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Résumé

Dans cette these, une analyse de norme maximale d’'une méthode de grilles non appariées
associée a un schéma d’éléments finis temporel ainsi que la méthode spatiale de Galerkin pour
I’équation parabolique avec des termes sources linéaires et des termes sources non linéaires.
En outre, une estimation a posteriori de I'erreur pour la méthode de Schwarz généralisée avec
des conditions aux limites de Dirichlet sur I’équation HJB évolutive des interfaces avec des
problemes de valeur aux limites du second ordre est obtenue en utilisant la méme méthode
mentionnée précédemment. En outre, I'utilisation de I'algorithme de Benssoussan-Lions per-
met de déduire le comportement asymptotique de tous les problemes précédents selon une
norme uniforme. Dans les travaux suivants, la convergence géométrique de l'estimation
d’erreur des algorithmes de Schwarz correspondants, continue et discrete, d’'une nouvelle
classe d’EDP elliptiques non linéaires sera démontrée et les résultats de certaines expériences
numériques seront présentés pour appuyer la théorie.

Mots clés : Méthode des grilles non matching, EDPs non linéaire, méthode de Schwarz.

Abstract

In this thesis, a maximum norm analysis of a nonmatching grids method combined with a finite
element time scheme as well as Galerkin spatial method for parabolic equation with linear
source term and with nonlinear source terms is considered. Also, an a posteriori error estimates
for the generalized Schwarz method with Dirichlet boundary conditions on the interfaces
evolutionary HJB equation with second order boundary value problems are derived using
the same previous mentioned method. Furthermore, a result of asymptotic behaviors for all
previous problems on uniform norm are deduced by using Benssoussan-Lions’ algorithm. In the
next works. The geometrical convergence of both the continuous and discrete corresponding
Schwarz algorithms error estimate of a new class of non linear elliptic PDEs will be proved
and the results of some numerical experiments will be presented to support the theory.

key words: Nonmatching Grids Method, Nonlinear PDEs, Schwarz method.
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Notations

Q) : Bounded domain in R2.

[' : Topological boundary of €2.

x = (x1,23) : Generic point of R?.

dx = dxidxy : Lebesgue measuring on ).

Vu : Gradient of u.

Au : Laplacien of u.

D (Q) : Space of differentiable functions with compact support in €.
D' (Q) : Distribution space.

C* (Q) : Space of functions k-times continuously differentiable in .

LP (Q) : Space of functions p-th power integrated on with measure of dz.

111, = (f (177)) "
Q
Wt (Q) ={ue LP(Q), Vue LF(Q)}.
H : Hilbert space.
H; (Q) = Wy,
If X is a Banach space

T
LP (0,7 X) = {f :(0,T) — X is measurable; [ || f (¢)]|% dt < oo} :
0

L>(0, T; X) =< f:(0,T) — X is measurable; ess —sup || f (t)||; < oo

t €[0, T]

C* ([0, T]; X) :Space of functions k—times continuously differentiable for [0, T] — X.

D ([0, T]; X): Space of functions continuously differentiable with compact support in [0, T7.

Bx ={z € X; ||z|| < 1}: Unit ball.
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Introduction

Overlapping domain decomposition methods include the Original Schwarz alternating method
and the additive Schwarz method. Even without conjugate gradient acceleration, the mul-
tiplicative method can take many fewer iterations than the additive version. However, the
multiplicative version is not as parallelizable. We consider in fourth chapter the tow methods:
the overlapping domain decomposition method, more precisely the additive Schwarz method,
and the non-overlapping method. The local problems are linked together by suitable coupling
terms or transmission conditions. Moreover, Hermann Schwarz was a German analyst of the
19th century. He was interested in proving the existence and uniqueness of the Poisson prob-
lem. At his time, there were no Sobolev spaces nor Lax-Milgram theorem. The only available
tool was the Fourier transform, limited by its very nature to simple geometries. H.A. Schwarz
in 1870, in order to consider more general situations, devised an iterative algorithm for solving
Poisson problem set on a union of simple geometries : this is the alternating Schwarz method.
(See figure 1) The alternating Schwarz method, introduced by was probably the first exam-
ple of a domain decomposition method. Starting with a decomposition into two overlapping
subdomains decomposition into two overlapping subdomains and the equations are solved it-
eratively on the subdomains using Dirichlet values of the neighbor domains computed in the
previous step. In this way H. Schwarz could show the existence of a solution of the Poisson
problem for a domain with non smooth boundary.

Also in our thesis, we have studied an a posteriori error estimates for the generalized overlap-
ping domain decomposition method (DDM) with Dirichlet boundary conditions on the bound-
aries for the discrete solutions on subdomains of evolutionary HJB equation with linear source
terms using the theta time scheme combined with a finite element spatial approximation, sim-
ilar to that in our published papers in (Boulaaras et al. [9]), (Boulaaras and Haiour [10]),
(Boulaaras and Haiour [11]),(Haiour and Boulaaras [20]) which investigated Laplace operator
i.e.,a posteriori error estimates for the generalized Schwarz method (GSM), for evolutionary
Hamilton-Jacobi-Belmann (HJB) equation with linear source terms related to management
of energy production with mixed boundary condition (MBC) are established using a theta
scheme with a Galerkin spatial approximation and the techniques of the residual a posteriori

error analysis.
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(a) The original example of H.A. SCHWARZ (b) Decomposition into simple domains

Figure 1: The figure shows two simple decompositions. (a) is an overlapping decomposition. In (b) the
meshes of Qy and Qs are nonmatching at the interface.

Figure 1:

The DDM has been used to solve the stationary and evolutionary boundary value problems on
domains which consists of two or more overlapping sub-domains (see Badea [3], Bensoussan
and Lions [5], Nataf [25], Boulaaras and Haiour [11], Otto and Lube [29]). The solution is
approximated by an infinite sequence of functions which results from solving a sequence of
stationary or evolutionary boundary value problems in each of the sub-domain. The solution
is approximated by an infinite sequence of functions which results from solving a sequence
of stationary or evolutionary boundary value problems in each of the subdomains. Extensive
analysis of Schwarz alternating method for nonlinear elliptic boundary value problems can be
found in Douglas and Huang [16], Engquist and Zhao [17], Chan et al. [14] and the references
therein. Also the effectiveness of Schwarz methods for these problems, especially those in fluid
mechanics, has been demonstrated in many papers. See proceedings of the annual domain
decomposition conference beginning with Engquist and Zhao [17] . Moreover, The a priory
estimate of the error for stationary problem is given in several papers, see for instance Lions
Bensoussan and Lions [5] in which a variational formulation of the classical Schwarz method is
derived. In Chan et al. Chan et al. [14] a geometry related convergence results are obtained.
Douglas and Huang Douglas and Huang [16] studied the accelerated version of the GODDM,
Engquist and Zhao Engquist and Zhao [17] studied the convergence for simple rectangular or
circular geometries; however, these authors did not give a criterion to stop the iterative process.

All these results can also be found in the recent books on domain decomposition methods of
Quarteroni and Valli Quarteroni and Valli [32], Toselli and Widlund Toselli and Widlund [34] .




Recently Maday and Magoul‘es Maday and Magoules [23], Maday and Magoules [24] presented
an improved version of the Schwarz method for highly heterogeneous media. This method uses
new optimized interface conditions specially designed to take into account the heterogeneity
between the subdomains on the interfaces. A recent overview of the current state of the art on
domain decomposition methods can be found in two special issues of the computer methods
in applied mechanics and engineering journal, edited by Farhat and Le Tallec Farhat and
Lesoinne [18], Magoul‘es and Rixen Rixen and Magoules [33] and in Nataf Nataf [25] . In
general, the a priory estimate for stationary problems is not suitable for assessing the quality
of the approximate solution on subdomains since it depends mainly on the exact solution itself
which is unknown. The alternative approach is to use the approximate solution itself in order
to find such an estimate. This approach, known as a posteriori estimate, became very popular
in the nineties of the last century with finite element methods, see the monographs Ainsworth
and Oden [1], Verfiirth [35] and the references therein. In their paper Otto and Lube Otto and
Lube [29] gave an a posteriori estimate for a nonoverlapping domain decomposition algorithm
that said that “the better the local solutions fit together at the interface the better the errors
of the subdomain solutions will be.” This error estimate enables us to know with certainty
when one must stop the iterative process as soon as the required global precision is reached.
A posteriori error analysis for the elliptic case was also used by Bernardi et al. Bernardi et al.
[6] to determine an optimal value of the penalty parameter for penalty domain decomposition
methods to construct fast solvers. In recent research, in Boulbrachene and Al Farei [13] the
authors proved the error analysis in the maximum norm for a class of linear elliptic problems
in the context of overlapping nonmatching grids and they established the optimal L* error
estimate between the discrete Schwarz sequence and the exact solution of the PDE. H. Benlarbi
and A.-S. Chibi and Boulaaras and Haiour [11] derived a posteriori error estimates for the
generalized overlapping domain decomposition method GODDM i.e., with Robin boundary
conditions on the interfaces, for second order boundary value problems. They shown that the
error estimate in the continuous case depends on the differences of the traces of the subdomain
solutions on the interfaces. After discretization of the domain by finite elements, they use the
techniques of the residual a posteriori error analysis to get an posteriori error estimate for the
discrete solutions on subdomains.

Our thesis is organized as follows:

In chapter 1: We lay down some fundamental definitions and theorems on functional analy-

sis, which will be needed some them in the body of the thesis, however we give some definitions




Sobolev spaces of fractional order and trace theorems.

In chapter2 : In this chapter, we will introduce the domain decomposition method (DDM,
in short). In numerical partial differential equations, domain decomposition methods solve a
boundary value problem by splitting it into smaller boundary value problems on subdomains
and iterating to coordinate the solution between adjacent subdomains. The basic idea behind
DD methods consists in subdividing the computational domain €2, on which a boundary-
value problem is set, into two or more subdomains on which discretized problems of smaller
dimension are to be solved, with the further potential advantage of using parallel solution
algorithms. There are two ways of subdividing the computational domain into subdomains:
one with disjoint subdomains, the others with overlapping subdomains. In non-overlapping
methods, the closure of subdomains intersect only on their interface.

In chapter3 : Motivated by the idea which has been introduced by M. Haiour and S.Boulaaras
(Proc. Indian Acad. Sci. (Math. Sci.) Vol. 121,No. 4, November 2011,pp.481-493), we
provide a maximum norm analysis of a theta scheme combined with finite element Schwarz
alternating method for a class of parabolic equation on two overlapping subdomains with non-
matching grids (Bahi et al. [1]). We consider a domain which is the union of two overlapping
subdomains where each subdomain has its own independently generated grid. The two meshes
being mutually independent on the overlap region, a triangle belonging to one triangulation
does not necessarily belong to the other one. Under a stability analysis on the theta scheme
which given by our work in (App. Math. Comp., 217, 6443-6450 (2011)), we establish, on
each subdomain, an optimal asymptotic behavior between the discrete Schwarz sequence and
the asymptotic solution of parabolic differential equations.

In chapter 4: This chapter deals with the maximum norm analysis of a nonmatching grids
method for a class of parabolic equation with nonlinear source terms using Euler time scheme
combined with a finite element spatial methods with respect to the same boundary conditions
(Boulaaras et al. [8]) which presented in the forth chapter.

In chapter 5: Finally, an a posteriori error estimates for the generalized Schwarz method
with Dirichlet boundary conditions (Boulaaras et al. [7]) on the interfaces evolutionary HJB
equation with second order boundary value problems are derived using the same previous

mentioned method.




Chapter 1
Preliminary and functional analysis

In this chapter we will introduce and state some necessary materials needed in the proof of
our results, and shortly the basic results which concerning the Banach spaces, Hilbert space,
the LP space, Sobolev spaces and other theorems. The knowledge of all this notations and

results are important for our study.

1.1 Banach spaces - definition and properties

We first review some basic facts from calculus in the most important class of linear spaces

”Banach spaces”.

Definition 1.1.1 A Banach space is a complete normed linear space X . Its dual space X is

the linear space of all continuous linear functional f : X — R.
Proposition 1.1.1 (Yosida [6]) X equipped with the norm
Ifllx = sup{[f (u)] - flullx <1},
18 also a Banach space.
Definition 1.1.2 Let X be a Banach space, and let (u,), .y be a sequence in X. Then uy,
converges strongly to v in X if and only if
i, =l =0,

and this is denoted by w, — w, or lim u, = u
n——oo
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Definition 1.1.3 A sequence (u,) in X is weakly convergent to u if and only if

lim f (un) = f (u),

n—aoQ

for every f € X and this is denoted by lim wu, = u.

n—m:o0

1.1.1 Banach fixed-point theorem

Definition 1.1.4 Let (X, d) be a metric space. Then a map T : X — X is called a contraction
mapping on X if there exists q € [0,1) such that

d(T'(x),T(y)) < qd(z,y),
for all x,y in X.

Theorem 1.1.1 (Yosida [70]) Let (X,d) be a non-empty complete metric space with a con-
traction mapping T : X — X. Then T admits a unique fized-point x* in X (i.e. T'(z*) = z*).
Furthermore, * can be found as follows: start with an arbitrary element 2%in X and define a

sequence {x,} by x, = T(x,_1). Then x, — x*.

1.2 Hilbert spaces

The proper setting for the rigorous theory of partial differential equation turns out to be the
most important function space in modern physics and modern analysis, known as Hilbert

spaces. Then, we must give some important results on these spaces here.

Definition 1.2.1 A Hilbert space H is a vectorial space supplied with inner product (u,v)
such that ||u|| = \/(u, w) is the norm which let H complete.

(The Cauchy-Schwarz inequality) Every inner product satisfies the Cauchy-Schwarz in-
equality

(21, 22)| < [l ]] [lzl] -
The equality sign holds if and only if x; and x5 are dependent.

Corollary 1.2.1 Let (uy)

(Vn)pen @8 an other sequence which converge weakly to v, then

nen b€ a sequence which converges to u, in the weak topology and

nh_r)noo (Uny up) = (v,u).

1.2. Hilbert spaces 6
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Theorem 1.2.1 (Lax-Milgram) LetV be a real Hilbert space, L(.) a continuous linear

form on V', a(-,-) a continuous coercive bilinear form on V. Then the problem

find uw €'V such hat

a(u,v) = L(v) for every v € V.

has a unique solution. Further, this solution depends continuously on the linear form L.

1.3 Functional spaces

1.3.1 The L?(2) spaces

Now we define Lebesgue spaces and collect some properties of these spaces. We consider
R? with the Lebesgue-measure pu. If Q C R?is a measurable set, two measurable functions
fyg:Q — R are called equivalent, if f = g a.e. (almost everywhere) in 2. An element of a

Lebesgue space is an equivalence class.

Definition 1.3.1 Let 1 < p < oo, and let ) be an open domain in R™, n € N*. Define the
standard Lebesgue space LP (), by

LP(Q) = {f : Q — R is measurable; dgt|f(a:)|p dr < oo}

Notation 1.3.1 Forp e R, and 1 < p < oo denote by

LA, = { [ 1fOF d
/

If p = o0, we have
f:Q — R is measurable and there exist a constant C,
L™ () =
such that, ; |f ()] < C a.e in Q.

Also, we denote by
[fllo = nf {C, [f (#)] <C a.ein}.

1.3. Functional spaces 7
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Theorem 1.3.1 (Yosida [70]) <LP(Q), ||||p> (L2(Q),].]].) are a Banach spaces.

Remark 1.3.1 In particularly, when p =2, L*(Q) equipped with the inner product

(F: 9o = [£0).9(@)do.

Q

18 a Hilbert space.

1.3.2 Some integral inequalities

We will give here some important integral inequalities. These inequalities play an important

role in applied mathematics and also, it is very useful in our next chapters.

Theorem 1.3.2 (Yosida [70]) (Hélder’s inequality)
Let 1 < p < co. Assume that f € LP (Q) and g € L1 (), then, fg € L' (Q) and

[ 129l dz <11, loll, -
Q

1 1
where — + — = 1.
p g

Lemma 1.3.1 (Minkowski inequality)
For 1 <p < oo, we have
[u+vll, < [lull, + llv]l,-

1.4 The Sobolev space W™ 7 ()

Proposition 1.4.1 Let Q be an open domain in RN, Then the distribution T € D' (Q) is in
LP () if there exists a function f € LP () such that

(T,gp):/f(x)g(x) dx, for all ¢ € D(Q).
Q

where 1 < p < oo, and it is well-known that f is unique.

1.4. The Sobolev space W™ P () 8
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Definition 1.4.1 Let m € N* and p € [0, oco[. The W™ P () is the space of all f € LP(Q),
defined as

feLrr(Q), such that 0*f € LP () for all « € N™ such that,
W P (Q) =

n
la| = > a; < m, where, 0% = 0" 052...09m.
=1

j
Theorem 1.4.1 W™ P (Q) is a Banach space with their usual norm
1l ey = D W07 fll, for all f € W™ P ().
o] <m
Definition 1.4.2 When p = 2, we prefer to denote by W™ 2(Q) = H™ (Q) supplied with the
norm
) 2
||f”Hm(Q) = Z (”aafoﬁ) )

la|<m

which do at H™ () a real Hilbert space with their usual scalar product

(U V) gy = Z 0“ud“vdzx.

lo]<m "

Definition 1.4.3 Hg" (Q) is given by the completion of D (§2) with respect to the norm ||.|| ym q)-

Remark 1.4.1 Clearly Hi" () is a Hilbert space with respect to the norm ||| gym qy- The dual
space of HY" (Q) is denoted by H™™ (Q) := [HJ* (Q)]".

Lemma 1.4.1 Since D () is dense in HJ' (2), we identify a dual H=™ (Q) of HJ" () in a

weak subspace on (), and we have
D(Q) = HI"(Q) < L*(Q) <= H ™ (Q) — D (Q).
Now the smoothness of the boundary 92 :=  — Q can be described:

Definition 1.4.4 Let Q) be an open subset of R, 0 < A\ < 1, m € N. We say that its
boundary that its boundary O is of class C™* if the following conditions are satisfied:
For every x € 09 there exist a neighborhood Vof x in R? and new orthogonal coordinates

{y1, .-, ya} such that V is a hypercube in the new coordinates:

V={(y1,-s9a) : —a; < y; < a;,i=1,...d}

1.4. The Sobolev space W™ P () 9
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and there exists a function ¢ € C™ V') with

V= {1y s Yao1) : —a; <y; < aj,i=1,..d—1}

and such that

1 / /

< gt Yy o= (Y1, ¥a1) €V,

QnvV = {(y/,yd)EV:yd«P(y/)},
NV = {(y',yd>€V:yd=<p(y/)}-

’s@(y

A boundary of class C%' is called Lipschitz boundary.

1.5 The L7 (0, T; X) spaces

Definition 1.5.1 Let X be a Banach space, denote by LP (0, T; X) the space of measurable

functions
f:10, T — X

t— f(1),

such that
T

/ I 01 pdt—Hmeo - ) < 0.

0
If p= o0

||f||Lo<>(0, T, X) — SUup €SS 1f @l x -
t €]0, T

Theorem 1.5.1 The space LP (0, T, X) is a Banach space.

0
Lemma 1.5.1 Let f € LP(0, T, X) and a—{ € LP(0, T, X), 1<p<o0), then, the

function f is continuous from [0, T] to X. i. e. f € C*(0,T,X). Since our study based on

some known algebraic inequalities, we want to recall few of them here.

1.5. The L? (0, T; X) spaces 10
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1.6 Sobolev spaces of fractional order and trace theo-

rems

In this section let 2 C R is a measurable set with Lipschitz boundary 9€2. The boundary 052
of Q will be denoted by I' := 92. On the (d — 1) -dimensional set it is also possible to define

Sobolev spaces :
Definition 1.6.1 Hz(I) is defined by

HY(I) = {u € LA(T) : fuls p < oo}

where the seminorme |.|1 ;. is given by
3

el
mgp—/!"|x_wid<>d@x ¢ HH(D)

T

Theorem 1.6.1 (Allaire [2]) H= (') with the scalar product

o ) ) ) el
o)y = [wds+ [ [ R ds(x)ds(y).

2?
r I T

1s a Hilbert space.

Definition 1.6.2 Let I'y C I be a proper, connected (d — 1)-dimensional relative open subset.
Then we define

H3(Ty) = {“ € L*(T') : 3u € H2(T) with u = ﬂ|p1},

with norm
[ull, = inf [l p, we H2 (D).
ir ~ 1 2
ue H2(T)
ﬂ|[‘1 =U

Now we construct a particular subspace of Hz(I';). For v € H2(I';) the zero extension of v

into I' — I'y will be denoted by v. So we can define:

1.6. Sobolev spaces of fractional order and trace theorems 11
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1
Definition 1.6.3 HZ (1) is defined by
1 1
H2\(T)) = {v e LX) T € Ha(r)} .

Notice that
() o)y, + [ o dst)
U, v) 1 = (u,v)1 ——ds(x),
Hgo (1) 211 p(x,0T)
I
where p(x,01'1) is a positive function which behaves like the distance between x and Oy,

defines a scalar product in Hg(T'1).

Remark 1.6.1 Grisvard [19] By a direct calculation, for allv € L*(Ty) we obtain tow positive

constants cq, co such that:

<
e, <1l

1 < cllv .
3y S 2 || ||%’Fl

1
Therefore Hg (1) is a Hilbert space. The dual of these spaces are denoted by
1 1 * _1 *
H () = [Hg ()| L Hog' (D) i= [HATY)]

Next we present some trace theorems.

Let be u € C'(2). Then we can define the trace of u on 0€2:

Yo(u) == ulagq -
This trace operator can be extended:

Theorem 1.6.2 Grisvard [19] Let Q C R? be an open, bounded domain with boundary

0Q € C%L. Then the trace mapping o defined on C%(Q) extends uniquely to a bounded,
surjective linear map:

Yo : HY(Q) — H2(09).
Moreover the right inverse of the trace operator exists:

Theorem 1.6.3 Grisvard [19] Let Q C R? be an open, bounded domain with Lipschitz bound-

ary 0S2. Then there exists a linear bounded operator

E H%(BQ)—>H1(Q), such hat
W(E(p)) = ¢, Voe H2(09).

1.6. Sobolev spaces of fractional order and trace theorems 12



Chapter 1. Preliminary and functional analysis

Note that the preceding theorems allow the definition of the following equivalent norm on
Hz(09):
inf  Jullgig, Ve € H2(09).
ue HY(Q)
Yo(u) = u

103 00 =

Sometimes the simpler notation u 9o = Yo(u) is used for functionsu € H'(2). With the trace

operator 7y we can characterize the space Hj () :

Theorem 1.6.4 Grisvard [19] Let Q C R be an open, bounded domain with boundary 0€) €
CY%L. Then HL(QQ) is the kernel of trace operator 7y, i.e,

Hy(Q) = N(y)={u€ H(Q):7(u) =0}
= {UGHI(Q)U|8Q:O}

Definition 1.6.4 Let Q is an open smooth domain in R? with boundary 0Q and T'p & 99
such that mes(I'p) > 0. We set

Hi () = {ueH (Q):7(w) =0onTp}
{ue H' (Q) :u|r, =0}.

Lemma 1.6.1 H| (Q) is a Hilbert space with respect to the norm IRy

1.6.1 Inequality of Poincaré

Now we cite a variant of the inequality of Poincaré. It allows to estimate the function values
of functions u € H'(Q2) by the first derivatives of functions u € H'(Q).

Theorem 1.6.5 Quarteroni and Valli [31] Let Q C R% be a bounded domain with Lips-
chitz boundary OS). Furthermore let I'p C €2 be a connected part of the boundary of € with
mesq_1(I'p) > 0. Then the inequality

||U||o,Q <O, T'p) |U|1Q

is true for all w € H'(Q) with vo(u)|r, = 0. The constant C(Q,Tp) depend only on Q and
I'p and is bounded by the diameter of ).

Remark 1.6.2 By the Inequality of Poincaré we deduce that the semi-norm |.|, o, is an equiv-

alent norm to ||.||, o in Hy,) (Q).

1.6. Sobolev spaces of fractional order and trace theorems 13
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1.6.2 Green’s formula

Proposition 1.6.1 (Necas [26]) Let Q be an open subset of R, with a Lipschitz boundary.
Then for all u,v € H' () we have

0 0 '
/(&:U+ a;u) dx = /70(“)70(0)772‘658, i=1,...d,

Q o0

where n; is the i-th component of the outward normal vector n.

1.6. Sobolev spaces of fractional order and trace theorems 14



Chapter 2
Domain decomposition methods

In this chapter we will introduce the domain decomposition method (DDM, in short). In nu-
merical partial differential equations, domain decomposition methods solve a boundary value
problem by splitting it into smaller boundary value problems on subdomains and iterating to
coordinate the solution between adjacent subdomains. The basic idea behind DD methods
consists in subdividing the computational domain 2, on which a boundary-value problem is
set, into two or more subdomains on which discretized problems of smaller dimension are to
be solved, with the further potential advantage of using parallel solution algorithms. There
are two ways of subdividing the computational domain into subdomains: one with disjoint
subdomains, the others with overlapping subdomains. In non-overlapping methods, the clo-
sure of subdomains intersect only on their interface. Let the domain §2 be the union of a disk
and a rectangle. Consider the Poisson problem which consists in finding u : 2 — R such

that:
—Au=f, in Q,

u =0 on Jf.

Definition 2.0.5 (Original Schwarz algorithm, cf. Dolean et al. [15]) The Schwarz algorithm

is an iterative method based on solving alternatively sub-problems in domains Q1 and .

15
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It updates (u*, uf’) — (u" w1ty by

( .
AU = in Q,

u" = oon 00 NQy,

u; =0 on 08 NOSY.

\

and
.

m+1 .
—Auy™ = f, in §y,

9 uptt =u"tt on 995 N Q)

Uy =0 on 00y N ONL.

\

H. Schwarz proved the convergence of the algorithm and thus the wellposedness of the Poisson
problem in complex geometries. With the advent of digital computers, this method also
acquired a practical interest as an iterative linear solver. Subsequently, parallel computers
became available and a small modification of the algorithm (Boulaaras and Haiour [12]) makes
it suited to these architectures. We present this method in a general case : Let given a model
problem : find u : 2 — R such that

Lu = f in €,

u=0 on 09,

L being a generic second order elliptic operator, whose weak formulation reads

findu € V = H;(Q) such that:
a(w) = (fv), VeV

being a(-,-) the bilinear form associated with L. Consider a decomposition of the domain 2

in two subdomains €2; and €2, such that

ﬁzﬂ_lug_g, Qlﬂggzglg%@, 8QZr\IQ]:F“Z7£j andi,jzl,?.

16



Chapter 2. Domain decomposition methods

Consider the following iterative method. Given uJ on T';, solve the following problems for

m € N* )
Lu* = f in (),
ul = uy ! on Iy
{ u =0 on 08 — I,
and

Lul’ = f in €y,
Uy -1
uy' = on I'y (2 2)
uy’
uy' =0 on 0y — Iy,

\

In the case in which one chooses u}* on I'y in (2.2) the method is named multiplicative Schwarz
(MSM), it’s algorithm is sequential. Whereas that in which we choose u}*"!, is named additive
Schwarz (ASM), problems in domains §2; and s may be solved concurrently. The reason of
this appointment is clarified in (Quarteroni and Valli [32]). Denoting the solution of iteration
step 7 in subdomain €2; by u; for the two-domain case the multiplicative variant can be
described as follows : Starting with an initial guess, first a new solution in §2; is computed.
Then, already using this solution, the solution in €25 is solved, and so on. In contrast the
additive algorithm uses the solution of the previous step instead of the current solution (cf.
Figure 2). The second method has got the advantage that the solution of all subdomain
problems can be completely done in parallel. In the multi-domain case the multiplicative
variant requires a coloring of the subdomains. We have thus two elliptic boundary-value
problems with Dirichlet conditions for the two subdomains 2; and €5, and we would like
the two sequences (u]")men+ and (ul")en+ to converge to the restrictions of the solution u of

problem (2.1), that is

. m _ _m . m __,m
lim u' =u"|o, and lim ul’ =u"]q, .
m—»+00 m——+oo

It can be proven that the Schwarz method applied to problem (2.1) always converges, with

a rate that increases as the measure |;2| of the overlapping region €25 increases. It is easy

17
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to see that if the algorithm converges, the solutions u$°,7 = 1,2, in the intersection of the
subdomains take the same values. The original algorithms ASM and MSM are very slow.
Another weakness is the need of overlapping subdomains. Indeed, only the continuity of the
solution is imposed and nothing is imposed on the matching of the fluxes. When there is
no overlap convergence is thus impossible. n order to remedy the drawbacks of the original
Schwarz method, Modify the original Schwarz method by replacing the Dirichlet interface
conditions on 0€2; N 0L, i = 1,2, by Robin interface conditions (0n; + a, where 7; is the

outward normal to subdomain €2;, see Ortiz [28] ).

2.1 The generalized overlapping domain decomposition

method

During the last decades, more sophisticated Schwarz methods were designed, namely the op-
timized Schwarz methods or generalized overlapping domain decomposition method. These
methods are based on a classical domain decomposition, but they use more effective transmis-
sion conditions than the classical Dirichlet conditions at the interfaces between subdomains.
The first more effective transmission conditions were introduced by P.L. Lions (cf. Boulaaras
and Haiour [12]). For elliptic problems, we have seen that Schwarz algorithms work only
for overlapping domain decompositions and their performance in terms of iterations counts
depends on the width of the overlap. The algorithm introduced by P.L. Lions (cf. Boulaaras
and Haiour [12]) can be applied to both overlapping and non overlapping subdomains. It is
based on improving Schwarz methods by replacing the Dirichlet interface conditions by Robin

interface conditions. Let o be a positive number, the modified algorithm reads

( —Aul=f in Qy,

Ou oul?
. L o™ = =2 foquf, on T
om o= om 1 !

u* =0 on 0 — I,

and

2.1. The generalized overlapping domain decomposition method 18
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\

where 7; and 7, are the outward normals on the boundary of the subdomains.

—Auf' = f in Qy,
au?“ 1 ut’
+aou = L +au, on T
8772 1 6772 2UWq 2

u’2” =0 on an - Fg,

(2.3)

It is also possible to consider other interface conditions than Robin conditions and optimize

their choice with respect to the convergence factor.

Figure 2.1: Outward normals for overlapping and non overlapping subdo-

mains for P.L. Lions’

algorithm.

Figure 2.1:

2.1. The generalized overlapping domain decomposition method

19



Chapter 3

Maximum norm analysis of a
nonmatching grids method combined
with a theta scheme for parabolic

equation with linear source terms

This chapter deals with the error analysis in the maximum norm, in the context of the non-
matching grids method, of the following evolutionary equation: find v € L? (0,7, H} (2)) N
C?(0,T, H™ (©2)) solution of

(0
a—QZ—Au—I—au:f, in 3,
u="01in I'/T, (3.1)
0

\ a—z:gpinl“o, u(.,0) = up, in €,

where ¥ is a set in R? x R defined as ¥ = Q x [0,T] with T"< 400 , where (2 is a smooth
bounded domain of R? with boundary T'. The function o € L> () is assumed to be non-

negative satisfies

a<p, p>0. (3.2)

f is a regular function such that

20
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feLl?(0,T,L*(Q))nC (0,7, H ' (Q)) .

Let (.,.)q be the scalar product in L*(Q) and (., .)p,, be the scalar product in L? ('), where
[y is the part of the boundary defined as

FO:{xEGQ:FsuChthatVS >0, :U—l—fgéQ}.

3.1 The discrete parabolic equation

The problem (3.1) can be reformulated into the following continuous parabolic variational
equation: find v € L*(0, T, H} (2)) solution of

([ Ou
(G0) oo =)+ (oo,
Q
u=201in I'/T,

. (3.3)
oy 7 in I,

u(x,0) = ug in Q,

\

where a (.,.) is the bilinear form defined as:

u,v € Hy (Q) : a(u,u) = (Vu, Vu) + (au, u) (3.4)

3.1.1 The space discretization

Let Q be decomposed into triangles and 75, denotes the set of those elements, where h > 0
is the mesh size. We assume that the family 7, is regular and quasi-uniform. We consider
the usual basis of affine functions ¢; i = {1,...,m (h)} defined by ¢; (M;) = J;; where M} is a
vertex of the considered triangulation. We introduce the following discrete spaces V}, of finite

element

3.1. The discrete parabolic equation 21
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(we (L2(0,T, HE ()N C (0,7, HE (Q))) )
such that v, |gk= P, k € T3,

0
v (., 0) = vp in €, o _ e in I,

on

vp = 0in I'\Ty,

J

where P, Lagrangian polynomial of degree less than or equal to 1 and 7, is an interpolation

operator on I'g. We consider r, be the usual interpolation operator defined by

m(h)

TRV = ZU (M;) i (z) .

i=1
The discrete maximum principle assumption (DMP)

We assume the matrices whose coefficients a (;, ;) are M-matrix (Maday and Magoules [23]

and Boulaaras et al. [9]). For convenience in all the sequels, C' will be a generic constant
independent on h.It can be approximated the problem (3.1) by a weakly coupled system of
the following parabolic equation v € H! (£2)

(Gr) +aluo) = G+ oy, (3.

We discretize in space, i.e., we approach the space H} by a space discretization of finite
dimensional Vj, C (L2 (0,7, Hj (©2)) N C (0,7, H} (Q2))) , we get the following semi-discrete

system of parabolic equation

(%,w) +a (un, vn) = (f,vn)q + (9, 0n)p, - (3.7)
0

3.1.2 The time discretization

Now we apply the #-scheme in the semi-discrete approximation (3.7). Thus we have, for any
0el0,1]]and k=1,...,p

3.1. The discrete parabolic equation 22
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(= o)y + (A0 (1) =

(3.8)
(At) |:(f07k7vh)g + (@e’kavh)ro] :
where
ulF = Quk + (1 — ) ubt,
FOP =0+ (1—0) ! (3.9)
and
@ "F =005 + (1-0) " (3.10)
uﬁ_l

By multiplying and dividing by # and by adding < vh) to both parties of the inequalities

oA’
(3.1), we get

SO . L1
(@;%)Q +a <Uh’ 7Uh> = (f Ok 4 —QhAt 7Uh>ﬂ+

+ (@e’k,vh)ro , Up € Vh((p)

(3.11)

Then, the problem (3.11) can be reformulated into the following coercive discrete system of

parabolic variational equation

b (uie{kavh> = (/" + MUfl,vh)Q + (", vh)FO s op, Ut e Vh(go), (3.12)

where

b (o) = (usm) (60 m) o e 7
(3.13)
1 p

=Gt T T

Theorem 3.1.1 (see Haiour and Boulaaras [20]). Under suitable regularity of the solution
of problem (3.1), there exists a constant C' independent of h such that

¢ — ¢ < Ch? [log | (3.14)

3.1. The discrete parabolic equation 23
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Lemma 3.1.1 (see Lui [22]) Let w € H' () N C (Q) satisfies a (w, ¢) + A (w,$) > 0 or all
nonnegative ¢ € H' () and w >0 on T', then w > 0 on Q.

Notation 3.1.1 (FO* o0k): (FO% 30F) be a pair of data and O = O(FO* p0F);
Z‘g’k = 8(%“, @%*) the corresponding solutions to (3.12) .

Proposition 3.1.1 Under the previous notation, we have

1 _
T e A s R
[ =] gy = et (5 o ) 6)
Proof. First, putting
1 _
0.k 0,k 0.k Ok ~0k
- - F—FH et — 3 , 3.16
.y max{( @) H B T (3.16)
then
( Fok < pok 4 HFHk _ [ok
o Loo(Q2)
0,k (A) 0,k 70 k
< POk 4 (2 HF a2
ﬂ Loo(Q2)
1 ~ -
< FO 4 \max{ (_> HFe,k _ ok 7||(p6,k _ go“fH
6 Loo() Loo(I')
\ é Fe,k+)\ug,k'
So
b (S, 0) <b(C,6) + A (4, 0), forall 6 >0, 6 € HY(S) (3.17)
and thus

b(C",0) < b(CPF 4 ", 0) = (™ 4 A, 0)
On the other hand,we have
% 4 — %% >0 0on Ty, (3.18)

So
b(¢"* + ¢ — (" >0, (3.19)

By using the result of lemma 1, we get

CFpgp—C"*>00n0Q (3.20)

3.1. The discrete parabolic equation 24
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Similarly, interchanging the roles of the couples (F'?* ©%*) and (IF Ok 20F) we get
CF 4 —¢"F >00nQ, (3.21)

which completes the proof. m

Remark 3.1.1 Proposition 1 stays true for the discrete case.
Lemma 3.1.2 (Lui [22]) Let w € V;, satisfy b(w?* ¢5) > 0 for s = 1,2..m(h)and w?* > 0

on To.then w?* >0 on (Q).

Notation 3.1.2 (F%F o0k). (FO 0% be a pair of data and G = 8(F9’k,<p9’k);52’k =
A(F* F0F) the corresponding solutions to (3.12) .

Proposition 3.1.2 Let DMP hold, we have

0k Ne,kH < max (l) HFHk B ﬁe,kH 0k _ ~0k 3.99
HC}L Ch Loo@) — { 3 aHSO ¥ H } ( )

Loo(Q) Loo(I'g)

Proof. The proof is similar to that of the continuous case. =

3.2 Schwarz alternating methods for parabolic equation

We decompose (2) in two overlapping smooth subdomain ©; and €9 such that Q = Q; U Qy,
we denote by 0€); the boundary of ; and I'; = 0€; N (2; and assume that the intersection of
T; and Ty;i # j is empty. Let

ve (L2(0,T, H ()N C (0,7, H ()
(w*)

v =

)

such that v = w; on I';.

We associate with problem (3.12) the following system: find (u*, u§") € V7% x V¥ solution

to
0,k

by (ul* v) = (F™" v)ar + (9%, 0)ro,,
(3.23)

bQ(Ug’k7 U) = (Fe,k7 U)QQ + (9007]{:7 U>F027

3.2. Schwarz alternating methods for parabolic equation 25
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where

2

b (u?* v) = /(Vue’k.Vve’k + au®* ) dx (3.24)
Qi
and

ut = u* Qi = 1,2

7

3.2.1 Continuous Schwarz sequences

Let ug be an initialization in C (ﬁ),i.e., continuous functions vanishing on 9€) such that
b(ug,v) = (F* v). (3.25)

Starting from ug = ug /€2y , we respectively define the alternating Schwarz sequences (u’f“)on
)y such that

0kn+1 1 (")
u eV solves of

by (P 0y = (FPF ), (3.26)

where

0.k 0.k 0,k—1,n+1
FP5 = 20+ Augt "

(0,k,u‘1’*’“"+1)

0,kn+1 0,kn+1
and (uy™" Mon Q such that uy™" ™' €V, solves

by (Ul ) = (FPF ), (3.27)

where

0.k 0.k 0,k—1n+1

Theorem 3.2.1 Haiour and Boulaaras [20] The sequences (u;™'); (upt™), n > 0 produced by

the Schwarz alternating method converge geometrically to a solution w of the elliptic obstacle
problem. More precisely, there exist ki, ks € (0,1) which depend on (Q,7,) and (Qa,71) such
that for all n > 0,

sup |uh —u”" | < 676y sup ‘uh — uy| (3.28)
51 71

and
sup |y, — u*"| < 6765 " sup |up — uj| . (3.29)
ﬁQ Y2

3.2. Schwarz alternating methods for parabolic equation 26
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3.2.2 The discrete Schwarz sequences

As we have defined before, for i = 1,2, let 7 be a standard regular and quasi-uniform
finite element triangulation in €2;; h; , being the mesh size. The two meshes being mutually
independent €21 N s , a triangle belonging to one triangulation does not necessarily belong
to the other and for every w € C'(€;) , we set
e ve (L2(0,T,Hy () NC(0,T,H) (2)))
hi
such that v = ¢ on I'gy N Tge; v = 7, (w) on [y,
where 7, denote an interpolation operator on I'y;.
Now, we define the discrete counterparts of the continuous Schwarz sequences defined in (3.26)
and (3.27) .
Indeed, let ug, be the discrete analog of wug, defined in (3.25), we respectively, define by

Jk,n

0
ulFr e Vh<1u2h ) such that

by (ufEm Tt 0) = (FOFOFm) v), v € VP n >0 (3.30)
0,k,n+1 (ufi" )
and u.), eV such that
by(uSF ™ v) = (FOF(udF™ Y v), Vo € V,f‘p); n > 0. (3.31)

3.3 Maximum norm analysis of asymptotic behavior

3.3.1 Error Analysis for the stationary case

We begin by introducing two discrete auxiliary sequences and prove a fundamental lemma.

Two auxiliary Schwarz sequences

0,00,mn
0o _ .0 0,00,n+1 0,00,n+1 6,00,n+1 (“2' )
For wy, = ug;, , we define the sequences wj}, and wy), such that uy), eV

solves

by (W™ b)) = (FO* (o™ 0), vo e V¥ in >0, (3.32)
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6,00,n+1
and wy>" ! e 1/2(h“1h ) solves

by (wheo ™ w) = (FO* (o), 0), Yo € Vin > 0, (3.33)
respectively. It is then clear that wf;too’"ﬂ and wg;fo’"ﬂ are the finite element approxi-

mation of u{™"*! and w5 defined in (3.32), (3.33), respectively. Then, as F%*(.) is

0,kn+1 0,kn+1
COHtlIlU.OllS,HFe’k <ul o >H ug ™" H

of standard maximum norm estimates for linear parabolic problems, we have

(independent i of n). Therefore, making use

0,kn 9 k,n

: < Oh?|log h| (3.34)

where C' is a constant independent of both h and n.

Notation 3.3.1 From now on, we shall adopt the following notations: |.[; = || o).

[y = [ioos), [l = -llpaoyy o IHl2 = 1Ml Looqry), and we set wh, = mn, = .

3.3.2 Iterative discrete algorithm

We give our following discrete algorithm

an
0,k,n+1 k—1,n+1 0,k,n+1
Usp, " = Thuih " 7k = 17 cey Py Uy, " € Vh( ) (335)

where u{"* is the solution of the problem (3.35) and the first iteration u{ is solution of (3.25).

Proposition 3.3.1 Boulaaras et al. [9]Under the previous hypotheses and notations, we have

the following estimate of convergence if 6 > 3

1 k
0,kn+1 00 0
e =i < (HM) i = ol - (3.36)

1
if 0§0<§,weh(we

2 k
9,k,2n+1 oo

where p (A) is the spectral radius of the elliptic operator.
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Lemma 3.3.1 Let p = @

dent of both h and n such that

|

Proof. We know from standard error estimate on uniform norm for linear problem Nitsche

. Then, under assumption (3.2), there exists a constant C' indepen-

< ch?|log h|

u@,oom,—i-l _, 0,00n+1
i 1—0p

7 uih

L i=1,2. (3.38)

[27] that there exists a constant C' independent of h such that

|u® — UQLHLOO(Q) < ch?|logh| . (3.39)
) 1
Since 5 <P< 1, then 1 < p/ (1 — p) and

|us — uthQ < ch?®|logh| <

12 [log h
%. (3.40)

Let us now prove (3.41) by induction. Indeed for n = 1, using the result of Propsitionl, we

have in
0.k, 1 0,k,1 0.k, 1 0.k, 1 0.k, 1 0,k,1
‘U1 ~ e ] < ’U1 — Wy, 1"‘Hw1 ~ e ]
< ch?|logh| + wa’k’l — u?}f’lHl
1
< ch?|log h| + max{ (E) HFWC (uf’m) — Ok (uf,ﬁ“) ‘ ) ‘ug — ugh’1
1
1
< ch? llog h| + max{ (E) HF“ (uf’m) — ROk (uffl)‘ , ug — uthQ
1
< ch?|logh| + max{p ‘ utt — S |ug — udy ||, -
1
We then have to distinguish between two cases
0.k, 1 0,k,1 0.k, 1 0,k,1
max{p ‘ Uy = Uy .’ Hug - Uthg} =P ‘ U =t ) (3.41)
or
0,k,1 0,k,1
max{p [uf = ufi | g = b, = [uf = wSl, (3.42)
1
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(3.41) implies

‘ ?kl u?’,fl < ch? 9k1_u§:1 .
||U2 Uzh”z < PH T _Uffl )
1
then
9k1 0k1 <ch2|logh|.
1 1—p
0.k,1 0,k,1 Ch2|log h
|ug — U2h||2 <PH — Uy H < %Zg'
(29) implies
0k1 0,k,1
— U S ch? [log h| + [Juy — u3 ||,

< ”Ug - uthQ )

so, by multiplying (3.42) by p we get

p Hufk by 1” < peh® [log | + p [|u§ — uf, ||, - (3.43)
So,p ||ufF! —ufh! is bounded by both pch?|log h| + p||ud — udy |l,and [[ud — u,,|,, this im-
plies that
pl[ud — Ugh||2 < pch® [log h| + p ||ug — ud, |, . (3.44)
or
pch® |log h| + p ||ug — uthQ < Jud — (3.45)
that is (3.44) implies
0o 0 pch? |log h|
HU2 — u?hHQ ~ Tp (346)
and (3.45) implies
pch? |log h|
Hu2 — U’QhHQ 2 Tp (347)
It follows that only the case (3.44) is true, that is,
pch? |log h|
I = vezall, < = (348)
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then
P Huf’kl u?lel < ch?|logh| + Hug — uth2
Ch?|log h
< ch?|logh| + pl—Wg|
ch? |log h
1—p
So, in both cases (3.41) and (3.42), we have
0.k,1 0,k,1 ch? [log h|
o < — 3.49
‘ Uy — Uy 1= 1 — D ( )
Similarly, we have in €2,
‘ ugk ! ugf’l < ch?|logh| + Hwekl ug;f’l
2 2
< ch?|loghl +max{< ) HF” ( Ml) — Fok (ug’,f’1>H2, udt — ! 2}
< o |10gh|+max{< ) [ 7o () = P (o 9k1>H [t = ‘1
< ch?|loghl —i—max{pHug’kl ul! ‘2 : Hu?’kl uf,i“Hl}.
So
o -, i - t], o
or
0.k, 0.k, 0.k, 0.k, 0.k, 0.k,
max{pH " — 1H2 ’U1 -y }: HU1 -y ‘1' (3.51)

cases (3.50) implies

0.k,1 0.k,1 2 0.k,1 0.k,1
HUQ —Uap ], < ch” |log Al +PHU2 U |,

! 0,k,1 < Lok 0.k,1

Uy~ = Uy — pllta = Uy )
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SO .
0,k,1 0,k,1

H ChQHOgh‘ ” 0.,k,1 leH
2h |l = 1—p 1

— Uy

061 0k1
<ol st

2 2
< pch® |log h < ch® |log h|
\ 1 - P 1— P
while case (3.51) implies

I

061 Ok1 2 k1 0k
H — Uy}, <ch \logh\—l—H — ||,
Y
Okl 0k1 < 0kl Ok1
plug™" = Ugp’ Uy = Uy .

So, by multiplying (3.52) by p we get

0.kl 0k1 kil g 0k
P‘ Uy = Ugp” U ||,
Hence p Hugk ! ugf ! ‘2 is bounded by both pch? u ! uff ! uft!
then
’ bl _ u(;,fl <pch2 ufH! uél)}iu
1
or
0.k, 0.k,1 0.kl Ok,
ch2|logh\+pH by H — .
which (3.54) implies
H 0,k,1 0k1” pch? logh| _ ch?[log hl
up = Uy, < <
1 1—p 1—p
or (3.55) implies
P0h2 |llog h| < |01 0.k,1 ch? |log A
BRI E R A e
P t P

(3.52)

(3.53)

0,k1
— Uyp,

1

(3.54)

(3.55)

(3.56)

(3.57)

Hence, (3.54) and (3.55) are true because they both coincide with (3.49). So, there is either

a contradiction and thus case (3.50) is impossible or case (3.51) is possible only if

) uf’kl u?: 1} = pch?|log h| + p Hu?k ! u?}fl‘ K (3.58)
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that is 2 log
0,k,1 6,k,1 pc 0g
T —u | = —— 3.59
ot = i), = 5= (3.59)
thus
‘ ug’k’l — ug’:’l‘ ) < ch?|logh| + ‘ uf’k’l — uff’l 1
h? |log h
< ch?|logh| + %
ch? |log h
1—p
that is, both cases (3.50) and (3.51) imply
0,k,1 0,k,1 ch? [log h|
Lt < —M——— 3.60
H% Uzh ||, =772 0 (3.60)
Now, let us assume that
0,k,n 0,k,n ch?[log h|
P < ——2— 3.61
‘ Uy Ush ||, = 771 = P ( )
and prove that
0,kn+1 0,k,n+1 ch? [log h|
e

2
0,k,n+1 Oknt1|l ch |log h’
Ug — Ugp, >
2 1—0p
]

Theorem 3.3.1 Let h = max (hy,hy). Then, for n large enough, there exists a constant C

independent of both h and n such that
h?|log h
udtrt | < %, Vi=1,2. (3.62)
1 -p
Proof. Let us give the proof for ¢ = 1. The one for ¢ = 2 is similar and so will be omitted.

Indeed, Let 6 = 6105, then making use of Theorem 2 and Lemma 3, we get

0.k 0,k n+1 0.k 0,k n+1 0,k n+1 0,k n+1
)Uf _U1}z7n+ < ‘Uf — ™t +‘U17 " _ulh’wr
1 1 1
2
ch” |log h
< 5?5§‘u0—u|1+—1| |
P
2
ch® |log h
< 52”|u0—u‘1+#.
1—p
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So, for n large enough, we have
52 < h? (3.63)

and thus

0k 0kn+l 2 2
Hul — Uy, Hl < c¢h® + ch?®|log hl

< ch?|loghl,

which is the desired result. =

3.3.3 Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we prove
the theorem of the asymptotic behavior in L*-norm for parabolic variational inequalities,
where we evaluate the variation in L> between uy, (T'), the discrete solution calculated at the

moment 7" = pAt and u>, the asymptotic continuous solution of (3.13)

Theorem 3.3.2 According to the results of the proposition 3 and the theorem 3, we have
1
for the first case 6 > 5

1 p
and
0 1 1 !
1
and for the second case 0 < 0 < 5
0,p,n+1 2 2 g
‘“ﬁf’ _”OOHOO s¢ {h [log | + <2+9(1 - 2(9),0(A)> } (3.66)
and
% +1 2 2 p
’ o _“OOHOO =¢ [h [log A| + <2+9(1 - 29),)(A>) ] ’ (3.67)

where C' is a constant independent of h and k.
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Proof. We have

Huiﬁl,p,2n+l . UOOH S Huz,p,2n+1 . UZOH + Huzo . uoo”
1
Using the proposition 4.3.1 and the theorem 4.3.1, we have for 6 > z5
0,p2n+1 oo <C h2 log h 3
| u Hoo— [ [log 2[” + 1+ﬁ9At

1
and for 0 < 0 < 3 we have

0p2n+1 oo 2 3 2 !
@ | < [h flog A[+ <2+e<1—2e>p<A>> }

The proof for (3.66) and (3.67) case is similar. m

1 p
Remark 3.3.1 It can be seen in the previous estimates (3.64) up to (3.67), (—) ,

1+ BOAt
2 p
(2 +0(1—20) p(A>) , goes to 0 when p tend to infinity.

Therefore, the estimation order for both the coercive and noncoercive problems is

[u — u‘;f;”“HLw(Ql) < Ch?|log h)?

and

0% = 5" e ) < O log P
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Chapter 4

Maximum norm analysis of a

nonmatching grids method for a class

of parabolic equation

This chapter deals with the error analysis in the maximum norm, in the context of the non-

matching grids method, of the following evolutionary equation:
find w € L? (0, T; HY (Q2)) N C? (0, T, H~' (£2)) solution of

%—Au—l—au:f(u), in X,
u=10in /T, (4.1)
\ g—z:goin Lo, u(.,0) = ug, in £,

where ¥ is a set in R? x R defined as ¥ = Q x [0, 7] with T"< 400 , where (2 is a smooth
bounded domain of R? with boundary I

The function a € L> () is assumed to be non-negative satisfies

a<p, B>0. (4.2)

f(.) is a nonlinear and Lipschitz functions with Lipschitz constant ¢ and satisfying the

following condition
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fel?0,T,L?(Q)NC (0, T, H ()
(4.3)
c<p.

Let (.,.) be the scalar product in L? (Q) and (., Jr, be the scalar product in L*(Ty) , where

[y is the part of the boundary defined in Perthame [30] as impulse control problem:

Foz{xeaQ:FsuchthatV§ > 0, x+£¢@}.

4.1 The discrete parabolic equation

The problem (4.1) can be reformulated into the following continuous parabolic variational
equation: find uw € L? (0, T, H} (€2)) solution of

( (%’U)Q—i—a(u,v) = (f (), v)q + (2, V)g, -

uw=0inI'/T,

0
8—;62901HF0,

| u(2,0) = uo in Q,

where a (.,.) is the bilinear form defined as:

a(u,v) = (Vu, Vo), — (au,v), (4.5)

4.1.1 The spatial discretization

We discretize the problem (4.4) with respect to time by using Euler scheme. Therefore, we
search a sequence of elements u* € H{ (Q) which approaches w (t;), t, = kAt, with initial
data u® = wy.

Thus, we have for k =1,...,n
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( (MU) +a(uh,v) = (f (W) ,0) + (o, 0)p,

At
u=01inI'/T,
(4.6)
0
a—:; = pin [y,

| u(2,0) =wup in Q.

4.1.2 The spatial discretization

Let €2 be decomposed into triangles and 7, denote the set of all those elements h > 0 is the
mesh size. We assume that the family 7, is regular and quasi-uniform. We consider the usual
basis of affine functions ¢;, I = {1,...,m (h)} defined by ¢, (M) = ;s where M, is a vertex of

the considered triangulation. We introduce the following discrete spaces V" of finite element

(v e L2(0,T, HE () N C (0,7, H: (), such that )

Vi=1¢ wvl|ke P, Kem, and u(.,0)=ug in Q, (4.7)

| v=0inT'/To, u(z,0) = u in Q.
where 7}, is the usual interpolation operator defined by
- m(h)
ve L’ (0,7, Hy () NC (0,7, Hy (Q)), v => v(M)p;(x) (4.8)
i=1
and P; denotes the space of polynomials with degree at most 1. In the sequel of the paper,
we shall make use of the discrete maximum principle assumption (dmp). In other words, we
shall assume that the matrices (A),, = a (g, ¢s) is M-matrices (Toselli and Widlund [34]).
We discretize in space the problem (4.6), i.e. that we approach the space H by a space
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discretization of finite dimensional V,, C H}, we get the following discrete PQVTs.

which implies

( (uz —uy!

At >Uh> +a (Uﬁ, Uh) 2 (f (u]}i) 7vh) + (907 U)FO )
up = 0 in T/T,
(4.9)

%zwinro,

u) () = upp in Q,

u

( uk k—1
(K};7Uh> +a (u’}cwvh) 2 (f (Ui) + ﬁa Uh) + (QO, U)FO )

up, = 0in ['/T,
(4.10)
auh

a—n:‘;@iﬂfo,

ud (x) = upp in Q.

Then, the problem (4.10) can be reformulated into the following coercive discrete system of

elliptic quasi-variational equations (EQVIs)

such that

(b (uz,vh) = (f (ui) + )\ufl_l,vh) + (907U)F0 , ub e Vi

up = 0 in T'/T,
(4.11)
uy, 0T
— =@ in
677 2 05
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b(uf,vn) =X (uf,v) +a(uf, o), uf €V
(4.12)
1 1 T
AN TE T W

k=1,..n.
4.1.3 An iterative discrete algorithm

As we have chosen before in the iterative semi-discrete algorithm uf = uyo the solution of the

following full-discrete equation
b (U?L?/Uh) = (goavh) , Up € Vh7 (413)

where ¢° is a linear and a regular function. Now we give the full following discrete algorithm

ub =T k=1, n, (4.14)
where uf is the solution of the problem (4.11). Let F*~'(w) = f (uf) + Aw, F*'(0) =
f(@h)+ b e L (Q) be the corresponding right-hand sides to the EQVIs.

Lemma 4.1.1 /[(Boulaaras and Haiour [1°]) (Boulaaras and Haiour [10]) Under the previous

assumption and the dmp we have, if
FEw) 2 FMH (),

then

We shall first recall some results related to coercive quasi variational inequalities that are
necessarily in proving some useful qualitative properties.
Proof. The proof of the Lemma is very similar to that in (Douglas and Huang [16] and Lions

[21]) for free boundary problem. m
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Definition 4.1.1 ¢} is said to be a subsolution for the system of EQVIs (25) if

([ b(CFoos) < (F () +AG08) + (0,050, > Vs, 5 =1,..,m(h),

up =0 in I'/Ty,
< 9,
U .
a—nh:gﬁ ZnFO:

L up (2) = upo in

Notation 4.1.1 Let X, be the set of discrete subsolutions. Then, we have the following

theorem.

Theorem 4.1.1 Under the discrete mazimum principle, the solution of the system of EQVI

(25) is the mazimum element of X,.

Proof. We denote by ¢ = max(¢,0), ¢~ = max(—¢,0).
Let wy, € Vj, be a solution of the following of the full discrete system of parabolic quai
variational inequalities using Euler time scheme combined with a finite element spatial ap-

proximation (Boulaaras et al. [9])

(b (wp, ) = (f (wn) + Mg, 5n) + (o, Un)r, > VOh € Vi,
up, = 0in ['/T,
(4.15)
Ouy, 0T
— =pin
an 2 0
| uj) () = upo in Q,
m(h)
where 05, = > U5p5. Since 0 is a trial function, we choose 0y, = w;, — v, and vy, > 0. Thus
s=1
b(wn, os) < (f (2n) + Awn, ps) , (4.16)
that is to say wy € X5,.On the other hand; let z, be a subsolution, such that
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Then we have
b (Zhv 905) < (f (wh) + Awp, 905) .

Setting vy, = (25, — wh)Jr > 0 as a trial function. Yields
b (zn, (20 — wi) ") < (f (2n) + Mwp, (20 — wp) ")

and since wy, is a subsolution too, we have

b (wh, (Zh — wh)+) < (f (Zh> + )\wh, (Zh — wh)+) .

Thus, we deduce
—b ((Zh — wh)+ > (Zh — wh)+) Z 0.

Under the coerciveness of the bilinear, we can get
(Zh - wh)+ =0.

Therefore

Thus, from (4.17) and (4.18) we obtain z, = w;,. =

Theorem 4.1.2 see Haiour and Boulaaras [20] . Under suitable reqularity of the solution of

problem (4.1), there exists a constant C' independent of h such that
16 = €Il < Ch* [log h| . (4.19)

Lemma 4.1.2 (see Lui [22]) Let w € H' () N C (Q) satisfies a (w,¢) + A (w,$) > 0 or all
nonnegative ¢ € H' () and w >0 on T', then w > 0 on Q.

Notation 4.1.2 (F¥ !, ¢): (F*1.3) be a pair of data and ¢ = O(F*,¢);¢ = O(F*,7)

the corresponding solutions to (4.6) .

Proposition 4.1.1 Under the previous notation, we have

I6h = Cll ooy < max{e(ju” =@ X [utt =] el 3 (4.20)

Loo(Q) Loo(9) Loo(T)
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Proof. First, putting

k_ k_ ~k k=1 _ ~k—1 =

p" = max{c Hu u HLOO(Q) + A Hu u ||LOO(Q) Nl ngLoo(F)}, (4.21)

then B B
Loo()

< F* + max{c Huk — ﬂkHLOO(Q) +A ||uk*1 — ﬁkilHLw(m e — {5||LOO(F)}

< FF 4+ Ak,
So

b(C56) <b(¢56) +A(1",0), forall 920, 6 € HY(Q) (4.22)

and thus

b(C0) < B¢+t 0) = (F"+ 2t 0)
On the other hand,we have
" +¢—C">0o0nT,. (4.23)

So
b(¢F+¢—CF > 0. (4.24)

By using the result of lemma 1, we get

Fto—c*>0m0 (4.25)
Similarly, interchanging the roles of the couples (F¥, o) and (F*, %), we get
Fro—¢">00n0, (4.26)

which completes the proof. m

Remark 4.1.1 Proposition 1 stays true for the discrete case.
Lemma 4.1.3 (Lui [22]) Let w € Vj, satisfy b(w*, ¢,) > 0 for s = 1,2...,m(h)and w?* > 0

on Tg.then w?* >0 on (Q).
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Notation 4.1.3 (F*, ¢); (F*, &%) be a pair of data and CF = 8(Fk,<p);2}f = O(F*, Q) the

corresponding solutions to (4.6) .

Proposition 4.1.2 Let DMP hold, we have

k- 2|

R I R [ ol O = S S e

Proof. The proof is similar to that of the continuous case.

4.2 Schwarz alternating methods for parabolic equation

We decompose (2) in two overlapping smooth subdomain €y and €, such that Q = Q; U Qy,
we denote by 0€); the boundary of €; and I'; = 0€Q; N §2; and assume that the intersection of
T; and T;i # j is empty. Let

ve (I (0.7, H} () N C (0.7, 1} ()

wk
p _

such that v = w; on I';.
We associate with problem (4.11) the following system: find (u#,u}) € V¥ x V¥ solution to

b1<u]1€7 U) = (Fkv v)ﬂl + ((pk,?))pon

(4.28)

b2<ul2€7 U) = (Fka U)QQ + (Sok) U)Foga

where

bi(uf,v) = /(vuk.Vvk + auf vF)dx (4.29)
Q;

and
ub =k Qi =1,2

4.2.1 Continuous Schwarz sequences

Let ug be an initialization in Cj (ﬁ),i.e., continuous functions vanishing on 9€) such that
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b(ug,v) = (F*,v). (4.30)

Starting from ug = /€ , we respectively define the alternating Schwarz sequences (u’f“)on

k,n
Q; such that "' e Vl(u2 ) solves of

b (uy ™ v) = (Ff,v), (4.31)
where
Flk _ fk (ullf,n—l-l) n )\ullc—l,n—H
k,n+1 k,n+1 (kvullc’n+1)
and (uy"" " )on Qy such that ug eV, solves
b2(u]2§7n+1a U) = (F1k7 U)> (432)
where

k ko kn+l k—1,n+1

Theorem 4.2.1 Boulaaras and Haiour [11] The sequences (u;™'); (up™), n > 0 produced by
the Schwarz alternating method converge geometrically to a solution u of the elliptic obstacle
problem. More precisely, there exist ki, ks € (0,1) which depend on (Q1,7,) and (Qa,71) such

that for alln > 0,

sup |uy, — u? | < 0703 sup |up — up| (4.33)
51 7

and
sup |uy, — w*| < 6765 " sup |uy, — uj| . (4.34)
52 2

4.2.2 The discrete Schwarz sequences

As we have defined before, for i = 1,2, let 7" be a standard regular and quasiuniform
finite element triangulation in €2;; h; , being the mesh size. The two meshes being mutually
independent ; N )y , a triangle belonging to one triangulation does not necessarily belong

to the other and for every w € C'(§2;) , we set
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ve (12 (0,7, H ()N C (0.7, 1} (@)
(wh)

Vi =
such that v = ¢ on I'py N Tge; v = 7, (w) on Ty,
where 7j,,denote an interpolation operator on I'p;.Now, we define the discrete counterparts of

the continuous Schwarz sequences defined in (4.31) and (4.32) . Indeed, let ug, be the discrete

analog of ug, defined in (4.30), we respectively, define by ulf;l”H € Vh(lu’;;ﬁ) such that

by (ul v) = (FF v), Vo € Vh(“’); n>0 (4.35)
and ub"t € Vh(;wﬂ) such that

by (b v) = (F¥ v),Vu € Vh(“p); n > 0. (4.36)

4.3 Maximum norm analysis of asymptotic behavior

4.3.1 Error analysis for the stationary case

We begin by introducing two discrete auxiliary sequences and prove a fundamental lemma.

Two auxiliary Schwarz sequences

,00,M
1 1 1 u
For w9, = u,, , we define the sequences wy" ™" and wiy """ such that ufy" "' € Vh(1 ") solves

by (w3 v) = (FF,0), Yo € VPin >0, (4.37)
and wiy" T € VQ(huTZmH) solves

bg(wgfl’"ﬂ, v) = (FF v),Yv € Vh(;o); n>0, (4.38)
respectively. Tt is then clear that w(y"™ " and w3y ™" are the finite element approximation of

uO™ T and uy®" ! defined in (4.37), (4.38), respectively. Then, as F* (.) is continuous,
|7 ()] < A

maximum norm estimates for linear parabolic problems, we have

uf’"HH , (independent i of n). Therefore, making use of standard
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k.n k.n

U, - uih

|

where C' is a constant independent of both h and n.

< Ch?|log h 4.39
o S O llogh (4:39)

i

Notation 4.3.1 From now on, we shall adopt the following notations: |.[; = || o))

|- = |'|Loo(F2), -1l = ||‘||Loo(F1) Al = ||‘||Loo(F2),and we Set Ty = Thy = Tp.

4.3.2 Iterative discrete algorithm

We give our following discrete algorithm
kntl k—1ntl 5 k41 (us™)
wy, = Thug, k=1 p, w €V, (4.40)
where u} is the solution of the problem (4.1) and the first iteration u is solution of (4.30).

Proposition 4.3.1 (Boulaaras and Haiour [10]). Under the previous hypotheses and nota-

tions, we have the following estimate of convergence

PR e\ o
[t =] < (W) 145 = . (4.41)

A
Lemma 4.3.1 Let p = T

Then, under assumption (4.2), there ezists a constant C

B+
independent of both h and n such that
Ch?|log h
g™t — g < — [log |, i=1,2. (4.42)
! -p

Proof. We know from standard error estimate on uniform norm for linear problem Nitsche
[27] that there exists a constant C' independent of h such that

|u® — u?LHL:(Q) < Ch?|logh|. (4.43)

1
Since 5 <P< 1, then 1 < p/ (1 — p) and

pCh?|log hl
—Y

|ug — u, ||, < Ch* [log h| < (4.44)
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Let us now prove (4.42) by induction. Indeed for n = 1, using the result of Propsitionl, we

have in
k1 k1 k1 k1 k1 k1
Hu1 — Uyp < ’ Uy — Wy || le — Uy
1 1 1
k1 k1
< CRh?[logh| + le’ S H
1

< Ch*|logh| + max{p‘ ulf’l — u]f;ll r Hug — uthQ}.
We then have to distinguish between two cases
maxc{p [uft —uli!|| lfud = wgul,} = p b — o (4.45)
1
or
k1 kil
max{p ‘ U = U | |ug — uth2} = [|ug - ugh||2. (4.46)
(4.45) implies
(
upt — |l < OR?flogh| + p ) =iy
1
k1 ki
\ Jug — ugyll, < p HU1 — Uy x
then )
Huk,l B ule o Oh” [logh|
1 1h 1= 1— .
p
k, k,1 /)Ch2 |log A
g = uully < o |lu -l | < T2
\ 1 —p
(4.46) implies
e = b < on2pioghl + fug — g,
S ||u(2) - U’(Z)hHZ )
so, by multiplying (4.46) by p we get
plubt = k|| < pCnhoghl + pllug — wdull, (4.47)
1
So,p ‘ upt — ! 1is bounded by both pCh?|log hl+p||u§ — ud, ||l,and [|ug — ud, ||, this implies
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that
o168 =, < OB log ]+ o [ — . (1.49
or
oI floghl + [ — o], < [ — . (4.49)
that is (4.48) implies
pCh? |log h|
a3 =zl < = (4.50)
—p
and (4.49) implies
pCh? [log h|
|ug — ud[, > —, (4.51)
—p
It follows that only the case (4.48) is true, that is,
pCh?|log hl
48 — ], < £CH MoB ] (1.52)
p
then
P Hu’fl — u]f;ll 1 < Ch*|logh| + Hug — uth2
Ch?|logh
< CR*|logh| + pl—lmgl
Ch? |log h|
1—p
So, in both cases (4.45) and (4.46), we have
Ch? |log h|
k1 k1
Ty || < —m———. 4.53
‘ Uy 1h H1 =1 ( )
Similarly, we have in €2,
Hugl —ub! ) < Ch*|logh| + leg’l —uly! )
< COh?|logh| + max{p’ ust — st = W] )
2 1
S0
mac{p [u* — || ||t — il ¥ = o |ub — bl (4.54)
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or

max{p Hu’; Ughl‘ H T ulh H b= H ulh H (4.55)
cases (4.54) implies
’ ' — ’;hl < Cw “ghl
o =i, < ol =i,
SO ,
‘ S Ch llog h|
2 2h 1— P ’
o - “’fiH <ot i
2 2
< pCh* |log h| < Ch?|log h|’
\ L—p L=p
while case (4.55) implies
‘ US t ughl < Ch? u’fhl
: (4.56)
k1 okl oy
p ‘ Ug' — Ugp Uy,
So, by multiplying (4.56) by p we get
p Hug ! ugth < pCh? |log h| + p |[uf’ — ul! r (4.57)
k1 k1 2 k1 k1 k1 gl
Hence p Hu2 — Uy}, 1s bounded by both pCh*|logh|+p ||uy™ — uj), and Hul ~ Uial|, , then
‘ ul! u’fhl < pCh? |log h| + p ||uf — uli! X (4.58)
or
Ch? u’f,j ’f,} (4.59)
which (4.58) implies
Ch?|logh|  Ch*|logh
1 1—0p 1—p
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or (4.59) implies
Ch?|log h|

k1 k,1
u U
1 1—p

Ch? |log h
p—m<) b1k (4.61)

1—p -
Hence, (4.58) and (4.59) are true because they both coincide with (4.53). So, there is either

a contradiction and thus case (4.54) is impossible or case (4.55) is possible only if

Hulfl - ulf;ll = pCh* [log h| + p ‘ ult — ulf;bl‘ ¥ (4.62)
that is 1 flog |
k, k, P 0g
it <ot - e w59
thus
Hugl — u’g;j ) < Ch*|logh| + ‘ ult — ulf;j X
Ch?|log h
< COh?|logh| + Pl—|(%|
—p
Ch? |log h|
1—p
that is, both cases (4.54) and (4.55) imply
Ch? |log h|
k, k,
‘ Uoy t_ U’Zhl ) S Tp (464)
Now, let us assume that
Ch? |log h|
k.n k.n
s e (4.65)
and prove that
k1 k41 Ch*[log h|
e
Ch? |log h|
k.n k,n
‘uz o 2h+12§ 1—p

Theorem 4.3.1 Let h = max (hy, hy). Then, for n large enough, there exists a constant C
independent of both h and n such that
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< ch? |log h

Vi=1,2. 4.66
1 1—p ! ’ (4.66)

Proof. Let us give the proof for i = 1. The one for ¢ = 2 is similar and so will be omitted.

kn+1 kn+1
u; - Wy, ‘

Indeed, Let 0 = 0109, then making use of Theorem 2 and Lemma 3, we get

‘ b — ht 1 < Hulf YAt 1 i ‘ bttt 1
ch? [log h|
< 6n6n 0 _ D =R |
— 172 ‘u U|1 + 1 — P
h* [log h
S 52n’u0_u| _'_C ‘ g ’
1 1 — p
So, for n large enough, we have
0% < h? (4.67)
and thus
Hu’f T ‘1 < ch?® + ch®|logh|

< ch?|logh|,

which is the desired result. m

4.3.3 Asymptotic behavior

This section is devoted to the proof of main result of the present paper, where we prove
the theorem of the asymptotic behavior in L*°-norm for parabolic variational inequalities,
where we evaluate the variation in L> between uy, (T'), the discrete solution calculated at the

moment 7" = pAt and u*, the asymptotic continuous solution of (4.4)

Theorem 4.3.2 According to the results of the proposition 3 and the theorem 3, we have

P
Huﬁ’gﬂrl _ uOOHOO <C [hQ llog h| + (;\ii) } : (4.68)
and
P
Hug}lnﬂ _ uOOHOO <C [hQ llog h| + <2\1/c\) } : (4.69)

where C'is a constant independent of h and k.
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Proof. We have

o < = =

| —

Using the proposition 3 and the theorem 3, we have for § >

by p
Hu’fL’Q”H —u®|| <C {h2 llog h| + <5i§) } :

Remark 4.3.1 It can be seen in the previous estimates (4.68) and (4.69),

B+ A
coercive and noncoercive problems is

A+ o o
( ) goes to 0 when p tend to infinity. Therefore, the estimation order for both the

Huoo — u(ffLmHHLoo(Ql) < Ch?|log A

and

[ = w3 ™ 1 (g, < CB* flog B
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Chapter 5

A posteriori error estimates for
generalized Schwarz method for HjB
equation related to management of
energy production with mixed

boundary condition

In this chapter, we prove an a posteriori error estimates for the generalized overlapping domain
decomposition method with Dirichlet boundary conditions on the boundaries for the discrete
solutions on subdomains of evolutionary HJB equation with linear source terms using the
theta time scheme combined with a finite element spatial approximation, similar to that in
our published papers in (Boulaaras et al. [9]), (Boulaaras and Haiour [10]), (Boulaaras and
Haiour [11]),(Haiour and Boulaaras [20]) which investigated Laplace operator i.e.,a posteriori
error estimates for the generalized Schwarz method (GSM), for evolutionary Hamilton-Jacobi-
Belmann equation with linear source terms related to management of energy production with
mixed boundary condition (MBC) are established using a theta scheme with a Galerkin spatial

approximation and the techniques of the residual a posteriori error analysis.

We consider the following evolutionary inequalities: find u (z,¢) such that u € L? (0,T; K (u)),

o4
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u, € L?(0,T; L*(Q2)) and

—Au g = f) =0, 5.1
ot +¢:IE%)7<M( Au' +agu’ — f') =0, in K, (5.1)

where K is an implicit convex set defined as follows:

Wi e L2(0,T, HL (Q)) N C 2(0,T, H' (),
K=< v(z)<l+u*™ «'=0inT, u'=0inT/Ty,
u' (z,0) =u) in Qi=1,..., M.

Q) is a bounded smooth domain in R?, d > 1 and X is a set in R x R? defined as ¥ = [0, T] xQ

with 7' < 4o00. and @} € L*(0,T,L>* (Q))NC °(0,T,H*(Q)), ¢ <1,...,M and the right
hand side f' € (L2(0,T,L*(Q)) N C (0,7, H* (Q)))" . The problem (5.1) can be approxi-
mated by the following system of the continuous parabolic inequalities: find (u',u?,...,up’) €
(L% (0,7, H: (2)))™ solution to

ou’
ot

which is similar to that in (Boulaaras and Haiour [10]) and Boulaaras and Haiour [I1]

+ AW < fiin K,

which investigated the evolutionary free boundary problems. The problem (5.1) can be
transformed into the following system of evolutionary quasi variational inequalities: find
u* € L*(0,T, H} (Q)) solution of

(%, v — u’)Q +a' (u' v —u') > (ff 0 —u)g + (¢ v —u')p,
u'=0in T'/Ty, u'(z,0) = u in Q, (5.2)
ou’
on
where a’ (., .) is the bilinear form defined as: for u,v € H} (Q2) :
a’ (vt u') = (Vui, Vu')—(aiu’, u') and ag € L* (0, T, L> (Q2))NC ° (0, T, H~' (Q)) is sufficiently

smooth functions and satisfy the following condition: ag(¢,z) > 8 > 0, ( is a constant. M

=¢'inTy,i=1,... M,

is an operator given by Mu' = k + i;lfu“ where £ > 0 and g > 0 and I'y is the part of
i#h

the boundary defined by: I'y = {a: € 000 =T such that V¢ >0, z+ ¢ ¢ Q} where 71 is the
normal vector, the symbol (.,.)p, stands for the inner product in L*(Ty) and in (Perthame

[30]) M is satisfying the following proprieties: for all u,v € C'(Q2)

M (bu+ (1 —08)v) > M (u) + (1 —6) M (v),
Foralln € R, M (u+n) = M (u) + 7.
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The system of evolutionary quasi-variational inequality (5.1) has arisen from many scientific,
engineering and economic problems, for examples, heat control problem, Stefan problem, and

American option problem (Bensoussan and Lions [5]).

5.1 The discrete system of parabolic quasi-variational
inequalities

In (Boulaaras and Haiour [10]), the problem (5.2) can be reformulated into the following

coercive discrete system of elliptic quasi-variational inequalities

(b (Uil’@’k,vh B uz,e,k) > (fi, Ok 4 iR, — U?f’k>ﬂ
+( 0k <v _ui,e,k>> ’
O e | (5.3)
on, uy™ = 00+ (1= 6) " € Vi 6 €[0,1],
[ J 0 = 0 (1 0) R Oh = b (1 0)

where
pi <u;‘£0,k7 o — uzﬂ,k) — (u;‘;e,k’ v — uzek) ta (u?{e’k, o — u20k> ’
T o (5.4)
T
and
vi e (L2(0,7, HE () nC (0,7, 5} (),
ik — ) such that vj, k= Pi, k € m, v}, < raMuj, (5.5)

X2

. 0 . ,
v} (., 0) = vipg in Q, avh = " in [y, v; = 0in '\,
Ui

where P; Lagrangian polynomial of degree less than or equal to land rj, be the usual interpo-

lation operator defined by
m(h)

TR = ZU(MZ)(,OZ (x).
5.2 The space continuous for the generalized Schwarz
method

We split the domain € into two overlapping subdomains €2; and €2y such that
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QN =09, 00NN, =T s#t and s,t = 1,2.We need the spaces
Ve=H Q)N H Q) ={ve H(Q) : vsg,non =0} and

Ws=Hi(s) ={vr,, veVy and v =0o0n 0Q,\I's}, which is a subspace of
H2(T,) = {¢ € LAT,) : ¢ = ¢p, for p € V,, s =1,2}, with its norm

lellw. = inf llvll, o - We define the continuous counterparts of the continuous
s veEVsv=p on 'y ’

M=~

o

Schwarz sequences by ui’k’mﬂ € (H} (Q))M, m=20,1,2,...,i = 1,..., M solution of

(

i (. i,0,km+1 1,0, k,m+1
C’L u’le k,m+ , _ u’i: k,m+ Z
i,0 [, 50,k—1,m+1 i,0,k,m+1 i 1,0, k,m+1
(F (ul ),v—ul ) +(<,0,U—u )r’
i,0,k,m+1 & ’ (5.6)
u =0, on 8Q1ﬂaQ:an—F1,
1,0, k,m+1 i,0,k,m
8U1 i.0,k;m+1 8“2 i,0,k,m T
+ ajuy = —— t oy on Iy,
om om
where 7, is the exterior normal to €25 and «; is a real parameter, s = 1,2. In the next

sections, our main interest is to obtain an a posteriori error estimate, we need for stopping
the iterative process as soon as the required global precision is reached. Namely, by applying
Green formula in Laplace operator with the new boundary conditions of generalized Schwarz

alternating method, we get
i,0,k 1 i,0,k 1 0,k 1 i,0,k 1
_A uZ7 k,m~+ v — uZ7 k,m~+ — vu27 Jk,m+ v v — uza kmA+
1 ) 1 Q 1 ’ 1 Q
1 1

1,0,k,m+1 1,0, k,m+1
Ouy i,0,k,m+1 Ouy i,0,k,m+1
—| —— 1~y + | —— v —uy
o0 -1 r

0771

1
i,0,k,m+1

ouy

i,0,k 1 i,0,k 1 i,0,k 1
— (Vu;_’ kym+ ’v (,Ul _ u’;j kom+ )) _ 7U1 _ u,iv kom+
Q1 8771

I'
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thus we can deduce

1,0,k,m+1 1,0, k,m+1
Ouy i,0,k,m+1 duy i,0,k,m+1
—| —=— 1 — 1y + y U1 — Uy
om o
o1 —T' r,
i,0,k,m+1 ,0.k,m+1
= (Va9 (v - )
Q1
8 7,0, k,m+1
Ug i,0,k,m i,0,k,m+1 i,0,k,m+1
——— + Q1 Uy — Uy , U1 — Uy
Ony

Iy
1,0,k,m+1 4,0, k;m+1 ,0,km+1 4 4,0, k;m+1
= (Vul ,V(vl—ul ))Q + <a1u1 , U] — Uy )

i,0,k 1 i,0,k 1 i,0,k 1 i,0,k 1
— <vu7i? k,m+ , v <U]_ _ u7i7 kymA+ >> _|_ <alu217 kym+ , U]_ _ u117 kymA+ )
Q1 Fl

ry

aui,e,k,m+1
2

— | ———+au

i,0,k,m
2
om

'797k7 1
ub”tmE

, U1 — 3

Iy
thus the problem (5.6) equivalent to; find ui’e’k’mﬂ € Vi such that

7,0, k,m+1 1,0,k,m+1 i,0,k,m 1,0, k;m+1
c(uf , U1 — Uy )+ <a1u1 , U1 — Uy )F
1

,0,k—1,m+1 0,k m+1 ; j,0,k,mA+1
> (F(’(uﬁ’ Rolmly gy fkme ) X (SOZ’U _ yiemt )
(o I (5.7)
8ui,9,k,m+1
2 1,0,k,m 1,0,k,m+1
+ gy , U1 — Uy Vo, e Vg
om
I
i,0,k,m+1
and we have u3”"" " €V},
i 1,0, k;m4+1 1,0,k,m+1 1,0, k,;m~+1 i,60,k,;m+1
(us , Vg — Us )+ <a2u2 , Vg — U )F
2
i, 60,k—1m+1 50, kmA1 i, 0,0, km+l
> (F (ug ), Uy — Us o, + (go LU — U >Fo (5.8)
a i,0,k;m~+1
Uy i,0,k,m i,0,k,m+1
B + oy , Uy — Us
T2

I
5.3 A posteriori error estimate

To define the auxiliary inequalities, we need to split the domain € into two sets of disjoint
subdomains : (€, €3) and (s, Q4) such that Q = Q; UQ3, with QN3 =2 Q=0 UQy
and Q, N Qy = ¢. Let (ub™™, u3™™) be the solution of problems (5.6), we define the couple

(u"™ u™™) over (Qy,3) to be the solution of the following nonoverlapping inequalities
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ui,k,m+1 ui,k—l,m—i—l
- 1,0,k 1 ik 1,0,k 1 i i,0,k—1 1 .
1 Atl _ A ’U/’i’ kom+ + a//av ,u/? kym+ Z F ,0 <u§-7 ) ym+ ) in Ql’
1,0,k 1
uftmT =0, on 00, NOQ, k=1,...,n, (5.9)
i,0,k;m+1 1,0,k,m+1
duy i0,km Ous i,0,k,m
— t+auy = + oy , on Iy
om om
and
ui,k:,erl ui,kfl,erl
- 1,0,k 1 ik 0.k 1 i,0,k—1 1) -
3 At'?’ _ A UZ3’ Jkym+ + a/’(L)z u37 ym—+ 2 F@ <ug ) ,m—+ )ln 937
1,0,k 1
us? m+l 0, on 9Q3 N A9, (5.10)
1,0, k,m+1 1,0,k,m+1
Oug i,0,k,m . Ouy i,0,k,m
2 — 1
+ asusg on I’ + asuy ,onT

on
,0,k;m _ 4,0,k;m41 i,0,k;m~+1
1 = U - U3

ons
It can be taken € on I'y, the difference between the overlapping
and the nonoverlapping solutions u;ﬂ”‘”m*l and u§’97k7m+1 of the problem (5.6) and (resp.,(5.9)
and (5.10)) in 3. Because both overlapping and the nonoverlapping problems converge see
(Otto and Lube [29]) that is, u5®*™ ™ and u5”® "+ tend to ui®" (resp. us”"), then "™

should tend to naught when m tends to infinity in V5 . By taking

] aui,e,k,m » ] aui,ﬁ,k,m »
Ag,k,m _ 2 + alug ,k,m, Azl,k,m — 1 + 043u21’ ,k,m7
o ons
i,g,k,m 1,0,k,m
ou Oe
i,k i,0,k i,0,k
AP = —5 + aquy M+ —é + e, (5.11)
1 1
aui,g,k’,m "
ikm _ 1 i,0,k,m

Using Green formula, (5.9) and (5.10) can be reformulated to the following system of elliptic

variational equations
C(uil,e,k,m—&-l’ vy — ui,ﬁ,k,m—&—l) 4 <a1u§,0,kz,m’ vy — uzfe,k,mﬂ)

> ( Fb(qb0hmdy oy uilﬁ,k,mﬂ)

k, 0.k,m+1
+ (AS™ vy — T Yo e Vp
3 1 -
1

I

4 (SOi,U B uzi,&,k,erl) (5.12)

1 o

and

1,0,k,m+1 1,0,k,m+1 1,0, k,m+1 1,0, km+1
c(ug , U3 — Uy )+ (a3u3 , U3 — U )F
i 1,0, k—1 1 1,0,k 1 i 1,0,k 1
> F”e(ul’ , ,m+ ) Vs — ub? ,m+ + (pz v — ub? ym+ (5'13)
3 ’ 3 Q3 ) 3 r
0

-7k7 A797k7 +1
—1—<AZ1 "y —ug " )F Vs € V.
1
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On the other hand by taking

aez ,0,k,m
ik .0,k
9? s — + alei’ ? ’m7 (514)
om
we get
i,0,k,m i,0,k,m i,0,k,m
.0,k ug 0.k, d(u — U 6.k, .0,k
Ag,,,m: —|—ozu§ m_'_ (2 3 >+061(U12 m_ug,,m)
om o
auz ,0,k,;m 6€i,k,m
i,0,k ik
= + oquf”M 4 T e (5.15)
agl om
- 0.k i k
=3 4 alug e
8771
Using (5.14) we have
auz ,0,k,m 8UZ ,0,k,m
Jomtl 0,k i k,m+1 0.k i k,m+1
Az ,m—+ s B alug ,m 0;’ m+l o F73 + Oélug ,m 9;, ,m—+
o ok ons
Z ,m
i0km  Ouy i,0,k,m Ok | gikanl (5.16)
= QU - —— — a3U + aqug + 0,
8773
i,0,k,m i,k,m i,k,m~+1
and the last equation in (5.16), we have
i,0,k,m 1,0,k,m
0 0
Abkmtl Uy i.0,km i0km  OUy i,0,k,m
1 = ——F—— + asuy = U — — Uy +
om a771 (5.17)
0,k 0.k, .0,k ik i k,m+1
qulf sk, _'_ a uz m (CYl _'_ a3)u;7 sk, . A;; s + 6;7 ,m+ .
Lemma 5.3.1 [(Perthame [50]) Let uf = uk_, efkmtl = o f0kmtl _ 4k
and nfmtl = ABmFEL AR Then for s,t = 1,3,s # t, we have
Ci(@ie’k’erl, Vg — 62,9,k,m+1) + (Of 62 0, k;m—+1 Vg — ei,k,erl)Fs
(5.18)

i,k,m ik 1
:<nt 7Us_€? m )F ’vvse‘/s
S

and

(00, = o, (27, + (2709, v 60

Theorem 5.3.1 [(Perthame [70]) We have

z@km+1 ,0,k

i,0,k;m+1 1,0,k
LW — Ui

+ Hush — Usp 3,h

8. H L0 kmtl i km

HLQl ‘1,93 le ’
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0,0,k m+1 szH ‘ 1,0, k,m+1 1,0,k ‘ i,0,k,m+1 i,0,k,m
U —u + || —u < Cllu —u )
’ 2,h 2h {1 0, 4,h 4l g, 2,h 4,h Wa
and
i,0,k,m+1 1,0,k ‘ i,0,k,m 0,0,k i,0,k,m+1 i,0,k,m
u777 _u77 + u777 _u77 <C ‘u777 _u’vv H
’ 1,h Lh ||y, 2,h 20 |1.q, ( 1,h 2,h W
0,k 0,k j k1 i k1
b b W2 b W1 b W2

Theorem 5.3.2 Let ub?* = %% | where u is the solution of problem (5.1), the sequences

<u§’7€;k’m+1,u;’7€;k’m>m6N are solutions of the discrete problems (5.12) and (5.13). Then there

exists a constant C' independent of h such that

2
1,0,k,m+1 1,0,k i,60,k,m i,0,k T
‘ul,h ! +‘U2,h Uy <C E E (n)) + e, ¢
1,9 1,02 -
i=1Ter,
where
n. = ‘ L ui,G,k,*—lH I ’ ik
re = ||Uns — Ung ih
s W}L,s W}L,s
and
7,0, k—1,% 1,0,k—1 1,0,k *
T F(”hs >+uhs + % auhs
ns = hr iek’* k 1,0,k +ZhE 37
Ay T — (1+ Aagy) Up g Eeey, &2 0,E

0,1

where C' is a constant independent of h and k and the symbol x 1s corresponds to m + 1 when
s =1 and to m when s = 2.

Proof. We have by using the triangle inequality

0k 1,0,k

. 0,0,k ik
Ug uh,s

1,0,k 1,0,k ,x
Ug uh,s U’s,h

2
—u <> Y
h.s 1,0, 1,0,

s=1 s=1 s=1

(5.20)

I)QS

The second term on the right-hand side of (5.20) is bounded by

To bound the first term on the right-hand side of (5.20) we use the residual equation and the

technique of the residual a posteriori error estimation (Otto and Lube [29]) , to obtain for
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vy € Vh
( )
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a (uh ] tup st p A uy

<>/ .0k (vs = vn,s) ds

TCQsT (1 + uam) (9

ECI'sE 37713
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where F? < 29 k) is any approximation of £ (u;“) Therefore,
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Using the following fact
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we get

2 2
Zc(uiﬂ,k uﬁfs’f, v, + chtT) < Z (Z n;;T) Z ||Us||1,szs , (5.22)
s=1

s=1 s=1 TCQs

Finally, by combining (5.20) and (5.21) the required result follows. m
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Conclusion

In this thesis, a maximum norm analysis of a nonmatching grids method combined with a finite
element time scheme as well as Galerkin spatial method for parabolic equation with linear
source term and with nonlinear source terms. Also, an a posteriori error estimates for the
generalized Schwarz method with Dirichlet boundary conditions on the interfaces evolutionary
HJB equation with second order boundary value problems are derived using the same previous
mentioned method. Furthermore, a result of asymptotic behaviors for all previous problems
on uniform norm are deduced by using Benssoussan-Lions’ algorithm. In the next works. The
geometrical convergence of both the continuous and discrete corresponding Schwarz algorithms
error estimate of a new class of non linear elliptic PDEs will be proved and the results of some

numerical experiments will be presented to support the theory.
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