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Abstract

Interesting to the new virus, we studied the SEIRV model which describe the behavior of
the virus. At first, we give a literature overview of some disease models. Next, we analyse
the equilibrium points of our system. After that, we give the local and global stability
results. Finaly, we present some numerical results based on the statistics of the Chinese

city, Wuhan [2].
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Résumé

Suite a notre préoccupation du nouveau virus, nous avons étudié le modele SEIRV qui
décrit le comportement du virus. Dans un premier temps, nous donnons un apercu de la
littérature sur certains modeles de maladies. Ensuite, nous analysons les points d’équilibre
de notre systeme. Apres cela, nous donnons les résultats de stabilité locale et globale.
Enfin, nous présentons quelques résultats numériques basés sur les statistiques de la ville
chinoise, Wuhan [2].

Larbi Tebessi University 11 Master’s second year, PDE



Acknowledgment

In the name of Allah, Most Gracious, Most Merciful, to Whom all praise is due. This
work has been carried out at the University of Larbi TEBESSI, in the Institute for Exact
Sciences Sciences of Nature and Life. Departement of Mathematics Informatics.

At first, we would like to thank all of our teachers for having given us the necessary
knowledge in our educational journey.

As we would like to extend special thanks to our supervisor, Doctor Salem ABDEL-
MALEK, and for his tremendous efforts in accompanying us to accomplish this work
during these months.

We would like to thank the members of the memory jury, Doctor ABDELHAK Haf-
dallah and Doctor BOUAZIZ Khelifa for accepting the evaluation of this work.

We thank our dear parents deeply for their wise advice unfailing emotional and con-
tinuous support.

We also wish to thank our colleagues and friends from the University and all of those

who are in our hearts.

Larbi Tebessi University Master’s second year, PDE



CONTENTS

(1.1 _Notationsl . . . . . . . . . . e

(1.2  Parametersl . . . . . . . . .

(1.3 Theoretical frameworkl . . . . . . . . . .. .
515 . F Covid=io Be

[3  Equilibrium’s analysis of the SEIRV model

[3.1  Positivity and boundedness of solutions| . . . . . . . . ... ... ... ...

[3.2  Existence of the equilibrium points| . . . . . . ... ... ...

[3.2.1 Existence of disease-free equilibrium|. . . . . . . ... ... ... ..

[3.2.2  Existence of endemic equilibrium| . . . . .. .. ... ... ... ..

[4  Stability analysis of the SEIRV model]
[4.1  Local stability| . . . . . . . . . ...
[4.1.1 Local stability ot the disease-free equilibrium|. . . . . . . . . . . ..

[4.1.2  Local stability of endemic equilibrium/. . . . . . ... ... ... ..
[4.2  Global stability] . . . . ... ... ... o
[4.2.1 Global stability of the disease-free eqiulibrium| . . . . . . . . . . ..
[4.2.2  Global stability of the endemic equilibrium| . . . . . . . ... .. ..

(5 Numerical results |

[0.1 perspectives| . . . . . ...

11

27
27
29
30
32

36
36
36
40
45
45
51

59



INTRODUCTION

Coronaviruses are a large family that causes respiratory infections that include colds, high
fever, coughing and other symptoms, it is the third zoonotic human coronavirus emerging
in the current century, after the severe acute respiratory syndrome coronavirus (SARS-
CoV) in 2002 that spread to 37 countries and the Middle East respiratory syndrome
coronavirus (MERS-CoV) in 2012 that spread to 27 countries [2]. The first appeared in
Wuhan, China in march 2019 [3], then it spread to most countries of the world and claimed
many lives, as the number of deaths so far reached more than three millions deaths in the

world.

It was more interest in this disease and how to control it to limit its spread and
reducing the rates of injuries and deaths. The transmission of the disease from a person
to other is through shaking hands, touching the eyes, nose or mouth, touching the infected
surfaces and objects ... clinical evidence shows that the incubation period of this disease
ranges from 2 to 14 days. During this period of time, infected individuals may not
develop any symptoms and may not be aware of their infection, yet they are capable of
transmitting the disease to other people [4], we can reduce the spread of the disease by
following the preventive measures (wearing a medical mask, quarantine, cleaning hands,
social distancing ect --- ).

Mathematical models play an increasingly important role in our understanding of the
transmission of infectious diseases. Epidemiological models are studied by Mathematics
are constructive in comprising, proposing, planning, implementing, testing theories, pre-
vention, evaluating a variety of detection. On the other hand, to study, examine, analyze,
predict and capture the behaviour of viruses, diseases, threads and others, the mathemat-
ics is the only tool that can help us to better understand disease behavior, To detect and

cure those diseases properly , it is called differential and integral operators are used to



model real world problems in all fields of sciences as they are able to repilcate some be-
haviors observed in real world [5], we need an effective method to solve these models. For
the solution of the system of linear and nonlinear differential equations. Recently, several
mathematical, computational, clinical and examination studies have been put forward for

modeling, prediction, treatment and fight disease.

Statement of the problem

In this work, we relied on the proposed model in [2] which describes the transmission of
the disease and its focus in environment, as well as the role of preventive measures in

controlling the virus and its spread.

The authors divided the total human population into four compartments, the suscep-
tible (denoted by S ), the exposed (denoted by E), the infected (denoted by I), and the
recovered (denoted by R). Individuals in the infected class have fully developed disease
symptoms and can infect other people. Individuals in the exposed class are in the incu-
bation period, they do not show symptoms but are still capable of infecting others. Thus,
another interpretation of the F and I compartments in our model is that they contain

asymptomatic infected and symptomatic infected individuals, respectively, see (e.g. [4]).

The previous hypothesis are based on the following shema

oV

Figure 1: SEIRV Diagramm.
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Introduction

The scheme can be translated into a set of differential equations:

/

9S_\ — Bp(E)SE — Br(1)SI — By(V)SV — uS, t>0,

L —Pp(E)SE 4 8;(1)SI + By (V)SV — (a+p)E, t>0,
L=aF — (w+vy+p)l, t>0, (1)
‘Z—If: vyI-puR, t>0,

\%:51E+§21—av, t>0.

Here. A represent the population influx, y is the natural death rate of human hosts, o~ is
the incubation period between the infection and the onset of symptoms, w is the disease-
induced death rate, v the rate of recovery from infection, &; is the rates of the exposed
individuals contributing the coronavirus to the environmental reservoir, & is the rates of
the infected individuals contributing the coronavirus to the environmental reservoir and
o is the removal rate of the virus from the environment. The system , associated with

the following initial conditions
5(0) =50, E(0)=E, 1(0)=1, R(0)=Ry, V(0)=TV. (2)

The functions g (FE) and §;(I) represents the direct, human-to-human transmission rates
between the exposed and susceptible individuals, and between the infected and suscepti-
ble individuals, respectively. The function Sy (V) is the indirect, environment-tohuman
transmission rate.

Our objective in this work is to study the local and global stability of the equilibrium

points of the system and to give a numerical results. This work is organized as follows

e In chapter (1)), we give some mathematical tools.

In chapter (2)), we present the literature review of some Covid-19 models.

In chapter (3]), we analyze the equilibrium of the SEIRV model.

In chapter (4], we study the local and global stability of our problem.

In chapter , we give a numerical results of SEIRV model and we present the

conclusion.
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CHAPTER 1

PRELIMINARIES

The mathematical analysis of dynamic systems resulting from epidemiological modeling
uses matrices of a very particular type. The differential systems studied in this thesis are
nonlinear. We will present most of the results that were used in this work. These results
are classic. The stability of a dynamic system, will be revisited. Finally we will present the
method of Lyaponov and La Salle theoreme and the calculation of the basic reproduction

number Ry. In the following we will need the following definitions and notations.



Preliminaries

We introduce some notations that are used in our work and we give the definition of

the parameters that are used in the numerical results.

1.1 Notations

e The determinant of real and complex martices, is denoted by det (A).
e The trace of real and complex matrices, is denoted by tr (A).

e The spectral radius of A, is denoted by p(A).

e The disease-free equilibrium, is denoted by (DFE).

e The ordinary differential equations, is denoted by (EDO).

1.2 Parameters

e A : Influx rate.

e (o : Transmission constant between S and E.
e (10 : Transmission constant between S and I.
e [y : Transmission constant between S and V.
e ¢ : Transmission adjustment coefficient.

e ;. : Natural death rate.

e 1/a : Incubation period.

e w : Disease-induced death rate.

e 7 : Recovery rate.

e 0 : Removal rate of virus.

e & : Virus shedding rate by exposed people.

e & : Virus shedding rate by infected people.

Larbi Tebessi University @ Master’s second year, PDE



Preliminaries

1.3 Theoretical framework
The following are some general notions we use in our work.

Definition 1. (Equilibrium point) We say that X® an equilibrium point of a system

{ 20— rx (), L)

X (0) = Xo,
if X¥ wverify the equation f(X%) = 0.

Definition 2. [35] The equilibrium X¥ is said to be stable if for everything ¢ > 0, it
exists 1 > 0, as for all solution X (t) of (1.1)), we have

1X(0) = XP|l < n = |IX(8) - X¥]| <. (1.2)

Definition 3. [35](Stability of an equilibrium point) Let xo € Q be an equilibrium point
of the system
T = X(x).

We say that xo is a stable equilibrium point for & = X (x) or that the system & = X(z)
1s stable in xq, if for any positive, there exists a positive real number & such that for any
r € Q with || (0) — xq ||< 6, the solution X;(x(0)) = x(t). If moreover there exists &y
such that 0 < dp < and

H 'T(O) - 330 H< (50 = llmt%Jroogc(t) = gjO’

xo 18 said to be asymptotically stable. The system is said to be unstable at xq if it is not

stable at xq.

Definition 4. [35](Attractive point of equilibrium) - The equilibrium point xo is said to

be attractive (we will also say that the system
&= X(x)

is attractive in xg if there exists a neighborhood D C Q) of xy such that for any initial
condition x starting in D, the corresponding solution X.(x) of the system & = X(x) is
defined for allt > 0 and tends to xqy as t tends to infinity. In other words,

limy 0o X¢(x) = x0

Larbi Tebessi University Master’s second year, PDE



Preliminaries

for any initial condition xg € D,
T = X(x)

Definition 5. [35] The point zq is said to be globally attractive if
limt—>ooXt($) = Zo,

for any initial condition x € ).

Definition 6. [35](globally asymptotically stable equilibrium) Let xo € € be an equilibrium
point of the system & = X(x). This system is said to be globally asymptotically stable at

xo 1n S if it is both stable, attractive and its basin of attraction is 2 as a whole.
Definition 7. [35](Locally asymptotically stable) Let

J(XF) = S (xP),

the Jacobian matriz of f evaluates at point X¥. Consider the following linear system

dX

— = AX 1.3

dt ) ( )
where A = J(XF) is say the linearized or the linear approzimation of the non-linear

system (1.1)) in XE. The study of the stability of the origin for the linearized allows in
certain cases to characterize the stability of the (1.1). More precisely, we have,

o [f all the eigenvalues of the matriz A are of strictly negative real part, then the

system ((1.1)) is stable.

o [f there is at least one eigenvalue of the matriz A of strictly positive real part then,

the system (|1.1)) is unstable.

Definition 8. [35]/(Globally asymptotically stable) The equilibrium point X is say to be
globally asymptotically stable if it is stable, and for any X (t) solution for (1.1)), we have

lim || X (t) — XZ|| = 0. (1.4)
t—o00

Definition 9. [6] The basic reproduction number R is the spectral radius of the next
generation matriz, namely

R=p(FV). (1.5)

Larbi Tebessi University Master’s second year, PDE



Preliminaries

The following interpretation is given to the matriz FV ~': Let us consider an infected
individual introduced into a compartment FV =1 of a population without disease. The entry
(i, k) of the matriz V' is the average time that the individual will spend in compartment i
during his life, assuming that the infection has been blocked. The entry (j,1) of matriz F is
the speed at which an infected person in compartment i produces infections in compartment
J. Thus the entry (7,k) of FV ™! is the expected number of new infections in compartment
J produced by an infected individual originally introduced into compartment k. The spectral

radius of the matriz FV =1 is the basic reproduction number. That is to say R = p(FV 1),

Definition 10. [35/(Lyapunov function) A function V : Q — R is a Lyapunov function
for the system & = X (x) (X continue) if it decreasing along the trajectories of the system.
If V is of class O, this amounts to saying that his derivative V with respect to the system
i = X(z) is negative on Q, i.e., V(x) <0 for all = € Q.

Theorem 11. [32/(LaSalle’s invariance principle) Let Q2 be a subset of R™ ; suppose that
Q) is an open positively invariant for the system (1.1)) at zg. Let V : Q — R be a class C*
function for the system (1.1) in xo such than :

e V<0 on Q;
o Let E={xe€Q|V(x)=0} and L the largest set invariant by X and L C E.
Then, any bounded solution starting in 2 tends towards the set L as t — oo.

This theorem is a very important tool for the analysis of systems; unlike Lyapunov,it
requires neither of the function V to be positive definite, nor of its derivative V to be
negative. However, heonly provides information on the attractiveness of the considered

system at the equilibrium point g .

Corollary 12. [32] Suppose Q2 C R™ is a connected open such that xg € Q. Let V: Q — R

be a positive definite function of class C* such that V < 0 onU. Let E = {r e Q|V(x) =0},

suppose that the largest positively invariant set containedin E is reduced to the point xq
Then, xo is an asymptotically stable equilibrium point for the system . If these

conditions are satisfied for U = Q if moreover V' is proper on €, i.e., if
limV (z) = 400

when

0
d(w, =) + [l = +oc,

then all trajectories are bounded for all t > 0 and xq is a globally stable equilibrium point
for the system & = X (x).

Larbi Tebessi University @ Master’s second year, PDE



Preliminaries

Corollary 13. [35] Under the assumptions of the previous theorem, if the set L is reduced
to the point xy € €2, then xqy is globally asymptotic stable for the system & = X (x) defined
in §2.

Definition 14. [36](Routh- Hurwitz Stability Criterion) The method depend upon inequal-

ities involving the so-called Hurwitz determinants.

ay ao 0
as as ap ay O
Dy = . k=12 n, (1.6)
a/2k‘—1 a?k‘—Q “ e “ .. “ .. ... ak

where a; = 0 for j > n associated with the coefficients of Q(s). In its most general and

perhaps most efficient from the Routh—Hurwitz criterion may be stated as

Theorem 15. [36] If the polynomial
Q(s) = apS™ + a1 S" ' + -+ ap,_1S + ay.

has real coefficients, with ay > 0, then any one of the following conditions is necessary

and sufficient for every zero of Q(s) to have negative real part:

(i) an > 0,a,_9>0,a,_4>0,---,D; >0,D3 >0,
(ii) ap > 0,052 > 0,ay_4 > 0,--- , Dy >0,Dy>0,--- .
(iii) an > 0,a,_1 > 0,a,_3>0,--- ,D; >0,D3>0,--- .
(iv) ap > 0,ap,_1 > 0,ap_3>0,---,Dy >0,Dg >0,---,

where the determinants are given by (1.6)).

Larbi Tebessi University Master’s second year, PDE



CHAPTER 2

LITERATURE REVIEW OF SOME
COVID-19 MODELS

In this chapter, we present some models that have already been worked on since the

emergence of virus.

11



Literature review of some Covid-19 models.

In [5], the author developed the following three models to understand the nature of
covid-19:
The STR model

s _ _ pIS
dt N
%:%—CMUI, (21)
% = aul,
the SEIQR model
(ds _ _ BWE+I+Q)S
dt — N )

dE __ BWE+I+Q)S
it - N ETE,

d—erE—a(l—v)I—vpl, (2.2)
& =vel —aQ,
\‘fi—f =aQ+a(l—v)l,
and the SEIQ LR model
[ ds _ _ BWE+I4Q+AL)S
dt N ’
a5 _ [3(wE+I;Q+>\L)S _IE,
W —erE—a(l—v)I—vel, (2.3)
9 — vpl — aQ,
i = (1-e)7E —1L,
\% =aQ+a(l—v)I+nL,

where

S(t)+ R(t) +1(t) = N.

The functions in the previous systems are

Susceptible,

Number of exposed cases,
Number of diagnosed cases,
Number of cured cases,

Number of dead cases,

=20~ =W

Total population of Hubei Province,

Larbi Tebessi University Master’s second year, PDE



Literature review of some Covid-19 models.

and the parameters are given by

contagion rate

Removal rate for quarantine

Removal rate for the latent

Proportion of people with dominant infection

incubation period

T T WS Q™

Transfer rate of diagnosed cases

—_

/¢ Average delay edreporting period

>

Infection-reducing factor sinthelatent infections
Curerate

Antibody failure rate.

By an appropriate stability analysis, He spread from whitch it is possible to predict similar
and sudden diseases in the future and to optimally control them by taking the necessary

measures. In paper [13], the authors introduced the following SETARW model

(

i—fZA—mS—ﬁpS([—Fk’A)_ﬁwSW

98 = By (I + kA) + 8,SW — (1 = §)wE — 6w'E — mE,
I — (1-8)wE — (y+m)l, (2.4)
% = dw, B — (v +m) A,

4R — 3] +4'A—mR,

B = pul +v'A—eW,

\

associated with the initial conditions
S(O) - So, E(O) - Eo,[(()) - [0,14(0) - Ao, W(O) — Wo.
In system ([2.4]), the functions are

susceptible people

exposed people

symptomatic infected people
asymptomatic infected people

removed people

S e~E®

dead people.

Larbi Tebessi University Master’s second year, PDE



Literature review of some Covid-19 models.

and the parameters are

A=nx N N refer to the total number of people

m

B
k

B

T S e =

2

~

R L S

the death rate of people

the transmission rate from I to S

the multiple of the transmissible of A to that of I

the transmission rate from W to S,

the proportion of asymptomatic infection rate of people

the incubation period of people

the latent period of people

the infectious period of symptomatic infection of people

the infectious period of asymptomatic infection of people

the shedding coefficients from I toW,
the shedding coefficients from A toW

the life time of the virus in W.

They incorporates the homotopy analysis method the laplace transform,and the unique-

ness of the solution and the stability of iteration approach using fixed point theory then

compare the results to the results of the caputo derivative. In the work [14], khoshnaw et

al., studied the following model

/

dR
Pl Vg + Vg + V12,
\

in system (12.5)), the new functions define

Quarantined Susceptible Individuals

ds _
E—U4—(U1+U2+U3),
dE __
E—Ul_(UE)_‘_UG);

dI

& = e — (Vg + V10 + V1),
dA _

ot — Us — Us,

Dy — g — v

dt 3 4,

Ly — g — v

dt 2 77

aH

5 = Ur +vig — (V12 + v13)

(2.5)

Quarantined Infected (Hospitalized) Individuals

Sq
E, Quarantined Exposed Individuals
H
R

Recovered Individuals Symbolsand Biological definitions,

Larbi Tebessi University

Master’s second year, PDE



Literature review of some Covid-19 models.

and the parameters are

k;  Contactrate

ko Probability of transmission percontact

ks  Quarantined rate of exposed individuals

k, Transition rate of exposed individuals to the infected class
ks  The multiple of the transmissibility of A tol

ks Rate at which the quarantined uninfected contacts

k;  Probability of having symptomsamong infected individuals
ks  Transition rate of symptomatic infected individuals tothe quarantined infected class
kg Transition rate of quarantined exposed individuals

k1o Recovery rate of symptomatic infected individuals

k11 Recovery rate of asymptomatic infected individuals

k1o Recovery rate of quarantined infected individuals

ki3 Disease-induced death rate.

The most important in the previous work is the new parameter considered, called reaction
rate, which is defined by

V1 = kll{?g (]. — ]Cg) S (I + k5A) s Vg = ]{71]{?2/{335 (I + k5A)
V3 = klk}g (1 - k’g) S (I + I{J5A) s Vg = kﬁSq
Vg = ]{35 (1 — k7) E, Vg — k?4]€7E, Uy = k’gEq, vg = k?llA

vg = kiol, wvip=ksl, v = kisl, wvia =kioH, wvi3=ki3H.

The authors in [I4] developed two models to this following model its idea is based on
clinical progress, epidemiological personnel and intervention measures, he study the sen-
sitivity analysis of the model. In [I5], Mahrouf et al., developed the SRI model to the

Larbi Tebessi University Master’s second year, PDE



Literature review of some Covid-19 models.

following model of forecasting Spreading of Covid-19

(

%&t) = —B(1—u) S(t)]\I/S(t)’

220 — e (1 — ) SRR o] (1) — (1 - a) (e + ) I (1)

G =5 (1= 0 (1 —u) MR, (1),

%gt) = apls (t — 1) (up +10) F (t), 2.6
Bell) — ayy I, (t— 1) (g +14) Fy (1), ‘
P40 — el (t = 72) (e + 1) Fe (1),

MO = g (1= a) I (t — 73) + 16 Fy (t = 7a) + 16 Fy (t — ) + 1o (t = 74)
djz_?(ft):’us(l_a)ls(t_T?’)+U6Fb(t_74)+M9Fg(t—74)+Mch(t—T4),

\

in model , the parameters 3, u and € are the transmission rate, level of the preventive
strateg and the proportion for the symptomatic individual respectevely. Note that u,e €
[0, 1]. «v is the proportion of the diagnosed symptomatic infected populattion that moves to
the three forms: F;, F, and I, by the rates 73, 7, and ., respectively. The mean recovery
period of these forms are denoted by 1/r,, 1/r, and 1/r., respectivy. The latter forms
die also with the rates ju, py and p., respectively. Asymptomatic infected population,
recover with rate 7, and the symptomatic infected ones recover or die with rates ns and
(s, Tespectively. 7, 7o, 73 and 74 are the incubation period, the period of time , the time
required before the death of individuals coming from the compartments Is, Fy,, F,, and F,
respectively. The authors in [I5] divided the population into eight groups : S :susceptible
(symptomatic), I:infected but not transmittinng disease , F;, Fy,, and F refer to patients
diagnosed , (under quarantine), and is divided into three categories: benign,critical and
critical forms , D and M are the categories of cure and mortality. As a conclusion, the
work extend the well-known SIR compartmental model to deterministic and stochastic
time-delayed models in order to predict the epidemiological trend of COVID-19 in Morocco
and to assess the potential role of multiple preventive measures and strategies imposed
by Moroccan authorities. In [16], a novel forecast deterministic model for the Covid-19

was introduced as follows

s _ _pIS
dt N

%:%—]% (2.7)
dr __

dat 177

where N = S 4+ [ + r is the total number of population and

R(t) = §S<t) = Ros(t).

Larbi Tebessi University Master’s second year, PDE



Literature review of some Covid-19 models.

The parameters of system ([2.7)) are

p =1/T, contact frequency
T the eaverage time between contacts

1/v =T, the mean time between infection and removal

r(t) the removed individuals

T, can be consequently interpreted as the time until removal from the infection process
g(t) typical of the disease

R(t) generalized effective reproduction number,

the authors focus on data for two exemplary countries , italy and germany predict the
course of the Covid — 19 for a period of four to five weeks with reasonable numerical
stability. Bahloul [I§] introduced the following SEIRAW model

4
dg_tB = A —mpSp — BeSplg,

dE
d—tB = BpSplp —wpEp — mpEp,

(Z—f = wplp — (v +mp) I3,

dR
=2 =slp —mpRsz,

ddS_tH = Ay —mpySu — BeuSels — BuSulu,

ﬁ_tH = BuSulp + BuSuly —wupEy — mu Ly,
) %ZWHEH_(VB‘FWB)IB, 2.8
dRp .

it ="ulp —mp Ry,
Cf—tp = Ap —mpSp — BpSp (Ip + kAp) — PwSpW,
dg—tp = 5PSP (Ip -+ liAp) + ﬁwspW — (1 — 5})) wap — (Spwﬁng — mpEp,

Ue = (1—6p)wpEp — (yp +mp) Ip,
e = SpwpEp — (v +mp) Ap,
dRp

= =plp+vpAp —mpRp,

\%—Vf = aWJIV—’;I + uplp + ppAp — eW.

Larbi Tebessi University Master’s second year, PDE



Literature review of some Covid-19 models.

The functions in system (2.8)) represents

For the parameters, we have

np
mp
)\B =np X NB

Np
1

wp
1
B

AH:TLHXNH

N
1

wi
1

YH
Bu

Sp  Susceptible bats
Ep exposed bats
Ig infected bats
Rp removed bats
Sy susceptible hosts
Ey  exposed hosts
Iy infected hosts
Ry removed hosts

birth rate

death rate

the number of the new born bats

the total number of bats

incubation period of bat infection

infectious period of bat infection

the new born bats

number of hosts

The incubation period

the infectious period

the transmission rate.

The authors developed BRH P model, to eastimating transmissibility and dynamics of

Covid — 19 transmission, they proved the new reproduction number Ry. In the work [19],

the authors studied the following

4

SEIQRDP model

B = —as (1) - gAY,

B0 — B () + 2O,

D — B (t) — 01 (t),

WO —61(t) - AQM) —r(H)Q(),
W =AHQ (),

LU =kt)Q(1),
|G =as (),

(2.9)
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where the functions are

S(t) susceptible people
E(t) exposed people
I(t) infected people

Q(t) quarantined
R(t) removed people
D(t) dead people.
P(t) protected from COVID-19
and the parameters are
theprotectionrate
theinfectionrate

theinverseoftheaveragelatenttime
therateinquarantine,

thecurerate

the incubation period of people

the latent period of people

RmRI=ERER > > 22 & R
—
~+
N~—

the shedding coefficients from I tolWV,
the shedding coefficients from A tolW
the life time of the virus in W

~

REL I S~

the infectious period of symptomatic infection of people

the infectious period of asymptomatic infection of people

This fractional-order SEIQRD P model for Simulating the Dynamics of COVID-19 Epi-
demic, the author developed the SEIQRDP model by using the fractional analysis,

because its flexibility and accuracy of its description of complex physical systems also ro-

vides new standards for virus control which predict the end of the virus August 12,2020.

In [20], Khoshnaw et al., developed the following seiarm model

(
S s i(t)+Ba
_dlt — b - ’YS (t) - —(t)( (iz/v (t)) —E&S (t) m (t) 3

de _ SsWUEAUD) 4 cs (1) (t) — (1 — ) e (t) — Ddae (t) — ve (L),
Gg=0=0)0e(t)—(p+7)i(t),

(2.10)
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In system ([2.10)) the parameters represent

the rate of birth
rate of death of infected population
the transmission coefficient

transmissibility multiple

the incubation period
the amount of asymptomatic infection
the disease transmission coefficient
recovery rate

asymptotically infected population

the influence of virus to m by i

€ T 9 T O T T O W9 2 &

the rate of virus removing from m.

the transmission rate become sinfected

They apply the Differential Transformation Method (DTM) to analyze and obtain the

solution for the mathematical model previous above. In [21], Ahmad Naim introduce the

new SIUW R model as follows

(

& =-BU+U),
G=BUI+U)=(v+d)1,
W =6 —(n+a)U,

O =1 — (n+az) W,
|G =W +nU.

System ([2.11]) is complemented with the following initial conditions

S(0) initial susceptible individuals

I(0) initiala symptomatic infected individuals

U(0) initial unreported symptomatic infected individuals

W(0) initial reported symptomatic infected individuals

R(0) initially recovered individuals
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The parameters are given by

Transmission rate between susceptible individuals

s

~  Transition rate between asymptomatic infected

0  Transition rate between asymptomatic infected

% Average time symptomatic infectious have symptoms
a1 The unreported symptomatic death rate

as The reported symptomatic death rate.

The work of [21] represent a quantitative and qualitative analysis of the COVID-19 pan-
demic model,he suggest an updated model that includes a system of differential equations
with transmission parameters. Some key computational simulations and sensitivity anal-
ysis are investigated. Also, the local sensitivities for each model state concerning the
model parameters are computed using three different techniques: non-normalizations,
half normalizations, and full normalizations. The SEIR developed model in the work
[22]

s __ S

dE S

dE _ 3 1.5 _ a.F,

;It Pl (2.12)
o=k —~l,

dR __

kE —'}/I,

where the parameters are

average contact rate

measures of incubation period

QL= @

infectious period.

and the reproduction number is

The system (2.12) of COVID — 19 modeling in Saudi Arabia, by using the modified
Susceptible-Exposed-Infectious-Recovered (SEIR), They calculated the reproduction num-

ber and simulation results. In [23], the SET model is introduced as follows

(t) = —LEpBS (¢) C (1) dt,
E(t) = (—EfBS (1) C () —
dI (t) = ~C (t) dt — oC () dW,,

C(t))dt + oC (t) dWy, (2.13)
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where the functions C,S and R represents the infections, the susceptible and the recov-
eries. The Stochastic STR model for COVID — 19 Infection Dynamics for Karnataka
after interventions — Learning from European Trends, this is a continuous work in which
we are trying to find the model parameters everyday and project the possible scenarios,
by varying the exposure factor for the rate of infection, as a result of evolving levels of

quarantining. In paper [24], the SEAIH Rem model is given by

dt N N N

(450) _ 1, 5(1). ( (MAW) | sOIE <>H<>>
dE(t) =1x5(t). (S(t)A(t S#)I(t) + ()1\];[()> (0 +d)E(t),

dt

<d13§t) (1—=7)0E(t) — (k+d)A(t),
0 = 46 E (t) — 0.13M (t) — 0.87 (k+d) I (t),
A0 — 0.13XI (t) — kH (t) — (6 + d) H (1),
dRem(t) — R [A () + 0.871 (t) + H (t)] + d[A(t) + I (t) + H (t) + E (t)] + 6H (¢),

\ dt

(2.14)

where

% incubation period

% the mean time between symptomon set to hospitalization

% the mean infectious/recovery period

% the mean time from hospitalization to death

v the clinical out break rate

[ the self-protective measures taken by individuals

d the mitigation measurements taken by the government of the symptomatic .

The system with time-dependent (2.14]) for the analyse the evolution of the SARS —
covid — 2 epidemic outbreak in Portugal, a time-dependent dynamic. The SITR model
inspired in a model previously used during the MERS outbreak in South Korea was used

to analyse the time trajectories of active and hospitalized cases in Portugal. In the work
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[25], the SETH D model is presented by

(

In system ([2.15)), the functions are

S susceptible

1 infected

R recuperated or deceased
H  hospitalised

450 — N (¢) — BSOIO 5 (1),
dE(t) _ BS®)I(t) BS(t V(t—T) —pr
i~ N@) N € T RE(t),
) — B our — yH () — il (t) — (1 — w) Hyv (1),
B0 = al(t)—~yH () — pH (1), (2.15)
NG — (1 —a) I (t) - < w)HN<> pHy (t)
4RO — yH (t) + (1 — w) Hy (t) — pR
|50 = wHy (t) + (1= ) H (t).

Hy infected people but not hospitalised(undetected)
D  infected people deceased due to the disease,

and the parameters are

€ 2 o0 T @

Rate of contact of infected people with the population
Recruitment and natural death rate

Rate of infected people hospitalised

Recovery rate of infected people those whoare hospitalised

Death rate due to the disease.

Daniel et al., studied the stability analysis of the epidemic model COVID — 19 ([2.15))

in case of delay presented in the system. In the work [26], the authors introduced the
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following SEIQCRW model

4
B = AN=b(t)—Q— (bys +N) S,
L=b(t)— (B+bys+ A\ E,
U= BE— (0+A+bgs) I,
99 = byeS + bys B — (bgs + bge + N) Q, (2.16)
% :bqu+bicI_ (5+bcr+>\)ca
dE —p,C — AR,
W — ki E + kol — AW
\

Here, the parameters are

QQ‘QIH = =

> >
S

Q@@‘@‘
m & 3

=
~

ayw

S
Q
»

Birth rate

Total population

Incubation period

Recovery rate

Rate of removal of the virus from the environmental reservoir
Death rate

Rate at which exposed are quarantined

Rate at which highly infectious individuals are confirmed
Transmission rate from the exposed to the susceptibleag
Transmission rate from the highly infected to the susceptible
Transmission rate from the environment to the susceptible
Coefficient providing adjustment to the transmission rate
Rate at which the exposed are contributing

Rate at which the infected are contributing

Rate at which susceptible are quarantined

Rate at which quarantined move back to the susceptible class
Rate at which quarantine individuals are confirmed

Covid-19 induced death rate.

The Mathematical Model given by (2.16)) tak account the transmission of Covid-19 with

nonlinear Forces of Infection and the Need for prevention Measure in Nigeria, the authors

touched in this paper on the boundedness of the solution, equilibrium point, stability

of the free disease equilibrium point, the basic reproduction number , the existence of

endemic equilibrium point, numerical results and discussion. Alanazi et al., [27], present
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the SEIRP model in the following forme

4

s __ B1SP B2S(Ia+Ig)
da T b— 1+1a1P - 1Jfa2(}4A+ISS) + wE - MS’

dE _ B1SP B2S(Ia+Is)
dr 1—‘:041P + I+as(Ia+ls) YE —pk —wk,

Gt =1 =) wE = (u+0) L4 —yala, (2.17)
U = 0wE — (u+ o) I, — sl

4 — y5Is +yala — 1R,

\% =nala +nsls — ppP.

The parameters are

T <

|~

up
a1

(%)

A

€

o
Ys
YA
s
A

Birth rate

death rate

life expectancy

Natural death rate

Life expectancy of pathogens in the environment

Proportion of interaction with an infectious environment
Proportion of interaction with an infectious individual

Rate of transmission from S to E due to contactwithP

Rate of transmission from S to E due to contact with/sand/orlg
Proportion of symptomatic infectious people

Progression rate from E back to S due to robust immune system
Progression rate from E to either/ orlg

Death rate duetothe coronavirus

Rate of recovery of the symptomatic population

Rate of recovery of the asymptomatic human population

Rate of virus spread to environment by symptomatic infectious individual sorl

Rate of virusspread to environment by asymptomatic infectious individuals.

System (2.17) for COVID — 19 dynamics incorporating the environment and social dis-
tancing. In paper [28] , the SIR and SIR — F developed models are

ds _ -

ar =N,

4 NGBS~ A1, (2.18)
dR

dar IV)
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and ‘
45— _N-188,
dL — N1 —)BST — (v + an)l, (2.19)
@& =TIy,
|45 = N0, 55T + 0l

For system (2.18]), we have N = S+ I + R, T is the elapsed time from the start date, the
authors studied the stability of the system and also they calculated the new reproductive
rate(contact rate)Ry, For system (2.19), we have N = S+ I + R + F such that the
parameters T', 3 and ~ are the elapsed time from the start date, optimized contact rate
and mortality rate. In work [2§], it is concerned with societal behavior towards the disease
and its translation into electronic data. They developed two models , STR and SIR — F
, to predict the epidemiological trend of C'ovid — 19 and monitor infection rates, deaths

and recoveries.
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CHAPTER 3

EQUILIBRIUM’S ANALYSIS OF THE
SEIRV MODEL

In this chapter, we analyze the equilibrium points for the following problem

;

D=\~ Bp(E)SE — B;(I)SI — By(V)SV — uS, t>0,
9 _Bp(E)SE + Br(I)SI + By (V)SV — (a+ p)E, t>0,

G=ab —(w+y+pl, t>0, (3.1)

Cg—]f: vyI-uR, t>0,

&V — e E+&I—0V, t>0.

 dt

Noting that the total population NN is defined by
N(t)=S(t)+ E(t)+ I(t) + R(t). (3.2)

The SEIRV model is an transmission system and for the epidemiologically meaningful,
it is important to prove that all solutions with non-negative initial data will remain non-

negative for all time see, (e.g. [2]).

3.1 Positivity and boundedness of solutions
For the Positivity of solutions, we introduce the following result
Theorem 16. If S(0), £(0),1(0), R(0) and V(0) are non-negative. Then, the functions

27



Equilibrium analysis of the SEIRV model

S(t),E(t),I(t), R(t) and V(t) are non-negative for all time t > 0. Moreover, we have

limsup (S(¢t) + E(t) + I(t) + R(t)) S%,
t—o00
and also N
+ 2
lim supV(t)g%.
t—o00 o

Furthermore, if

S(0)+ E(0) 4+ 1(0) + R(o)g%.
Then, we have
S(t) + E(t) + [(t) + R(t) < %,
and also N
0< V(ﬂg@_

Proof. Let S(t), E(t),1(t), R(t) and V (t) be any solution with positive initial conditions.
We have
N(t)=S(t)+ E(t) + I1(t) + R(t),

the time derivative of N(t) along the solution of (3.1)) is

d . dS(t) dE(t) dI(t) dR(1)
d_tN(t)_ a @ a T a o
<A —uN(t).

By using the theory of differential equations, we obtain the following homogene solution

CN() = —uN () = N() = Noe™

and the non-homogene solution given by

dN(t) [ dNy(t)
dt _(

Hence, we have

and for t — oo, we have
1lim N(t) = limsup N(t) <

t—o0 t—00

. (3.3)
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Equilibrium analysis of the SEIRV model

From equation (3.1),, we have

d

SV(0) =GB +&I - oV (1)

< (& +&) % —aV(t).

By using the theory of differential equations, we obtain the following homogene solution

given by
dv(t)
dt

and the non-homogene solution given by

=—oV(t)= V() = Voe ™,

dv(t) _ (dVo(t)
dt _( dt

— avo(t)> e "

Hence, we have

and for t — oo, we have

A
Tim V (t) = limsup V/(t) §M.

t—00 t—o00 g

(3.4)

Clearly, it has been proved that all the solutions of (3.1)) which initiate in R} confined in
the region D defined by

D= {(S,E,I,R,V) ER :S(t)+ E(t)+I(t) + R(t)<

==

A
o< v < SO } (3.5)

g

So, the solution are bounded in the interval [0, 00) . [ |

3.2 Existence of the equilibrium points

In the section, we find the quilibrium pionts of model (3.1)). By solving the SEIRV model

equation, we get

(
ds _

a=0

Larbi Tebessi University Master’s second year, PDE
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Then, we have
N —BgESE — BiISI — By VSV — uS =0,

BpESE + Bi1SI + ByVSV — (a+ p) E =0,

aFb —(w+vy+p) =0, (3.6)
vl — uR =0,

GE + &I — oV =0.

3.2.1 Existence of disease-free equilibrium

The disease-free equilibrium (DFE) of the SEIRV model (3.1)) existe only when
E=I=R=V =0,

it is given by
A
XO = (307E07107R07‘/0) = <_707070a0> . (37)
L

The basic reproduction number of the model (3.1)) is given based on the Defintion (9) as

follows

Ro=p(FV).
We have
Br(0)So Br(0)So By (0)So
F(Xo) = 0 : (3.8)
and
a+p 0 0
V(Xp) = —a  w; 0|, (3.9)
& & o
where
wy =w+7y+ .
Since,

det(V) = (a + p) (w1) (o) # 0.

Therfore, the matrix V is inverse and the inverse is given by

w0 0 0
= — ao o(a+p) 0 . (3.10)
aby + 6w S (a+p) (a4 p)w
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After a simple calculation

1
1 e
-1 _ a 1
Vo= v w0 (3:11)
afo+&iwy &1
wio(a+p) w10 o
By a simple calculation, we have
Zy Zy Z
Fv'i=|0 0 0 |, (3.12)
0O 0 O
such that
7 _ Be (0) So n afr (0) So n By (0) Sp (s + E1w)
1 — )
(a+p)  wi(a+p) wio (o + p)
Zy = Br(0) Sy n By (0) 507
w1 w10
0)S
g — B OS
o
Let’s remember that
-1\ __ )
p(FV7) A A
where )\; are the eigenvalues of the matrix F'V~1. We have
-2 0
0= |FV ' =)\|=(Z -\ \
0 0 0 —X
— 7y + Zs
0 —A 0 0
= (Z1 — M)A\ (3.13)

The resolution of the equation (3.13)), give us
)\1:0, )\2:0 and )\3:Z1.

Therefore, the basic reproduction number is given based on the method used in [33] as

follows

Ro=Ri1+Ro+ Rg, (3.14)
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where

R, = 5E(0)50’

a+u
RQ _ (IB](O)SO 7
wy (o + )
» (a& + & Wh) By (0)S,
3
ow1 (Oé + ,U,)

Such that:

e R, : Mesures the contributions from human- to- human transmission fights ”ex-

posed to peoples sensitive”.

b

e Ry : Measure the contributions from the human-to-human transmission routes

infected-tosusceptible, respectively”.

e R : Represents the contribution from the environment-tohuman transmission route.

3.2.2 Existence of endemic equilibrium

By solving system (3.6)), we calculate the equilibrium pionts, then we obtain

(§= LA~ (Be(E)SE + B(I)SI + By (V)SV)],
( M)E Be(E)SE + Bi(I1)ST + By (V)SV,
E="], (3.15)
R = g[,
\ V = ofetal
Hence, we get
S=L(A-(a+mE),
E="Mg
¢ (3.16)
R = g[,

V = eetaWs

o
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Then, by using the second equation of (3.16)), we obtain

§ =LA~ mlatny),

n
B=wy,
R=2I,

V = eetaWi

ox

(3.17)

It follows from the first two equations of (3.17)) that S can be denoted by a function of I,

namely,

S=¢(I). (3.18)
By using the first equation in (3.6]), then S can be exressed by the function .

a—+ i

=S g mE AN L)
:H%E :wlfiz:a&[
~1
— (a+n) [&(%D + 2y (1) + LR, (0 T OG I)]  (3.19)
the function give
« w1 + ady -
60) = (o) [3000) + L 0)+ 22, )
S
-5 (3.20)

The intersection of curves S = ¢(I) for I > 0 and S = ¢(I) for I > 0 in R; determine
the equilibria non-DFE,; i.e., from equation (3.18)), we get

d o wl(oz—l—,u)
545([) =T <

& ¢ is streactly decreasing,

0 (3.21)

from equation (3.19)), we get

— () =-22>0 (3.22)

& 1 is increasing.
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Because
<0 <0
d d
w1 w1 (0]
Iy = — — D 4+— —8(1
4 Qo dlﬁE( «Q )+w1 d]ﬂl( )
<0
(w1 &1 + as)? "d w1 + ady N
= % — 7).
+ 02w, dlﬁv( oo )
and

2
Zs = |Be(HD) + - BilD) + wli;‘)‘& s

Furthermore we have :

Ao

and also from the equation (3.14]) and (3.19)) we have

_ S

(0) = R (3.23)

The equation (3.23) we have the two following cases

e Intersection insidde of R? if

Ro>1 < %>1 < 9(0) > (0).

This gives a unique endemic equilibrium (EE) X.

e No intersection inside R? if

-

(0)
©

Ro<l & <1 & ¢(0) <(0).

<=

This does not give an endemic equilibrium (EE) X, but gives an equilibrium (DFE)
X,.
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A

psi(I_1)

$_0=phi(0)

Figure 3.1: Illustration of ¢ and ¢ functions

In the following, we carry out a study on the overall stability of DFE. By a simple

principle of comparison, we find that

0<S+E+I+R<S,, (3.24)
OSVSM, (3.25)
o

By using (3.24)) and (3.25]), we can get
S
Q:{(S,E,[,R,V)eRi;0§5+E+I+R§SO, ogvgm}. (3.26)

Proposition 17. If Ry > 1, the model has a two equilibria, the DFE X, and the EE
X If Ry < 1, the system (3.1) admits a unique equilibrium Xj.

We conclude that the system ({3.1) has two possible non-negative equilibria namely
the disease-free equilibrium (DFE) X, and the (EE) X,.
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CHAPTER 4

STABILITY ANALYSIS OF THE SEIRV
MODEL

4.1 Local stability

In this section we study the local stability of equilibre points of the model (3.1)).

4.1.1 Local stability of the disease-free equilibrium

Let examine the local stability of the disease-free equilibriumis Xy = (5y,0,0,0,0). In

order to simplify the notations, we adopt the abbreviations

Be(E)=Br, pr)=p5r, Bv(V)=7pv
Be (0) = Bro,  B1(0) = Bro,  Bv (0) = Byo.

Proposition 18. Let Ry < 1. Then, the disease-free equilibrium (DFE) of the system
(3.6) is locally asymptotically stable.

Proof. The Jacobian matrix for the system (3.1)) is given by

—BeE =Bl —BvV —p —BESE — BES —B1SI—pBrS 0  —BySV —ByS
BEE + Brl + ByV BuSE+ BeS — (a+un) BrSI+ 1S 0 By, SV + BvS
J(X) = 0 « —w1 0 0 (4.1)
0 0 o — 0
0 &1 &2 0 —o.
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The evaluation of (4.27) at Xy = (.S0,0,0,0,0) gives us

[—p —BEo0So —B10So0 0 —BroSo]
0 BroSo—(a+p) ProSe 0 BvoSo
J(Xo)=10 —w; 0 0
0 0 vy — 0
| 0 &1 &2 0 —o |

It is clear that —u is a double eigenvalue, so by deleting the first and fourth columns and

likewise the first and fourth rows, the Jacobian matrix will reduce to

BEOSO_a,u BroSo  BroSo

J (Xo) = o —w; 0 |, (4.2)
S & —0
where
Q, = o+ .

By recalling that

_ BroSo n aBroSo n BvoSo(ags + wi&y)

Ro (4.3)
Oéu wlozu O"LUI()(#
= R1+ Rz + R,
we get
Ror Roz Ros
JXo)=| a —-w 0], (4.4)
51 52 —0
where
Ror = BroSo — o = (R — 1), (4.5)
wio, R
Roz = BroSo = — cf 2, (4.6)
Raow;a
Ros := Sy = ——1 4.7
03 := BvoSo s+ oy (4.7)

Therefore, we calculate the eigenvalues of the reduced matrix by the following equation

det(J(Xo) — M) = 0,
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which leads to the following characteristic polynomial

/\3 + al)\2 + CLQ)\ + a3 = 0, (48)
the coefficients are
a, =0+ w, — ROI; (49)
Ay = —OéR()Q — (0' + wl)Rm — §1R03 + agwnq, (410)
as = —7—\),010"(111 — R()QO'Oé — Rog(&fg + wlgl). (411)

For the application of the stability conditions to the equation (4.8). That result condition
from Theorem is

a, > 0, az > 0, aijas —az >0 (412)
Now, we consider the equation (4.9) and by using (4.5)), we get

a; =0+ w — R()l
=o0+w —a,(Ri—1)
> 0. (4.13)

Therefore, (4.13) will be checked if and only if Ry < 1. Next, we consider the equation

(4.11)) and by using (4.5))-(4.7) with (4.3), we obtain

as = —Roiow; — Rozoar — Rog(aéa + wiy)

cow o, R

= —a,ow (R —1) — — Raowiay,

«

= —a, o R1 + aowy — owia, Ry — Ryowray,

= auowi (1l —R1 — Ry — Ra3)

= a,owi (1 —Ry)

> 0. (4.14)

Hence, (4.14]), will be checked if and only if Ry < 1. Finally, we investigate the third
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stability condition, with some algebraic computations, we have

ajo — Az = [(O' + wq

— Ro1] [-aRp2 — (0 + w1)Ro1 — &1 Ros]

Recalling that

Roi aRoe  (w1i&i + a&2)Ros

a, wiay, owiay,
Then, by using (4.16)), we get

(O’ + wl)OéRog
w1y
4 (0’ + wl)(w1§1 + afg)’R/o;g
oW1

= aylo + (1~ Re) +
1
n aboRos3 n (wi& + 0452)7303.

w1 g

—(o+wi)Ron = au(o+w)(1 —Ro) +

O'OéR()Q

+ aRo2 + §1Ros3

Substituting (4.17)) into (4.15]), we obtain

ajas — as > [(O' + ’LUl) — ROI] [—CYRQQ — (O' -+ wl)Rm — flRog]
— auawl(l — Ro)

_ R
> [(04+wi) — Ro1] |—aRe + ay(o +wi)(1 —Ro) + 70 R

+a§2R03 n (wi&1 + aa)Ro3

w1 o

> [(0 4+ wi) — Roit] [ap(o +wi)(1 — Ro)] — apowi (1 — Ry)

w1

— flﬁg, — auawl(l — RQ)

> au(l — Ro) ((J + ’LUl)2 (0 + wl)Rm — O"LU1>
> a, (1= Ro) (04 wy)? — le)
> a, (1= Ry) (0 +wi) >

— Ro1] [—aRo2 — (0 + w1)Ro1 — &1 Ros + owy]

(4.15)

(4.16)

(4.17)

+ OéﬁQ + flﬁg

(4.18)

Inequality (4.18)) will be checked if and only if Ry < 1. From the above relation all
the stability conditions (4.12)) are satisfied and the disease-free equilibrium Xj is locally

asymptotically stable.
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4.1.2 Local stability of endemic equilibrium

We study the stability local of endemic equilibrium X, in (3.16) in the system (3.1]), and
let .
z1<—BP (4.19)

* /7
P

where P, can represent F,, I, or V,. The stability result is given as follows

Theorem 19. Let Ry > 1, and assume that the hypothesis (4.19)) is verified. Then the
endemic equilibrium X, of the SEIRV model is locally asymptotically stable.

Proof. In order to simplify the notations, we adopt the abbreviations

Pe(E.) = Pp, Prl) =05, Bv (Vi) =0y

The Jacobian matrix for the system evaluated in X, = (S,, E, I, Vi, R.) is given
by

L, —AS, —BS, 0 -=-CS,
Ly, Ls BS, 0 CS,
J(X)=10 « —w; 0 0 |, (4.20)

where

A

M:—gz—%&—@h—@%—m (4.21)
E,

Lyi= 4= = BLE. + BL + By V.. (4.22)

A= By E, + B3, (4.23)

L3 = AS* — Qy, (424)

C =BV, + B (4.26)

It is clear that —pu is a eigenvalue, so by deleting the fourth columns and the fourth rows,

the Jacobian matrix will reduce to

J(X,) = . (4.27)
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The characteristic equation corresponding to J(X,) is given by

det (J(X.) — M) = X'+ b1 A% 4+ 0o A + b3\ + by, (4.28)

where
bl = —(L3—|—L1)+w1+a, (429)
b2 = L1L3 - (L1 + Lg)(O' + wl) - S*(O./B + 510) + owq + AS*LQ, (430)

by = L1L3(0 +wy + owy) — (L1 + Ls)owy + LS. ((0 + w1)A + &C + aB) (4.31)
+ L1S.(aB + &C) — Su(a&C + acB + w1 C),

by = LiLzow; + L1S«(aoB + (aés + w1&1)C) (4.32)
+ LoSi(cun A+ aoB + (b + wi &) O).

Note that

A 1
L1 = —S—* = —S—*<ILI,S* + OCHE*)
a, By

Sy
= —j— L. (4.33)

= —Uu—

Firstly, from equation (4.29), we have b; > 0. Then, from equation (4.30)and by using
(4.33) with (4.19), we get

by = L1L3 — (L1 + L3)(0 +wy) — Su(aB + &C) + owy + AS, Lo
= Li1L3 — (L1 + L) (0 +w1) — Si(aB + §C) + ow; + AS,(—Ly — )
= Li(Ls — AS,) — (L1 + L3)(0 + wy) — Su(pA + aB + §C) + ow;
= Li(—ay) — (L1 + Lg) (0 +wy) — Su(pA + aB + §C) + owy
> 0.
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Then, by > 0. Next, from equation (4.31]) and by using (4.33]) with (4.19)), we get

by = L1L3(0 +wy 4+ owy) — (L1 + L3)ow; + LaSi((0 + wy1) A+ §C + aB)

+ LS. (aB + &0) — Sy(a&aC + aoB + w1&,C)

= LiL3(0 + wy + owy) — (L1 + Lz)ow;
+8.(~L1 — (o + w) A+ &C + aB))
+ L1Si(aB + & C) — S.(a&C + acB + w1£C)

= L1 L3(0c +wy + owy) — (L1 + Lg)ow; — LS. (0 + wy)A
— L1S,aB — uS.(&C + aB) 4+ L1S.(aB + £ C)
— Si(a&sC + ao B + w1&C) — pSi(o + wp)A — L15,.6C

= Ly(0c +wy)(Ls — AS,) + L1 Ls(owy) — (L1 + Ls)ow,
— Si(plo +wi)A+ (a0 + pa) B + (abs + wi&y + p61)C)

= Ly(o0 +wy)(—ay) + LiLs(ow;) — (Ly + Ls)ow; (4.34)
= Si(ul(o +wi)A + (a0 + po) B + (ale + wi&y + pé1)C)

> 0.

Finally, from (4.32)). By using (4.33) and (4.19)), we get

by = Ly Lsow; + L1S,(acB + (a&s + wi&)C)
+ LyS.(cun A+ acB + (a&s + wi&)0)
= Ly Lzow; + L1 S.(aoB + (as + w &) C)
+ S, (—p — L) (cuw1 A+ acB + (a&s + w1 &) C)
= LiLzow, + LS (a0 B + (oo + w1&:)C)
— Si(powi A+ pao B + p(agy +wi&)C)
— L1Siouw A — LS. (ao B + (aés + w1 &)C)
= —S.(naoB + p(aés + u&)C + cwpA) + Liow; (Lg — AS)
= —S.(pao B + p(aéy + wi&y)C + owpA) + Liowr (—ay,)

a,Nown

= powy + Ko + S

> 0.

where

KO . (_OéS*B _ CS*(OC£2 +’U}1€1) _ AS*) < 0.

w1 ow1
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Now, it’s clear that
b; >0forj=1,2,3,4.

By using Theorem (15, X, is locally asymptotically stable if the following conditions

hold
(1) biby — bg > 0,

. ) (4.35)
(11) bg(blbg — bg) — b1b4 > 0.

We can estimate b1by — b3 as follows

biby — b3 = [—(Ls + L1) + (wy + 0)] X
[—a, Ly — (L + L3) (o0 + wy) — Se(nA + aB + §C) + ow|
— [—a,Li(o +wy) + Ly Ls(owy) — (L1 + L3)ow;
=S (p(o +w)A+ (a0 + pa) B + (s + wi&y + puér)C))
= a,Li(Ls+ Ly) + (L1 + L3)*(0 + wy)
+ (L + L)(Se(uA + aB + &C)) — (w1 + 0)a, Ly — (0 +w1)* (L1 + Ly)
— (0 +wy)(Se(pA + aB + & C) — owy)
+ o, Li(0 +wy) — LiLs(owy) + (L1 + Lg)owy — (L1 + Ls)ow,
T Su((o + w) A+ (a0 + 1) B+ (0 + wiéy + 16)C)
= auLi(Ls + L) + (L1 + L3)*(0 + w)
+ (L + L1)(Se(uA + aB + &C)) — (0 +w1)* (L1 + Lg) — L1 Ly(own)
+ S (paB + a&yC + p&iC) + (owr) (o + wy)
=a,Li(Ls+ L) + (L1 + L3)*(0 + wy) + Li(S.(pA + aB + £C))
+ (AS, — a,)(Su(pA + aB + £C)) — (0 +wi)*(Ly + L3) — Ly Lz(ow,)
+ S, (paB 4+ a&C + p& C) — So(waB + 0&1C) + (owy) (o + wy)
=a,Li(Ls + L) + (L1 + L3)*(0 + wy) + L1 (S« (pA + aB + £C))
+ ASF (A + aB + &0) = S.((ap+ p*) A+ o’ B + a(& — &)0)
— (0 +w1)*(Ly + L3) — LiLs(ow;) — Sy(wiaB + 0&C) + (ow;) (o + wy)
= (L1S, + AS?)(uA + aB + £0C)
= S.((ap + p*) A+ (o + wia) B + (ai + 0& — a&)C)
+aLi(Ly + L) + (Li + Lg)*(0 +w1) — (0 4 wi)*(Ly + Ly)
— Ly Ls(ow) + (ow:)(0 + wy)
= K3+ KoL 1Ly + K;CS,,
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where
K,=L,+AS, — Oéél — 0'51 + 0452 <0, (436)
Ky =a,+2(c+w)—ow >0, (4.37)
K3 = (L1S, + AS?)(uA + aB) — S,((ap + p*)A + (o + wia) B) + (owy) (o + wy)
— (o +w)*(Ly + L3) + (a, + 0 +wy) L] + (0 +w) L5 > 0 (4.38)
Then, we get
biby — bs > 0.

For the last inequality in (4.35)), we have

bs(byby — bg) — b7by = by [K3 + KoLy L3 + K,CS,]
— [~ (L3 + Ly) + (w1 + 0)]? [pow, Ko + Liow (—a,)]
by [Ks + KoLi Ly + K,CS,]
+ [2(w1 + 0)(Ls + L1) — (0 +w1)* — (L3 + Ly)?] X
(pow Ko + Liow (—a,,)]
= b3 [K3 + KoL Ly + K,;CS,]
+ [2(w1 + 0)(Ls + L)) [pow Ko + Liow: (—a,,)]
— [(a +wy)? + (Ls + Ll)Q} (pow Ko + Liow; (—ay,)] .

From inequalities (4.34) and - we have

bsKs = by [(L1S. + AS2)(nA + aB) = S.((ap + p*) A + (o + w10) B) + (0w ) (0 + wy)
— (0 +w1)*(Ly + Ls) + (ap + 0+ wi) LT + (o + wy)L3]
> [(0 4+ wi)? + (Ls + L1)?] [pow Ko + Liow (—ay,)] . (4.39)

From inequalities (4.34)), (4.37) and (4.36)), we have

b3 [KQLng -+ chS*] > — [2(11)1 -+ O')(L3 —+ Ll)] [/LO'U)lKO —+ Llawl(—a”)] . (440)
By using (4.40) and (4.39)), we conclude that
by (biby — b3) — biby > 0.

Thus, by Routh-Hurwitz stability criterion , X, is locally asymptotically stable. N
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4.2 Global stability

In this section we study the global stability of the equilibrium points of the model SEIRV

&)

4.2.1 Global stability of the disease-free eqiulibrium

Assume that the following assumptions hold
e The functions

Be(E), pr(I) and pBy(V) are decreasing. (4.41)

e The functions

Be(E), pi(I) and pBy(V) are positive. (4.42)
e The functions satisfy

pe(E) <0, py(I)<0 and By, (V)<0. (4.43)

Then, the result of the global stability of the disease-free eqiulibrium (DFE) of system

(3.9) is given by

Theorem 20. If Ry < 1, the disease-free equilibrium (DFE) X, is globally asymptotically
stable in Q. If Rg > 1, the equilibrium (DFE) X, is unstable and there is a unique
endemic equilibrium (EE) X,.. In addition, the disease is uniformly persistent inside €2,
denoted by Q such that

liminf(E,I,V) > (e,e,¢), with &> 0.

t—o00

Proof. Let X = (E,I,V)T. Then, by using the system (3.1)) we obtain

W Bu(B)SE + B(1)ST + B(V)SV — (0 + W),
%:aE—(w+v+u)I, (4.44)
C(Zj_‘t/ :£1E+€21—UV
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On the one hand, by the system (4.44), the derivative of X is given by

Be(E)SE + Br(1)SI + By (V)SV — (a + ) E
aF — (w+v+p)l
glE + fg[ — UV

ax
dt

On the other hand, we have

BE(0)So —a —pu Br(0)Sy By (0)Sy
F-V= o —wn 0

&1 ) —0

Hence, we get

B1(0)Sol + Bv(0)SoV — E(a + 1 — B(0)So)
(F-V)X = aF — Tw
EE + &I — oV

With assumptions (4.41)-(4.43) and Domain (3.26)), we have

X
d— < (F-V)X. (4.45)
dt
By simple calculation,
Be(0)S B1(0)So Br(0)So

VIF = %BE(O)SO ﬁﬁI(O)So %BV(O)SO

CF I pp0)atatmng)  frO)(abatunss) Py (O)akatwér)
ow1l ow1l ow1l
The eigenvalues of V™! F are
0
aB1(0)Soo+aBy (0)Soé2+BE(0)Soowi+By (0)Sowi €1
aowi+pHowl
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Therefore, we obtain

p(V_lF) = max )\Z — O{ﬁ[(O)SOO— + a/BV(O)SO€2 + BE(O)SOle
i=1,2,3 aowy + powq
4 BV(O>SOU)1€1

aow; + powy

=p(FV7).

Let U = (Bg(0), 5:(0), By (0))T, so, we have

UV'F) = Oziux

B5(0)S0Bi(0) + 2 B(0) Sy 31 (0) + LE@Iv Oatermng)

owi

B1(0)S0B(0) + 2= B1(0)SyBr(0) 4 21O Dlatatman) (4.46)

w1

6V(O)SOBE(O) + %BV(O)SOBI(O) + Bv (0)By (0)(a€a+wié1)

ow1

On the other hand, we have

RoU =
aB1(0)Soo+afy (0)Soé2+BE(0)Socwi 4By (0)Sow: €1 Br (0)

aowi+pHowl
aB1(0)Soo+afy (0)Soé2+BE(0)Soowi+By (0)Sow:1 €
I 0 \%4 ;Uful+iawlo 1 \% oW1 1) /8[(0) (447)

<aﬁf<o)soa+aﬂv(O)So£2+5E(°)SO‘m+B V(O)Sow1&> Bv(0)

aocwi+powl

Then, we conclude from (4.46|) and (4.47)), the following relation
UV'F) =RyU. (4.48)

Now, consider the following Lyapunov function:

Lo=UV X
The derivative is given as follows
dLy _dX
=0yt
dt v dt

<UVHF-V)X with equality
=UV'FX - UV VX

=URyX —UX with equality
=U(Ro—1)X.
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In conclusion, we have

dd—io < U(Ry — 1)X. (4.49)

From the inequality (4.49)), we distinguish the following cases

e For Ry < 1. We fix ( = Ry — 1 <0, then from the inequality (4.49)) we have

L
d—tO:0:>U(RO—1)XZO
(
UCX =0
= vV
(UCX >0

p
UX=0=UX=0 since ¢(<0
V

UCX >0 Impossible since

\ h

TX >0 and ¢<0.
=UX=0=X=0 since U#0
= (E,1,V) =1(0,0,0). (4.50)

With the equations of system (3.6) and the equality (4.50) we obtain
(S,E,I,R,V)=1(5,0,0,0,0).

So the invariant set on which dd—ﬁto = (0 contains the single point Xj.

e For Ry =1, we have

dLy dX
— =yUy'= 4.51
dt v dt’ ( )
such that
" = [86(0) 5i(0) Br(0)].
and
1
pon 0 O
-1 __ «@ 1
Vi=loem w Y
afotwiéy & 1
ocwi(at+p) owr o
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iX Be(E)SE + Bi(I)SI + By(V)SV — (e + p)E
o= aF — (w+vy+p)l
S E+ &I —aV

By using equation (4.51)), we get

- Be(0) o81(0) Bv (0)(a€a+wi&1) ﬁ[(o) Bv(0)&2  Bv(0)
UV |:o¢+,u + w1 (atp) + owi (a+p) + owi o ] )

So, by using the following notation

y — gy
dt’

we can find

v — By (0) (GLE + &l —oV)
. (o — Twy) (B1(0)o + By (0)E2)

owq

n [aB1(0)o + Br(0)ow; + By (0)als + ﬁv(o)%&}

%AEMS—«»HAE+&Uﬂs+smuOV}
i a+p
_E —BV(O)f a (B1(0)o + Bv(0)&)

O'UJl

owq

g
(0451 o+ Be(0)ow, + By (0)ags + ﬁv(o)@Ul&)
5

a+,u
afBr(0)o 2(0)ow; v(0)as v(0)wi &
<B()+B() +6()€+5()§)]

([P0 20 S,
o o o+ U
(0451(0)0 + BE(0)ow; + By (0)ags + 5\/(0)?01&)]

owq

v [—BV(O) + Sf:(‘;) x

(aﬁl(O)a + Be(0)ow; + By (0)ats + 5v(0)w151)] '

owq
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by using (3.20) with Ry = 1, we can get

w1 + ady
owq

So = (o + 1) [ﬁEm) 20 + mm} - (4.52)

By making some simplification using (4.52), we have

v — g |Bv0& 4@ (B1(0)o + By (0)€2) <0451(0)0 + BE(0)ow; + Bv(0)ade + 5v(0)w151)

g ow1 oWy

atp
So

aB1(0)o + Br(0)ow + By (0)ads + BV(O)w1§1>

+he(E)S ( (a4 p)ow

1
So

B (0)&2 B (0)&2 afr(0)o + Be(0)ow, + By (0)aks + ﬁv(o)w1€1>
g g

(o + p)owy

1 ~ Bi(0) - +m<I>S(

1
So

afr(0)o + Be(0)ow; + By (0)ags + 5v(0)w1€1>

+V [ =Bv(0) + SBy (V) ( (a+ p)owy

1
So

Then, we get
<BEr(0)So
—
v — g | A& n o (B1(0)o + By (0)§2)  a+p n SBE(E)
o ow So So
0 0
<0 <0
<F <ﬁv(0)§1 Lo (Br(0)o + By (0)&2) a+p N BE(0)>
o ow; So
< gatH [_1+ So (5\/(0)51 n a (B1(0)o + By (0)&2) n 5E(0)50>]
So o+ pu o ow o+ p
_potn [_1 L @B1(0)57 + afy(0)Soéz + Br(0)Soowr | By (0)Sowréy }
So aocw] + powy aowy + pow;
et
=FE 5 (—1+ Ro)
=0.
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As a conclusion for the proof of Theorem (4.2.1]), we obtain the following two cases
e E=1=V=0.

e Br(E) = Pr(0),8:(I) = Br(0), Bv (V) = By(0) and S = Sp.

Each of the cases would indicate that Xo(DEF) is the only set invariant on

{XGQ:d—ﬁo—O}.
dt

Lo
dt

singleton X,. By the LaSalle invariance principle [32], the DFE is globally asymptotically

Therefore, when Ry < 0, the largest invariant set over which always consists of a

stable in 2. In on the other hand, if Ry > 1, then it follows from the continuity of the
vector fields that % > 0 in a neighborhood of DFE in Q. Thus, the DFE is unstable by
Lyapunov’s theory of stability. To prove the next limit

h{ninf(E,I, V) > (e,e,e), pour e >0,
—00

we most follow the proof of Theorem 2.5 in paper [30]. [ |

4.2.2 Global stability of the endemic equilibrium

Theorem 21. If Ry > 1, then the unique endimic equilibrium X, of the system (3.1)) is
globally asymptotically stable in Q.

Proof. Either the following functional

for y > 0 and with y, > 0. We Calculate the derivative of L(y(t)) as follows

L Ly = (zoy) = L))

d [Yx—uy,

d:c(@)

:% v T dx

_[w—y*]y dy

x y*(dx)
Y=y dy
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For the function S, we have

dl;;tS) S — S (Be(Ey)S«E, — Be(E)SE + B1(1,)S.1,
—Br(1)ST + By (Vi) S Ve — By (V)VS) — w
N———

>0

< 225 (Bp(B)S.B. — fp(E)SE + Bi(L)S.1.

—51( )51+5V( SV = By (V)VS)
—Br(I S[-Fﬁv( SV = Br(V)VS]

)
= (Be(E.)S B, — Be(E)SE + Br(1,)S:
(/

—Br(I1)SI + By (Vi) S:Vi = By (V)V )
_ Be(E)S.E.S.  Be(E)SES. _ Bi(L)S.1S,
S S S
Bi(1)SIS,  Bv(Vi)Vi .y By (V)SV S,

S
(E > /a <E>
> - Be(BE }

S
— Bp(E.)S.E. {(1 -
(L)

S

5)__5E
S) " Be(E
g) Bill
S ) Bl

sy (1~ 501
S, Bv(V ) v(V)
+m<wv[0—§> B (VoVe <m*]
For the function F, we have
dL;tE) b E Be(E)SE — Bp(E.)S.E + B1(I)SI

= BLS.L. 4 Br(VISV = Br(VS.V. — (-t ) e |

= ;;E* Be(E)SE = Bp(E)SE + 51(1)ST = Bi(L:) Sl + B (V) SV
ot wEL,

=By (Vi) S Vx| —(1 - 5 E

N J/
-

=
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such that

Il
/\\

—(a+ p)E, EE + (a+ u)%E*—>

- % (_1 + %) (4.53)
— % (-E+E.)
_(a+ ,u)EE (1 B Eg) . (4.54)

In addition, we have

E, a point of equilibrium = E = F,
= (@53 and @54 =y=—y
= v =0.

Then, by using simplifications, we get

dL(E)
dt

=(1- *) BE(E)SE — Be(Ey)S«E + Br(I)ST — Br(1,)S. I,

+B8v(V)SV — By (Vi) S« Vi]

= BE(E)SE — Br(Ey)S«E + p1(I)SI — Brl,)S x I, + By (V) SV
Be(E)SEE, +6E( E.)S.EE.  Bi(I)SIE,

— Br(Va)SVi —

E E E
+ ﬁ]( *)S*I*E* . BV(V)SVE 6‘/( )S ViE,
E E E
E Be(E)SE  Be(E)S

= Pp(EISE L= g g G E,  Ba(E)S,

+ B1(I)LS, | -1+ E. _ B(DISE, . Bi(DIS

E  Bi(I)LS.E  Bi(I.)I.5,

B, By(V)VSE. _ By (V)
+Bv(VViSe | =1+ B (VIV.SE T B (V.
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Adding up the previous estimates, we obtain

d[;l(tS)+ch1<tE) _ 8p(E.)S.E. Kl_%) ﬁi?( )) . Be (E; }
T Bi(L)S.L. [(1—%> 5,55 1
et |(1-3) - ﬁﬁvvi( >) <( e
el £ S o
+ BL)LS, {1_ L ;ff ;;SSEE BI ]
F VS, P‘E%‘@ﬂvv(( iviEEWv( )vvg}
< Bg(E.)S.E. {2—5*—]55 PelB)E _ Be(B)S ]._A

S E. Bp(E)E. Bgp(E.)S

S. E . B(DI _ Bi(DISE. ] 5

S E. pBi(l)L  Br(L)LS.E|"
S*_£+ By(V)V  By(V)VSE, } o
S By(VoVe  Bu(Vi)V.S.E

9_
+ Bv(V2) SV, [

We have S, equilibrium point < S = S,. Then, A, B and C are calculated as follows

_ [ Be(E) (Be(Ey) |\  E | Be(E)E Be(E)
= Op(E)SE | 5 <6E(E) 1) A 5E<E*)E*] BBy St @)
Be(Ey) . E  Be(E)E

< E)S,E, | ——————-1)(1- )
We can use the following inequalities

PelB) o o po<p o JEEE o (4.56)

N Be(m) S = Be(EE. L2
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Stability analysis of the SEIRV model

By using (4.56) and (4.55)) we have

A < Bp(E.)S.E. éﬁﬁii e %ﬂ*))
=0 0 : (4.57)
Now, we have
B A1 25~ 4 ST~ BT
- [\ £+ g - G
<amysir 1=+ e S (1 2] B
<psit |- g gy 1< G
R
<o GE - B g e
<ourys.t |-+ L+ 00y B AL, P
we have
L=~ <Ing, o= (see Fig (11))
BIE =

1-1/x

Figure 4.1: Behavior of 1 — % and Inx

Larbi Tebessi University Master’s second year, PDE



Stability analysis of the SEIRV model

Hence, we get

EI, = E I
In Bl In T =1In A In i (4.59)
We apply (4.59)
[ 51([)1 I BI(I*) E E I
< R - = = _In=—
B < ﬂ](l*)S*I Bi0 I D) —|— . E +In B In A
Br(1)I ]* I FE E I
< Br(1,)S4 1, —— —+4+In— —In—
SR T A (0 | "L E T E L
<0
—] E E
< - — —In— .
< B1(1,)S. I, . & E In I* (4.60)
For C', we apply the same reasoning as for B. We then obtain
vV F E V
< —— +In——-In—|. 4.61
C < By(V, )SV[V E+nE* HVJ (4.61)

Let’s use (4.57)),(4.61) and (4.60)), so

dL(S) , dL(E)

I FE E I
dt dt

< L= [ PO
< Bi(1,) S, I, [I* B +In B In T

V E E Vv
+ Bv (Vi) SV {7* "B +IHE —anJ )

For I, we have

dL(I) I —I.dI

I dt

I-—1 . ey

= a(E—-E,)—w (I—-1,)]|, I point of equilibrium
I ~———
=0
aFIl, oF.l,

=akF

“ T T

Bl

=aF — a

* + aF, (—1—}—?) see and (| -
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Stability analysis of the SEIRV model

For V| we have
dL(V) _V-V.dV
dt Vodt

V-V
\%4

=0

, Vi point of equilibrium

V-V,
= G(E-B)+& (- L))

E
_Gabv ) see ([4.53) and (4.54)
) s (@59 ana @53

=&aE +&E ( 1+

IV,
b6l - ng : (

= <s

*

+
<l

I
N

—

|
Sl S
N— ——

E V V. E
=&LE | —=———— +1
& ( E. V. VE, ) see and (4.59 -

I %4 VI
val (- - 1) s @39 ot @5,
\%4 14 E
< - _ — _ln =
& E, (E* v —|—1nd In E*>

Define the following Lyapunov functional £,(t) = L(S) 4+ L(E) + ¢1L(I) + coL(V). By
using the previous estimates, we get

vV FE E V]
= — n

_ (mEE _ 5) (Bi(L)S. 1. + By (Vo) S. Vi — craEs — eoy) (4.62)
+ <II —1In II> (Br(Lx) Syl — craEy + c2&o1y) (4.63)
<“/: —1In £> (Bv (Vi) S Vi — 261 B — c2€als) (4.64)
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Stability analysis of the SEIRV model

We must choose ¢ > 0 such that
6V(V;<)S*‘/* - 02§1E* - 6252]* = 0, (465)

then, solving equation (4.65) gives us

S B, + &, wl(flE* —|—§QI*)'

C2

Note that wl, = aF,. Therefore

'UJLBV(‘/*)S*V;
(un& + &) E,

Cy =

By replacing ¢y in (4.63)) we find ¢;. Equality being valid if and only if (S, E,I,V) =
(Ss, By, I, V). So, X, is globally asymptotically stable inside of €. [ |
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CHAPTER 5

NUMERICAL RESULTS

In this chapter, we present the numerical results. At first, we consider the following

functions for the three transmission rates

5r(B) = T

Bio

_ _ _bBvo
- ma BV(V)

14V

pr(l)

(5.1)

where Bgo, 510 and Py (all positive constants) denote the maximum values of these
transmission rates, and c is a positive coefficient providing adjustment to the (otherwise

constant) transmission rates.

Next, we fix the parameters defined in (1.2) as in the work [2].

A = 271.23

Bro = 3.11 x 1078,
Bro = 0.62 x 1078,
Bvo = 1.03x 1078,
c = 1.01x10*
p = 3.01x107°.
a = 1/7

w = 0.01.

vy = 1/15.

o = 1.

& = 23.

& = 0.
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Numerical results

Then, based on [I], the initial condition is set as
(S(0), E(0), 1(0), R(0), V(0)) = (8999015, 500, 475, 10) .

Now, we are able to evaluate the basic reproduction number

Ro = 4.1780.
SEIRV Epidemic model
7 =
6
PR
—
©
S5
z
2
=1
sS4
o
3
k=)
£ s —s0
- —E®
5 — 1
— R(t)
V()
1 . . . . T )
0 50 100 150 200 250 300

time

Figure 5.1: A simulation result for SEIRV model

By reading Figure (|5.1]), we conclude: The incorporation of the environmental reservoir
in the transmission dynamics of the disease, and with non-constant transmission rates.

We observe the change in epidemiological status and environmental conditions and reflect
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Numerical results

the impact of the implemented disease control measures.
In addition, we have performed a numerical test using simple, constant transmission

rates in our model

Be(E) = Bro, Br(I) = Bro, Bv(V) = Bvo, (5.2)

equivalent to setting ¢ = 0 in (5.1). The Figure (5.2)) shows a prediction of the outbreak

Individuals number

0 10 20 30 40 50 60 70 80 90 100
Time (day)

Figure 5.2: A simulation result for SEIRV model with constant transmission rates

size in this setting. Compared to Figure (5.1), we now clearly observe a significantly

higher level of infection.
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CONCLUSION

In this work, we collected some of the covid-19 models and mentioned the studies related
to each model, we studied local and global asymptotic stability analysis. Many aspects of
the epidemiology of COVID-19 are still unknown, which adds challenges to mathematical
modeling. The numerical results demonstrates that using fixed transmission rates, which
do not take into account the strong disease control measures currently on-going, may

overestimate the epidemic severity and generate misguided information.

5.1 perspectives

In studying the local stability of the state of Ry = 1. You need a detailed (paradoxes).
Exposure detailed analysis of this model in the PDE status and explains its application
by declared data, in order to eliminate the disease eventually among the interference
strategy: Optimal control of the epidemic by determining (vaccination rate, quarantine,

treatment cost, locking countries).
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