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كر و 
رش  دي  ق   ت 

 ذي بدء نشكر الله العلي القدير، القوي المتي  بادئ 

 نحمده حمدًا كما ينبغي لجمال  على توفيقه لنا في انجاز هذا البحث و 

 وجهه و عظيم سلطانه مصداقاً لقول 

 من سورة البقرة[152لِي وَ لََ تكَْفُرُونَ “]الآية  عزّوجل: “وَ اُشْكُرُوا

 بلعزيزية عبد الناصر"   " الفاضل الدكتور موصول لأس تاذنا  الشكرو 

كما   قراءة الموضوع و الكثير، في الاشراف و التوجيه  وقتهالذي منحنا من جهده و  

من ساعدنا من قريب او من بعيد و كانوا   الى كل نتقدم بالشكر والعرفان 

  موجهي لنا دائما.و  مرشدين



 

 

لم تتهاون يوم في ثوفير سبيل  وإلتي لربة إلأسرة، لى خالدة إلذكر، إلتي وإفتها إلمنيَّة منذ س نة، وكاهت خير مثالإ  

 ." أُمي إلحبيبة " ،إلخير وإلسعادة لي

 "وإلدي إلفاضل"ليُوفر لي كل الامكاهيات في مسيرتي إلدرإس ية، وثعِبإلى من تحمل إلمشلة 

لى من أأعتمد عليهما   "إلمحُترمان أأخويَّ “ ،كبيرةو  صغيرةفي كل إ 

بُل حياتها وإلنجاحإلى من إتمنى لها إلتوفيق   "إختي إلعزيزة"،في كل س ُ

ُّهم وأأحترمُهم لى أأصدكائي ومعارفي إلذين أُجل لى أأساثذتي في إلكلية ...إ   ...إ 

 ...إلى كل من علمني حرفا في هذه إلدهيا إلفاهية

                             أُهديكم عملي إلمتوإضع.

ما ي 
ش  ش   ءوحي 



 

 

ا طيبا مباركا فيه   خير من نطق  خير المرسلير   على والصلاة والسلامالحمد لله حمدا كثير
حبيبنا المصطف 

 :عدب اماوالصواب  بالهدى

بنطق المنطق، الحمد لله الذي  العقل وزيننا  وملكنا عقالالعلم،  وحلانا حليةالحمد لله الذي احلنا محلة الفهم 

 التوفيق سبحانه أحسنولا قوة، ووفقنا فيه  منا حول الرزق هذا من غير  خير  ورزقنا بلغنا مبلغنا هذا 

 .وتعالى

ي لسندي وقرة 
، لنبض  ي

، عين  ي ي قلن 
 
ي على الدراسة  ومن اعزها ف

، لمن حثن  ي وملهمي
ي فيها لقدوت 

 ،وساندت 

 .ادامهم الله تاجا على رأسي  

ي 
ي حفضهم لإخوت 

ي ورعاهمالله  واخن 
ي على تعلمه،كل   الكرام إلى، الى اساتذت 

ي حرفا او اعانن 
 من علمن 

 م0202الى كل قسم الهندسة الميكانيكية وكل دفعة 

، الشيخ جامعة  ي التبسي  .تبسة الشهيد العرت 

ي ونسيه قلمي وكل من كان له  ي  أثر الى كل من احبه قلن 
ي حيات 

 
 .طيب ف

 

ودة   ومعق  ماء ب  ي   ش 
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Abstract 

Natural convection in inclined square enclosure filled with a nano fluid is studied numerically 

using finite volume method. Our results were based on the effect of: Rayleigh number    

      , volume fraction of nano particles       , anclinaision angle        , 

and the type of nanoparticules (Cu, Al2o3, and Au) on heat transfer, fluid structure and 

velocity flow in the enclosure.  The obtained results show that heat transfer rate increases 

with the increase of Ra or φ. Heat transfer is greater with Cu-water nano fluid and it reaches 

the maximum value when the inclination angle   =30°.  

Keywords:  Natural convection, Nano fluid, inclination angle, Laminar flow, Cartesian 

geometry, Volume method. 

Résumé 

La convection naturelle dans une cavité carrée inclinée remplit par un nano fluide est étudiée 

numériquement par la méthode des volumes finies. Nos résultants ont été basées sur 

l’influence des paramètres: nombre de Rayleigh          , la fraction volumique des 

nanoparticules       , l’angle d’inclinaison          et le type des nanoparticules 

(Cu, Al2o3, Au) sur le transfert de chaleur, la structure d’écoulement et la vitesse de 

l’écoulement dans l’enceinte. Les résultats obtenus montrent que le taux du transfert de 

chaleur augmente avec les nombres Ra et φ. Le transfert de chaleur et meilleur avec le nano 

fluide à base d’eau formé par les nano particules métallique (Cu). Il atteint son maximum 

avec l’angle d’inclinaison   =30°.  

Mots clés: Convection naturelle, nano fluide, angle d’inclinaison, écoulement laminaire, 

géométrie cartésienne, Volume finie. 

 الملخص

قمىب بدراست ػددٌت ببستؼمبل طزٌقت انحجىو انمىتهٍت نهحمم انطبٍؼً داخم تجىٌف مزبغ انشكم مبئم و 

, انىسبت            ممهىء بمبئغ وبوىي. تتمحىر اندراست حىل ابزاس اثز الاػداد: راٌهً

و وىع  انجسٍمبث          , ساوٌت انمٍلان         انحجمٍت نهجسٍمبث انىبوىٌت 

( ػهى وسبت اوتقبل انحزارة وكذا شكم وسزػت انجزٌبن. انىتبئج انمتحصم Cu, Au, Al2o3انىبوىٌت ) 

. اوتقبل انحزارة ٌكىن اكبز فً حبنت  φو  Raػهٍهب تبٍه ان وسبت اوتقبل انحزارة تشداد مغ سٌبدة الاػداد 

 °.03ث انمؼدوٍت و ٌكىن اػضمٍب فً حبنت ساوٌت انمٍلان تسبوي انمىائغ انىبوىٌت انمشكهت مه انجشٌئب

, انىظبو انمستقز , انشكم   ساوٌت انمٍلانانمبئغ انىبوىي ,  , انحمم انحزاري انطبٍؼً :الكلمات المفتاحية

 انحجىو انمىتهٍت.طزٌقت , انهىدسً انكبرتٍشي
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INTRODUCTION 

Thermal transfer is embodied as a process of transferring thermal energy from one object or 

system to another, as its importance has emerged in engineering and technology for the design and 

operation of various systems such as cooling and heating systems in buildings, vehicles and 

electronic devices. 

Nanofluids are liquid materials that contain nanoparticles that can improve the thermal properties 

of liquids, increase heat transfer efficiency, and reduce energy consumption, which distinguishes 

nanofluids from other fluids. 

The idea is introducing nanoparticles into the base fluid in order to increase the thermal 

conductivity of the mixture. Therefore, this improvement in heat transfer makes nanofluids a 

promising new technology in the context of heat transfer, which makes it possible to improve the 

performance of various heat exchangers. 

Heat transfer by convection is the main objective of many works. A large number of 

researchers conducted a large number of numerical and experimental tests related to the description 

of the phenomena that govern convection and the impact of the nature of the systems in which it 

occurs (especially engineering). 

In this study we will be particularly interested in studying heat transmission in a square 

cavity, filled with a nanofluid, and subjected to horizontal temperature gradient. Finite volume 

method is used to solve the governing equations. The effect of Rayleigh number, volume fraction 

of  nano particles in the base fluid, and the inclination angle on convection heat transfer in the 

enclosure is studied. The effect of the type of nano particles is also considered.  

Our study is divided to four chapters: generality about nanofluids, geometry and mathematic 

formulation, numerical method, results and discussions, and finally a conclusion.  



 

 

 

 

Chapter I 

Generalities 

of nanofluids 
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I.1 Introduction 

Nano fluids are a new generation of mixtures, while many studies have been carried out to 

better understand their properties, further studies are still needed. A brief overview of the 

developments on the subject has been collected in this part. It does not cover all field work, but it 

shows the complexity of the problem of the properties of nanofluids and the wide range of efforts 

which have been dedicated to solving it
 [1]

. 

Nanofluids are colloidal solutions made up of particles of nanometric size suspended in a 

carrier liquid. This type of solution has aroused great interest since the discovery of their particular 

thermal properties. Indeed, base fluids often used in cooling or heating applications have 

conductivities very low thermals which limit their ability to transfer heat. The idea then is to insert 

very high conductivity nanoparticles into the base liquids, in order to increase the effective thermal 

conductivity of the mixture and thus improve its thermal performance. 

The choice of base liquids is essential for nanofluids, it ensures the stability of the 

suspension in time and to avoid any phenomenon of aggregations, the selection of such a fluid will 

be ironed depending on the nature of the nanoparticle, the most used solvents are: 

• The water. 

• Ethylene glycol, EG. 

• The oils. 

• Toluene. 

• Refrigeration fluids. 

I.2 Nanoparticles and carrier fluid 

Nanoparticles are particles whose 3 dimensions are in the range 1-100 nm approximately. 

Nanomaterials are objects in which at least one of their three dimensions is nanometric, i.e. less than 

100 nm. However, this definition is still in Discussion and some definitions speak of nanoparticles 

as soon as one or two of their dimensions is less than 100nm. 

The basic liquids generally used in the preparation of nanofluids are those used common in 

heat transfer applications such as water, ethylene glycol, oil...Finally the nanoparticles can be based 

on metals, oxides, carbides, nitrides or carbon
 [2]

. 
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Figure (I.1): Nanoparticles in a pipe. 

I.2.1 Nanoparticle size 

The manufacturing processes are of a physical or chemical nature. They are the subject of 

much of research to improve the cost of production which remains sometimes high considering the 

difficulties of implementation and to obtain particles of the desired size. Various chemical and 

physical techniques are physical techniques are available to elaborate nanoparticles. These different 

methods make it possible to obtain free or coated nanoparticles, encapsulated in a host matrix. If the 

idea of using solid particles in suspension to improve heat exchange is old, since it stems exchange 

is old, since it stems in particular from Maxwell's  

Analytical studies around 1873 
[3]

, it is only since the 1990's that the use of nanoscale 

particles has been studied. Nanometer scale particles have been studied. This has been made 

possible by the development of particular and innovative manufacturing processes. 
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I.2.2 The physical terms of nanoparticles 

 Metallic nanoparticles : 

To:       and P =1 atm 

Table (I. 1): The physical terms of metallic nanoparticles. 

nanoparticle Tailed (nm) 
Density 

           

heat capacity 

                

thermal 

conductivity 

              

aluminum 20-26 2719 871 202.4 

Copper 60-80 8960 380 401 

gold (Au) 10 19300 150 320 

silver (Ag) 18 10500 235 429 

Silicone (Si) 19 2329 280 148 

iron (Fe) 20 7870 447 80.2 

Nickel 20 8900 444 90.7 

Sic 40 3160 775 490 

Pt 15 21450 133 71.6 

Ir 10-25 22500 130 147 

 

 Nonmetallic nanoparticles  

To:        and P=1 atm 

Table (I. 2): The physical terms of non-metallic nanoparticles. 

non-metallic 

nanoparticles 

 

Density 

           

heat capacity 

                

thermal 

conductivity 

              

CNT 
depending on the 

number of fibers 

depending on the 

number of fibers 
2500 

Diamante  (C) 3500 509 2300 
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 Oxide nanoparticles: 

To:       and P=1 atm 

Table (I.3): The physical terms of oxide nanoparticles. 

nanoparticles Tailed (nm) 
Density 

           

heat capacity 

                

thermal 

conductivity 

              

AL2O3 20-50 3970 765 50 

SiO2 20 2650 745 13.4 

CuO 40 6315 350 76.5 

CO 20 8865 421 99.2 

TiO2 10-30 4157 710 7.9 

 

 Base fluid 

To:      , P=1 atm 

Table (I.4): The physical terms of based fluid. 

Fluid 
Density 

           
heat capacity 

                

thermal 

conductivity 

              

dynamic 

viscosity 

         

water 1000.1 4182 0.613           

Ethylene glycol, 

EG. 

 

1132 2349 0.258         

R12 (liquid) 1194.9 0.965 70.95*10           

R134a (liquid) 1196.2 1.41 84.4*10          
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 thermo-physical properties of Nano fluid (water+CuO) for different 

concentrations 

To:       and P= 1 atm 

Table (I.5): Thermo-physical properties of Nano fluid (water+CuO). 

 

 

 

 

I.2.3 Different types of nanoparticles 

The production of new nanomaterials (nanoparticles) is a rapidly growing field of research.  

Field, so only the most commonly used nanoparticles in heat transfer applications are briefly 

mentioned here. Applications are briefly mentioned here
 [3]

. 

Generally speaking, nanoparticles can be classified according to their form into two main 

categories: 

1. Spherical nanoparticles for which several types of materials can be used for their 

fabrication for their manufacture. These spherical nanoparticles can be based on metals (copper Cu, 

iron Fe, gold Au, silver Ag...) or copper oxides (aluminum oxide Al2O3, copper oxide CuO, 

titanium oxide TiO2...).  

2. Nanopipes (Carbone nanotubes CNT, titanium Nanopipes TiO2, silicone Nanopipes...).  
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I.3 Methods of preparing Nanofluids 

Nano fluids are produced by several techniques: first step, second step, and other techniques. 

To avoid the sedimentation of nanoparticles during its operation, surfactant may be added to them. 

Nano fluid preparation is the first step ahead of any implementations. Therefore, it entails more 

focus from researchers to obtain a good stage of stability. Colloidal theory states that sedimentation 

in suspensions ceases when the particle size is below a critical radius due to counterbalancing 

gravity forces by the Brownian forces. 

Nanoparticles of a smaller size may be a better size in the different applications. However, it 

has a high surface which leads to the formation of agglomerates among them. Therefore, to obtain a 

stable Nano fluid with optimum particle diameter and concentration, it is considered a big challenge 

for researchers. Two common methods are used to produce Nano fluids, the two-step method and 

the one step method, and others have worked up some innovations
 [4]

. 

I.3.1The two-step method 

The two-step method is the common method to produce nanofluids. Nanoparticles of 

different materials including Nano fibers, nanotubes, or other Nanomaterials are first produced as 

Nano sized from 10 to 100 nm by chemical or physical methods. Then, the Nano-sized powder will 

be dispersed in base fluids with the help of intensive magnetic force agitation, ultrasonic agitation, 

high-shear mixing, homogenizing, and ball milling. As resulting from high surface area and surface 

activity, nanoparticles tend to aggregate reflecting adversely on the stability of nanofluids. To avoid 

that effect, the surfactant is added to the nanofluids
 [4]

. 

 

 

Figure (I.2): Block diagram of preparation of two-step method
 [5]

. 
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I.3.2 One-step method 

The one-step process is simultaneously making and dispersing the particles in the base fluids 

which could be reduced to the agglomeration of nanoparticles. This method makes the nanofluids 

more stable with a limitation of the high cost of the process. 

 

Figure (I.3): One-step process presentation 
[5]

. 

I.4 Thermo physical properties of Nano fluids 

Nano fluids have novel properties different from base fluids that included thermo physical 

properties such as specific heat, density, viscosity, and thermal conductivity. Mixing the 

nanoparticles into a base fluid changes its thermo physical properties. The most important thermo 

physical properties of Nano fluids are Nano fluid viscosity, Nano fluid convective heat transfer, 

Nano fluid thermal conductivity, and Nano fluid specific heat. 

The value of specific heat and density of the Nano fluids can be determined by correlations, 

whereas the viscosity and thermal conductivity have different correlations
 [4]

. 
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Figure (I.4): The thermal conductivity of different base fluids and 

Solids materials at 298, 15 K 
[5]

. 

I.4.1 The volume fraction (φ) 

The volume fraction is the most important property for the nano-fluid, since the calculations 

of all the other properties are based on the volume fraction of the nano-fluid. Nonetheless, we can 

define the volume fraction as the volume of solid or particle (nano-particles) over the total volume 

(nano-particles + base fluid). The value of the volume fraction is varied between 0 (pure base fluid) 

and 1. The volume fraction is given by the following relation: 

                                                     
  

  
                                                                                         (I.1) 

  : Volume of solid (Nano-particles). 

  : Total volume. 

The physical-thermodynamic properties of nano-fluids depend mainly on the quality of the 

base fluid and the quality of the dissolved nano-particles in the basic liquid. Among the parameters 

that control the determination of the properties of the nano-particle: thermal conductivity, dynamic 

and kinematic viscosity, specific heat capacity, etc. In addition to that the shape, diameter of Nano-

particles, the concentration of suspended particles and the temperature of the Nano-fluids also 

influence the physical properties of the Nano-fluids
 [5]

. 
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Figure (I.5): thermophysical properties of Nano fluids. 

I.4.2 The density 

The density of a perfectly homogeneous Nano-fluid is determined (good dispersion of the 

Nano-particles in the fluid) as a function of the volume fraction φ at a given temperature T, is made 

from the definition of the density of a mixture
 [5]

. 

We then reduce the density of the Nano-fluid: 

                                                                                                                               (I.2) 

I.4.3 Specific heat 

Specific heat is one of the essential properties and has an essential role in influencing the 

thermal transfer rate of Nano fluids. Specific heat is the quantity of heat needed to raise the 

temperature of one gram of Nano fluid by one degree centigrade .Sang and Liu conducted studies 

with four different nanoparticles (SiO2, CuO, TiO2 and Al2O3) to investigate the specific increase 

in heat capacity of ternary carbonate. Their experimental data asserts that the SiO2 nanoparticle is 

the best particle to improve the specific heat capacity of ternary carbonate Nano fluids, and they 

showed that the specific heat capacity of the Nano fluid depends mainly on the type of nanoparticle 

and the nanostructure. Sardinia et al. experimented with the specific thermal capacities of CuO-

based oil Nano fluids with particle weight fractions of 0.2–2% at different temperatures. In this 

experiment, the Nano fluids showed a less specific heat capacity than the base fluid, and it 

decreased with the increasing concentration of the Nano fluids. This result indicates that the specific 

heat of Nano fluids at a fraction of 2% by weight is about 23% lower than that of the base fluid at 

40 °C. The specific heat of a Nano fluid is determined by two formulas.  
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 Or the first is estimated by Pak and Cho (1998) as follows: 

                              (  )  
                                                                                   (I.3) 

 Or the second is estimated by Xuan and Roetzel (2000) as follows: 

                    (   )  
                                                                            (I.4) 

I. 4. 4. The thermal expansion coefficient 

In the context of our study, we are only interested in incompressible fluids (density 

independent of pressure). This variation in density under the action of temperature is characterized 

by the coefficient of thermal expansion, also called the coefficient of expansion(Bejan,) 

To calculate the value of this coefficient for Nano-fluids, we use this expression: 

                                                                                                                          (I.5) 

Kim et al. assumed that the coefficient of thermal expansion of the fluid     is much greater than 

that of solid Nano-particles    . They reduced equation to the following simplified form
[5]

 

                                                                                                                                  (I.6) 

I.4.5 Thermal conductivity 

 The thermal conductivity, noted              , is the ability of a material to conduct or transmit 

heat, the thermal conductivity is improved by several tens of percent compared to that of the base 

fluid: 

 Maxwell model : 

The effective thermal conductivity of the nanofluid is approximated by the Maxwell auto-coherent 

approximation model. For the two-component entity of the spherical particle suspension .The model 

of Maxwell (1873) is given by the following formula: 

                                                   
                  

                 
                                                             (I.7) 
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Where   the thermal conductivity of the particles is,    is the effective thermal conductivity of 

Nano fluid,     is the base fluid thermal conductivity, and   is the volume fraction of the 

suspended particles
[6]

. 

The Hamilton-Crosser model and the Yu-Choi model, which consider the spherical form of 

nanoparticles: 

 Hamilton & Crosser Model (1962): 

The Hamilton and Crosser model was established to resolve the Maxwell model limit. Since the 

latter only applies to spherical particles. The apparent thermal conductivity of the medium is given 

by the following expression: 

                                          
                          

                     
                                                         (I.8) 

Or (n) is an empirical form factor given by 
 

 
. 

n=3 for spherical particles and n-6 for cylindrical particles. 

For ( =1) (spherical particles) the Hamilton and Crosser model is identical to the Maxwell model.  

 Yu and Choi Model: 

Another expression for calculating thermal conductivity was introduced by Yu and Choi (2003) 

.They proposed to model Nanofluids as a basic liquid and solid particles separated by a nanometric 

layer, this layer acts 

                                    
    

   
 

                        

                        
                                                                  (I.9) 

 : Ratio of the thickness of the nanometer layer to the particle radius. 
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I.4.6 Viscosity 

Viscosity is an important factor for thermal applications involving fluids. In addition, heat 

transfer by convection is influenced by viscosity. As a result, viscosity requires the same attention 

as thermal conductivity because of its very significant impact on heat transfer. The viscosity of 

nanofluids increases mainly by increasing the concentration of nanoparticles and decreases by 

raising the temperature. Several viscometers with various functional bases have been employed to 

measure the viscosity of nanofluids, such as the capillary tube viscometer, Vibro viscometer, 

rotational rheometer, drop/fall ball, piston viscometer, and cup viscometer. Among others, the 

rotary rheometer, piston rheometer, and capillary tube viscometer are the most commonly used 

devices for viscosity measurements of nanofluids. Moghaddam et al. prepared graphene and 

glycerol-based nanofluids and performed experimental measurements of the rheological properties 

of the nanofluids. These results indicate that the viscosity of graphene-glycerol nanofluids is 

dependent on mass fraction and temperature. The viscosity improves with increasing mass fraction 

and decreases with increasing temperature. In this investigation, the 401.49% increase in viscosity 

of glycerol was obtained by loading 2% of graphene Nano sheets at a shear rate of 6.32 s−1 and 20 

°C. Einstein studied the dynamic viscosity of a Nanofluid for a mixture consisting of dilute 

suspensions of fine, spherical particles. 

The expression that characterizes this model is the following
 [6]

: 

                                                                                                                                        (I.10) 

With     and    are respectively the dynamic viscosities of the Nanofluid, the base fluid and  the 

volume fraction of the nanoparticles. 

 Brinkman model : 

Later, brinkman (1952) presented a viscosity correlation that extended Einstein’s equation to 

suspensions with moderate particle volume fraction, typically less than 4% 

                                                   
   

        
                                                                          (I.11) 
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 Batchelor model : 

The effect of Brownian motion on the effective viscosity in a suspension of rigid spherical 

particles was studied by Batchelor (1977) for isotropic structure of suspension, the effective 

viscosity was given by: 

                                                                                                                         (I.12) 

I.5 Heat transfer applications: 

 Industrial Cooling Applications: Routbort et al. [9] started a project in 2008 that 

employed nanofluids for industrial cooling that could result in great energy savings and 

resulting emissions reductions. For U.S. industry, the replacement of cooling and heating 

water with nanofluids has the potential to conserve 1 trillion Btu of energy. For the U.S. 

electric power industry, using nanofluids in closed loop cooling cycles could save about 10–

30 trillion Btu per year (equivalent to the annual energy consumption of about 50,000–

150,000 households). The associated emissions reductions would be approximately 5.6 

million metric tons of carbon dioxide; 8,600 metric tons of nitrogen oxides; and 21,000 

metric tons of sulfur dioxide.  

 For Michelin North America tire plants, the productivity of numerous industrial processes is 

constrained by the lack of facility to cool the rubber efficiently as it is being processed. This 

requires the use of over 2 million gallons of heat transfer fluids for Michelin’s North 

American plants. It is Michelin’s goal in this project to obtain a 10% productivity increase in 

its rubber processing plants if suitable water-based nanofluids can be developed and 

commercially produced in a cost-effective manner.  

 Han et al. [10] have used phase change materials as nanoparticles in nanofluids to 

simultaneously enhance the effective thermal conductivity and specific heat of the fluids. As 

an example, a suspension of indium nanoparticles (melting temperature, 157◦C) in 

polyalphaolefin has been synthesized using a one-step, nano emulsification method. The 

fluid’s thermophysical properties, that is, thermal conductivity, viscosity, and specific heat, 

and their temperature dependence were measured experimentally. The observed melting-

freezing phase transition of the indium nanoparticles significantly augmented the fluid’s 

effective specific heat. This work is one of the few to address thermal diffusivity; similar 

studies allow industrial cooling applications to continue without thorough understanding of 

all the heat transfer mechanisms in nanofluids. 
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I.6 Uses of nanofluid 

Nano fluids can be used to improve heat transfer and energy efficiency across multiple thermal 

systems. Here are a few examples of applications: 

 Cooling thermal systems: 

The mixture of ethylene glycol and water, are used as coolant in the engines of vehicles, and the 

addition of nanoparticles in these liquids improves the cooling rate. This point is studied by several 

groups of researchers; Tzeng and Col have dispersed AL203 and CuO nanoparticles in engine 

cooling oil
[11]

. 

 Cooling of electronic systems: 

In integrated circuits, nano-fluids have been considered as cooling fluids, for which several 

studies have been for this purpose several studies have been carried out. Tsai et al used a water-

based nanofluid to cool a central processing unit in a computer
[11]

. 

 Cooling of military systems: 

Examples of military applications include cooling of power electronics and directed energy 

weapons. These involve very high heat fluxes (q>500 to 1000 W/cm2) where nano-fluids have been 

shown to be effective in cooling these systems, and also other military systems including military 

vehicles, submarines and high power laser diodes
[11]

. 

 Cooling of space systems: 

For applications in space. You et al and Vassallo et al have performed studies to show that the 

presence of studies to show that the presence of nanoparticles in the cooling fluid in general 

electronics plays a very important role in space applications where the power density is very power 

density is very high. 

 Cooling of nuclear systems: 

The Massachusetts Institute of Technology has set aside an interdisciplinary center solely for 

new nanotechnology (nano-fluid) in the nuclear power industry. Currently, they are evaluating the 

potential impact of nano-fluid use on the safety economic performance of nuclear systems. 

  



CHAPTER I                                             GENERALITIES Of NANOFLUID 
 

17 
 

 Biomedicine: 

Nano-fluids and nanoparticles have many applications in biomedicine. For example, to avoid 

some side effects of traditional cancer treatment methods, iron-based nanoparticles have been used 

as drug carriers. Also for safer surgery by producing effective cooling around the surgical area, 

Jordan et al. surgical area, Jordan et al. 

I.7 Example applications of nanofluids      

In this is an example about nanofluid application: 

Table (I.6): An example of applications of nanofluid in heat transfer. 

Author Année Parameter Method 

Soufi El Habib. [8] 2013 φ=0.01-0.15 

Ra=103-106 

Volumes Finis 

Configuration Observation 

 

The use of nanofluids to increase heat transfer 

in natural conviction is considered as a novel 

technique that can meet the demands of the 

industry in an efficient manner. The results 

obtained from the numerical study of the 

effects of variation of the volume fraction and 

the Rayleigh number on the performance of 

heat transfer of a nanofluid (Al2O3-water).  

-Increased nanofluid density fraction and 

Rayleigh number can improve the performance 

of convective heat transfer in a given 

geometric cavity.  

The nanofluid is a favorable fluid for cooling 

systems by supplying the other fluid (the base 

fluids). 
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I.8 how can a nanofluid improve heat transfer? 

To improve performance, the thickness of the boundary layer must be reduced as much as 

possible and prevented from growing as much as possible. and prevent it from developing as it 

pleases. To do this, we increase the speed of the fluid (narrow passages, water jets...) or by placing 

small obstacles (peaks, roughness...) to increase the mixing at the level of the wall in particular. All 

this to counteract it as much as possible and push the cold fluid as close as possible to the hot wall 

to increase the exchange the exchange decrease of the thickness of the thermal boundary layer. 

Thanks to its higher thermal conductivity, a nanofluid directly improves the transit of thermal 

energy through the viscous sublayer. The suspension of nanoparticles can significantly modify the 

rheological behavior of the liquid by adopting a particular structural arrangement in the boundary 

layer. Depending on their nature and shape, one can observe a rheofluid can be observed a 

rheofluidizing behavior (decrease of viscosity when the shear rate increases) which tends to reduce 

the apparent viscosity near the wall (lubricating effect).  

This reduction in viscosity induces a decrease in the thickness of the dynamic boundary layer and 

therefore thermal by implication. The result is once again a direct increase of the exchange 

coefficient at the wall 
[12]

. 

I.9The advantages and disadvantages of Nano fluid 

I.9.1 The advantages of Nano fluid 

 The advantage of using Nano-fluids as heat transfer fluids strongly depends on a trade-off 

between increased thermal conductivity (determining in the intensification of convective 

heat transfer) and increased viscosity (determining the undesirable increase in pumping 

power). Future research should therefore be directed towards the selection of materials, 

shape and size of nanoparticles that would increase the thermal conductivity of the mixture 

with a moderate increase in viscosity. 

 A large heat transfer surface between particles and fluids. 

 Reduced clogging particles compared to conventional sludge, thus favoring system 

miniaturization. 

 Adjustable properties, including thermal conductivity and wettability of the surface, by 

varying concentrations of [articulates according to different applications
[13]

. 
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I.9.2 the disadvantages of Nano fluid 

 Lack of agreement on the results obtained by different researchers. 

 Lack of theoretical understanding of the mechanisms responsible for changes in properties 

 Poor characterization of suspensions. 

 Stability of nanoparticles dispersion. 

 Increased pressure drop and pumping power. 

 Higher viscosity, specific heat Low. 

 The high cost of nano-fluids. 

 Difficulties in the production process
[13]

. 

I.10 Conclusion 

It is important to note that preparation of nanofluids is an important step in experiments on 

nanofluids. Having successfully engineering the nanofluids, the estimation of thermo physical 

properties of nanofluids captures the attention. Great quanta of attempts have been made to exactly 

predict them but large amount of variations were found. Research works on convective heat transfer 

using nanofluids is found to increase exponentially in the last decade. Almost all the works showed 

that the inclusion of nanoparticles into the base fluids has produced a considerable augmentation of 

the heat transfer coefficient that clearly increases with an increase of the particle concentration. It 

was reported by many of the researchers that the increase in the effective thermal conductivity and 

huge chaotic movement of nanoparticles with increasing particle concentration is mainly 

responsible for heat transfer enhancement. However, there exists aplenty of controversy and 

inconsistency among the reported results. The outcome of all heat transfer works using nanofluids 

showed that our current understanding on nanofluids is still quite limited. There are a number of 

challenges facing the nanofluids community ranging from formulation, practical application to 

mechanism understanding. Engineering suitable nanofluids with controlled particle size and 

morphology for heat transfer applications is still a big challenge. Besides thermal conductivity 

effect, future research should consider other properties, especially viscosity and wettability, and 

examine systematically their influence on flow and heat transfer. An in-depth understanding of the 

interactions between particles, stabilizers, the suspending liquid and the heating surface will be 

important for applications. 
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II.1 Introduction: 

The study of a physical phenomenon calls for the elaboration of laws in the form of 

mathematical equations coupling of the various variables implicated in the evolution of the 

phenomenon
 [1]

. Generally speaking, these equations are: the continuity equation that reflects the 

principle of mass preservation, Navier-Stokes equations which reflect the principle of momentum 

conservation, and the energy equation which represents the principle of energy conservation. The 

description of a given problem also requires the definition of a certain number of boundary 

conditions.   

II.2 The geometry of the studied problem: 

II.2.1The description of the problem: 

The plot of the model under consideration is shown in the Figure (II-1) with coordinates 

system. A two-dimensional inclined square cavity containing a Nano-fluid. The left and the right 

walls are kept respectively at hot and cold temperature (Th, Tc). The upper and lower horizontals 

walls are insulated. It is assumed that nanoparticles and the base fluid are in thermal equilibrium 

and there is no slippage between them. The thermo-physical properties of the Nano-fluid are 

considered constant with the exception of the density which varies according to the Boussinesq 

approximation. 

 

Figure (II.1): Geometry of the studied model.  
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II.3 Simplifying hypothesis: 

The resolution of governing equations requires a number of simplifying hypotheses, admittedly: 

 Newtonian and incompressible fluid. 

 Two-dimensional flow in Cartesian coordinates (
 

  
   . 

 Laminar and permanent flow rate (
 

  
   . 

 Absence of mass source and chemical reaction. 

 Heat transfer by radiation is negligible. 

 The energy induced by the viscous forces is negligible(    . 

II.4 Mathematical formulation of the problem: 

The mathematical formulation for convective phenomena depends on equations that link the 

various parameters, namely: velocity, pressure and temperature. These equations are obtained in 

special cases from the following general equations (continuity, momentum, and energy equations): 

II.4.1 Continuity equation: 

The continuity equation is simply a mathematical expression of the principle of conservation 

of mass. For a control volume that has a single inlet and a single outlet, the principle of 

conservation of mass states that, for steady-state flow, the mass flow rate into the volume must 

equal the mass flow rate out. The continuity equation for this situation is expressed by: 

                                            
  

  
    (  ⃗ )                                                                           (II.1) 

 ⃗⃗  =     +     +   ⃗  

For an incompressible      ⃗    
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II.4.2 The momentum conservation equation: 

The second law of dynamics indicates that the rate of variation in quantity of movement 

contained in the control volume is equal to the sum of all external forces applied to it. It is written in 

the following form: 

                                         
  ⃗⃗ 

  
  

  

  
         ⃗                                                                     (II.2) 

Where:  ⃗  is the gravity, P is the pressure and     ⃗  is the viscosity forces (stresses). 

II.4.3 Energy conservation equation: 

The energy conservation equation is obtained from the first principle of thermodynamics and 

it can be written as: 

                               
  

  
    (     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   )    

  

  
                                                           (II.3) 

 : is the internal source (chemical reaction, etc.) 

 : is the dissipation function grouping all terms containing viscosity . 

 For the incompressible fluid, it is written in the following form: 

              (
  

  
   

  

  
   

  

  
   

  

  
)   (

   

   
 

   

     
   

   
)                                              (II.4) 

II.5 Problem formulation: 

II.5.1 Dimensional problem formulation: 

In the two-dimensional laminar steady state, the equations of continuity, momentum and energy for 

convection fluid flow and heat transfer are written as follows: 

                                                                 
  

  
 

  

  
                                                                     (II.5) 

                                    * 
  

  
  

  

  
+   

  

  
    (

   

   
 

   

   )                                          (II.6) 

                       * 
  

  
  

  

  
+   

  

  
    (

   

   
 

   

   )                                           (II.7) 

                                      (      *  
  

  
  

  

  
+     (

   

   
 

   

   
)                                               (II.8) 
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I.5.2 Boussinesq approximation: 

The Boussinesq approximation is an approximation used in fluid mechanics that assumes that 

the fluid density is constant except for thermal expansion. Thus, centrifugal and gravitational forces 

can be estimated using a constant value for density, rather than calculating it precisely using the 

equation of state. 

The Boussinesq approximation can be applied in the above equations by replacing   with a 

constant    in all terms, except for terms involving thermal expansion, where the coefficient of 

thermal expansion   is used to estimate the change in density due to changes in temperature. 

                                                      [   (     ]                                                               (II.9) 

With: 

                             . 

 0 : The density of the fluid in T0. 

β∶ The thermal volume expansion coefficient of the fluid given by : 

 

                                                               
 

 
(
  

  
                                                                     (II.10) 

 

I.5.3 Simplified equations: 

 Continuity equation: 

                                                              
  

  
 

  

  
                                                                       (II.11) 

 The momentum conservation equation: 

 

 On (ox): 

     
  

  
  

  

  
  

 

   

  

  
    (

   

   
 

   

   )      (                                                   (II.12) 

 On (oy): 

    
  

  
  

  

  
  

 

   

  

  
    (

   

   
 

   

   )      (                                                    (II.13) 
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 Energy conservation equation: 

                                    
  

  
  

  

  
    (

   

   
 

   

   
)                                                                 (II.14) 

I.5.4 Boundary conditions: 

{
   ∶               
   ∶               

{
 
 

 
    ∶        

  

  
     

   ∶           
  

  
  

 

II.6 Dimension-less problem formulation: 

We apply the same simplification hypotheses as the previous state. Experimental studies of 

the flows are often carried out on models and the results are shown in dimensions without form, 

thus allowing measures to be staggered towards the real conditions of the flows. The same approach 

can also be undertaken in digital studies. The governing equations can be transformed into the 

dimensionless form by using appropriate normalization 
[1]

. 

Using the following dimension-less parameters, the override warning can be converted to a 

dimension-less shape: 

  
 

 
       

 

 
       

  

  
       

  

  
       

   

     
        

    
     

 

x = XH  ,  y =  YH  ,  u =
    

 
  ,  v = 

    

 
  ,     

  

     
   ,  T =  (       +    

 Continuity equation: 

                                                                  
  

  
 

  

  
                                                                  (II.15) 

 Momentum equation: 

On x: 

         
  

  
  

  

  
  

  

  
  

  

  
 

   

     
*
   

    
   

   +  
(     

     
            (                             (II.16) 
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On y: 

         
  

  
  

  

  
  

  

  
  

  

  
 

   

     
*
   

   
 

   

   
+  

(     

     
            (                               (II.17) 

 Energy equation: 

                                
  

  
  

  

  
  

  

  
 

   

  
*
   

   
 

   

   
+                                                  (II.18) 

Where the density, coefficient of thermal expansion, calorific power and thermal diffusivity 

of the nano-fluid are respectively: 

                                                         (                                                                   (II.19) 

                                       (       (    (        (                                                    (II.20) 

                                            (      (    (       (                                                   (II.21) 

                                                                    
   

(      
                                                               (II.22) 

To estimate the dynamic viscosity of the nano-fluid, the Brinkman model is used: 

                                                                     
   

(       
                                                             (II.23) 

The effective thermal conductivity of the nano-fluid is determined according to Maxwell: 

                                                         
          (       

         (       
                                                       (II.24) 

With: 

 Rayleigh number :    
      

 

    
 

           

 Prandtl number :    
   

   
 

 Cinematic viscosity :      
   

   
 

II.6.1 Dimensionless Boundary conditions 

 ,
   ∶              
   ∶              

{
   ∶        

  

  
     

   ∶           
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II.7 Dimensionless numbers 

II.7.1 Prandtl number: 

Which is the ratio of kinematic viscosity    and thermal diffusivity    , it characterizes the 

relative importance of thermal and viscous effects, this number is named after Ludwig Prandtl, 

German physicist, Prandtl number is therefore the ratio of two magnitudes with the same 

dimensions, that is (m
2
/s) 

The Prandtl number compares the speed of thermal and hydrodynamic phenomena in a fluid. 

A high Prandtl number indicates that the temperature profile in the fluid will be strongly influenced 

by the velocity profile. A low Prandtl number indicates that the heat conduction is so fast that the 

velocity profile has little effect on the temperature profile. Is given by the expression: 

                                                                 
   

   
                                                                         (II.25) 

II.7.2 Rayleigh number 

                                                   
      

 

    
                                                                 (II.26) 

The Rayleigh number is directly related to convection. Convection occurs when buoyancy 

(due to the increase in temperature) creates the motion of the fluid. However, this buoyancy must be 

large enough to counteract the viscous forces that oppose the motion of the particle. Moreover, if 

thermal equilibrium is reached, there is no longer any Archimedean force. The ability of a particle 

to come into equilibrium with its environment more or less quickly depends on its thermal 

diffusivity (α) Ra gives us the ratio of the time for the heat to diffuse to the time for the particle to 

come into motion. 

II.7.3 Nusselt number 

It is the ratio of the temperature gradient in the fluid in immediate contact with the surface to 

the reference temperature gradient. It characterizes the intensity of heat exchange on the fluid-

surface boundary. 

                                                            
   

  
                                                                       (II.27) 
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Local Nusselt number : 

 The left wall: 

             

     
  

  
    = h    

  
    

  

  

  
 

   
    

     

  

  
   

     
   

  

  

  
 

 The right wall: 

     
  

  
          

     
    

  

  

  
 

Average Nusselt number : 

  ̅̅ ̅̅  
 

 
∫     

 

 

 

  ̅̅ ̅̅  
 

 
∫
    

  

  

  
   

 

 

 

 

II.8 Conclusion 

In this chapter, we have presented the physical model in question as well as the equations 

that govern the studied phenomenon with its boundary conditions.  
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III.1    Introduction 

Solving the equations of a physical phenomenon of natural thermal convection is done by 

using a numerical method. The latter consists in developing the means of solving these equations. 

At this stage, the concept of discretization comes into play. The result of the discretization of 

differential transport equations is a system of nonlinear algebraic equations; these equations 

describe the discrete properties of fluid to nodes in the solution domain. 

There are several numerical methods for discretizing differential partial differential 

equations, namely: 

* The finite element method. 

* The finite differences method. 

* The finished volume method. 

In this study, the finite volume method with quadrilateral control volumes will be used. 

The discretization scheme used is polynomial and the speed-pressure coupling is calculated 

according to the SIMPLE algorithm developed by Spalding and Patankar 
[15]

. 

III.2    Reminders on the finite volume method  

         Using this method, the computation domain is divided into a finite number of elementary 

subdomains called control volumes. The finite volume method consists of integrating equations 

with partial derivatives on each control volume. Each of these includes a node known as the main 

node, as shown in Figure (III.2).  

The finite volume method essentially consists of: 

• The discretization of the domain considered in control volumes. 

 • The integral formulation of partial differential equations.  

• The model must be stable and convergent. 

A discretization technique converts conservation equations to partial derivatives into algebraic 

equations that can be solved numerically. The computation domain is divided into a finite number 

of elementary subdomains, called control volume, each of which includes a node called the main 

node. The control volume technique consists in the integration of partial differential equations on 
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each control volume to obtain discretized equations that retain all physical quantities on a control 

volume. 

This method will be applied on the transport equation, which can be written in the following 

general form: 

                                          
 

  
(  )     (     ( ))                                                       (III.1) 

 

Figure (III.1): two-dimensional Control Volume. 

III.2.1 Mesh 

The point differential equations that govern our phenomenon are written in every point of 

the physical domain. To project them on this domain we build a grid divided into a certain number 

of finite volumes, and in each volume, we consider points in the middle. The faces of a typical 

control volume are located at the point e, w, n, s (Figure III.2). Note P the center of the control 

volume considered and E, W, N, S are the centers of the adjacent control volumes located 

respectively to the east, west, north and south of that containing P. Scalar quantities (pressure and 

temperature) are stored at the centers of the finished volumes (Figure III.2). On the other hand, 

vector quantities (components u and v) are stored on the east and north faces respectively (a), (b) 
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and (c). To avoid some numerical problems, motion quantity equations are solved in right-shifted 

finite volumes for the next X pulse and up for the next Y pulse [16]. 

            

(a)                                                                      (b) 

                                  

                                                                      (c)  

Figure (III.4): Control volume diagram (c), offset mesh for     (a), offset mesh for     (b) 

 

III.3 General Transport equation 

With:                                                      
  

  
    ( ⃗  )   (   )                                          (III.2) 

                                                           [1]    [2]                 [3]          [4] 
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[1]: Transitional term; 

[2]: Term of convection; 

[3]: Term of dissemination; 

[4]: Source term; 

We have just seen that for each variable ɸ, the transport equation is written in the stationary, 

two-dimensional case as follows: 

Table (III.I): variables and coefficients of dimensionless transport equations. 

equation        

continuity 1 0 0 

Motion in the direction (ox) U 
   

     
  

  

  
 

(  )  

     
          

Motion in the direction (oy) V 
   

     
  

  

  
 

(  )  

     
          

Energy   
   

  
 0 
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III.3.1Discritization of the general transport equations 

 By integrating the general transport equation on a typical control volume (Figure III.1)          

           and in the time interval t and (t    ) in a two-dimensional Cartesian domain. 

                      ∮ *
  

  
    ( ⃗  )+        ∮( (   )    )                                       (III.3) 

∫ ∫ ∫
  

  

 

 

 

 

    

 

       ∫ ∫ ∫
   
  

 

 

 

 

    

 

       ∫ ∫ ∫
   

  

 

 

 

 

    

 

       ∫ ∫ ∫  

 

 

 

 

    

 

       

By posing: 

       
  

  
                       And                       

  

  
 

      : The differences between the convective and diffusive flows respectively in the direction 

equation (III.1) is written as follows:  

                                            
  

  
 

   

  
 

   

  
                                                                         (III.4) 

To be able to approximate the equation in algebraic form, we consider the hypotheses following: 

 The generalized variable. Varies linearly the main nodes in both directions 

 The convective and diffusive terms are uniform across the corresponding faces.  

 The source term is uniform on the control volume  

The transitional term: 

           ∫ ∫ ∫
  

  

 

 

 

 

    

 
       [  

       
 ]       

           
                              

(III.5) 

The total flow term: 

                   ∫ ∫ ∫
   

  

 

 

 

 

    

 
       [     ]                                                 

(III.6) 

                    ∫ ∫ ∫
   

  

 

 

 

 

    

 
       [     ]                                                 

(III.7) 

If we assume: 
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The quantities                  are the flows at the interfaces (e, w, n, and s). 

The source term: 

                                         ∫ ∫ ∫   
 

 

 

 

    

 
         

̅̅ ̅                                                           

(III.8) 

The source term   
̅̅ ̅ in each conservation equation must be linearized so that the whole 

system of equations take the linear form and the resolution becomes simplified. So the term    
̅̅ ̅ can 

be put in the following form:   
̅̅ ̅          

    Must be negative in order to meet the rules of the finite volume method (Patankar 1980), 

and thus facilitate the convergence of the system (the diagonal of the matrix of the system to be 

solved becomes dominant). 

 It is necessary that the coefficient    is less than zero for the solution to be numerically 

stable and convergence to be faster  

  : is the coefficient of    

  :is the constant part that does not depend on    

So: 

                              
  

       
 

  
     (     )  (     )    

̅̅ ̅                                          (III.9) 

All flows are evaluated at time (      ) 

        In order to completely establish the discretize form of the general transport equation, 

integrating the continuity equation: 

                                 ∫ ∫
  

  

 

 

 

 
     ∫ ∫

  

  

 

 

 

 
                                                                  

(III.10) 

We obtain:  

                                            (     )   (     )                                                         

(III.11) 

The convective flow is defined through the faces of the control volume by: 
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(III.12)     

                                                 

By replacing these flows with their expressions in equation (III.11) we obtain:    

                                                       (     )  (     )                                                          

(III.13)                   

We add the equation (III.9) to the product of equation (III.13) by    we will have : 

  
       

 

  
     (       )  (       )  (       )  (       )    

̅̅ ̅                  

(III.14) 

Expressions in parenthesis can be put in the common form, presented by Patankar. 

As substituting these expressions in equation (III.14), the general equation discretize in time, 

makes it possible to obtain a system of equations whose general algebraic form is: 

          (     )             

           (     )                                                                                                          

(III.15)                                       (     )                                                                                                                    

          (     ) 

                                                                                                         

(III.16) 

Or in equivalent form: 

     ∑(      )    

 : is the variable in the equation concerned. 

The indices (vs) represent the neighboring nodes of the main node. 

The coefficients    and     are calculated with one of the methods with the problems of 

convection-diffusion (numerical scheme). 

   ∑                      Or                          
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                  : corresponding coefficients, respectively, at the East, west, North, South and 

central control-volume nodes. 

The general form of the discretized algebraic equation (III.16) where the total flow of 

convection and diffusion is calculated by a function A (|P|) (Patankar 1980) (table2) 

 

      (|  |)     (     ) 

      (|  |)     (    ) 

      (|  |)     (     )                                                                                                   

(III.17) 

      (|  |)     (    ) 

  (  
̅̅ ̅  

  
 

  
)      

The coefficient of equation (III.16) contains a combination of the convective F and diffusion 

flux D at the control volume interfaces. The values of F and D and the peclet numbers for each 

interface, w, n and s of the control volume are given by the following relationships: 

                                 

                                 

And                                                                                                                                                   

(III.18) 

   
  

   
   

   
  

   
   

   
  

   
    

   
  

   
   

   
  

  
     ,       

  

  
     ,        

  

  
     ,         

  

  
                                                                  

(III.19) 
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 (|   |) : is a function that characterizes the numerical interpolation scheme, which we will discuss 

in detail in the following.  
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III.3.2 function   (| |) for different numerical schemes  

Expressions of the function  (| |) for different numerical schemes  

Table (III.2): function  (| |) for different numerical schemes. 

Scheme Formula of the function  (| |) 

Different centers      | | 

Upwind 1 

Hybrid    [       | |] 

Power law    [(       | |) ] 

Exponential | | [   (| |)   ]⁄  

In this work we use the Power Law scheme (Patankar 1980), as it requires less computing 

time and provides better stability of the numerical solution and results close to the exact solution. 

III.4 Discretization of motion equation 

(Patankar 1980), show that the integration of movement equations on the main control 

volume, leads to oscillatory solutions that have no physical meaning. To remedy this, he proposes a 

shift of the mesh for the velocity components. The discretization of the equations is obtained in the 

same way as the general transport equation. Only the geometric parameters change.     

III.4.1 motion equation in the direction (ox) 

Integrating the moment equation in the (ox) direction on control volumes shifted to the right, 

(see figure III.2), gives the algebraic equation:  

∫ ∫ ∫ *
  

  
  

  

  
  

  

  
+        ∫ ∫ ∫ [ 

  

  
 

   

     
(
   

    
   

   )  
  

  

  

  

    

 

  

  

  

  

    

 

(  )  

     
(        ( ))]                                                                                               

(III.20) 

We integrate term by term:  

∫ ∫ ∫ *
  

  
+      

  

  

  

  

    

 
  (   

        
 )                                                                       

(III.21) 
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∫ ∫ ∫ * 
  

  
+      

  

  

  

  

    

 
  ∫ ∫ (      

           
    )     [   (

   
        

    

 
)

  

  

    

 
 

   (
   

        
    

 
)]                                                                                                                    

(III.22) 

∫ ∫ ∫ * 
  

  
+      

  

  

  

  

    

 
  [   (

   
        

    

 
)     (

   
        

    

 
)]                

∫ ∫ ∫ * 
  

  
+

  

  

  

  

    

 
       (  

       
    )                                                                    

(III.23) 

∫ ∫ ∫ *
 

  
(
  

  
)+

  

  

  

  

    

 
       [(

   
        

    

   
)  (

   
        

    

   
)]

   

     
(     )                      

(III.24) 

∫ ∫ ∫ *
 

  
(
  

  
)+

  

  

  

  

    

 
       [(

   
        

    

   
)  (

   
        

    

   
)]

   

     
(     )                       

(III.25) 

 

Equation (III.20) will then be written: 

[
      

 
 

      

 
 

      

 
 

      

 
 

   

     

   

   
 

   

     

   

   
 

   

     

   

   
 

   

     

   

   

      

  
]   

     

[ 
      

 
 

   

     

   

   
]    

     [
      

 
 

   

     

   

   
]    

    [ 
      

 
 

   

     

   

   
]    

     

[
      

 
 

   

     

   

   
]    

     (  
       

    )       
                                                                                      

(III.26) 

 In order to completely establish the discretize form of the following momentum equation (OX), 

integrating the continuity equation on the control volume shifted to the right and to the product of 

the equation by    
    we will have: 

∫ ∫ ∫ *
  

  
+      

  

  

  

  

    

 
  ∫ ∫ ∫ *

  

  
+      

  

  

  

  

    

 
                                                       

(III.27) 

We obtain: 

[(       )    (       )   ]   
                                                                      

(III.28) 
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Then write the equation (III.26): 

     
          

          
          

          
                                                              

(III.29) 

               
      

  
  

  (  
       

    )    
      

  
   

       [     ]    ( )                                                                    

The coefficients    are already defined by the equations (III.16). the diffusive and convective flows 

are given by: 

     
   

   
           

     
   

   
           

     
   

   
                                                                                                                          

(III.30) 

     
   

   
           

With: 

      (|  |)     (     ) 

      (|  |)     (    ) 

      (|  |)     (     ) 

      (|  |)     (    ) 

II.4.2 Motion equation in the direction (oy) 

The integration of the momentum equation in the (oy) direction on the control volumes 

shifted upwards (see Figure 3). 

Discretized this equation in the same equation of momentum equation following (ox), gives 

the following algebraic equation 

     
          

          

          

          

                                                     (III.31) 

So: 
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  (  
       

    )    
      

  
   

       [     ]    ( )        

The diffusive and convective flows are given by : 

     

   

   
      

    

     
   

   
      

                                               

     
   

   
      

                                                                                                                   

(III.32) 

     
   

   
      

     

With: 

      (|  |)     (     ) 

      (|  |)     (    ) 

      (|  |)     (     ) 

      (|  |)     (    ) 

III.5 discretization of the energy equation 

The integration of the energy equation on the typical control volumes corresponding to the 

nodes, see (figure III.1). Following the same steps of discretization of the general transport 

equation, gives the following algebraic equation: 

     
          

          

          

          

                                                        

(III.33) 

So: 

               
    

  
 

  
     

  
  

  

The diffusive and convective flows are given by: 
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(III.34)                                                          

   
  

   
        

   
  

   
        

With:  

      (|  |)     (     ) 

      (|  |)     (    ) 

      (|  |)     (     ) 

      (|  |)     (    ) 

III.6    Algorithm solution for pressure-velocity coupling: 

 Algorithm solution for pressure-velocity coupling in steady flows is the standard 

prepossessing methods used to solve steady problems. 

The advection of the scalar & used to define flow depends on the magnitude and direction of 

the local velocity field. In general, however the velocity field is not known. These algorithms are 

hence employed to obtain the solution. 

 And this Algorithm is: 

III.6.1 the SIMPLER Algorithm 

The word SIMPLER is the abbreviation of the first letters of the words: "Semi-Implicit 

method for pressure linked equation revised". The source terms in the equations of momentum table 

(III.1) depend on the pressure gradients; this during the absence of an equation governing the 

evolution of the pressure field makes the direct resolution of these equations impossible. To remedy 

these problems, the pressure field can be determined indirectly from the continuity equation. When 

a correct pressure field is injected into the momentum equations, the resulting velocity field will 

satisfy the continuity equation. This indirect information on the pressure field contained in the 
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continuity equation is transformed into direct information by the SIMPLER solving algorithm. 

The pressure equation: 

 When the pressure field is known, the velocity field is obtained directly by the resolution of 

the motion quality equations. In the opposite case (pressure field unknown), the establishment of a 

pressure equation is necessary. The momentum equations discretized along the X, Y directions are 

written in the form: 

     
          

          

          

          

                                                              

(III.35) 

     
          

          

          

          

                                                               

(III.36) 

((  
       

    )   ) and ((  
       

    )   ) respectively the pressure forces applied to the 

faces of the control volume. Velocity nicknames are defined by the following expressions: 

   and     : source without pressure term. 

           

   
    ̂  (∑    

    

       )   ⁄      ,        
    ̂  (∑    

    

       )   ⁄                                   

(III.37) 

So the equation (III.35) and (III.36) become: 

   

        

    ̂    (  
       

    )   ,       

        

    ̂    (  
       

    )                         

(III.38) 

So the equation (III.35) and (III.36) become: 

        ⁄              ,                ⁄                                                                                       

(III.39) 

The pressure equation can be obtained from the continuity equation by replacing the velocity 

expressions: 

    
         

         
         

         
                                                               

(III.40) 
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   (   

    ̂     

    ̂)     (   

    ̂     

    ̂)                                                          

Pressure-correction equation: 

For a guessed pressure field P*, we obtain the velocity field U*, V*, by the equations: 

      
     (∑    

    
 

       )  (   
        

    )                                                                 

(III.41) 

      
     (∑    

    
 

       )  (   
        

    )                                                                  

(III.42) 

A correct pressure field gives a correct velocity field satisfying the continuity equation. It is 

assumed that the correct values of pressure and velocity are obtained by the expressions: 

  
        

        
                                                                                                                       

(III.43) 

   
         

         
                                                                                                                      

(III.44) 

   
         

         
                                                                                                                       

(III.45) 

Where            are respectively the pressure corrections field and the velocity field. These 

values must satisfy the momentum equations: 

  (    
         

    )  (∑    
    

 
       )  (   

        
        

        
    )                 

(III.46) 

  (    
         

    )  (∑    
    

 
       )  (   

        
        

        
    )                 

(III.47) 

Subtracting equations (III.40) from equations (III.41) we find: 
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     (∑    

     

       )  (   
        

    )                                                              

(III.48) 

      
     (∑    

     

       )  (   
        

    )                                                              

(III.49) 

By making an approximation by eliminating summation terms, we obtain: 

      
     (   

        
    )                                                                                                      

(III.50) 

      
     (   

        
    )                                                                                                     

(III.51)        

So the corrected velocities according to the corrected pressure are: 

    
       (   

        
    )                                                                                                         

(III.52) 

    
       (   

        
    )                                                                                                          

(III.53) 

So the expressions of equations (III.41) and (III.42) representing the correct values of pressure and 

velocity become:  

  
     (   

        
    )                                                                                                                

(III.54) 

   

        
 

       (   
        

    )                                                                                            

(III.55) 

   

        
 

       (   
        

    )                                                                                            

(III.56) 

To arrive at the discretized pressure correction equation, the velocity expressions are replaced in the 

discretized continuity equation. We obtain: 

     
          

          
          

          
                                                         

(III.57) 

            ,                   ,                    ,                
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    (   
 

        
 

    )    (   
 
        

 
    )     

III.6.2 Sequences of the SIMPLER Algorithm 

The revised algorithm consists of solving the pressure equation to obtain the pressure field 

and solving the pressure correction equation only to correct the velocities. The sequence of 

operations can be staled as: 

1. Start with a guess velocity field. 

2. Calculate the coefficients for the momentum equation and hence calculate ̂,  ̂from 

equations such as (III.35-36) by substituting values of the neighbor velocities   . 

3. Calculate the coefficients for the pressure equation (III.40) and solve it to obtain the pressure 

field. 

4. Treating this pressure field as P*, solve the momentum equations to obtain U*,V* from 

equation (III.41). 

5. Calculate the mass source   from the pressure correction equation (III 56) and hence the P’ 

equation. 

6. Correct the velocity field by use of (III. 54.55.56)) but do not correct the pressure. 

7. Solve the discretization equation for other(   ). 

8. Return to step 2 and repeat until convergence. 

III.6.3 Motivation of the SIMPLER 

The approximation introduced in deriving the P equation ((the omission of the 

term(∑    
     

    ) leads to rather exaggerated pressure corrections, therefore under relaxation 

becomes necessary. Since the influence of the neighbor-point velocity corrections is eliminated 

from the velocity correction formula, the pressure correction has the whole burden of correcting the 

velocities, and this leads to a rather severe pressure-correction field. If the pressure- correction 

equation is only applied for the task of correcting the velocities and provide some other means of 

obtaining an improved pressure field, then a more efficient algorithm can be constructed. This is the 

essence of SIMPLER. 
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Start  

Initialization of the temperature and velocity field P*, u*, v*𝜃     

Calculation of: 

Coefficients of motion equations and pseudo-velocities 

Calculation of pressure P* 

Solving motion equation (U*and V*) 

Calculation of corrections P’, V’, U’ 

Correction of velocities: U=U*+U’, V=V*+V’ 

Calculation of the new field of 𝜃 and   

Convergence? 

Use of the new field of𝜃,   and U, V End 

No Yes 



 

Chapter IV 

Results and 

descent 
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IV.1 Introduction 

In this chapter, we focus on the numerical study of natural convection. We will first 

see the influence of the mesh on the results, and then we proceed to the validation of our 

calculation code by comparing our results with those obtained in the previous studies. 

We present for natural convection the isotherms and the current lines, as well as the 

profiles of the temperature, and of the velocity we also present a study relative to the 

thermal transfer considering the local Nusselt number.  

We use the following parameters:                                          . 

The nanofluids considered are: Cu-water, Al2o3-water and Au-water. 

IV.2 Mesh choice  

The structure and size of the grid can have a significant effect on the obtained results. For this 

reason, it is advisable to test the sensitivity of our results to the selected mesh sizes. Table (IV.1) and 

figure (IV.1) show the effect of the mesh size on the average Nusselt number. In order to obtain an 

accurate results and a good spatial resolution, the mesh (80*80) has been selected and used in all 

calculations. 

Table (IV.1): The effect of mesh on the average Nusselt number. 

Ra = 10
6 

;       ;         

Mesh 20*20 30*30 40*40 50*50 60*60 70*70 80*80 90*90 100*100 

  ̅̅ ̅̅  (Cu+water) 10.971 10.317 9.895 9.687 9.573 9.504 9.459 9.428 9.406 

  ̅̅ ̅̅ (AL2O3+Water) 10.882 10.230 9.813 9.609 9.496 9.428 9.384 9.384 9.384 
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Figure (IV.1): Evolution of average heat transfer with the different meshes. 

IV.3 Code validation  

Before starting the numerical calculations, governing the dynamic and thermal flow, the 

validation of our model is based on a quantitative and qualitative comparison with other 

investigations available in the literature to give more credibility to the results of our numerical 

simulations. The present numerical solution is further validated by comparison the present code 

against the numerical simulation of Hakan F.Oztop Eiyad Abu-Nada [17] The first comparison was 

made for Pr= 0.70 and            . Figure (IV.2) shows the variation of the average Nusselt 

number with Raileigh number. A second comparison of streamlines (on the left) and isotherms (on 

the right) is shown in figure IV.3 for:   Cu-water nanofluid, Ra= 10
5
 and volume fraction    =0.1 and 

0.2. A good agreement between the two works is observed. 
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Figure (IV.2): Nusselt number versus Rayleigh number and comparison with other published 

works.  

     

Figure (IV.3): Streamlines and isotherms for Cu-water, Ra=10
5
, A=1. (a)      , (b)      . 

IV.4 Effect of Rayleigh number  

In order to examine the influence of Rayleigh number on physical phenomenon, we 

have executed the calculation program in the cases: pure fluid (water with  =0) and Cu-

water nanofluid ( =0.03 and 0.2). 

A. Flow structure 

Figure IV.4 indicates that the flow is formed with a single-cell which occupies the 

most of the cavity. By increasing the number of Rayleigh, the shape of this cell changes 

from circular to elliptic one for high Rayleigh number (Ra=10
6
). 

[17] 

[17] 
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We notice that the current lines are symmetric in relation to the center of the cavity. 

The intensity of these lines decreases when we approach the center of the cavity. 

            (Cu+Water)       (Cu+Water) 

Ra =10
3 

   

Ra =10
4 

   

Ra =10
5 

   

Ra =10
6 

   

 

Figure (IV.4): Stream lines for different values of Rayleigh number. 
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Maximum velocity in the enclosure for different volume fraction increases with Rayleigh number as 

shown in figure IV.5.  

 

Figure (IV.5): Variation of maximum velocity with Rayleigh number. 

B. Heat Transfer Phenomena 

 Figure (IV.6) illustrates the distribution of temperature within the nanofluid for different 

values of Rayleigh number and volume fractions. When Ra=500 the isothermal lines are nearly 

parallel to the vertical walls. The heat transfer is therefore purely conductive. The temperature varies 

progressively from the left wall to the cold right wall. When Ra takes the value 10
4
, the isothermal 

lines are deformed in the direction flow. This deformation is more and more important when Ra 

increases indicating the dominance of the convective regime of heat transfer. The isotherms are 

more concentrated near the vertical walls showing a strong temperature gradient in these regions. 

The same behavior can be observed in figure (IV.7) showing the evolution of the average Nusselt 

number on the hot wall as a function of the Rayleigh number for     and 0.2. Heat transfer rate is 

thus an increasing function with Ra. We can also observe, on the same figure (IV.7), that the 

presence of nanoparticles in the base fluid improves the thermal exchange because of the increase of 

thermal conductivity. 
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Ra =500 

   

Ra =103 

   

Ra =104 

   

Ra =105 

   

Ra =106 

   

 

Figure (IV.6): isothermal lines for different values of Rayleigh number for Cu-water. 
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The increase of volume fractions results in an important deviation for the 

isothermals between the nanofluid and the pure fluid. 

Generally, we distinguish three flow regimes according to the Rayleigh number. 

The Rayleigh numbers Ra >10
5
 the convective regime corresponding to the convection 

(called boundary layer). The second flow regime is conductive. It is the dominant character 

for low Rayleigh numbers Ra < 10
4
. The third regime is called transitory 10

4    10
5
. 

The two regimes convective and conductive are responsible for the transfer of the heat in 

the cavity. 

 

Figure (IV.7): Variation of the average Nusselt number as a function of Rayleigh number. 

IV. 5 Effect of nanoparticle volume fraction  

For Cu-water nano-fluid, figures (IV.8) and (IV.9) illustrate the evolution of 

respectively the average Nusselt number as a function of volume fraction for three values 

of Rayleigh number (500, 10
4
 and 10

6
) and the local Nusselt number with φ for Ra=10

6
.   

We notice that the increase of nanoparticle volume fraction increases heat transfer 

rate and local heat exchange whatever the value of Ra. The heat propagation is thus 

improved by the increase of the percentage of nanoparticles in the base fluid. 
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Figure (IV.8): Variation of the average Nusselt number as a function of volume fraction. 

 

 

Figure (IV.9): Variation of the local Nusselt number as a function of volume fraction with Ra=10
6
. 
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IV.6 Effect of nanoparticle types  

The effect of the nature of nanofluid on heat exchange by natural convection within 

the cavity is studied using different nanofluids with different concentrations: Cu-water, Au-

water and AL2O3-water, figure (IV.10, 11 and 12). 

Figure (IV.10): shows that the average Nusselt number on the hot wall increases linearly 

when increasing the concentration of nanoparticles. The minimum heat transfer rate is 

obtained for Au-water.  

Figures (IV.11), (IV.12) and (IV.13): The temperature value increases with an increase in 

the concentration of nanoparticles, and the velocity decreases. 

 

 

Figure (IV.10): Variation of the average Nusselt number as a function of volume fraction 

and the type of nanoparticles. Ra=10
6
. 
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Figure (IV.11): Velocity and temperature profiles at the middle of the enclosure for Cu Ra=10
6
. 

 

Figure (IV.12): Velocity and temperature profiles at the middle of the enclosure for Au Ra=10
6
. 

 

Figure (IV.13): Velocity and temperature profiles at the middle of the enclosure for Al2o3 Ra=10
6
. 
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IV.7 Effect of inclination angle  

For the analysis of the influence of inclination angle on fluid flow, the isothermals and current 

lines are presented in relation to each inclination angle, which varies between 0° and 90° figure 

(IV.13). The flow is characterized by a monocellular centro symmetric structure for   < 90°. It 

becomes bicellular for   =90. 

The average Nusselt number depends on the inclination angle figure (IV.14). The 

increase of   between 0° and 30°, accentuates heat transfer to reach a maximum value 

when   =30°. Beyond 30° the Nusselt number starts to decrease to reach its minimum 

value for an angle of 90°.  

Gravity prevents the transmission of heat and the speed of the nanofluid with 

different angle values between 0 and 90. 
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Figure (IV.14): Stream lines and isothermal lines for different values of inclination angle for  

Cu-water, Ra=10
5
,       . 

 

 

 

Figure (IV.15): Variation of the average Nusselt number as a function of inclination angles for 

Cu-water, Ra=10
5
,       . 
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Figure (IV.16): Velocity profiles for different inclination angles. 

IV.8 Conclusion 

In this chapter, we have presented the different results showing the effect of Rayleigh number 

and the types of nanoparticles on heat transfer and velocity flow in the enclosure. The effect of 

inclination angle of the cavity and volume fraction of nanoparticles is also taken in consideration.  

In general, three flow regimes can be distinguished according to the Rayleigh number. 

Convective regime corresponding to Ra >10
5
 (called boundary layer). The second flow regime is 

conductive. This is the dominant character for low Rayleigh numbers Ra < 10
4
. While for 10

4 

   10
5
, the third regime is called transient. Both convective and conductive regimes are 

responsible for heat transfer in the cavity.  

Both increasing the value of Rayleigh number and volume fraction enhances heat transfer in 

the enclosure. The highest values of heat transfer are obtained when using Cu nanoparticles. For the 

same nanofluid and the same parameters, heat transfer reaches its maximum value when  =30°. 

White it takes its minimum value for  =90°. 

 

 



 

 

General 

conclusion 

 

 



GENERAL CONCLUSION 
 

64 
 

Conclusion 

In this memory, we presented a numerical study on the natural convection of the nanofluid 

to see its effects on thermal transport, with a two-dimensional Cartesian geometry shape with a 

thermal source in the left vertical wall.  

The governing equations have been solved by finite volume method and using the numerical 

simulation to obtain precise results of local and average Nusselt numbers, flow structure, and 

temperature field. The objective of the study is to show the effect of: the types and the volume 

fraction of nanoparticles in the base fluid (water).The effect of Rayleigh number and the inclination 

angle of the enclosure is also considered. We got the following results: 

1- The presence of nanoparticles in a base fluid modifies the dynamic and thermal fields of 

the convective flow. 

2- Increasing the value of the Rayleigh number improves the heat transfer and flow 

intensity.  

3- The heat exchange in the enclosure increases with the increase in the volume fraction of 

the nanoparticles.  

4- Metallic type nanoparticles (Cu) offer better heat propagation. 

5- The variation of inclination angle changes the dynamic and thermal fields of the 

convective flow.  

6- For the same nanofluid and the same parameters, heat transfer reaches its maximum 

value when φ=30°. White it takes its minimum value for φ=90°. 

In the future, the study can be extended for higher Rayleigh numbers, different types of nanofluids 

and other geometries. 
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