-free equilibrium (DFE) of the SEIRV model (3.1) existe only when

E = I = R = V = 0,

it is given by

X0 = (S0, E0, I0, R0, V0) =

(
Λ

µ
, 0, 0, 0, 0

)
. (3.7)

The basic reproduction number of the model (3.1) is given based on the Defintion (9) as

follows

R0 = ρ
(
FV−1

)
.

We have

F (X0) =

 βE (0)S0 βI (0)S0 βV (0)S0

0 0 0

0 0 0

 , (3.8)

and

V (X0) =

 α + µ 0 0

−α w1 0

−ξ1 −ξ2 σ

 , (3.9)

where

w1 = w + γ + µ.

Since,

det(V) = (α + µ) (w1) (σ) 6= 0.

Therfore, the matrix V is inverse and the inverse is given by

V−1 =
1

det(V)

 w1σ 0 0

ασ σ (α + µ) 0

αξ2 + ξ1w1 ξ2 (α + µ) (α + µ)w1

 . (3.10)
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After a simple calculation

V−1 =


1

(α+µ)
0 0

α
w1(α+µ)

1
w1

0
αξ2+ξ1w1

w1σ(α+µ)
ξ2
w1σ

1
σ

 . (3.11)

By a simple calculation, we have

FV−1 =

 Z1 Z2 Z3

0 0 0

0 0 0

 , (3.12)

such that

Z1 =
βE (0)S0

(α + µ)
+
αβI (0)S0

w1 (α + µ)
+
βV (0)S0 (αξ2 + ξ1w1)

w1σ (α + µ)
,

Z2 =
βI (0)S0

w1

+
βV (0)S0

w1σ
,

Z2 =
βV (0)S0

σ
,

Let’s remember that

ρ
(
FV−1

)
= max

i=1,2,3
λi,

where λi are the eigenvalues of the matrix FV−1. We have

0 =
∣∣FV−1 − λI

∣∣ = (Z1 − λ)

∣∣∣∣∣−λ 0

0 −λ

∣∣∣∣∣
− Z2

∣∣∣∣∣0 0

0 −λ

∣∣∣∣∣+ Z3

∣∣∣∣∣0 −λ
0 0

∣∣∣∣∣
= (Z1 − λ)λ2. (3.13)

The resolution of the equation (3.13), give us

λ1 = 0, λ2 = 0 and λ3 = Z1.

Therefore, the basic reproduction number is given based on the method used in [33] as

follows

R0 = R1 +R2 +R3, (3.14)
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where

R1 =
βE(0)S0

α + µ
,

R2 =
αβI(0)S0

w1 (α + µ)
,

R3 =
(αξ2 + ξ1W1) βV (0)S0

σw1 (α + µ)
.

Such that:

• R1 : Mesures the contributions from human- to- human transmission fights ”ex-

posed to peoples sensitive”.

• R2 : Measure the contributions from the human-to-human transmission routes ”

infected-tosusceptible, respectively”.

• R3 : Represents the contribution from the environment-tohuman transmission route.

3.2.2 Existence of endemic equilibrium

By solving system (3.6), we calculate the equilibrium pionts, then we obtain

S = 1
µ

[Λ− (βE(E)SE + βI(I)SI + βV (V )SV )] ,

(α + µ)E = βE(E)SE + βI(I)SI + βV (V )SV ,

E = W1

α
I,

R = γ
µ
I,

V = αξ2+ξ1I
σα

.

(3.15)

Hence, we get 
S = 1

µ
(Λ− (α + µ)E) ,

E = W1

α
I,

R = γ
µ
I,

V = αξ2+ξ1W1

σα
I.

(3.16)
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Then, by using the second equation of (3.16), we obtain
S = 1

µ

(
Λ− w1(α+µ)

α
I
)
,

E = w1

α
I,

R = γ
µ
I,

V = αξ2+ξ1W1

σα
I.

(3.17)

It follows from the first two equations of (3.17) that S can be denoted by a function of I,

namely,

S = φ (I) . (3.18)

By using the first equation in (3.6), then S can be exressed by the function ψ.

ψ(I) := S =
α + µ

βE(E)E + βI(I) I︸︷︷︸
= α
w1
E

+βV (V ) V︸︷︷︸
=
w1ξ1+αξ2

σα
I

· E

= (α + µ)

[
βE(

w1

α
I) +

α

w1

βI(I) +
w1ξ1 + αξ2

σw1

βV (
w1ξ1 + αξ2

σα
I)

]−1

, (3.19)

the function (3.19) give

ψ(0) = (α + µ)

[
βE(0) +

α

w1

βI(0) +
w1ξ1 + αξ2

σw1

βV (0)

]−1

=
S0

R0

. (3.20)

The intersection of curves S = φ(I) for I ≥ 0 and S = ψ(I) for I ≥ 0 in R+ determine

the equilibria non-DFE, i.e., from equation (3.18), we get

d

dI
φ(I) = −w1(α + µ)

µα
< 0 (3.21)

⇔ φ is streactly decreasing,

from equation (3.19), we get

d

dI
ψ(I) = −Z4

Z5

≥ 0 (3.22)

⇔ ψ is increasing.
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Because

Z4 =
w1

α

≤0︷ ︸︸ ︷
d

dI
βE(

w1

α
I) +

α

w1

≤0︷ ︸︸ ︷
d

dI
βI(I)

+
(w1ξ1 + αξ2)2

σ2αw1

≤0︷ ︸︸ ︷
d

dI
βV (

w1ξ1 + αξ2

σα
I) .

and

Z5 =

[
βE(

w1

α
I) +

α

w1

βI(I) +
w1ξ1 + αξ2

σw1

βV (
w1ξ1 + αξ2

σα
I)

]2

.

Furthermore we have :

φ(0) = S0 and φ(I1) = 0 with I1 =
Λα

w1(α + µ)

and also from the equation (3.14) and (3.19) we have

ψ(0) =
S0

R0

. (3.23)

The equation (3.23) we have the two following cases

• Intersection insidde of R2 if

R0 > 1 ⇔ φ(0)

ψ(0)
> 1 ⇔ φ(0) > ψ(0).

This gives a unique endemic equilibrium (EE) X.

• No intersection inside R2 if

R0 ≤ 1 ⇔ φ(0)

ψ(0)
≤ 1 ⇔ φ(0) ≤ ψ(0).

This does not give an endemic equilibrium (EE) X∗ but gives an equilibrium (DFE)

X0.
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Figure 3.1: Illustration of ψ and φ functions

In the following, we carry out a study on the overall stability of DFE. By a simple

principle of comparison, we find that

0 ≤ S + E + I +R ≤ S0, (3.24)

0 ≤ V ≤ (ξ1 + ξ2)S0

σ
, (3.25)

By using (3.24) and (3.25), we can get

Ω =

{
(S,E, I, R, V ) ∈ R5

+ : 0 ≤ S + E + I +R ≤ S0, 0 ≤ V ≤ (ξ1 + ξ2)S0

σ

}
. (3.26)

Proposition 17. If R0 > 1, the model has a two equilibria, the DFE X0 and the EE

X∗. If R0 ≤ 1, the system (3.1) admits a unique equilibrium X0.

We conclude that the system (3.1) has two possible non-negative equilibria namely

the disease-free equilibrium (DFE) X0 and the (EE) X∗.
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CHAPTER 4

STABILITY ANALYSIS OF THE SEIRV

MODEL

4.1 Local stability

In this section we study the local stability of equilibre points of the model (3.1).

4.1.1 Local stability of the disease-free equilibrium

Let examine the local stability of the disease-free equilibriumis X0 = (S0, 0, 0, 0, 0) . In

order to simplify the notations, we adopt the abbreviations

βE (E) = βE, βI (I) = βI , βV (V ) = βV

βE (0) = βE0, βI (0) = βI0, βV (0) = βV 0.

Proposition 18. Let R0 < 1. Then, the disease-free equilibrium (DFE) of the system

(3.6) is locally asymptotically stable.

Proof. The Jacobian matrix for the system (3.1) is given by

J (X) =


−βEE − βII − βV V − µ −β′ESE − βES −β′ISI − βIS 0 −β′V SV − βV S
βEE + βII + βV V β′ESE + βES − (α+ µ) β′ISI + βIS 0 β′V SV + βV S

0 α −w1 0 0

0 0 γ −µ 0

0 ξ1 ξ2 0 −σ.

 (4.1)
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The evaluation of (4.27) at X0 = (S0, 0, 0, 0, 0) gives us

J (X0) =


−µ −βE0S0 −βI0S0 0 −βV 0S0

0 βE0S0 − (α + µ) βI0S0 0 βV 0S0

0 α −w1 0 0

0 0 γ −µ 0

0 ξ1 ξ2 0 −σ

 .

It is clear that −µ is a double eigenvalue, so by deleting the first and fourth columns and

likewise the first and fourth rows, the Jacobian matrix will reduce to

J (X0) =

βE0S0 − αµ βI0S0 βI0S0

α −w1 0

ξ1 ξ2 −σ

 , (4.2)

where

αµ = α + µ.

By recalling that

R0 =
βE0S0

αµ
+
αβI0S0

w1αµ
+
βV 0S0(αξ2 + w1ξ1)

σw1αµ
(4.3)

:= R1 +R2 +R3,

we get

J (X0) =

R01 R02 R03

α −w1 0

ξ1 ξ2 −σ

 , (4.4)

where

R01 := βE0S0 − αµ = αµ(R1 − 1), (4.5)

R02 := βI0S0 =
w1αµR2

α
, (4.6)

R03 := βV 0S0 =
R3σw1αµ
w1ξ1 + αξ2

. (4.7)

Therefore, we calculate the eigenvalues of the reduced matrix by the following equation

det(J(X0)− λI) = 0,
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which leads to the following characteristic polynomial

λ3 + a1λ
2 + a2λ+ a3 = 0, (4.8)

the coefficients are

a1 = σ + w1 −R01, (4.9)

a2 = −αR02 − (σ + w1)R01 − ξ1R03 + σw1, (4.10)

a3 = −R01σw1 −R02σα−R03(αξ2 + w1ξ1). (4.11)

For the application of the stability conditions to the equation (4.8). That result condition

from Theorem (15) is

a1 > 0, a3 > 0, a1a2 − a3 > 0 (4.12)

Now, we consider the equation (4.9) and by using (4.5), we get

a1 = σ + w1 −R01

= σ + w1 − αµ(R1 − 1)

> 0. (4.13)

Therefore, (4.13) will be checked if and only if R0 < 1. Next, we consider the equation

(4.11) and by using (4.5)-(4.7) with (4.3), we obtain

a3 = −R01σw1 −R02σα−R03(αξ2 + w1ξ1)

= −αµσw1(R1 − 1)− σαw1αµR2

α
−R3σw1αµ

= −αµσw1R1 + αµσw1 − σw1αµR2 −R3σw1αµ

= αµσw1(1−R1 −R2 −R3)

= αµσw1(1−R0)

> 0. (4.14)

Hence, (4.14), will be checked if and only if R0 < 1. Finally, we investigate the third
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stability condition, with some algebraic computations, we have

a1a2 − a3 = [(σ + w1)−R01] [−αR02 − (σ + w1)R01 − ξ1R03 + σw1]

− αµσw1(1−R0)

> [(σ + w1)−R01] [−αR02 − (σ + w1)R01 − ξ1R03] (4.15)

− αµσw1(1−R0).

Recalling that

R0 =
R01

αµ
+ 1 +

αR02

w1αµ
+

(w1ξ1 + αξ2)R03

σw1αµ
. (4.16)

Then, by using (4.16), we get

−(σ + w1)R01 = αµ(σ + w1)(1−R0) +
(σ + w1)αR02

w1

+
(σ + w1)(w1ξ1 + αξ2)R03

σw1

.

= αµ(σ + w1)(1−R0) +
σαR02

w1

+ αR02 + ξ1R03 (4.17)

+
αξ2R03

w1

+
(w1ξ1 + αξ2)R03

σ
.

Substituting (4.17) into (4.15), we obtain

a1a2 − a3 > [(σ + w1)−R01] [−αR02 − (σ + w1)R01 − ξ1R03]

− αµσw1(1−R0)

> [(σ + w1)−R01]

[
−αR2 + αµ(σ + w1)(1−R0) +

σαR02

w1

+ αR2 + ξ1R3

+
αξ2R03

w1

+
(w1ξ1 + αξ2)R03

σ
− ξ1R3

]
− αµσw1(1−R0)

> [(σ + w1)−R01] [αµ(σ + w1)(1−R0)]− αµσw1(1−R0)

> αµ(1−R0)
(
(σ + w1)2 − (σ + w1)R01 − σw1

)
> αµ(1−R0)

(
(σ + w1)2 − σw1

)
> αµ(1−R0)

(
σ2 + w2

1

)
> 0. (4.18)

Inequality (4.18) will be checked if and only if R0 < 1. From the above relation all

the stability conditions (4.12) are satisfied and the disease-free equilibrium X0 is locally

asymptotically stable. �
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4.1.2 Local stability of endemic equilibrium

We study the stability local of endemic equilibrium X∗ in (3.16) in the system (3.1), and

let

P∗ < −
β∗P
β∗P
′ , (4.19)

where P∗ can represent E∗, I∗ or V∗. The stability result is given as follows

Theorem 19. Let R0 > 1, and assume that the hypothesis (4.19) is verified. Then the

endemic equilibrium X∗ of the SEIRV model is locally asymptotically stable.

Proof. In order to simplify the notations, we adopt the abbreviations

βE (E∗) = β∗E, βI (I∗) = β∗I , βV (V∗) = β∗V .

The Jacobian matrix for the system (3.1) evaluated in X∗ = (S∗, E∗, I∗, V∗, R∗) is given

by

J (X∗) =


L1 −AS∗ −BS∗ 0 −CS∗
L2 L3 BS∗ 0 CS∗

0 α −w1 0 0

0 0 γ −µ 0

0 ξ1 ξ2 0 −σ

 , (4.20)

where

L1 := − Λ

S∗
= −β∗EE∗ − β∗I I∗ − β∗V V∗ − µ, (4.21)

L2 :=
αµE∗
S∗

= β∗EE∗ + β∗I I∗ + β∗V V∗, (4.22)

A = β∗E
′E∗ + β∗E, (4.23)

L3 := AS∗ − αµ, (4.24)

B = β∗I
′I∗ + β∗I , (4.25)

C = β∗V
′V∗ + β∗V . (4.26)

It is clear that −µ is a eigenvalue, so by deleting the fourth columns and the fourth rows,

the Jacobian matrix will reduce to

J (X∗) =


L1 −AS∗ −BS∗ −CS∗
L2 L3 BS∗ CS∗

0 α −w1 0

0 ξ1 ξ2 −σ

 . (4.27)
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The characteristic equation corresponding to J(X∗) is given by

det (J(X∗)− λI) = λ4 + b1λ
3 + b2λ

2 + b3λ+ b4, (4.28)

where

b1 = −(L3 + L1) + w1 + σ, (4.29)

b2 = L1L3 − (L1 + L3)(σ + w1)− S∗(αB + ξ1C) + σw1 + AS∗L2, (4.30)

b3 = L1L3(σ + w1 + σw1)− (L1 + L3)σw1 + L2S∗((σ + w1)A+ ξ1C + αB) (4.31)

+ L1S∗(αB + ξ1C)− S∗(αξ2C + ασB + w1ξ1C),

b4 = L1L3σw1 + L1S∗(ασB + (αξ2 + w1ξ1)C) (4.32)

+ L2S∗(σw1A+ ασB + (αξ2 + w1ξ1)C).

Note that

L1 = − Λ

S∗
= − 1

S∗
(µS∗ + αµE∗)

= −µ− αµE∗
S∗

= −µ− L2. (4.33)

Firstly, from equation (4.29), we have b1 > 0. Then, from equation (4.30)and by using

(4.33) with (4.19), we get

b2 = L1L3 − (L1 + L3)(σ + w1)− S∗(αB + ξ1C) + σw1 + AS∗L2

= L1L3 − (L1 + L3)(σ + w1)− S∗(αB + ξ1C) + σw1 + AS∗(−L1 − µ)

= L1(L3 − AS∗)− (L1 + L3)(σ + w1)− S∗(µA+ αB + ξ1C) + σw1

= L1(−αµ)− (L1 + L3)(σ + w1)− S∗(µA+ αB + ξ1C) + σw1

> 0.
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Then, b2 > 0. Next, from equation (4.31) and by using (4.33) with (4.19), we get

b3 = L1L3(σ + w1 + σw1)− (L1 + L3)σw1 + L2S∗((σ + w1)A+ ξ1C + αB)

+ L1S∗(αB + ξ1C)− S∗(αξ2C + ασB + w1ξ1C)

= L1L3(σ + w1 + σw1)− (L1 + L3)σw1

+ S∗(−L1 − µ)((σ + w1)A+ ξ1C + αB))

+ L1S∗(αB + ξ1C)− S∗(αξ2C + ασB + w1ξ1C)

= L1L3(σ + w1 + σw1)− (L1 + L3)σw1 − L1S∗(σ + w1)A

− L1S∗αB − µS∗(ξ1C + αB) + L1S∗(αB + ξ1C)

− S∗(αξ2C + ασB + w1ξ1C)− µS∗(σ + w1)A− L1S∗ξ1C

= L1(σ + w1)(L3 − AS∗) + L1L3(σw1)− (L1 + L3)σw1

− S∗(µ(σ + w1)A+ (ασ + µα)B + (αξ2 + w1ξ1 + µξ1)C)

= L1(σ + w1)(−αµ) + L1L3(σw1)− (L1 + L3)σw1 (4.34)

− S∗(µ(σ + w1)A+ (ασ + µα)B + (αξ2 + w1ξ1 + µξ1)C)

> 0.

Finally, from (4.32). By using (4.33) and (4.19), we get

b4 = L1L3σw1 + L1S∗(ασB + (αξ2 + w1ξ1)C)

+ L2S∗(σw1A+ ασB + (αξ2 + w1ξ1)C)

= L1L3σw1 + L1S∗(ασB + (αξ2 + w1ξ1)C)

+ S∗(−µ− L1)(σw1A+ ασB + (αξ2 + w1ξ1)C)

= L1L3σw1 + L1S∗(ασB + (αξ2 + w1ξ1)C)

− S∗(µσw1A+ µασB + µ(αξ2 + w1ξ1)C)

− L1S∗σw1A− L1S∗(ασB + (αξ2 + w1ξ1)C)

= −S∗(µασB + µ(αξ2 + w1ξ1)C + σw1µA) + L1σw1(L3 − AS∗)

= −S∗(µασB + µ(αξ2 + w1ξ1)C + σw1µA) + L1σw1(−αµ)

= µσw1 +K0 +
αµΛσw1

S∗

> 0.

where

K0 =

(
−αS∗B

w1

− CS∗(αξ2 + w1ξ1)

σw1

− AS∗
)
> 0.
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Now, it’s clear that

bj > 0 for j = 1, 2, 3, 4.

By using Theorem (15), X∗ is locally asymptotically stable if the following conditions

hold
(i) b1b2 − b3 > 0,

(ii) b3(b1b2 − b3)− b2
1b4 > 0.

(4.35)

We can estimate b1b2 − b3 as follows

b1b2 − b3 = [−(L3 + L1) + (w1 + σ)]×

[−αµL1 − (L1 + L3)(σ + w1)− S∗(µA+ αB + ξ1C) + σw1]

− [−αµL1(σ + w1) + L1L3(σw1)− (L1 + L3)σw1

−S∗(µ(σ + w1)A+ (ασ + µα)B + (αξ2 + w1ξ1 + µξ1)C)]

= αµL1(L3 + L1) + (L1 + L3)2(σ + w1)

+ (L3 + L1)(S∗(µA+ αB + ξ1C))− (w1 + σ)αµL1 − (σ + w1)2(L1 + L3)

− (σ + w1)(S∗(µA+ αB + ξ1C)− σw1)

+ αµL1(σ + w1)− L1L3(σw1) + (L1 + L3)σw1 − (L1 + L3)σw1

+ S∗(µ(σ + w1)A+ (ασ + µα)B + (αξ2 + w1ξ1 + µξ1)C)

= αµL1(L3 + L1) + (L1 + L3)2(σ + w1)

+ (L3 + L1)(S∗(µA+ αB + ξ1C))− (σ + w1)2(L1 + L3)− L1L3(σw1)

+ S∗(µαB + αξ2C + µξ1C) + (σw1)(σ + w1)

= αµL1(L3 + L1) + (L1 + L3)2(σ + w1) + L1(S∗(µA+ αB + ξ1C))

+ (AS∗ − αµ)(S∗(µA+ αB + ξ1C))− (σ + w1)2(L1 + L3)− L1L3(σw1)

+ S∗(µαB + αξ2C + µξ1C)− S∗(w1αB + σξ1C) + (σw1)(σ + w1)

= αµL1(L3 + L1) + (L1 + L3)2(σ + w1) + L1(S∗(µA+ αB + ξ1C))

+ AS2
∗(µA+ αB + ξ1C)− S∗((αµ+ µ2)A+ α2B + α(ξ1 − ξ2)C)

− (σ + w1)2(L1 + L3)− L1L3(σw1)− S∗(w1αB + σξ1C) + (σw1)(σ + w1)

= (L1S∗ + AS2
∗)(µA+ αB + ξ1C)

− S∗((αµ+ µ2)A+ (α2 + w1α)B + (αξ1 + σξ1 − αξ2)C)

+ αµL1(L3 + L1) + (L1 + L3)2(σ + w1)− (σ + w1)2(L1 + L3)

− L1L3(σw1) + (σw1)(σ + w1)

= K3 +K2L1L3 +K1CS∗,
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where

K1 = L1 + AS∗ − αξ1 − σξ1 + αξ2 < 0, (4.36)

K2 = αµ + 2(σ + w1)− σw1 > 0, (4.37)

K3 = (L1S∗ + AS2
∗)(µA+ αB)− S∗((αµ+ µ2)A+ (α2 + w1α)B) + (σw1)(σ + w1)

− (σ + w1)2(L1 + L3) + (αµ + σ + w1)L2
1 + (σ + w1)L2

3 > 0 (4.38)

Then, we get

b1b2 − b3 > 0.

For the last inequality in (4.35), we have

b3(b1b2 − b3)− b2
1b4 = b3 [K3 +K2L1L3 +K1CS∗]

− [−(L3 + L1) + (w1 + σ)]2 [µσw1K0 + L1σw1(−αµ)]

= b3 [K3 +K2L1L3 +K1CS∗]

+
[
2(w1 + σ)(L3 + L1)− (σ + w1)2 − (L3 + L1)2

]
×

[µσw1K0 + L1σw1(−αµ)]

= b3 [K3 +K2L1L3 +K1CS∗]

+ [2(w1 + σ)(L3 + L1)] [µσw1K0 + L1σw1(−αµ)]

−
[
(σ + w1)2 + (L3 + L1)2

]
[µσw1K0 + L1σw1(−αµ)] .

From inequalities (4.34) and (4.38), we have

b3K3 = b3

[
(L1S∗ + AS2

∗)(µA+ αB)− S∗((αµ+ µ2)A+ (α2 + w1α)B) + (σw1)(σ + w1)

− (σ + w1)2(L1 + L3) + (αµ + σ + w1)L2
1 + (σ + w1)L2

3

]
>
[
(σ + w1)2 + (L3 + L1)2

]
[µσw1K0 + L1σw1(−αµ)] . (4.39)

From inequalities (4.34), (4.37) and (4.36), we have

b3 [K2L1L3 +K1CS∗] > − [2(w1 + σ)(L3 + L1)] [µσw1K0 + L1σw1(−αµ)] . (4.40)

By using (4.40) and (4.39), we conclude that

b3(b1b2 − b3)− b2
1b4 > 0.

Thus, by Routh-Hurwitz stability criterion (15), X∗ is locally asymptotically stable. �
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4.2 Global stability

In this section we study the global stability of the equilibrium points of the model SEIRV

(3.1).

4.2.1 Global stability of the disease-free eqiulibrium

Assume that the following assumptions hold

• The functions

βE(E), βI(I) and βV (V ) are decreasing. (4.41)

• The functions

βE(E), βI(I) and βV (V ) are positive. (4.42)

• The functions satisfy

β′E(E) ≤ 0, β′I(I) ≤ 0 and β′V (V ) ≤ 0. (4.43)

Then, the result of the global stability of the disease-free eqiulibrium (DFE) of system

(3.9) is given by

Theorem 20. If R0 ≤ 1, the disease-free equilibrium (DFE) X0 is globally asymptotically

stable in Ω. If R0 > 1, the equilibrium (DFE) X0 is unstable and there is a unique

endemic equilibrium (EE) X∗. In addition, the disease is uniformly persistent inside Ω,

denoted by Ω̊ such that

lim inf
t→∞

(E, I, V ) > (ε, ε, ε), with ε > 0.

Proof. Let X = (E, I, V )T . Then, by using the system (3.1) we obtain

dE

dt
= βE(E)SE + βI(I)SI + βV (V )SV − (α + µ)E,

dI

dt
= αE − (w + γ + µ)I, (4.44)

dV

dt
= ξ1E + ξ2I − σV.
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On the one hand, by the system (4.44), the derivative of X is given by

dX

dt
=

βE(E)SE + βI(I)SI + βV (V )SV − (α + µ)E

αE − (w + γ + µ)I

ξ1E + ξ2I − σV

 .
On the other hand, we have

F − V =

βE(0)S0 − α− µ βI(0)S0 βV (0)S0

α −w1 0

ξ1 ξ2 −σ

 .
Hence, we get

(F − V)X =

βI(0)S0I + βV (0)S0V − E(α + µ− βE(0)S0)

αE − Iw1

ξ1E + ξ2I − σV

 .
With assumptions (4.41)-(4.43) and Domain (3.26), we have

dX

dt
≤ (F − V)X. (4.45)

By simple calculation,

V−1F =
1

α + µ

 βE(0)S0 βI(0)S0 βV (0)S0

α
w1
βE(0)S0

α
w1
βI(0)S0

α
w1
βV (0)S0

βE(0)(αξ2+w1ξ1)
σw1

βI(0)(αξ2+w1ξ1)
σw1

βV (0)(αξ2+w1ξ1)
σw1

 .
The eigenvalues of V−1F are

λi =

 0

0
αβI(0)S0σ+αβV (0)S0ξ2+βE(0)S0σw1+βV (0)S0w1ξ1

ασw1+µσw1

 .
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Therefore, we obtain

ρ(V−1F ) = max
i=1,2,3

λi =
αβI(0)S0σ + αβV (0)S0ξ2 + βE(0)S0σw1

ασw1 + µσw1

+
βV (0)S0w1ξ1

ασw1 + µσw1

= ρ(FV−1).

Let U = (βE(0), βI(0), βV (0))T , so, we have

U(V−1F ) =
1

α + µ
×βE(0)S0βE(0) + α
w1
βE(0)S0βI(0) + βE(0)βV (0)(αξ2+w1ξ1)

σw1

βI(0)S0βE(0) + α
w1
βI(0)S0βI(0) + βI(0)βV (0)(αξ2+w1ξ1)

σw1

βV (0)S0βE(0) + α
w1
βV (0)S0βI(0) + βV (0)βV (0)(αξ2+w1ξ1)

σw1

 . (4.46)

On the other hand, we have

R0U =
(
αβI(0)S0σ+αβV (0)S0ξ2+βE(0)S0σw1+βV (0)S0w1ξ1

ασw1+µσw1

)
βE(0)(

αβI(0)S0σ+αβV (0)S0ξ2+βE(0)S0σw1+βV (0)S0w1ξ1
ασw1+µσw1

)
βI(0)(

αβI(0)S0σ+αβV (0)S0ξ2+βE(0)S0σw1+βV (0)S0w1ξ1
ασw1+µσw1

)
βV (0)

 (4.47)

Then, we conclude from (4.46) and (4.47), the following relation

U(V−1F ) = R0U. (4.48)

Now, consider the following Lyapunov function:

L0 = UV−1X.

The derivative is given as follows

dL0

dt
= UV−1dX

dt

≤ UV−1(F − V)X with equality (4.45)

= UV−1FX − UV−1VX

= UR0X − UX with equality (4.48)

= U(R0 − 1)X.
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In conclusion, we have
dL0

dt
≤ U(R0 − 1)X. (4.49)

From the inequality (4.49), we distinguish the following cases

• For R0 < 1. We fix ζ = R0 − 1 < 0, then from the inequality (4.49) we have

dL0

dt
= 0⇒ U(R0 − 1)X ≥ 0

⇒


UζX = 0

∨

UζX > 0

⇒


UζX = 0⇒ UX = 0 since ζ < 0

∨

UζX > 0 Impossible since︸ ︷︷ ︸
⇓︷ ︸︸ ︷

UX ≥ 0 and ζ < 0.

⇒ UX = 0⇒ X = 0 since U 6= 0

⇒ (E, I, V ) = (0, 0, 0). (4.50)

With the equations of system (3.6) and the equality (4.50) we obtain

(S,E, I, R, V ) = (S0, 0, 0, 0, 0).

So the invariant set on which dL0
dt

= 0 contains the single point X0.

• For R0 = 1, we have
dL0

dt
= UV−1dX

dt
, (4.51)

such that

UT =
[
βE(0) βI(0) βV (0)

]
,

and

V−1 =


1

α+µ
0 0

α
w1(α+µ)

1
w1

0
αξ2+w1ξ1
σw1(α+µ)

ξ2
σw1

1
σ


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dX

dt
=

βE(E)SE + βI(I)SI + βV (V )SV − (α + µ)E

αE − (w + γ + µ)I

ξ1E + ξ2I − σV

 .

By using equation (4.51), we get

UV−1 =
[
βE(0)
α+µ

+ αβI(0)
w1(α+µ)

+ βV (0)(αξ2+w1ξ1)
σw1(α+µ)

βI(0)
w1

+ βV (0)ξ2
σw1

βV (0)
σ

]
.

So, by using the following notation

Y = UV−1dX

dt
,

we can find

Y =
βV (0) (ξ1E + ξ2I − σV )

σ

+
(αE − Iw1) (βI(0)σ + βV (0)ξ2)

σw1

+

[
αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

σw1

]
×
[
βE(E)ES − (α + µ)E + βI(I)IS + SβV (V )V

α + µ

]
= E

[
βV (0)ξ1

σ
+
α (βI(0)σ + βV (0)ξ2)

σw1

−
(
αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

σw1

)
+
βE(E)S

α + µ
×(

αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

σw1

)]
+ I

[
βV (0)ξ2

σ
− βI(0)− βV (0)ξ2

σ
+
βI(I)S

α + µ
×(

αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

σw1

)]
+ V

[
−βV (0) +

SβV (V )

α + µ
×(

αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

σw1

)]
.
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by using (3.20) with R0 = 1, we can get

S0 = (α + µ)

[
βE(0) +

α

w1

βI(0) +
w1ξ1 + αξ2

σw1

βV (0)

]−1

. (4.52)

By making some simplification using (4.52), we have

Y = E

βV (0)ξ1
σ

+
α (βI(0)σ + βV (0)ξ2)

σw1
−
(
αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

σw1

)
︸ ︷︷ ︸

α+µ
S0

+βE(E)S

(
αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

(α+ µ)σw1

)
︸ ︷︷ ︸

1
S0



+ I

βV (0)ξ2
σ

− βI(0)− βV (0)ξ2
σ

+ βI(I)S

(
αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

(α+ µ)σw1

)
︸ ︷︷ ︸

1
S0



+ V

−βV (0) + SβV (V )

(
αβI(0)σ + βE(0)σw1 + βV (0)αξ2 + βV (0)w1ξ1

(α+ µ)σw1

)
︸ ︷︷ ︸

1
S0


Then, we get

Y = E

βV (0)ξ1

σ
+
α (βI(0)σ + βV (0)ξ2)

σw1
− α+ µ

S0
+

≤βE(0)S0︷ ︸︸ ︷
SβE(E)

S0


+ I

(
−βI(0) +

βI(I)S

S0

)
︸ ︷︷ ︸

≤0

+V

(
−βV (0) +

SβV (V )

S0

)
︸ ︷︷ ︸

≤0

≤ E
(
βV (0)ξ1

σ
+
α (βI(0)σ + βV (0)ξ2)

σw1
− α+ µ

S0
+ βE(0)

)
≤ Eα+ µ

S0

[
−1 +

S0

α+ µ

(
βV (0)ξ1

σ
+
α (βI(0)σ + βV (0)ξ2)

σw1
+
βE(0)S0

α+ µ

)]
= E

α+ µ

S0

[
−1 +

αβI(0)S0σ + αβV (0)S0ξ2 + βE(0)S0σw1

ασw1 + µσw1
+

βV (0)S0w1ξ1

ασw1 + µσw1

]
= E

α+ µ

S0
(−1 +R0)

= 0.
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As a conclusion for the proof of Theorem (4.2.1), we obtain the following two cases

• E = I = V = 0.

• βE(E) = βE(0), βI(I) = βI(0), βV (V ) = βV (0) and S = S0.

Each of the cases would indicate that X0(DEF) is the only set invariant on{
X ∈ Ω :

dL0

dt
= 0

}
.

Therefore, when R0 ≤ 0, the largest invariant set over which L0
dt

always consists of a

singleton X0. By the LaSalle invariance principle [32], the DFE is globally asymptotically

stable in Ω. In on the other hand, if R0 > 1, then it follows from the continuity of the

vector fields that L0
dt
> 0 in a neighborhood of DFE in Ω̊. Thus, the DFE is unstable by

Lyapunov’s theory of stability. To prove the next limit

lim inf
t→∞

(E, I, V ) > (ε, ε, ε), pour ε > 0,

we most follow the proof of Theorem 2.5 in paper [30]. �

4.2.2 Global stability of the endemic equilibrium

Theorem 21. If R0 > 1, then the unique endimic equilibrium X∗ of the system (3.1) is

globally asymptotically stable in Ω̊.

Proof. Either the following functional

L(y(t)) =

∫ y

y∗

x− y∗
x

dt,

for y > 0 and with y∗ > 0. We Calculate the derivative of L(y(t)) as follows

d

dx
L(y(x)) =

d

dx
(L ◦ y) =

d

dx
L(y(x))(

dy

dx
)

=
d

dx

∫ y

y∗

x− y∗
x

dx(
dy

dx
)

=

[
x− y∗
x

]y
y∗

(
dy

dx
)

=
y − y∗
y

(
dy

dx
).
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For the function S, we have

dL(S)

dt
=
S − S∗
S

(βE(E∗)S∗E∗ − βE(E)SE + βI(I∗)S∗I∗

−βI(I)SI + βV (V∗)S∗V∗ − βV (V )V S)− (S − S∗)2µ

S︸ ︷︷ ︸
≥0

≤ S − S∗
S

(βE(E∗)S∗E∗ − βE(E)SE + βI(I∗)S∗I∗

−βI(I)SI + βV (V∗)S∗V∗ − βV (V )V S)

= (1− S∗
S

) [βE(E∗)S∗E∗ − βE(E)SE + βI(I∗)S∗I∗

−βI(I)SI + βV (V∗)S∗V∗ − βV (V )V S]

= (βE(E∗)S∗E∗ − βE(E)SE + βI(I∗)S∗I∗

−βI(I)SI + βV (V∗)S∗V∗ − βV (V )V S)

− βE(E∗)S∗E∗S∗
S

+
βE(E)SES∗

S
− βI(I∗)S∗IS∗

S

+
βI(I)SIS∗

S
− βV (V∗)V∗S∗

S
+
βV (V )SV S∗

S

= βE(E∗)S∗E∗

[(
1− S∗

S

)
− βE(E)SE

βE(E∗)S∗E∗
+

βE(E)E

βE(E∗)E∗

]
+ βI(I∗)S∗I∗

[(
1− S∗

S

)
− βI(I)IS

βI(I∗)I∗S∗
+

βI(I)I

βI(I∗)I∗

]
+ βV (V∗)S∗V∗

[(
1− S∗

S

)
− βV (V )V S

βV (V∗)V∗S∗
+
βV (V )V

βV (V∗)V∗

]
.

For the function E, we have

dL(E)

dt
=
E − E∗
E

[βE(E)SE − βE(E∗)S∗E + βI(I)SI

− βI(I∗)S∗I∗ + βV (V )SV − βV (V∗)S∗V∗ − (α + µ)
E∗E

E∗

]
=
E − E∗
E

[βE(E)SE − βE(E∗)S∗E + βI(I)SI − βI(I∗)S∗I∗ + βV (V )SV

−βV (V∗)S ∗ V ∗]−(1− E∗
E

)(α + µ)E∗
E

E∗︸ ︷︷ ︸
=γ

,
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such that

γ = (1− E∗
E

) (−(α + µ)E∗E∗)

=

(
−(α + µ)E∗

E

E∗
+ (α + µ)

E∗
E
E∗

E

E∗

)
=

(α + µ)E

E∗

(
−E∗ +

E∗
E
E∗

)
=

(α + µ)EE∗
E∗

(
−1 +

E∗
E

)
(4.53)

=
(α + µ)E∗

E∗
(−E + E∗)

=
(α + µ)E∗E∗

E∗

(
1− E

E∗

)
= −γ. (4.54)

In addition, we have

E∗ a point of equilibrium⇒ E = E∗

⇒ (4.53) and (4.54) ⇒ γ = −γ

⇒ γ = 0.

Then, by using simplifications, we get

dL(E)

dt
= (1− E∗

E
) [βE(E)SE − βE(E∗)S∗E + βI(I)SI − βI(I∗)S∗I∗

+βV (V )SV − βV (V∗)S∗V∗]

= βE(E)SE − βE(E∗)S∗E + βI(I)SI − βII∗)S ∗ I∗ + βV (V )SV

− βV (V∗)S∗V∗ −
βE(E)SEE∗

E
+
βE(E∗)S∗EE∗

E
− βI(I)SIE∗

E

+
βI(I∗)S∗I∗E∗

E
− βV (V )SV E∗

E
+
βV (V∗)S∗V∗E∗

E

= βE(E∗)S∗E∗

[
1− E

E∗
+

βE(E)SE

βE(E∗)S∗E∗
− βE(E)S

βE(E∗)S∗

]

+ βI(I∗)I∗S∗

−1 +
E∗
E︸ ︷︷ ︸

=1− E
E∗

− βI(I)ISE∗
βI(I∗)I∗S∗E

+
βI(I)IS

βI(I∗)I∗S∗



+ βV (V∗)V∗S∗

−1 +
E∗
E︸ ︷︷ ︸

=1− E
E∗

− βV (V )V SE∗
βV (V∗)V∗S∗E

+
βV (V )V S

βV (V∗)V∗S∗

 .
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Stability analysis of the SEIRV model

Adding up the previous estimates, we obtain

dL(S)

dt
+
dL(E)

dt
= βE(E∗)S∗E∗

[(
1− S∗

S

)
− βE(E)SE

βE(E∗)S∗E∗
+

βE(E)E

βE(E∗)E∗

]
+ βI(I∗)S∗I∗

[(
1− S∗

S

)
− βI(I)IS

βI(I∗)I∗S∗
+

βI(I)I

βI(I∗)I∗

]
+ βV (V∗)S∗V∗

[(
1− S∗

S

)
− βV (V )V S

βV (V∗)V∗S∗
+
βV (V )V

βV (V∗)V∗

]
+ βE(E∗)S∗E∗

[
1− E

E∗
+

βE(E)SE

βE(E∗)S∗E∗
− βE(E)S

βE(E∗)S∗

]
+ βI(I∗)I∗S∗

[
1− E

E∗
− βI(I)ISE∗
βI(I∗)I∗S∗E

+
βI(I)IS

βI(I∗)I∗S∗

]
+ βV (V∗)V∗S∗

[
1− E

E∗
− βV (V )V SE∗
βV (V∗)V∗S∗E

+
βV (V )V S

βV (V∗)V∗S∗

]
≤ βE(E∗)S∗E∗

[
2− S∗

S
− E

E∗
+

βE(E)E

βE(E∗)E∗
− βE(E)S

βE(E∗)S∗

]
:= A

+ βI(I∗)S∗I∗

[
2− S∗

S
− E

E∗
+

βI(I)I

βI(I∗)I∗
− βI(I)ISE∗
βI(I∗)I∗S∗E

]
:= B

+ βV (V∗)S∗V∗

[
2− S∗

S
− E

E∗
+
βV (V )V

βV (V∗)V∗
− βV (V )V SE∗
βV (V∗)V∗S∗E

]
:= C

We have S∗ equilibrium point ⇔ S = S∗. Then, A,B and C are calculated as follows

A = βE(E∗)S∗E∗

2− S∗
S︸ ︷︷ ︸

=1

− E

E∗
+

βE(E)E

βE(E∗)E∗
− βE(E)S

βE(E∗)S∗


= βE(E∗)S∗E∗

[
1− E

E∗
+

βE(E)E

βE(E∗)E∗
− βE(E)

βE(E∗)

]
= βE(E∗)S∗E∗

[
βE(E)

βE(E∗)

(
βE(E∗)

βE(E)
− 1

)
− E

E∗
+

βE(E)E

βE(E∗)E∗

]
,

βE(E)

βE(E∗)
≤ 1 (4.55)

≤ βE(E∗)S∗E∗

[
βE(E∗)

βE(E)
− 1− E

E∗
+

βE(E)E

βE(E∗)E∗

]
≤ βE(E∗)S∗E∗

(
βE(E)E

βE(E∗)E∗
− 1

)(
1− βE(E∗)

βE(E)

)
.

We can use the following inequalities

1− βE(E∗)

βE(E)
≤ 0 ⇔ E∗ ≤ E ⇔ βE(E)E

βE(E∗)E∗
− 1 ≥ 0. (4.56)
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Stability analysis of the SEIRV model

By using (4.56) and (4.55) we have

A ≤ βE(E∗)S∗E∗

 βE(E)E

βE(E∗)E∗
− 1︸ ︷︷ ︸

≤0


1− βE(E∗)

βE(E)︸ ︷︷ ︸
≥0


≤ 0. (4.57)

Now, we have

B = βI(I∗)S∗I∗

[
2− S∗

S
− E

E∗
+

βI(I)I

βI(I∗)I∗
− βI(I)ISE∗
βI(I∗)I∗S∗E

]
= βI(I∗)S∗I∗

[
1− E

E∗
+

βI(I)I

βI(I∗)I∗
− βI(I)IE∗
βI(I∗)I∗E

]
≤ βI(I∗)S∗I∗

[
1− E

E∗
+

βI(I)I

βI(I∗)I∗
+
βI(I)

βI(I∗)

(
1− E∗I

EI∗

)]
, 1 ≥ βI(I)

βI(I∗)
≥ 0.

≤ βI(I∗)S∗I∗

[
1− E

E∗
+

βI(I)I

βI(I∗)I∗
+ 1− E∗I

EI∗

]
, 1 ≤ βI(I∗)

βI(I)
− 1.

≤ βI(I∗)S∗I∗

[
βI(I∗)

βI(I)
− 1− E

E∗
+

βI(I)I

βI(I∗)I∗
+ 1− E∗I

EI∗

]
≤ βI(I∗)S∗I∗

[
− I
I∗

+
I

I∗
+
βI(I∗)

βI(I)
− 1− E

E∗
+

βI(I)I

βI(I∗)I∗
+ 1− E∗I

EI∗

]
(4.58)

≤ βI(I∗)S∗I∗

[
− I
I∗

+
I

I∗
+
βI(I∗)

βI(I)
− 1− E

E∗
+

βI(I)I

βI(I∗)I∗
+ ln

EI∗
E∗I

]
.

we have

1− 1

x
≤ lnx, x =

E∗I

EI∗
(see Fig (4.1))

Figure 4.1: Behavior of 1− 1
x

and ln x
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Stability analysis of the SEIRV model

Hence, we get

ln
EI∗
E∗I

= ln
E
E∗
I
I∗

= ln
E

E∗
− ln

I

I∗
. (4.59)

We apply (4.59)

B ≤ βI(I∗)S∗I∗

[
βI(I)I

βI(I∗)I∗
− I

I∗
− 1 +

βI(I∗)

βI(I)
+
I

I∗
− E

E∗
+ ln

E

E∗
− ln

I

I∗

]

≤ βI(I∗)S∗I∗


 βI(I)I

βI(I∗)I∗
− 1︸ ︷︷ ︸

≤0


1− βI(I∗)

βI(I)︸ ︷︷ ︸
≥0

+
I

I∗
− E

E∗
+ ln

E

E∗
− ln

I

I∗


≤ βI(I∗)S∗I∗

[
I

I∗
− E

E∗
+ ln

E

E∗
− ln

I

I∗

]
(4.60)

For C, we apply the same reasoning as for B. We then obtain

C ≤ βV (V∗)S∗V∗

[
V

V∗
− E

E∗
+ ln

E

E∗
− ln

V

V∗

]
. (4.61)

Let’s use (4.57),(4.61) and (4.60), so

dL(S)

dt
+
dL(E)

dt
≤ βI(I∗)S∗I∗

[
I

I∗
− E

E∗
+ ln

E

E∗
− ln

I

I∗

]
+ βV (V∗)S∗V∗

[
V

V∗
− E

E∗
+ ln

E

E∗
− ln

V

V∗

]
.

For I, we have

dL(I)

dt
=
I − I∗
I

dI

dt

=
I − I∗
I

α (E − E∗)− w1 (I − I∗)︸ ︷︷ ︸
=0

 , I∗ point of equilibrium

= αE − αE∗ −
αEI∗
I

+
αE∗I∗
I

= αE − αEI∗
I

+ αE∗

(
−1 +

I∗
I

)
see (4.53) and (4.54)

= αE − αEI∗
I

+ αE∗

(
1− I

I∗

)
= αE∗

(
E

E∗
− I

I∗
− I∗E

IE∗
+ 1

)
see (4.58) and (4.59).

≤ αE∗
(
E

E∗
− I

I∗
+ ln

I

I∗
− ln

E

E∗

)
.
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Stability analysis of the SEIRV model

For V, we have

dL(V )

dt
=
V − V∗
V

dV

dt

=
V − V∗
V

ξ1 (E − E∗) + ξ2 (I − I∗)− σ (V − V∗)︸ ︷︷ ︸
=0

 , V∗ point of equilibrium

=
V − V∗
V

[ξ1 (E − E∗) + ξ2 (I − I∗)]

= ξ1E −
ξ1EV∗
V

+ ξ1E∗

(
−1 +

V∗
V

)
see (4.53) and (4.54)

+ ξ2I −
ξ2IV∗
V

+ ξ2I∗

(
−1 +

V∗
V

)
see (4.53) and (4.54)

= ξ1E −
ξ1EV∗
V

+ ξ1E∗

(
1− V

V∗

)
+ ξ2I −

ξ2IV∗
V

+ ξ2I∗

(
1− V

V∗

)
= ξ1E∗

(
E

E∗
− V

V∗
− V∗E

V E∗
+ 1

)
see (4.58) and (4.59).

+ ξ2I∗

(
I

I∗
− V

V∗
− V∗I

V I∗
+ 1

)
see (4.58) and (4.59).

≤ ξ1E∗

(
E

E∗
− V

V∗
+ ln

V

V∗
− ln

E

E∗

)
+ ξ2I ∗

(
I

I∗
− V

V∗
+ ln

V

V∗
− ln

I

I∗

)
.

Define the following Lyapunov functional L1(t) = L(S) + L(E) + c1L(I) + c2L(V ). By

using the previous estimates, we get

dL1

dt
≤ βI(I∗)S∗ I∗

[
I

I∗
− E

E∗
+ ln

E

E∗
− ln

I

I∗

]
+ βV (V∗)S∗V∗

[
V

V∗
− E

E∗
+ ln

E

E∗
− ln

V

V∗

]
+ c1αE∗

(
E

E∗
− I

I∗
+ ln

I

I∗
− ln

E

E∗

)
+ c2ξ1E∗

(
E

E∗
− V

V∗
+ ln

V

V∗
− ln

E

E∗

)
+ c2ξ2I∗

(
I

I∗
− V

V∗
+ ln

V

V∗
− ln

I

I∗

)
=

(
ln
E

E∗
− E

E∗

)
(βI(I∗)S∗I∗ + βV (V∗)S∗V∗ − c1αE∗ − c2ξ1) (4.62)

+

(
I

I∗
− ln

I

I∗

)
(βI(I∗)S∗I∗ − c1αE∗ + c2ξ2I∗) (4.63)(

V

V∗
− ln

V

V∗

)
(βV (V∗)S∗V∗ − c2ξ1E∗ − c2ξ2I∗) (4.64)
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We must choose c2 > 0 such that

βV (V∗)S∗V∗ − c2ξ1E∗ − c2ξ2I∗ = 0, (4.65)

then, solving equation (4.65) gives us

c2 =
βV (V∗)S∗V∗
ξ1E∗ + ξ2I∗

=
w1βV (V∗)S∗V∗
w1(ξ1E∗ + ξ2I∗)

.

Note that w1I∗ = αE∗. Therefore

c2 =
w1βV (V∗)S∗V∗
(w1ξ1 + αξ2)E∗

.

By replacing c2 in (4.63) we find c1. Equality being valid if and only if (S,E, I, V ) =

(S∗, E∗, I∗, V∗). So, X∗ is globally asymptotically stable inside of Ω. �
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, we present the numerical results. At first, we consider the following

functions for the three transmission rates

βE(E) =
βE0

1 + cE
, βI(I) =

βI0

1 + cI
, βV (V ) =

βV 0

1 + cV
, (5.1)

where βE0, βI0 and βV 0 (all positive constants) denote the maximum values of these

transmission rates, and c is a positive coefficient providing adjustment to the (otherwise

constant) transmission rates.

Next, we fix the parameters defined in (1.2) as in the work [2].

Λ = 271.23

βE0 = 3.11× 10−8.

βI0 = 0.62× 10−8.

βV 0 = 1.03× 10−8.

c = 1.01× 10−4.

µ = 3.01× 10−5.

α = 1/7.

w = 0.01.

γ = 1/15.

σ = 1.

ξ1 = 2.3.

ξ2 = 0.
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Numerical results

Then, based on [1], the initial condition is set as

(S(0), E(0), I(0), R(0), V (0)) = (8999015, 500, 475, 10) .

Now, we are able to evaluate the basic reproduction number

R0 = 4.1780.
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Figure 5.1: A simulation result for SEIRV model

By reading Figure (5.1), we conclude: The incorporation of the environmental reservoir

in the transmission dynamics of the disease, and with non-constant transmission rates.

We observe the change in epidemiological status and environmental conditions and reflect
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Numerical results

the impact of the implemented disease control measures.

In addition, we have performed a numerical test using simple, constant transmission

rates in our model

βE(E) = βE0, βI(I) = βI0, βV (V ) = βV 0, (5.2)

equivalent to setting c = 0 in (5.1). The Figure (5.2) shows a prediction of the outbreak
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Figure 5.2: A simulation result for SEIRV model with constant transmission rates

size in this setting. Compared to Figure (5.1), we now clearly observe a significantly

higher level of infection.
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CONCLUSION

In this work, we collected some of the covid-19 models and mentioned the studies related

to each model, we studied local and global asymptotic stability analysis. Many aspects of

the epidemiology of COVID-19 are still unknown, which adds challenges to mathematical

modeling. The numerical results demonstrates that using fixed transmission rates, which

do not take into account the strong disease control measures currently on-going, may

overestimate the epidemic severity and generate misguided information.

5.1 perspectives

In studying the local stability of the state of R0 = 1. You need a detailed (paradoxes).

Exposure detailed analysis of this model in the PDE status and explains its application

by declared data, in order to eliminate the disease eventually among the interference

strategy: Optimal control of the epidemic by determining (vaccination rate, quarantine,

treatment cost, locking countries).
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