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 ملخص: 

ي عمل�ة صناع�ة ، 
ي هذە الأطروحة إ� تط��ر مساهمة جد�دة لتشخ�ص الأخطاء �ف

ح �ف يهدف العمل المق�ت

ي هذە الرسالة 
ي المحامل ، بناءً ع� طرق معالجة الإشارات والتعرف ع� الأنماط. يركز العمل المقدم �ف

وتحد�دا� �ف

از  ف  .والتعلم الآ�ي ع� كشف و�شخ�ص عيوب الحمل باستخدام تحل�ل الاه�ت

ي المرحلة الأو� ، يتم الحصول ع� الب�انات من نظام أو منصة اختبار ليتم دراستها مع مراعاة أنواع العيوب 
�ف

از لتحمل �شخ�ص  ف ف تحت��ان ع� إشارات اه�ت ي ب�انات مختلفتني ي هذا العمل ، تم استخدام مجموعىت
المختلفة. �ف

لجة الإشارات مثل طرق فصل المصادر العم�اء لتحل�ل الإشارة. الأعطال. بعد ذلك ، سيتم تطبيق تقن�ات معا

ف العد�د من طرق فصل المصادر العم�اء ، يتم استخدام تحل�ل المتجه المستقل لتحل�ل إشارة  (IVA) من بني

از عن الإشارات المرصودة ، ولتقل�ل التداخل والضوضاء. بعد ذلك ، قم  ف از كط��قة لفصل مصادر الاه�ت ف الاه�ت

ي لتقل�ل أبعاد الب�انات ، و�زالة المعلومات  بتط��ر  ات المجال الزمىف ف ات باستخدام م�ي ف تقن�ة فعالة لاستخراج الم�ي

ها. ثم سيتم تطبيق طرق اخت�ار  غ�ي ذات الصلة أو الزائدة عن الحاجة ، وتع��ز جدوى الب�انات و�مكان�ة تفس�ي

ة المستخرجة مما يؤدي  ف ة لتقل�ل الأبعاد وتعق�د الم�ي ف ف الدقة التنب��ة الم�ي إ� ���ــــع خوارزم�ة التعلم وتحسني

ك�ب والضوضاء ي ال�ت
 .لخوارزم�ة التصن�ف ، وتجنب الإفراط �ف

. ستقوم هذە المرحلة باستكشاف ومقارنة  المرحلة الثان�ة �ي تصن�ف الحالة بناءً ع� خوارزم�ات التعلم الآ�ي

اف المختلفة مثل آلات ا لمتجهات الداعمة والغابات العشوائ�ة والشبكات خوارزم�ات التعلم الخاضعة للإ�ث

ا ، إجراء اختبارات  � العصب�ة الاصطناع�ة وآلات التعلم المتطرفة لتحد�د النهج الأ�سب لتصن�ف الأخطاء. أخ�ي

ي لضمان فعاليتها 
ي العالم الحق��ت

صارمة والتحقق من صحة نماذج التعلم الآ�ي المطورة ع� الآلات الصناع�ة �ف

ي 
 . بيئة الإنتاجوعمليتها �ف

ي هذە الأطروحة من خلال إشارات محا�اة و��انات تج��ب�ة. 
حة �ف  تم التحقق من فعال�ة الطرق المق�ت

از تحل�ل النواقل المستقلة خوارزم�ة الخفاف�ش الثنائ�ة  ال�لمات الرئ�س�ة:  ف تحمل �شخ�ص الأعطال. تحل�ل الاه�ت

ي رمادي الذئب
ف �ب الجس�مات الثنائ�ة ؛ ثنائئ الأمثل ؛ دعم آلات النواقل ؛ غابات عشوائ�ة الشبكات العصب�ة  تحسني

  الاصطناع�ة؛ آلات التعلم المتطرفة. 
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Abstract: 

The suggested work in this thesis aims to develop a new contribution for fault diagnosis in an 

industrial process, specifically in bearings, based on signal processing and pattern recognition 

methods. The work presented in this thesis focuses on the detection and diagnosis of bearing 

defects by using vibration analysis and machine learning. 

In the first stage, data is acquired from a system or a test rig to be studied taking into account 

the various types of faults. In this work, two different datasets containing vibration signals are 

used for bearing fault diagnosis. Then, signal processing techniques such as Blind Source 

Separation methods will be applied for signal analysis. Among many methods of Blind Source 

Separation, the Independent vector analysis (IVA) is used for vibration signal analysis as a way 

to separate the sources of vibration from the observed signals, and to reduce the interference 

and noise. Next, develop an effective feature extraction technique using time-domain features 

to reduce the dimensionality of the data, remove irrelevant or redundant information, and 

enhance the meaningfulness and interpretability of the data. Then Feature Selection methods 

will be applied to reduce the dimensionality the complexity of the extracted feature, which will 

speed up a learning algorithm and improve the predictive accuracy of a classification algorithm, 

and avoid overfitting and noise. 

The second stage is condition classification based on machine learning algorithms. This stage 

will explore and compare various supervised learning algorithms like Support Vector 

Machines, Random Forests, Artificial Neural Networks and Extreme Learning Machines to 

determine the most suitable approach for bearing fault classification. Finally, conducting 

rigorous testing and validation of the developed machine learning models on real-world 

industrial machinery to ensure their effectiveness and practicality in a production environment. 

The effectiveness of the proposed methods in this thesis has been validated by simulated signals 

and experimental data. 

Keywords: Bearing Fault Diagnosis; Vibration Analysis; Independent Vector Analysis; 

Binary Bat Algorithm; Binary Particle Swarm Optimisation; Binary Grey Wolf Optimisation; 

Support Vector Machines; Random Forests; Artificial Neural Networks; Extreme Learning 

Machines. 
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Résumé: 

Le travail proposé dans cette thèse vise à développer une nouvelle contribution pour le 

diagnostic de défauts dans un processus industriel, spécifiquement dans les roulements, basée 

sur des méthodes de traitement du signal et de reconnaissance de formes. Le travail présenté 

dans cette thèse porte sur la détection et le diagnostic des défauts de roulements en utilisant 

l'analyse vibratoire et l'apprentissage automatique. 

En premier étape, des données sont acquises à partir d'un système ou d'un banc d'essais à étudier 

en tenant compte des différents types de défauts. Dans ce travail, deux ensembles de données 

différents contenant des signaux de vibration sont utilisés pour le diagnostic des défauts de 

roulement. Ensuite, des techniques de traitement du signal telles que les méthodes de séparation 

aveugle de la source seront appliquées pour l'analyse du signal. Parmi de nombreuses méthodes 

de séparation aveugle des sources, l'analyse vectorielle indépendante (IVA) est utilisée pour 

l'analyse des signaux de vibration comme moyen de séparer les sources de vibration des 

signaux observés et de réduire les interférences et le bruit. Ensuite, développez une technique 

d'extraction de caractéristiques efficace à l'aide de caractéristiques du domaine temporel pour 

réduire la dimensionnalité des données, supprimer les informations non pertinentes ou 

redondantes et améliorer la pertinence et l'interprétabilité des données. Ensuite, des méthodes 

de sélection de caractéristiques seront appliquées pour réduire la dimensionnalité et la 

complexité de la caractéristique extraite, ce qui accélérera un algorithme d'apprentissage et 

améliorera la précision prédictive d'un algorithme de classification, et évitera le surajustement 

et le bruit. 

La deuxième étape est la classification des conditions basée sur des algorithmes d'apprentissage 

automatique. Cette étape explorera et comparera divers algorithmes d'apprentissage supervisé 

tels que les machines à vecteurs de support, les forêts aléatoires, les réseaux de neurones 

artificiels et les machines d'apprentissage extrêmes afin de déterminer l'approche la plus 

appropriée pour la classification des défauts de roulement. Enfin, effectuer des tests et une 

validation rigoureuse des modèles d'apprentissage automatique développés sur des machines 

industrielles réelles pour garantir leur efficacité et leur praticité dans un environnement de 

production. 
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L'efficacité des méthodes proposées dans cette thèse a été validée par des signaux simulés et 

des données expérimentales. 

Mots-clés : Diagnostic De Défaut De Roulement ; Analyse Vibratoire ; Analyse Vectorielle 

Indépendante ; Algorithme De Chauve-souris Binaire ; Optimisation D'essaim De Particules 

Binaires ; Optimisation Binaire Du Loup Gris ; Soutenir Les Machines Vectorielles ; Forêts 

Aléatoires ; Réseaux De Neurones Artificiels; Machines D'apprentissage Extrêmes. 
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In the industry field, mechanical machinery is exposed to damages and failures for many 

reasons such as poor maintenance, overloading, material defects, operator error, and 

environmental factors [1]. Each one of these can lead to serious consequences, including 

production downtime, loss of revenue, damage to equipment, and even injury or loss of life [2]. 

Implementing periodic maintenance and inspection programs that include routine maintenance, 

lubrication changing, vibration monitoring, and replacement of worn parts is necessary to 

prevent or minimize these failures [3]. Typically, the fault detection, diagnosis, and prognosis 

process are referred to as failure prevention: 

Fault detection: The measured system data and system status information are observed and 

compared to a typical range of observed characteristics to discover if any measurements are 

outside the range reflecting the system's healthy state [4].  

Diagnosis: The procedure at hand comprises establishing the reasons for the failure and the 

status of the failing components [5]. 

Prognosis: Predicting imminent component failures or aberrant system states and calculating 

the usable lifespan of such components [6]. 

In rotating equipment, the bearing is the key mechanical element that is utilized to minimize 

friction between two moving parts. It permits for smooth and effective rotation or movement 

of one portion concerning another. it may be found in a wide range of applications, from 

machinery and equipment to cars and home goods [7]. The failure of this item can lead to 

excessive vibrations, noise, and, in severe circumstances, machine failure.  

Effective bearing problem detection is vital for preserving the dependability and lifetime of 

machinery, as well as for reducing costly downtime. Several techniques are utilized for bearing 

failure identification and condition monitoring, including vibration analysis, acoustic emission 

analysis, oil analysis, thermography, motor current analysis, and ultrasound analysis [8]. 

GENERAL INTRODUCTION 
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Analysis of vibration is a common technique for diagnosing bearing flaws as it enables early 

fault diagnosis and predictive maintenance [9]. Vibration analysis comprises monitoring the 

vibration signals produced by the bearing and detecting fluctuations in frequency and 

amplitude. 

Bearing vibration signals are intricate and encompass a large array of frequencies. The kind of 

trouble in the bearing dictates the vibration signal’s frequencies. A damaged outer raceway, for 

example, will provide vibration signals at the outer raceway frequency, but a damaged rolling 

element will offer vibration indications at the rolling element frequency [10]. 

An essential area of study in mechanical engineering and machine maintenance is bearing fault 

diagnosis. because they are dynamic and complex. It is essential to create efficient methods for 

the early identification and diagnosis of bearing faults. Machine learning classification 

algorithms can be used to diagnose bearing faults based on vibration analysis to ascertain 

whether the bearing is sound or faulty [11]. Support vector machines, artificial neural networks, 

decision trees, and random forests are just a few examples of machine learning algorithms that 

have been used for bearing fault diagnosis. The algorithm selected will depend on the particular 

application, the size, and the complexity of the data set. 

Over the years, numerous methods for diagnosing bearing faults have been proposed, including 

vibration analysis, acoustic emission analysis, temperature analysis, and oil analysis. One of 

the most widely used methods for identifying bearing faults is vibration analysis [12]. 

Determining the type, severity, and location of the fault involves measuring the vibration 

signals produced by the bearing and analysing them. Another method involves identifying the 

high-frequency noise produced by the bearing while it is in use, called acoustic emission 

analysis. Less popular methods that monitor the temperature and oil quality to look for changes 

linked to bearing faults include temperature analysis and oil analysis [13]. 

Pattern recognition diagnostic is a technique used to identify and diagnose bearing faults in 

machinery. Pattern recognition diagnostic approaches are based on two main steps: the 

extraction of a vector of attributes also called features and the choice of detection rules that 

allow the classification of observations. For the first phase, many research works were carried 

out to extract the most appropriate features [14]. 

S. Fang and W. Zijie presented a new method based on wavelet analysis and RBF-type and 

neural networks for the diagnosis of defects in ball bearings [15], in this method, the results 

application of two types of mother wavelet were compared, namely the db8 wavelet and that 
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of sym8, the results show that the sym8 wavelet gives better performance. Unfortunately in 

this last work, only two mother wavelets were considered, while other types of wavelets can 

offer better results. The optimal level of decomposition is not so justified. 

S. Fu, K. Liu, Y. Xu, and Y. Liu doing a study for bearing condition monitoring based on 

statistical parameters to detect incipient defects [16]. The results obtained show that this 

method offers good performance. Nevertheless, the statistical parameters are very sensitive to 

noise due to the acquisition system. 

Several studies have shown that using a combined feature can help with better representation. 

The employment of this method, however, unfortunately, increases the input vector's 

dimension, making the classification step more difficult. To fix these issues, it will be necessary 

to choose a few characteristics that accurately describe the bearing's state. In general, parameter 

selection methods can be divided into two categories: filtering methods, which obtain the 

pertinent attributes based on the evaluation criteria regardless of the classification system, and 

wrapping methods (wrapper), which choose the pertinent parameters based on the classifier's 

output. 

Y. Lei, Z. Hea, Y. Zia and Q. Hua have proposed a new approach for fault diagnosis [17], 

this approach is based on the combination of certain pre-processing techniques, such as 

filtering, demodulation and Empirical Mode Decomposition (EMD), for the extraction of the 

global features. Six sets of features including time domain and frequency domain statistical 

features were obtained. Finally, the improved distance evaluation technique is proposed and it 

is with it that six attributes among the six sets are selected. 

C. Shen, D. Wang, F. Kong and P. W. Tse presented a new fault diagnosis scheme based on 

the extraction of statistical parameters from the coefficients obtained by the application of the 

wavelet packet transform, the Distance evaluation technique (DET) is subsequently applied for 

the selection of the most relevant parameters [18].  

I. Rashedul, A. K. Sheraz and K. Jong-Myon in their study proposed a method for 

monitoring and diagnosing faults in bearings [19]. In this study, the original shape vector is a 

set of hybrid statistical parameters calculated from temporal analysis, frequency domain 

analysis and envelope spectrum analysis of acoustic emission. Genetic algorithms are then used 

to select the set of optimal attributes. 
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R. Ziani, A. Felkaoui and R. Zegadi have developed a new method based on the extraction 

of parameters in the time domain, the spectral domain and the time-spectral domain. Binary 

particle swarm optimization is then used for the selection of relevant attributes [20]. 

This work is a thorough investigation into the use of machine learning-based automatic fault 

diagnostic techniques to non-stationary signals obtained from bearings. It is presented in the 

next sections of this thesis. 

The goal of this research is to provide the development of an effective and reliable technique 

using one of the machine learning techniques for more accuracy in the detection, efficiency, 

and diagnosis of incipient bearing faults. The main objectives of this research are: 

1_ To select the suitable bearing fault dataset based on the vibration signal, and also to present 

and discuss an overview of rolling element bearings, including bearing types and components, 

their applications, and their failure. In addition, the importance of maintaining the bearing’s 

condition. 

2_ Signal pre-processing, this phase depends on three techniques. The first is to apply a filtering 

technique to this dataset, among many techniques, the Independent Vector Analysis (IVA) has 

been chosen. The main advantage of IVA is that it can separate the individual sources and 

remove any noise or interference that may be present without requiring any prior knowledge 

of the sources themselves. The second is feature extraction, many techniques in signal 

processing were developed and applied in feature extraction for bearing faults diagnosis, which 

enabled features to be extracted effectively. In particular, statistical parameters in time domain-

based methods were investigated in this study. The third technique is feature selection which 

is a crucial technique in machine learning. In feature selection, a smaller subset of pertinent 

features is chosen from a larger set of features that are present in the dataset. The purpose of 

feature selection is to decrease the dimensionality of the input data and remove unnecessary or 

redundant features to enhance the performance of a machine-learning algorithm. 

3_ The last objective is to assess a classification methodology to determine whether the bearing 

is healthy or faulty and specify the type of defect(s) as well as the level of the defect severity 

by applying machine learning techniques. This classification was achieved to some extent by 

appropriate feature extraction from vibration signals. 
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The rest of this thesis is divided into four chapters namely:  

Chapter 1 is the state the art of bearing fault diagnosis and related research. 

Chapter 2 focuses on feature extraction and selection for pattern recognition using feature 

extraction, time domain parameters, frequency domain parameters, feature selection, binary 

optimization algorithms, and Conclusion. 

Chapter 3, fault classification and diagnosis techniques are discussed such as artificial neural 

networks, random forests, support vector machines, and extreme learning machines, and at the 

end the conclusion. 

Chapter 4 presents bearing fault diagnosis based on pattern recognition, this chapter contains 

the following outlines, Introduction. Rolling element bearing: structure and types. Degradation 

modes of a rolling element bearing. Rolling element-bearing fault detection and diagnostics. 

Influence of defects on the signal structure. Dynamic and Identification Research Group 

(DIRG) Dataset. Proposed method. Obtained results and Conclusion. 

 

 



 

 

CHAPTER I 

 

BEARING FAULT DIAGNOSIS: THE STATE OF THE ART 

 

 

I.1. Introduction: 
 

In the industrial field, rotating machines play a crucial role in manufacturing, each one of them 

contains many components, among them the bearing. The bearing is a mechanical part and it 

is the most vital component of a rotating machine, which maintains the shaft's steady position 

while rotating and minimizes friction and noise as much as possible. There are several types of 

bearings available with different features like shape, strength, and field of use. Commercially, 

there are some common bearings such as plain bearings that are utilized for sliding, and rotating 

motion, and for high dimensional and geometrical precision. The fluid film bearings are widely 

used in weighty rotating machines in which the stationary and rotating parts are isolated by a 

thin film of lubricants. Magnetic bearings, these types are suitable for fields that require high 

speeds and low vibration and no need for lubrication. The rolling element bearings come in 

different types like ball bearings, cylindrical roller bearings, spherical roller bearings, tapered 

roller bearings, needle roller bearings, and thrust bearings, they are used for both radial and 

thrust loads, can resist a small amount of weight, have low friction and also, they are the 

cheapest to manufacture. 
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In general, a rolling element bearing consists of the inner race, which holds the rotating shaft 

and rotates along with it. The outer race fitted on the housing and stays stationary. The rolling 

elements come between the inner & the outer race. The cage holds the space between rolling 

elements. in our case, we are interested in a type of widely used bearing, namely rolling element 

bearings, precisely the ball bearing, this type is with one row of balls and with radial contact. 

Figure I.1 shows typical rolling elements bearing components. 

 
Figure I. 1. Structure of a rolling element bearing 

Rolling element bearings failures have been a subject of recent studies, due to their significance 

and their effects on the machine's performance. The failure occurs for many reasons such as 

high dynamic loads, improper or lack of lubrication, small debris side, flaking…etc. Once the 

failure occurs, it will lead to the instability of a machine which causes vibrations. The vibration 

signal carries information that helps us in fault detection and diagnosis by applying different 

algorithms in signal processing and data classification. 

The damage to the bearing components creates one or more characteristic failure frequencies 

in the frequency spectrum that allow us to identify them quickly and easily. The four possible 

bearing failure rates are [21]: 

1. BPFO (Ball Pass Frequency Outer): Ball Pass Frequency for the outer ring is the frequency 

at which a rolling element in a bearing passes a fixed point on the outer ring. It is calculated as 

the product of ball speed and the number of balls in the bearing. The BPF of the outer ring 

affects its operating performance, with higher BPF leading to greater dynamic loading and 

increased potential for failure. It is important to consider BPF in the design and selection of 

bearings to ensure reliable operation and prevent premature failure. 
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2. BPFI (Ball Pass Frequency Inner): Ball pass frequency, also known as BPF, in a bearing 

refers to the number of times a ball rotates in one minute (RPM) divided by the number of balls 

in the bearing. It is a measure of the stability and uniformity of the bearing. The BPF of an 

inner race is determined by the number of balls, their diameter, and the speed of rotation. High 

BPF can indicate a high-quality bearing, while low BPF can indicate bearing issues such as 

wear or misalignment. 

3. BSF (Ball Spin Frequency): The ball spin frequency in a bearing is the number of Rounds 

per minute (RPM) that a ball makes as it rotates within the bearing. It is influenced by several 

factors, including the rotational speed of the shaft, the size of the ball, the dimensions of the 

bearing, and the load on the bearing. The ball spin frequency helps determine the overall 

performance and efficiency of a bearing system. 

4. FTF (Fundamental Train Frequency): The fundamental train frequency (FTF) in bearings 

refers to the natural frequency at which the bearing vibrates. It is a function of the bearing's 

geometric parameters (such as the inner and outer diameter, the number of rolling elements, 

and the bearing stiffness) and operating conditions (such as the speed, load, and lubrication). 

The FTF can provide valuable information about the health and condition of a bearing and is 

used in machinery vibration analysis to detect early signs of bearing wear and fatigue. 

I.1. Formulas for the calculation of the bearing fundamental failing frequencies 

Bearing fundamental frequencies are the natural frequencies of vibration that are inherent to a 

bearing and its supporting structure. These frequencies are determined by the size, shape, and 

material properties of the bearing and its housing, as well as the loads and operating conditions. 

Understanding and accurately predicting bearing fundamental frequencies are important in the 

design and operation of rotating machinery, as they can influence the lifespan and performance 

of the bearing and contribute to excessive noise and vibration levels [22]. 

The fundamental fault frequencies (in Hz) can be calculated using Equations (1) to (4): 

 

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 =
𝒏𝒏 × 𝑵𝑵
𝟐𝟐

�𝟏𝟏 −
𝑫𝑫𝒃𝒃

𝑫𝑫𝒑𝒑
𝐜𝐜𝐜𝐜𝐜𝐜(𝜽𝜽)� (1) 
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𝑩𝑩𝑭𝑭𝑩𝑩 =
𝒏𝒏
𝟐𝟐
�𝟏𝟏 −

𝑫𝑫𝒃𝒃

𝑫𝑫𝒑𝒑
𝐜𝐜𝐜𝐜𝐜𝐜(𝜽𝜽)� (4) 

𝑫𝑫𝑩𝑩 =
𝑫𝑫𝟏𝟏 + 𝑫𝑫𝟐𝟐

𝟐𝟐
 (5) 

With: 

N: Rotation frequency [Hz]; 

n: Number of balls; 

Dp: Mean diameter [mm]; 

Db: Ball diameter [mm]; 

θ: Contact angle [degree]. (See Figure I. 2). 

 

 
Figure I. 2 Dimensions of a bearing 
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I.2. Independent Vector Analysis (IVA)-based rolling element-bearing 

signal pre-processing: 
There are two rolling element-bearing fault severity datasets used in this work. One was 

collected at Case Western Reserve University (CWRU) Bearing Center [23], and the second 

has been obtained from the Dynamic and Identification Research Group (DIRG) in the 

Department of Mechanical and Aerospace Engineering at Politecnico di Torino, Italy [24]. 

These two datasets have different fault severity and they had been collected from different rig 

sets up. 

I.2.1. Vibration-based 

A common technique for determining the severity of problems in rolling element bearings is 

vibration analysis. This method measures the vibration produced by the faulty bearing and 

compares it to a baseline measurement taken from a healthy bearing [25]. Vibration analysis is 

based on the fact that a faulty bearing produces a unique pattern of vibration that can be used 

to identify the type and severity of the fault. The vibration measurement can be obtained using 

accelerometers or other types of sensors that are placed on or near the bearing [26]. 

I.2.1.1. Case Western Reserve University (CWRU) Bearing Centre dataset:  

This dataset has been provided by CWRU Bearing Centre [27], it contains several vibration 

signals of various conditions of bearings and it has been collected using the test rig, which 

consists of a 2-horsepower induction motor, a dynamometer, a transducer. as shown in     

Figure I.3. 

 
Figure I. 3 CWRU bearing test rig [23] for collecting vibration signals 
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The vibration signals of the artificially planted faults are acquired using accelerometers, which 

are mounted on the top of the housing at the Drive-End (DE) of the motor. These signals are 

with a sampling frequency of 12 000 samples per second using a 16-channel data recorder and 

with different applied loads and the speed range of the motor is 1722-1797 RPM. Several types 

of conditions of the bearings have been used which are Normal Type (HTY), Ball Type (BF), 

inner Race Type (IF), and Outer Race Type (OF). The bearings are SKF deep-grove ball of 

6205-2RSJEM type for the Drive-End. The details of this dataset are listed in Table 1. 

Table I. 1 Information about the dataset obtained from the CWRU-bearing data bank 

Dataset Health Type Crack Size 
(mm) 

Speed 
(RPM) Load  

Dataset 
1 

Ball Fault 
BF1 0.1778 

1797 

0 

0% of the 
nominal load 

(Unloaded 
case) 

BF2 0.5334 0 

Inner Race Fault 
IF1 0.1778 0 
IF2 0.5334 0 

Outer Race Fault 
OF1 0.1778 0 
OF2 0.5334 0 

Healthy HTY / 0 

Dataset 
2 

Ball Fault 
BF1 0.1778 

1772 

1 

50% of the 
nominal load 
(Half loaded 

case) 

BF2 0.5334 1 

Inner Race Fault 
IF1 0.1778 1 
IF2 0.5334 1 

Outer Race Fault 
OF1 0.1778 1 
OF2 0.5334 1 

Healthy HTY / 1 

Dataset 
3 

Ball Fault 
BF1 0.1778 

1750 

2 

100% of the 
nominal load 
(Full loaded 

case) 

BF2 0.5334 2 

Inner Race Fault 
IF1 0.1778 2 
IF2 0.5334 2 

Outer Race Fault 
OF1 0.1778 2 
OF2 0.5334 2 

Healthy HTY / 2 
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Figure I. 4 Schematic of fault place in bearing parts: (a) healthy bearing (HTY), (b) bearing with outer race 
fault (OF), (c) bearing with inner race fault (IF), and (d) bearing with ball fault (BF). 

Table I. 2 The outer ring's frequencies at various motor speeds [27] 

Inside 
diameter 

mm 

Outside 
diameter 

mm 

Ball 
diameter 

mm 

Thickness 
mm 

Pitch 
diameter 

mm 

Contact 
angle ° 

Ball 
number 

25.001 51.999  7.940  15.001  39.040  0° 9 

Table I. 3 The outer ring's frequencies at various motor speeds [27] 

Motor Speed (RPM) 1797 1750 1724 
Defect frequency (Hz) 107.36 104.56 103.00 

 

I.2.1.2. Dynamic and Identification Research Group (DIRG) dataset:  

The provided dataset by the DIRG laboratory in the Department of Mechanical and Aerospace 

Engineering at Politecnico di Torino has been collected over a rig set up [24], for testing high-

speed aerospace bearings, their acceleration measurements at variable speed, radial load, and 

degree of damage. The test bench is depicted in Figure I.5, and it contains a high-speed spindle 

conducting a hollow shaft supported by identical roller bearings B1 and B3. The considered 

bearing is B1, where a tri-axial accelerometer is mounted on its support. 
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Figure I. 5 The test bench of DIRG 

The base of the test bench carries in positions B1 and B3 a duo of supports for the outer race 

of two identical roller bearings. The inner race of these bearings is connected to a very short 

and strong hollow shaft, which is specially designed for speeds of up to 35000 rpm. The shaft 

was originally part of a complete gearbox and carried a spur gear that drives the rotation. Due 

to the torque applied, the spur gear generated a contact pressure with radial and tangential 

direction, which existed on a pair of roller bearings. The outer race of the bearing B2 is attached 

to a precision sledge. The principal geometrical properties of the three bearings, 

particularly manufactured for this high-speed aeronautical application, are listed in Table I.4. 

Figure I. 6 The positions of the two accelerometers Figure I. 7 The three roller bearings on the shaft 
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Table I. 4 The primary characteristics of roller bearings 

 Pitch diameter 
D (mm) 

Roller’s 
diameter 
d (mm) 

Contact angle 
ϕ (°) 

Rolling elements 
Z 

B1 & B3 40.5 9.0 0 10 
B2 54.0 8.0 0 16 

 

The bearing in position B1 Figure I.7 is designed in such a way that it can be disassembled 

from its support in a very simple way to be able to check the reaction of the system when 

mounting bearings with different types and degrees of damage. Table I. 5 contains the names 

of the damaged items (1A to 6A), with 0A indicating the undamaged case. 

Table I. 5 A Roller’s list of the various bearings mounted in position B1's known defects 

Name Fault Dimension(µm) 
0A The inner ring’s indentation’s diameter 450 
1A The inner ring’s indentation’s diameter 250 
2A The inner ring’s indentation’s diameter 150 
3A The roller’s indentation’s diameter 450 
4A The roller’s indentation’s diameter 250 
5A The roller’s indentation’s diameter 150 

 

The acquired dataset has been collected with sampling frequency fs = 51200 Hz for a duration 

of T = 10 s. Each file contains an array with the same name as the file (except for the .m) with 

819200 rows (time samples) and 6 columns (one for each channel). Every recorded file in the 

dataset whose name has the following format: CnA_fff_vvv_m.mat. 

• C: The root of the file name shared with all files; 
• n: Integer value from 0 to 6, indicating the type of the defect, e.g., 0A, 1A, …, 6A (Table 

I. 5); 
• fff: Integer value from 100 to 500, denoting the nominal speed of the shaft (Hz); 
• vvv: Integer value corresponding to the voltage of the load cell (mV), denoting the applied 

load; 
• m: Integer value, denoting if the measurement has been duplicated (m=2) or not (m=1);  
• mat: MATLAB® file extension. 

 

I.2.2. Acoustic emission (AE) based 

Bearing fault diagnosis using AE involves analysing sounds generated by bearings during their 

operation to identify specific types of faults, such as cracks, looseness, or wear [28]. 
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AE signals are generated by the release of energy from the friction, impact, or deformation of 

the material in the bearing. This energy is converted into acoustic waves that propagate through 

the bearing and can be picked up by sensors attached to the bearing housing [29].  

The signals generated by the bearing faults are analysed to extract features that are indicative 

of specific faults, such as cracks, looseness, or wear. Machine learning algorithms among them 

ANN [30], RF [31], and SVM [32]. These algorithms are commonly used to classify the signals 

into different fault categories [33]. 

This is a non-destructive method of detecting faults in rotating machinery components, 

including bearings. 

Acoustic Emission (AE) is a very precise and efficient technology for detecting and monitoring 

faults, leaks, and fatigue. AE-based analysis can detect very low-energy signals generated by 

bearing failures early in the process or during slow-speed operation. AE signals have several 

benefits over other sensor signals, such as vibration signals, in terms of capturing and reflecting 

both local and global bearing defect aspects [33]. Signal processing and useful feature 

extraction are critical steps in employing AE sensors for machine failure diagnostics. The AE, 

unlike vibration, is less impacted by noise and structural vibration. For example, vibration 

sensors have a more difficult time capturing the high-frequency resonances of the structure of 

a bearing fitted in a mechanical system than AE sensors [34]. 

AE-based analysis may recognise very low-energy signals generated by defective bearings 

early in the process or while in slow-speed operation. AE signals have several benefits over 

other sensor signals, such as vibration signals, in terms of capturing and reflecting both local 

and global bearing defect aspects. Signal processing and useful feature extraction are critical 

steps in employing AE sensors for machine failure diagnostics [28]. AE-based bearing fault 

diagnosis is a promising method for detecting faults in rotating machinery components. It is a 

non-invasive and cost-effective method that provides valuable information about the condition 

of the bearings. 

I.2.3. Infrared thermography based 

Infrared (IR) thermography is a non-contact, non-destructive method of diagnosing faults in 

bearings. The technique involves using a thermal imaging camera to detect changes in 

temperature in the bearing, which can indicate the presence of a fault [35]. 

A healthy bearing will have a uniform temperature distribution, while a faulty one will exhibit 

hot spots due to increased friction and energy loss. The temperature anomalies detected by 
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infrared thermography can be used to diagnose various types of faults, including outer race 

defects, inner race defects, ball defects, and cage defects [36]. 

IR thermography can be performed while the machine is in operation, making it a valuable tool 

for predictive maintenance. The method is easy to use and does not require any disassembly of 

the machine, reducing the risk of further damage. in conclusion, R thermography is a useful 

method for detecting faults in bearings and can provide important information for predictive 

maintenance. 

I.2.4. Oil analysis based 

Oil analysis is a diagnostic method used to detect faults in bearings by analysing the properties 

of the lubricating oil. The principle behind this technique is that the lubricating oil circulates 

through the bearing, picking up metal particles, wear debris, and other contaminants, which 

can provide valuable information about the condition of the bearing [37]. 

Oil analysis can be performed using various techniques, such as spectrometry, particle 

counting, and viscosity measurements. Spectrometry can be used to detect the presence of 

metal particles and determine their elemental composition, while particle counting can be used 

to quantify the number and size of particles in the oil [38]. Viscosity measurements can provide 

information about the overall health of the lubricating oil and can indicate changes in the oil 

that may be due to bearing wear. 

To diagnose bearing faults using oil analysis, the oil must be sampled and analysed 

periodically, and the results must be compared to established norms. Any deviations from the 

norms can indicate the presence of a fault, such as excessive wear or corrosion, in the bearing. 

In summary, oil analysis is a valuable diagnostic tool for monitoring the condition of bearings 

and predicting potential failures [39]. By analysing the properties of the lubricating oil, this 

technique can provide valuable information about the health of the bearing and help prevent 

unexpected failures. 

I.2.5. Bearing current analysis based 

Bearing current analysis is a method that detects the presence of stray electrical currents 

flowing in the bearing metal, which can indicate incipient fault conditions such as damage or 

wear. These currents can be measured using specialized sensors and analysed to determine the 

presence of faults [40]. 
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The basic principle behind bearing current analysis is that as a bearing begins to fail, it 

generates electrical currents that can flow along the metal components of the machinery. These 

currents can be measured and analysed to determine the type of fault that occurred [41]. The 

analysis typically involves filtering the measured current signals to remove noise and other 

interference and then comparing the resulting signal to known fault signatures. 

Bearing current analysis has several advantages, including its ability to detect incipient faults 

before they become serious, its non-intrusive nature, and its ability to work even in harsh 

industrial environments [42]. Additionally, bearing current analysis can be used in conjunction 

with other diagnostic techniques such as vibration analysis to provide a more exhaustive 

understanding of the health of the machinery [43]. 

It is important to note that to get accurate results from bearing current analysis, the equipment 

and sensor setup must be properly calibrated, and the analysis should be performed by trained 

professionals who understand the technique and can interpret the results correctly [44]. The 

advantages of bearing fault diagnosis using current analysis [45]: 

Early Detection: The approach can discover bearing defects early on, allowing maintenance 

crews to intervene before a small issue escalates into a significant issue. 

Non-Intrusive: Current analysis is a non-intrusive approach for assessing equipment health 

since it does not involve direct contact with the bearings. 

Cost Savings: By allowing predictive maintenance, firms may minimise unplanned downtime, 

save repair costs, and prolong equipment lifespan 

Real-time Monitoring: Continuous monitoring of the present signature enables real-time 

monitoring of the machine's state. 

Data-Driven Insights: Data obtained may be analysed over time to detect trends and patterns 

in bearing health, assisting in decision-making and maintenance planning. 

In conclusion, bearing defect detection based on current analysis provides various advantages 

over previous techniques, including lower cost and non-invasiveness. Traditional approaches, 

however, might make it difficult to discern the distinctive frequency of bearing problems in the 

current spectrum. Deep learning and information fusion strategies have been presented in 

recent research to increase the performance of this approach, and these methods are useful in 

detecting and diagnosing bearing defects. 
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I.3. Independent Vector Analysis (IVA)-based rolling element-bearing 

signal pre-processing: 
 

A set of mixed signals can be separated into their original source signals using the blind source 

separation technique known as Independent Vector Analysis (IVA). Finding a set of 

statistically independent vectors that together form a linear mixing matrix and can be used to 

decouple the original source signals from their mixed observations and estimate the 

transformation matrix, which is the aim of IVA [46]. 

It is possible to separate the mixed signal into its underlying independent sources after the 

transformation matrix has been estimated. The sources can then, as needed, be further analysed 

or processed after being separated. The separated sources, for instance, can be used to enhance 

speech comprehensibility and noise reduction in speech recognition, for sound source 

localization or music separation in audio processing, and can be used in biomedical signal 

analysis to monitor vital signs or to diagnose a variety of illnesses [47]. 

IVA does not need to know anything about the source signals or the mixing matrix beforehand, 

unlike other blind source separation methods. Even when sources are highly correlated or have 

non-Gaussian distributions, it has been demonstrated that it can still effectively separate them 

[48]. Compared to the independent component analysis technique independent component 

Analysis (ICA), it is more useful and efficient [49]. 

 
Figure I.8 Independent vector analysis (IVA)'s mixture model 
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According to [50], the IVA mixing and separation models are as follows: 

𝑥𝑥[𝑘𝑘](𝑡𝑡) = 𝐴𝐴[𝑘𝑘](𝑡𝑡)𝑠𝑠[𝑘𝑘](𝑡𝑡) + 𝑛𝑛(𝑡𝑡) ; ∀𝑘𝑘 ∈  {1, … ,𝐾𝐾} (6) 

 

Denotes: 

The observation vector, x[k](t), contains the mixtures of independent sources. The mixing 

matrix is denoted by A[k], the source vector is denoted by s[k](t), K stands for the number of 

datasets, and the additive Gaussian noise is represented by n(t). 

 

The Blind Source Separation (BSS) approach determines K demixing matrices and source 

vector estimations for each dataset, with the kth ones being labelled as W[k] and Y[k] = W[k] 

X[k], and each one is identifiable by the letters W[k] and X[k]. Thus, we have: 

𝑦𝑦𝑛𝑛
[𝑘𝑘] = �𝑤𝑤𝑛𝑛

[𝑘𝑘]�
𝑇𝑇
𝑥𝑥[𝑘𝑘] (7) 

 

The IVA cost function, which can be represented as [51], maximises the mutual information 

within each source component vector (SCV). 

ℐ𝐼𝐼𝐼𝐼𝐼𝐼 = ���ℋ �𝑦𝑦𝑛𝑛
[𝑘𝑘]� − 𝐼𝐼[𝑦𝑦𝑛𝑛] −�𝑙𝑙𝑙𝑙𝑙𝑙��𝑑𝑑𝑑𝑑𝑡𝑡�𝑊𝑊[𝑘𝑘]�� − 𝐶𝐶1�

𝐾𝐾

𝑘𝑘=1

𝐾𝐾

𝑘𝑘=1

�
𝑁𝑁

𝑛𝑛=1

 (8) 

 

Where: 

W denotes the set of all de-mixing matrices, 

W[k] a value to be estimated, 

ℋ stands for the entropy of the source estimates, 

ℐ𝐼𝐼𝐼𝐼𝐼𝐼 represents the mutual information within an SCV, 

C1 signify a constant. 
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I.4. Rolling element-bearing fault diagnosis based on pattern recognition: 
Pattern recognition plays an important role in diagnostics and can be used as a generic term. 

It's a segment of machine learning that focuses on spotting patterns and regularities in data. It’s 

also known as data classification based on prior learning or statistical data pulled from patterns 

and/or their representation. This type of detection can be performed for different types of input, 

e.g., biometric recognition, colours, image recognition, and face recognition [52]. The structure 

process for a pattern recognition system is as follows [53]: 

- Sensing: In this step, sensors are used to receive data and measure properties like vibration, 

pressure, temperature…etc. 

- Segmentation: This step is to divide the received data of a case into several segments or 

sub-signals to gather so much information on a case and to make sure that the sensed objects 

are separated. 

- Feature extraction: In this step, several useful information have been extracted and 

computed from a signal or an image. These features distinguish one case from another and 

they represent the input of a classification algorithm. They could be in the time domain like 

statistical parameters or frequency domain like Power Spectral Density (PSD). 

- Classification: This phase makes a connection between the extracted features with their 

correct category or label using a specific model that has prior training. Many machine 

learning algorithms provide data classification such as statistical algorithms, Structural 

algorithms, Neural network-based algorithms, Template matching algorithms, Fuzzy-based 

algorithms, and Hybrid algorithms. 

- Post-processing: Here, additional reviews are made before a conclusion is made. 

Bearing fault pattern recognition is the process of identifying and diagnosing faults that occur 

in bearings. Bearing fault pattern recognition techniques have been studied in recent years to 

enhance the reliability of error detection and diagnosis. These techniques can identify bearing 

conditions even when the computations are not entirely accurate as long as all the computations 

are based on a similar approximation [54]. Several machine learning classifier algorithms have 

been used in bearing fault pattern recognition such as ANN [55], SVM [56], ELM [57], and 

RF [58]. The selection of the appropriate pattern recognition algorithm can increase the 

accuracy of the system [59]. 
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I.5. Related Researches: 
Bearing fault diagnosis using machine learning is a rapidly growing field that leverages the 

capabilities of machine learning algorithms to detect and diagnose faults in bearings. The use 

of vibration analysis in combination with various machine learning techniques is effective in 

detecting and diagnosing bearing faults. Some of the machine learning techniques used for this 

purpose include traditional methods such as envelope analysis and wavelet transform, as well 

as more recent approaches such as deep learning. 

Sun, M. et al. (2022) [60]: They suggested a stack autoencoder transfer learning method (SAE-

CSDF) based on class separation and domain fusion to overcome several challenges in fault 

detection, such as low accuracy or the necessity for some labelled data containing fault 

information in the new machine. The results demonstrate that the algorithm's accuracy may 

approach 97% when transferring data across computers, even when the new machine lacks 

tagged fault data. 

Choudhary, A., Goyal, D. and Letha, S. S. (2021) [61]: In this work, an emergent two-

dimensional discrete wavelet transforms (2D-DWT) based Infrared thermography (IRT) 

approach for identifying various bearing defects in induction motors (IM) was developed. The 

Mahala Nobis distance (MD) was used in feature selection to produce the ideal feature set. A 

support vector machine was used to classify the errors. The experimental results show that the 

SVM-based approach may be used to design a proactive robust system for defect identification. 

This paves the way for condition-based maintenance, which will aid in the prevention of 

catastrophic failures and the elimination of unanticipated breakdown costs. 

Hou, J. et al. (2020) [62]: The vibration signal was decomposed in this study using Ensemble 

Empirical Mode Decomposition (EEMD). The entropy feature vector was then calculated by 

multiplying the permutation entropy values of each modal component. Following that, Linear 

Discriminant Analysis (LDA) was used to redact features. Experiments with data reveal that 

the suggested fault diagnostic approach may obtain acceptable clustering rates. This suggests 

that the error detection approach provided in this study has the benefit of giving superior 

compactness within the class of clustering results when compared to previous method 

combination procedures. 

 Zhang, X., Zhao, B. and Lin, Y. (2021) [63]: In this work, the CWRU dataset was employed. 

The present mainstream rolling bearing has been researched first. Following that, machine 
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learning-based bearing failure detection has been separated into three stages. The initial process 

is feature extraction, followed by feature selection, and finally classifier detection. Many 

machine learning techniques, such as SVM and KNN, were employed in the classification 

phase, as well as deep learning classifiers such as Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM). According to the report, the SVM had the best 

classification effect. 

Sun, G. et al. (2022) [64]: The purpose of this study is to optimise the input of time-frequency 

images and intelligent diagnosis algorithms by thoroughly analysing the advanced time-

frequency analysis algorithms multi-synchro-squeezing transform (MSST) and time-

reassigned multi-synchro-squeezing transform (TMSST). Finally, time-frequency compression 

fusion (TFCF) has been suggested for superposing and splicing two time-frequency images to 

form dual-channel images. The proposed diagnostic model not only solves the issue 

of diagnosis in normal working conditions, but it also maintains acceptable performance with a 

small sample size, brief sampling time, and low sampling frequency, and it has a broad range 

of application possibilities. 

Toma, R. N., Prosvirin, A. E. and Kim, J.-M. (2020) [65]: This paper describes a hybrid 

approach to bearing failure diagnostics based on motor current data that employs statistical 

characteristics, genetic algorithms (GA), and machine learning models. The statistical 

characteristics of the motor current signals are obtained. Second, GA is used to reduce the 

number of features in the feature database and prioritise them. Finally, three unique 

classification methods, namely K-Nearest Neighbours Algorithm (KNN), decision tree, and 

random forest, are designed and evaluated utilising these attributes to evaluate the bearing 

defects. The experimental results show that the three classifiers achieve an accuracy of more 

than 97%. 

Li, J. et al. (2019) [66]: To satisfy the expectations for an effective evaluation of varied fault 

types and severities with real-time computing performance, the authors proposed a new 

diagnostic technique for rolling bearing failures based on multi-dimensional feature extraction 

and evidence fusion theory. To acquire health status feature vectors, vibration signals are 

initially processed using a multidimensional feature extraction approach based on entropy 

characteristics, Holder coefficient characteristics, and enhanced generalised box-counting 

dimension characteristics. Furthermore, using the recovered feature vectors, a grey relation 

method is employed to construct the basic belief assignments (BBAs), and the BBAs are fused 
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using the Yager algorithm to recognise bearing fault patterns. Based on a small number of 

training samples, the findings show that the diagnosis success rate for bearing defective 

circumstances is 100%, and the overall diagnostic success rate is close to 99.09%. In contrast 

to existing intelligent diagnostic approaches, the suggested approach enhanced fault diagnostic 

accuracy and may be suited for online bearing fault diagnosis.  

Khan, S. A. and Kim, J.-M. (2016) [67]: Based on an automated approach for defect 

diagnostics in bearings, this work offers a 2D analysis of vibration acceleration data under 

changing speed situations. The pictures obtained from the vibration signals for each defect have 

different textures that vary only a little with shaft speed. These photos are used to generate 

unique fault signatures for each type of problem, which may then be used to identify those 

faults at different speeds. The k-nearest neighbour classifier is trained to utilise fault signatures 

created for one operating speed to discover problems at all other operating speeds. The authors 

determined that because the basic fault frequencies are dependent on the nonstationary shaft 

speed, shaft speed changes are inescapable. To validate the suggested approach, this study 

employed fault pictures at four distinct operating speeds. After training with pictures for one 

operating speed, the classification performance of a kNN classifier was tested by testing it with 

fault images for the remaining three operating speeds. The classifier's average classification 

accuracy of 99.74% illustrates that variations in shaft speed do not affect the proposed 

technique. 

Li, W. et al. (2016) [68]: This study includes a unique feature in the form of visuals. The 

spectrum images are produced using only the rapid Fourier transformation. Two-dimensional 

principal component analysis (2DPCA) is used to decrease the dimensionality of these pictures. 

The bearing defects are then classified using the minimal distance approach. The effectiveness 

of the proposed technique was demonstrated using experimental vibration signals. The pictures 

might considerably improve the efficacy of defect detection by providing a new view of the 

FFT spectrum. Even with a short training sample, the suggested approach may achieve high 

accuracy. 

Jiang, Y. and Xie, J. (2022) [69]: VMD and RP are used in the suggested bearing fault 

diagnostic technique based on VMD-RP-CSRN to maximise the retention of fault features in 

the original signal while emphasising the signal's hidden attributes. The recommended channel 

split operation gathers concealed features while allowing additional fault features to participate 

in the feature extraction process of the diagnosis model by selecting the major operational 



CHAPTER I: BEARING FAULT DIAGNOSIS: THE STATE OF THE ART 
 

24 
 

channel of the three-channel feature picture. The experimental results show that the suggested 

technique beats the comparison method by at least 1.2% in terms of noise immunity. Although 

the excellent performance of VMD has been demonstrated in the literature, there are still some 

concerns about its use in bearing problem diagnostics. 

I.6. Conclusion: 

This chapter described the modes of failure of the rolling bearing components, their causes, 

and the standard methods for identifying bearing defects. Methods for measuring the severity 

of rolling element-bearing faults have been demonstrated. Based on pattern recognition, the 

rolling element-bearing fault diagnosis has been mentioned. Also, the used datasets in this 

study have been described. 



 

 

CHAPTER II 

 

FEATURE EXTRACTION AND SELECTION FOR PATTERN 

RECOGNITION 

 

 

II.1. Introduction: 
In the field of artificial intelligence and data analysis, feature extraction is a crucial concept. It 

is frequently used in practice to solve real-world problems. The extracted features from the 

data are fed into ML algorithms, which can then be trained to perform tasks like classification, 

regression, clustering, and more. The outcomes of ML models can be used to make decisions, 

make predictions, or gain insights into data. 

Feature selection is a critical feature extraction component and plays an essential role in ML 

and data analysis. Selecting a subset of the most relevant and informative features from a high-

dimensional data set to use as inputs to ML algorithms or other predictive models is known as 

feature selection, and it is critical for improving the performance and interpretability of ML 

algorithms and predictive models.   
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II.2. Feature extraction: 
Feature extraction is a critical step in pattern recognition, which is identifying patterns and 

regularities in data. It involves selecting a subset of relevant information from the raw data and 

transforming it into features suitable for the specific machine-learning algorithm or task. The 

goal of feature extraction is to extract meaningful information from representative data that can 

effectively distinguish between different classes or patterns. Good feature extraction can result 

in improved accuracy, faster training, and reduced overfitting. This method is necessary for 

many machine-learning jobs and can have a considerable impact on the performance of the 

final model, making it a vital stage in the machine-learning process. In addition, the complexity 

of the data is decreased, making it easier to handle and analyse. Techniques for feature 

extraction include linear discriminant analysis, principal component analysis, and wavelet 

transform [70]. 

The steps of feature extraction in ML typically involve the following [71]: 

1. Data Preprocessing: This step involves cleaning and preparing the data, handling missing 

values, and normalizing the data if necessary. 

2. Feature Selection: This step involves choosing the most relevant and informative features 

from the dataset. Feature selection helps to reduce the number of features, reduce overfitting, 

and increase the efficiency of the machine-learning algorithm. 

3. Feature Transformation: This step involves transforming the selected features into a 

format that can be used by the machine-learning algorithm. This may involve creating new 

features, aggregating existing features, or converting continuous features into categorical 

features. 

4. Dimensionality Reduction: This step entails reducing the number of features to a more 

manageable number. Methods such as principal component analysis (PCA), linear discriminant 

analysis (LDA), and singular value decomposition can be used to accomplish this (SVD). 

5. Feature Scaling: This step involves scaling the features so that they are all on the same 

scale, which can help some ML algorithms perform better. 

Generally, the purpose of feature extraction is to extract the most important information from 

the signal and describe it in a shape that the machine-learning algorithm can understand. These 

stages can be repeated many times to enhance the feature extraction process. 
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The advantages of feature extraction in ML include [72]: 

1. Improved Model Performance: By identifying and extracting the most relevant features 

from a dataset, feature extraction can lead to improved performance of the machine-learning 

model. 

2. Reduced Overfitting: By reducing the number of features, feature extraction can reduce the 

risk of overfitting, where the model is too closely fit to the training data and does not generalize 

well to new data. 

3. Increased Efficiency: By reducing the number of features, feature extraction can make the 

training and prediction process more efficient and faster. 

4. Better Interpretability: By reducing the number of features, feature extraction can make 

the results of the machine-learning model more interpretable and easier to understand. 

5. Improved Data Visualization: By transforming the features into a more manageable 

format, feature extraction can make it easier to visualize and explore the relationships between 

features and the target variable. 
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II.3. Time domain features: 
Bearing fault diagnosis using time-domain features involves extracting relevant features from 

the vibration signal generated by a faulty bearing and using these features to identify the type 

and severity of the fault. Some common time domain parameters used for bearing fault 

diagnosis include: 

II.3.1. Root Mean Square (RMS):  

has been used as a standard statistical metric in ML for evaluating the performance of a 

regression or classification model. The smaller the RMS value, the better the model is at 

making accurate predictions and detections. It is usually used as a loss function in optimization 

algorithms to train ML models, also used in time series forecasting or image classification and 

in conjunction with other metrics, like mean absolute error (MAE) or mean squared error 

(MSE), to obtain the full picture of the performance of an ML model. The choice of the 

evaluation metric counts on the characteristic requirements and goals of the problem being 

solved [73]. 

The Root Mean Square is defined as follows [74]: 

𝑅𝑅𝑅𝑅𝑅𝑅 =  ��
∑ (𝑥𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
𝑁𝑁

� (9) 

 

 

With: 

i: Is a sample,  

N: Is the number of data points (samples) of x(i).  
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II.3.2. Kurtosis:  

It is a typical statistical metric used to analyse the peakedness or flatness of data, similar to a 

normal distribution. A higher kurtosis value indicates a more peaked distribution, while a lower 

kurtosis value indicates a flatter distribution. Kurtosis can be used in experimental applications 

to discover outliers and specify the presence of a distributional skew, which might affect the 

performance of specific algorithms. While preprocessing and converting data in ML tasks, it is 

critical to include kurtosis as well as other statistical variables such as mean, standard deviation, 

and skewness [75]. 

In the field of bearing fault diagnosis, kurtosis is often used as a feature to detect abnormal 

conditions in rotating machinery. The vibration signals collected from bearings can contain 

information about the health of the bearings, and the kurtosis of these signals can be used to 

identify different types of faults, such as inner race faults, outer race faults, and ball faults [76]. 

It is defined as follows [77]: 

𝑲𝑲𝑲𝑲𝑲𝑲 =  
𝟏𝟏
𝑵𝑵
∑ (𝒙𝒙(𝒊𝒊) − 𝒙𝒙�)𝟒𝟒𝑵𝑵
𝒊𝒊=𝟏𝟏

�𝟏𝟏
𝑵𝑵
∑ (𝒙𝒙(𝒊𝒊) − 𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏 �

𝟐𝟐 (10) 

 

where x(n) is a signal series for n = 1, 2, …, N. N is the number of data points. There are three 

types of kurtosis [78]: 

1. Mesokurtic: This refers to a kurtosis value that is equal to the kurtosis of a normal 

distribution, which is 3. A mesokurtic distribution has a similar shape to a normal distribution, 

with relatively few outliers and a balanced distribution of data. 

2. Leptokurtic: This refers to a kurtosis value that is greater than 3, indicating a more peaked 

distribution with a larger concentration of data in the tails. This type of distribution has a higher 

likelihood of extreme values or outliers. 

3. Platykurtic: This refers to a kurtosis value that is less than 3, indicating a flatter distribution 

with fewer extreme values. A platykurtic distribution has a lower concentration of data in the 

tails compared to a normal distribution. 
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II.3.3. Crest Factor:  

It’s a measure used to quantify the peakiness or impulsiveness of a signal. In the domain of 

ML, it is used to evaluate the performance of models for signal-processing tasks. In addition, 

it is described as the ratio between the maximum amplitude of a signal and its root mean square 

(RMS) value. A lower crest factor indicates a smoother signal, while a higher crest factor 

indicates a more peaky signal [79]. 

The crest factor can be used as a metric for evaluating the quality of audio signals and for 

comparing different models. It is also used in the field of mechanical engineering for bearing 

fault diagnosis. In this context, the crest factor is used to analyze the vibration signals generated 

by rotating machinery to detect and diagnose faults in bearings [80]. It is computed as the ratio 

of the maximum value to the root mean square (RMS) value of the vibration signal. 

An increase in the crest factor can indicate an increase in the impulsive or non-sinusoidal 

component of the vibration signal, which is often associated with bearing faults such as pitting, 

spalling, or misalignment. By analyzing the crest factor, engineers can identify the presence of 

bearing faults and diagnose the type and severity of the fault. It is defined as follows [81]: 

𝑪𝑪𝑪𝑪𝑪𝑪 =  
𝒎𝒎𝒎𝒎𝒙𝒙|𝒙𝒙(𝒏𝒏)|

��∑ (𝑥𝑥𝑖𝑖)2𝑁𝑁
𝑖𝑖=1
𝑁𝑁

�
 (11) 

A high crest factor indicates that the vibration signal has high peaks and a low average value, 

which is characteristic of a fault in the bearings. By Incorporating the Crest Factor Into the 

Feature Set of the ML Model, the Model Can Better Differentiate Between Normal and Faulty 

Signals, Leading to Improved Accuracy in Fault Diagnosis. 
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II.3.4. Impulse Factor:   

In ML, the quick and unexpected effect that fresh data can have on a model's predictions is 

known as the Impulse Factor  This can happen when the model is compelled to modify its 

predictions in response to the introduction of fresh data points. The phrase is frequently used 

in time series data modelling, where new data points stand in for the most recent observations 

[82].  

In some circumstances, outliers, or data points that differ noticeably from the other data points 

in the data collection, might provide the push factor. They can significantly affect the model's 

predictions since they can skew the data's distribution and make the model forecast things 

incorrectly. In other instances, an abrupt shift in the data distribution may be to blame for the 

gain factor. For instance, the model may lose its ability to correctly forecast future observations 

based on historical data if the underlying mechanism that generates the data changes [83]. 

The impulse factor can be introduced into a bearing defect diagnosis system by abrupt changes 

in the vibration signals produced by the bearing. These alterations can be brought on by the 

existence of a problem, but they can also be brought on by outside variables such as variations 

in load or speed [84]. To establish an appropriate diagnosis, the model utilised in the diagnosis 

system must be able to separate between these many sources of the impulse. 

It is crucial to carefully preprocess the data and eliminate any potential outliers to lessen the 

impact of the impulsive component. It may also be necessary to use robust statistical methods, 

such as median filtering, to smooth the data and reduce the impact of the impulse factor [85]. 

It is defined as follows [81]: 

𝑰𝑰𝑰𝑰𝑪𝑪 =  
𝒎𝒎𝒎𝒎𝒙𝒙|𝒙𝒙(𝒏𝒏)|
1
𝑁𝑁
∑ |𝑥𝑥𝑖𝑖|𝑁𝑁
𝑖𝑖=1

 (12) 

In brief, because it can significantly affect the accuracy of the diagnosis, the impulse factor is 

a crucial aspect to take into account when diagnosing bearing faults. It is conceivable to lessen 

the impact of the impulse component and boost the diagnostic precision by thoroughly 

preprocessing the data and utilising strong statistical procedures [86].  
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II.3.5. Skewness:  

In ML, Skewness describes the form of the target variable's dataset distribution. The 

performance of ML models can be significantly impacted if the target variable is skewed or 

biased in one way [87]. For instance, the target variable is assumed to have a normal 

distribution by several common ML techniques, including linear regression and decision trees. 

If the target variable is heavily skewed, these algorithms may produce biased results. This is 

because the mean, which is used as a key metric in these algorithms, can be influenced by 

extreme values and outliers in the skewed distribution [88]. 

In the field of bearing fault diagnosis, skewness is often used as a statistical feature for pattern 

recognition and classification tasks. Bearings are a crucial component in many mechanical 

systems, and their failure can result in significant downtime and repair costs. The vibration 

signals generated by faulty bearings can contain valuable information about the fault type and 

severity [89]. 

Skewness, along with other statistical features such as kurtosis and standard deviation, is 

commonly extracted from the vibration signals and used as inputs to ML algorithms [90]. The 

skewness feature captures the asymmetry of the vibration signal and can help distinguish 

between different types of faults, such as inner race faults, outer race faults, and rolling element 

faults. It is defined as follows [91]: 

𝑺𝑺𝑲𝑲 =  
𝟏𝟏
𝑵𝑵
∑ (𝒙𝒙(𝒊𝒊) − 𝒙𝒙�)𝟑𝟑𝑵𝑵
𝒊𝒊=𝟏𝟏

��𝟏𝟏
𝑵𝑵
∑ (𝒙𝒙(𝒊𝒊) − 𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏 �

𝟑𝟑 (13) 

In conclusion, skewness plays an important role in the early detection of bearing faults, helping 

to ensure the reliable operation of mechanical systems and reducing the costs associated with 

downtime and repairs.  
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II.3.6. The Standard Deviation:  

In statistics, the standard deviation is a measure of the amount of variation or dispersion of a 

set of values. It is a measure of how much the data deviates from the mean. A low standard 

deviation indicates that the values tend to be close to the mean (also called the expected value) 

of the set, while a high standard deviation indicates that the values are spread out over a wider 

range [92]. 

The standard deviation is calculated as the square root of variance [92]. The formula for 

variance is:  

𝝈𝝈𝟐𝟐 =  
∑ (𝒙𝒙(𝒊𝒊) − 𝒙𝒙�)𝟐𝟐𝑵𝑵
𝒊𝒊=𝟏𝟏
𝑵𝑵 − 𝟏𝟏  (14) 

Where: 

σ2: is variance. 

xi is each value in the dataset,  

𝒙𝒙� is the mean of all values in the dataset 

N is the number of values in the dataset. 

The formula uses N−1 in the denominator instead of  N when calculating the standard deviation 

for a sample. This adjustment is known as Bessel's correction and helps to provide an unbiased 

estimate of the population standard deviation based on a sample. 

Standard deviation is critical in machine learning for understanding data distribution and 

analysing the variety of features within a dataset [93]. It is a statistical metric that provides 

insights into the spread and dispersion of data points, which may be useful for a variety of 

machine learning activities such as data preparation, model validation, and outlier detection. In 

addition, the standard deviation can be used to measure confidence in a model’s statistical 

conclusions [94].  
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II.4. Frequency domain features: 
Feature extraction in the frequency domain refers to the process of extracting relevant 

information from signals or data by transforming them into the frequency domain. Techniques 

like Fast Fourier Transform (FFT) and Short-Time Fourier Transform (STFT) are frequently 

used to accomplish this [95]. 

Frequency domain features can be used in various applications, including speech and audio 

processing, image processing, and signal analysis. These features can provide insight into the 

spectral content of signals and can be used to identify patterns, extract features, and classify 

signals. Examples of frequency domain features include spectral power, spectral centroid, 

spectral roll-off, and spectral flatness [96]. 

Types of Feature extraction in the frequency domain: 

II.4.1. The Power Spectral Density (PSD): 

PSD is a commonly used method in the field of vibration analysis and bearing fault diagnosis. 

The PSD provides information about the distribution of power in a signal over different 

frequencies, which can be used to identify the presence of a fault and diagnose its type. In 

bearing fault diagnosis, the PSD is used to analyze the vibration signals generated by rotating 

machinery [97]. By comparing the PSD of a healthy bearing with the PSD of a faulty bearing, 

it is possible to identify the presence of a fault and determine its type. To perform a PSD 

analysis, the vibration signals are first transformed into the frequency domain using techniques 

such as the Fast Fourier Transform (FFT). The resulting spectra are then used to calculate the 

PSD, which provides information about the distribution of power in the signal over different 

frequencies [98]. 

In conclusion, the Power Spectral Density is a useful tool for bearing fault diagnosis, as it 

provides valuable information about the distribution of power in the vibration signals generated 

by rotating machinery. By analyzing the PSD, it is possible to identify the presence of a fault 

and diagnose its type, which can then be used to make informed decisions about maintenance 

and repair [99]. Which is defined as follows [100]: 

𝑺𝑺(𝒇𝒇) =  � 𝑪𝑪𝒙𝒙(𝒕𝒕)
+∞

−∞
𝒆𝒆−𝒋𝒋𝟐𝟐𝒋𝒋𝒇𝒇𝒕𝒕𝒅𝒅𝒕𝒕 (15) 

Where : 
S(f): is Power Spectral Density. 
Rx(t): is the autocorrelation function of a random process X(t). 
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II.4.2. Spectral Centroid: The spectral centroid is a commonly used feature in the diagnosis 

of bearing faults. In essence, it is a measure of the centre of gravity of the frequency spectrum 

of a vibration signal and can provide information about the distribution of energy across 

different frequencies [101]. 

In healthy bearings, the vibration signals typically have energy across a range of frequencies, 

with the majority of the energy concentrated in the low-frequency range. If a bearing fault 

occurs, it can cause changes in the vibration signals, such as increased energy at higher 

frequencies or a shift in the spectral centroid towards higher frequencies. These changes can 

be used to identify the presence of a fault and diagnose the type of fault that has occurred [102]. 

In conclusion, the spectral centroid is a useful feature for the diagnosis of bearing faults, as it 

provides information about the distribution of energy across different frequencies in the 

vibration signals from a bearing. This information can be used to identify changes that are 

indicative of a fault and to diagnose the type of fault that has occurred. The spectral centroid is 

calculated as described in [103]: 

𝑺𝑺𝑪𝑪 =  
∑ 𝒇𝒇𝒌𝒌𝒔𝒔𝒌𝒌
𝒃𝒃𝟐𝟐
𝒌𝒌=𝒃𝒃𝟏𝟏

∑ 𝒔𝒔𝒌𝒌
𝒃𝒃𝟐𝟐
𝒌𝒌=𝒃𝒃𝟏𝟏

 (16) 

Where: 

fk is the frequency in Hz corresponding to bin k. 

sk is the spectral value at bin k. 

b1 and b2 are the band edges, in bins, over which to calculate the spectral centroid. 

II.4.3. Entropy: is a statistical measure that provides information about the randomness or 

disorder of a signal in the domain of bearing fault diagnosis. It is commonly used in this context 

to extract features from vibration signals that can be used to diagnose bearing faults [104]. 

A signal's entropy can be calculated using a variety of algorithms, including the Shannon 

entropy [104], sample entropy [105], and permutation entropy [106]. These algorithms process 

the vibration signal in different ways, but the main idea is to quantify the amount of uncertainty 

or randomness in the signal. For example, a healthy bearing will typically produce a vibration 

signal with low entropy, while a faulty bearing may produce a signal with higher entropy due 

to increased randomness or disorder in the vibration pattern [107]. By computing the entropy 

of a vibration signal, it is possible to extract features that can be used as input to machine 

learning (ML) algorithms for fault diagnosis. For example, the entropy of a signal could be 
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used as a feature in a decision tree or a support vector machine to classify different types of 

bearing faults [108]. 

It is important to note that entropy is just one of many possible features that can be used for 

bearing fault diagnosis and that the choice of feature extraction method will depend on the 

specific application and the characteristics of the vibration signal. In general, it is recommended 

to use a combination of different features and algorithms for robust and accurate fault diagnosis 

[109]. Which is defined as follows [110]: 

𝑬𝑬𝒏𝒏𝒕𝒕 =  −�𝒙𝒙𝒊𝒊 𝐥𝐥𝐥𝐥𝐥𝐥𝟐𝟐(𝒙𝒙𝒊𝒊)
𝑵𝑵

𝒊𝒊=𝟏𝟏

 (17) 

Where: 
xi: The frequentist probability of an element/class 'i' 
N: The total number of classes. 

II.4.4. Wavelet decomposition: is a signal processing technique that divides a signal into 

frequency sub-bands. The wavelet decomposition can be used to extract information from 

vibration signals collected from a faulty bearing in the aspect of bearing fault diagnosis. The 

vibration signals contain rich information about the bearing condition, including frequency 

content, time domain behaviour, and non-stationary patterns [111]. By decomposing the 

vibration signals into multiple frequency sub-bands using wavelet transforms, it is possible to 

isolate and analyze the fault-related information and detect faults in the early stages before they 

lead to catastrophic failure. 

The wavelet transform provides a multi-resolution representation of the vibration signal, which 

allows the identification of both low- and high-frequency fault features. For example, the 

presence of high-frequency spikes in the wavelet coefficients can indicate the presence of 

surface faults, such as cracks or pitting, while low-frequency coefficients can reveal sub-

surface faults, such as inner race or ball defects [112]. 

In conclusion, wavelet decomposition is a powerful tool for bearing fault diagnosis and is 

widely used in industry and academia. It provides a flexible and effective approach to analyzing 

vibration signals and detecting faults in rotating machinery. 

Continuous Wavelet Transforms (CWT) [113]: 

𝑻𝑻(𝒎𝒎,𝒃𝒃) =
𝟏𝟏
√𝒎𝒎

� 𝒙𝒙(𝒕𝒕)𝚿𝚿∗ �
𝒕𝒕 − 𝒃𝒃
𝒃𝒃 �𝒅𝒅𝒕𝒕

+∞

−∞
 (18) 
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Discrete Wavelet Transforms (DWT) [114]: 

𝑻𝑻𝒎𝒎,𝒏𝒏 = � 𝒙𝒙(𝒕𝒕)𝚿𝚿𝒎𝒎,𝒏𝒏(𝒕𝒕)𝒅𝒅𝒕𝒕
+∞

−∞
 (19) 

Where: 
Ψ(t): is the mother wavelet. 
x(t): a finite energy signal. 
a: sets the scale of the wavelet. 
b: defines the location of the wavelet. 

II.4.5. Power Spectrum Ratio:  The Power Spectrum Ratio (PSR) is a commonly used method 

for diagnosing bearing faults in rotating machinery. The PSR compares the power spectral 

density of two signals, one from a healthy bearing and one from a faulty bearing. By analyzing 

the differences in the spectral content of these signals, the PSR can identify the presence of a 

fault and its type [115]. To perform a PSR analysis, the vibration signals from the healthy and 

faulty bearings are first transformed into the frequency domain using techniques such as the 

Fast Fourier Transform (FFT). The resulting spectra are then used to calculate the PSR by 

dividing the spectrum of the faulty bearing by the spectrum of the healthy bearing. A significant 

increase in the amplitude of certain frequency components in the PSR may indicate the 

presence of an inner race fault or an outer race fault [116]. A decrease in the amplitude of 

certain frequency components in the PSR may indicate the presence of a rolling element fault. 

In general, the PSR is a useful tool for bearing fault diagnosis because it provides valuable 

information about the spectral content of the vibration signals. By analyzing the PSR, one can 

quickly identify the presence of a fault and diagnose its type, which can then be used to make 

informed decisions about maintenance and repair [117]. Which is defined as follows [118]: 

𝑷𝑷𝑺𝑺𝑪𝑪 =  
𝒑𝒑𝟎𝟎
𝒑𝒑

=
∫ 𝒑𝒑(𝒇𝒇)𝒅𝒅𝒇𝒇𝒇𝒇𝟎𝟎+𝒏𝒏
𝒇𝒇𝟎𝟎−𝒏𝒏

∫ 𝒑𝒑(𝒇𝒇)𝒅𝒅𝒇𝒇+∞
−∞

 (20) 

Where : 
PSR: is the power spectrum ratio, 
p(f): is the power spectrum density function,  
f0: is the frequency corresponding to the maximum power spectrum, 
n: is the integral range. 
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II.5. Dimensionality Reduction: 
Dimensionality reduction is a method for lowering the number of variables in a dataset while 

maintaining as much information as possible. It is commonly used in ML and pattern 

recognition. In the aspect of bearing fault diagnosis, it is used to simplify the high-dimensional 

vibration signals typically obtained from sensors installed on rotating machinery [119]. The 

goal is to convert complex and noisy signals into a more compact and interpretable 

representation that can be used for further analysis and diagnosis. 

Several popular dimensionality reduction techniques are commonly used in bearing fault 

diagnosis, including: 

II.5.1. Principal Component Analysis (PCA): is one of the techniques for reducing 

dimensionality that is popularly used in data analysis and ML. The goal of PCA is to transform 

a collection of potentially correlated observations into a collection of linearly uncorrelated 

variables called principal components. The first principal component has the greatest variance 

and captures the majority of the information in the original set of variables. The second 

principal component captures additional information and has the second highest variance. It is 

orthogonal to the first principal component. This procedure is repeated until all of the principal 

components have been calculated [120].  

PCA is useful in a variety of applications, including image compression, noise reduction, 

feature extraction, high-dimensional data visualization, and others. 

The steps for performing PCA are as follows [121]:  

Data Pre-processing: Ensure that the data is cleaned and in the correct format for PCA 

analysis. This may include dealing with missing values, transforming variables if necessary, 

and scaling the variables. 

Data Matrix Preparation: Create a data matrix X = {x1, x2, … ,xm} from the pre-processed 

data, where each row represents an observation, and each column represents a variable. 

Mean Centering: Subtract the mean of each variable from its respective values to obtain the 

mean-centred data. 

𝒙𝒙𝒏𝒏𝒆𝒆𝒏𝒏 = 𝒙𝒙 − 𝝁𝝁 (21) 
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Normalize the data: Normalize the data before achieving PCA. This will guarantee that each 

feature has a mean = 0 and variance = 1 

𝒛𝒛 =
𝒙𝒙 − 𝝁𝝁
𝝈𝝈

 (22) 

Where σandμare the Mean and standard deviation, respectively. 

Covariance Matrix Calculation: Calculate the covariance matrix of the mean-centred data, 

which is a measure of the variability of the variables and their relationships. 

𝑪𝑪𝑪𝑪𝑪𝑪(𝑿𝑿,𝒀𝒀) =
𝟏𝟏
𝒎𝒎
�(𝒙𝒙𝒊𝒊 − 𝝈𝝈𝒙𝒙)�𝒚𝒚𝒊𝒊 − 𝝈𝝈𝒚𝒚�
𝒎𝒎

𝒊𝒊=𝟏𝟏

 (23) 

Eigenvalue and Eigenvector Calculation: Calculate the eigenvalues and eigenvectors of the 

covariance matrix, which represent the magnitude and direction of the principal components, 

respectively. 

Principal Component Sorting: Sort the eigenvalues in descending order and select the top k 

eigenvectors, where k is the number of dimensions desired in the transformed data. 

Transformation Matrix Calculation: Calculate the transformation matrix as the matrix of the 

selected eigenvectors. 

Data Transformation: Transform the original data into the new, lower-dimensional space by 

multiplying the mean-centred data matrix by the transformation matrix. 

Interpretation: Interpret the results of the PCA analysis, including the magnitude and 

direction of each principal component, the explained variance, and the transformed data. 

The fact that PCA is a linear technique and is sensitive to the scale of the features are just two 

examples of its drawbacks. The complexity of huge datasets can still be reduced with this 

method, especially when paired with other dimensionality reduction methods. 
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II.5.2. Independent Component Analysis (ICA): Using this statistical technique, one can 

disentangle a multivariate signal into independent, non-Gaussian components; Finding a linear 

representation of the data in which each component is as independent of the others as possible 

is the basic goal of ICA. When trying to separate signals that are combined or overlaid in some 

way, such as in the picture and audio processing, this might be helpful [122]. 

The steps involved in ICA, along with their mathematical formulation, are as follows [123]: 

Whitening: The first step is to pre-process the data by converting it into a white noise signal, 

which has zero, mean and unit covariance.  

Decorrelation: In this step, the decorrelation matrix is applied to the whitened data to make it 

statistically independent. The decorrelation matrix is computed using eigenvalue 

decomposition or singular value decomposition. 

Centring: The de-correlated data is then centred to have zero mean, which helps in finding the 

underlying independent components. 

Immixing: In this step, the immixing matrix is estimated that separates the independent 

components from the mixture of signals. This can be done using various algorithms such as 

FastICA. 

Demixing: The final step is to apply the immixing matrix to the centred data to obtain the 

estimated independent components. 

Note that the accuracy of the results obtained from ICA depends on various factors such as the 

number of independent components, the distribution of the signals, and the choice of the 

algorithm used for immixing [124]. 
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II.5.3. Linear Discriminant Analysis (LDA): is a method for reducing dimensionality that is 

frequently applied in the fields of ML and pattern recognition; A high-dimensional dataset can 

be converted into a lower-dimensional space using LDA while preserving the data's most 

important details; LDA aims to optimize the separation between various classes in the data by 

projecting the data onto a lower-dimensional space [125]. 

 

Algorithm 1 LDA Algorithm [126] 
Require Data matrix 𝑋𝑋 ∈ 𝑅𝑅𝑑𝑑×𝑁𝑁, 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑×1 is the i-th column of X. Lavel vector 𝑦𝑦𝑖𝑖 ∈
{1, 2, … ,𝐶𝐶}, 𝑖𝑖 = 1, … ,𝑁𝑁,𝑁𝑁𝑐𝑐 , 𝑐𝑐 = 1, … ,𝐶𝐶 is the amount of samples in each class. 

Ensure The projection matrix 𝑃𝑃 ∈ 𝑅𝑅𝑝𝑝×𝑑𝑑 

1: Compute the mean vector for each class : 𝑚𝑚𝑐𝑐 =
∑ 𝑥𝑥𝑖𝑖
𝑁𝑁𝑐𝑐
𝑖𝑖=1
𝑁𝑁𝑐𝑐

 ∈  𝑅𝑅𝑑𝑑×𝑙𝑙 

2: Compute total mean vector: 𝑚𝑚 = ∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=1
𝑁𝑁

 ∈  𝑅𝑅𝑑𝑑×𝑙𝑙 

3: Compute within-class scatter: 𝑅𝑅𝑤𝑤 = ∑ ∑ �𝑥𝑥𝑗𝑗 − 𝑚𝑚𝑐𝑐��𝑥𝑥𝑗𝑗 − 𝑚𝑚𝑐𝑐�
𝑇𝑇  ∈  𝑅𝑅𝑑𝑑×𝑑𝑑𝑁𝑁𝑐𝑐

𝑗𝑗=1
𝐶𝐶
𝑐𝑐=1  

4: Compute between-class scatter: 𝑅𝑅𝑏𝑏 = ∑ 𝑁𝑁𝑐𝑐(𝑚𝑚𝑐𝑐 −𝑚𝑚)(𝑚𝑚𝑐𝑐 −𝑚𝑚)𝑇𝑇  ∈  𝑅𝑅𝑑𝑑×𝑑𝑑𝐶𝐶
𝑐𝑐=1  

5: Eigen-decomposition: [𝑉𝑉,𝐷𝐷] = 𝑒𝑒𝑖𝑖𝑒𝑒(𝑅𝑅𝑤𝑤−1𝑅𝑅𝑏𝑏) 
6: Getting the projection matrix: The matrix P is composed of the top-p eigenvectors 
corresponding to the largest eigenvalues. 

 

In conclusion, dimensionality reduction using LDA is a powerful technique for reducing the 

complexity of the data while preserving its information content. It is widely used in pattern 

recognition, ML, and data mining and is a valuable tool for solving real-world classification 

problems. It can improve the performance of classification algorithms by reducing the noise in 

the data and making the data more separable. It can also reduce the computational cost of 

subsequent algorithms, which is particularly important for large datasets. 

II.5.3. Autoencoder: By encoding high-dimensional input into a lower-dimensional 

representation (latent space) and then decoding that representation back into a near 

approximation of the original high-dimensional data, autoencoders are a form of neural 

network that can be used to reduce dimensionality. The objective is to develop a concise 

representation of the data that captures the most crucial relationships and features while 

eliminating extraneous or redundant material [127]. 
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The encoder and decoder are the two parts that make up an autoencoder. The input data is 

converted by the encoder into a lower-dimensional latent space, and the latent representation 

is then converted by the decoder back into the original high-dimensional space. The goal is to 

minimise the reconstruction error or the difference between the original and reconstructed data. 

The weights of the encoder and decoder are adjusted during training to minimise reconstruction 

error [128]. 

There are, basically, 7 types of autoencoders [129]: 

II.5.4. Denoising autoencoder(DAE): this is a type of deep learning architecture that is used 

to remove noise from data; It is an extension of the traditional autoencoder, which is a neural 

network architecture used for unsupervised learning. 

II.5.5. Sparse Autoencoder: a sparse autoencoder is a type of deep learning architecture that 

learns a compact, low-dimensional representation of the data while encouraging sparsity in the 

activations of the hidden layer; This results in a sparse, efficient representation of the data, 

which can be useful for various applications. 

II.5.6. Deep Autoencoder: a deep autoencoder is a type of deep learning architecture that 

learns a compact, low-dimensional representation of the input data by stacking multiple layers 

of neurons in the encoding and decoding parts of the network; By doing so, the network can 

learn more complex representations of the data, which can be useful for various applications. 

II.5.7. Contractive Autoencoder: a contractive autoencoder is a type of deep learning 

architecture that adds a regularization term to the reconstruction loss to enforce a contractive 

property, where small changes in the input data result in small changes in the hidden 

representations; By doing so, the network can learn more robust and useful hidden 

representations, which can be useful for various applications. 

II.5.8. Under-complete Autoencoder: an under-complete autoencoder is a type of 

autoencoder where the number of neurons in the hidden layer is smaller than the number of 

neurons in the input layer; By forcing the network to learn a compressed representation of the 

data, the under-complete autoencoder can capture the essential features of the data, which can 

be useful for various applications. 

II.5.9. Variational Autoencoder: a Variational Autoencoder (VAE) is a type of deep learning 

architecture that combines the idea of an autoencoder with probabilistic modelling. The goal 
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of a VAE is to learn a compact, low-dimensional representation of the data while also being 

able to generate new samples from that representation; VAEs have many applications, 

including generative modelling, unsupervised representation learning, and anomaly detection. 

II.5.10. Convolutional Autoencoder: a convolutional autoencoder is a type of deep learning 

architecture that uses convolutional layers in the encoding and decoding parts of the network 

to process image data; By doing so, the network can learn more complex representations of the 

data, which can be useful for various applications, especially for image data. 

Autoencoders have been applied to a wide range of applications, including image and audio 

compression, anomaly detection, and feature learning. They are also a popular tool for 

unsupervised learning, as they can learn useful representations of data without the need for 

labelled data. 

II.6. Feature Selection: 
The process of selecting a subset of relevant features, or characteristics, from a larger set of 

features, to improve the performance of a ML model is known as feature selection. The goal 

of feature selection is to reduce data dimensionality by removing irrelevant, redundant, or noisy 

features. Feature selection can also improve model interpretability and comprehension [130]. 

Feature selection is an important step in the process of bearing fault diagnosis. It involves 

selecting a subset of the available features, or characteristics, of the bearing data that are most 

relevant for the task of detecting and diagnosing faults. The goal of feature selection is to reduce 

the dimensionality of the data and improve the accuracy, efficiency, and interpretability of the 

diagnosis system [131]. 

Several feature selection methods can be used, including [132]: 

II.6.1. Filter methods: Filter methods evaluate each feature individually based on a statistical 

measure, such as correlation or mutual information, with the target variable. The features with 

the highest scores are selected. 

II.6.2. Wrapper methods: Wrapper methods evaluate the performance of the ML model 

trained on subsets of the features. The features that result in the best performance are selected. 
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II.6.3. Embedded methods: Embedded methods combine feature selection and model training 

into a single process. For example, regularization in linear models can be used to reduce the 

magnitude of the coefficients and select important features. 

II.6.4. Hybrid methods: Hybrid methods combine multiple feature selection methods to get 

the best results. 

It is vital to note that the approach used to choose features will be determined by the individual 

problem and data, and the results may differ based on the method utilised. Furthermore, feature 

selection is frequently an iterative process in which different methods are tried and the results 

are compared to discover the best collection of features [133]. 

Dimensionality reduction and feature selection are two distinct strategies for preprocessing and 

optimising ML models' performance. They do, however, have different purposes and 

approaches. In conclusion, feature selection prioritises the most relevant and useful aspects, 

whereas dimensionality reduction prioritises reducing the number of features while 

maintaining the most critical information. Both strategies can be used in tandem to increase a 

machine-learning model's performance [134]. 
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II.7. Binary Optimization algorithms: 

Binary optimization is a type of mathematical optimization problem where the variables can 

only have binary values, i.e., either 0 or 1; These kinds of problems are frequently seen in 

decision-making situations, such as those in which the objective is to select the best 

combination of items from a list of possible options [135]. 

There are several algorithms for solving binary optimization problems, including: 

II.7.1. Binary Bat Algorithm (BBA): is a metaheuristic optimization algorithm inspired by 

bat echolocation. It is a population-based algorithm for solving complex optimization 

problems. The BBA is a relatively new algorithm that is effective in solving a variety of 

optimization problems in recent years [136]. 

The BBA is based on bat echolocation behaviour. Echolocation is used by bats to navigate and 

find food in their environment. They emit sound waves and then listen for the echoes that are 

reflected from objects in their environment. By analyzing the echoes, they can determine the 

location and size of objects in their environment. The BBA uses this same principle to solve 

optimization problems [137].  

The BBA works by creating a population of solutions to the optimization problem. Each 

solution is represented by a bat. The bats then emit sound waves and listen for the echoes that 

are reflected from the objective function. The bats then adjust their solutions based on the 

echoes they receive. This process is repeated until the bats find a solution that is close to the 

optimal solution [138].  

The BBA outperforms other optimization techniques in various ways. It is straightforward to 

build and can be used to address a wide range of optimization problems. It is also quite quick 

and can uncover solutions in a relatively short period. Furthermore, the BBA can find solutions 

that are near the optimal answer [139]. 

Overall, the Binary Bat Algorithm is a powerful and efficient feature selection algorithm 

inspired by bat echolocation behaviour that can be used to identify the most important features 

in a dataset. It is computationally efficient, able to identify non-linear relationships between 

features, and can be used to identify the most important features in a dataset. Furthermore, it is 

quite fast and can identify solutions that are close to the idea [140]. 
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Each artificial bat in the binary bat algorithm contains a position vector Xi, a velocity vector 

Vi, which are the ith bat individual in the tth iteration, as well as a variable loudness A and a 

frequency vector Fi that can be modified throughout redundancy. Each bat moves in the manner 

described below: 

𝑽𝑽𝒊𝒊(𝒕𝒕 + 𝟏𝟏) = 𝑽𝑽𝒊𝒊 + (𝑿𝑿𝒊𝒊(𝒕𝒕) −  𝑮𝑮𝒃𝒃𝒆𝒆𝒔𝒔𝒕𝒕) × 𝑪𝑪𝒊𝒊 (24) 

𝑿𝑿𝒊𝒊(𝒕𝒕 + 𝟏𝟏) = 𝑿𝑿𝒊𝒊(𝒕𝒕) + 𝑽𝑽𝒊𝒊(𝒕𝒕 + 𝟏𝟏) (25) 

𝑪𝑪𝒊𝒊 = 𝑪𝑪𝒎𝒎𝒊𝒊𝒏𝒏 + (𝑪𝑪𝒎𝒎𝒎𝒎𝒙𝒙 − 𝑪𝑪𝒎𝒎𝒊𝒊𝒏𝒏) × 𝜷𝜷 (26) 

Where: 

• Gbest: represents the current optimal solution. 

• β: denotes is uniformly distributed between [0, 1]. 

• max: stands for the iteration maximum number. 

• rand: represents a uniform random number between 0 and 1. 

• minfit: signifies the minimum fitness value. 

Algorithm 2: The binary bat algorithm [141] 
Initialize pulse rates ri and loudness Ai 
Initialize the bat population xi (i = 1, 2, ... , n) and vi 
Define pulse frequency fi and xi  
While (t < max) do 
 Adjust frequency and velocity and Calculate the transfer function 
 If (rand > ri) then 
 Select a Solution Gbest among the best solutions randomly. 
 Adjust some of the dimensions of the position vector with some of the 
 dimensions of Gbest 

 End if 
 Fitness1 = f(xi) 
 Fitness2 = f(Gbest) 
 If (fitness1 > fitness2 & rand < Ai) then 
 Update initial bat and reduce loudness, increase pulse rate 
 End if 
 If (fitness2 <minfit) then 
 Update Gbest 
 Reduce loudness Ai, increase pulse rate ri. 
 End if 
 Classify the bats and locate the current Gbest 

End while 
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II.7.2. Binary particle swarm optimisation: Binary Particle Swarm Optimization (BPSO) is 

an evolutionary computation technique used for optimization problems and feature selection. 

It is a hybrid meta-heuristic combining features of the social and cognitive behaviour of 

particles in a swarm with binary search techniques. This technique enables the optimization of 

a problem by using a population of particles that move in the search space. Each particle is 

associated with a binary vector, with each element in the vector representing a feature. The 

particles move in the search space and interact with each other as they try to find a globally 

optimum solution. BPSO has several advantages over other feature selection algorithms, such 

as its ability to avoid local optima, its ability to converge quickly, and its low computational 

complexity. Additionally, BPSO is suitable for large-scale feature selection problems, as its 

computational complexity does not increase with the number of features [142]. Thus, BPSO 

offers a useful and efficient tool for feature selection and provides an alternative to other, more 

traditional methods. 

Binary Particle Swarm Optimization (BPSO) is a promising optimization algorithm for feature 

selection due to its ability to efficiently search for optimal subsets of features [143]. 

Unfortunately, there are a few obstacles to its adoption. To begin, BPSO necessitates a 

significant number of iterations to achieve an ideal subset of features, which raises the 

computational cost of the process. Second, it can quickly become caught in local optima, 

producing a suboptimal subset of features. This can be mitigated by raising the number of 

rounds, however, this increases the computing cost even further. Finally, the BPSO solution's 

accuracy is typically sensitive to the algorithm's parameter values, making it challenging to 

optimise the parameters. Finally, it may struggle to pick features in high-dimensional datasets 

because of the curse of dimensionality, which arises when the number of features exceeds the 

number of samples. Despite these challenges, it remains a promising feature selection 

optimization method due to its ability to efficiently search for the optimal subset of features 

[144]. 

Due to its potential use in feature selection, the technique known as Binary Particle Swarm 

Optimization (BPSO) is growing in favour lately. The potential of BPSO was examined by AD 

Li, B Xue, and M Zhang [145] in their article that was published in Applied Soft Computing. 

They specifically ran tests to demonstrate how well the BPSO algorithm selected critical 

features from a dataset. They also evaluated how well the BPSO method performed in 

comparison to other algorithms like the Support Vector Machine and the Genetic Algorithm. 
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The outcomes demonstrated that the BPSO method was more precise and effective in choosing 

crucial features for a dataset. Furthermore, the authors discovered that the BPSO algorithm 

could identify the most relevant features in a dataset in fewer rounds, saving time and resources. 

Additionally, the authors proposed that BPSO be employed in a variety of applications, 

including data mining, decision-making, and ML. This study exemplifies how BPSO can be 

utilised in feature selection and its potential applications in a variety of sectors. 

In conclusion, Binary Particle Swarm Optimization (BPSO) is a feature selection algorithm 

that efficiently replaces exhaustive search techniques by searching for an optimal subset of 

features. BPSO uses the fundamental ideas of swarm intelligence, which can combine 

stochastic and deterministic methods to optimise. This method can be used to implement 

additional solutions in various fields and is superior to genetic algorithms for feature selection 

processes [146]. 

The BPSO only accepts binary values (0 or 1), and each particle progresses through the problem 

space by following the most recent optimal particles Xi [147]. Given that there are N particles 

in the particle swarm and that each has a diameter of D, the particles are represented by: 

𝑿𝑿𝒊𝒊 = �𝒙𝒙𝒊𝒊𝟏𝟏,𝒙𝒙𝒊𝒊𝟐𝟐,𝒙𝒙𝒊𝒊𝟑𝟑, … ,𝒙𝒙𝒊𝒊𝒅𝒅, … ,𝒙𝒙𝒊𝒊𝑫𝑫�  (27) 

𝑽𝑽𝒊𝒊 = �𝑪𝑪𝒊𝒊𝟏𝟏,𝑪𝑪𝒊𝒊𝟐𝟐,𝑪𝑪𝒊𝒊𝟑𝟑, … ,𝑪𝑪𝒊𝒊𝒅𝒅, … ,𝑪𝑪𝒊𝒊𝑫𝑫� (28) 

for 𝑖𝑖 = 1, 2, 3, … ,𝑁𝑁 and 𝑑𝑑 = 1,2, … ,𝐷𝐷  

The velocities and positions of particles are randomly initialized and updated as follows [148]: 

𝑪𝑪𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏) = 𝒏𝒏(𝒕𝒕) ∗ 𝑪𝑪𝒊𝒊𝒅𝒅(𝒕𝒕) + 𝒄𝒄𝟏𝟏 ∗ 𝑲𝑲𝟏𝟏 ∗ (𝒑𝒑𝒃𝒃𝒆𝒆𝒔𝒔𝒕𝒕𝒊𝒊𝒅𝒅(𝒕𝒕) − 𝒙𝒙𝒊𝒊𝒅𝒅(𝒕𝒕)) + 𝒄𝒄𝟐𝟐 ∗ 𝑲𝑲𝟐𝟐 ∗ (𝒈𝒈𝒃𝒃𝒆𝒆𝒔𝒔𝒕𝒕𝒅𝒅(𝒕𝒕) − 𝒙𝒙𝒊𝒊𝒅𝒅(𝒕𝒕)) (29) 

𝒙𝒙𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏) = �𝟏𝟏, 𝒊𝒊𝒇𝒇 𝑺𝑺�𝑪𝑪𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏)�  > 𝑲𝑲𝟑𝟑 
𝟎𝟎, 𝑪𝑪𝒕𝒕𝒐𝒐𝒆𝒆𝑲𝑲𝒏𝒏𝒊𝒊𝒔𝒔𝒆𝒆

 (30) 

𝑺𝑺�𝑪𝑪𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏)� =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆−𝑪𝑪𝒊𝒊
𝒅𝒅(𝒕𝒕+𝟏𝟏) (31) 

𝒏𝒏 = 𝒏𝒏𝒎𝒎𝒎𝒎𝒙𝒙 − (𝒏𝒏𝒎𝒎𝒎𝒎𝒙𝒙 − 𝒏𝒏𝒎𝒎𝒊𝒊𝒏𝒏) �
𝒕𝒕

𝑻𝑻𝒎𝒎𝒎𝒎𝒙𝒙
� (32) 

 
Where:  

r1 and r2 are two independent random vectors in [0,1].  

r3 is a random number distributed between 0 and 1. 

w is the inertia weight.  
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 c1 and c2 are acceleration coefficients.  

 𝒑𝒑𝒃𝒃𝒆𝒆𝒔𝒔𝒕𝒕𝒊𝒊𝒅𝒅(𝒕𝒕) is the personal best position of the ith particle in the dth dimension.  

 𝒈𝒈𝒃𝒃𝒆𝒆𝒔𝒔𝒕𝒕𝒅𝒅(𝒕𝒕) is the best position in the dth dimension found so far by a swarm. 

i is the order; d is the dimension of search space; and t is the number of iterations. 

 𝑺𝑺 �𝑪𝑪𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏)� is the velocity transformed into the probability value using the sigmoid 

function. 

  

Algorithm 3: Binary Particle Swarm Optimization [148] 
Begin: initialize the parameters, N, Tmax, c1, c2, vmax, vmin 
 Initialize a population of particles, X 
 Evaluate the fitness of particles 𝒇𝒇(𝒙𝒙𝒊𝒊𝒅𝒅(𝒕𝒕)) 
 Set pbest and gbest 
 for t = 1 to the maximum number of iterations Tmax 
 Compute the inertia weight w as in Equation (32) 
 for i = 1 to the number of particles N 
 for d = 1 to the number of dimensions D 
 Update the velocity of the particle, 𝑪𝑪𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏) using Equation (29) 
 Convert the velocity into probability value as in Equation (31) 
 Update the position of a particle, 𝒙𝒙𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏) using Equation (30) 
 next d 
 Evaluate the fitness of new particles, 𝒇𝒇(𝒙𝒙𝒊𝒊𝒅𝒅(𝒕𝒕 + 𝟏𝟏)) 
 next i 
 Update the pbest and gbest 
 next t 
End 
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II.7.3. Binary grey wolf optimisation: Binary Grey Wolf Optimization (BGWO) is a powerful 

feature selection technique for bearing fault diagnosis. It is a meta-heuristic optimization 

algorithm based on the behaviour of grey wolves in nature [149]. The algorithm is inspired by 

the cooperative hunting behaviour of grey wolves, which is characterized by a leader, a 

follower, and a scout. The leader and follower wolves search for prey in a certain area, while 

the scout wolf searches for a better area with more prey [150]. 

The wisdom of leadership and hunting behaviours of grey wolves in nature serve as the primary 

inspiration for GWO. Wolves often live in packs with a rigid hierarchy; the leader of the pack 

is known as the alpha (α) and is in charge of directing the entire pack in hunting, migration, 

and feeding. The second level of the hierarchy is occupied by a beta (β) wolf, who takes over 

as leader of the pack if it becomes ill or dies, and is followed by delta wolves (δ). The remaining 

members of the pack are known as omegas (ω) [151]. 

The steps of BGWO in feature selection are as follows [152]:  

1_Initialization: The first step in the BGWO process is to populate the population of solutions. 

This is accomplished by generating a set of binary strings at random that represent the dataset's 

features. 

2_Fitness Evaluation: The following step is to assess the fitness of each solution. This is 

accomplished by computing the fitness value of each solution to the objective function. 

3_Selection: The third step is to choose the best solutions from among the available options. 

This is accomplished by choosing solutions with the highest fitness values.  

4_Mutation: The fourth step is to apply mutation to the solutions that have been chosen. This 

is accomplished by randomly flipping the bits of the chosen solutions.  

5_Crossover: The fifth step is to cross-reference the mutated solutions. This is accomplished 

by randomly swapping bits between two solutions. 

6_Local Search: The sixth step involves performing a local search on the mutated and crossed 

solutions. This is accomplished by selecting a solution at random and then looking for a better 

solution in its vicinity. 

7_Update: The seventh stage is to inform the population about the new solutions. This is 

accomplished by replacing the previous solutions with new solutions. 
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8_Ending: The algorithm is finished when the closure requirements are met. If the maximum 

number of iterations is reached or the best solution has not changed for a specific number of 

iterations. 

BGWO has been used successfully to diagnose bearing faults. Other feature selection 

techniques, such as genetic algorithms and particle swarm optimization, have been shown to 

outperform them [153]. BGWO is also computationally efficient, as finding the optimal feature 

subset requires fewer iterations. Furthermore, BGWO can identify the most important features 

for bearing fault diagnosis, which can improve the classifier's accuracy [154]. 

Algorithm 4: Binary Grey Wolf Optimization (BGWO) [155] 
Begin 
 Randomly initialize the population of grey wolves, X 
 Initialize the parameters a, A and C 
 Evaluate the fitness of wolves, F(X)  
 Set Xα = The position of the best wolf 
  Xβ = The position of the second-best wolf 
  Xδ = The position of the third-best wolf 
 for t = 1 to the maximum number of iterations, T  
 for i = 1 to the number of the wolfs, N 
  Compute X1, X2 & X3 using Eq. (33), (34) and (35).  
  Generate Xnew by applying Eq. (36). 
 next i 
 Evaluate the fitness of all grey wolves, F(Xnew) 
 Update the position of α, β and ω.  
 Update the parameters a, A and C. 
 next t 
End 

 

Where X1, X2, and X3 are calculated as follows: 

𝑿𝑿𝟏𝟏 = |𝑿𝑿𝜶𝜶 − 𝑨𝑨𝟏𝟏 ∗ 𝑫𝑫𝜶𝜶| (33) 
𝑿𝑿𝟐𝟐 = �𝑿𝑿𝜷𝜷 − 𝑨𝑨𝟐𝟐 ∗ 𝑫𝑫𝜷𝜷� (34) 
𝑿𝑿𝟑𝟑 = �𝑿𝑿𝜹𝜹 − 𝑨𝑨𝟑𝟑. ∗ 𝑫𝑫𝜹𝜹� (35) 

𝑿𝑿𝒅𝒅(𝒕𝒕 + 𝟏𝟏) = �𝟏𝟏, 𝑺𝑺�
𝑿𝑿𝟏𝟏𝒅𝒅 + 𝑿𝑿𝟐𝟐𝒅𝒅 + 𝑿𝑿𝟑𝟑𝒅𝒅

𝟑𝟑
� > 𝑲𝑲𝟑𝟑

𝟎𝟎, 𝑪𝑪𝒕𝒕𝒐𝒐𝒆𝒆𝑲𝑲𝒏𝒏𝒊𝒊𝒔𝒔𝒆𝒆
  (36) 

𝑺𝑺(𝒙𝒙) =
𝟏𝟏

𝟏𝟏 + 𝒆𝒆�−𝟏𝟏𝟎𝟎∗(𝒙𝒙−𝟎𝟎.𝟓𝟓)�
 (37) 

𝑨𝑨 = 𝟐𝟐 ∗ 𝒎𝒎 ∗ 𝑲𝑲𝟏𝟏 − 𝒎𝒎 (38) 
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𝑪𝑪 = 𝟐𝟐 ∗ 𝑲𝑲𝟐𝟐 (39) 

𝑫𝑫 = �𝑪𝑪 ∗ 𝑿𝑿𝒑𝒑(𝒕𝒕) − 𝑿𝑿(𝒕𝒕)� (40) 

𝒎𝒎 = 𝟐𝟐 − 𝟐𝟐 ∗ �
𝒕𝒕
𝑻𝑻�

 (41) 

 

Where : 

 Alpha α: indicates the fittest solution, 

 Beta  β: represents the second fittest solution, 

 Delta  δ: usually takes the third fittest solutions, 

 Omega ω: indicates the rest of the solutions, 

 t indicates the current iteration, 

 T is the maximum number of iterations, 

 A and C are coefficient vectors,  

 Xp is the position vector of the prey,  

 X indicates the position vector of a grey wolf, 

 r1 and r2 are two independent random numbers uniformly distributed between [0,1], 

 a is the encircling coefficient, it is linearly decreasing, from 2 to 0, 

 S(x) is the sigmoid function. 
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Conclusion: 
Research on bearing fault diagnosis has been conducted extensively in recent years, due to their 

importance in industrial applications and with the availability of advanced technologies, feature 

extraction and feature selection plays an important role in bearing fault diagnosis. 

Feature extraction and selection techniques are essential in bearing fault diagnosis. These 

techniques are used to extract and select the most relevant features from the vibration signals 

collected from the bearing faults and use them in diagnosis.  

Feature extraction techniques involve the extraction of features from raw signals, such as 

frequency, time domain and statistical parameters. The process of feature extraction contains 

two main components. The first is Signal pre-processing is a key step as it allows for the 

reduction of noise, as well as the removal of redundant data. The second is Feature extraction, 

on the other hand, involves using algorithms to extract features from the signal that are relevant 

to the fault diagnosis. 

Feature selection techniques involve the selection of a subset of relevant features from the 

extracted features to improve the accuracy and reliability of the diagnosis. it is then performed 

to select the most relevant features and discard those that are irrelevant. This process is 

complicated by the fact that there is no universal set of features that are relevant to all fault 

diagnoses. Each fault diagnosis requires its own set of features that are relevant to that specific 

diagnosis. 

Feature extraction and selection is a crucial step in bearing fault diagnosis. By extracting 

suitable characteristics from the data and selecting meaningful ones, the accuracy of bearing 

fault diagnosis is maximized. In conclusion, feature extraction and selection approaches are 

effective and important for bearing fault diagnosis.  

 

 



 

 

CHAPTER III 

 

FAULT CLASSIFICATION AND DIAGNOSIS USING MACHINE 

LEARNING 

 

 

III.1. Introduction: 

In current years, machine learning techniques have been widely utilised for bearing fault 

diagnosis. These methods analyse data from sensors placed on bearings using a variety of 

machine-learning algorithms to detect and diagnose faults [156]. The sensor data can be used 

to train machine learning algorithms to recognise patterns in data that indicate a bearing fault. 

Supervised learning algorithms such as support vector machines (SVMs), random forests, and 

artificial neural networks are the most commonly used machine learning algorithms for bearing 

fault diagnosis. These algorithms are trained using labelled data, which has been labelled with 

the appropriate fault type [157]. The tagged data for training the algorithm to identify data 

patterns that indicate a bearing fault. The algorithm, once trained, can detect and diagnose 

bearing faults in new data. 

Lastly, using machine learning techniques to detect and diagnose bearing faults is an effective 

and efficient way to detect and diagnose bearing faults. It is quicker and more precise than 

classic methods, and it can be used to detect and diagnose faults in non-visible bearings. This 

makes it an attractive choice for multiple industries that rely on bearings to function [158].  

 



CHAPTER III: FAULT CLASSIFICATION AND DIAGNOSIS USING MACHINE LEARNING 
 

55 
 

III.2. Artificial Neural Networks: 

III.2.1. Briefs information on Artificial Neural Networks (ANN): 

ANN is one of the machine-learning algorithms that is based on the biological neural networks 

of a human brain. The human brain consists of several neurons. These neurons are connected 

in various layers of the networks known as nodes in ANN. Each node has a specific function 

and is responsible for processing a specific piece of data [159].  

 

Figure III. 1 Biological and Artificial Neural Network [160]. 

ANN are computer algorithms that can be used to describe a system in terms of input-output 

relationships. They represent an alternative method of describing systems when analytical 

approaches are difficult or impossible to use. They have been used in a wide range of 

manufacturing applications [161]. 

Generally, an artificial neural network is organised into three layers. These layers are made up 

of many interconnected nodes and each one of them has an activation function. The three layers 

of a neural network are as follows [162]:  

Input Layer: As the name suggests, this layer receives the raw input data in several different 

formats provided by the programmer, such as images or text, and passes it on to the next layer 
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for processing. The number of input nodes in an input layer is ordinarily the same as the number 

of explanatory variables. 

Hidden Layers: They are located between the input and output layers and are responsible for 

processing the input data by performing complex mathematical operations and the actual 

processing is done via a system of weighted ‘connections’, which are then added to produce a 

single number. 

Output Layer: This layer produces the final output of the model, which could be a single value 

or a vector of values representing a classification or regression task. 

 

Figure III. 2 The architecture of an artificial neural network [163] 

ANN have several different types such as feed-forward neural networks, recurrent neural 

networks, and convolution neural networks, the most common type is the feed-forward neural 

network and which consists of a series of layers, with each layer consisting of multiple neurons, 

in the training process, the weights of the connections between neurons are adjusted to 

minimise the difference between the predicted and actual output. In addition to the layers 

themselves [164], ANN also have parameters that are learned during the training process. These 

include the weights and biases of the neurons, which are updated iteratively using optimization 

algorithms such as gradient descent.  
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III.2.2. Types of Artificial Neural Networks (ANN): 

III.2.2.1. Feed-forward Neural Networks (ANN): A feed-forward artificial neural network, 

or FNN, only permits information to move in one direction, from the input layer via any 

potential hidden layers to the output layer. In a feed-forward neural network, the hidden layer, 

which comes after the input layer, connects every neuron to every other neuron in the input 

layer. There are connections between every neuron in the hidden layer, which may have one or 

more layers and every neuron in the layer above it. After receiving outputs from the concealed 

layer or layers, the output layer provides the final output [165]. 

In order to apply a nonlinear activation function, each layer's neurons first quickly sum up the 

input data, which is commonly done by weighting the inputs. During training, the weights and 

biases of the neurons are learned via a technique called backpropagation. Feed-forward neural 

networks are capable of performing a wide range of tasks, such as speech recognition, natural 

language processing, picture recognition, and many more. One benefit of feed-forward neural 

networks is their capacity to learn intricate non-linear correlations between inputs and outputs. 

This ability makes feed-forward neural networks a powerful tool for solving problems that are 

difficult or impossible to solve using conventional techniques [166]. 

 

Figure III. 3 Feed-forward Neural Networks architecture [165]. 

III.2.2.2. Recurrent Neural Networks: An artificial neural network called a recurrent neural 

network (RNN) is made to interpret sequential data, such as time series or natural language. 

RNNs may accept variable-length sequences as input and produce output at each point in the 

sequence, in contrast to typical feedforward neural networks, which have a set number of input 

and output nodes [167]. 
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Recurrent connections, which enable the network to maintain a hidden state that can be updated 

at each time step based on the current input and the prior hidden state, are the core characteristic 

of RNNs. Then, using this hidden state, a prediction or output can be created for the current 

time step and the hidden state can be updated for the following time step [168]. 

The vanishing gradient problem, which happens when the gradient of the loss function 

concerning the network parameters becomes very small, is one of the main issues with RNNs. 

As a result, training RNNs over lengthy periods may be challenging. The Long Short-Term 

Memory (LSTM) network, one of the most popular types of RNNs, employs specialised 

memory cells and gating mechanisms to enable the network to selectively recall or forget 

information across lengthy sequences [169]. 

 

Figure III. 4 Recurrent Neural Networks architecture [167]. 

III.2.2.3. Convolutional Neural Networks (CNNs): Deep learning neural networks such as 

convolutional neural networks (CNNs) are extremely effective in analysing photos and videos. 

The capacity of CNNs to recognise spatial patterns in an image by using convolutional 

processes is their distinguishing feature [170]. The convolutional layer is the fundamental 

component of a CNN. It transforms a portion of the input picture or feature map into a new 

feature map that captures specific visual patterns or characteristics by applying a series of 

learnable filters. Pooling layers frequently come after these convolutional layers, 

downsampling the feature maps by averaging or picking the maximum value across small 

regions [171]. 

Fully connected layers, which employ the characteristics extracted by the convolutional layers 

to generate predictions, are another option for CNNs. All of these layers' parameters are learned 

through backpropagation during training, where the network modifies its settings to reduce a 
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specific loss function, often depending on the discrepancy between the anticipated output and 

the true label [172]. 

CNNs have become the preferred approach for performing numerous computer vision tasks, 

including picture classification, object recognition, and segmentation. They've also been used 

on other sorts of data, such as audio and text [173]. 

 

Figure III. 5 Convolutional Neural Networks architecture [170]. 

III.2.2.4. Self-Organizing Maps (SOMs): An artificial neural network (ANN) called a self-

organizing map (SOM) employs unsupervised learning to produce a low-dimensional 

representation of high-dimensional data. Teuvo Kohonen, a Finnish mathematician, developed 

SOMs in the 1980s [174]. 

A grid of nodes or neurons that each represent a prototype or codebook vector makes up the 

SOM algorithm. The weights of these neurons are changed during training such that they more 

closely resemble the input data vectors that are fed into the network. During training, neurons 

compete to react to particular input vectors while cooperating with other neurons to represent 

similar input vectors [175]. 

SOMs can be applied to many different tasks, such as feature extraction, clustering, and data 

visualisation. They are especially helpful for examining and analysing high-dimensional data, 

such as gene expression or picture data, and for discovering undiscovered patterns and 

connections between the data [176]. 

SOMs have been used in a variety of domains, including bioinformatics, image processing, 

natural language processing, data mining, and image processing. They are also employed in 

the creation of anomaly detection and recommendation systems [177]. 
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Figure III. 6 Self-Organizing Maps Architecture [178]. 

III.2.2.5. Radial Basis Function Networks (RBFNs): RBF networks, a form of artificial 

neural network, are frequently used for pattern recognition, classification, and function 

approximation applications. An input layer, a hidden layer, and an output layer are the 

traditional three layers that make them up [179]. 

Radial basis functions are used by neurons in the hidden layer of an RBF network to map the 

input data onto a high-dimensional space. The most popular radial basis function is the 

Gaussian function, which gives each input a weight based on how far it is from the centre. The 

Multiquadric, Inverse Multiquadric, and Thin Plate Spline functions are further useful radial 

basis functions. The output is produced using a linear combination of the basis functions after 

the input data has been mapped onto the high-dimensional space. The output layer, which can 

consist of a single node for regression tasks or many nodes for classification tasks, receives 

this data next [180]. 

RBF networks provide several benefits, including the capacity to handle noisy and imperfect 

input, quick training times, and strong generalisation skills. Numerous applications, such as 

speech recognition, image classification, and financial forecasting, have made use of them 

[181]. 
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Figure III. 7 Radial Basis Function Networks architecture [182]. 

III.2.2.6. Hopfield Networks: John Hopfield first described Hopfield networks, a subset of 

recurrent neural networks, in 1982. They bear his name and were created to store and retrieve 

data in the form of patterns [183]. A Hopfield network's fundamental principle is to employ 

neuronal feedback connections to establish a collection of stable states that are related to 

particular input patterns. Each neuron in a Hopfield network is connected to every other neuron, 

and each connection has a corresponding weight. The patterns that the network has discovered 

are kept in these weights [184].  

The neurons in the network are updated synchronously whenever a new input pattern is 

provided to it, and this process continues until the network reaches a stable state that matches 

the input pattern. The network may retrieve previously acquired patterns using this associative 

memory method, even if the patterns are only partially present in the input [185]. 

Applications for Hopfield networks include associative memory tasks, optimisation issues, and 

the recognition of speech and images. They do, however, have certain drawbacks, such as the 

fact that the number of patterns that can be stored in the network is constrained by the number 

of neurons and that the retrieval process may be sensitive to input noise [186]. 
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Figure III. 8 Hopfield Networks architecture [187]. 

III.2.2.7. Deep Belief Networks (DBNs): An example of an unsupervised learning job that 

Deep Belief Networks (DBNs) are frequently employed for is feature extraction, 

dimensionality reduction, and data clustering. They are made up of numerous interconnected 

layers of nodes, and they employ a technique called layerwise pretraining to discover 

hierarchical representations of the input data [188]. 

DBNs normally go through two main levels of training. Each layer is trained in the first stage 

as a restricted Boltzmann machine (RBM), a kind of generative stochastic neural network that 

simulates the probability distribution of the visible and hidden units together. Backpropagation, 

which modifies the weights of the connections between the layers to minimise a predetermined 

cost function, is used in the second stage to fine-tune the entire network [189]. 

Several applications, such as speech recognition, image recognition, and natural language 

processing, have made use of DBNs. They are renowned for their capacity to generalise well 

to new data and for automatically learning valuable features from raw data without the need 

for manual feature engineering [190]. 

 

Figure III. 9 Deep Belief Networks (DBNs) architecture [191]. 
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III.2.2.8. Generative Adversarial Network (GAN): A deep learning architecture called a 

generative adversarial network (GAN) consists of two neural networks: a discriminator and a 

generator. While the discriminator network tells the difference between real and fake data, the 

generator network creates artificial data. The generator network creates synthetic data that is 

meant to resemble actual data from input of random noise [192]. The discriminator network 

predicts whether the data is authentic or phoney by taking both actual and synthetic data as 

input. The discriminator network seeks to accurately identify real and synthetic data during 

training while the generator network attempts to create synthetic data that is indistinguishable 

from genuine data [163]. 

In a procedure known as adversarial training, the two networks are trained concurrently and 

optimised in opposite ways. As a result, the discriminator network gets better at telling the 

difference between real and phoney data whereas the generator network gets better at producing 

realistic data. This procedure is repeated until the generator network can produce data that can 

hardly be distinguished from actual data. GANs have been utilised successfully in a variety of 

applications, including the creation of images, videos, voices, and texts. They are employed in 

a variety of industries, including fashion, entertainment, and the arts [194]. 

 

Figure III. 10 Generative Adversarial Network Architecture [195]. 

III.2.3. Types of Neural Networks Activation Functions: 

Activation functions play a crucial part in neural networks as they introduce non-linearity to 

the model, and decide whether a neuron should be activated or not. In other means, they 

determine whether the neuron’s input to the network is essential or not in the process of 

prediction using simpler mathematical operations. Here are some commonly used activation 

functions in neural networks [196]: 
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III.2.3.1. Sigmoid or Logistic Activation Function: The sigmoid function maps any input to 

a value between 0 and 1. It is often used in the output layer of binary classification problems. 

The function has the following mathematical expression [197]: 

𝑓𝑓(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (42) 

III.2.3.2. Rectified Linear Unit (ReLU): The ReLU function returns 0 for any negative input 

and returns the input value for any non-negative input. The function is defined as [197] : 

𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) (43) 

III.2.3.3. Leaky ReLU: The leaky ReLU function is similar to ReLU, but it returns a small 

negative value for any negative input, instead of 0. This helps to overcome the problem of dead 

neurons in ReLU, where a neuron could become unresponsive to any input during training. The 

function is defined as [197] : 

𝑓𝑓(𝑥𝑥) = max (0.1𝑥𝑥, 𝑥𝑥) (44) 

III.2.3.4. Tanh or hyperbolic tangent Activation Function: The tanh function is similar to 

the sigmoid function but maps input to a range between -1 and 1. It is often used in the hidden 

layers of neural networks. The function is defined as [197] : 

𝑓𝑓(𝑥𝑥) =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
 (45) 

III.2.3.5. Softmax: The softmax function is used in the output layer of multi-class 

classification problems, where the goal is to predict the probability distribution of the input 

belonging to each class. The function maps the input to a probability distribution that sums up 

to 1. The function is defined as [197] : 

𝑓𝑓(𝑥𝑥)𝑖𝑖 =
𝑒𝑒𝑥𝑥𝑖𝑖

∑ 𝑒𝑒𝑥𝑥𝑗𝑗𝑛𝑛
𝑗𝑗=1

 (46) 
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III.2.4. Artificial Neural Networks In Bearing Fault Diagnosis:  

ANN has been successfully applied in bearing fault diagnosis. The basic idea behind using 

ANN for this task is to train a model to learn the patterns of normal and faulty bearings based 

on vibration signals, acoustic signals or other types of data collected from the bearings [198].  

In practice, the process of using ANN for bearing fault diagnosis involves several steps. The 

first step is to collect data from the bearings, which can be done using sensors such as 

accelerometers for vibration signals, tachometers for speed, or microphones for an acoustic 

signal. The data can be in the form of time-domain signals, frequency-domain signals, or time-

frequency domain signals. 

The second step is to preprocess the data to extract relevant features that can be used to train 

the ANN. Feature extraction can involve techniques such as statistical parameters, wavelet 

transform, Fourier transform, or time-domain statistical analysis. 

The third step is to train the ANN using the preprocessed data. This involves selecting an 

appropriate architecture for the ANN, choosing an appropriate learning algorithm, and setting 

the hyperparameters of the model. The training data should include both healthy and faulty 

bearing data to enable the ANN to learn the patterns of normal and faulty bearings. 

The fourth step is to evaluate the performance of the ANN on a test set of data that it has not 

seen before. This involves calculating metrics such as accuracy, sensitivity, specificity, and 

receiver operating characteristic (ROC) curve. 

One of the advantages of using ANN in bearing fault diagnosis is their ability to learn from 

both labelled and unlabeled data. This means that ANN can be trained on a small labelled 

dataset and then fine-tuned on a larger unlabeled dataset to improve their performance. Also, 

ANN has proven to be a powerful tool for bearing fault diagnosis, with high accuracy and 

robustness to noise and variability in the data. 
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III.3. Random forests: 

III.3.1. Random Forests Overview: 

A random forests algorithm is a machine-learning technique that belongs to the family of 

ensemble methods. It is a combination of multiple decision trees, where each tree is trained on 

a random subset of the training data and a random subset of the features. The output of the 

random forests is determined by combining the predictions of all the trees in the forest [199]. 

The random forests algorithm has two tasks, classification and regression tasks.  

 

Figure III. 11 Random Forest Algorithm [200] 

 

III.3.2. Classification and regression steps of the random forests:  

In classification tasks, the output of the random forests is determined by majority voting among 

the trees, Here are the steps for performing classification using Random Forest [201]: 

1. Starting by selecting samples from the training dataset allowing for a replacement to create 

bootstrap samples. 

2. For each bootstrap sample construct a decision tree using a subset of the features. The 

number of features used is typically set to a value the square root of the total number of features. 

3. Repeating steps 1 and 2 to generate a collection or "forest" of decision trees. 
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4. When classifying a data point make predictions using each decision tree in the forest. The 

predicted class, for the data point, is determined by majority vote, among all the decision trees. 

This approach allows random forest classification to provide predictions based on input data 

points. Here are a few advantages of utilizing forests for classification; 

• Random forests are known for their accuracy particularly when dealing with complex data. 

• They have a resistance, to overfitting making them reliable in scenarios. 

• Random forests offer ease of interpretation and explanation making it easier to understand 

and convey the results. 

• This algorithm can handle both classification and regression problems effectively. 

However there are also some limitations when using forests for classification; 

• Training a forest model can be computationally demanding, especially with large datasets. 

• The performance of the model can be sensitive to hyperparameter choices, such as the 

number of trees and features used per tree. 

• Achieving optimal performance, by tuning the hyperparameters can be challenging. 

In regression tasks, the output is determined by averaging the predictions of the trees. Here are 

the general steps for performing regression using Random Forest [201]:  

1. Take samples from the training dataset allowing for duplicates to create bootstrap samples. 

2. For each bootstrap sample build a decision tree using a subset of the features. Typically we 

use a fixed number of features, such, as the root of the number of features. 

3. Repeat steps 1 and 2 times to create a collection of decision trees known as a forest. 

4. When predicting the value of a data point make predictions using each decision tree in the 

forest. The average of these predictions becomes the predicted value for the data point. 

Some advantages associated with using Random Forests for regression; 

• Random Forests tend to provide accurate results particularly when dealing with high 

dimensional data. 

• This algorithm is relatively robust against overfitting issues. 

• It can be used effectively for both classification and regression problems. 

• Additionally, Random Forests can offer estimates regarding prediction uncertainties. 
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However, it's important to consider drawbacks when utilizing Random Forests for regression; 

• Training Random Forests can be computationally expensive especially when working with 

large datasets. 

• The performance may vary depending on hyperparameter choices such, as the number of 

trees and features used per tree. 

• Tuning these hyperparameters to achieve performance might prove challenging. 

III.3.3. Random forest techniques:  

In the aspect of ensemble learning, which includes random forests algorithm, the terms bagging 

and boosting are frequently used [202]. 

III.3.3.1. Bagging: also known as Bootstrap Aggregation, is a method of building numerous 

decision tree models using distinct subsets of the training data. Each tree is based on a bootstrap 

sample of the original data, which is generated by picking occurrences at random with 

replacement. This strategy is used to reduce model variance and avoid overfitting. Bagging is 

used in random forests to produce numerous decision trees, each trained on a distinct subset of 

the training data. 

III.3.3.2. Boosting: Using the concept of boosting weak models are iteratively trained and then 

combined to create a stronger model. Each succeeding weak model focuses more on the 

instances that the preceding model misclassified since the weak models are trained on various 

subsets of the training data. This method is used to lessen the model's bias and increase its 

overall accuracy. Boosting can be used in random forests to enhance each decision tree's 

performance. 

In conclusion, bagging and boosting are two methods used in random forests algorithm to 

increase precision and decrease overfitting. Whereas boosting is used to lessen the model's 

bias, bagging is used to lessen the model's variance. 
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Figure III. 12 Bagging and Boosting Techniques [202] 

III.3.4. Bearing fault diagnosis using random forests: 

Bearing faults can be detected by analyzing the vibration signals generated by the bearings 

during their operation. These signals can be collected using accelerometers or other sensors 

[203]. Using random forests in bearing fault diagnosis is a popular method in machine learning 

for predicting the health of industrial equipment. To identify issues, with bearings using forests 

the usual steps involve [204]: 

1. Gathering vibration data from the bearing. 

2. Preparing the data by eliminating any noise. 

3. Extracting features from the data. 

4. Training a forest model using the collected data. 

5. Utilizing the model to assess and diagnose the condition of the bearing. 

 

Adjusting the number of decision trees in a forest can enhance model accuracy. While a larger 

number of trees generally results in accuracy it also increases training time. Random forests 

are an option for diagnosing bearing faults due to their characteristics; 

1. Noise Resistance: Random forests employ decision trees trained on subsets of data making 

them less susceptible to noise in datasets. 

2. Accuracy: With datasets, random forests can achieve high levels of accuracy in diagnosing 

bearing faults. 

3. Scalability: Random forests can effectively handle amounts of vibration data when 

diagnosing bearings. 
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III.3.5. Conclusion: 

In conclusion, Bearing fault diagnosis using random forests is an effective technique that can 

help detect faults in bearings early, prevent catastrophic machinery failures, and ultimately save 

costs associated with unplanned downtime and repair, but this effect depends on several factors, 

including the quality of the data, the selection of features, and the tuning of hyper-parameters. 

However, with proper data preparation and algorithm configuration, random forests are a 

reliable and accurate method for diagnosing bearing faults.  
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III.4. Support Vector Machine (SVM): 

III.4.1. Support Vector Machine (SVM) 

A popular supervised machine-learning technique for both classification and regression tasks 

is the Support Vector Machine (SVM) [205]. Due to its precision and efficiency in resolving 

challenging issues in high-dimensional environments, SVM is a well-known method. SVM, or 

support vector machines, is a binary classification technique that seeks the optimal hyperplane 

to divide the data points into two groups. The margin, also known as the hyperplane, is the 

decision boundary that optimizes the separation between the nearest points from each class. 

The margin displays the degree of categorization confidence we have [206]. 

 
Figure III. 13 Hyperplanes and Support Vectors [206] 

SVM optimises the margin according to some limitations to identify the best hyperplane. The 

restrictions ensure that the hyperplane properly divides the data into classes. SVM transforms 

the input data into a higher-dimensional space where linear separation is possible using a kernel 

function [207]. In higher-dimensional space, the kernel function computes the dot product of 

the input data and a fixed reference vector. 

III.4.2. Major Kernel Functions in Support Vector Machine (SVM): 

To find the optimum hyperplane, SVM optimizes the margin based on a few constraints. The 

limitations make sure that the data is properly divided into classes by the hyperplane. Using a 

kernel function, SVM converts the input data into a higher-dimensional space where linear 
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separation is achievable [208]. The dot product of the input data and a fixed reference vector 

is computed in higher-dimensional space by the kernel function. 

Several major kernel functions are commonly used in SVM [209] : 

III.4.2.1. Linear Kernel: The linear kernel is the simplest and most commonly used kernel 

function. It is a dot product between two vectors, and it works well for linearly separable data. 

𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝑥𝑥𝑇𝑇 . 𝑦𝑦 (47) 

III.4.2.2. Polynomial Kernel: The polynomial kernel is a popular kernel function that is used 

when the data is not linearly separable. It maps the data into a higher-dimensional space using 

a polynomial function, which can help to create a separating hyperplane.  

𝑘𝑘(𝑥𝑥,𝑦𝑦) = (𝑥𝑥𝑇𝑇 , 𝑦𝑦)𝑃𝑃 = (𝑥𝑥𝑇𝑇 .𝑦𝑦 + 𝜏𝜏)𝑝𝑝 (48) 

III.4.2.3. Radial Basis Function (RBF) Kernel: The RBF kernel is another popular kernel 

function that is used when the data is not linearly separable. It maps the data into a higher-

dimensional space using a Gaussian function, which can help to create a separating hyperplane.  

𝑘𝑘(𝑥𝑥, 𝑦𝑦) = exp (−‖𝑥𝑥 − 𝑦𝑦‖2/𝜎𝜎2) (49) 

III.4.2.4. Sigmoid Kernel: This function is equivalent to a two-layer neural network 

perceptron model, which is utilised as an activation function for artificial neurons. It maps the 

data into a higher-dimensional space using a sigmoid function, which can help to create a 

separating hyperplane.  

𝑘𝑘(𝑥𝑥, 𝑦𝑦) = 𝑡𝑡𝑡𝑡𝑡𝑡ℎ(𝑘𝑘1𝑥𝑥𝑇𝑇𝑦𝑦 + 𝑘𝑘2) (50) 

III.4.2.5. Laplacian Kernel: The Laplacian kernel, like the RBF kernel, is a non-linear kernel 

function. It uses a Laplacian function to map the data into a higher-dimensional space, which 

can aid in the creation of a separating hyperplane. 

𝑘𝑘(𝑥𝑥, 𝑦𝑦) = exp (−‖𝑥𝑥 − 𝑦𝑦‖/𝜎𝜎) (51) 
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III.4.3. The importance of SVM parameters: 

The SVM algorithm involves the selection of different parameters that can affect the 

performance of the model. The choice of these parameters can have a significant impact on the 

accuracy and efficiency of the SVM algorithm [210]. 

The most important parameters in SVM are [211] : 

III.4.3.1. Kernel function: The kernel function determines the shape of the decision boundary. 

SVM can use different kernel functions such as linear, polynomial, Gaussian RBF, sigmoid, 

etc. The choice of kernel function depends on the characteristics of the data and the problem at 

hand. 

 
Figure III. 14 The kernel functions [212] 

III.4.3.2. C parameter: The C parameter controls the trade-off between maximizing the 

margin and minimizing the classification error. A smaller value of C will result in a wider 

margin and more tolerance for misclassified data points, while a larger value of C will result in 

a smaller margin and less tolerance for misclassified data points. 
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Figure III. 15 The effect of the C parameter in SVM [213] 

III.4.3.3. Gamma parameter: The gamma parameter controls the form of the decision 

boundary for non-linear kernels. A higher gamma value results in a more complex and wavy 

choice border, whereas a lower gamma value results in a smoother decision boundary. 

 
Figure III. 16 The effect of the gamma parameter [214] 
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III.4.3.4. Degree parameter: The degree parameter is used for polynomial kernels and 

determines the degree of the polynomial function used for mapping the input data into a higher-

dimensional space. 

 
Figure III. 17 The polynomial degree parameter [215] 

III.4.3.5. Class weights: The class weights parameter is used to handle a class imbalance in 

the data. It assigns higher weights to the minority class to give it more importance during the 

training process. 

Several methods, such as grid search, random search, or Bayesian optimization, can be used to 

choose these parameters. Finding the set of settings that produces the best performance on a 

validation set is the objective. It is crucial to remember that choosing the right parameters can 

be difficult and time-consuming, particularly for huge datasets or complex situations. Thus, it 

is advised to use automated methods or specialist knowledge to direct the selection process 

[216]. 

III.4.4. Types of Classification in Support Vector Machine: 

In terms of classification, there are mainly three types of SVM classification [217]: 

III.4.4.1. Binary classification: In binary classification, the SVM algorithm learns a 

hyperplane that separates the data into two classes. The hyperplane is chosen in such a way 

that it maximizes the margin, which is the distance between the hyperplane and the nearest data 

points from each class. The data points that lie on the margin are called support vectors. 
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III.4.4.2. Multiclass classification: In multiclass classification, the SVM algorithm learns a 

hyperplane that separates the data into more than two classes. There are two main approaches 

for multiclass classification in SVM: 

III.4.4.2.a. One-vs-One (OVO): In this approach, the SVM algorithm trains multiple binary 

classifiers for all possible pairs of classes. For example, if there are n classes, then n(n-1)/2 

binary classifiers are trained. The final prediction is made by combining the predictions of all 

the binary classifiers. 

III.4.4.2.b. One-vs-All (OVA): In this approach, the SVM algorithm trains a binary classifier 

for each class, where each classifier is trained to distinguish that class from all the other classes. 

The final prediction is made by selecting the class with the highest score among all the binary 

classifiers. 

III.4.4.3. Non-linear classification: SVM seeks a non-linear boundary that divides the data in 

non-linear classification. SVM accomplishes this by translating the initial data into a higher-

dimensional space where a hyperplane that divides the classes can be located. The kernel trick, 

a method for doing this without explicitly computing the transformation, enables SVM to 

implicitly translate the data into a higher-dimensional space [218]. The radial basis function 

(RBF) kernel, polynomial kernel, and sigmoid kernel are a few common kernel functions 

utilised in SVM. 

III.4.5. Bearing fault diagnosis using Support Vector Machine:  

Support Vector Machines (SVM) is a wide-use machine learning algorithm that can be used 

for fault diagnosis of mechanical systems such as bearing faults. Bearing faults can lead to 

severe machinery failure and unexpected downtime, which can have significant economic and 

safety consequences [219]. Therefore, early detection of bearing faults is crucial in ensuring 

efficient and safe machinery operation. In the case of bearing fault diagnosis, SVM can be used 

for classification, where it can predict whether a bearing is faulty or not based on the features 

extracted from the vibration signals [220]. 

The process of using SVM for bearing fault diagnosis typically involves the following steps 

[221] : 
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1. Data Collection: Collecting the vibration signals from the bearings using an appropriate 

sensor. 

2. Feature Extraction: Extracting features from the vibration signals using signal processing 

techniques. These features can include time-domain features, frequency-domain features, and 

time-frequency features. 

3. Data splitting: Split the dataset into training and testing sets. The training set is used to train 

the SVM model, while the testing set is used to evaluate the performance of the model. 

4. Training: Training the SVM model using the training dataset. The SVM algorithm tries to 

find the best hyperplane that separates the data points into different classes. 

5. Model Evaluation: Evaluating the performance of the SVM model using the testing dataset. 

Metrics like accuracy and precision can be used to assess the model's performance. 

6. Making a Decision: Using the trained SVM model to predict the health status of the 

bearings. 

 

III.4.6. Conclusion: 

It has been demonstrated that early-stage bearing faults can be detected and the remaining 

usable life of the bearings can be predicted using SVM-based bearing fault diagnosis. However, 

the selection of the hyperparameters and kernel function, as well as the calibre of the training 

data, can have an impact on how well the SVM model performs. To create a reliable and 

accurate SVM-based bearing fault diagnosis model, careful consideration must be given to the 

kernel function and hyperparameter selection, as well as the gathering and preprocessing of the 

training data [222]. 
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III.5. Extreme learning machine (ELM): 

III.5.1. Extreme learning machine Overview: 

The ELM is a kind of machine learning algorithm that may be used to solve supervised learning 

problems like classification and regression. Additionally, it is a simple and efficient one-

hidden-layer feed-forward neural network (SLFN) [223]. The hidden layer's output is 

combined linearly into the ELM's output layer, whose weights are established by the least-

squares technique. The ELM also offers a network training analytical solution. The thresholds 

of the hidden layer and the weights of the input layer in ELM are set at random and are static 

after generation [224]. Once the hidden layer activation function and node count have been 

chosen, the training data can be used to determine the single best solution. The original 

structure of the ELM is depicted below. The training data can be used to identify the single 

optimal solution once the hidden layer activation function and node count have been specified. 

Below is an illustration of the ELM's original structure [225].  

 
Figure III. 18 The structure of ELM  

III.5.2. Extreme learning machine Model: 

Where n and m are the dimensions of the input matrix and output matrix, respectively, and X 

and T are the inputs and outputs of the ELM. The following is how they are expressed [226]: 

𝑋𝑋 = �
𝑥𝑥11 … 𝑥𝑥1𝑄𝑄
𝑥𝑥𝑛𝑛1 … 𝑥𝑥𝑛𝑛𝑄𝑄�   and  𝑇𝑇 = �

𝑡𝑡11 … 𝑡𝑡1𝑄𝑄
𝑡𝑡𝑚𝑚1 … 𝑡𝑡𝑚𝑚𝑄𝑄

� (52) 

Between the input layer and the hidden layer, the weights have been assigned at random: 
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𝑊𝑊 = �
𝑤𝑤11 … 𝑤𝑤1𝑚𝑚
𝑤𝑤𝑛𝑛1 … 𝑤𝑤𝑛𝑛𝑚𝑚� (53) 

Where 𝑤𝑤𝑖𝑖𝑖𝑖 represents the weights between the jth input layer neuron and ith hidden layer 

neuron.  

The ELM takes into account the following weights between the hidden layer and the output 

layer: 

𝛽𝛽 = �𝛽𝛽11 … 𝛽𝛽1𝑚𝑚
𝛽𝛽𝑘𝑘1 … 𝛽𝛽𝑘𝑘𝑚𝑚

� (54) 

In this instance, ij stands for the weights between the jth hidden layer neuron and the kth output 

layer neuron. The bias of the hidden layer neurons is randomly adjusted by the ELM: 

𝐵𝐵 = [𝑏𝑏1 𝑏𝑏2 … 𝑏𝑏𝑛𝑛]′ (55) 

The network activation function is determined by the ELM, g(x). Figure III. 18 shows how 

the output matrix T can be expressed.  

𝑇𝑇 = �
𝑡𝑡11 … 𝑡𝑡1𝑄𝑄
𝑡𝑡𝑚𝑚1 … 𝑡𝑡𝑚𝑚𝑄𝑄

�
𝑚𝑚×𝑄𝑄

 (56) 

Each column vector of the output matrix T is as follows: 

𝑡𝑡𝑗𝑗 = �

𝑡𝑡1𝑗𝑗
𝑡𝑡2𝑗𝑗
⋮
𝑡𝑡𝑚𝑚𝑗𝑗

� =

⎣
⎢
⎢
⎢
⎡∑ 𝛽𝛽𝑖𝑖1𝑔𝑔(𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖)𝑙𝑙

𝑖𝑖=1

∑ 𝛽𝛽𝑖𝑖2𝑔𝑔(𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖)𝑙𝑙
𝑖𝑖=1

⋮
∑ 𝛽𝛽𝑖𝑖𝑚𝑚𝑔𝑔(𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑏𝑏𝑖𝑖)𝑙𝑙
𝑖𝑖=1 ⎦

⎥
⎥
⎥
⎤
  ; (𝑖𝑖 = 1, 2, … ,𝑄𝑄) (57) 

From (56) and (57), we obtain: 

𝐻𝐻𝛽𝛽 = 𝑇𝑇 ′ (58) 

Where H is the output of the hidden layer and 𝑇𝑇′ is the transpose of T. We compute the weight 

matrix values of 𝛽𝛽 using the least square method to get the unique answer with the least amount 

of error. 

here is 𝑇𝑇 ′ the transpose of T and H is the output of the hidden layer. To obtain the unique 

solution with minimum error, we use the least square method to calculate the weight matrix 

values of 𝛽𝛽. 
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𝛽𝛽 = 𝐻𝐻+𝑇𝑇 ′ (59) 

Where: H+ is the generalized Moore-Penrose inverse of matrix H. 

We add a regularisation term to the 𝛽𝛽 [227] to increase the network's capacity for generalisation 

and stabilise the results. 𝛽𝛽 can be written as follows when there are fewer hidden layer neurons 

than training samples: 

𝛽𝛽 = (
1
𝜆𝜆

+ 𝐻𝐻′𝐻𝐻)−1𝐻𝐻′𝑇𝑇 ′ (60) 

Where: 𝛽𝛽′𝛽𝛽 = 𝐼𝐼 and 𝜆𝜆 are the regularisation coefficients used to balance the network's 

complexity and training accuracy [228]. When there are more hidden layer nodes than training 

samples, the formula for 𝛽𝛽 is [229]: 

𝛽𝛽 = 𝐻𝐻′(
𝐼𝐼
𝜆𝜆

+ 𝐻𝐻𝐻𝐻′)−1𝑇𝑇 ′ (61) 

The ELM algorithm can be summarized as follows [230]: 
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Figure III. 19 The ELM algorithm [230] 

III.5.3. Conclusion: 

Extreme Learning Machine (ELM) has several advantages in classification. According to 

ScienceDirect Topics [231], some of these advantages include: Fast and efficient learning 

speed, Fast convergence, Good generalization ability, Smallest training time and error, Better 

generalization performance, Simple algorithm, no need to decide the number of hidden layers, 

learning rate, and other hyperparameters and Can outperform support vector machines in both 

classification and regression applications. 
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III.6. Conclusion: 

Machine learning algorithms can be trained on data collected from sensors that monitor 

vibration and acoustic signals from bearings. The data collected is used to create models that 

can accurately detect and classify different types of errors [232]. Models can be trained using 

different types of machine learning techniques, e.g. decision trees, neural networks, support 

vector machines and random forests. It has a significant impact on bearing fault diagnosis by 

improving the accuracy and efficiency of the diagnostic process. Here are some specific ways 

machine learning can benefit bearing fault diagnosis [233]: 

Improved accuracy: Machine learning algorithms can identify subtle changes in vibration 

signals that may be missed by human analysts, improving the accuracy of bearing fault 

diagnosis. 

Faster diagnosis: Machine learning algorithms can process large amounts of data quickly, 

reducing the time needed to diagnose a bearing fault. This is especially important in industrial 

settings where equipment downtime can be costly. 

Early detection: Machine learning algorithms can identify the early stages of bearing faults, 

allowing for preventative maintenance to be performed before a failure occurs. 

Reduced costs: By detecting bearing faults early, machine learning can reduce the costs 

associated with unplanned downtime and equipment repair/replacement. 

Automation: Machine learning can automate the entire bearing fault diagnosis process, 

reducing the need for human intervention and freeing up resources for other tasks. 
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IV.1. Bearing fault diagnosis based on Linear discrimination analysis (LDA) 

and support vector machine (SVM): 

In this work, a unique approach is suggested for diagnosing bearing defects. The suggested 

approach is composed of two key steps. In the first step, linear discriminant analysis is used to 

reduce the dimensionality after statistical parameters are produced from vibration data received 

using a tri-axes accelerometer. The optimum feature subset is then created using the LDA 

components. The second step incorporates an enhanced support vector machine based on a 

whale optimization technique to categorize defects. Finally, the suggested methodology is 

tested and evaluated using real-time vibration signals. 

IV.2.1.  The suggested approach  

 
Figure IV. 1: The suggested approach 
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The suggested approach can be decorticated as follows: 

Step 1. Extraction of 7 statistical parameters from each of the three vibration signals of the 

accelerometer. As a result, an input vector that contains 21 parameters is obtained for each 

vibration signal. The extracted statistical parameters are the variance, the kurtosis,  the mean, 

the standard deviation, the skewness, the moment, and the covariance. 

Step 2. Application of linear discrimination analysis to reduce the dimensionality of the 

constructed vector. 

Step 3. Randomly selected feature sub-set and used it as input of SVM.  

Step 4. Application of an optimized support vector machine based on a whale optimization 

algorithm to automate the classification phase. 

Step 5. Calculate the test classification rate. 

Step 6. Repeat steps 3 to step 5 for all combinations and find the most superior classification 

rate and the salient feature subset. 

IV.2.2.  Test rig and simulation results 

The used dataset in this study was acquired from a test bench developed at The “DIRG Lab in 

the Department of Mechanical and Aerospace Engineering at Politecnico di Torino” [24]. The 

test bench is presented in Figure IV.2 and Figure IV.3, and it contains a high-speed spindle 

conducting a hollow shaft supported by identical roller bearings B1 and B3. The considered 

bearing is B1 in this study, where a tri-axial accelerometer is mounted on its support.  
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Figure IV. 2: The positions of the two accelerometers 

 

 
Figure IV. 3: The three roller bearings on the shaft 

 

This experiment extracts vibration signals from the three axes accelerometers placed in point 

A1. 250 signals are acquired for each class, 180 signals are employed for training, and 70 for 

test purposes. 

Table IV.1 summarizes some obtained results using various feature subsets. It also gives the 

optimal C and δ parameters obtained by applying the whale optimization algorithm.  

Table IV.1 Obtained results using LDA 

 

After applying the proposed methodology, it has been found that the combination of only the 

first and the second components gives good results with a test rate equal to 100%. 

Figure IV.4 and Figure IV.5 illustrate the distribution of the input training and test data. We 

notify you that the different classes are well separated and ready for classification. 

Sub-set Training rate Test rate optimal C optimal δ 

The two first components of LDA 99.60 100 631.5481 15.2808 

2nd and 3rd component of LDA 99.44 100 228.0672 10.0502 

3rd and 4th component of LDA 75.7143 77.4603 10000 35.7 
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Figure IV. 4: The two first components were obtained 

from LDA (Training data) 

 

 
Figure IV. 5: The two first components were 

obtained from LDA (Test data) 

 

 

IV.2.3.  Conclusion: 

This study develops a novel method for diagnosing severity faults. In this method, the tri-axis 

accelerometer's three vibration signals are used to extract statistical parameters. Linear 

discrimination analysis is then used to reduce the input vector's dimension. Following that, 

many subsets are randomly selected and used as an input vector for the SVM classifier. Finding 

the ideal SVM parameters also involves successfully applying the whale optimisation 

algorithm. The obtained results demonstrate that the suggested method can successfully extract 

the ideal feature subset and produce accurate classification outcomes. 
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IV.2. Independent vector analysis and extreme learning machine (ELM)-

based bearing fault diagnosis: 

Using IVA, feature selection, and ELM classifiers, a novel bearing defect diagnosis 

architecture is developed in this study. The following phases make up the recommended 

process for using vibration signals: The IVA is first developed in order to identify the various 

vibration signal components from one another. Second, data from each source that was 

gathered is used to create statistical parameters. Three binary optimisation techniques, 

including the binary bat algorithm, binary particle swarm optimisation, and binary grey wolf 

optimisation, are then utilized individually for feature selection. Three classifiers based on 

ELM, ANN, and RF are then used to finish the classification process.  

The results show that IVA produces an ideal input vector with only five features for each 

sample and an extremely low misdiagnosis rate of 0.76%, whereas feature selection based on 

BGWO and classification using an ELM also yields optimal input vectors. The collected results 

further show that the suggested methodology offers the best classification outcomes and great 

visibility when compared to the other evaluated alternatives. 

IV.2.1. The suggested architecture: 

Figure IV.6 shows the suggested architecture, which includes the following steps: 

Step 1: Each data sample contains three signals, each of which is a vibration signal acquired 

from one of the three unique directions of x, y, and z using a tri-axis accelerometer. 

Step 2: For each data sample, the IVA approach is applied using the three vibration signals as 

input. Vibration signal components are separated from one another using IVA. After applying 

IVA, three independent sources are gathered. 

Step 3: After the IVA algorithm has been used, statistical parameters are gathered from the 

three independent sources to build a rich input vector for classification. However, because they 

have different classification sensitivity factors, not all of the retrieved attributes are necessary 

to have a good classification performance. The feature subset with the relevant parameters 

should be chosen as the classification input vector as a result. To complete this objective, 

swarm intelligent feature selection techniques will be employed. Binary BAT, Binary PSO, 
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and Binary GWO are the three different binary swarm algorithms we employ. Then, 

consideration is given to the feature subset with the best objective function. 

Step 4: Utilising FNN, RF, and ELM, the classification step is ensured. 

 

Figure IV. 6: The suggested architecture 
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IV.2.2. Experimental setup: 

For experimental verification and to evaluate our suggested method, we used the bearing fault 

data from the “Dynamic and Identification Research Group (DIRG) at the Department of 

Mechanical and Aerospace Engineering at Politecnico di Torino, Italy”, in this study [24].   Tri-

axial accelerometers are used to record vibration signals with a sampling frequency of                   

fs = 51200 Hz for T = 10 s. The various bearing states are listed in Table I. 4, with A0 being 

the healthy case and (A1-A6) denoting the damaged cases. There are 875 samples in total, 125 

for each class, in the database. The database is split into two sections: training data makes up 

70 % of the database, while test data makes up 30 %.  

IV.2.3. The obtained results: 

The IVA application for recovering independent sources is the first step. The three sources for 

a healthy bearing and a defective bearing are shown in Figure IV.7 and Figure IV.8, 

respectively. Figure IV.9 and Figure IV.10 show that the independent sources collected vary 

from one bearing state to another. 

 
Figure IV. 7: Vibration signals of healthy bearing 

 

 
Figure IV. 8: Vibration signals of defective bearing 
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Figure IV. 9: Healthy bearing after using IVA 

 

 

Figure IV. 10: Defected bearing after using IVA 

 

Following the application of the IVA, step 2 involves feature extraction. It is required to define 

a specific feature in order to use the whole data set for troubleshooting. The three independent 

sources are used to derive the seven (07) statistical parameters for each bearing condition that 

were defined in Chapter II. 

As a result, for each bearing situation, an input vector with 21 features is obtained. These 

qualities don't have the same level of sensitivity. To choose the appropriate feature subset, three 

binary optimisation algorithms—BPSO, BGWO, and BBA are individually used. 

The tuning parameters used for the BBA are listed in Table IV.2. There are 20 particles that 

are sufficient to solve the typical tasks, however, more particles may be needed to tackle some 

challenging issues. The particle number is chosen to be 30 for this reason. 

Table IV.2 Tuning parameters for BBA 

Parameter Values 
Maximum iterations 100 
Number of particles (NoP) 30 
Number of dimensions (Nov) 21 
Loudness (A) [1 - 2] 
Pulse rate (r) [0 - 1] 
Minimum frequency (Qmin) 20 
Maximum frequency (Qmax) 50 
Initial frequency (for each particle) 0 
Initial velocity (for each particle) 0 
Initial position (for each particle) 0 
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Each individual's loudness (Ai) and heart rate (ri) are both randomly initialised in the [0-1] and 

[1-2] ranges, respectively.  

The tuning parameters utilised for the BPSO are listed in Table IV.3. The choice of numerous 

parameters, including the particle number, the cognitive parameter c1, the social parameter c2, 

and the inertia weight w, affects the results of PSO. 

Table  IV.3 The BPSO variables utilized in this study 

Parameter Values 
Maximum iteration 100 
Number of particles 10 

Cognitive parameter, c1 and social parameter, c2 2 
Velocity [Vmin, Vmax] [-6, 6] 

Inertia weight, w [0.4, 0.9] 
 

The PSO parameters in this study are as follows: c1 = c2 = 2. Equation (31) is used to compute 

the inertia weight. 

The tuning settings used for the BGWO are listed in Table IV.4. The benefit of BGWO is that 

it converges to an optimal solution independent of initialization and randomization used.  

Table IV.4 Setting the BGWO parameters 

Parameter Values 
Numbers of iterations 100 
Numbers of search agents 10 
Problem dimension 21 
Search domain [0, 1] 

 

There aren't many factors to adjust, it's easy to strike a good balance between exploration and 

exploitation, and it can lead to a beneficial convergence. GWO is also straightforward, user-

friendly, adaptable, and scalable. The convergence of the objective functions of BBA, BPSO, 

and BGWO are depicted in Figure IV.11, 12, and 13, respectively. The objective function is 

provided in this case as follows: 
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Figure IV. 11: Convergence of the BBA-based cost function 

 

 

Figure IV. 12: Convergence of the BPSO-based cost function 
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Figure IV. 13: Convergence of the BGWO-based cost function 

Cf = 1 Tacc, where Tacc is the training accuracy of a k closest neighbour unsupervised 

classifier.  We can see that the BGWO algorithm converges more quickly than the BBA and 

BPSO algorithms from Figure IV.11, 12, and 13.  We can also observe that the BGWO 

algorithm, with Cf = 0.011429, has attained the smallest objective function.  The RMS and SD 

of the first independent component, the PPV and CRF of the second independent component, 

and the PPV of the third independent component make up the ideal feature subset that is 

produced by using the BGWO method.   

Three classifiers namely, the extreme learning machine classifier, feed-forward neural network, 

and random forest—are used after choosing the salient feature set to guarantee the classification 

step.  Different architectures for feed-forward neural networks are tested. The neural network 

with one hidden layer and 10 neurons, which we discovered, provides the best test accuracy, 

which is equal to 98.10%. Based on the number of trees, the random forest classifier is put 

through a lot of tests. The best outcome was reached with 10 trees, and its test accuracy was 

97.34%. 
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Figure IV. 14: Training ELM accuracy with feature 
selection based on BBA 

 

 

Figure IV. 15: Testing ELM accuracy with feature 
selection based on BBA 

 

 

 

 

Figure IV. 16: Training ELM accuracy with feature 
selection based on BPSO 

 

 

Figure IV. 17: Testing ELM accuracy with feature 
selection based on BPSO 
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Figure IV. 18: Training ELM accuracy with feature 
selection based on BGWO 

 

 

Figure IV. 19: Testing ELM accuracy with feature 
selection based on BGWO 

 

 

The input weights, bias value, and the number of hidden neurons are the three main parameters 

that affect how well ELM performs classification. The input weights and thresholds of the 

hidden layer neurons of the ELM classifier are initialised at random in this investigation 

between the values [-1, 1]. Equations (60) and (61) can be used to calculate the input weights 

of the output layer.  

The sigmoid function is used as an activation function in this thesis. The ELM is extensively 

useful in many disciplines since it has the advantages of not easily slipping into a local 

minimum and having a better capacity for generalisation than conventional approaches. 

According to Figure IV.14–19, the ideal number of hidden neurons is chosen based on the 

highest test accuracy. Figure IV.14–19 illustrates how the number of neurons in the hidden 

layer based on BBA, BGWO, and BPSO fluctuates depending on training and test accuracy. 

According to Figure IV.14–19, the optimum architecture was created using the BGWO feature 

selection and the ELM classifier, which has 405 neurons in the hidden layer and has a test 

accuracy of 99.24%. 

Table IV.5 compares the test accuracy obtained using the three classifiers and the three feature 

selection algorithms, and the results show that the extreme learning classifier based on grey 

wolf feature selection provides the highest test accuracy. 
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Figures IV.20 to 22 show, respectively, the confusion matrix of the test results based on the 

BBA, BPSO and BGWO, and excessive learning. Figures IV.20–22 show that the proposed 

technique, which is based on BGWO and extreme learning, produces the greatest results, with 

the majority of samples being correctly identified and only two examples being incorrectly 

classified. However, there are 08 and 05 samples that are incorrectly classified, respectively, 

when we use BBA and BPSO. 

Table IV.5 Various classifiers used to determine classification accuracy 

 
Classifier 

Extreme Learning 
Machine 

Artificial Neural 
Networks Random Forests 

Feature 
Selection 

Technique 
Train (%)  Test (%)   Train (%)   Test (%)   Train (%)   Test (%)   

The BBA 98.04  96.96  85.29  85.55  99.67  96.58  
The BPSO 99.18  98.10  85.62  85.17  99.67  97.34  

The BGWO 99.51  99.24  97.88  98.10  99.84  97.34  
 

 
Figure IV. 20: 7-class confusion matrix for ELM and BBA 
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Figure IV. 21: 7-class confusion matrix for ELM and BPSO 

 
Figure IV. 22: 7-class confusion matrix for ELM and BGWO 
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IV.2.4. Conclusion 

Using IVA, feature selection, and ELM, a novel bearing fault diagnosis approach was 

developed in this study. The IVA has first been utilized to isolate independent sources from the 

mixed signals obtained from a three-axis accelerometer, and then statistical parameters are 

recovered from each component that results. The retrieved features have been optimized using 

three binary optimisation algorithms: the binary bat algorithm, the binary PSO, and the binary 

grey wolf optimisation. This stage seeks to select the optimal feature subset, lower the high 

dimensionality of the collected features, and boost classification accuracy even more. The best 

feature subset is then used to train the ELM, ANNs, and RF classifiers. This stage seeks to 

select the optimal feature subset, lower the high dimensionality of the collected features, and 

boost classification accuracy even more. The best feature subset is then used to train the ELM, 

ANNs, and RF classifiers. The findings suggest that the best classification outcomes are 

achieved when IVA, binary grey wolves, and severe learning are combined. Additionally, this 

combination enables the identification of bearing faults. 
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GENERAL CONCLUSION 

 

Bearing fault diagnostics using vibration signals is a typical technique in predictive 

maintenance. The technique entails examining vibration signals created by rotating machinery 

such as motors, turbines, and bearings to discover any anomalies that may indicate a bearing 

issue. Sensors such as accelerometers, proximity probes, and velocity transducers can be used 

to measure vibration signals. Following the recording of the vibration signals, they can be 

evaluated using various signal processing techniques such as time-domain analysis, frequency-

domain analysis, and time-frequency analysis. 

These vibration signals need to be analysed. Among many techniques, feature extraction is one 

effective technique. The primary idea behind feature extraction is to convert raw bearing 

vibration signals into a set of features that can be utilised to detect the existence of problems. 

These characteristics are often determined from the signals' time-domain, frequency-domain, 

or time-frequency domain representations. 

Once the features are extracted from the vibration signal, various machine-learning algorithms 

can be used to classify the fault type and severity based on the extracted features. Many 

machine learning algorithms have been used in bearing fault diagnoses such as random forests, 

support vector machines, and artificial neural networks. These algorithms can improve bearing 

fault diagnosis by providing early detection, and accurate diagnosis, reducing maintenance 

costs, improving reliability, and increasing safety. The accuracy of the classification depends 

on the quality of the features and the choice of machine learning technique. 

In conclusion, the importance of ML in bearing fault diagnosis cannot be overstated. ML 

algorithms can improve the accuracy and speed of fault diagnosis, reduce costs, and enable 

predictive maintenance, leading to more efficient and reliable equipment operations. 
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Dataset and Test Rig description of Case Western Reserve University 
(CWRU) Bearing Center 

Table A1.1: Drive end bearing: 6205-2RS JEM SKF, deep groove ball bearing 

Inside Diameter Outside Diameter Thickness Ball Diameter Pitch Diameter 

0.9843" 2.0472" 0.5906" 0.3126" 1.537" 

Table A1.2: Defect frequencies: (multiple of running speed in Hz) 

Inner Ring Outer Ring Cage Train Rolling Element 

5.4152" 3.5848" 0.39828" 4.7135" 

Table A1.3: Fan end bearing: 6203-2RS JEM SKF, deep groove ball bearing 

Inside Diameter Outside Diameter Thickness Ball Diameter Pitch Diameter 

0.6693" 1.5748" 0.4724" 0.2656" 1.122" 

Table A1.4: Defect frequencies: (multiple of running speed in Hz) 

Inner Ring Outer Ring Cage Train Rolling Element 

4.9469" 3.0530" 0.3817" 3.9874" 



Appendix 1 

125 

Table A1.5: Fault Specifications 

Bearing Fault Location Diameter 
(") 

Depth 
(") 

Bearing Manufacturer 
(") 

Drive End Inner Raceway .007 .011 SKF 

Drive End Inner Raceway .014 .011 SKF 

Drive End Inner Raceway .021 .011 SKF 

Drive End Inner Raceway .028 .050 NTN 

Drive End Outer Raceway .007 .011 SKF 

Drive End Outer Raceway .014 .011 SKF 

Drive End Outer Raceway .021 .011 SKF 

Drive End Outer Raceway .040 .050 NTN 

Drive End Ball .007 .011 SKF 

Drive End Ball .014 .011 SKF 

Drive End Ball .021 .011 SKF 

Drive End Ball .028 .150 NTN 

Fan End Inner Raceway .007 .011 SKF 

Fan End Inner Raceway .014 .011 SKF 

Fan End Inner Raceway .021 .011 SKF 

Fan End Outer Raceway .007 .011 SKF 

Fan End Outer Raceway .014 .011 SKF 

Fan End Outer Raceway .021 .011 SKF 

Fan End Ball .007 .011 SKF 

Fan End Ball .014 .011 SKF 

Fan End Ball .021 .011 SKF 
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Table A1.6: 12k Drive End Bearing Fault Data 

* = Data not available

Fault 
Diameter 

Motor 
Load 
(HP) 

Approx. 
Motor 
Speed 
(rpm) 

Inner 
Race Ball 

Outer Race  
Position Relative to Load Zone 
(Load Zone Centered at 6:00) 

Centred 
@6:00 

Orthogonal 
@3:00 

Opposite 
@12:00 

0.007" 0 1797 IR007_0 B007_0 OR007@6_0 OR007@3_0 OR007@12_0 

1 1772 IR007_1 B007_1 OR007@6_1 OR007@3_1 OR007@12_1 

2 1750 IR007_2 B007_2 OR007@6_2 OR007@3_2 OR007@12_2 

3 1730 IR007_3 B007_3 OR007@6_3 OR007@3_3 OR007@12_3 

0.014" 0 1797 IR014_0 B014_0 OR014@6_0 * * 

1 1772 IR014_1 B014_1 OR014@6_1 * * 

2 1750 IR014_2 B014_2 OR014@6_2 * * 

3 1730 IR014_3 B014_3 OR014@6_3 * * 

0.021" 0 1797 IR021_0 B021_0 OR021@6_0 OR021@3_0 OR021@12_0 

1 1772 IR021_1 B021_1 OR021@6_1 OR021@3_1 OR021@12_1 

2 1750 IR021_2 B021_2 OR021@6_2 OR021@3_2 OR021@12_2 

3 1730 IR021_3 B021_3 OR021@6_3 OR021@3_3 OR021@12_3 

0.028" 0 1797 IR028_0 B028_0 * * * 

1 1772 IR028_1 B028_1 * * * 

2 1750 IR028_2 B028_2 * * * 

3 1730 IR028_3 B028_3 * * *
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https://engineering.case.edu/sites/default/files/212.mat
https://engineering.case.edu/sites/default/files/225.mat
https://engineering.case.edu/sites/default/files/237.mat
https://engineering.case.edu/sites/default/files/249.mat
https://engineering.case.edu/sites/default/files/261.mat
https://engineering.case.edu/sites/default/files/3001.mat
https://engineering.case.edu/sites/default/files/3005.mat
https://engineering.case.edu/sites/default/files/3002.mat
https://engineering.case.edu/sites/default/files/3006.mat
https://engineering.case.edu/sites/default/files/3003.mat
https://engineering.case.edu/sites/default/files/3007.mat
https://engineering.case.edu/sites/default/files/3004.mat
https://engineering.case.edu/sites/default/files/3008.mat
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Table A1.7: 48k Drive End Bearing Fault Data 

Fault 
Diameter 

Motor 
Load 
(HP) 

Approx. 
Motor 
Speed 
(rpm) 

Inner 
Race Ball Outer Race Position Relative to Load Zone 

(Load Zone Centered at 6:00) 

Centred 
@6:00 

Orthogonal 
@3:00 

Opposite 
@12:00 

0.007" 0 1797 IR007_0 B007_0 OR007@6_0 OR007@3_0 OR007@12_0 

1 1772 IR007_1 B007_1 OR007@6_1 OR007@3_1 OR007@12_1 

2 1750 IR007_2 B007_2 OR007@6_2 OR007@3_2 OR007@12_2 

3 1730 IR007_3 B007_3 OR007@6_3 OR007@3_3 OR007@12_3 

0.014" 0 1797 IR014_0 B014_0 OR014@6_0 * * 

1 1772 IR014_1 B014_1 OR014@6_1 * * 

2 1750 IR014_2 B014_2 OR014@6_2 * * 

3 1730 IR014_3 B014_3 OR014@6_3 * * 

0.021" 0 1797 IR021_0 B021_0 OR021@6_0 OR021@3_0 OR021@12_0 

1 1772 IR021_1 B021_1 OR021@6_1 OR021@3_1 OR021@12_1 

2 1750 IR021_2 B021_2 OR021@6_2 OR021@3_2 OR021@12_2 

3 1730 IR021_3 B021_3 OR021@6_3 OR021@3_3 OR021@12 

https://engineering.case.edu/sites/default/files/109.mat
https://engineering.case.edu/sites/default/files/122.mat
https://engineering.case.edu/sites/default/files/135.mat
https://engineering.case.edu/sites/default/files/148.mat
https://engineering.case.edu/sites/default/files/161.mat
https://engineering.case.edu/sites/default/files/110.mat
https://engineering.case.edu/sites/default/files/123.mat
https://engineering.case.edu/sites/default/files/136.mat
https://engineering.case.edu/sites/default/files/149.mat
https://engineering.case.edu/sites/default/files/162.mat
https://engineering.case.edu/sites/default/files/111.mat
https://engineering.case.edu/sites/default/files/124.mat
https://engineering.case.edu/sites/default/files/137.mat
https://engineering.case.edu/sites/default/files/150.mat
https://engineering.case.edu/sites/default/files/163.mat
https://engineering.case.edu/sites/default/files/112.mat
https://engineering.case.edu/sites/default/files/125.mat
https://engineering.case.edu/sites/default/files/138.mat
https://engineering.case.edu/sites/default/files/151.mat
https://engineering.case.edu/sites/default/files/164.mat
https://engineering.case.edu/sites/default/files/174.mat
https://engineering.case.edu/sites/default/files/189.mat
https://engineering.case.edu/sites/default/files/201.mat
https://engineering.case.edu/sites/default/files/175.mat
https://engineering.case.edu/sites/default/files/190.mat
https://engineering.case.edu/sites/default/files/202.mat
https://engineering.case.edu/sites/default/files/176.mat
https://engineering.case.edu/sites/default/files/191.mat
https://engineering.case.edu/sites/default/files/203.mat
https://engineering.case.edu/sites/default/files/177.mat
https://engineering.case.edu/sites/default/files/192.mat
https://engineering.case.edu/sites/default/files/204.mat
https://engineering.case.edu/sites/default/files/213.mat
https://engineering.case.edu/sites/default/files/226.mat
https://engineering.case.edu/sites/default/files/238.mat
https://engineering.case.edu/sites/default/files/250.mat
https://engineering.case.edu/sites/default/files/262.mat
https://engineering.case.edu/sites/default/files/214.mat
https://engineering.case.edu/sites/default/files/227.mat
https://engineering.case.edu/sites/default/files/239.mat
https://engineering.case.edu/sites/default/files/251.mat
https://engineering.case.edu/sites/default/files/263.mat
https://engineering.case.edu/sites/default/files/215.mat
https://engineering.case.edu/sites/default/files/228.mat
https://engineering.case.edu/sites/default/files/240.mat
https://engineering.case.edu/sites/default/files/252.mat
https://engineering.case.edu/sites/default/files/264.mat
https://engineering.case.edu/sites/default/files/217.mat
https://engineering.case.edu/sites/default/files/229.mat
https://engineering.case.edu/sites/default/files/241.mat
https://engineering.case.edu/sites/default/files/253.mat
https://engineering.case.edu/sites/default/files/265.mat
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Table A1.8: 12k Fan End Bearing Fault Data 

* = Data not available

The Case Western Reserve University Bearing Fault Dataset can be downloaded from: 

https://engineering.case.edu/bearingdatacenter/download-data-file 

Fault 
Diameter 

Motor 
Load 
(HP) 

Approx. 
Motor 
Speed 
(rpm) 

Inner 
Race Ball 

Outer Race  
Position Relative to Load Zone 
(Load Zone Centered at 6:00) 

Centred 
@6:00 

Orthogonal 
@3:00 

Opposite 
@12:00 

0.007" 0 1797 IR007_0 B007_0 OR007@6_0 OR007@3_0 OR007@12_0 

1 1772 IR007_1 B007_1 OR007@6_1 OR007@3_1 OR007@12_1 

2 1750 IR007_2 B007_2 OR007@6_2 OR007@3_2 OR007@12_2 

3 1730 IR007_3 B007_3 OR007@6_3 OR007@3_3 OR007@12_3 

0.014" 0 1797 IR014_0 B014_0 OR014@6_0 OR014@3_0 * 

1 1772 IR014_1 B014_1 * OR014@3_1 * 

2 1750 IR014_2 B014_2 * OR014@3_2 * 

3 1730 IR014_3 B014_3 * OR014@3_3 * 

0.021" 0 1797 IR021_0 B021_0 OR021@6_0 * * 

1 1772 IR021_1 B021_1 * OR021@3_1 * 

2 1750 IR021_2 B021_2 * OR021@3_2 * 

3 1730 IR021_3 B021_3 * OR021@3_3 *

https://engineering.case.edu/bearingdatacenter/download-data-file
https://engineering.case.edu/sites/default/files/278.mat
https://engineering.case.edu/sites/default/files/282.mat
https://engineering.case.edu/sites/default/files/294.mat
https://engineering.case.edu/sites/default/files/298.mat
https://engineering.case.edu/sites/default/files/302.mat
https://engineering.case.edu/sites/default/files/279.mat
https://engineering.case.edu/sites/default/files/283.mat
https://engineering.case.edu/sites/default/files/295.mat
https://engineering.case.edu/sites/default/files/299.mat
https://engineering.case.edu/sites/default/files/305.mat
https://engineering.case.edu/sites/default/files/280.mat
https://engineering.case.edu/sites/default/files/284.mat
https://engineering.case.edu/sites/default/files/296.mat
https://engineering.case.edu/sites/default/files/300.mat
https://engineering.case.edu/sites/default/files/306.mat
https://engineering.case.edu/sites/default/files/281.mat
https://engineering.case.edu/sites/default/files/285.mat
https://engineering.case.edu/sites/default/files/297.mat
https://engineering.case.edu/sites/default/files/301.mat
https://engineering.case.edu/sites/default/files/307.mat
https://engineering.case.edu/sites/default/files/274.mat
https://engineering.case.edu/sites/default/files/286.mat
https://engineering.case.edu/sites/default/files/313.mat
https://engineering.case.edu/sites/default/files/310.mat
https://engineering.case.edu/sites/default/files/275.mat
https://engineering.case.edu/sites/default/files/287.mat
https://engineering.case.edu/sites/default/files/309.mat
https://engineering.case.edu/sites/default/files/276.mat
https://engineering.case.edu/sites/default/files/288.mat
https://engineering.case.edu/sites/default/files/311.mat
https://engineering.case.edu/sites/default/files/277.mat
https://engineering.case.edu/sites/default/files/289.mat
https://engineering.case.edu/sites/default/files/312.mat
https://engineering.case.edu/sites/default/files/270.mat
https://engineering.case.edu/sites/default/files/290.mat
https://engineering.case.edu/sites/default/files/315.mat
https://engineering.case.edu/sites/default/files/271.mat
https://engineering.case.edu/sites/default/files/291.mat
https://engineering.case.edu/sites/default/files/316.mat
https://engineering.case.edu/sites/default/files/272.mat
https://engineering.case.edu/sites/default/files/292.mat
https://engineering.case.edu/sites/default/files/317.mat
https://engineering.case.edu/sites/default/files/273.mat
https://engineering.case.edu/sites/default/files/293.mat
https://engineering.case.edu/sites/default/files/318.mat
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Dataset and Test Rig description of the Dynamic and Identification 
Research Group (DIRG)  

The dataset used in this research is from a high-speed aeronautical bearing test rig created by 
the Dynamic & Identification Research Group (DIRG) at Politecnico di Torino's Department 
of Mechanical and Aerospace Engineering. The rig is completely described in [24], although 
the important points are summarised below]. A single direct-drive rotating shaft is supported 
by two identical high-speed aeronautical roller bearings (B1 and B3 in Figure I.7) to form the 
rig. B3 is known to be healthy, however, B1 has been purposefully injured with indentations of 
varying sizes in various regions of the bearing (Rolling Element and Inner Ring), as shown in 
Table A2. 3. The third central bearing B2 is installed on a sledge that is designed to load the 
shaft with increasing forces of 0, 1000, 1400, and 1800 N, as the speed decreases from 470 to 
0 Hz (run-down acquisitions). The operational circumstances are summarised in Table A2. 1. 
Two tri-axial accelerometers, one on the B1 bearing support (accelerometer A1) and the other 
on the loading sledge (accelerometer A2). The acquisitions last around T = 50 s and have a 
sampling frequency of fs = 102400 Hz. To perform a significant analysis, the five selected 
features root mean square, skewness, kurtosis, peak value, and crest factor are extracted on one 
hundred independent chunks (approximately 0.5 s each) for each of the 6 channels of the 4 
original acquisitions in all 7 health conditions (from 0A, healthy, to 6A).  Finally, 100 
observations in a 30-dimensional space (6 channels, 5 features) are gathered for each condition. 

Table A2. 1. The different loads while the speed is decreasing from 470 to 0 Hz (rundown 
acquisitions). 

Label 1 2 3 4 

𝐹𝐹 [kN] 0 1 1.4 1.8 
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Table A2. 2: File names for the eight bearings with different damages, from 0A to 6A 

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  

C0A_100_000_1.mat  
C0A_100_505_1.mat  
C0A_100_706_1.mat  
C0A_100_899_1.mat  
C0A_200_505_1.mat  
C0A_200_706_1.mat  
C0A_200_899_1.mat  
C0A_300_505_1.mat  
C0A_300_706_1.mat  
C0A_300_899_1.mat  
C0A_400_505_1.mat  
C0A_400_706_1.mat  
C0A_500_505_1.mat  

C1A_100_000_2.mat  
C1A_100_502_2.mat  
C1A_100_702_2.mat  
C1A_100_898_2.mat  
C1A_200_502_2.mat  
C1A_200_702_2.mat  
C1A_200_898_2.mat  
C1A_300_502_2.mat  
C1A_300_702_2.mat  
C1A_300_898_2.mat  
C1A_400_502_2.mat  
C1A_400_702_2.mat  
C1A_500_502_2.mat  

C2A_100_000_1.mat  
C2A_100_506_1.mat  
C2A_100_701_1.mat  
C2A_100_901_1.mat  
C2A_200_506_1.mat  
C2A_200_701_1.mat  
C2A_200_901_1.mat  
C2A_300_506_1.mat  
C2A_300_701_1.mat  
C2A_300_901_1.mat  
C2A_400_506_1.mat  
C2A_400_701_1.mat  
C2A_500_506_1.mat  

C3A_100_000_1.mat  
C3A_100_505_1.mat  
C3A_100_699_1.mat  
C3A_100_906_1.mat  
C3A_200_505_1.mat  
C3A_200_699_1.mat  
C3A_200_906_1.mat  
C3A_300_505_1.mat  
C3A_300_699_1.mat  
C3A_300_906_1.mat  
C3A_400_505_1.mat  
C3A_400_699_1.mat  
C3A_500_505_1.mat  

1  
2  
3  
4  
5  
6  
7  
8  
9  
10  
11  
12  
13  

C4A_100_000_1.mat  
C4A_100_496_1.mat  
C4A_100_702_1.mat  
C4A_100_895_1.mat  
C4A_200_496_1.mat  
C4A_200_702_1.mat  
C4A_200_895_1.mat  
C4A_300_496_1.mat  
C4A_300_702_1.mat  
C4A_300_895_1.mat  
C4A_400_496_1.mat  
C4A_400_702_1.mat  
C4A_500_496_1.mat  

C5A_100_000_1.mat  
C5A_100_498_1.mat  
C5A_100_700_1.mat  
C5A_100_900_1.mat  
C5A_200_498_1.mat  
C5A_200_700_1.mat  
C5A_200_900_1.mat  
C5A_300_498_1.mat  
C5A_300_700_1.mat  
C5A_300_900_1.mat  
C5A_400_498_1.mat  
C5A_400_700_1.mat  
C5A_500_498_1.mat  

C6A_100_000_1.mat  
C6A_100_500_1.mat  
C6A_100_705_1.mat  
C6A_100_909_1.mat  
C6A_200_500_1.mat  
C6A_200_705_1.mat  
C6A_200_909_1.mat  
C6A_300_500_1.mat  
C6A_300_705_1.mat  
C6A_300_909_1.mat  
C6A_400_500_1.mat  
C6A_400_705_1.mat  
C6A_500_500_1.mat  

The time histories of the six channels (Table A2. 2) have been collected with sampling 
frequency fs=51200 Hz for a duration of T=10s. Data are recorded in files whose names have 
the following format: CnA_fff_vvv_m.mat. 

C: the root of the file name, common to all files; 

n: integer value from 0 to 6, indicating the kind of the defect, e.g., 1A, …, 6A            (Table 
A2. 3); 

fff: integer value from 100 to 500, indicating the nominal speed of the shaft (Hz); 

vvv: integer value corresponding to the voltage of the load cell (mV), indicating the applied 
load; 

Table A2. 3: List of the defects of the various bearings mounted in position B1. 

Name Defect Dimension ( µm) 

0A NO DEFECT ---- 

1A The diameter of an indentation on the inner ring 450 

2A The diameter of an indentation on the inner ring 250 

3A The diameter of an indentation on the inner ring 150 

4A The diameter of an indentation on a roller 450 

5A The diameter of an indentation on a roller 250 

6A The diameter of an indentation on a roller 150 
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The entire procedure took around 30 minutes, and due to the inverter's restricted power, higher 
rotation speeds with higher loading circumstances were not possible. The speed-load 
combinations are listed in Table A2. 4. 

Table A2. 4: List of the tested load and speed cases. 

Nominal load (N) Nominal speed (Hz) 

0 100 200 300 400 500 

1000 100 200 300 400 500 

1400 100 200 300 400 ---- 

1800 100 200 300 ---- ---- 
 

The related time records can be downloaded from: 
ftp://ftp.polito.it/people/DIRG_BearingData/ 

ftp://ftp.polito.it/people/DIRG_BearingData/
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